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ABSTRACT

A CLOSED-LOOP BIDIRECTIONAL BRAIN-MACHINE INTERFACE

SYSTEM FOR FREELY BEHAVING ANIMALS

Xilin Liu

Jan Van der Spiegel

A brain-machine interface (BMI) creates an artificial pathway between the brain

and the external world. The research and applications of BMI have received enormous

attention among the scientific community as well as the public in the past decade.

However, most research of BMI relies on experiments with tethered or sedated an-

imals, using rack-mount equipment, which significantly restricts the experimental

methods and paradigms. Moreover, most research to date has focused on neural sig-

nal recording or decoding in an open-loop method. Although the use of a closed-loop,

wireless BMI is critical to the success of an extensive range of neuroscience research,

it is an approach yet to be widely used, with the electronics design being one of

the major bottlenecks. The key goal of this research is to address the design chal-

lenges of a closed-loop, bidirectional BMI by providing innovative solutions from the

neuron-electronics interface up to the system level.

Circuit design innovations have been proposed in the neural recording front-end,

the neural feature extraction module, and the neural stimulator. Practical design

vi
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issues of the bidirectional neural interface, the closed-loop controller and the over-

all system integration have been carefully studied and discussed. To the best of

our knowledge, this work presents the first reported portable system to provide all

required hardware for a closed-loop sensorimotor neural interface, the first wireless

sensory encoding experiment conducted in freely swimming animals, and the first

bidirectional study of the hippocampal field potentials in freely behaving animals

from sedation to sleep.

This thesis gives a comprehensive survey of bidirectional BMI designs, reviews

the key design trade-offs in neural recorders and stimulators, and summarizes neural

features and mechanisms for a successful closed-loop operation. The circuit and sys-

tem design details are presented with bench testing and animal experimental results.

The methods, circuit techniques, system topology, and experimental paradigms pro-

posed in this work can be used in a wide range of relevant neurophysiology research

and neuroprosthetic development, especially in experiments using freely behaving

animals.
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Chapter 1

Introduction

1.1 Background and Motivation

Since the dawn of human civilization, people have started the attempts to study

the brain, with the hope that it will give us answers to the fundamental questions

like what makes us who we are, where is the consciousness from. However, even

with the science and technology advancements nowadays, many mechanisms of the

brain functions remain unclear. There are more than a hundred billion neurons in a

human brain [23], approximating the number of stars estimated in our galaxy [24].

Each of the neurons establishes connections with ten thousands of other neurons,

forming a massive neural network. Interestingly, the brain, or the neurons represent

the information in terms of an electrical signal by the redistribution of the ions with

different charges [25]. This gives electrical engineers a unique opportunity to design

instrumentations for collecting the neural signal, and also generating electrical signals

imitating the neural signal. The direct communication pathway between the brain and

1
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the external world is named brain-machine interface (BMI), brain-computer interface

(BCI) or neural interface [26].

The first BMI experiment was conducted by J. Vidal from the University of

California, Los Angeles in 1973 [27], for an observation and detection of brain events

in electroencephalogram (EEG). The first intracortical BMI was built by P. Kennedy

from the Georgia Institute of Technology in 1987 [28]. The first demonstration of

controlling a physical object using EEG signal was reported by S. Bozinovski in 1988

[29]. In 1999, researchers led by Yang Dan at the University of California, Berkeley

decoded neuronal firings to reproduce images seen by cats [30]. The same year, J.

Chapin and colleagues from the MCP Hahnemann School of Medicine and Duke

University demonstrates the first direct control of a robotic manipulator by decoding

an assembly of cortical neurons [31]. In 2000, Nicolelis and his colleagues from the

Duke University developed BCIs that decoded brain activity in monkeys and used

the devices to reproduce monkey movements in robotic arms [32]. The same year,

Gerwin Schalk from the Wadsworth Center of the New York State Department of

Health developed a general-purpose system for BCI research called BCI2000 [33]. In

2012, Leigh R. Hochberg and fellow investigators at the Brown University helped two

people with tetraplegia to reach for and grasp objects in three-dimensional space using

robotic arms from decoding the motor cortex [34]. In 2016, Sharlene N. Flesher and

his colleagues from the University of Pittsburgh helped a paralyzed man experience

the sense of touch in his mind-controlled robotic arm by intracortical microstimulation

of the somatosensory cortex [35].

These achievements are promising and encouraging for the development of the

future generation of BMI systems. However, several bottlenecks still need to be

overcome before the technology can be extensively used in experimental and clinical
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studies, such as the development of a robust bidirectional neural interface and close-

loop operation [36]. The importance and motivation of a bidirectional closed-loop

neural interface can be understood from three perspectives: i) the development of the

neuroprosthetic device with sensory feedback, ii) the treatment of neural disorders,

and iii) the study of neuroscience and neurology. Each perspective is analyzed as

follows.

i) Firstly, a bidirectional closed-loop neural interface is important for the devel-

opment of the neuroprosthetic and BMI device with sensory feedback. Sensations

and actions are inextricably linked. Behavioral goals are achieved by sampling the

environment with the available sensory modalities and modifying actions according-

ly. Somatosensory feedback is especially important to the dexterous hand movement

control. Recent developments in hand prosthetics with motor pathway replacement

alone do not lead to the adequate use of a paralyzed hand [37]. Artificial sensation

restoration is needed for this technology to meet the performance required for clini-

cal adoption. The sensation may be restored with direct electrical microstimulation

of the brain [38]. The cuneate nucleus (CN) in the dorsal brainstem carries fine

touch and proprioceptive information from the upper body, and is a suitable sensory

encoding site. Besides, its compact representations may be reliably activated artifi-

cially. Fig. 6.41 illustrates an envisioned bidirectional clinical hand neuroprosthesis

with motor function restored through brain-controlled stimulation of hand muscles,

and somatosensation restored through sensor controlled electrical stimulation of the

brainstem.

ii) Secondly, a bidirectional closed-loop neural interface is important for the treat-

ment of neural disorders. Deep brain stimulation (DBS) is an FDA approved treat-

ment for essential tremor, Parkinson’s disease, dystonia, and obsessivecompulsive
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Figure 1.1: Envisioned bidirectional clinical hand neuroprosthesis. Motor function
is restored through brain-controlled electrical stimulation of hand muscles, and
somatosensation is restored through sensor controlled electrical stimulation of the
brain. The motor pathway replacement has been extensively studied, and this work
is focused on sensation restoration.

disorder (OCD) [39]. Despite the long history and success in the clinical use of the

DBS, the underlying mechanism remains not clear [40]. However, recent research has

shown that a closed-loop stimulation can achieve better performance than standard

open-loop treatment. In 2011, the research conducted by B. Rosin and his colleagues

from the Hebrew University-Hadassah Medical Association School of Medicine shows

that the closed-loop stimulation has a greater effect than the conventional open-loop

stimulation paradigms, and have the potential to be effective in other brain disorders

[41]. A. Bernyi et al. from the Rutgers University presented the closed-loop control of

epilepsy by transcranial electrical stimulation in 2012 [42]. The seizure-triggered feed-

back transcranial electrical stimulation can effectively reduce the pathological brain

pattern while leaving the other aspects of brain functions unaffected. In 2013, J. Paz
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and colleagues from the Stanford University showed that a closed-loop optogenetic

control of thalamus can immediately interrupt electrographic and behavioral seizures

[43]. All of these successful implementations encourage the implementation of a ful-

ly integrated closed-loop bidirectional neural interface for the clinical treatment of

neural disorders.

iii) Last but not least, a bidirectional closed-loop neural interface is an essential

approach for the study of neuroscience and neurology. The goal of the neuroscience

research is to better understand the operational principles of the brain. The brain

activity consists of complex interactions of both internal state and external stimuli

[44]. This is reflected from the single neuron level to the recurrent neuronal network

level, and is important for both in-vitro and in-vivo studies [45]. Examples of studies

using bidirectional BMI include bridging lost biological connection [46], generating

synaptic plasticity and strengthening weak synaptic connections [47], reinforcing the

activity that generates the stimulation [48].
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1.2 Review of Prior Work

This section presents a comprehensive survey and review of the bidirectional brain-

machine interface designs published to date. The BMI systems can be categorized

from several different perspectives: i) based on the electrodes’ location, the BMI sys-

tems can be classified into non-invasive systems and invasive systems; ii) based on the

signal and control flow, the BMI systems can be classified into one-directional BMIs

(recording or stimulation alone), and bidirectional BMIs (both recording and stimu-

lation); iii) based on the study and characterization approaches, the BMI systems can

be classified into open-loop BMI and closed-loop BMI. Fig. 1.2 shows the historical

trend for the publications of BMI systems over the past 15 years. Specific categories

Figure 1.2: The historical trend for publications of BMIs over the past 15 years.
Specific categories of BMIs including invasive approach, closed-loop study, and
bidirectional interface are plotted for comparison.

of BMIs including the invasive studies, the closed-loop studies, and the bidirectional
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neural interface are plotted for comparison. The data was retrieved from the Scopus

database [49].

Non-invasive systems mainly exploit the EEG to control external computers and

devices, while the invasive systems are based on intracranial recording and stimulation

of single or multiple neurons. The non-invasive approach doesn’t require surgery

for electrode implants and thus has a significant less safety concern. However, the

invasive approach gives a more direct interaction with neurons, resulting in advantages

in recording resolution and bandwidth, as well as the stimulation effectiveness and

accuracy. This work mainly focuses on the study of invasive BMI systems. In addition,

most existing neuroscience research and BMI circuits and system development are

based on one-directional signal flow and open-loop approach: either neural signal

recording or neural stimulation. Fig. 1.3 illustrates the percentage of BMI research

papers and designs using bidirectional signal flow and closed-loop approach. Second

Figure 1.3: The trend for the percentage of closed-loop and bidirectional designs
among all BMI publications. Second order polynomial fitting curves are plotted for
showing the trend.
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order polynomial fitting curves are plotted for showing the trend. There is a clearly

increasing trend for the closed-loop approach and bidirectional BMI designs. It is

even more convincing given the exponential increase of the overall publications of

BMIs. However, the overall percentage is still low. The work in this thesis mainly

focuses on the study of bidirectional and closed-loop approach for BMI design.

In order to have a comprehensive understanding of the progress of bidirection-

al BMI designs, especially from the electrical engineering perspective, a survey of

bidirectional BMI designs are given below. Table 1.1 and Table 1.2 together list the

bidirectional BMI designs with key design features. The tables include five of the pub-

lications from this thesis. The selected features include the recording and stimulation

channel counts, neural feature extraction processing, closed-loop operation, wireless

communication, target application, and the animal experiments or validation.

Among all bidirectional BMI designs, work that involves high channel count has

been reported [56, 64, 69]. It should be noticed that most of the high channel count

designs were for in-vitro study, which has less restraint on the power consumption.

Neural feature extraction has been performed in a computer [53, 54], in a general-

purpose microcontroller [6, 7, 57], or on an ASIC [11, 60, 70, 76]. Commonly used

neural features include: neural energy in specific frequency bands [7, 11, 53, 55, 68],

action potentials [6, 50, 54, 63], freq-time wavelet domain features [70, 76], entropy

[10, 57], and phase synchrony [60]. Commonly used closed-loop methods include:

simple trigger [50, 53, 66], linear mapping [63, 67, 79], classifiers [8, 57, 70], PI or PID

controllers [11, 68, 73]. The wireless communication modules integrated in the BMI

systems include commercial solutions [55, 57, 61] and ASIC designs [10, 11, 79]. The

target applications of these papers include generalized neuroscience research [58, 62,

62, 65, 71], in-vitro neuronal study [9, 64, 69], deep brain stimulation (DBS) treatment
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Table 1.1: Survey of Bidirectional Neural Interface Designs (Part I)

Ref. Publication Affilication Lead Author Rec. Stim.

2005 [50] J. Neurosci. Methods Univ. of Washington J. Mavoori 1ch 1ch

2006 [51] JSSC ETH Hoenggerberg F. Heer 128ch 128ch

2007 [52] TCAS-I Georgia Tech. R. Blum 16ch 16ch

2009 [53] TBE UC Berkeley S. Venkatraman 16ch 16ch

2009 [54] EMBC Emory Univ. J. Rolston 60ch 60ch

2010 [55] JSSC Univ. Michigan, Ann Arbor J. Lee 8ch 64ch

2010 [56] TBioCAS Univ. of Toronto F. Shahrokhi 128ch 128ch

2010 [57] EMBC National Cheng Kung Univ. S. Liang 1ch 2ch

2011 [6] TNSRE Univ. of Washington S. Zanos 3ch 3ch

2011 [7] JNE Washington Univ. A. Rouse 4ch 8ch

2011 [9] JSSC/TBE Case Western Reserve Univ. M. Azin 4ch x2 1ch x2

2011 [58] TBioCAS Univ. of Cagliari D. Loi 8ch 8ch

2012 [8] TNSRE Medtronic/MIT S. Stanslaski 12ch 8ch

2013 [59] ISCAS Univ. of Ulm U. Bihr 1ch 1ch

2013 [60] JSSC Univ. of Toronto K. Abdelhalim 64ch 64ch

2014 [61] ISCAS Univ. of Penn This work 4ch 2ch

2014 [10] JSSC National Chiao Tung Univ. W. Chen 8ch 1ch x2

2014 [62] CICC Case Western Reserve Univ. K. Limnuson 1ch 1ch

2014 [63] Scientific Reports Italian Institute of Tech. G. Angotzi 8ch 8ch

2014 [64] JSSC ETH Zurich M. Ballini 1024ch 1024ch

2014 [11] JSSC Univ. Michigan, Ann Arbor H. Rhew 4ch 8ch

2014 [65] ESSCIRC Medtronic/Washington Univ. P. Cong 8ch 32ch

2014 [66] JNE Imec T.K.T. Nguyen 32ch 1ch

2015 [67] TBioCAS Univ. of Penn This work 4ch 2ch

2015 [68] BioCAS Univ. of Penn This work 12ch 12ch

2015 [62] AICSP Case Western Reserve Univ. K. Limnuson 1ch 1ch

2015 [69] TBioCAS Univ. of Toronto R. Shulyzki 256ch 64ch

2015 [70] JSSC Masdar Inst. of Sci. Tech. M. Altaf 16ch 1ch

2015 [71] VLSI Univ. Michigan, Ann Arbor A. Mendrela 8ch 4ch

2015 [72] JSSC UC Berkeley W. Biederman 8ch 2ch

2016 [73] TBioCAS Univ. of Penn This work 16ch 16ch

2016 [74] Microelectronics J Seoul National Univ. Sci. Tech. A. Abdi 1ch 1ch

2016 [75] JSSC Univ. Michigan, Ann Arbor A. Mendrela 8ch 4ch

2016 [76] VLSI Cal Tech./ UCLA M. Shoaran 16ch 1ch

2016 [77] Sensors Wuhan Univ. Y. Su 32 ch 4 ch

2016 [78] BioCAS Univ. of Ulm M. Haas 1ch 1ch

2017 [79] ISCAS Univ. of Penn This work 16ch 16ch



10

Table 1.2: Survey of Bidirectional Neural Interface Designs (Part II)

Ref. Neural Feature Ex. Closed-loop Wireless Application Animal Exp.

2005 [50] Spike Trigger No streaming Generalized Free behaving

2006 [51] - - - Generalized -

2007 [52] - - - Generalized -

2009 [53] Energy(1) Trigger - Generalized Awake

2009 [54] Spike(1) Trigger - Generalized Free behaving

2010 [55] Energy Trigger Off-chip DBS treatment Anesthetized

2010 [56] - - - Generalized Anesthetized

2010 [57] Entropy/spectrum(2) Classifier Zigbee Seizure ctrl. Free behaving

2011 [6] Spike(2) Classifier - Generalized Free behaving

2011 [7] Energy(2) Classifier Generalized -

2011 [9] Spike Trigger - Neuronal Study Anesthetized

2011 [58] - - - Generalized Anesthetized

2012 [8] Spectrum Classifier - Generalized Awake

2013 [59] - - - Generalized -

2013 [60] Phase synchrony Trigger UWB Seizure ctrl. Anesthetized

2014 [61] Energy/spike Trigger 2.4GHz(3) Generalized Awake

2014 [10] Entropy/spectrum Trigger OOK Seizure ctrl. Awake

2014 [62] - - - Generalized -

2014 [63] Spike(2) Mapping 2.4GHz(3) Generalized Free behaving

2014 [64] - - - Neuronal study In Vitro

2014 [11] Energy PI ctrl. Back-scattering DBS treatment -

2014 [65] Spectrum Unknown - Generalized Awake

2014 [66] Spike Trigger - Generalized Awake

2015 [67] Spike/Energy Mapping(2) 2.4GHz(3) Generalized Free behaving

2015 [68] Spike/Energy PID ctrl. 2.4GHz(3) Generalized Free behaving

2015 [62] - - - Generalized -

2015 [69] - - - Neuronal Study Anesthetized

2015 [70] Freq-time Classifier - Seizure ctrl. -

2015 [71] - Unknown - Generalized -

2015 [72] Spike Trigger - Generalized Anesthetized

2016 [73] Spike/Energy PID ctrl. 2.4GHz(3) Generalized Free behaving

2016 [74] - - - Generalized -

2016 [75] - - - Generalized Anesthetized

2016 [76] Freq-time Trigger - Seizure ctrl. Free behaving

2016 [77] - - 2.4GHz(3) Generalized Free behaving

2016 [78] Spectrum - - Generalized -

2017 [79] - Mapping UWB Sensory Encoding Awake

(1) Off-chip, in computer or workstation
(2) Off-chip, in commercial micro-controller
(3) Off-the-shelf electronic solution
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[11, 55] especially neural disorder control [57, 60, 70, 76], and sensory encoding study

[79]. The animal experiments and validation can be categorized as conducted in:

anesthetized animals [55, 56, 60], awake but restrained animals [10, 65, 66], and freely

behaving animals [73, 76, 77]. Anesthetized and restrained awake animal experiments

can be conducted using wire connected instrumentation, which has much less concern

than those experiments conducted in freely behaving animals [73].

In addition to the general survey, a few key designs, which can be considered as

milestones in the development of BMIs, are reviewed. These works are from Brown

University, Case Western Reserve University, Duke University, National Chiao Tung

University, Medtronic Inc., Stanford University, University of California, Berkeley,

University of Michigan, Ann Arbor, University of Toronto, University of Washing-

ton, and Washington University, St Louis. The selected works are focused on the

design from an electrical engineering perspective. The system architecture and cir-

cuit implementation of these papers are very helpful in understanding bidirectional

BMI designs. The major innovations and contributions are highlighted, while the

limitations are also mentioned. The first and corresponding authors with associated

labs mentioned in this session have years of experience in BMI development, thus are

very valuable resources for tracking the trends of BMI designs.

Stavros Zanos and Eberhard E. Fetz et al. from the University of Washington

designed an autonomous head-fixed computer (the Neurochip-2) for recording and

stimulating in freely behaving monkeys in 2011 [6]. The first generation of the device

developed in this group was published in 2008 [50]. The block diagram of the major

components and signal routing are shown in Fig. 1.4. The device has three recording

and three stimulating channels. Digital filtering and action potential discrimination

can be performed in the hardware, and action potential triggered stimulation was
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Figure 1.4: The block diagram and signal routing of the Neurochip-2 system devel-
oped by S. Zanos and Eberhard E. Fetz et al. from the University of Washington
in 2011 [6]. Reused with permission, copyright 2011, IEEE.

demonstrated. An accelerometer was integrated into the system. The device has a

wireless interface for uploading data and setting device configuration, but real-time

data streaming was not supported. An 8MB on-board memory was used to store the

recorded data. Though with a limited number of channels, this work is among the

early demonstrations of long-term bidirectional recording and stimulation in freely

behaving monkeys.

A. G. Rouse and T. J. Denison et al. from Washington University, St. Louis and

Medtronic Inc. designed a chronic generalized bidirectional brain-machine interface

in 2011 [7, 8]. The system incorporated neural recording and processing subsystem

into a commercial neural stimulator. The block diagram of the system is shown in

Fig. 1.5. The system performs spectral analysis, algorithm processing, and event-

based data logging. A three-axis accelerometer was also included in the system. The

prototype underwent verification testing to ensure reliability. The system includes
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Figure 1.5: Electrical device architecture and system partition for the prototype
developed by A. G. Rouse and T. J. Denison et al. from Washington University,
St. Louis and Medtronic Inc. in 2011 [7, 8]. Reused with permission, copyright
2011, IEEE.

a wireless link for data upload and configuration, but real-time data streaming was

not supported. The device integrates an 8MB SRAM for storing data. Concurrent

bidirectionality of the device was not tested in the non-human primate model, and

the closed-loop experiment was not demonstrated in this work.

Subramaniam Venkatraman and Jose M. Carmena et al. from the University of

California, Berkeley designed a system for neural recording and closed-loop intracor-

tical microstimulation in awake rodents [53]. This work also demonstrates the first

real-time whisker tracking system. The system employed commercial recording and

stimulation instrumentation and custom PCB interface board. An on-board circuit

was designed to reduce stimulus artifacts. This work performs the signal processing

on a computer and doesn’t support wireless communication, thus has limited usage in
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freely behaving animal experiments. William Biederman et al. from the same group

proposed a fully-integrated neuromodulation SoC in 2015 [72]. This work consists of

64 acquisition channels and dual stimulation channels. The work also features on-chip

digital compression and presents the lowest area and power for the highest integration

complexity achieved to date.

Meysam Azin and Pedram Mohseni et al. from the Case Western Reserve Uni-

versity designed a battery-powered activity-dependent intracortical microstimulation

IC in 2011 [9]. The chip consists of two modules, each module integrates 4 recording

Figure 1.6: The system architecture of the activity-dependent cortical microstimu-
lation (ICMS) chip proposed by M. Azin and Pedram Mohseni et al. from the Case
Western Reserve University in 2011 [9]. Reused with permission, copyright 2011,
IEEE.

channels and 1 stimulating channel. The chip was designed and fabricated in 0.35 µm

CMOS technology, powered by a 1.5V battery and provided a stimulation voltage up

to 5.05V. This design is among the early demonstration of on-chip action potential

discrimination and spike-triggered stimulation. Follow up works from the same group

adds an on-chip stimulation artifact rejection feature [62].
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Farzaneh Shahrokhi and Roman Genov et al. from the University of Toronto

designed a 128 channel fully differential digital integrated neural recording and stim-

ulation interface in 2010 [56]. The chip was designed and fabricated in 0.35 µm CMOS

technology. The chip doesn’t perform feature extraction or closed-loop operation. The

same group developed a 320-channel bidirectional neural interface chip in 2015 [69].

The seizure onset detector was implemented off-chip. Wireless communication was

not supported in both chips.

Wei-Ming Chen et al. from the National Chiao Tung University, Taiwan, de-

signed a fully integrated closed-loop neural prosthetic CMOS SoC for real-time epilep-

tic seizure control in 2014 [10]. The block diagram of the SoC is shown in Fig. 1.7.

The SoC consists of 8 recording channels, 1 stimulating channel, digital seizure detec-

tion processor, and wireless transceiver. The SoC was fabricated in 0.18 µm CMOS

technology. The system and the seizure detection algorithm was verified in Long-

Evans rats.

Hyo-Gyuen Rhew and Michael P. Flynn et al. from University of Michigan, Ann

Arbor designed a fully self-contained logarithmic closed-loop deep brain stimulation

SoC in 2014 [11]. The overall system block diagram of the proposed SoC is shown in

Fig. 1.8. This work is the first reported implantable SoC with an on-chip closed-loop

DBS algorithm. Logarithmic ADC and logarithmic filters were used in this work. A

digital PI controller was implemented as the closed-loop controller. This work also

integrates an ultra-low-power backscattering wireless transceiver. Adam E. Mendrela

et al. from the same group developed a bidirectional neural interface circuit with

active stimulation artifact cancellation in 2016 [75]. This work also features cross-

channel common-mode noise suppression.
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Figure 1.7: The system architecture of the SoC proposed by Wei-Ming Chen et al.
from Nation Chiao Tung University in 2014 [10]. Reused with permission, copyright
2014, IEEE.

There are also a few publications that describe custom designs for freely behaving

animal experiments. These papers address a lot of design challenges of the housing

and connection of the electronics. Krishna V. Shenoy et al. from Stanford University

developed a wireless recording system for freely behaving animals, namely Hermes

system, reported in 2007 [80], 2009 [81], 2010 [82], and 2012 [83]. The most recent-

ly reported HermesE system features 96-channel full data rate direct neural signal

recording (no stimulation). Ming Yin, and Arto V. Nurmikko et al. from Brown Uni-

versity developed a wireless neurosensor for full-spectrum electrophysiology recording

during free behavior in 2014 [12]. This work supports 96 channel full-spectrum data

wireless streaming in short distance. The wireless data rate is up to 200 Mbps. The

architecture of the developed neurosensor is shown in Fig. 1.9 (a). David A. Schwarz
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Figure 1.8: The overall system block diagram of the SoC proposed by Hyo-Gyuen
Rhew and Michael P. Flynn et al. from the University of Michigan, Ann Arbor in
2014 [11]. Reused with permission, copyright 2014, IEEE.

and Miguel A. L. Nicolelis et al. from the Duke University developed a chronic wire-

less recording system for freely behaving monkeys in 2014 [13]. The architecture of

the developed device is shown in Fig. 1.9 (b). This work features three-dimensional

multielectrode implants and is capable of isolating up to 1,800 neurons from an an-

imal. The design has been validated in several monkeys, and this work reports the

highest number of neurons wireless recorded from freely behaving animals to date.
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Figure 1.9: The architecture of (a )the wireless neural recording device developed
by Ming Yin, and Arto V. Nurmikko et al. from the Brown University [12], and (b)
the chronic wireless recording system developed by David A. Schwarz and Miguel A.
L. Nicolelis et al. from the Duke University [13]. Both systems have been validated
in animal behaving experiments.

1.3 Overview of Bidirectional Closed-loop Brain

Machine Interface

This section gives an overview of the design and implementation of the developed

bidirectional BMI system for the closed-loop neuroscience experiments, especially for

the use with freely behaving animals. Ideally, the BMI device should be optimized

for safety, reliable operation, rich function, small dimension, and long-term operation.

To achieve this goal, design optimizations are performed from the neuron-electronics

interface up to the system level. The key design requirements are summarized as



19

follows:

(1) Safety: Both implanted electrodes and the stimulation and recording electronics

must have a minimal damage to the tissue. This requires the design of the neural

interface electronics to have proper input and output impedance, proper stimu-

lation power density given the electrode material and surface area, stimulation

charge balancing, and so on. In addition, the design of the packaging and the

housing for the electronics and batteries, poses important safety requirements;

(2) Performance & Reliability: Both performance and reliability are very impor-

tant for a BMI device. A reliable performance includes a robust signal recording

quality, a reliable wireless data link or data storage, reliable signal processing,

feature detection and closed-loop algorithm, reliable electrode connection and

electronic assembling, and so on. The dependable and robust performance in

recording and stimulation is of great importance for neuroscience investigation

and neuroprosthetics development. The reliable on-chip processing is critical for

closed-loop operation;

(3) Interfaces: The BMI device should provide multiple functional interfaces for

neural signal recording, neural stimulation, and various sensing, including body

area sensors and supervision. The interface should also include the user interface

for the researchers and investigators to use the BMI device for experiments and

data analysis;

(4) Flexibility: The BMI device should have programmable recording and stimula-

tion configurations including recording gain, bandwidth, channel, sampling rate,

and simulation parameters. In addition, the device may also offer programmable
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neural feature extraction, machine learning, modulation algorithms to support

real-time closed-loop operation;

(5) Portable: One of the key requirement for the animal behaving experiment is

the ability to record and stimulate wirelessly while the animal is freely mov-

ing, including locomotion, social interaction. Conventional rack-mounted BMI

instrumentation doesn’t support these experiments. The custom BMI device

should be lightweight and can be carried by the animals without disturbing

their normal behavior;

(6) Low Power: A sufficient battery life is important for studying animal behavior

in long-term experiments, such as during sleep. It is also important for build-

ing plasticity which requires a consistent closed-loop operation. For implantable

devices, low power is important to minimize the tissue damage due to the gen-

erated heat. Usually, the wireless transceiver and data storage (flash memory

programming) consumes most of the power consumption in the BMI device. A

stimulation with a high current with a high compliance voltage also consumes

high peak power.

The key features and specifications of the proposed BMI device are listed in

Table 1.3. The neural recording front-end of the proposed system is designed for

invasive recording, including local field potential (LFP) and action potential (AP)

signals. The major building blocks of the recording front-end include low-noise neu-

ral amplifiers, programmable neural filters, programmable gain amplifiers, and an

analog-to-digital converter. On-line data compression, including compressed sensing

and spike detection can be used to reduce the wireless data rate. The stimulator

back-end is designed for functional electrical stimulation (FES). A high compliance
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Table 1.3: Key Features of the Proposed Bidirectional BMI

Analog Front-end Stimulator Back-end

Channel count 16 Channel count 16

Input referred Noise <5µV Stimlus Current 0-255µA/4mA

Bandwith (LFP) 1 - 200Hz Current Resultion 6 bit

Bandwith (AP) 300 - 10kHz Pulse width 1 - 255µs

Gain 1000 - 8000 Time interval 8ms - 2s

ADC resolution 10 - 12bit Compliance voltage 5V

Neural Feature Ex. Closed-loop Operation

Local field potential Energy Feature Extraction LFP/AP

Action potential Detection & discrim. Closed-loop controller On-chip

Others Matched filter Machine Learning Off-chip

Wireless Power

Wireless protocol Bluetooth/FSK Chip power <1mW

Wireless datarate 2Mbps System poower <30mW

Micro-SD Card FAT32 Total battery life >12h

voltage is required for high impedance electrodes. On-chip neural feature extraction

for both local field potentials and action potentials are implemented. The closed-loop

operation is supported using on-chip PID controller and off-chip general purpose mi-

crocontroller. Various body-area sensors are to be used to monitor animal behavior

and sensory inputs. The complete battery powered device should able to support

continuous operation over 8 hours, or over 12 hours if experiments during animals

sleep are required. The data loss over the wireless link should be minimized, and the

on-board flash memory would need a file system to support the data storage during

the long-term recording. Other features including custom packaging of the device are

also important parts of the system design.
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The block diagram of the proposed general purpose BMI system is illustrated in

Fig. 1.10. The main building blocks of the system include: BMI device, the sensors,

Figure 1.10: The block diagram of the proposed generalized closed-loop, bidirec-
tional BMI system

and the computer with a user interface. The signal flows are marked in the figure. As

the core part the BMI system, the BMI device features a bidirectional neural interface

and a duplex wireless communication with the computer. The bidirectional neural

interface enables both neural signal recording and electrical neural stimulation. The

bidirectional wireless communication allows the BMI device to send data back to the

computer, and to read commands from the computer or sensor nodes. In addition, the

BMI device can process certain neural feature extraction and some pre-defined closed-

loop algorithms. The BMI device will be housed in a secure chamber fixed on the

animals skull or housed in a customized jacket the animal can wear. Sensors are also

important elements in the system. There are two types of sensors: wearable sensors

and surveillance sensors. Wearable sensors may include a pressure sensor, flex sensor,

accelerometers, goniometer, etc. A sensor node is built using commercial sensors and

a wireless transceiver. Surveillance sensors include a video recorder and a motion

tracking sensor, which can be designed in CMOS technology. A computer station
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provides the user interface for data display, device configuration, and also performs

closed-loop algorithms in certain applications. A standard Bluetooth module or a

custom designed wireless computer interface board with high-speed USB 2.0 can be

used with any computer to control the BMI system. The graphic user interface is

designed based on MATLAB. Complex closed-loop modulation algorithms or online

data processing can be performed in MATLAB with a certain processing latency. The

wireless communication between all blocks uses a customized command and parameter

protocol to avoid on-the-air conflict and reduce the cost of system upgrading.

It should be noticed that not all the components are necessary for an experi-

ment. The system can be configured to work in various closed-loop operating modes.

Fig. 1.11 shows four commonly used configurations. For examples, if the sensor is

Figure 1.11: Various closed-loop configurations of the proposed BMI system.
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a camera, the Fig. 1.11 (a) shows the operation of the watermaze sensory augmen-

tation experiment presented in Chapter 6.3. The camera tracks the animal, sends

the location information to the computer, while the computer performs the mapping,

then sends the stimulation command to the wireless neuroprosthetic. Fig. 1.11 (b)

shows the operation of the bidirectional recording and stimulation experiments in

freely behaving monkeys described in Chapter 6.4, and the same BMI system can

also be configured to perform the operation as in Fig. 1.11 (c) and (d).
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1.4 Thesis Outline and Contributions

The thesis presents the design and analysis of a bidirectional closed-loop BMI system,

with emphasis on the use for experiments in freely behaving animals. Fig. 1.12

highlights the major blocks in a typical bidirectional BMI system. The corresponding

chapters in this thesis are marked in the figure.

Figure 1.12: The building blocks of a typical bidirectional closed-loop BMI system
and the organization of this thesis.

The thesis is organized as follows. Chapter 2 presents the analysis and design

of the neural recording front-end. The prior work is reviewed including an analysis

of key trade-offs. A general-purpose low-noise amplifier and low-power SAR ADC

are designed, followed by a novel pre-whitening neural front-end design for a boosted

dynamic range. A neural signal acquisition system that features compressive sensing

has been developed for long-term recording in freely behaving animal experiments.
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Chapter 3 discusses the neural feature extraction from three perspectives: the

energy extraction, the action potential detection, and the matched filtering. Sev-

eral novel circuits and algorithms have been proposed to improve the performance

and power efficiency of the commonly used neural feature extraction. The proposed

matched filter in a combination of the pre-whitening neural front-end improves the

neural feature detection accuracy.

Chapter 4 presents the analysis and design of a high efficiency electrical neural

stimulator. The background of neural stimulation and physicochemical properties of

the electrode-electrolyte interface are reviewed, and the key design requirements are

summarized. Next, a general purpose neural stimulator design is presented, followed

by a novel net-zero charge stimulation mechanism.

Chapter 5 addresses the design issues with the bidirectional neural interface from

two perspectives: the stimulation artifacts and the closed-loop operation mechanism.

A study of stimulation artifacts in different BMI configuration is presented with in-

vitro and in-vivo experimental results. The mechanisms of different closed-loop neural

interface system are summarized, and a commonly used PID controller is designed

and tested.

Chapter 6 presents the BMI system integration with a focus on the experiments

with freely behaving animals. A general purpose experimental platform, namely the

PennBMBI, was presented, featuring wireless recording, stimulation, and sensing a-

bility, with a custom communication protocol and user-friendly computer interface.

A watermaze experiment is designed and conducted for the study of augmenting
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perception through modulated electrical stimulation of somatosensory cortex. A wa-

terproofed wireless neural stimulator and a complete animal tracking and neuromodu-

lation experimental system are presented. Finally, custom BMI devices are developed

and used in long-term bidirectional experiments in freely behaving monkeys. A study

in the hippocampal gamma-slow oscillation coupling using the developed system was

presented.

To the best of my knowledge, this thesis presents the first comprehensive study of

bidirectional BMI design for freely behaving animal experiments featuring closed-loop

operation. The thesis gives the first and most complete survey of the bidirectional

BMI designs published to date. The survey gives insights to the progress in terms

of key features for BMI systems with emphasis on the on-chip feature extraction,

closed-loop operation, and validation in animal experiments; The key contributions

of the thesis are summarized as follows:

(1) System Level: A complete wireless bidirectional BMI system capable of on-chip

neural feature extraction and closed-loop operation has been developed. This

work is the first reported portable system to provide all necessary hardware

for a closed-loop sensorimotor neural interface. The thesis also gives the first

comprehensive study of stimulation artifacts in different BMI configurations,

which is a critical issue in bidirectional BMI design. In addition, the thesis

presents the first review and summary of the mechanisms for closed-loop BMI

operation.

(2) Circuit Level: Novel circuits have been proposed in this work to improve the

state-of-the-art designs. Several innovative designs are highlighted here: a pre-

whitening recording front-end was proposed to improve the dynamic range of
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the recording front-end; a natural logarithmic domain neural energy extraction

unit was designed to improve the efficiency; a matched filter was proposed to

be used in combination with the proposed pre-whitening front-end to improve

the neural feature detection accuracy; a novel net-zero-charge neural stimulator

was designed for safety and power efficiency. Moreover, custom circuits were

developed and optimized in support the system integration and closed-loop op-

eration.

(3) Application & Experiment Level: Research and investigation have been

conducted using the developed bidirectional BMI system. Novel animal experi-

ment paradigms and methods were proposed and implemented. The presented

watermaze experiment is the first wireless sensory encoding experiment con-

ducted in freely swimming rat. Bidirectional neuroscience experiments were

conducted in macaques using the developed device, including the first study to

directly compare the hippocampal field potentials in sleep to sedation.

In summary, the methods, circuit techniques, system architecture, and experi-

mental paradigms proposed in this work can be used in a wide range of neurophys-

iology research and neuroprosthetics development, especially experiments in freely

behaving animals.



Chapter 2

Neural Recording Front-end

Design

2.1 Introduction

Neural signal recording revolutionizes our understanding of the human brain. Since

the first extracellular recording pioneered by the investigators Ward and Thomas

in the 1950s [84], neural recording has revealed the fundamental structure and or-

ganization of the brain. The number of simultaneously recorded neurons doubled

approximately every seven years [85]. The exponential growth in the recording abil-

ity is to a large extent driven by the innovations in CMOS technology, circuits and

systems design, microelectrode fabrication, and bio-compatible packaging techniques.

The large-scale neural recording also provides a unique opportunity for the re-

search in brain-machine interface (BMI), which builds the interface between the brain

29
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and the artificial devices [84, 86]. However, recent studies estimate that a simultane-

ous invasive recording of 100,000 neurons is needed for decoding the full-body move-

ments [13], which is beyond the recording ability of the cutting-edge BMI devices.

At the same time, the multi-channel recording from freely behaving animals in a nat-

ural environment is important for both neuroscience and neuroprosthetic research.

However, most of the research to-date still relies on rack-mount instrumentation with

restrained cables. The requirement of recording high bandwidth neural signal from

multi-channel, in multi-brain areas, via wireless miniature devices places a signifi-

cant challenge on existing electronic technology and design techniques. The design

optimization of a fully integrated neural recording front-end is thus highly desirable.

In the last two decades, a large number of neural recording front-end designs

have been reported with improvements from many different aspects [3, 4, 84, 87].

The major innovations have come from the novel circuit and system topologies [16,

88, 89], low-noise design techniques [90–93], large number of the channel-count designs

[90, 94–96], energy efficient designs [88, 90, 96], and wireless interfaces including ISM

band FSK [90, 97, 98], FM [99, 100], UWB [82, 95], and backscattering [96, 101, 102].

In addition, several systems have been used in freely behaving animal experiments [12,

13], and some of the prototype devices are fully integrated and potentially implantable

[94, 96, 103].

This chapter presents the design and analysis of the neural recording front-end.

Several novel circuit designs are proposed to improve the state-of-the-art. The chap-

ter is organized as follows. Section 2.1 introduces the characteristics of the neural

signal. The design specifications of neural recording circuit and systems are summa-

rized. Section 2.2 reviews the prior work and analyze the key trade-offs in the neural

amplifier design, followed by a prototype design of a general-purpose low-noise neural
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amplifier. Section 2.3 proposes a novel pre-whitening neural amplifier design, which

exploits the frequency characteristics of the neural signal to relax the dynamic range

and linearity requirement of the recording front-end. Section 2.4 presents the design

of a 10-bit low-power SAR ADC for neural signal digitization. Section 2.5 presents

the design of a complete neural signal acquisition front-end with compressive sensing

for long-term neural signal recording in freely behaving animals.

2.1.1 Signal Characteristics

The neural signal is recorded via invasive or noninvasive electrodes. Fig. 2.1 shows the

most common types of neural signals and the corresponding electrode placement. The

Figure 2.1: The sources of the neural signals and their locations relative to the
brain, modified from [14].

electroencephalography (EEG) is the electrical brain activity recorded from the scalp;

the electrocorticography (ECoG) is the electrical brain activity recorded beneath

the skull; local field potential (LFP) and action potential (AP) are electrical signals

recorded within the parenchyma. The AP is the individual neuron activity, and the

LFP is the summed activities from multiple nearby neurons.
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Fig. 2.2 shows the amplitude and frequency features of different types of neural

signal. Main noise sources are also marked in this figure, including the thermal

Figure 2.2: The amplitude and frequency characteristics of the neural signal, in
comparison with main noise sources. This figured is modified from [15].

and flicker noise from the electrodes and electronic recording device, and the mains

interference.

2.1.2 Design Specifications

The key requirements for a neural recording front-end include: low input-referred

noise, sufficient dynamic range, high input impedance, high linearity, high common-

mode rejection ratio (CMRR) and power-supply rejection ratio (PSRR). The mini-

mum requirements are summarized and listed in Table 2.5, cited from International

Electro-Technical Commission (IEC) medical electrical equipment standard 60601-2-

47. It should be noticed that the requirement for a specific application will usually

be higher than the general standard.
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Table 2.1: Summary of Specifications for Neural Recording [1]

Requirement Range Unit

Input Dynamic Range 10 mVpp

Electrode Offset ± 300 mV

Input Impedance >10 Mohm

Common Mode Rejection
60, at 50-60Hz

30, at 100-120Hz
dB

Gain Accuracy Error <10% and <±10 µV

Gain Stability over 24h <3 %

Noise 50 µV

Crosstalk
<0.2

<5

mV

%

Timing Accuracy <30 (over 24 hour) Sec

Temporal alignment Error <20 ms

In addition to the requirement in the neural front-end, there are several key re-

quirements of a successful chronic invasive neural recording system:

i) Longevity requirement: safe electrode interface, minimum tissue damage, and

infection;

ii) Noise, bandwidth, and channel count requirement for the target signal;

iii) Sufficient battery life to support long-term recording;

iv) Reliable data storage or wireless transmission. In addition, the research of

BMI usually requires the front-end to be highly programmable, wireless compatible

with commercial equipment and sensors, and also easy to upgrade. All of these fea-

tures together are required for a practical recording system for neuroscience research

and BMI development. A balance between the requirements of each system block

needs to be carefully considered.

There are several figure-of-merits (FoM) commonly used for evaluating and com-

paring different neural recording front-ends. The most important FoM for noise and

power performance is the noise efficiency factor (NEF). The NEF was first proposed
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by M. Steyaert et al. from the Katholieke Universiteit Leuven in 1987 [104], and was

resurrected by R. Harrison et al. from the University of Utah in 2003 [16].

NEF = Vni,rms

√
2Itot

πΦt · 4kT ·BW
(2.1)

where Vni,rms is the input-referred rms noise voltage of the amplifier, Itot is the total

amplifier supply current. Because for bipolar device, the input-referred rms noise is:

Vni,rms =

√
4kTΦt

Itot
· πBW

2
(2.2)

So the NEF of a single bipolar transistor is 1 (the lower the better) [16]. Paper [16, 104]

predicted that all practical circuits must have a NEF greater than 1, however, later

developed techniques overcame this limitation [10, 105].

It should be noticed that the NEF leaves the supply voltage out of the trade-off.

So two amplifier designs with different supply voltages but same supply current will

have the same NEF. To mitigate this tissue, R. Muller et al. from the University

of California, Berkeley proposed a power efficiency factor (PEF) in 2012 [106]. The

PEF is defined as:

PEF = NEF 2VDD

=
V 2
ni,rms · Ptot

π · kT/q · 4kT ·BW

(2.3)

The PEF gives a direct trade-off between power and noise, and two amplifiers with the

same input rms noise and power consumption should have the same PEF. Reducing

supply voltage significantly reduce the power consumption and optimized the PEF,

however, at the cost of lowering the dynamic range. In order to compare the overall
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system efficiency, D. Han et al. from the Nanyang Technological University further

proposed a system efficiency factor (SEF) in 2013 [107]. The SEF is defined as:

SEF =
PEF

DRout

(2.4)

where

DRout = 10log
V 2
amp,max

2 ·G2
AFEV

2
ni,rms

(2.5)

where Vamp,max is the maximum voltage swing of the amplifier, andGAFE is the voltage

gain of the amplifier. SEF takes the noise, power, and dynamic range performance

into account, thus is more suitable for system level comparison.
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2.2 Design of a Low-Noise Neural Amplifier

2.2.1 Review of Prior Work

There have been numerous designs of neural amplifier reported. The motivation of

this section is not to give a comprehensive survey of the prior work, but to analyze the

key design trade-offs with featured examples. Review, tutorial, and comprehensive

surveys for neural amplifier designs can be found in [3, 4, 84, 87].

A. System Topology

The classical instrumentation amplifier uses a 3-opamp topology. The 3-opamp

instrumentation amplifier has a high input impedance, a good CMRR, but at a low

power efficiency. The commonly used low-power CMOS neural amplifiers use capac-

itor and resistor elements to set the closed-loop gain. Typical block diagrams are

shown in Fig. 2.3. Using a capacitive gain element, the design is inherently AC

Figure 2.3: The block diagram of the typical neural amplifiers with (a) capacitive
gain element [16] and (b) resistive gain element [17]. The x1 symbol is for a unity
gain buffer.
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coupled 2.3 (a). Thus the input common-mode range is from ground to VDD, lim-

ited by the ESD protection circuits. The only active component is the operational

transconductance amplifier (OTA). The CMRR is mainly limited by the mismatch

of the capacitors. The input impedance is limited by the size of the input capacitor

and is frequency dependent. Using a resistive gain element, the design is inherent-

ly DC coupled 2.3 (b). The input common-mode range is less than VDD. The DC

headroom is VDD/Gain, which is very small. The input impedance is limited by

the parasitic capacitance, so it is much higher than the capacitive counterpart. The

CMRR is mainly limited by the mismatch of the analog buffers. Unlike the capacitive

gain elements, the resistors also contribute to the overall noise. Several key features

of the capacitive and resistive amplifiers are listed in Table 2.2. In summary, the

capacitive gain element topology enjoys several inherent advantages over the resistive

counterpart. Although a lot of techniques have been reported to successfully address

these problems [2, 17, 88], the capacitive gain element topologies are the mainstream

designs for neural amplifiers.

Table 2.2: Comparison of capacitive and resistive gain elements [2]

Gain Element Capacitive Resistive

Gain C1/C2 R2/R1

Noise PSD v2Thermal,v
2
Flicker v2Thermal,v

2
Flicker,v2R

Input Impedance 1/jωC1 1/jωCp

DC headroom VDD VDD/Gain

Input CM Range VDD <VDD

Besides using capacitive and resistive gain elements, other active feedback topolo-

gies can also be used to shape the frequency response [106, 108]. With active feedback,
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large input capacitor can be replaced by a small integrating capacitor, and high input

impedance can be achieved. However, the active feedback adds to power consumption

and contributes to the overall noise of the system.

In addition to topologies using passive or active components to set the closed-loop

gain, open-loop amplifiers have also been reported in literature [109, 110]. Compared

with the closed-loop topologies, open-loop amplifiers have higher power efficiency, but

usually suffer from poor linearity. But since the neural signal has a small amplitude,

it may remain in the linear range of the amplifier.

B. Low-Noise OTA

As the core of a low-noise neural amplifier, the OTA design is reviewed in this

section. Fig. 2.4 shows the most commonly used low-noise OTA structures. Single-

ended topologies are used for illustration. The current mirror OTA (Fig. 2.4 (a))

has two stages with the dominant pole located at the second stage. No compensation

capacitor is required to maintain stability. The detailed noise analysis is presented in

[16]. However, the current mirror OTA has limited gain, and there exists a trade-off

between the noise and the phase margin. A gain boosting circuit can be used to

enhance the gain of this amplifier. The two-stage OTA with Miller compensation

capacitor (Fig. 2.4 (b)) is also widely used as a low noise amplifier [111, 112]. The

folded cascode OTA (Fig. 2.4 (c)) can achieve a high gain in a single stage, at the price

of a higher power consumption. Paper [91] describes the detailed analysis in choosing

the parameters in a folded cascode OTA design for better power-noise efficiency. The

telescopic OTA (Fig. 2.4 (d)) can achieve the highest gain in a single-stage, but with

limited input range and voltage swing.
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Figure 2.4: The circuit schematic of commonly used low noise OTAs: (a) the
current mirror OTA, (b) the Miller OTA, (c) the folded cascode OTA, and (d) the
telescopic OTA.

In summary, all of the designs have pros and cons, and differently adapted ver-

sions have been widely reported to achieve improved power-noise efficiency. The

voltage gain and input-referred noise of these OTA topologies are summarized in Ta-

ble 2.3. For the thermal noise, increasing the transconductance of the input devices

is critical in lowering the noise. Thus maximizing the transconductance for a given
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supply current is important for better power-noise efficiency. Besides, supply cur-

rent can be programmed for achieving the optimal power efficiency in different noise

conditions [10].

Table 2.3: Summary of commonly used low-noise OTA [3, 4]

OTA topology Voltage gain Input-referred thermal noise

Current mirror 2.4(a) gm1(gm9ro9ro8||gm10ro10ro6) 16kT
3g2

m1
(gm1 + 2gm3 + gm7)

Miller 2.4(b) gm1(ro2||ro4) · gm7ro7
16kT
3gm1

(gm1 + gm3)

Folded cascode 2.4(c)
gm1α[(gm10ro10 · gm12rro12R)

||(gm8ro8ro6)]1

16kT
3gm1

(gm1 + 2
R + gm6)

Telescopic 2.4(d) gm1(gm4ro3ro4||gm6ro6ro8) 16kT
3gm1

(gm1 + gm8)

C. Other Noise Reducing Techniques

Many circuit techniques have been proposed in the literature to further reduce the

noise in the amplifier circuits. Commonly used low-noise techniques include chopping

[92, 93, 113], auto-zeroing [114], digital assisted trimming [10, 115], analog or digital

filtering, and so on.

For example, chopping is a very popular technique among neural amplifier design-

s, especially for EEG recordings. Fig. 2.5 illustrates the concept of chopping. Before

the amplification, the input signal is modulated by a chopping frequency fchop, which

is much higher than the signal frequency. The modulated signal is then located at

a frequency higher than the filter noise. After the amplification, the signal is con-

verted back to the baseband frequency, and the flicker noise is up-converted to the

1The parameter α depends on the biasing currents’ ratio, as calculated in [91].
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Figure 2.5: (a) The block diagram of a chopping amplifier. (b) Illustration of the
signal and noise spectrum before and after the chopping.

chopping frequency, which can be further removed by a lowpass filter. The chop-

ping technique reduces both flicker noise and the DC offset, and the circuits after

the chopper switches can achieve an excellent CMRR. It should be noticed that the

chopping also causes extra non-idealities, including offset, ripple, charge injection,

clock feed-through, switch noise, and so on. Many techniques have been proposed to

suppress the problems, including chopping within the feedback loop [92], chopping at

the virtual ground [113], ripple reduction [93], input impedance compensation [116],

offset cancellation [96, 117], and so on.

2.2.2 Circuit Implementation

The design and analysis of the circuit implementation of the neural amplifier are p-

resented in this section. Fig. 2.6 shows the high-level block diagram of the neural

recording front-end. The neural recording front-end includes a low-noise neural am-

plifier, a programmable gain amplifier (PGA), a multiplexer, an ADC, and a control

module. The neural amplifier uses a fully-differential, capacitor feedback topology.
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Figure 2.6: The block diagram of the neural recording front-end.

The input capacitors block the electrode offset and the half-cell potential from the

electrode-tissue interface. The closed-loop differential gain is set by CIN/CFBto be

40dB to relieve the noise requirement for the following stages. A large MOS pseudo-

resistor is used to set the low-frequency cut-off. The circuit schematic of the pseudo-

resistor is shown in Fig. 2.7. Compared with the MOS-bipolar resistor implemented

Figure 2.7: The circuit schematic of the MOS pseudo-resistor.

in [16], this resistor has a higher linear range. Besides, setting the gate voltage to

ground can short the feedback loop and force the input gate to mid-supply. A simula-

tion of the MOS resistor in IBM 180nm CMOS technology is shown in Fig. 2.8. The

W/L of the MOS used in this simulation is 2µm/2µm. The simulated impedance is

in the order of 100GΩ. The cut-off frequency is usually set to be much lower than the
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signal requirement to prevent the resistor noise from rolling into the signal frequency

band. A tunable highpass or bandpass filter can be implemented in the following

stage.

Figure 2.8: Simulation of the resistance of the MOS pseudo-resistor.

The circuit schematic of the OTA is shown in Fig. 2.9. The OTA has been

designed to maximize the noise and power efficiency. A single-stage amplifier with

a high gain is used to avoid the stability compensation in two-stage structures. The

transistors’ parameters are listed in Table 2.4.

Table 2.4: The Transistors’ Parameters for the OTA Design

Device M1,2 M3,4 M5,6 M7,8

W/L (µm) 20/1 20/1 20/0.8 20/0.8

Multiplicity 30 30 1 1

Finger 4 4 4 4

The overall gain of the amplifier is given by:

Av = (gm1 + gm3)(gm5ro5ro1||gm7ro7ro3) (2.6)



44

Figure 2.9: The circuit schematic of the fully differential low-noise OTA with com-
plementary input stage.

where gmX is the transconductance of the transistor MX , and roX is the output

resistance of the transistor MX . The output thermal noise is:

i2no = 4kTγ(gm1 + gm2 + gm3 + gm4)∆f (2.7)

where k = 1.38 × 10−23J/K is the Boltzmann constant. The input-referred thermal

noise is:

v2
ni =

4kTγ(2gm1 + 2gm4)

(gm1 + gm3)2
∆f (2.8)
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Taking the flicker noise into account, the total input-referred noise power of the OTA

can be expressed as:

v2
ni,tot =

1

(gm1 + gm3)2
[8kTγ(gm1 + gm3)+

2(
KNgm3

Cox,NfWNLN
+

KPgm1

Cox,PfWPLP
)]∆f

(2.9)

The flicker noise can be reduced by increasing the size of the input transistors

or implementing compensation techniques like chopping. If only thermal noise is

considered in the following design optimization, the input-referred noise voltage equals

to

Vni,rms =

√
8kTγ

gm1 + gm3

π

2
BW (2.10)

The noise efficiency factor (NEF) [104] for this amplifier can be derived as:

NEF = Vni,rms

√
2Itot

πΦt · 4kT ·BW

=

√
8kTγ

gm1 + gm3

π

2
BW

2Itot
πΦt · 4kT ·BW

=

√
2γItot

(gm1 + gm3)Φt

(2.11)

Thus, a lower NEF (the lower the better) can be expected if a higher power efficiency

(gm/Itot) is achieved.

In this work, since complementary input devices are used, the overall transcon-

ductance can be approximately doubled without increasing the quiescent current.

Besides, all the input transistors are biased in the sub-threshold region to achieve a
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high-efficiency [118]. In the above threshold operation:

gm =

√
2µCox

W

L
ID and gm ∝

√
ID (2.12)

In the sub-threshold operation:

gm =
κID
Φt

and gm ∝ ID (2.13)

where Φt is the thermal voltage. Thus, the sub-threshold operation gives a high-

er transconductance than the above threshold operation for the same drain current.

Notice that the sub-threshold operation has a limited bandwidth due to the large

parasitic of the large device dimension. But since the neural signal has a low band-

width in nature, it is usually not a limiting factor in the neural amplifier design. A

simulation result shows that 98% of the noise is from the four input transistors, and

that the flicker noise contributes more than the thermal noise in the frequency range

from 1 to 10kHz.

The cascode transistors (M5-M8) are used to increase the voltage gain. However,

this is usually at the price of limiting the voltage headroom, and can be a challenge in

low-supply voltage with advanced CMOS technology. The simulation shows an open-

loop gain of 90dB is achieved in this OTA under 1µA. In a later design, a second

stage is used to provide sufficient gain, which will be discussed in section 2.5.4.1. The

common mode feedback (CMFB) loop is merged in the main current path to further

reduce the total current. Pseudo resistors are used to get the common mode voltage

without loading the amplifier. However, the common-mode output of this design also

depends on the threshold voltage of the tail transistor. A later design addresses this

problem by introducing an additional CMFB circuitry with low current.
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A high input impedance reduces the signal attenuation. In a practical neural

recording experiment with a multi-channel electrode array, the recording electrode

and the reference electrodes are usually not the same type of electrode, and may

have large impedance difference. Thus, even if the neural amplifier achieves a perfect

common mode rejection, it cannot reject the conversion of the common-mode signal

to differential-mode due to the electrode mismatch. This problem can be relieved by

increasing the input impedance of the neural amplifier. Positive current feedback [93]

can be used to boost the input impedance by providing the driving current required at

the input stage. A post-layout simulation of the input impedance boosting is shown

in Fig. 2.10.

Figure 2.10: Simulation of the input impedance boosting.
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A programmable capacitor array (CL) is put at the output of the low-noise OTA.

The bandwidth of the closed-loop amplifier is given by:

BW =
gm
CL

C2

C1

(2.14)

The CL can be programmed using two bits. The bandwidth of the OTA can also be

tuned by changing the biasing current.

The programmable gain amplifier (PGA) implemented in this work (2.6) is a

classical 3-opamp amplifier. The gain is set by the resistors’ ratio and can be chosen

from 7, 10 and 19. Thus the maximum gain of a recording channel is 1,900. Additional

analog buffers are added to the debugging points to drive the IO pads directly.

2.2.3 Measurement Results

The design has been fabricated in IBM 180nm CMOS technology. The micrograph

of the chip is shown in Fig. 2.11. The occupied silicon area of the full chip is

4.5×1.5mm2, including IO pads.

Bench testing was conducted to verify the function and performance of the fab-

ricated chip. Fig. 2.12 shows a measurement of the neural amplifier’s output with a

1kHz sinusoidal signal. A resistor divider consists of a 2kΩ and 1Ω was applied at the

output of the function generator, giving a gain of 1/2001. The neural amplifier was

configured to have the maximum gain of 1,900. The measured real gain was 1892.94,

which corresponds to an absolute gain error of 0.37%.

The measured differential-model and common-mode frequency response of the

low noise amplifier is shown in Fig. 2.13. The closed-loop gain is set to be 60dB. The
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Figure 2.11: The microphotography and layout of one channel of the neural record-
ing front-end. The major building blocks are highlighted.

Figure 2.12: The measured response of the neural amplifier with a 1kHz sinusoidal
signal. A resistor divider of 2kΩ and 1Ω is applied at the output of the function
generator, and the amplifier is configured with the maximum gain of 1900. The
gain error is 0.37%.

low-frequency cutoff fL is approximately 0.5Hz. The measurement shows a CMRR

above 110dB.

The input-referred noise spectrum is shown in Fig. 2.14. An integration under

this curve from 1Hz to 7kHz yields a rms noise voltage of 2.55µV. This noise level
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Figure 2.13: The measured differential-model and common-mode frequency re-
sponse of the low-noise neural amplifier.

Figure 2.14: The measured input-referred voltage noise spectrum. An integration
under this curve from 1Hz to 7kHz yields a rms noise of 2.55µV.

was measured with a closed-loop gain of 60dB, and the input electrodes were shorted



51

using an internal switch. The noise density was calculated by:

NoiseDensity =
Vrms√
BWπ/2

(2.15)

The noise density in the 7kHz bandwidth is 24.3nV/rtHz. The calculated NEF is

1.68, and the PEF is 9.38.

The summarized measured specifications of the design is listed in Table 2.5.

Table 2.5: The Neural Front-end Specifications Summary

Parameter Value

Process 180nm CMOS

Supply voltage 3.3V

LNA current
2µA (biasing current

not included)

Closed-loop gain 40dB

Gain error 0.37%

Bandwidth 1 ∼ 7kHz

Integrated noise 2.55µV

Noise Density 24.3nV/rtHz

NEF (Eq. 2.1) 1.68

PEF (Eq. 2.2) 9.38

Input range 4mV

CMRR >110dB

In summary, this work presents the design of a general-purpose wideband low-

noise neural amplifier. The design achieves a low noise floor, an accurate gain, a good

CMRR in a good power efficiency. The design was later used in In-Vivo neural signal

acquisition.
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Table 2.6 compares the measured performance of this work with prior published

neural recording front-end design. This achieves a comparable performance among

the state-of-the-art designs.

Table 2.6: Comparison with Prior Works

Work ’03 [16] ’07 [92] ’07 [88] ’10 [113] ’13 [117] ’14 [10] ’14

Publication JSSC JSSC JSSC JSSC JSSC JSSC This work

Technology 1.5um 0.8um 0.5um 180nm 180nm 180nm 180nm

Noise (µV) 2.2 0.95 2.26 1.3 0.91 5.23 2.55

BW (Hz)
0.025

-7.2k

0.05

-100

0.5

-1k
100 100 7k 1-7k

Current (µA) 16 1 11.1 3.5 NA 0.97 2

Supply (V) 5 1.8-3.3 3 1 1 1.8 3.3

NEF 4.03 4.6 9.2 9.4 5.1 1.77 1.68

PEF 2 81.2 38.1 253.9 88.4 26.2 5.6 9.3

2Not provided by the author, but calculated using Eq. 2.2.
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2.3 A Pre-whitening Neural Amplifier

2.3.1 Introduction

The power spectrum of electrocorticography (ECoG) and local field potential (LFP)

have a characteristic (1/f)n drop with frequency [53]. This phenomenon has been

observed in multiple species including humans [119]. At frequencies around 1Hz, the

signal amplitude can be as large as a few millivolts, and attenuates at 1/f 2 until

80Hz, then attenuates at 1/f 4 [120]. At the same time, the noise power density of

the CMOS front-end is usually inversely proportional to the frequency [121].

V 2
n =

K

CoxWL
· 1

f
(2.16)

where K is a process-dependent parameter on the order of 10−25 V 2F. This suggests

that the SNR of the recording front-end improves as the frequency decreases, as

illustrated in Fig. 2.15 (a). Intuitively, if a wideband recording front-end is designed

Figure 2.15: Illustration of the prewhitening filter. (a) The neural signal displays
a 1/fn power characteristic, while the recording front-end has a 1/f noise power
characteristic. (b) The pre-whitening filter shapes the frequency response of the
recording front-end to reduce the overall dynamic range requirement, while still
preserves a sufficient SNR.



54

to achieve the voltage swing requirement for the low-frequency signal, at the same

time preserves the SNR for the high-frequency signal, it needs to have an ultra-high

dynamic range. The high dynamic range wideband low-noise amplifier and high-

resolution ADC design are challenging and will cost high power consumption.

In this work, a pre-whitening filter is proposed to address this problem. The

basic idea of the pre-whitening processing is illustrated in Fig. 2.15 (b). If we use

a lower gain for the low-frequency signal, a sufficient SNR may still be preserved

for the recording purpose, and the dynamic range requirement of the system can be

significantly reduced. Since the frequency shaping processing is similar to a whitening

filter, which turns the signal more like a white signal, the filter is named pre-whitening

filter in this work. The simplest way to implement this pre-whitening filter is via a

highpass filter. If the cut-off frequency of the highpass filter is known, the original

signal can be recovered during the post-recording processing. It should be noticed

that it is important to decide the cut-off frequency in practice, in order to preserve

sufficient SNR for the low-frequency signal. A programmable filter is helpful in this

case.

In summary, a pre-whitening neural recording front-end is proposed. In the

pre-whitening front-end, the frequency response of the neural amplifier is shaped ac-

cording to the characteristic of the neural signal. The design significantly reduces the

dynamic range requirement of the neural amplifier and the ADC resolution without

sacrificing the signal quality. In the following sections, the possible circuit implemen-

tations of the pre-whitening neural amplifier are analyzed, the key design trade-offs

are described, and the simulation and experimental results of the proposed design are

presented.
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2.3.2 Analysis of the Pre-whitening Neural Amplifier Design

The thermal noise power spectral density of a resistor is given here for convenience:

VnR =
√

4kTR (2.17)

where k = 1.38 ×10−23 is the Boltzmann’s constant, T is the absolute temperature

in Kelvin. If a recording electrode has an impedance of 100kΩ, it should have a noise

density of 40.7nV/
√
Hz. Assume the frequency interest of a wideband neural signal

is from 1Hz to 10kHz, the electrode gives an integral thermal noise of 4.07µV in this

frequency range.

Consider the simplest case of a 1st order RC highpass filter. Fig. 2.16 shows the

circuit and the noise source.

Figure 2.16: A 1st order RC highpass filter with noise source.

The equivalent output noise of the RC highpass filter is given by:

Vn,o =
1

1 + sRC
· VnR

=

√
4kTR

1 + sRC

(2.18)
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While the input-referred noise of the RC highpass filter is given by:

Vn,i =
1

sRC
· VnR

=

√
4kTR

sRC

(2.19)

The input-referred noise increases with decreasing frequency, as the signal attenuates.

This is an important observation and provides some intuition for the following anal-

ysis. Fig. 2.17 shows a simulation of a 1st order RC highpass filter. Both the output

Figure 2.17: Noise simulation of RC highpass filters with frequency corners at 10Hz
and 100Hz. The capacitor value is set to be 20pF.

and the input-referred noise are plotted. The capacitor value is set to be 20pF, and

the resistor values are set to be 800MΩ and 80MΩ, and the cut-off frequency is 10Hz

and 100Hz, respectively. The input-referred noise densities at the 1Hz are marked in

the figure. Notice that using a larger capacitor value with the same cut-off frequency

can achieve a lower noise density. However, large capacitors take a lot of silicon area,

thus is not suitable for multiple channel recording front-end integration.
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In summary, a simple RC filter is not suitable for implementing the proposed

pre-whitening filter. In the following section, two methods of implementation are

discussed: i) filtering after a wideband LNA, and ii) filtering at the direct neural

interface.

A. Pre-whitening Filter After a Wideband Low-noise Amplifier

The block diagram of a pre-whitening filter after a wideband low-noise amplifier is

shown in Fig. 2.18. Since the filtering is implemented after the wideband amplifier,

Figure 2.18: The block diagram of a pre-whitening filter after a wideband low-noise
amplifier.

the noise from the filter will be attenuated by the gain of the wideband amplifier.

Again, assume using a simple RC filter, Fig. 2.19 shows the noise source of the RC

filter after the wideband amplifier.

Figure 2.19: The circuit schematic of a pre-whitening filter after a wideband low-
noise amplifier. Noise source from the resistor is shown.
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The input-referred noise of the recording front-end from the filter is then given

by:

Vi,rms =
1

A1

√∫ fH

fL

V 2
n,i · df

=
1

A1πC

√
kT

R
(

1

fL
− 1

fH
)

(2.20)

If the frequency range of interest is 1Hz to 10kHz, and the 1st stage wideband

neural amplifier has a gain A1 of 100. If we set the highpass frequency of the second

stage to be 10Hz, the integral noise is 0.11µV, and if we set the highpass frequency

to be 100Hz, the integral noise is 1.14µV. In both cases, the integral noise is lower

than the thermal noise of an electrode with an impedance of 100kΩ (Section 2.3.1).

Several active highpass filters can achieve lower input-referred noise than the

simple RC filter. Consider the circuit with capacitive feedback in Fig. 2.20. The

Figure 2.20: An implementation of an active highpass filter. Noise sources from

the resistor and the 2nd stage amplifier are shown.

signal transfer function can be expressed as:

Hsig(s) =
sRC1

sRC2 + 1

=
C1

C2

· s

s+
1

RC2

(2.21)
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The midband gain of the amplifier ACL is
C1

C2

, and the highpass frequency is set

by
1

RC2

. The amplifier A2’s noise transfer function can be expressed by:

HnA(s) = 1 +
sRC1

sRC2 + 1

= 1 +
C1

C2

· s

s+
1

RC2

(2.22)

Since the amplifier’s noise transfer function and the signal’s noise transfer func-

tion has the same highpass frequency
1

RC2

, the amplifier’s noise is shaped in the same

way as the signal. Thus, the noise increase from the amplifier won’t cause frequency

dependent SNR degradation.

Let’s look at the resistor’s noise transfer function:

Vo − VnR
R

= sC2Vo = 0 (2.23)

HnR(s) =
1

sRC1

=
1

ACL

1

sRC2

(2.24)

where
1

RC2

is the signal highpass frequency, and ACL is the closed-loop gain of the

second stage. So compared with the implementation in Fig. 2.19, the noise is further

suppressed by the gain of the 2nd stage. The overall input-referred noise density from

the resistor given by:

VnR,i =
1

A1ACL

√
4kTR

sRC2

(2.25)

In a practical design, the total of VnR,i and the input-referred noise density of the

1st stage should be lower than the noise and the SNR requirement of the recording
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system. Again, assume the cut-off frequency of the pre-whitening amplifier is 10Hz,

the capacitor C2 is 2pF, the closed-loop gain of the 1st and 2nd stage is 100 and

40, respectively. The VnR,i at 1Hz is 28.6nV
√
Hz, which is lower than the thermal

noise density of a 100kΩ electrode (Section 2.3.2). If the cut-off frequency of the pre-

whitening amplifier is 100Hz, the noise density VnR,i at 1Hz is 90.5nV/
√
Hz, which

is still lower than most low-noise neural amplifier designs at 1Hz, and is sufficient for

the SNR requirements in most intracortical neural recordings.

B. Low-noise Neural Amplifier with Integrated Pre-whitening Filter

This section discusses the possible integration of the pre-whitening filter into the 1st

stage low-noise amplifier. It is more challenging to design pre-whitening filter at the

1st stage because of the noise increase with decreasing frequency due to the filter’s

response. However, there are also advantages. The electrode interface usually has a

slowly varying offset or half-cell potential up to several hundred millivolts, as reviewed

in section 2.1. The recording amplifier will need to reject this large offset, typically

accomplished by using a highpass filter with a cut-off frequency below 1Hz. However,

it is difficult to implement such a large time-constant filter on-chip. One solution

is to use transistor pseudo resistor, as described in section 2.2.2. But the pseudo

resistors have reliability problem for the use in an implanted medical device, and

they are susceptibility to electromagnetic interface and degradation over time [53]. If

the pre-whitening filter can be integrated into the first stage amplifier, the sub-Hertz

filter can be avoided.

Consider the capacitor-coupled neural amplifier in Fig. 2.21. The signal transfer
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Figure 2.21: Capacitor coupled neural amplifier. Noise sources are marked in the
figure.

function of this amplifier is:

Hsig(s) =
C1

C2

· s

s+
1

RC2

(2.26)

Thus the highpass cut-off frequency is determined by 1/RC2. The transfer function

of the amplifier noise is:

HnA(s) = 1 +
C1

C2

· s

s+
1

RC2

(2.27)

And the resistor noise’s transfer function is:

HnR(s) =
1

sRC1

(2.28)

The input-referred noise density from the resistor is:

VnR,i =
1

ACL

√
4kTR

sRC2

(2.29)
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Compared with Eq. 2.25, the only difference is that this input-referred noise is no

longer attenuated by preamplifier. If ACL is designed to be the product of the gain

of the two stages in previous section, it can achieve the same noise performance. But

it is difficult in practical designs.

There are other circuit topologies to implement the highpass frequency response

in the low-noise amplifier. One type of topology is to use a DC servo loop. A typical

example is shown in Fig. 2.22.

Figure 2.22: Capacitor coupled instrumentation amplifier with a DC servo loop.

sC1Vi(s) + sC2Vo(s)− sC4Vx(s) = 0 (2.30)

V x(s) = − 1

sRC3

Vo(s) (2.31)
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Signal transfer function can be expressed as:

Hsig(s) =
sRC1C3

sRC2C3 + C4

=
C1

C2

· s

s+
C4

RC2C3

(2.32)

The mid-band gain of this circuit is
C1

C2

. Compared with Eq. 2.26, the high pass

frequency corner is
C4

C2

1

RC3

, where
1

RC3

is the frequency corner of the integrator in

the feedback loop.

The noise transfer function of the amplifier A1 is:

C1VnA1 = C2(Vo − VnA1) + C4(Vx − VnA1) (2.33)

HnA1(s) =
C1 + C2 + C4

C2

· 1

1 +
C4

sRC2C3

(2.34)

The noise transfer function of the amplifier A2 is:

Vo − Vna2

R
= sC3(Vna2) = sC4V x = sC2Vo (2.35)

HnA2(s) =
sRC3 + 1

sRC3
C2

C4

+ 1
(2.36)

The noise transfer function of the resistor is:

Vo − VnR
R

= sC3Vx (2.37)
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sC4Vx = sC2Vo (2.38)

HnR(s) =
1

1 + sRC3
C2

C4

(2.39)

The input-referred noise density from the amplifier A1 is:

VnA1,i =
C1 + C2 + C4

C1

VnA1 (2.40)

The input-referred noise density from the amplifier A2 is:

VnA2,i =
C4

C1

(1 +
1

sRC3

)VnA2 (2.41)

The input-referred noise density from the resistor is:

VnR,i =
C4

sRC1C3

√
4kTR (2.42)

Compared with Eq. 2.29, the noise contribution from the resistor also depends on the

ratio of C4/C3. However, reduce the ratio of C4 and C3 decreases the input voltage

headroom, which makes the trade-off difficult.

The resistor can be further replaced by a switched capacitor circuit. A simplified

circuit schematic is shown in Fig. 2.23. In the switched capacitor circuit, the time-

constant can be better controlled by the ratio of the capacitors and the switching

frequency. However, in order to achieve the required large time-constant, a large

capacitor tank is to be implemented. Several techniques have been proposed to reduce

the required size of the capacitors [92, 122].
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Figure 2.23: Capacitor coupled instrumentation amplifier with DC servo loop im-
plemented by switched capacitor circuits.

If ultra low-noise is required for the low-frequency signal component, the chop-

ping technique can be combined in the pre-whitening amplifier design. An example of

a chopping pre-whitening amplifier is shown in Fig. 2.24. With chopping, the flicker

Figure 2.24: A capacitor coupled chopping amplifier with DC servo loop and input
impedance boosting.
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noise can be removed, and the amplifier can guarantee a good SNR for the signal even

with the lower gain at the low frequency. However, there are also many trade-offs

involved with the chopping amplifier design [93, 113, 116]. The effects it takes may

counteract the benefits from the pre-whitening.

2.3.3 Circuit Implementation

A pre-whitening amplifier prototype of the architecture presented in section 2.3.2 is

designed to demonstrate the idea. The circuit schematic of the designed pre-whitening

amplifier is shown in Fig. 2.25. A single-ended architecture is used. A conventional

Figure 2.25: The circuit schematic of the designed pre-whitening amplifier. The

Pseudo resistors RA and RB used in the 1st and 2nd stage is shown in subplot (a)
and (b), respectively.

low-noise current mirror OTA is used in both stages [16]. A T-connected pseudo-

resistor (TPR) proposed in [10] is used as the feedback resistor in the 1st stage. If the

equivalent resistance of transistor X is RX , the total equivalent resistance of the TPR
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is R1+R2+R1 · R2/R3. The Pseudo resistor in the 2nd stage is the same as the one

used in amplifier presented in the previous section 2.2. The gate voltage can be used

to tune the resistance over a large range, which is used to tune the cut-off frequency

of the pre-whitening filter. The 1st stage has a closed-loop gain of 100, and the 2nd

stage has a closed-loop gain of 40.

2.3.4 Measurement Results

The design has been fabricated in IBM 180nm CMOS technology. The micrograph of

the chip and the layout of one recording channel are shown in Fig. 2.26. The full chip

Figure 2.26: The microphotography and layout of one channel of the pre-whitening
amplifier.

occupies a silicon area of 4.5×1.5mm2, including IO pads. One recording channel has

a dimension of 550µm×120µm.

Bench testing was conducted to evaluate the performance of the fabricated chip.

Fig. 2.27 shows both the amplitude and phase frequency response of the pre-whitening
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amplifier. The simulated frequency response is also plotted in dashed lines for com-

Figure 2.27: The measured frequency response of the pre-whitening amplifier in
comparison with the simulation result.

parison. With the information of the frequency response, the original signal can be

recovered from the pre-whitened recording.

The synthetic neural signal was generated using an arbitrary function generator

33521A from Agilent to the test the pre-whitening amplifier. A 1-min neural signal

contains local field potentials is used for testing. The signal was recorded using RZ2

workstation from Tucker-Davis Technologies. The signal was sampled at 24.4kSps in

a resolution of 24-bit. A resistor divider consists of 2kΩ and 1Ω was applied at the

output of the function generator, gives a gain of 1/2001. The neural amplifier was

configured to have a maximum gain of 4,000.



69

The designed amplifier can be configured to do both conventional wideband

recording or frequency shaping pre-whitening recording. The power spectral den-

sity (PSD) was calculated for 24 channel of the LFP recording. Fig. 2.28 shows a

comparison of the PSD of the conventional wideband recording and the pre-whitening

recording. The result clearly shows that the spectrum of the pre-whitening record-

Figure 2.28: Comparison of the PSD of the pre-whitening amplifier and the original
signal.

ing was flattened at the low-frequency range, which saves the voltage headroom by

more than an order of magnitude. The reduction in the dynamic range relaxes the

requirement of the linear range of the low-noise amplifier and the ADC design.

The reconstruction of the signal was performed in Matlab. Fig. 2.29 shows a

comparison of 10 seconds of the conventional recording, the pre-whitening recording,

and the reconstruction from the pre-whitening recording. Pearson correlation coeffi-
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Figure 2.29: Comparison of (a) the wideband signal, (b) the measured output of
the pre-whitening amplifier, and (c) the reconstructed signal from the pre-whitening
amplifier’s recording.

cient is used here to evaluate the accuracy of the reconstruction [123]. The correlation

coefficient is defined as:

ρ(x, y) =
1

N − 1

N∑
i=1

(
xi − µx
σx

)(
yi − µy
σy

) (2.43)

where µx and σx are the mean and standard deviation of the signal x, and µy and σy

are the mean and standard deviation of the signal y. The result shows a correlation

coefficient of 97.6%, which indicates a faithful recovering of both phase and amplitude.

Noticed that a high-order zero-phase digital filter of 1 to 200Hz was applied before

the comparison. But even in this case, both phase and amplitude will need to be
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recovered at the same time to completely reconstruct the original signal.

Power spectral density estimation was calculated by periodgram for both the o-

riginal signal and the reconstructed signal from the pre-whitening recording, as shown

in Fig. 2.30. The result indicates that the pre-whitening processing can provide a

Figure 2.30: Comparison of the spectrum of (a) the original signal and (b) the
reconstructed signal from the pre-whitening amplifiers recording.

faithful reconstruction of the spectrum content.

In summary, the design of the pre-whitening amplifier takes advantage of the

characteristics of the neural signal. Since the power density of the neural signal

including ECoG and LFP drops faster with frequency than the filter noise of the

CMOS recording front-end, there is an opportunity to design a recording front-end

with less gain at low frequency, at the same time, preserve sufficient SNR for the

wideband signal. The design significantly reduces the dynamic range and linearity



72

requirement of the low-noise amplifier and the ADC. The circuit implementation of

the pre-whitening front-end is analyzed in this section with a detailed noise analysis.

A prototype was designed and fabricated, and experimental results are presented

in comparison with simulation and theoretical computation. Since the pre-whitening

amplifier provides an opportunity to improve the performance of neural recording-end

without a power penalty, it can be advantageous to include it into a high channel-

count neural recording front-end system.
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2.4 Design of a Low-Power Analog-to-Digital Con-

verter

2.4.1 Introduction

A low-power analog-to-digital converter (ADC) is an essential component in a neural

interface system. In a typical bi-directional neural interface system, ADCs can be

used for digitization of the neural signal, the extracted neural features, the sensory

signal, and the stimulation compliance voltage. Among all ADC topologies, successive

approximation register (SAR) ADCs have an advantage in power efficiency for a

moderate sampling rate. Firstly, a SAR ADC does not require a high gain and

high bandwidth opamp for high accuracy and linearity. Secondly, SAR logic mainly

consists of digital circuits, the speed and power of which scales down with the deep

sub-micron CMOS technology. Thirdly, if a capacitive DAC is used, no static power

is consumed, thus the power scales with the sampling rate. Comprehensive reviews

and tutorials of SAR ADC design can be found in [124–126].

Recently, a lot of techniques for power-efficient SAR ADC designs have been

reported. Among these techniques are split capacitor array [127, 128], monotonic ca-

pacitor switching [18], partial floating capacitor switching [129], step-charging design

[130], reference free design [131], asynchronous timing [132], and so on. In addi-

tion to techniques for general-purpose SAR ADC designs, several techniques have

been reported to optimize power consumption, especially for neural or sensory signal

digitization. Among them are:
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• Adaptive resolution or dynamic range: including changing ADC resolution [133],

or adding additional programmable gain amplifier before the ADC [134]

• Data dependent or data-driven sampling: for example, combine action potential

detection and digitization together [135]. Besides, the sampling rate can also

be adapted to the activity using continuous time level-crossing sampling [136].

• Delta difference sampling: since the neural signal has both slow and fast os-

cillations over time, normal sampling during slow activity period is not energy

efficient. So digitize only the difference [10, 137], using a bypass window [138],

or using LSB-first approach [139] can achieve better power efficiency.

In this section, the design of a voltage-mode 10-bit SAR ADC is presented.

Specifications are analyzed, circuit design details are described, and measurement

results are presented.

2.4.2 Circuit Implementation

The architecture of the 10-bit voltage-mode SAR ADC is shown in Fig. 2.31. The

major building blocks are: i) comparator, ii) SAR logic, iii) DAC, and iv) sample and

hold switch. 14 clock cycles are used to finish one conversion, allowing 4 clock cycles

for sampling.

A commonly used capacitive DAC is employed in this SAR ADC. Since the

required capacitor in a conventional binary capacitor array can be very small without

compromising the ENOB, custom designed capacitors are often used to achieve a

minimum total input capacitance and thus ultra low-power [18, 140]. However, these
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Figure 2.31: The architecture of the 10-bit voltage-mode SAR ADC.

designs usually require custom characterization for a specific fabrication process. In

this work, a split capacitor array is adopted to reduce the total capacitance, lowering

the power consumption and area. The capacitors are realized as a standard metal-

insulator-metal (MIM) structure.

A monotonic switching procedure is applied to minimize the power consumption

from unnecessarily charging and discharging of the capacitor array [18]. A comparison

of the waveforms of the conventional switch to the VCM procedure and the monotonic

switching procedure is shown in Fig. 2.32. In the monotonic switching procedure,

Figure 2.32: A comparison of the waveforms of (a) the conventional switching to
VCM procedure, and (b) the monotonic switching procedure. Modified from [18].
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the first comparison is performed without switching, and the total capacitance is half

of the conventional capacitive SAR ADC’s DAC array [18].

Fig. 2.33 shows the circuit schematic for the timing generation module. A global

Figure 2.33: The circuit schematic for the SAR timing generation module. clk is
the input clock, clks is the signal for the sampling switch, clkc is the clock for the
comparator, and clk[x] is for the bit[x] of the DAC.

reset signal is used to synchronize the start of the conversion, and the control logic

generation is cyclic.

The sample and Hold (S/H) circuit is critical in achieving good SFDR for an ADC

design. The bootstrapped switch is commonly used since it provides a constant small

on-resistance [141]. The circuit schematic of the bootstrapped switch implemented in

this work is shown in Fig. 2.34. The gate to source voltage of the switch transistor

is fixed at the supply voltage by the capacitor CS.

Fig. 2.35 shows the circuit schematic of the comparator. The comparator consists

of a pre-amplifier and a dynamic latch. Since the input voltage has a range from the

ground to Vcm, the comparator uses a PMOS input stage. The current source NMOS

are used in parallel with the diode-connected NMOS for increasing the gain [121].

The pre-amplifier provides moderate gain to reduce the equivalent mismatch due to

the latch. The latch consumes no static current. When clkc (as shown in Fig. 2.33)
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Figure 2.34: The circuit schematic of the bootstrapped switch.

Figure 2.35: The circuit schematic of the comparator. (a) A pre-amplifier, and (b)
a dynamic latch.

is high, the outputs are reset to high. When clkc goes to low, the regeneration latch

forces one output to high and the other to low. The SAR logic only takes the VOP

and generates an inverted signal V ′ON to avoid the metastability problem.

A Class-AB output stage has been designed to drive the sample-hold circuits

of the following ADC stage. To digitize a single-ended signal, a single-to-differential

converter (S2D) can be integrated. An example of the S2D circuit is shown in Fig.
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2.36. The resistor values are designed to be R1=R3=R4, and the voltage gain is

Figure 2.36: The circuit schematic of a single-to-differential converter.

2(1+R2/R1). R2, which can be programmed by a shift register.

2.4.3 Measurement Results

The ADC has been fabricated in IBM 180nm CMOS technology. The layout of the 10-

bit SAR ADC is shown in Fig. 2.37 with major building blocks highlighted. The total

occupied silicon area is 220µm × 190µm. The measurement results of the prototype

are presented below.

The differential nonlinearity (DNL) and integral nonlinearity (INL) of the ADC

were measured using slow ramps. The result is shown in Fig. 2.38. The peak DNL

and INL are -0.49/+0.56LSB, and -0.82/+0.77LSB, respectively.

The SAR ADC’s dynamic performance was measured with a low-frequency input

tone and a near Nyquist input tone. The output spectrums are shown in Fig. 2.39

and Fig. 2.40, respectively.
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Figure 2.37: The layout of the 10-bit SAR ADC with major building blocks high-
lighted.

Figure 2.38: Measured DNL and INL of the 10-bit SAR ADC. The worst DNL is
-0.49/+0.56LSB, and the worst INL is -0.82/+0.77LSB.
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Figure 2.39: Measured FFT spectrum at 1MS/s with an input tone of 3kHz. The
SFDR is 76.54dB and the SNDR is 56dB. The ENOB at 3kHz is 9.01.

Figure 2.40: Measured FFT spectrum at 1MS/s with an input tone of 493kHz. The
SFDR is 71.6dB and the SNDR is 54.6dB. The ENOB at 493kHz is 8.77.

The spurious-free dynamic range (SFDR) achieved in these tests was 76.54dB and

71.6dB, respectively. The signal-to-noise and distortion ratio (SNDR) was measured
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to be 56dB and 54.6dB, respectively. The effective number of bit (ENOB) is defined

as:

ENOB =
SNDR− 1.76

6.02
(2.44)

The ENOB of the designed ADC was measured to be 9.01 and 8.77, respectively. The

figure-of-merit is calculated using:

FoM =
Power

2ENOB × fs
(2.45)

The FoM of the ADC is 98fJ/conv-step at 1MSps with a supply of 1.8V. The speci-

fications of the ADC was summarized in Table 2.7.

Table 2.7: Specification Summary of the 10-bit SAR ADC

Specification Measurement Result

Technology 180 nm

Supply Voltage 1.8 V

Input Range 3 Vp-p

Sampling Rate 1 MSps

Active Area 0.042 mm2

INL -0.82/+0.77 LSB

DNL -0.49/+0.56LSB

SNDR 54.6 dB

SFDR 71.6 dB

ENOB 8.77

FoM 98fJ/conv-step

In summary, a 10-bit SAR ADC was presented in this section. A prototype was

fabricated in 180nm CMOS technology. The design uses an energy efficient switch

procedure and a split-capacitor array. The measurement results successfully meet the

design specifications, with comparable performance among the state-of-the-art ADC

designs for the neural recording purpose. As a part of the neural interface system,
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the power consumption of the ADC was usually not the bottleneck. So this work

didn’t seek to aggressively minimize the ADC’s power using techniques like charge

recycling [129], asynchronous timing [132], or step charging [130]. The supply voltage

was kept at 1.8V to be compatible with the neural recording front-end. In the future,

the ADC’s performance can be further optimized based on the characteristics of the

neural signal.
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2.5 A Compressed Sensing Neural Signal Acquisi-

tion System

2.5.1 Introduction

Wireless telemetry is usually the power bottleneck of a neural recording system [142].

On-chip data compression is an effective solution to reduce the power consumption

reducing the data rate. Various on-chip data compression techniques for neural signal

have been proposed. For single or multi-units action potential recording, spike detec-

tion [143], and spike sorting [144] are the most effective ways to reduce the recording

data rate, and can also be used to drive the BMIs directly. The hardware implemen-

tation of the spike detection can be as simple as a comparator with a pre-defined

threshold. A compression ratio higher than 100x can be achieved with little power

consumption [67]. However, the spike detection based compression drops most of

the raw waveform, and is vulnerable in long-time recording since the spike waveform

may change due to the change of electrode impedance or electrode displacement. For

EEG, ECoG, or LFP, wavelet transformation is an effective solution, given its high

compression ratio and good reconstruction quality [145, 146]. However, the hardware

implementation of wavelet transformation is non-trivial and usually takes consider-

able area and power. Moreover, the custom design for a specific signal type and

sampling frequency significantly limits the applications of these recording systems.

Compressed sensing is an emerging signal processing technique that enables sub-

Nyquist sampling and near lossless reconstruction of a signal [147]. Since it was

introduced in 2006 [148], the compressed sensing technique has also been successfully

applied to rapid MRI [148], computational image sensors [149], biomedical sensors
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[142, 150], high frequency receivers [151], and other applications. Compressed sensing

is especially attractive to neural signal recording given its minimum hardware cost in

the front-end, favoring the power constraint of implanted devices.

Prior research shows the sparsity of neural signals in different frequency bands

[150, 152–154]. Since an on-chip transformation using random matrix usually achieves

sufficient incoherence and restricted isometry property (RIP) [155], a general-purpose

recording device can be designed without the knowledge of the target signal. In

addition, the compressed sensing measurements can also be used in signal processing

(e.g. machine learning classifiers) [156], or driving BMI directly. Without a full

reconstruction of the raw signal, the processing in the compressed domain can be

easily implemented in a low-power embedded system.

Fig. 2.41 shows a survey of publications in data compression of neural signals.

Compressed sensing shows a fast growth trend, and plays an increasingly important

Figure 2.41: Historical trend for publications using compressed sensing technique
in biomedical signal acquisition in the past decade. Data retrieved from Web of
Science.
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role in the hardware design of neural signal acquisition systems.

2.5.2 A Brief Background of Compressed Sensing

Compressive sensing (CS) is a signal processing technique that enables sub-Nyquist

sampling and near lossless reconstruction of a signal with sparsity in a certain domain.

The technique is particularly appealing for low-power high channel count neural signal

recording. This section gives a brief introduction to the compressive sensing theory.

Detailed explanation and rigid mathematical proof can be found in [147, 148, 155].

A. Compression Process

Assume the digitized signal x has a dimension of N , demoted by x ∈ RN×1.

Consider a general linear measurement process that computes y with a full row-rank

matrix denoted by Φ ∈ RM×N , and M � N

y = Φx (2.46)

where y is the compressive sensing data, and Φ is the sensing matrix. Notice that

the sensing matrix is fixed and known to the reconstruction algorithm. The signal x

can be expressed as:

x =
N∑
i=1

siΨi (2.47)

where s is the representation of the signal in the Ψ domain. The signal x is K−Sparse

if only K of the s coefficients are non-zero. The signal is compressible in this case.

Thus y can be written as

y = ΦΨs (2.48)
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B. Reconstruction Process

The signal reconstruction process is to use the M measurements in y, the mea-

surement matrix Φ, and the basis Ψ to reconstruct the signal x, or equivalently, its

sparse representation s. Since M � N , the equation is underdetermined, which

means there are infinite x (or s) that satisfy the condition. Therefore, the signal

reconstruction process is to find out the signal sparse coefficient vector.

The classical approach is to find the vector in the translated null space with the

smallest `2 norm by solving

ŝ = argmin||s′||2 such that ΦΨs′ = y (2.49)

However, the `2 minimization usually has difficulty in finding a K-Sparse solution.

`0 norm can recover a K-Sparse signal exactly with high probability.

ŝ = argmin||s′||0 such that ΦΨs′ = y (2.50)

Unfortunately, solving Eq. 2.50 is both numerically unstable and NP-complete. While

`1 norm can exactly recover K-Sparse signal and closely approximate the signal with

high probability.

ŝ = argmin||s′||1 such that ΦΨs′ = y (2.51)

This is a convex optimization problem and can be conveniently reduced to a basis

pursuit problem, with a computational complexity about O(N3).

C. Reconstruction Evaluation Criteria



87

Several numerical derivations are used to evaluate the performance of individ-

ual reconstruction algorithms and dictionaries. The commonly used criteria include

compression ratio and signal-to-noise and distortion ratio.

The Compression Ratio (CR) is defined as:

CR =
N

M
(2.52)

The signal-to-noise and distortion ratio (SNDR) is defined as:

SNDR = 20× log
||x||2
||x− x̂||2

.

2.5.3 System Overview

The paradigm of the hypothetical chronic wireless neural signal acquisition system is

illustrated in Fig. 2.42. The system has a dedicated implantable subsystem and a

flexible external subsystem. The implantable subsystem contains the proposed com-

pressed sensing neural recording SoC, an inductive charging module, and a super

capacitor. The device will need to be sealed in a biocompatible package. The device

can be placed under the skin, above the skull bone. The recording electrode can

be placed in any brain area of interest. The external subsystem consists of a stan-

dard wireless transceiver, a rechargeable battery, and a coil. The external subsystem

powers the implanted device and collects data back through back-scattering.

The advantages of the proposed system are three-folds: i) the implanted wireless

device leaves the skin intact, which reduces the risk of infection, ii) the battery is left

externally so that the device’s lifetime will not be limited by the battery’s recharging
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Figure 2.42: (a) Illustration of the hypothetical chronic neural signal recording
system using the fully integrated compressed sensing chip, and (b) the architecture
of the chip.

cycles, and the toxicity associated with batteries will not be a potential danger to

the subject, iii) the external transceiver makes the system flexible and versatile, for

instance, different wireless solutions or flash memory can be used for different situa-

tions. The upgrading of the system is also much easier, since the chronic implant can

be used for years or even decades while the digital and wireless electronics develop



89

much faster than the analog recording interface.

A single pair of coils is used for both power delivery and data read back. A

carrier frequency of 13.56MHz is chosen given the trade-off between the power transfer

efficiency and the data rate. Compressed sensing reduces the data rate of the wireless

uplink, which is especially helpful for the multiple channel recordings.

2.5.4 Circuit Implementation

2.5.4.1 Energy Efficient Analog Front-end

The block diagram of each analog recording channel is shown in Fig. 2.43. A fully dif-

ferential low-noise instrumentation amplifier (IA) is used to amplify the neural signal.

The following Gm-C based high pass filter stage (HPF) conditions the signal with a

tunable cut-off frequency. The next stage (LFP) is an operational transconductance

amplifier (OTA) that converts the voltage signal into a current in a programmable

low-pass frequency corner.

The IA in this work is a fully differential capacitor-coupled neural amplifier, which

amplifies the weak neural signal in a wide frequency band. The input capacitors block

the large electrode offset and half-cell potential from the interface, giving a maximum

input range. The closed-loop differential gain is set to be 34dB to relieve the noise

requirement for the following stages. The core of the IA is a low-noise OTA, as shown

in Fig. 2.43 (a-1). The OTA has been designed to maximize the noise and power

efficiency. Compared with the design presented in Section 2.2.2, a two-stage topology

is used to provide a sufficient open-loop gain. The major consideration here is the

use of the cascode topology limits the voltage headroom. A complementary input



90

Figure 2.43: Analog front-end of the proposed system (Part I). The signal chain
includes the signal amplification, filtering, voltage-to-current conversion and mul-
tiplexed to a shared ADC. The circuit schematic of the (a) low noise amplifier, (b)
OTA with extended linear range, and (c) OTA with programmable transconduc-
tance.

stage (M1-M4) is used to increase the overall transconductance without increasing the

quiescent current. The complementary input amplifier suffers from PVT variations

[116], thus additional common-mode feedback circuit, as shown in Fig. 2.43 (a-2), is

adopted to stabilize the DC output at half supply voltage. All of the input transistors

are biased in the sub-threshold region to achieve a high energy efficiency. Since the
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complementary stage has a limited input range, a fully differential structure is chosen.

The first stage dominates the noise, and the input-referred noise of the OTA can be

expressed as:

v2
i,n,tot =

1

(gm1 + gm3)2
[8KTγ(gm1 + gm3)+

2(
KNgm3

Cox,NfWNLN
+

KPgm1

Cox,PfWPLP
)]∆f

(2.53)

where gm1 (=gm2) are the transconductance of M1 (M2), and gm3 (=gm4) are the

transconductance of M3 (M4). The flicker noise can be reduced by increasing the

widths and lengths of the input transistors. A biasing current of 1µA is used in the

first stage as a trade-off between power and noise. A biasing current of 20nA is used

in the second stage. The dominant pole is set at the second stage, and the stability

is guaranteed by adding an additional capacitive load.

An ultra low-power programmable bandpass filter is integrated into each channel

for selecting the frequency band of interest. The first stage is a fully-differential Gm-C

highpass filter. The circuit schematic of the Gm block is shown as A2 in Fig. 2.43

(b). Current division and local feedback are used to achieve low transconductance

and an extended linear input range. The cut-off frequency can be programmed by

tuning the transconductance. The second stage of the filter is a single-ended Gm-C

based lowpass filter. The circuit schematic of the Gm block is shown as A3 in Fig.

2.43 (c). Source degeneration is used to achieve a high linearity. The differential

voltage signal is converted into a single-end current signal. Since a standard current

mirror load is used, no extra power is wasted for this conversion, but the single-ended

operation reduces the capacitor array size by half, which is important for this design

to be implemented at the channel level. The lowpass frequency can be programmed



92

by selecting the load capacitor.

The shared part of the analog recording front-end is shown in Fig. 2.44. The

Figure 2.44: Analog front-end of the proposed system (Part II). A current-to-
voltage conversion with programmable gain and a 10-bit SAR ADC is used to
digitize the signal. The boxed windows show the circuit schematic of the (a) com-
parator and the (b) SAR ADC.

current output from each channel is multiplexed and then converted to a voltage using

a transimpedance amplifier (TIA) with a programmable gain. A single-to-differential
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(S2D) converter is used to drive the differential input ADC with an additional pro-

grammable transimpedance. A 10-bit SAR ADC digitizes the signal. The design

details of the ADC have been presented in Section 2.4.

The single-ended current output from the 16 channel is selected by a multiplexer.

The single-ended signal reduces the effort in routing, and the R-I drop in the long

routing line doesn’t corrupt the current signal, thus making it less susceptible to

noise. The following TIA is used to convert the current signal back to a voltage in

a programmable gain, as shown in Fig. 2.44. The gain can be set to be 5x, 6x, 7x,

8x by the compressed sensing digital processor. The gain of 2x, 4x, can be easily

achieved in the binary digital processor, and the 3x can be achieved from shifting the

6x signal by 1 bit.

2.5.4.2 On-chip Wireless Power and Data Link

A low-power backscatter based wireless transmitter communicates with the exter-

nal transceiver [11]. The backscatter transmitter consists of a PWM encoder and a

buffered transistor for the antenna impedance modulation.

An active rectifier is used to achieve a higher power efficiency [157]. Coupling coils

are implemented off-chip. The system clock is recovered from the power waveform

[100]. The circuitry of the clock recovery and division module is shown in Fig. 2.45.

The module consists of a Schmitt trigger and several D flip-flops. The Schmitt trigger

makes the circuit more resistent to the noise of the power waveform. The circuit

schematic of the Schmitt trigger is shown in Fig. 2.46. The D flip-flop guarantees the

clock has a 50% duty cycle. Several different clocks can be divided from the following

D flip-flops. The clock frequency selection can be configured by a shift register.
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Figure 2.45: The circuit schematic of the clock recovery and clock division module.

Figure 2.46: The circuit schematic of the CMOS Schmitt trigger [19].

Standard bandgap reference and low drop-out (LDO) circuits are used in the

power management unit. The block diagram and the circuit schematics of the power

management module are shown in Fig. 2.47. A push-pull comparator with source

input is used to drive the active diodes. The design details of the active rectifier can

be found in references [157–159].

2.5.4.3 External Wireless Relay Board

An external wireless relay board has also been designed to demonstrate the proposed

paradigm. The external subsystem consists of a microcontroller with an integrated
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Figure 2.47: Inductive power management module, including active rectifier and
LDOs for analog and digital power supplies. (a) circuit schematic of the comparator,
(b) bandgap reference, and (c) LDO (start-up circuits are not shown).

wireless transceiver, envelope detection circuits for reading the backscattered signal,

power transmitter circuits, and a battery management system.

A 32-bit ARM Cortex-M0 based wireless transceiver (Nordic Semiconductor nR-

F51822) is used as the central processor and wireless transceiver. It features a 2.4GHz

transceiver, and supports Bluetooth 4.0 low-energy protocol, which provides an easy

interface to the computer or mobile devices. A reliable wireless communication up

to 5m was measured in the normal indoor environment. A Serial Peripheral Inter-

face (SPI) based microSD card interface is optional in the system to allow long-term

wireless recording without limited receiver range.

A computer user interface has been developed in Matlab to configure the de-

vice and read back the data. The signal conditioning and off-line analyses are also

performed in the user interface.
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2.5.5 Measurement Results

The proposed SoC design has been fabricated in an IBM 180nm standard CMOS

technology, occupying a silicon area of 2.1mm×0.8mm, excluding the IO pads. A

microphotograph of the fabricated chip is shown in Fig. 2.48, with major building

blocks highlighted.

Figure 2.48: The micrograph of the fabricated fully integrated compressed sensing
neural recording front-end chip.

Bench testing was conducted to verify the functions of the chip and the system.

The measured frequency response of the low-noise amplifier is shown in Fig. 2.49.

The frequency response was measured point by point using a function generator

33521A and an oscilloscope MSO7034B from Agilent. The phase shift was calculated

in the oscilloscope. The measured midband gain is 34.1dB. The measured CMRR and

PSRR of the analog front-end in the frequency range of 0.5Hz to 7kHz are >80dB,

and >67dB, respectively.

The input-referred noise spectrum is shown in Fig. 2.50. The noise was mea-

sured with the inputs shorted by an internal switch. The noise spectrum density is

200nV/
√
Hz at 10Hz, 49.1nV/

√
Hz at 100Hz, and 23nV/

√
Hz at 1kHz. An inte-

gration under this curve from 1Hz to 7kHz yields a rms noise floor of 2.85µV. The
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Figure 2.49: The measured frequency response of the low noise amplifier (without
filtering stages).

Figure 2.50: The measured input-referred voltage noise spectrum.

total harmonic distortion of the amplifier was measured to be -63dB, with an input

amplitude of 1mV.

An invasive neural recording was performed in an anesthetized rat with a tung-

sten microelectrode placed in its motor cortex. Action potential data is extracted by

configuring the filter with a passband of 300Hz to 7kHz. Different compression ratios
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from 2, to 4, to 8 and to 16 have been applied, respectively. Dual-threshold level

crossing spike detection has been used for both the uncompressed data and the re-

stored data. Signal-to-noise distortion ratio (SNDR) of 3.60dB, 9.78dB, 30.60dB and

52.99dB are achieved for compression ratios 16, 8, 4 and 2, respectively. Near-lossless

spike detection can be achieved while a compression ratio lower than 8 is applied.

Fig. 2.51 compares the time-domain waveform of the uncompressed and restored

local field potential (LFP) sampling data sets. And Fig. 2.52 shows the comparison of

Figure 2.51: Comparison between the uncompressed sampling results and data
restored from different compression ratio (CR).

the spectrum of the original uncompressed and restored LFP sampling data sets. The

LFP exhibited rhythmic bouts of broadband power interleaved with low power epochs.

According to Fig. 2.52, the time-frequency content of the restored signal was very

similar to the uncompressed LFP. Signal-to-noise distortion ratio (SNDR) of 9.04dB,

4.85dB and 3.78dB are achieved for compression ratios 4, 8 and 16, respectively.

A demonstration system was developed to show the proposed concept, as shown

in Fig. 2.53. An open cavity plastic package was used for packaging the chip, thus the

size of the demonstration implantable system was limited by the package. Commercial

coils were used for power and data transfer. An additional ceramic capacitor was used
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Figure 2.52: Comparison of the spectrograms of (a) the uncompressed sampling
results and (b) the data restored with a CR of 8.

to improve impedance matching. Two LEDs were used only for debugging purpose.

A couple of programming and debugging pads are left. No other off-chip components

were required.

Figure 2.53: Photography of an assembled demonstration system. (a) Power and
data transmission testing setup across 5mm plastic cap, (b) external transceiver
board, (c) implantable device.
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In-Vivo evaluation of the device for the long-term operation was conducted in a

rhesus macaque. An electrode was chronically implanted in the hippocampus. The

recording device, including an external transceiver, was housed in a small chamber

that was fixed to the skull. Fig. 2.54 shows the spectrogram of a 24-hour continuous

recording while the monkey was freely behaving in his home cage. The recording

Figure 2.54: A 24-hour continuous recording in the hippocampus of a rhesus
macaque during free behavior.

shows the states of hippocampal activity throughout the day. Greater power at higher

frequencies (>20 Hz) was associated with periods in which the animal was awake and

freely moving about his home cage (hours 0-7.5 and 19-24). Greater power at low

frequencies (<20 Hz) was associated with sleeping (hours 7.5-19). Individual sleep

cycles can be seen. Some broadband chewing artifacts were also present (around

hours 3-4.5 and 20-22) corresponding to the times when the animal was fed. The

overall activity pattern matches previous observations of sleep-wake changes in neural

activity. The measured performance of the chip is summarized in Table 2.8.

In this work, a fully integrated wireless neural signal acquisition system is pre-

sented. A high efficiency wireless neural signal recording SoC with integrated com-

pressed sensing processor was designed and fabricated in 180nm CMOS technology.

An external wireless relay was used to power the implantable SoC, read back the

data through backscattering, and transmit the data through a universal wireless link.
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Table 2.8: Chip Specifications Summary

Neural Amplifier CS Processor

Midband Gain 34.1dB Input Channel up to 16

Bandwidth 0.5Hz - 7kHz CS Ratio up to 8x

LNA Noise 2.85µVrms Clock freq. 4MHz

THD (1mV) -63 dB Wireless Power and Data

NEF/PEF 1.58/4.5 Carrier freq. 13.56 MHz

CMRR >80dB Power efficiency up to 73%

PSRR >67dB Distance up to 10mm

SAR ADC Power

ENOB 9.1 Analog Front-end 2.5µW (per ch.)

Sampling Rate 1MSps ADC 35µW(@1MSps)

INL (LSB) +0.62/-0.85 CS Processor 77µW

DNL (LSB) +0.69/-0.92 TX transmitter 27µW

FoM(fJ/step) 34.2 Total (avg.) 254µW

The system features high energy efficiency, high flexibility, compatibility, upgradabil-

ity without compromising the signal recording quality. By performing the on-chip

compressive sampling, the data rate is significantly reduced, which allows the system

to support more recording channels without a power penalty. According to the ex-

perimental results, a compression ratio up to 8x will cause negligible loss of the data

quality and/or information contained in the raw data. A pre-implantable system was

assembled and successfully demonstrated the proposed paradigm. Bench testing and

In-Vivo experimental results are presented. Table 2.9 compares the performance of

the proposed work with prior published compressed neural signal recording front-end

designs. The system shows a promising chronic neural signal recording paradigm for

neuroscience research and BMI applications.
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Chapter 3

Neural Feature Extraction

3.1 Introduction

Feature extraction, or feature learning, is an important technique to transform the

raw data input to a representation that can be effectively understood [162]. Neural

feature extraction allows one to acquire the qualitative and quantitative information

from the neural signal. It has been widely used in the neuroscience and neuropros-

thetic research for pattern recognition, numerical or symbolic regression, probability

estimation, and dynamical system modeling [163]. Moreover, neural feature extrac-

tion provides the inputs to the decision support system, like the machine learning core

in a brain-machine interface (BMI) device. The real-time neural feature extraction

implemented on-chip is especially important for the operation of the closed-loop BMI

devices. By applying feature extraction and machine learning techniques, the BMI

devices have been successfully used in decoding motor function [164, 165], detecting

epilepsy [113, 166], Parkinson’s disease [167], depression [168], and so on.

103
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The feature extraction can be performed in different domains, including: i) time

domain, ii) frequency domain, iii) wavelet domain, iv) statistics process, v) infor-

mation theory (eg. entropy, mutual information), and vi) fractal geometry [163].

However, the implementation of the real-time feature extraction in the BMI devices

is limited by the hardware resource including the computation ability, the memory

size, and the power consumption. Thus, an energy efficient implementation is espe-

cially important. Some energy-efficient neural feature extraction techniques have been

reported in the literature [113, 144, 169–172]. It should be noticed that the choice of

a suitable set of features is also a challenging task. The brain signal contains a large

number of simultaneous sources, and the information of interest might be overlapped

with other sources time and frequency. There are many existing methods for feature

selection, including principal component analysis (PCA) [173], independent compo-

nent analysis (ICA) [174], genetic algorithm (GA) [175], sequential forward/backward

selection (SFS) [176], and so on.

Although the use of neural features varies significantly for different applications,

it is very helpful to identify the most commonly used features for the BMI devices.

Both field potential and action potential features have been used in real-time, closed-

loop BMI devices, as briefly summarized below:

• Field potential features

– Energy in multiple frequency bands: spectral characteristics of neu-

ral field potentials have been used to identify, classify, and analyze brain

activities [169, 177];

– Features of different brain states: field potentials can be used to define

different brain states [178, 179];
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– Synchronization between electrodes: synchronization of oscillations

between different brain areas can be used to define different brain activities

[180, 181].

• Action potential features

– Action potential detection: action potentials are activities of individual

neurons [182, 183];

– Action potential alignment and sorting: on-line action potential sort-

ing can be used to identify the signal from different neurons presented on

the same electrode [182, 184];

– Action potential firing rate: the action potential fire-rate presents the

active level of an individual neuron [185, 186].

This chapter presents the analysis and design of the neural feature extraction

from three different perspectives, the energy extraction, the action potential detection,

and the matched filtering. Several novel techniques in the circuitry, algorithm, and

system levels are proposed, with a focus on the energy efficient implementation for

closed-loop BMI devices. The chapter is organized as follows. Section 3.1 introduces

the neural features, and summarizes the commonly used features for real-time BMI

devices. Section 3.2 describes the energy features in the LFP, and proposes a novel

extraction circuit with frequency tuning in the natural logarithmic domain. Section

3.3 analyzes the real-time action potential detection and classification units, followed

by the design of a low-power current mode action potential unit. Section 3.4 analyzes

the matched filter with pre-whitening and its application to the phase-amplitude

coupled neural feature extraction.
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3.2 Natural Logarithmic Domain Neural Energy

Extraction

3.2.1 Introduction

A substantial amount of information regarding motor intent can be inferred from

the field potential recordings [187, 188]. The field potentials, either recorded with

electrodes penetrating the brain or on the brain surface, reflect the summed activity

of thousands to millions of neurons. Oscillations are particularly prominent in field

potential recordings and reflect synchronous, rhythmic changes in the activity across

the network. The recorded oscillations contain information correlated with a number

of different behavioral processes, i.e., motor planning [189]. While decoding the intent

from the field potentials for a neuroprosthetic application, it is typical to extract

energy from several discrete frequency bands [169].

A variety of distinct brain oscillations exist, with center frequencies spaced loga-

rithmically [190], as illustrated in Fig. 3.1. Commonly used frequency bands include:

delta band (1-4Hz), theta band (4-10Hz), beta band (10-30Hz), gamma band (30-

80Hz), and fast band (30-80Hz). Neural oscillations associated with a certain cog-

nitive state can be in a very narrow frequency band, especially in the low-frequency

range. For example, the first discovered and the best-known frequency band is the

alpha activity which is 7.5-12.5Hz. This places a big design challenge in the neural

energy extraction unit. If the frequency programming uses a linear step, a high-

frequency resolution will have to be realized. Similarly, if a Fast Fourier transform

(FFT) analysis is used, that requires a large number of FFT points and large memory

size for buffering the data. In order to address this problem, a natural logarithmic
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Figure 3.1: Brain oscillation bands are shown together with the traditional fre-
quency tuning bins in linear steps, and the proposed tuning bins in the natural
logarithmic domain. A total of 32 steps in a frequency range from 1Hz to 200Hz is
shown for illustration.

domain tuning is proposed in this work, which provides sufficient resolution for ex-

tracting the low-frequency brain oscillations, without increasing the number of tuning

steps. Fig. 3.1 compares the frequency bins for the conventional linear step filter and

the proposed natural logarithmic domain filter when they have the same number of

bins.

3.2.2 System and Circuits Implementation

The processing flow of the LFP energy extraction is shown in Fig. 3.2. A lowpass

filter with a frequency corner of 300Hz is first used to remove the high-frequency com-

ponents in the signal. Then, two 2nd-order stagger-tuned biquad filters are cascaded
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Figure 3.2: The processing flow of the LFP energy extraction.

to bandpass the neural signal with a programmable center frequency and quality fac-

tor [170]. The filtered signal is then squared in a Gilbert multiplier to calculate the

energy. Finally, the energy integral is produced by a leaky integrator with a tunable

time-constant [191].

A prototype system that consists of 16 neural feature extraction channels is

designed in this work. Each channel can be programmed independently. The feature

extraction module in each channel can also be combined as a filter bank to perform

spectrum analysis for one channel. Fig. 3.3 illustrates the configuration of the system.

Figure 3.3: The diagram of the 16-channel energy extraction module.
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3.2.2.1 Design of the GmC Filter

Given the low frequency nature of the neural signal, filters with very large time-

constant have to be integrated on-chip. There are several methods to implement

filters in CMOS circuits: i) The op-amp based filters can achieve a high linearity and

a good signal-to-noise ratio (SNR), but suffers from a high power consumption, large

passive components (non-linear if MOS resistors are used), and difficulties in tuning;

ii) The switched capacitor filter can achieve a high linearity and a high frequency

accuracy with a good tunability [169], but it has limitations and designs challenges in

the tunable range, the capacitor size, the non-idealities from the clocks, and requires

additional clock generation circuits; iii) The Gm-C filters can realize large time-

constant in an ultra-low power consumption and in a very compact layout. As a result,

these filters have been widely used in biomedical applications [170]. But Gm-C filters

also have limitations in terms of linearity and the frequency corner accuracy. iv) The

digital filters can achieve good filter characteristics, but requires a pre-digitization of

the signal, a memory for buffering the data, and a dedicated DSP core [113]. A high-

order digital filter requires accurate coefficients and a sufficient number of bits during

the computation to prevent overflow. However, with the development of advanced

CMOS technology, the digital filters may surpass the analog filters in both accuracy

and power consumption. In this work, a Gm-C based filter is designed with a tunable

transconductance in a range of two decades, with an extended linear range.

The circuit schematic of the first implemented Gm block is shown in Fig. 3.4. The

input transistors are biased in the sub-threshold region [192]. The transconductance

features a linear relation with the biasing current in the sub-threshold region [193],
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Figure 3.4: The circuit schematic of the transconductance (Gm) block with source
degeneration.

as expressed:

gm =
IDS
ζUT

(3.1)

where ζ is a parameter that depends on the process, and UT = kT/q. The transcon-

ductance of the Gm block can be directly tuned by the biasing current IDS. A local

feedback is used to reduce the distortion [121]. Instead of using resistors, dioded-

connected transistors M3 and M4 are connected to the sources of the input transistors

M1 and M2. The total resistance between the sources of the input transistors becomes

2/gm3. A reduction factor n is defined as:

n = 1 +
gm1

gm3

(3.2)

The third-order harmonic distortion HD3 is reduced by a factor of n2 [194]. In this

work, M1 and M3 are set to have the same dimension with the same biasing current

to maximize the common mode input range [195].

Thick oxide transistors are used in this circuit for a lower transconductance and

to reduce the leakage current. The current mirrors are biased in the strong inversion
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region for a better matching. But there is a limitation in the minimum current that

can be reliably copied in the circuit. To reduce the capacitor size in the Gm-C filter,

the transconductance needs to be further reduced. So, a modified version of the

Gm Block is implemented. The circuit schematic is shown in Fig. 3.5. The input

Figure 3.5: The circuit schematic of the transconductance (Gm) block with extend-
ed linear range. The biasing current is used to tune the transconductance.

transistors (M1 − 6) are biased in the sub-threshold region, and current division is

used at the input differential pair to reduce the transconductance. Besides the local

feedback as in Fig. 3.4, a bulk degeneration [196] is used to further enhance the linear

input range. In a testing version, capacitor attenuation [197] is used to reduce the

input signal swing and lower the overall transconductance.

3.2.2.2 Biasing Current Generation

In the first version, a linear 6-bit current-mode DAC is integrated for generating the

biasing current for the Gm block. The circuit schematic is shown in Fig. 3.6. Thick
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Figure 3.6: The circuit schematic of the 6-bit current-mode DAC for generating
the biasing current for the Gm block. Thick oxide transistors are used to reduce
the leakage current.

oxide transistors are used to reduce the leakage current. The DAC has two segments

with binary weighted transistors. Two gating transistors M1 and M2 are used to

further reduce the current leakage.

The second version of the biasing current generation module is designed for the

proposed natural logarithmic domain tuning. Fig. 3.7 shows the programmable

biasing current generation module. A two-step 6-bit resistor ladder based DAC is

used to generate the 64-step linear tuning voltage between Vcm and Vref . A custom

designed current generation module (M1 to M6) converts the linear voltage to a

natural exponential current. In the current generation module, all transistors M1

to M6 are biased in the sub-threshold region. When VDS is higher than three or

four times of the thermal voltage UT , the sub-threshold transistor is in the saturation

region [118]. The equation of the sub-threshold current can be simplified to:

ID = Io exp
VGS
ζUT

(3.3)
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Figure 3.7: The circuit schematic of the biasing current generation module. a
64-step natural exponentially spaced biasing current can be generated.

In the current generation circuit, consider the transistors M1 to M4. The equations

for the currents can be written as:

Iref = Ion exp
VGS1

ζUT
= Iop exp

VGS3

ζUT
(3.4)

Igm = Ion exp
VGS2

ζUT
= Iop exp

VGS4

ζUT
(3.5)

where Iref is generated by an on-chip bandgap reference, and is independent from the

temperature and the supply voltage. Eq. 3.4 and 3.5 lead to:

VGS1 − VGS3 = VGS2 − VGS4 = ζUT ln(
Iop
Ion

) (3.6)

Also, from the circuit:

VCM = VGS1 + VGS3 + VP (3.7)

VDAC = VGS2 + VGS4 + VP (3.8)
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Substitute Eq. 3.4 and 3.5 into Eq. 3.7 and 3.8 gives:

VGS1 =
1

2
(VCM − VP + ζUT ln(

Iop
Ion

)) (3.9)

VGS2 =
1

2
(VDAC − VP + ζUT ln(

Iop
Ion

)) (3.10)

The generated biasing current can be expressed as:

Igm = Iref exp
VDAC − VCM

2ζUT
(3.11)

Thus, the linear voltage from the DAC is converted to an exponentially increasing

biasing current. According to Eq. 3.1:

gm ∝ ID ∝ e(VDAC−VCM ) ∝ ecode (3.12)

where code is the digital input of the DAC. Large gate area transistors are used in

the current generation module to minimize the mismatch. The process variation can

be further calibrated by tuning the reference voltage Vref .

The M7 in Fig. 3.7 is a diode-connected transistor used to divide the generated

current reference. The ratio of Igm1 and Igm3 can be programmed to tune the quality

factor of the filter, which will be explained in the next section.

3.2.2.3 Design of the Biquad filter

A staggered tuned 4th-order band-pass filter is implemented by cascading two bi-

quad filters [198]. A biquad filter is a 2nd order recursive linear filter containing two

poles and two zeros [199]. Fig. 3.8 shows the circuit schematic of the biquad filter



115

implemented in this work. The biquad filter consists of four Gm blocks. The center

Figure 3.8: The circuit schematic of the designed biquad filter. The center frequency
and the quality factor of the filter can be tuned independently.

frequency and the quality factor of each biquad are independently tunable. Only two

capacitors with one terminal grounded are used in each biquad, resulting in a very

compact layout. The transfer function is given by:

H(s) =
s
gm1

C1

s2 + s
gm2

C1

+
gm3gm4

C1C2

(3.13)

The biasing currents for the Gm blocks are designed to be Igm1=Igm2, and

Igm3=Igm4, so that the transconductance of the Gm blocks are gm1=gm2, and gm3=gm4.

The capacitors are set to be C1=C2. Thus,

ωC =

√
gm1gm2

C1C2

=
gm1

C1

(3.14)
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If the C1 is fixed, the center frequency is a function of gm1. Also from Eq. 3.12 and

Eq. 3.14:

ωC ∝ gm ∝ ecode (3.15)

Thus the center frequency of the biquad can be exponentially tuned by the digital

code.

Also, the quality factor Q can be expressed as:

Q =

√
C1gm3gm4

C2g2
m2

=
gm3

gm1

(3.16)

So the quality factor can be tuned by changing the ratio of Igm1 and Igm3. As explained

in section 3.2.2.2, the M7 in Fig. 3.7 is a diode-connected transistor with the same

length as the current mirrors for copying Igm used in the Gm block. The width of

the M7 can be programmed to divide the generated current reference, so the ratio of

Igm1 and Igm3 can be programmed to tune the quality factor.

3.2.2.4 Multiplier and Integrator

A Gilbert multiplier is used to square the band-passed signal. The Gilbert multiplier,

or Gilbert cell, is commonly used analog multiplier circuit introduced by B. Gilbert in

1963 [200]. A tutorial of analog multipliers design can be found in [201]. The circuit

schematic of the Gilbert multiplier implemented in this work is shown in Fig. 3.9.

The output current of the multiplier is determined by [202]:

IO =
√

2KαKβ(VIN − VREF )2 (3.17)
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Figure 3.9: The circuit schematic of the Gilbert multiplier and the integrator.

where K is the transconductance parameter, Kα=K1=K2, and Kβ=K4=K5=K6. So

the gain can be tuned by the biasing current IB.

The integral of the output current of the multiplier is computed in the leaky

Gm-C integrator [170]. The circuit schematic is shown in Fig. 3.9. The moving

window length can be tuned by programming the time-constant of the integrator.

3.2.3 Measurement Results

The design has been fabricated in IBM 180nm CMOS technology. Bench testing

was conducted to verify the function and performance of the fabricated design. The

microphotography and layout of the LFP energy extraction channel are shown in Fig.

3.10. The occupied silicon area of the design is 850µm×115µm.

Bench testing was conducted to verify the function and performance of the fab-

ricated chip. The frequency response of the natural logarithmic tuning neural energy

extraction module was measured. The measurement was conducted point by point
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Figure 3.10: The microphotography and layout of the LFP energy extraction chan-
nel. The major building blocks are highlighted in the layout.

using a function generator 33521A and an oscilloscope MSO7034B from Agilent. The

reference voltage was calibrated to set the center frequency of the unit programming

step. Fig. 3.11 shows the measurements of every four steps out of the 64 possible

steps, with a frequency ranging from 1Hz to 200Hz. Notice that the measurement

Figure 3.11: The measured frequency response of the biquad filter tuning in the
proposed natural logarithmic steps. A total of 16 steps were measured.

and x-axis in the figure are both in the natural logarithmic domain.

Similarly, the tuning of the quality factor was measured. Fig. 3.12 shows the

measurement result with the center frequency of the filter configured at 10Hz. The
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Figure 3.12: The measured the frequency response of the biquad filter with different
quality factors. The center frequency is configured at 10Hz.

quality factor can be configured at 1, 2, 4 and 8.

The biquad filter was also tested with a synthetic sine wave generated from the

function generator. The sine wave has a constant amplitude, and the frequency was

swept from 0.1Hz to 1kHz logarithmically. The synthetic waveform and the output

of the biquad filter are shown in Fig. 3.13. The center frequency was configured at

18Hz. The frequency sweeping measurement verifies the response of the biquad filter

in a straight forward manner.

The Gilbert multiplier was tested with an amplitude modulated 10Hz sine wave

generated from the function generator. The measurement result is shown in Fig. 3.14.

The measured output of the Gilbert multiplier was plotted in comparison with the

simulation result after a gain calibration. The measurement matches the simulation

well.

Fig. 3.15 shows the output of the leaky integrator with an amplitude modulat-

ed 40Hz sine as the input. The measured output is compared with the theoretical
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Figure 3.13: The measured response of one biquad filter with a synthetic sine wave
with frequency sweeping from 0.1Hz to 1kHz.

Figure 3.14: The measured output of the Gilbert multiplier with an amplitude
modulated 10Hz signal. The measurement result is plotted in comparison with the
simulation (after a gain calibration).

computation of the square of the input signal. The measurement matches the com-

putation.
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Figure 3.15: The measured outputs of the multiplier and the LFP energy integrator
(phase shift have been corrected).

Fig. 3.16 shows the power spectrum of a 6-hour from a male rhesus macaque

(Macaca mulatta) with electrodes implanted chronically in the left hippocampus.

The recording presents the awake and asleep transition. The activities from different

Figure 3.16: The spectrum of a 6-hour continuous recording using the prototype
device. The animal was from awake (high-frequency oscillation more active) to
sleep (low-frequency oscillation more active).
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frequency bands are clearly visible in the figure.

Fig. 3.17 shows a 20-seconds segment of the LFP recording. The original record-

Figure 3.17: In-vivo recording in a Rhesus macaque using the designed chip. The
extracted energy in four brain oscillation bands (Theta, Beta, Gamma, and Fast)
compared with the theoretical computations (dashed lines).

ed signal is shown in the top line. The energy in four commonly used frequency bands

(solid lines) was extracted using the designed chip, including θ band (4-10Hz), β band

(10-30Hz), γ band (30-80Hz), and Fast band (80-200Hz). The measured output is

compared with the theoretical computation plotted in the dashed lines after a gain

normalization. A close matching between the waveforms can be observed.
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3.3 Action Potential Detection

3.3.1 Introduction

Monitoring the activity of a single neuron is the basis of understanding the brain

mechanisms [203]. When multiple neurons are close to one recording electrode, it is

important to extract the identities of the spikes corresponding to different neurons.

Given the distance and orientation relative to the recording electrode, different neuron

presents different action potential waveforms. The action potentials can be then

classified into different clusters. The process is known as spike sorting [204]. Even

nearby neurons have similar responses, it is important to distinguish them and observe

their individual characteristics [205].

In this section, the neuron model is briefly presented, followed by a review of

action potential detection and classification methods. The design of an energy efficient

continuous-time current-mode action potential detection unit is described. Circuit

implementations and experimental results are presented.

3.3.1.1 Integrate and Fire Model

A good understanding of the principle of an action potential is the basis for designing

a good detection circuit. The Hodgkin-Huxley Model (HHM) is a well-known model

which can approximate the generation of the action potential accurately [206]. The

goal of this section is to implement HHM Model for a better understanding of the

integrate and fire process of a single neuron. The HHM is constructed by membrane

current as the sum of a leakage current, a delayed-rectified K+ current, and a transient
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Na+ current:

im = ḡL(V − EL) + ḡKn
4(V − EK) + ¯gNam3h(V − ENa) (3.18)

where n, m and h are the gating variables. A channel acts as if it has gates. The

opening of the gate is called activation of the conductance, and gate closing is called

deactivation. The probability that the gate is open increases when the neuron is de-

polarized and decreases when it is hyperpolarized. In general, n, m, h are introduced

as variables of the voltage and time. They are within (0,1), and can be estimated by

the gating equations:

τn(V )
dn

dt
= n∞(V )− n (3.19)

τn(V ) =
1

(αnV + βnV )
(3.20)

n∞(V ) =
αn(V )

αn(V ) + βn(V )
(3.21)

where αn and βn can be found by:

αn =
0.01(V + 55)

(1− e−0.1(V+55))
(3.22)

βn = 0.125e−0.0125(V+65) (3.23)

where m and h can be calculated in the same formula shown above:

αm =
0.1(V + 40)

(1− e−0.1(V+40))
(3.24)

βm =
1

1 + e( − 0.1(V + 35))
(3.25)

αh = 0.07e−0.05(V+65) (3.26)
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Figure 3.18: Matlab simulation of the implemented HHM model.

βh =
1

(1 + e( − 0.1(V + 35)))
(3.27)

The HHM model was simulated in Matlab. Runge-Kutta method was used to

find the arithmetic solution of the differential equations. The method requires ini-

tial conditions, which was taken from the reference [206]. The membrane potential

simulation using the HHM model is shown in Fig. 3.18.

3.3.1.2 Review of Action Potential Detection Methods

The real-time spike detection and classification methods have been widely reported in

the literature since the pioneering work in the 1920s [182]. Comprehensive reviews of

spike detection algorithms can be found in papers [182, 203, 205, 207]. In summary,

an effective method relies on a good signal-to-noise ratio and a robust detection and
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classification algorithm. The general steps for action potential sorting are:

i) Filtering: filter the raw data between 300Hz to 6kHz for the following pro-

cessing;

ii) Detection: detect the spike, e.g. by applying an amplitude threshold on the

filtered signal. Artifacts or noise might be detected as spikes in this step;

iii) Extraction: extract the relevant features of the spike waveform;

iv) Classification: apply classifier on the extracted features for spike sorting.

Both action potential detection and classification have been implemented on-chip

[144, 171, 172]. Action potential detection can be easily performed in real-time. The

detection results can be used to reduce data transmission rate [13] or trigger pre-

defined stimulation [6, 9]. Commonly used action potential detection methods are

summarized here:

i) Absolute threshold detection, which uses a predefined threshold for thresh-

old detection [207]. The threshold can be manually set or using several times (3x -

5x) of the root mean square value of the signal;

ii) Non-linear energy operator (NEO), which extracts the energy from the

action potential signal to improve the detection integrity [143]. A modification of

the NEO, called the multiresolution Teager energy operator (METO) combines the

results of NEO in different resolution scales, also shows good performance;

iii) Wavelet analysis, which projects the signal to certain wavelets domain

[172]. The wavelet transform can be seen as a bank of matched filters.

The performance of different spike detection algorithms has been compared in

[171, 207]. The conclusion is that for systems with limited computational resources,

applying an absolute threshold on the signal is just as effective for detecting spikes

as applying more elaborate energy-based nonlinear operators.
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Commonly used features of action potentials include: i) the maximum spike am-

plitude, ii) the minimum spike amplitude, iii) the spike width, and so on. Intuitively,

more features of the action potentials give better performance in distinguishing the

clusters. However, manually choosing the features sometimes yields a poor separa-

tion. One method for choosing the features automatically is principal component

analysis (PCA) [182]. PCA can find an ordered set of orthogonal basis vectors that

capture the directions in the data of the largest variation.

There are many methods for clustering [182], including K-means clustering,

Bayesian clustering, support vector machine (SVM), and so on. For example, K-

means clustering, or nearest-neighbor clustering is a hardware friendly classifier. K-

means clustering defines the cluster location as the mean of the data within that

cluster. A spike is classified to the cluster with minimum the Euclidean distance. The

performance of different classifiers has been compared in [182, 203]. To be noticed

that there are other issues affecting the spike sorting algorithms, including electrode

drifting, spike overlapping, neuron bursting and so on.

3.3.2 Circuit Implementation

The action potential detection can be performed in the analog domain [143, 208] or

the digital domain [209]. The duration of an action potential is less than 2.5ms [205].

For the accuracy of the classification, the sampling rate should be at least 10kSps.

Analog spike detection can achieve an ultra-low power consumption, while digital

domain processing can achieve superior performance and classification accuracy.

In this work, a current-mode continuous time action potential discrimination unit

has been designed. The current-mode circuits present the signal as a current instead
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of a voltage, thus the dynamic range of the signal is not limited by the supply voltage.

This can be very useful for implementing a large dynamic range signal processing in

advanced CMOS technology where a low supply voltage is often used. The block

diagram of the current-mode action potential detection module is shown in Fig. 3.19.

The overall system consists of a low-noise amplifier, a bandpass filter, and the action

Figure 3.19: The block diagram of the action potential detection module.

potential detection unit. The bandpass filter is usually configured with a passband

from 300Hz to 6kHz in a 2nd order or higher. Multiple spike detection units can be

connected to discriminate more than one neuron per channel. In a multiple channel

recording system, this can be achieved by designing a multiplexing module among

channels.

The working principle and the block diagram of the action potential detection

unit are shown in Fig. 3.20. Two amplitude thresholds and time windows are used to

discriminate the APs from different neurons [67]. After a bandpass filter, the neural

signal is first compared with a depolarization threshold TH1. If the signal exceeds

TH1, the comparator is then disabled for a period of Φ1. Then the signal is compared

with a second repolarization threshold TH2 for a period of Φ2. If the signal crosses
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Figure 3.20: Illustration of the window discriminator for action potential detection
principle.

TH2 during Φ2, an action potential is detected. The TH1 and Φ1, TH2 and Φ2

form two discrimination windows, which can be programmed.

The circuit block diagram of the implemented action detection unit is shown in

Fig. 3.21. The designed action potential detection unit consists of a transconductance

Figure 3.21: The block diagram of the programmable current mode spike detection
unit with integrated programmable amplitude-window discriminator. The filtering
state is not shown in this diagram.

amplifier, a current-mode DAC, a current-mode comparator, and a digital timing and

logic module. The transconductance is set by the biasing voltage VTune, while M1 is

in the deep triode region. VTune can also compensate the threshold variation of M1.
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The threshold currents are generated by a 6-bit current DAC. The circuit schematic of

the current-mode DAC is shown in Fig. 3.22. The DAC uses binary weighted current

mirrors. The current steering can be disabled by shorting IOUTP to ground. Disabling

the current steering lowers the settling speed, which may limit the performance of

the DAC. No additional calibration is implemented in this work. Notice that 5-bit

resolution is usually more than sufficient for the window discrimination algorithm. A

finer tuning of the threshold values won’t give a better discrimination accuracy.

Figure 3.22: The circuit schematic of the current-mode DAC.

The comparison with a threshold current is performed in a current-mode com-

parator. The circuit schematic of the current-mode comparator is shown in Fig. 3.23.

An ideal current comparator has a low input impedance, and the input node voltage

should be fixed [210]. However, a capacitive input stage can detect a low current with

a much faster response and with a low power consumption [211]. But the input node

voltage of a capacitive input stage cannot be well controlled. As a result, a com-

bination of both capacitive input stage and resistive feedback is implemented. The

transistors N3 and P3 work as non-linear feedback resistors to set the input voltage.

When the input signal is small, the feedback loop is disabled and the comparator
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Figure 3.23: The circuit schematic of the current-mode comparator.

appears capacitive characteristic, which ensures a high resolution and speed. It is

important to minimize the input capacitance, especially when the designed current

is low. A differential pair is used as the second stage, followed by a current starved

output buffer.

The digital timing and logic module are designed with custom two wire interface.

There are four registers for the two threshold amplitudes and time windows. The

output of the digital module is a flag for the detection of an action potential. The flag

signal is synchronized with the clock externally. Like many real-time spike detection

algorithms, one drawback of this design is the false negative detection of an action

potential signal occurring right after an artifact. In this case, the spike detection

won’t be able to recover in time. Data buffer can be used to address this problem by

re-alignment of the input data. However, an analog buffer is difficult to implement.

An alternative solution will be to use detection units in parallel, similar to Fig. 3.19.

A digital logic will need to be designed to properly address the conflict by allowing

one unit to process one action potential once a time.
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It should be noticed that with the current-mode comparator and DAC, if a SAR

logic is added, the action potential detector can be extended to a current-mode ADC.

In future work, it might be beneficial to implement the action potential detection in

the analog domain and follow it by digitization for further processing in the digital

domain.

3.3.3 Experimental Results

The designed action potential detection unit has been fabricated in IBM 180nm C-

MOS technology. The design has a dimension of 125µm×25µm. The micropho-

tograph of the fabricated chip is shown in Fig. 3.24, with major building blocks

highlighted.

Figure 3.24: The micrograph and layout of the designed analog action potential
detection module.

A couple of bench tests were conducted to verify the functions and evaluate the

performance of the unit. The experimental results are presented as follows. The DAC

was measured with a worst INL and DNL less than 1LSB. The ENOB is 5.6-bit. The

supply voltage is from 1 to 1.8V. The average power consumption of the module is
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4µW with a supply voltage of 1V. The clock frequency for configuration and output

synchronization is set to be 100kHz, which gives a maximum latency of 10µs.

Synthetic neuronal signals with different SNRs were generated using an arbitrary

function generator 33521A from Agilent to test the action potential detector. A 2-

min recording segment was used for testing. The first 10-seconds signal is shown

in Fig. 3.25 for illustration. Fig. 3.25 (a) shows the original signal recorded by

the PennBMBI recorder from the whisker motor cortex in an anesthetized rat. The

sampling rate was 21kSps. The recorded data has an SNR of 25.7dB. The real action

potentials are marked by triangle markers. Fig. 3.25 (b) and (c) show the recorded

signal with additional white noise and artifacts resulting in a SNR of 20dB and 15dB,

respectively. The artifacts are designed to mimic the motion or chewing effects which

commonly occurred during the neural recording in a freely behaving animal. There

are N real action potentials in the recording, where N=117 in this case. The true

positive TP is defined as the correct recognitions. The false negative FN is defined

as the wrong recognitions. The false positive FP is the missed action potentials.

The evaluated performance of the designed module is listed in Table 3.1. The ratio

Table 3.1: The Measured AP Detection Accuracy of Signal With Different SNR

SNR Algorithm TP FN FP

25dB
Win Discrim 95.8% 4.2% 0%

Threshold 97.4% 2.6% 0%

20dB
Win Discrim 93.2% 6.8% 0%

Threshold 77.6% 2.0% 20.4%

15dB
Win Discrim 83.8% 6.2% 10.0%

Threshold 50.5% 8.0% 41.5%

was calculated over the total number of TP +FN +FP . The performance of the

two-window discrimination is also compared the detection using only a threshold.
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Figure 3.25: The action potential signal used for testing the designed detection
module. The real action potentials are marked by triangle markers. (a) The original
signal with an SNR of 25.7dB. (b) Testing signal adding white noise and artifacts
with an SNR of 20dB. (c) Testing signal adding white noise and artifacts with an
SNR of 15dB.

The experimental results suggest that with a good SNR, both a simple threshold

and the window discrimination give excellent detection results. The simple threshold

gives slightly better result than the window discrimination, mainly because several
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action potentials fail to pass the second window. The performance of using the

simple threshold drops significantly after adding artifacts. With the increased noise,

it is hard to set the threshold voltage, and the window discrimination clearly rejects

more false detections than the simple threshold. But the window discrimination also

makes more mistakes in the higher noise environment. Some artifacts are mistaken

as the real action potentials when the noises pass the second window.

A cluster analysis was performed in the microcontroller. The algorithm was

programmed in the C language. During this experiment, two neurons were captured

in the same recording electrode. The normalized maximum and minimum amplitudes

were calculated and used as two features for the clustering analysis. The K-means

clustering was used to separate the two neurons. Fig. 3.26 (a) illustrates the analysis

result in the feature domain, which clearly shows the two clusters well separated. The

action potentials are plotted with color coding based on the classification results, as

shown Fig. 3.26 (b).

In this section, the design of a real-time current-mode action potential detection

and discrimination unit is presented. The design features low power, robust detection,

and small silicon area, which is suitable for an integration into a high channel count

neural recording front-end or a BMI device. A classification was implemented in the

microcontroller. In the future, an on-chip classification can be integrated to further

support the closed-loop BMI applications.
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(a)

(b)

Figure 3.26: A cluster analysis of the action potentials from two neurons. (a)
Normalized maximum and minimum amplitudes are calculated and used as two
features for the analysis. (b) The action potentials are labeled with different colors
according to the classification results.
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3.4 Matched Filter for Neural Feature Extraction

3.4.1 Introduction

A matched filter is the optimal linear filter for maximizing the signal-to-noise ratio

in the presence of additive stochastic noise [212]. The matched filter is obtained by

correlating a known template with the unknown input signal to detect the presence

of the desired signal [213]. Matched filters are commonly used in wireless commu-

nications [214], radar and sonar [215], gravitational-wave astronomy [216], medical

applications [217], and so on [212].

A number of studies propose to implement matched filters for action potential

detection [218–220]. In addition, the matched filter can be applied to detect phase-

amplitude coupled low-frequency neural rhythm [221]. For example, the cortical

µ rhythm is an event-related desynchronization commonly used for BMI control.

However, the µ rhythm’s typical frequency band is 8-12 Hz, which is overlapping

with the virtual α rhythm (section 3.2). Thus, an energy based feature extraction

method often has difficulties in discriminating them. In this case, matched filters

have the advantage in accurately modeling the phase-coupled rhythm.

Moreover, the performance of the matched filters can be optimized by pre-

whitening the signal. This process can be achieved by implementing the pre-whitening

filter proposed in Chapter 2. By combining the phase correction filter and matched

filter together, a very energy efficient hardware implementation can be achieved. By

programming the coefficients of the filter, it can be used in a wide range of applica-

tions, and is very suitable for an integration on a neural interface.
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This section presents the analysis, design and testing of a matched filter with pre-

whitening for the neural signal extraction. In the end of the section, a compressed

sparse matched filter is explored to reduce the requested computation and hardware

cost.

3.4.2 Matched Filter and Pre-whitening for Optimum Cor-

relation Detection

The process of the matched filter is illustrated in Fig. 3.27. The input x(t) consists

Figure 3.27: The block diagram of the matched filter.

of the signal s(t) corrupted by a white noise w(t), as shown by:

x(t) = s(t) + w(t) (3.28)

where w(t) has a zero mean and power spectral density of No/2. If the filter is linear,

the output is:

y(t) = so(t) + wo(t) (3.29)

The signal to noise ratio (SNR) is defined as:

SNR =
|so(T )|2

w2
o(t)

(3.30)
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Assume the noise spectral density is N0/2, and the transfer function is H(f), Eq.

3.30 can be written as:

SNR =

|
∫ ∞
−∞

H(f)S(f)ej2πftddf |2

N0

2

∫ ∞
∞
|H(f)|2df

(3.31)

To find the maximum SNR, use the conclusion of Schwarz inequality [222]:

|
∫ ∞
−∞

f1(x)f2(x)dx|2 ≤
∫ ∞
−∞
|f1(x)|2df

∫ ∞
−∞
|f2(x)|2dx (3.32)

only if

f1(x) = kf ∗2 (x) (3.33)

Now set

f1(x) = H(f) and f2(x) = S(f)ej2πftd (3.34)

So the Eq. 3.32 can be rewritten as:

|
∫ ∞
−∞

H(f)S(f)ej2πftddf |2 ≤
∫ ∞
−∞
|H(f)|2df

∫ ∞
−∞
|S(f)|2df (3.35)

And the Eq. 3.31 can be rewritten as:

SNR =

|
∫ ∞
−∞

H(f)S(f)ej2πftddf |2

N0

2

∫ ∞
∞
|H(f)|2df

≤

∫ ∞
−∞
|H(f)|2df

∫ ∞
−∞
|S(f)|2df

N0

2

∫ ∞
−∞
|H(f)|2df

=
2

N0

∫ ∞
−∞
|S(f)|2df

(3.36)
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Thus the maximum SNR can be found from Eq. 3.36, when:

H(f) = kS∗(f) (3.37)

In the time domain,

h(t) = ks∗(td − t) (3.38)

where k is an arbitrary constant. The matched filter h(t) is just a time-reversed

version of the signal with a gain factor.

The above analysis assumes that the noise has a white spectral density. However,

the neural signal and electronics noise both have a frequency-dependent spectral

density, as analyzed in Chapter 2. If the noise and background signal can be pre-

whitened, the correlation detection can still be optimized by the matched filtering

[223]. The process is shown in Fig. 3.28. The generation of the pre-whitening filter

Figure 3.28: The block diagram of the matched filter in combination with the
pre-whitening filter for the correlation optimization.

requires a prior knowledge of the noise spectrum. However, this is usually not feasible

for a real-time implementation. The pre-whitening filter proposed in Chapter 2 is a

low-cost hardware solution to improve the performance of the matched filter. The

following analysis and test results verify the hypothesis.
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Figure 3.29: (a) A 5-sec recording from an anesthetized rat. (b) Power spectrum
density of the recording. (c) Phase-amplitude coupling analysis of the signal.

3.4.3 Methodologies

A. Dataset

The neural dataset used in this study is a 5-min recording from an anesthetized

rat. The sampling rate was 24.41 kHz and was down-sampled to 2441 Hz before the

processing. Fig. 3.29 (a) shows a 5-sec recording from five different channels. Lots of

1-Hz oscillations (typically called an up-down state) can be observed in the recording.
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An energy peak at 1Hz can also be seen from the power spectrum, as shown in Fig.

3.29 (b). The oscillation has a strong amplitude-phase coupling, as shown in Fig.

3.29 (c) [224].

A cycle-triggered average analysis was applied to find out these 1-Hz oscillations:

1) a total of 310 segments were detected in the recording, which were used as the

data bank in the following study; 2) these segments were all aligned on the down-

state peaks; 3) the average of these segments was used as the target neural feature

waveform, and is referred as the template in the following study. Fig. 3.30 (a) shows

the neural feature waveform (template). The template is assumed to be noiseless.

Figure 3.30: (a) The neural feature waveform (template). The waveform has more
time in the “up-state” than the “down-state”, so it is not an ideal sinusoid wave.
(b) Frequency analysis of the neural feature.

Clearly, the waveform has more time in the “up-state” than the “down-state”, so it is

not an ideal sinusoid wave. Fig. 3.30 (b) shows the frequency analysis of the neural

feature. The dominant frequency components are from 0.6 Hz to 1.5Hz.

B. Bandpass Filter
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Bandpass filters are used for comparing the detection performance with the pro-

posed matched filter. Several bandpass filters have been implemented, including But-

terworth filters, Chebyshev filters, Biquad filters, and different types of FIR filters.

Fig. 3.31 shows a comparison of the frequency responses of these filters. The cost for

Figure 3.31: A comparison of the frequency response of different filters for extract-
ing the slow oscillation.

a FIR filter to achieve such a narrow frequency band is significantly higher than the

IIR filters, especially when the sampling rate is high. For simplification, a 2nd order

Butterworth filter is used as the bandpass filter in the following study for the com-

parison purpose. The cut-off frequencies were chosen to be 0.6 Hz and 1.5Hz. Notice

that the Butterworth filter can be implemented in the hardware in either analog or

digital circuits.

C. Matched Filter with Pre-whitening
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As derived in Eq. 3.38, the matched filtering was performed by the convolution

of the signal and the time reversed version of the template:

y(t) = x(t) ∗ hm(t) (3.39)

where x(t) is the input signal, hm(t) is the matched filter, and y(t) is the output signal.

The pre-whitening filtering was implemented by a 1st order highpass filter, with a

corner frequency of 100Hz. This mimics of the actual hardware circuit implementation

of the pre-whitening filter proposed in Chapter 2. The template was also pre-whitened

by the same filter to compensate the phase distortion.

y(t) = (x(t) ∗ hw(t)) ∗ (hm(t) ∗ hw(t)) (3.40)

where hw(t) is the pre-whitening filter. It should be noticed that the hm(t) ∗ hw(t)

can be pre-computed to save the cost in the hardware implementation.

After the filtering, the output signal was squared to find the energy. A moving

average filter with a window size of 1-sec is the then applied to find out the envelope,

and a threshold is used to detect the event.

3.4.4 Experimental Results

3.4.4.1 Detection of Synthesized Signal

This section describes the detection results of the synthesized signal with different

SNR. Take the 2-sec template signal (noiseless) s(t) and add random generated pink

noise n(t) to get the test signal x(t) = s(t) + n(t). Since the signal power is known,
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so the SNR can be controlled by changing the energy of the pink noise.

SNR =
PSignal
PNoise

(3.41)

Fig. 3.32 shows an example of 16 synthesized testing signals with SNR ranging from

0.2 to 6. Then each of the 2-sec synthesized signals was superimposed on a 100-sec

Figure 3.32: Examples of the synthesized test signals with SNR ranging from 0.2
to 6. The last one is the template.

pink noise signal. Different filters were applied to the 100-sec data for the neural

feature detection. The detection accuracy is defined as:

Accuracy =
TP

TP + FN + FP
(3.42)

where the truth positive TP is the correct detection, the truth negative FN is the

wrong detection, the false positive FP is missed detection.
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Figure 3.33: Detection accuracy of different filters for signals with different SNR
(0.2 to 7 in a step of 0.2). The detection accuracy for each SNR step was an average
of 100 trials with random pink noise. A total of 3,500 trials were tested for each
filter in this experiment.

The test signals with SNR ranging from 0.2 to 7 with a step of 0.2 were generated.

100 trials with random pink noise were generated for each SNR step. So a total of

3,500 trials of 100-sec testing signals were used for testing the performance of each

filter. Fig. 3.33 shows the testing results. The result shows that the matched filter

has a better accuracy than the bandpass filter for detecting this neural feature. And

the pre-whitening filter further improves the detection accuracy of the matched filter.

The experimental results verify the hypothesis.

3.4.4.2 Detection of Recorded Neural Signal

This section evaluates the detection accuracy of the real neural signals from the data

bank. 100 real neural signal segments were randomly selected from the data bank.
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Fig. 3.34 shows 15 examples of the segments, in comparison with the template.

100 segments of 100-sec pink noise were generated. The 100 neural signal segments

Figure 3.34: Examples of the randomly selected real neural signal segment from
the data bank. The last one is the template.

were superimposed on these pink noise segments, so a total of 10,000 trials were

generated. The SNR for each signal segment was calculated. The detection results

using the bandpass filter, the matched filter, and the matched filter with pre-whitening

are plotted in Fig. 3.35. The detection result shows that the pre-whitening filter

improves the matched filters performance, especially in the low SNR cases. The

average detection accuracy is lower than the first experiment, which may due to the

existence of more than one oscillation in the 2-sec data segment (only 1 true feature

is assumed in each trial). This experiment verifies the hypothesis that matched filter

with pre-whitening can achieve superior performance in detecting phase-amplitude

coupled neural rhythm.
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Figure 3.35: Detection accuracy of different filters for 100 signal segments randomly
selected from the data bank. Each of the signal segments is inserted into 100
random pink noise trials. A total of 10,000 trials were tested for each filter in this
experiment. The detection result shows that the pre-whitening filter improves the
matched filter’s performance in low SNR.

3.4.4.3 Application of Compressed Sampling

This section shows the detection results by applying compressed sampling techniques

to the matched filter. The experiment setup is the same as in the previous sections.

The template used for matched filter is randomly compressively sampled, and the

incoming data is sampled in the same way.

y(t) = ((x(t) ∗ hw(t)) ∗ V ) ∗ ((hm(t) ∗ hw(t)) ∗ V ) (3.43)

where V is a sparse vector contains only 0 and 1. The number of ones over the total

length of the vector is the compression ratio. (hm(t)∗hw(t))∗V can be pre-computed
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to save the computational cost.

The experimental results are shown in Fig. 3.36. The detection accuracies of

Figure 3.36: Comparison of the detection accuracy of different filters. The ex-
perimental results show that the matched filter with pre-whitening has the best
performance. The matched filter with pre-whitening and a compression ratio of
64x still has a better performance than the matched filter without pre-whitening.

different filters with SNR ranging from 0.2 to 3 in a step of 0.4 are compared. The

results show that the matched filter with pre-whitening has the best performance,

while the conventional bandpass filter is the worst. Applying compressed sampling

of the matched filter doesn’t compromise the detection accuracy up to a compression

ratio of 16x. However, even with a compression ratio of 64x, the matched filter

with pre-whitening still has a better detection accuracy than the matched filters

without pre-whitening. Finally, the 64x compressive sampled matched filter with

pre-whitening achieves a detection accuracy over 90% given an SNR of 3dB, and over

98% given an SNR of 6dB. It should be noticed that the pre-whitening performed in



150

these experiments is simply highpass filtering as proposed in Chapter 2, thus can be

easily implemented in hardware.

In summary, this section has described the design and testing of the matched filter

for neural feature extraction. The pre-whitening filter is used to further improves the

detection accuracy. In addition, compressed sampling has been used to reduce the

computational cost. The experiment was based on a dataset of recordings in an

anesthetized rat. A 1-Hz up-down state oscillation was used as the target neural

feature. The experimental results suggest that: 1) The performance of the matched

filter is better than the conventional bandpass filter in detecting this feature; 2)

The pre-whitening processing further improves the performance of the matched filter,

especially in low SNR cases; 3) Compressively sensing up to 64x can be applied to the

matched filter with pre-whitening, achieving a similar performance to the matched

filter without pre-whitening, which is still much better than conventional bandpass

filter. This proves that the matched filters with pre-whitening are promising for

closed-loop BMI integration for extracting a wide-range of amplitude-phase coupled

neural features.



Chapter 4

Neural Stimulator Design

4.1 Introduction

Electrical stimulation of excitable neurons is one of the most prevalent functions per-

formed in biomedical implantable devices [225]. The first electrical brain stimulation

was pioneered by researchers Luigi Rolando and Pierre Flourens in the early 19th-

century [226], and the development of the medical stimulator began with the early

pacemaker design in the 1930s [227]. The development of electronics, especially in-

tegrated circuit technologies, enables the design of accurate, reliable, and miniature

stimulators for neuroscience research and clinical treatment. Nowadays, electrical

stimulators have been widely used for deep brain stimulation (DBS), functional elec-

trical stimulation (FES), spinal cord stimulation (SCS), visual and auditory neural

stimulation, brain-machine interface (BMI), neuroprosthetics and many other clinical

therapeutic treatments [225, 228].

151
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The clinical adoption of this technology requires the neural stimulator to be de-

signed with a high level of safety, reliability, programmability, and minimum power

consumption. In addition, a sufficient number of channels, stimulation bandwidth,

flexible configuration, implantable device dimension, and wireless communication ca-

pability are also essential features. Lots of circuit techniques have been developed to

address the challenges of neural stimulator development.

This chapter presents the analysis and design of high efficiency electrical neural

stimulators. The design of a general-purpose neural stimulator is reviewed and sum-

marized, and a novel stimulation strategy is proposed to address a practical problem

based on the understanding of the electrode-electrolyte interface. The chapter is orga-

nized as follows. Section 4.1 introduces the background of neural stimulation and the

physicochemical properties of the electrode-electrolyte interface. Section 4.2 gives an

overview of the stimulator design. The key stimulator design requirements are sum-

marized, and previous state-of-the-art techniques are reviewed. Section 4.3 presents

a general-purpose programmable neural stimulator design. Section 4.4 describes the

novel net-zero charge neural stimulator design. The circuit implementation and the

experimental results are presented. Finally, section 4.5 concludes this chapter.

4.1.1 Background of Neurostimulation

Neurostimulation is a method for modulating the nervous system’s activity using

non-invasive or invasive means [229]. The controlled electrical, magnetic [230, 231],

chemical [232, 233], or optical stimulation (optogenetic modulation [234, 235]) of the

central or peripheral nervous systems is usually referred to as neuromodulation in the

medical literature [236]. The main focus of this work is the electrical stimulation.
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The mechanism of electrical neurostimulation is a consequence of the depolar-

ization and hyper-polarization of excitable cell membranes from the applied electrical

currents. However, other mechanisms including thermal and neurohumoral effects

may also involve with the process. The neuron membrane acts as a capacitor by

separating the charges lying along its interior and exterior surfaces. The membrane

conductance depends on the densities and types of the ion channels. The channels

are highly selective, allowing only a single type of ion to pass. The membrane al-

so contains selective pumps that expend energy to maintain the differences in the

concentration of ions inside and outside the cell. A neuron will typically fire an ac-

tion potential when its membrane potential reaches a threshold voltage. A simplified

integrate-and-fire model can mimic this mechanism. The entire membrane conduc-

tance is modeled as a single term:

im = gL(V − EL) (4.1)

where gL is the transconductance, V is the membrane potential, EL is the equilibrium

potential. The membrane potential is determined by:

cm
dV

dt
= −(V − EL) +

Ie
A

(4.2)

where cm is the membrane capacitance, Ie is the injected current, and A is the surface

area. Eq. 4.2 can be rewritten using the membrane time constant τm by:

τm
dV

dt
= EL − V +RmIe (4.3)

After firing the action potential, the membrane potential is reset to EL.
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To better understand the process, this model is simulated in Matlab with a

dynamically injected current. In this simulation, assume τm=10ms, Rm=107Ω, the

membrane potential threshold for firing the action potential is -50mV, and the time

resolution is 10µs. The simulation result is shown in Fig. 4.1. The plot illustrates

the relation between a dynamic stimulation current and the evoked action potentials.

The model can also be modified for discrete simulation current pulses, and will be

revisited in the study of the closed-loop control of neuromodulation in Chapter 5.

Figure 4.1: Matlab simulation of the membrane potential with dynamic simulation
current based on the integrate-and-fire model.
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4.1.2 Electrode and Electrolyte Interface

The essential process during an electrical stimulation is the charge transfer and re-

distribution across the electrode and electrolyte interface. It should be noticed that

in the metal electrode and the electrical circuits, the charges are carried by the elec-

trons; while in the physiological medium, the charges are carried by the ions, mainly

including sodium, potassium and chloride. Fig. 4.2 (modified from the reference [20])

(a) illustrates the two primary mechanisms:

Figure 4.2: Illustration of the electrode and electrolyte interface, modified from
[20]. (a) The physical representation, and (b) a simplified electrical circuit model.

• Faradaic charge transfer, or non-polarizable mechanism, where electrons

transferred between the electrode and electrolyte interface causes reduction and

oxidation reactions. The Faradaic reaction may be reversible or irreversible.

• Non-Faradaic charge redistribution, or polarizable mechanism, where a

double layer capacitor Cdl is formed on the surface of the electrode, and the

stimulation process involves charging and discharging the Cdl without direct

electrons transfer [20, 237].
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The accurate modeling of the electrode impedance, however, is a rather complicated

task [238]. A simplified linear model, modified from [20], is adopted in the analysis of

this work. The model has been widely used in neural interface research, and proves to

be sufficient in estimating of the properties of the electrodes used for neural recording

and stimulation [92, 239, 240].

To verify the model, the impedance of two types of low-cost tungsten electrodes

commonly used in this research were measured. Ten electrodes of each type were

measured in 0.9g/100mil Sodium Chloride. The measurement results are shown in

Fig. 4.3. The linear model is used to fit the measurement results. The electrode

Figure 4.3: The measured impedance of two types of custom made tungsten elec-
trodes used in this research. (a) and (b) shows the electrode with a diameter of
75µm and 50µm, respectively. Each figure shows an overlay of the measurements
of 10 electrodes, and a fitting curve in red. The parameters of the fitting models
are labeled in the figures.

with a diameter of 75µm has an average Cdl of 55nF, RF of 7MΩ, and a spreading

resistance of 12kΩ. The electrode with a diameter of 50µm has an average Cdl of
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18nF, RF of 19MΩ, and a spreading resistance of 20kΩ. The electrode with the

smaller contact area gives a higher impedance in general. This measurement result

gives a good insight of the electrode characteristics, and is used in several of the

following studies.
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4.2 Overview of Electrical Stimulator Design

Lots of electrical simulation techniques have been developed to produce the charges

needed to recruit a neural response. An ideal stimulator triggers the desired neural

response with minimum injected charges, and leaves no residue charge. However, the

ideal stimulation is not always achievable. When it comes to the electronics design,

the safety, the power efficiency, and the circuit performance all need to be taken into

consideration. The design trade-off becomes more difficult for an implantable device

which requires high channel count, minimum chip area, and low power density. Fig.

4.4 highlights the trade-offs in the neural stimulator design.

Figure 4.4: The design considerations and trade-offs of an electrical neural stimu-
lator.

Primarily, a stimulator design should take the safety as the top priority. A safe

long-term stimulation requires the stimulator to give a charge balanced stimulation

without dc current injection. The prior study shows a current leakage of 100nA will

cause a permanent damage to the tissue [118]. Secondly, the performance require-

ments of the stimulator mainly include the number of channel count, the occupied



159

silicon area, the programmability of the stimulation parameters, the stimulation cur-

rent driving ability, and so on. The third dimension is the efficiency of the stimulator.

The overall efficiency should consider both the power efficiency of the stimulator for

generating the stimuli, and the efficiency of the stimuli for triggering the desired neu-

ral response. However, the latter is much harder to be quantized. Among all methods

for generating the stimuli, voltage, current and charge regulation all have pros and

cons, and different stimulation waveforms will also lead to different efficiencies. A very

high power efficiency neural stimulator design may not give the best charge-balance

performance, a sophisticated charge cancellation technique may not be suitable for

a high channel-count integration, and a high channel-count design may not allow

all parameters to be programmable. An aggressive optimization on one dimension

might cause drawbacks in the other two dimensions, and eventually, makes the overall

system design non-practical. There is no best universal stimulator design, but good

designs for certain applications.

4.2.1 Methods of Stimuli Generation

In general, the neural stimuli is generated from the electronics by regulating the

voltage, the current, or the total amount of charges. Essentially, it is the charges

that disturb the membrane equilibrium and evoke the neural response [20]. How-

ever, different generating methods give different levels of control of the charges. Of

course, a high controllability usually comes with costs in circuit complexity and power

consumption. The pros and cons of each method are summarized as below.

A. Voltage-Regulated Stimulation
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In the voltage-regulated stimulation, a certain stimulus voltage is applied between

two electrodes (or between one electrode and the common tissue ground). Current

passes through the electrodes depending on the tissue and electrode impedance. Since

the circuitry has no control over the total amount of injected charges, it is difficult

to achieve a charge-balanced stimulation. In the clinical use, the tissue impedance

is usually well documented across patients, and the physicians will assign a proper

stimulating voltage to achieve the desired neurophysiologic response.

A voltage controlled stimulator usually has a high overall efficiency and simple

circuitry. However, it is poor in the controllability of charge injection and thus lacking

of safety. It has been used in high-density applications like retinal implants, and power

hungry clinical use including pacemaker and deep brain stimulator. The circuitry

implementation of the voltage-regulated stimulation, and techniques for improving

its safety has been reported in literature [52, 241, 242].

B. Current-Regulated Stimulation

In current-regulated stimulation, a certain stimulus current is passed between two

electrodes (or between one electrode and the common tissue ground). The compliance

voltage between the two electrodes depends on the tissue and the electrode impedance,

and is limited by the supply voltage of the system and the circuitry implementation.

The total amount of injected charges can be controlled by the stimulus current and the

stimulating time, and charge balanced stimulation can be well achieved. Monophasic

current stimulation [56] and biphasic current stimulation [9, 243, 244] have been

reported in literature.
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The current-regulated stimulation is the most widely used topology in electrical

stimulator designs, given its high controllability of charge injection and the high safety.

However, current-regulated stimulator has relatively poor efficiency. The circuitry

implementation of the current-regulated stimulator, and techniques for improving its

efficiency has been reported in literature [9].

C. Charges-Regulated Stimulation

In a charge-regulated stimulation, a capacitor tank is connected to one electrode

and discharged to a reference electrode. The discharging current is used to excite

the tissue. The circuitry implementation of charges-regulated stimulator has been

reported in literature [245, 246].

The charge-regulated stimulation potentially can achieve both a high power-

efficiency and a good controllability of the total amount of injected charges. However,

the discharge time constant is still not well controlled, and the implementation of

storage capacitors takes large silicon area or has to be implemented off-chip.

4.2.2 Stimulation Waveform and Electrodes Configuration

Various stimulation waveforms have been used in research and clinical treatment.

Among them, biphasic stimulation is the most commonly used method. A typical

biphasic stimulation mainly consists of a cathodic (stimulation) phase and an anodic

(reversal) phase. The cathodic phase is to elicit the desired physiological effect such

as initiation of an action potential, and the anodic phase is used to reverse the electro-

chemical processes occurring during the cathodic phase. It should be noticed that the
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cathodic-first topology is chosen because the electrons move in the opposite direction

of the current. Thus pulling a cathodic current is, in fact, pushing the electrons into

the tissue.

The complete waveform with key parameters marked is shown in Fig. 4.5. A

Figure 4.5: Illustration of a typical biphasic stimulation waveform with the param-
eters marked. IS: stimulation current, IR: reversal current, TS: stimulation phase
time, TR: reversal phase time, TD: discharging phase time, TP: phase interval, TI:
pulse interval, TL: pulse group interval.

constant current-regulated method is used here for illustration, but all the other

methods share similar parameters. IS and IR are the amplitudes for the stimulation

and reversal phase, respectively. If the same amplitude is used for both phases, the

waveform is referred to as symmetrical biphasic stimulation. In some cases, a lower

amplitude is preferred in the reversal phase to reduce the damage to the tissue. Both

symmetrical [243, 244] and asymmetrical [9] biphasic current-regulated stimulation

have been reported in the literature. TS and TR are the times for the stimulation

and reversal phase, respectively. TP is the interphasic delay between the stimulation

and reversal phases. The interphasic delay is added for better stimulation effect. A

discharging phase TD is added following the reversal phase for removing the residue

charges. In some cases, the anodic phase is replaced by the discharging phase. TI is
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the pulse interval, and TL is the interval between the pulse groups. The terminologies

are used consistently in the following study.

Monophasic/biphasic stimulation can be confused with monopolar/bipolar stim-

ulation. However, they are different terminologies and are not directly related. A

monopolar stimulation means that both cathodic and anodic phases are generated

from a single electrode, while a bipolar stimulation means that the cathodic and an-

odic phases are generated from a pair of electrodes. Both electrode configuration can

be used to perform monophasic and biphasic stimulation. Fig. 4.6 illustrates the typ-

ical electrode waveforms for the two-electrode configuration in generating a biphasic

stimulation. In the monopolar stimulating method, one working electrode is used to

Figure 4.6: Illustration of (a) monopolar and (b) bipolar stimulation methods.
A voltage-regulated stimulation is used for illustration, but a current-regulated
stimulation can be applied in the same way.

generate the stimulus voltage or current with respect to a reference electrode. In the

bipolar stimulating method, two electrodes are chosen as the working and counter

electrodes, the generated stimulus voltage or current are to be applied between these

two electrodes.

The monopolar stimulation is widely used in a high-density electrode array, in

which case it delivers stimulus with respect to a common reference electrode. Bipolar

stimulation has a better guided stimulus orientation than the monopolar stimulation,
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at the cost of a more complicated channel selection. The bipolar stimulation also

favors the single supply system, and potentially doubles the compliance voltage range.

Ideally, both monopolar and bipolar configurations can achieve the charge-balanced

stimulation.

It should be noticed that even though we have been discussing rectangular stim-

ulation waveforms, non-rectangular waveforms have also been proposed in literature

[22, 246, 247]. By careful design, the non-rectangular waveform, like exponential cur-

rent stimuli, may give benefits in the stimulation effects and the power efficiency. Of

course, these designs usually come at the cost of the circuit and control complexity.

More importantly, it may cause difficulties in achieving the charge balance, which will

be discussed in the following section.

4.2.3 Methods for achieving Charge Balance

The importance of the charge balance cannot be overemphasized. The building-up

of the excess charges, even slowly, might cause toxic effects and lead to permanent

damage. The traditional method is to place a blocking capacitor in series with the

stimulating electrode. The blocking capacitor limits the total charges. However,

the capacitor cannot be too small which limits the output compliance voltage range.

Typically for functional electrical stimulation, these capacitors are in the order of tens

of nanofarads to a few microfarads [22, 248–250]. The physical dimension of these

capacitors is usually prohibitively big to be integrated on a silicon chip, especially for

the high channel-count design. Various techniques have been developed to achieve

the charge balance with and without the blocking capacitors. This section reviews

the pros and cons of these techniques.
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4.2.3.1 Matching and Calibration

Ideally, a charge balance can be achieved if the total amount of charges of the cathodic

and the anodic phases are the same. The clock can achieve a high accuracy, but

the mismatch between the anodic and cathodic currents can be about 2% without

calibration even with careful matching in the design and layout [251]. This current

mismatch might lead to a significant charge error in a heavy-duty stimulation. For

that reason, a lot of research has been conducted with a focus on matching the

stimulation and reversal currents, in order to achieve the net-zero change. Several

important matching techniques are reviewed as follows.

J. Sit et al. from Massachusetts Institute of Technology proposed blocking capac-

itor free change-balanced stimulator design in 2007 [240]. The design uses a dynamic

current balancing method to achieve current balance. The work pays special atten-

tion to switch leakage and loop stability in the dynamic current mirror. The reported

DC current error is 6nA.

K. Song et al. from Korea Advanced Institute of Science and Technology pro-

posed a DC-balanced adaptive stimulator in 2012 [252]. The design uses a current

sources mismatch compensation method. Precise current balance is achieved by sam-

pling the mismatch current, and making a compensation accordingly. The challenge

in this work is the requirement of a large time constant sample hold circuit. The S/H

circuit would need to hold the mismatch current ∆I for up to 0.5 seconds without

variation. The reported current mismatch is less than 10nA.

M. Monge et al. from the California Institute of Technology proposed a high-

density self-calibration epiretinal prosthesis in 2013 [253]. This work uses a fully

digital calibration technique to match the biphasic currents during the stimulation.
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A multi-point calibration scheme is proposed, which includes 5-point calibration for

each driving site. With the help of the full range calibration, the stimulation can

perform arbitrary waveform stimulation. The reported mismatch is 2.24%.

In summary, the matching technique can be implemented in either analog or

digital domains. In the analog domain, it requires feedback or a large time-constant

storage unit. In the digital domain, it requires an on-chip memory. The analog match-

ing is attractive if only a single-point matching is needed. If a full-scale calibration

is desirable, the digital calibration is more suitable.

4.2.3.2 Passive and Active Discharge

If the current matching is not sufficient for achieving the net-zero charge requirement,

an additional discharge phase is commonly used to remove the residue charges. The

discharge can be as simple as shorting the stimulation electrode to a common or ref-

erence electrode, which is referred to as passive discharge. However, the disadvantage

of passive discharge is that the discharge current depends on the load and electrode

impedance, which cannot be well controlled. If the impedance is too low, the dis-

charge current might be too large, it might damage the tissue, thus additional current

limit circuit is required [244]; if the impedance is too high, the time for discharging

might be too long, so the residue charges might not be able to clear before the next

stimulus, and the residue charges will accumulate.

K. Sooksood et al. from the University of Ulm proposed an active charge balance

method in 2010 [254]. In the active approaches, the residue charges or net potential

is monitored by the active circuits, and additional discharge circuits are added to

maintain the net potential in a safe range in a closed-loop manner. The residue
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charges can be canceled by using pulse insertion [254, 255]. In addition, E. Noorsal

et al. from the same group proposed to regulate the residue charges by using DC

biasing current in 2012 [256]. In this work, a safe window is defined approximately

as 100mV (for a Pt black electrode). The net potential is compared with the safe

windows right after the stimulation, and the biasing current sources can be adjusted

accordingly.

In summary, passive and active discharge or charge cancellation can be used to

further remove the residue charges after the stimulation. Passive discharge is simple

but has no control of the discharging current and time. Active discharge by monitoring

the residue charges directly can be more effective, but takes dedicated circuit design

and silicon area.
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4.3 Design of A General-Purpose Stimulator

This section describes the design of a 16-channel general-purpose neural stimulator.

The motivation of this work is to have a highly programmable stimulator for vari-

ous applications. The stimulator can perform monopolar or bipolar, monophasic or

biphasic, symmetrical or asymmetrical constant-current, charge balanced stimulation.

All of the parameters for the stimulator are programmable. The output current is

from 0 to ±255µA in the low-current mode, and 0 to ±2mA in the high-current mode.

The design has been fabricated in IBM 180nm technology, and occupies a silicon area

of 810µm×290µm, excluding the IO pads.

4.3.1 Architecture of the Stimulator

The overall architecture of the stimulator is shown in Fig. 4.7. The stimulator

includes a digital part designed in 1.8V, and an analog part designed in 1.8/5V. The

stimulator integrates four independent driving sites. Each site includes: i) a DAC to

generate a reference for the output current, ii) a current driver consisting of current

sink and source output stages with high output impedance, iii) a 1:4 demultiplexer to

support 4 channels and provide near-simultaneous stimulation, and iv) level-shifters

to interface the low-voltage digital control signal with the high-voltage switches.

Figure 4.7: The block diagram of the neural stimulator. The stimulator includes a
digital part designed in 1.8V, and an analog part designed in 1.8/5V.
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The digital part can be configured via a custom designed two wire protocol.

The parameters of the timing generation module in each stimulator site can be pro-

grammed individually. In addition to the regular operating modes, the stimulator can

be configured to output continuous current in order to test the DAC and the output

stage.

4.3.2 Circuit Implementation

The circuit schematic of the stimulator site is shown in Fig. 4.8. A 6-bit current

Figure 4.8: The circuit schematic of the proposed multi-mode stimulator site. Each
site consists of: i) a current-mode DAC which generates a reference for the output
current, ii) a current driver including current sink and source output stages with
high output impedance, and iii) high voltage switches with level-shifters. Each site
demultiplexes to 4 channels, and provides near-simultaneous stimulation.

mode DAC is used to generate the reference for the stimulation current. A typical

binary weighted current source array is used in the DAC [257]. The transistors are
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sized for a 6-bit accuracy [194]. Common-gate transistors are used to increase output

impedance. The DAC is designed in thin-oxide devices and powered at 1.8V. A thick

oxide transistor is cascaded in the output current path to reduce the overdrive voltage

stress from the following stage. The thick oxide transistor also has low leakage current

which allows a complete shutdown of the DAC.

The output stage is designed with thick-oxide devices and a supply voltage of

5V. Regulating amplifiers are used to achieve a high output impedance. A PMOS

input folded-cascode amplifier is used in the current sink, and an NMOS input folded-

cascode amplifier is used in the current source. These amplifiers are disabled when

the stimulator is in the idle mode to reduce the power dissipation.

The circuit schematic of the level shifter is shown in Fig. 4.9. It should be noticed

Figure 4.9: The circuit schematic of the level shifter.

that even some dynamic level shifter can achieve high switching frequency and lower

power consumption, the risk of undetermined state may cause direct stimulation

current leakage to the tissue, thus is not used in this design.
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To perform the monopolar stimulation, one electrode is activated at a time,

and the stimulation current is passed between the selected electrode and the ground

electrode. The timing of the monopolar stimulation and the control of corresponding

switches are shown in Fig. 4.10. The timing parameters is defined as in Fig. 4.5, and

Figure 4.10: The timing for generating a monopolar stimulation at the electrode
X. The DAC # belongs to the site where the electrode X locates. (IS: stimulation
current, IR: reversal current, TS: stimulation phase time, TR: reversal phase time,
TD: discharging phase time, TP: phase interval. XXX means the DAC can be in
any value. )

the switching signals are defined as in the circuit schematic Fig. 4.8. XXX means

the DAC can be of any value. This allows the DAC to generate the reference value

for another channel.

To perform the bipolar stimulation, two electrodes can be arbitrarily selected

from the 16 channels to work as the cathodic and anodic electrodes, and the stimula-

tion current is passed between them. The timing of the bipolar stimulation and the

control of corresponding switches are shown in Fig. 4.11. Notice that the electrode X

and Y can be in the same stimulation site, or in two different stimulation sites. The

DAC # and DAC $ will be the same DAC if X and Y are on the same site.
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Figure 4.11: The timing for generating a bipolar stimulation between the electrode
X and Y. The DAC # and DAC $ belong to the site where the electrode X and Y
locates, respectively. Notice that they can be in a same site. Parameter definitions
are the same as in Fig. 4.10.

4.3.3 Measurement Results

The design has been fabricated in IBM 180nm CMOS technology. The occupied

silicon area is 810µm×290µm. The layout of the 16-channel stimulator is shown in

Fig. 4.12. The major building blocks are highlighted in the figure.

Several bench tests have been conducted to fully evaluate the function and perfor-

mance of the designed stimulator. Fig. 4.13 shows the measured output currents from

the current sink and current source, with several digital input codes. The results show

a large compliance voltage range with an overhead less than 264mV, corresponding

to 5.28% of the supply voltage.

Fig. 4.14 shows the measured output currents from the current source and sink

of the stimulator output stage. The non-linearity of the source and sink current is
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Figure 4.12: The microphotography and the layout of the neural stimulator. The
major building blocks are highlighted in the layout.

Figure 4.13: The measured stimulator output current versus output voltage.

0.31% and 0.37%, respectively. The result shows a good matching between the source

and sink is 1.29% without calibration. No additional analog calibration is used in
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Figure 4.14: The measured output currents from the current source and current
sink of the stimulator output stage. The non-linearity of the source and sink current
is 0.31% and 0.37%, respectively.

this work, but a digital calibration in the digital code can be implemented for better

matching. The discharging phase should always be used to avoid charge accumulation

in this case.

The stimulation was measured in 0.9g/100mil Sodium Chloride. The measured

simultaneous stimulation output from four independent channels is shown in Fig.

4.15. Different pulse train interval times were intentionally used for each individual

channel, which showed the ability for this chip to drive simultaneous stimulation in

different parameters.
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Figure 4.15: The measured simultaneous stimulation output from four independent
channels. The boxed window shows the measurement of a single pulse in high
resolution.

4.4 An Energy Efficient Net-Zero Charge Neural

Stimulator

4.4.1 Introduction

As discussed in section 4.1.2, two primary mechanisms occur at the interface between

the electrode and the physiological medium during an electrical stimulation: the

direct Faradaic charge transfer and capacitive charge redistribution [20]. The Faradaic

charge transfer usually involves reduction and oxidation processes, which may create

damaging chemical species and dissolve the electrodes. So it is critical to avoid the

onset of these reactions. A reversal phase is commonly used after the stimulation

phase to reverse the electrochemical processes. However, it is not always possible to
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avoid the irreversible charge injection, resulting in a certain amount of unrecoverable

charges during the stimulation [20].

In order to achieve a net-zero charge, a lot of techniques have been developed,

as reviewed in section 4.2.3. However, previous works have been exclusively focusing

on matching the stimulation and reversal currents, ignoring the unrecoverable charge

injection during the stimulating process. This work proposes a new stimulation s-

trategy to achieve the net-zero charge by monitoring the residue charges directly on

an inserted capacitor. With the proposed method, over-reversal can be avoided. Be-

sides, a perfect matching between the current source and sink is not required, and an

arbitrary stimulation waveform can be performed without calibration.

As reviewed in section 4.2.1, voltage-regulated [258], charges-regulated [259] and

current-regulated [240, 252, 253] stimulation methods have been reported in literature.

In summary, the voltage-regulated stimulation method has the highest efficiency, but

it is difficult to control the amount of injected charges [243]. The charges-regulated

stimulation limits the total amount of charges by discharging a capacitor tank, but

the capacitors cost a large silicon area, and the discharging time cannot be precisely

controlled. The current-regulated stimulation has a high controllability of the charge

injection, thus it is the most widely used method. However, the traditional current-

regulated method suffers from a low power efficiency [252]. In this work, an adaptive

driving voltage is enabled by employing a feedback control scheme to improve the

power efficiency. The design also enables a constant low supply voltage design for all

active circuits besides the driving voltage.

The remaining of this section is organized as follows. Section 4.4.2 highlights the

innovations proposed in this work. Section 4.4.3 describes the system architecture
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and the circuit implementation of the building blocks, with emphasis on the large

voltage compliance output stage and feed-forward compensation comparator design.

Experimental results are presented in section 4.4.4.

4.4.2 Motivation and Innovation

4.4.2.1 Net-zero Charges Stimulation

As discussed in section 4.2.2, biphasic stimulation is the most commonly used stim-

ulation waveform. During a biphasic stimulation, a stimulation phase first elicits the

desired physiological effect (e.g. initiation of an action potential), and after an op-

tional interphase delay, a reversal phase is used to reverse electrochemical processes

[20]. The threshold current required to initiate the neural response decreases with an

increasing stimulation pulse width. The threshold and pulse width relation, which

can be experimentally quantified, is usually presented as a strength-duration curve

[260]. Although it is not a physiological requirement to design the reversal current

equals the simulation current, it is commonly used in the circuit design for a better

matching. Although a very high current matching accuracy has been reported in

literature [240, 252], these methods often ignore the fact that inevitable charge diffu-

sion may put the matching in vain. The process is illustrated in Fig. 4.16. Take the

irreversible reaction and the chemical products diffusion into account, even perfect

matched cathodic and anodic currents will still leave residual charges. These resid-

ual charges will accumulate in a simulation pulse train, resulting in a more serious

damage if a discharge procedure is not properly assigned. This work addresses this

problem by monitoring the residue charges on an inserted blocking capacitor. The

reversal phase terminates when a net-zero charge point is reached, as illustrated in
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Figure 4.16: (a) The traditional charge-balancing method matches the stimulation
and reversal currents. The ideal charge curve on the electrode is plotted in a dashed
line. The practical charge curve varies from the ideal curve due to the irreversible
reaction and chemical products diffusion. (b) this work terminates the reversal
phase based on the monitoring the net-zero charge point. φ1: stimulating phase,
φ2: interval phase, φ3: reversal phase, φ4: discharge phase

Fig. 4.16 (b). In this way, the systematic over-reversal in traditional methods can be

avoided, and an exact matching between the stimulation and reversal currents is no

longer required.

To better illustrate the effects, a simplified linear simulation model is established

using ideal components, including the current sources. A typical single-supply bipolar

stimulation topology is used in this simulation [21, 22]. The circuit schematic of the

simulation model is shown in Fig. 4.17. A resistor RL is used to mimic the impedance

between the stimulation location and the tissue ground. The electrode parameters

measured In-Vitro (Fig. 4.3) are used in this simulation. 500kΩ, 1MΩ, and 5MΩ

resistors are used as RL. It should be noticed that in practice, the electrochemical

reaction is involved, thus the charge reduction is more complicated and is not linearly

dependent on the electrical potential. Fig. 4.18 shows the simulated voltage across

the blocking capacitor CB. With RL greater than 5MΩ, the charge diffusion due to
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Figure 4.17: The model for simulating the effects of non-ideal charge diffusion.

the RL is negligible. However, with a low RL, the over-reversal is visible. Fig. 4.19

Figure 4.18: The simulation of the voltage across the blocking capacitor CB (Fig.
4.17) during a symmetrical single pulse. Ideal current sources with equal stimula-
tion current amplitude and time are used. 500kΩ, 1MΩ, and 5MΩ resistors are used
to mimic the impedance between the stimulation location to the tissue ground.

shows the same simulation setup but in a pulse train without discharging. Even with

the ideal current sources with equal amplitude and time, the charges still build up on

the electrode. The building up of the charges may cause permanent damage to the

tissue in a long term.
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Figure 4.19: The simulation of the voltage across the blocking capacitor of a 10
symmetrical pulse train without discharging. 500kΩ, 1MΩ, and 5MΩ resistors are
used to mimic the impedance between the stimulation location to the tissue ground.
The charges build up even using the ideal current sources with equal amplitude and
time.

Notice that the blocking capacitor is commonly used to ensure the safety by

preventing the direct current injection and limiting the maximum net charges. Thus

this work doesn’t require a major change of the configuration in the conventional

stimulator designs.

4.4.2.2 Adaptive Driving Voltage

In the simplified linear model, the compliance voltage for a charge balanced biphasic

stimulation can be expressed as:

VC = 2RSIS +
ISTS
Cdl

(4.4)
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In conventional designs, the supply voltage of the stimulator is set to be higher than

the peak compliance voltage with headroom to avoid cut-off. However, the uncertainty

and the drifting of the electrode impedance makes it difficult to predict the peak

compliance voltage. So the supply voltage needs to be over-designed to guarantee a

sufficient compliance voltage. As a result, a lot of power is wasted in the circuitry

headroom instead of on the load tissue. The overall efficiency of the system is:

η =
Pload

Pload + Pcircuits
=

I2
stimZT issue

(Istim + Icircuits)Vsupply
(4.5)

In this work, an adaptive driving voltage instead of a constant high supply voltage

is used for improving the power efficiency. In contrast to the conventional output stage

design which includes both current sink and source, this design only uses the current

sink. The working electrode (WE) sinks the current, and the counter electrode (CE)

only needs to generate a potential difference with respect to the WE [21, 22]. This

operation is illustrated in Fig. 4.20 (a). As a result, all circuits for the WE can be

Figure 4.20: Illustration of the adaptive driving voltage stimulation.

designed in a low supply voltage, and only the driving voltage of the CE needs to be

boosted. In the simplified linear model, the required counter electrode voltage VCE
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can be expressed as:

VCE = VWE + 2
Istim∆t

Cdl
+ 2

Istim∆t

Cbk
+ IstimRtissue (4.6)

where Rtissue is unknown and varies from site to site. Assume the minimum biasing

voltage for the current sink is Vsink, and the WE’s potential should always be higher

than Vsink. This gives an opportunity to design a feedback control scheme for the

driving voltage by monitoring the WE voltage. A boosting converter for generating

the driving voltage can be designed with a continuous tuning or several discrete

output levels. When VWE is lower than a pre-defined threshold Vth (Vth > Vsink), a

1-bit digital signal is generated to let the boosting converter’s output increase in one

step, in order to provide enough compliance voltage for the current sink. The process

can be understood as a typical feedback control system, as shown in Fig. 4.20 (b). It

should be noticed that the system is always stable, if the boosting converter’s output

is set to be the minimum value at the beginning, and only changes in one direction

(increasing).

4.4.2.3 Arbitrary Channel Configuration

In order to achieve the best stimulation performance, the ability to perform stimula-

tion in an arbitrary location and direction from the implanted electrode array is very

helpful. It can fully take the advantage of the high-density electrode array. However,

conventional stimulator design with the current source and sink matching technique

can hardly realize an arbitrary channel configuration, since the matching is usually

designed to perform between pre-defined electrode pairs. This is illustrated in Fig.

4.21 (a). With the proposed stimulation technique, a perfect matching is no longer
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Figure 4.21: The channel configuration of (a) the traditional stimulation, and
(b) the proposed work. Arbitrary channel configuration is feasible without pre-
calibration.

required. Thus an arbitrary channel configuration of the working and counter elec-

trodes is feasible, and more precision stimulation pattern can be generated from a

limited number of electrodes, as illustrated in Fig. 4.21 (b).

4.4.3 Circuit Implementation

4.4.3.1 System Architecture

The architecture of the proposed stimulator system is shown in Fig. 4.22. The

Figure 4.22: The block diagram of the net-zero charge neural stimulation system.
The system consists of an analog core, a digital module, and off-chip power man-
agement units.
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system contains 6 driving sites. Each site can be configured as the working electrode

driver (WE mode) or the counter electrode driver (CE mode). The stimulation and

reversal currents are generated by reversing the current path between the WE and

CE. Each site contains a current sink with a high output impedance, with a 6-bit

current mode DAC. Two comparators with different specifications are integrated into

the driving site. The low-speed comparator is used to monitor the electrode voltage.

The high-speed comparator is used to detect the zero-net charge crossing point, and

to terminate the reversal phase. The functions of the digital module include: i)

the output mode selection, ii) the output stage switch control, iii) the DAC and

comparator configuration, iv) the supply voltage adjusting request generation, and

v) the feed-forward comparator calibration.

The working flow of the proposed stimulation strategy is shown in Fig. 4.23.

After all stimulation parameters are received, the system first selects and enables the

selected WE and CE driving sites, and the DACs of the output stages are configured.

The stimulation phase starts first, with a timer controls the stimulation time. The

low-speed comparator monitors the compliance voltage and generates driving voltage

adjustment signal accordingly. The stimulation phase terminates by the timer, and

then the interphase timer starts. After the interphase, the reversal phase starts. The

comparators are used to detect the net-zero charge point. The low-speed comparator

is first used to perform the coarse detection, and it triggers a high-accuracy high-speed

comparator when the voltage gets close. The reversal phase stops by the output of

the high-speed comparator. After the reversal phase, an optional discharge phase can

be used to clear the capacitor and amplify the residue voltage across the blocking

capacitor. This phase is usually used in a training mode. If the residue voltage is

beyond the safe range, a calibration value is adjusted and stored in the register. The
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Figure 4.23: The working flow chart of the proposed stimulation strategy.

neural stimulation usually consists of a train of pulses with the same amplitude and

pulse width. So the system will learn and save the calibration value for the foregoing

stimulation.

4.4.3.2 Output Stage with Dynamic Element Matching

A high output impedance output stage with a high voltage compliance is critical for

a neural stimulator. A transconductance amplifier (OTA) with series-series feedback

can make a simple current generator with a high output impedance, as shown in Fig.

4.24 (a). The output current can be controlled by adjusting the reference voltage
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Figure 4.24: Circuit schematic of (a) basic current generator, (b) output stage with
voltage-controlled transistor, modified from [21], (c) output stage with digital-set
DAC, modified from [22].

or the tail resistor. The resistor can be implemented using a transistor biased in

the linear region [21], or a batch of transistors biased in the deep triode region [22],

as shown in Fig. 4.24 (b) and (c), respectively. A voltage mode DAC is used to

bias the transistor to control the output current. However, the threshold voltage

variation appears to be a problem, and it is especially important when the circuits

are implemented for driving a micro-electrode array contains hundreds of channels.

In this work, a current-mode DAC with dynamic element matching is used to address

this problem.

Fig. 4.25 shows the simplified circuit of the proposed output stage. A 6-bit binary

weighted DAC is used to generate output current. The transistor M1 is one-bit of the

DAC, a dummy cell M2 is put on the side of M1. Instead of using digital signal or

voltage mode DAC to bias M1, the gate voltage of M1 is generated by charging M2

using a reference current IC . Thus the gate voltage of the M2 is given by:

VC =

√
2ICL2

µCoxW2

(4.7)
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Figure 4.25: (a) The proposed output stage with current set current-mode DAC.
(b) The OTA used in the work.

The drain current of M1 can thus be calculated as:

Id0 =
µnCox

2

W1

L1

[
2(VC − Vth1)Vref − V 2

ref

]
=
µnCox

2

W1

L1

[2(

√
2ICL2

µCoxW2

+ (Vth2 − Vth1))Vref − V 2
ref ]

≈ µnCox
2

W1

L1

[2

√
2ICL2

µCoxW2

Vref − V 2
ref ]

(4.8)

where Vref is the reference voltage set by the OTA, Vth1 and Vth2 are the threshold

voltages of M1 and M2, respectively. Thus the output current will only depend on

the threshold difference in the local area, instead of the threshold voltage itself, and

the variation will be much smaller. The output current of the DAC is:

Idac = Id0 + Id1 + Id2 + Id3 + Id4 + Id5

=
5∑

n=0

2ndn(A
√
IC +B)

(4.9)
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where dn’s are input digital codes, and A, B are constants controlled by design param-

eters and by Vref . A 100-run monte-carlo simulation including both process corners

and mismatch of the different structures of the output are shown in Fig. 4.26. The

Figure 4.26: 100 runs monte-carlo simulation of the different output stage archi-
tectures with mismatch and process variation.

result shows that even with the worst variation, the proposed current-set dynamic

element matching method reduces the output variation significantly.

4.4.3.3 Feed-forward Error Compensation Comparator

In the output stage, two comparators are connected to the blocking capacitor. A low-

power, low-speed op-amp based continuous time comparator (LS comparator), and

a high-speed high accuracy error compensation comparator (HS comparator). Both

comparators have a shut-down option for saving the power consumption.
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The HS comparator is designed with a 3-stage preamplifier and a dynamic latch.

The offset of the comparator originates from the imperfect symmetrical layout and

the variation during the fabrication. The CMOS latches implemented with small

devices have larger offsets compared to the pre-amplifiers. The output offset auto-

zeroing circuits are employed for the three-stage pre-amplifier to suppress the offsets

in this work. The sources of the comparator delay include the charging time of the

blocking capacitor, the converging of the pre-amplifier and the latch, as illustrated in

Fig. 4.27.

Figure 4.27: Analysis of the delay of the comparator for determinating the zero-
crossing point of the blocking capacitor.

The total time error for this comparator can be expressed as:

τtotal = τcharging + τpre−amp + τlatch (4.10)
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where τcharging is the time it takes for the differential input voltage to meet the resolv-

ing voltage of the comparator, which depends on the stimulating current Istim and

the size of the blocking capacitor CB.

τcharging =
(±∆VOS + Vres)CB

Istim
(4.11)

With a typical size of the blocking capacitor and the stimulation current, the τcharging

will be in tens of nanoseconds to several microseconds, which might dominate the

total time error. This, unfortunately, causes a systematic delay, which is highly

undesirable.

In order to address this problem, a feed-forward error compensation mechanism

is introduced. The circuit schematic for the comparator is shown in Fig. 4.28. The

comparator consists of a 3-stage preamplifier with output auto-zeroing, and a dynamic

latch with a 4-bit current DAC for calibration. Neural stimulation usually consists of

trains of stimulation pulses with the same amplitude and pulse width but varies in

frequency (time interval between pulses). According to Eq. 4.11, the τcharging will be

the same for a train of pulses. So the delay of the comparator can be learned during

the first few pulses and used to compensate the foregoing stimulation. Two four-bit

DACs are used to calibrate the dynamic latch. The error of the comparison is learned

from the residue charges after a stimulation pulse. In the first few stimulation pulses,

an additional discharge phase is triggered after reversal phase to clear the charges on

the capacitor. A switched capacitor amplifier is used to amplify the residue charges,

and a dual threshold comparator is used to decide whether the residue charge is

within the safe range or not. The schematic of the discharge and amplification circuit

is shown in Fig. 4.29. The calibration DAC’s value is changed according to the
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Figure 4.28: The circuit schematic of the comparator consisting of a 3-stage pre-
amplifier and latch. The pre-amplifier has auto-zero calibration, and the latch has
a 4-bit DAC for calibration.

Figure 4.29: The circuit schematic of the switched capacitor circuit used to dis-
charge the blocking capacitor. The circuit is also used to amplify the residue voltage
for the calibration purpose. The amplified residue voltage is compared with two
pre-defined safe voltage window. If the residue charge is out of the safe window,
the calibration DAC of the comparator will be changed accordingly.

comparison result. The calibration DAC is designed to change 1 LSB each time for

stability and simplicity. So in the worst case, it takes 16 cycles to change from 0 to

the full range of the DAC, which will be finished in one or two pulse groups.
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4.4.4 Experimental Results

The design has been fabricated in IBM 180nm CMOS technology. The occupied

silicon area of the full chip is 3×1.5mm2, including IO pads. One driving site features

a dimension of 700µm × 150µm. The micrograph of the chip and the layout of one

channel are shown in Fig. 4.30.

Figure 4.30: The micrograph of the fabricated stimulator chip. The occupied silicon
area is 3×1.5mm2.

Bench testing was conducted to verify the functions of the chip and the system.

The measured currents from the output stage versus the output voltage are shown

in Fig. 4.31. The measurement result shows a full compliance voltage range of 3.2V

out of the 3.3V supply voltage at the current amplitude of 100µA, which corresponds

to 97% of the full voltage range. This is much higher than the result achieved in the

general-purpose design presented in section 4.3.3.
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Figure 4.31: The measured current from the output stage versus the output voltage.
The embedded figure shows a zoom-in plot from 0 to 0.3V.

Both traditional digital-set method and the proposed current-set method have

been implemented in the chip for a comparison. The measured INL/DNL of the

DAC using traditional digital-set method are 0.37/0.34 LSB, and are improved to

0.19/0.17 LSB using the proposed current-set method with the dynamic threshold

variation cancellation technique. With the new technique, the charge error during a

typical 100µA and 200µs is less than 0.05%.

The measured generated stimulation waveform and states of the finite state ma-

chine are shown in Fig. 4.32. The stimulation was measured with a high resistor load.

The driving site was disconnected from the electrode when not activated to prevent

leakage.

Another bench test is used to verify the function of the adaptive driving. Fig.

4.33 (a) shows a measurement of the electrode voltages during the driving voltage

adjustment. Stimulation currents were measured under a load of two 10nF capacitors
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Figure 4.32: The measured generated stimulation waveforms with a high impedance
load. Channel 1 and channel 2 measures the output of the WE and CE electrode,
respectively. The Math channel calculates the difference between the two channels.
Channel D3 to D6 show the states of the digital module.

and a 10kΩ resistor in series. A blocking capacitor of 100nF was applied. The

probe placement is highlighted in the boxed figure. The boosting converter was

implemented off-chip. Fig. 4.33 (b) shows the measured current across the load. The

current maintains constant during the stimulation phase with the driving voltage

adjustment.

In-vitro tests are conducted using a 75µm tungsten electrode in 0.9g/100mil

Sodium Chloride. Fig. 4.34 shows a comparison of the measured voltages over a

5-min continuous stimulation using a traditional method and the proposed method.

It was measured at the same driving site under a different configuration. Given the

same mismatch in the current sources, a drifting of the electrode voltage when using

the traditional digitally set DAC without discharge is shown in Fig. 4.34 (a), while

the proposed method successfully resolves this problem. The measurement of the



195

Figure 4.33: (a) The measurement of a stimulation pulse during the driving voltage
adjustment. The load model is given with the measurement points highlighted.
(b) The measured stimulating and reversal currents during the driving voltage
adjustment.

blocking capacitor’s voltages in 20 trails are overlaid in Fig. 4.34 (b), and the derived

currents are plotted in Fig. 4.34 (c). The charges over-reversal in the traditional

method are shown from the test in the saline solution. The measurement results

verifies the theoretical analysis and the simulation.

To demonstrate that the stimulator is capable of evoking physiological activity,

an in-vivo experiment was performed in a sedated rat. Trains of biphasic stimulus

pulses (10 pulses, 5 ms interpulse interval, 0.3 ms/phase) were delivered through a pair

of insulated tungsten microwires, with a 50µm diameter, implanted near the intrinsic

muscles that protract the mystacial vibrissae. Whisker movements, as measured by
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Figure 4.34: The measurement of biphasic stimulation in the saline solution using
the traditional method (red) and the proposed method (blue). (a) shows a 5-min
continuous stimulation without discharge. (b) and (c) show an overlay of 20 mea-
surements of the voltage across the blocking capacitor and the derived stimulation
current.

an optical micrometer, were reliably evoked as shown in Fig. 4.35 (a). The stimu-

lator IC was programmed by a microcontroller with a wireless transceiver. Whisker

displacements were a function of current intensity as shown in Fig. 4.35 (b). This ex-

periment can be further used to implement facial reanimation for patients who suffer

from facial paralysis.

The measured performance of the chip is summarized in Table 4.1.
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Figure 4.35: In-vivo experiment performed on a sedated rat. (a) Whisker move-
ments, as measured by an optical micrometer, were reliably evoked. (b) Whisker
displacements were a function of current intensity.

Table 4.1: Chip Specification Summary

Driving

Site

# of sites 6

Area per site 0.1mm2

Driving voltage 3.3 V

Compliance range 97% (typical)

Stim current <2mA

Stim freq. 1-500 Hz

Charge error <0.05% (typical)

DAC

Resolution 6-bit

INL 0.19 LSB

DNL 0.17 LSB

Full scale std <0.7%

Comparator

Resolution 40uV

Calibration auto-zero/4-bit DAC

Speed 40MHz

Power

per site 136µW

Coin battery
1.2V regulator

off-chip

Efficiency 81%
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4.4.5 Conclusion and Future Work

In this section, a high efficiency, tissue-friendly net-zero charge stimulator is proposed.

The net-zero charge stimulation is achieved by controlling the timing of the reversal

phase based on monitoring the residual charge. Arbitrary channel configuration is

achieved without a pre- or on-the-fly calibration, which enables a more dedicated

stimulation position and pattern. Feedback control of the adaptive driving voltage and

stimulation charge recycling are further proposed to improve stimulation efficiency.

A novel current-mode DAC is implemented to suppress the process variation across

the driving site array. A digital feed-forward error compensation is used to calibrate

the zero-crossing detection comparator in a continuous stimulation pulse train. Both

in-vitro and in-vivo experiment results are presented.

In the future, it is worth consider to design a net-zero charge neural stimulator

without the blocking capacitor. The silicon area of each driving site can be further

reduced. And by adding multiplexer switches, more stimulation channels can be sup-

ported with near simultaneous without increasing the number of driving sites. In

addition, the power management units can be integrated on-chip for better perfor-

mance and higher integration.

4.5 Conclusion

The design of electrical neural stimulator with high performance, good safety, and

power efficiency has been a big challenge. A lot of research has been done in this

field for several decades. With the help of advanced CMOS technology, advanced

calibration techniques can be applied for achieving high current and charge accuracy.
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However, all efforts will be in vain if the real physiological reactions at the electrode-

electrolyte are not taken into account. Using feedback technique, a net-zero charge

stimulation can be achieved without the need for a direct measurement of the under-

lying reactions. In addition, a high power efficiency topology can be achieved using

adaptive driving. The developed chip and system have been used for neuroscience

experiments and explorations.



Chapter 5

Bi-directional Neural Interface and

Closed-loop Control

5.1 Introduction

A bi-directional neural interface enables simultaneous recording and stimulation with

the neural system, establishing a two-way direct communication link between the

brain and the external world [261]. The importance of a bi-directional closed-loop

neural interface can be understood from several aspects: i) In the development of

prosthetic devices, an electrical neural stimulation can provide an artificial sensory

feedback to the user, allowing the user to perceive the movement and the haptic

interaction with external objects [262]. This is important for the user to fully control

a prosthetic; ii) In the treatment of the Parkinson’s disease, the mechanism underlying

the deep brain stimulation remains not clear [40]. Research shows that the application

of the closed-loop stimulation has a greater effect than the conventional open-loop

200
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stimulation paradigms [11, 41], and have the potential to be effective in other brain

disorders [41]. iii) In the study of electrophysiology, the brain’s response to an external

stimulus is a complex combination of the activities triggered by the sensory stimulus

itself and the brain’s internal state, which needs more than statistical descriptions of

the responses [44]. So only a closed-loop approach is effective in these studies [263].

Although the importance of the bi-directional closed-loop neural interface has

been recognized [264], it has not been widely used in neuroscience research and BMI

devices. The electronics design is one of the bottlenecks. There are two primary

design challenges in a bi-directional neural interface system: i) The effects caused

by recording and stimulating simultaneously, namely the stimulation artifacts [239,

265–267]; ii) The design of an on-chip real-time closed-loop controller [46, 80, 268–

271]. Addressing both challenges is critical in a successful implementation of the

bi-directional closed-loop neural interface. Thus the goal of this chapter, is to review

and analyze the practical design issues related to a bi-directional neural interface and

a closed-loop controller. Several novel circuit and system level designs are proposed

to improve the state-of-the-art.

The chapter is organized as follows. Section 5.2 analyzes the origins of the s-

timulation artifacts in a bi-directional neural interface, reviews the prior works, and

presents a study on the stimulation artifacts with different electrode configuration

and circuitry topologies. Both in-vitro and in-vivo experimental results are pre-

sented. Section 5.3 reviews and summarizes the mechanisms of different closed-loop

neural interface systems, and presents the design and testing of a commonly used

PID controller for a generalized bi-directional neural interface system-on-chip (SoC).
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5.2 Stimulation Artifacts in the Bi-directional Neu-

ral Interface

5.2.1 Introduction

The stimulation artifact is a known issue in simultaneous neural stimulation and

recording. A long lasting stimulation artifact blanks the recording front-end, and

corrupts the evoked neural response. Thus suppressing the stimulation artifact is

critical in a bi-directional neural interface design. Several techniques have been pro-

posed in the literature to attenuate or remove the stimulation artifacts, including

recording front-end blanking, symmetrical electrode placement [265], temporary fre-

quency shifting [239, 266, 267], real-time signal processing in the computer [272] or

on-chip [75]. However, most proposed techniques have certain constraints, and the

conclusions are not suitable for a general-purpose bi-directional neural interface de-

sign.

The goal of this study is to find the stimulation artifacts in different configura-

tions. The combination of different stimulator and recorder configurations, namely

monopolar and bipolar stimulation, single-ended and differential recording, with com-

mon and separate grounds were studied. In addition, different power supply configu-

rations (dual-supply and single-supply), stimulator architectures (type-I and type-II)

were taken into account. To the best of my knowledge, this work presents the first

analysis of the stimulation artifacts considering both neural interface configuration

and electronics architectures. The main sources of the stimulation artifacts were an-

alyzed, and a custom testing board was designed to verify the analysis. Both in-vitro
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and in-vivo experimental results are presented. The analysis conclusions and the

design recommendations are given at the end of this section.

5.2.2 Review of Prior Work

Several studies of the stimulation artifacts in bi-directional interfaces have been re-

ported in the literature. DeMichele et al. from the Sigenics Inc. and the Illinois

Institute of Technology proposed a stimulus-resistant neural amplifier in 2003 [266].

The amplifier has an artifact suppression mode, which shifts the input frequency cor-

ner to 10Hz by a DC servo loop in the second stage. The work uses a low gain (x4)

first-stage amplifier, which will not be easily saturated. However, most custom neural

front-end designs prefer to use high gain in the first-stage amplifier to achieve a high

overall noise efficiency. In these cases, the artifact suppression cannot resolve the

long-lasting saturation from the first stage.

R. A. Blum and E. A. Brown et al. from the Georgia Institute of Technology and

the University of Illinois at Urbana-Champaign proposed a stimulation artifacts model

and a circuit module for the artifact removal in 2004 and 2008 [239, 267]. However, the

model only considers a voltage-mode stimulation without a charge balancing design,

and assumes the recording and stimulation circuits use the same electrode. A pole-

shifting technique was used in the first stage, while the highpass pole is set to be

200Hz. A soft-switching technique was used to make a smooth transition between

the different switch phases, which requires additional custom hardware design and

optimization.

Rossi et al. proposed an artifact suppression device for recording the local field

potential during a deep brain stimulation in 2007 [265]. The work uses separate
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grounds for the recorder and the stimulator. The recording ground was placed on

the scalp, and the stimulator’s ground was placed on the shoulder. Besides, the stim-

ulation electrodes were placed in the middle of the differential recording electrodes.

Because the recording frequency was 2-40Hz and the stimulation frequency was 130Hz,

a 10-pole lowpass filter was used to remove the stimulation artifacts. However, the

recording and stimulation frequency ranges have overlaps in many other cases, and

the stimulation electrode location cannot be chosen in the favor of the differential

recording.

A. E. Mendrela et al. from the University of Michigan, Ann Arbor and the U-

niversity of Minnesota, Minneapolis proposed a bi-directional neural interface circuit

with an active stimulation artifact cancellation in 2016 [75]. An on-chip digital adap-

tive filter was used to remove the stimulus artifacts. However, the proposed design

is based on the assumption that the stimulation artifact won’t saturate the recording

electrode or push the recording front-end out of the linear range. The digital filter

itself doesn’t help recover the recording amplifier from the saturation, or reduce the

stimulation artifacts.

In summary, the stimulation artifacts depend on the types of the recording and

stimulation electrodes, the electrical circuitry, the configuration of the ground, the

characteristics of the input stage of the recording front-end, the methods and pa-

rameters used for the stimulation, and so on. Most existing investigations on the

stimulation artifacts are restricted for a certain application or a certain configuration.

However, it is important to understand the difference between the configurations and

their effects on the stimulation artifacts, which is the goal of the following study.
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5.2.3 Analysis of Stimulation Artifacts

5.2.3.1 Origins of Stimulation Artifacts

The origins of the stimulation artifacts can be quite complicated, as reviewed in the

previous section. The analysis and models in this section are not intended to give

an accurate electrochemical description or a precise estimation of the stimulation

artifacts, but to provide insights for developing techniques for reducing or canceling

the stimulation artifacts.

A. Electrode Saturation

During the stimulation phase, a portion of the charges might be stored on the

double layer capacitors on the recording electrodes [20]. Ideally, after the reversal

phase, a charge balance will be achieved, and all the tissue environment will return

to the potential before the stimulation. However, this is not always achievable. If

the recording electrode’s potential is still within the input range of the amplifier after

the reversal phase, the recorder will return to the normal operation reasonably fast,

depending on the bandwidth of the amplifier. But if the electrode potential is pushed

away from the input range, it takes a very long time for it to recover, since the input

stage of the circuits usually has a very large time constant needed for high input

impedance.

Due to the small amplitude of the neural signal, the neural recording amplifier is

usually designed with a linear input range of tens of millivolts, and the common mode

input range is usually limited to hundreds of millivolts, depending on the supply volt-

age and the circuit architecture. The capacitively coupled instrumentation amplifier
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has extended input range in theory, however, is also limited by the ESD circuits and

breakdown voltage of the input transistors. In addition, the chopping amplifiers, or

the amplifiers employ a DC servo loop suffer more from the voltage headroom [92].

Even these limitations are not a problem for the neural amplifier alone, they may

become a significant problem in a bi-directional neural interface.

B. Voltage Gradients

The voltage gradients can be easily understood by considering the tissue is con-

ductive, and all electrodes inserted in the tissue environment are interconnected. Fig.

5.1 shows the circuit model proposed to analyze the stimulus artifacts in the bi-

directional neural interface. A monopolar stimulation with a single-ended recording

is used for illustration.

Firstly, consider the case where the recorder and stimulator share a common

ground, as illustrated in Fig. 5.1 (a). The electrode impedance for the stimulator,

the recorder and the common ground is Z1, Z2 and Z3, respectively. The spreading

resistances between the three electrodes are represented by R12, R13 and R23. As-

sume that the stimulator and the ground electrodes have a low impedance, while the

recording electrode has a high impedance, and the instrumentation amplifier has a

high input impedance, the artifacts due to the stimulus can be expressed as:

Vartifact ≈
R3

R1 +R3

Vstim

=
R23

R12 +R23

Vstim

(5.1)
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Figure 5.1: The circuit model for the bi-directional neural interface with (a) shared
grounds and (b) separated grounds.

If the R12 and R23 are in a comparable magnitude, the artifact can be half of the

stimulation’s compliance voltage, which will easily saturate the recording electrodes

or push the instrumentation amplifier out of the linear input range.

Secondly, Fig. 5.1 (b) shows the case where the recorder and stimulator have

separated grounds. The artifacts due to the stimulus can be expressed as:

Vartifact ≈
(R13R24 −R12R34)R23

Req

Vstim (5.2)
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where

Req = R12R23(R13 +R34) +R13R24(R12 +R23)

+R24R34(R12 +R13)
(5.3)

If the recording and stimulating electrodes are well separated, R12 ≈ R13, and R23 ≈

R24, then the Vartifact is approximately zero. Even if the electrodes are not separated

far away, or the recording electrodes for signal and ground have significant different

impedance, the (R13R24−R12R34)R23 will still be much smaller than Req, and Vartifact

will be a very small portion of Vstim.

From the above analysis, the stimulation artifact due to the voltage gradient can

be in the same order of the stimulating compliance voltage when the recording and

stimulation share a common ground, and the artifacts can be minimized when the

grounds are separated in the circuits.

C. Capacitive Coupling

The capacitive coupling between the stimulating and recording leads also con-

tributes to the stimulation artifacts. Even though the capacitive coupling between

the wires is usually less than 1pF, the simulation voltage can be six orders higher

than the amplitude of the neural signal, so that the coupled signal may still be visible

to the recorded signal. The coupling is worse if there is no shielding on the recording

and stimulation electrodes, or the routing wires are very long.
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5.2.3.2 Configuration of the Interface Circuits

The configuration of the stimulator and the recorder, and the placement of the elec-

trodes have a high impact on the stimulation artifacts. In this section, different

configurations of the neural recorder and the stimulator, and the related circuit im-

plementations are discussed.

There are two typical configurations for a multi-channel neural signal recording

front-end: the single-ended recording and the differential recording, as illustrated in

Fig. 5.2 (a) and (b), respectively. In the single-ended recording, a reference electrode

Figure 5.2: Configuration of typical multiple channels neural recording front-end.
(a) single-ended recording configuration, and (b) differential recording configura-
tion.

and a ground electrode are shared among all channels. The ground can be used as

the reference in some cases. In the differential recording, two electrodes collect the

signal between of them, one electrode provides the ground, and no reference electrode

is required.
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It should be noticed that fully-differential is a widely used term in the circuit

design community. It refers to the circuit module which has both a differential input

and a differential output. However, a differential recording doesn’t require a fully

differential circuit.

Similar to the recording, there are two typical configurations for the electrical

neural stimulation: the monopolar stimulation and the bipolar stimulation. In a

monopolar stimulation, the electrical charges are injected from one electrode for s-

timulation, and pulled from the same electrode to achieve the charge balancing. A

low impedance counter electrode provides the return path. Usually, the ground is

used as the counter electrode. In a bipolar stimulation, the electrical charges are

passed between two electrodes for stimulation. A low impedance ground electrode is

usually connected to the tissue and provides the electronic ground, however, it is not

required since only a potential difference is needed between the bipolar electrodes to

generate the current. It should be noticed that there is a difference between a biphasic

stimulation and a bipolar stimulation. A biphasic stimulation means that a reversal

phase is followed by the simulation phase. Both monopolar and bipolar stimulation

can perform a biphasic stimulation.

There are two typical methods to implement the stimulator. If both a current

sink and a current source are used in the working electrode to generate the stimulation

and reverse phase, the stimulator circuit is referred to as a Type-I stimulator in this

work. If only a current sink or a current source is used in the working electrode, and a

voltage buffer is connected to the counter electrode, the stimulator circuit is referred

to as a Type-II stimulator in this work. It should be noticed that:

• A Type-I stimulator can perform both a monopolar stimulation (Fig. 5.3 (a)),



211

and a bipolar stimulation (Fig. 5.3 (b)). Using the same supply voltage, the

bipolar configuration gives twice the compliance voltage range for the stimula-

tion.

• A Type-II stimulator usually can only be used to perform a bipolar stimulation

(Fig. 5.3 (c) and (d));

• Since only a current sink or a current source is implemented in a Type-II stim-

ulator, it saves the voltage headroom for one current source (or sink), which is

an advantage over the Type-I stimulator in a low-voltage and low-power design;

• A current sink is usually easier to implement than a current source since its most

circuit components are operating at a low voltage with respect to the ground.

So a Type-II stimulator with a current sink (Fig. 5.3 (c)) is in fact much more

popular than the design with only a current source (Fig. 5.3 (d)).

5.2.3.3 Practical Issues in the Electrical Circuits

One of the practical design challenges is the different requirements in the supply

voltages for the stimulator and the recorder modules. The stimulator module usually

requires high supply voltages for driving the high impedance electrodes. At the same

time, the recorder and the digital modules need a low supply voltage to reduce the

power consumption. Both dual-supply and single-supply are commonly used in circuit

design, as shown in Fig. 5.4. A dual-supply design offers a common-mode ground,

which has to be generated in a single-supply design, mostly likely by a push-pull

stage. A level-shifter is required if a low voltage digital signal is to be used to control

a high voltage stimulator in both configurations.
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Figure 5.3: The configuration of typical neural stimulation back-ends. (a) shows a
monopolar stimulation configuration, (b), (c), and (d) are bipolar configurations.
(a) and (b) are using a Type-I stimulator, (c) and (d) are using a Type-II stimulator.

The two configurations are equivalent in the circuit design, however, when con-

necting the electronics ground to the tissue ground, there is a problem for the single-

supply design. If the tissue ground is connected to the stimulator ground, the common

mode signal will be much higher than the recorder’s ground, and may be even higher

than the recorder supply in many cases. For a DC-coupled design, or designs require

a DC servo loop, what is usually not feasible. If the tissue ground is connected to

the recorder ground, the tissue ground is not centered between the highest and lowest

supplies of the stimulator, which will be a waste of the power and the compliance

range. It should also be noticed that if the stimulator tries to discharge the local
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Figure 5.4: Two common ground configurations for the recorder and the stimulator:
(a) dual-supply and (b) single-supply. In a dual-supply design, the grounds of all
circuit modules are connected together, while in a single-supply design, the lowest
supply in each module is connected together. The design is also limited by the bulk
of the CMOS technology.

tissue to the stimulator ground GNDH, the potential difference between GNDH and

GNDA will cause a DC current, which may damage the tissue. This must be avoid-

ed. Even though a single-supply design is simpler in certain cases, especially with

bulk CMOS technology, a dual-supply design might be required for the bi-directional

neural interface design.
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5.2.4 Methods

A bench-test board was designed to fully study the stimulation artifacts in differ-

ent configurations. The block diagram of the board is shown in Fig. 5.5, and the

photograph of the assembled board is shown in Fig. 5.6.

Figure 5.5: The block diagram of the bench testing board. The supplies and
grounds for the recorder, the stimulator and the digital modules are intentionally
separated on the board.

The board is carefully designed with ground isolation for each module. The

recorder, stimulator and digital processor have individual ground and power manage-

ment unit. The recorder and stimulator are powered by two 9V batteries. Positive

and negative regulators are used to provide regulated supply voltages of ± 6V. The

digital module is powered by a 5V USB cable, and regulated to 3.3V for the micro-

controller. Optical isolators TLP292 from Toshiba [273] are used to provide a digital

control signal to the recorder and simulator modules without connecting the ground.
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Figure 5.6: The photo of the assembled bench testing board. The dimension is
216mm × 171mm.

The isolation amplifier uses a duty cycle modulation-demodulation technique to con-

verter the input signal to the output in separate grounds. A 50kHz two-pole lowpass

filter is implemented on board to remove the ripples. The data acquisition devices

and the oscilloscope share the ground with the digital module. By using the isola-

tion amplifier, the oscilloscope can monitor the analog output of the recorder without

connecting the mains ground to the animals.

The recorder has two stages. A first stage using low noise instrumentation ampli-

fier INA111 from Burr-Brown [274]. The amplifier has a noise density of 13nV/rtHz

at 100Hz. The gain is fixed at 11. The input stage is biased using large resistors to

provide a very low cut-off frequency. Switches are integrated to be able to disconnect

or blank the recording electrodes during the stimulation. A DC servo loop is also im-

plemented which can move the highpass corner frequency. The second stage provides

an additional gain of 50 to the recording chain. The recorder can perform either a
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single-ended recording or a differential recording depending on the connection of the

electrodes.

The stimulator has two output stages, each has a current source, a current sink,

and two switches for shorting the electrodes to the two power lines. Additional switch-

es are also included to short the two electrodes, or short the electrode to the stimu-

lator ground. By controlling the timing of the switches, the stimulator can perform

a monopolar or a bipolar stimulation in either Type-I or Type-II configuration. The

amplitude of the current source and sink are programmable and tunable for match-

ing. Another isolation amplifier can be connected to the electrode for monitoring the

compliance voltage of the electrodes.

The digital module mainly consists of a microcontroller ATxmega128A4U from

Atmel to generate the timing for the stimulator and the control signal for the recorder.

The microcontroller has an integrated USB 2.0 module. A computer user interface

is developed in Matlab, and commands are sent to the bench test board via USB.

Besides the oscilloscope, a pre-developed data acquisition board is used to collect the

data and send to the computer.

5.2.5 Experimental Results

5.2.5.1 In-Vitro Experiment

A series of in-vitro studies was conducted in 0.9g/100mil Sodium Chloride. The

placement of the electrodes is illustrated in Fig. 5.7. A pair of electrodes were

inserted in the saline for both the recorder and the stimulator. When performing

a single-ended recording or a monopolar stimulation, only one of the electrodes was
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Figure 5.7: Electrode setup for the stimulation artifacts experiments.

used. A 75µm tungsten low impedance electrode was used as the reference electrode.

A stripped copper wire was used as the ground.

Different configurations for recording and stimulation, different types of stimula-

tors, with a common or separate grounds were explored in the in-vitro study. Table

5.1 lists the experimental setup and the corresponding results.

Table 5.1: In-vitro Experiments for Stimulation Artifact Study

Recording

Single-ended Differential

S
ti

m
u

la
ti

on Type-I

Common GND
Monopolar Fig. 5.8 (a) Fig. 5.8 (b)

Bipolar Fig. 5.8 (c) Fig. 5.8 (d)

Separate GND
Monopolar Fig. 5.9 (a) Fig. 5.9 (b)

Bipolar Fig. 5.9 (c) Fig. 5.9 (d)

Type-II
Common GND

Bipolar (current sink) Fig. 5.10 (a) Fig. 5.10 (b)

Bipolar (current source) Fig. 5.10 (c) Fig. 5.10 (d)

Separate GND Bipolar Fig. 5.11 (a) Fig. 5.11 (b)
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Firstly, the stimulator was tested in the Type-I configuration. The stimulator was

configured to do a 10-pulse biphasic stimulation. The pulse amplitude was 100µA,

the pulse phase was 200µs. The pulse interval was 3ms. The discharge time was 1ms,

and the discharge resistor was 1kΩ. The highpass frequency corner of the amplifier

was set to be 0.159Hz by a 10nF coupling capacitor and a 100MΩ biasing resistor.

The lowpass frequency was 7.2kHz, and the overall gain was 550. Fig. 5.8 shows the

recorded stimulation artifacts with the recorder and the stimulator share the same

ground. The figures in the top row show the results using a monopolar stimulation,

and the figures in the bottom row show the results using a bipolar stimulation. The

figures in the left column show the single-ended recording, and the figures in the right

column show the differential recording. A monopolar stimulation with a single-ended

recording gives the worst result, and a bipolar stimulation and a differential recording

results in the minimum artifact.

Fig. 5.9 shows the recorded stimulation artifacts with the recorder and the

stimulator having a separate ground. It should be noticed that the scale in this figure

is much smaller than Fig. 5.8, one grid is only 50µV. The figures in the top row show

the measurement results using a monopolar stimulation, and the figures in the bottom

row show the measurement results using a bipolar stimulation. The figures in the left

column show a single-ended recording, and the figures in the right column show a

differential recording. Similar to the results with the common ground, a monopolar

stimulation with a single-ended recording gives the worst results. However, with a

separate ground, even the worst artifacts will not saturate the recording electrodes.

Secondly, the stimulator was tested in the Type-II configuration. The amplitude

and timing of the stimulator pulses were the same as in the Type-I experiment. Fig.

5.10 shows the recorded stimulation artifacts with the recorder and the stimulator
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Figure 5.8: The measured stimulation artifacts of a Type-I stimulator with common
ground between the recorder and the stimulator. (a) monopolar stimulation and
single-ended recording, (b) monopolar stimulation and differential recording, (c)
bipolar stimulation and single-ended recording, and (d) bipolar stimulation and
differential recording.

share the ground. It should be noticed that the Type-II stimulator can only perform

a bipolar stimulation. The figures in the top row show the measurement results using

a current sink, and the figures in the bottom row show the measurement results using

a current source. The figures in the left column show the single-ended recording, and
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Figure 5.9: The measured stimulation artifacts of a Type-I stimulator with separate
grounds between the recorder and the stimulator. (a) monopolar stimulation and
single-ended recording, (b) monopolar stimulation and differential recording, (c)
bipolar stimulation and single-ended recording, and (d) bipolar stimulation and
differential recording.

the figures in the right column show the differential recording. In general, the Type-

II stimulator using a current source gives much better results than the one using a

current sink. The differential recording also gives better results in this case.

Fig. 5.11 shows the recorded stimulation artifacts with the recorder and the

stimulator having a separate ground. A grid in this figure is 200µV. The current
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Figure 5.10: Stimulation artifacts of a Type-II stimulator with common ground
between the recorder and the stimulator. The stimulator uses a current sink in
(a) and (b), and a current source in (c) and (d). Recorder is configured to do
single-ended recording in (a) and (c), and differential recording in (b) and (d).

source and the current sink stimulators had a similar performance when the ground

of the recorder and stimulator were separate. In general, the stimulation artifacts

were much smaller when the grounds were separate. It should be noticed that if the

recording amplifier is not saturated, the signal processing techniques for removing

the artifacts can be applied. In general, the stimulation artifacts are minimum when
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Figure 5.11: Stimulation artifacts of a Type-II stimulator with separate ground
between the recorder and the stimulator. Recorder is configured to do single-ended
recording in (a) and differential recording in (b).

the grounds of the recorder and the stimulator are separate. When the grounds are

connected, a differential recording helps reduce the artifacts. The worst case would

be the common ground with a single-ended recording.

5.2.5.2 In-Vivo Experiment

Two animal experiments were conducted to further verify the results from the in-vitro

study. A female Long-Evans rat received two implants, one in the motor cortex, the

other in the sensory cortex. A ground stew was connected to the skull of the rat to

provide the ground for the recording. Fig. 5.12 shows the experimental setup.

A bipolar stimulation was performed in the sensory cortex while having a single-

ended recording in the motor cortex. Fig. 5.13 (a) shows the recording when the

grounds of the recorder and stimulator were connected together. A large stimulation
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Figure 5.12: The photo of the setup of the in-vivo experiment. A female Long-Evans
rat received two implants, one in the motor cortex, the other in the sensory cortex.
The measurement was conducted using the testing board presented in section 5.2.4.

artifact appeared with a long recovery time. And Fig. 5.13 (b) shows when the

grounds are separated, the stimulus artifact was minimized and an evoked potential

was shown after the artifact. Notice also that the evoked potential is not visible in

the top figure due to the large stimulation artifact.

Another bi-directional experiment was conducted in a macaque. The recording

electrodes were chronically implanted in the left hippocampus while the stimulating

electrodes in the upstream areas. The stimulation pulse train contains 10 pulses with

2mA current. Fig. 5.14 (a) shows the case when the grounds of the recorder and the

stimulator were shorted together. The recording amplifier was saturated soon after

the stimulation and the recovery took hundreds of milliseconds after the last pulse.

Fig. 5.14 (b) shows the case when the grounds were separated, and the artifacts were

minimized. Fig. 5.14 (c) shows the output of the recording with an additional low-

pass filter with a frequency corner of 200Hz. The stimulus artifacts were completely
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Figure 5.13: Bi-directional neural interface experiment in a Long-Evans rat. Local
field potential was recorded in the motor cortex while stimulating the sensory cor-
tex. (a) When the grounds of the recorder and stimulator were connected together,
there was a large artifact and long recovery time; (b) when the grounds were sepa-
rated, the artifact is minimized. An evoked potential was shown after the stimulus
artifact.

removed by the filter since they were out of the signal band.

5.2.6 Conclusion

In this work, the stimulation artifact in a bi-directional neural interface has been

studied. Different electrode and circuit configurations were taken into account in this

study. Both in-vitro and in-vivo experiments were conducted. Several conclusions

are given from the analysis of this work:
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Figure 5.14: Bi-directional experiment in a Rhesus macaque. (a) The grounds
of the stimulator and the recorder are shorted together, the stimulation artifact
saturates the amplifier, and takes hundreds of milliseconds to return to the pre-
stimulus potential. (b) The grounds of the stimulator and recorder are separated,
and only minor artifact appears in the recording. (c) A 200Hz filter is applied to
the recording in (b), which completely removes the artifacts.

• The stimulation artifacts can be minimized if the ground of the recorder and

stimulator can be separated. Circuit techniques can be used to enable the iso-

lation even if the bi-directional interface is implemented on a single die system-

on-chip (SoC).

• A charge balanced stimulation causes much smaller artifacts in the recording

amplifier. In a voltage mode stimulation without charge balancing, once the

recording electrodes were saturated, they can only be recovered by the biasing

circuit with a large time constant. One possible solution is to temporarily shift
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the high-pass frequency corner to a higher frequency during or right after the

stimulation. However, the signal will be corrupted and cannot be well recovered

unless the exact timing, and frequency and phase change are known.

• A bipolar stimulation usually causes smaller artifacts in the recording than the

monopolar stimulation, since the stimulation is restrained in the area between

the two electrodes. However, a bipolar stimulation cannot replace a monopolar

stimulation in triggering certain physiological response.

• A differential recording usually suppresses the stimulation artifacts. However,

attention must be paid to make sure the differential electrodes are within the

linear input range of the recording amplifier. If the signal is distorted, it might

lead to wrong analysis results.

• The input range of the recording amplifier is usually limited by the supply

voltages and the ESD circuits. Extending the input range of the recording

amplifier is very helpful in preventing saturating the input stage. However, this

is quite a challenge in a low voltage front-end design.

• When having a common ground, the Type-II stimulator with a current sink gives

a large artifact, since one of the electrodes is fixed to a high voltage relative to

the ground, which gives a large step input to the recording amplifier.

• Discharging the stimulation electrode might also give a step response to the

recording amplifier.

In summary, separating recording and stimulation ground is highly recommended

for a bi-directional neural interface design, especially if a monopolar stimulation and

a single-ended recording is necessary. If a common ground has to be used, table 5.2



227

gives an estimation of the stimulation artifacts (both amplitude and duration). In

this table, “+” means good and “-” means bad.

Table 5.2: Stimulation Artifacts with Common Ground

Single-ended

Recording

Differential

Recording

Monopolar

Stimulaiton
- - - +

Bipolar

Stimulation
- ++
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5.3 Closed-loop Neural Interface System

5.3.1 Introduction

There are two fundamental types of control systems, the open-loop control system

and the closed-loop control system [275]. In an open-loop control system, the control

action signal is independent of the output of the plant under control. In a closed-

loop control system, the control action signal is dependent on the output of the

plant through the feedback loop. Fig. 5.15 (a) shows the block diagram of a typical

closed-loop control system. The system consists of a sensor, an actuator, a closed-loop

Figure 5.15: (a) The block diagram of a typical closed-loop control system. (b)
The typical block diagram of a bi-directional closed-loop neural interface system.
The neural recorder works as the sensor, and the neural stimulator works as the
actuator.

controller and the plant under control. Ideally, the closed-loop controller generates the

control action signal for the actuator to ensure the output of the plant is the same as

the reference. The closed-loop control finds its applications in almost everywhere, not
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only in electrical or mechanical engineering, but also in biology, climate science, social

science, economics and finance, and other applications [276]. Fig. 5.15 (b) shows the

block diagram of a bi-directional closed-loop neural interface system, where the neural

recorder works as the sensor, and the neural stimulator works as the actuator.

There exist two types of feedback, the positive feedback and the negative feedback

[276]. In a system with a positive feedback, the fed-back signal is in phase with the

signal, while in a system with a negative feedback, the fed-back signal is out of phase

with respect to the input signal. Both positive and negative feedback find applications

in circuits and system design, but negative feedback is more applicable for its stability

and accuracy of a system by correcting or reducing the unwanted changes. This is

especially important for a neural interface since a positive feedback induced oscillation

may cause permanent damage to the neural system.

There are many well-established control theory and stability compensation meth-

ods [121, 277]. The most commonly used closed-loop controller using a feedback

mechanism is a proportional-integral-derivative (PID) controller. More than 95% of

the closed-loop industrial processes use PID controllers [278]. The terms of a PID

controller can be interpreted as corresponding to time: the proportional term depends

on the present error, the integral term depends on the accumulation of past errors,

and the derivative term is a prediction of future errors, based on the current rate of

change [5].

This section presents the analysis and design of the closed-loop neural interface

systems. The mechanisms of different closed-loop neural interface systems are first

reviewed. Then, the design of a closed-loop neural interface with a general purpose

PID controller is presented.
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5.3.2 Mechanism of Closed-loop Neural Interface System

Fig. 5.16 shows the typical closed-loop brain-machine interface (BMI) systems with

different control mechanisms. A prosthetic arm is used as an example of the BMI for

illustration, and the PID controller represents any closed-loop controller. Fig. 5.16

(a) shows a basic bi-directional BMI. The electrical stimulator encodes the sensory

information to the sensory cortex in the brain, and the brain generates the motor

intent, which is decoded for the operation of the actuators. In other words, the

closed-loop control policy origins from the brain. J. Liu et al. from the Michigan State

University proposed an application aiming to improve the sensory encoding capacity

of the BMI in 2011 [279]. Fig. 5.16 (b) illustrates the proposed method. The method

involves an encoder mapping the sensory data acquired from the prosthetic to the

desired patterns related to the somatosensory cortex activity. The errors between

these desired patterns and those recorded in the somatosensory cortex are used in

a PID controller to update the stimulation of the sub-cortical somatosensory areas

in the thalamus or brainstem. This approach could elicit more continuous, natural

sensory percepts compared to those evoked by the limited set of pre-programmed

typical stimulation patterns [280].

Another closed-loop control mechanism is illustrated in Fig. 5.16 (c). In this case,

the BMI system uses electrical stimulation to control a paralyzed arm rather than

a prosthetic arm. The brain-controlled muscle stimulation has been shown to be a

viable method of re-animating paralyzed arms in monkeys and humans [46, 268, 269].

In these studies, the muscle stimulation, and thus the arm movement trajectory,

was entirely driven by motor cortex activity. However, prior work has shown that

recording from pre-motor cortical areas to decode motor goals, not entire intended
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Figure 5.16: The block diagrams of different closed-loop BMI applications. The
functions of the proposed neural interface system are shown in red. (a) Standard
bi-directional BMI for a prosthetic arm. (b) Same as (a) but with improved sensory
encoding method using a PID controller. (c) Bi-directional BMI to re-animate
paralyzed arm by decoding desired arm trajectory. (d) Same as (c) but decoding
motor goal and implementing arm trajectory with a PID controller.

trajectories, can improve performance and lower cognitive demand [80, 270]. Thus

another potential BMI application for a closed-loop controller could be to update the
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muscle stimulation based on the error between a decoded goal and the recorded state

of the re-animated arm [281], as illustrated in Fig. 5.16 (d).

Besides prosthetics, other examples for the closed-loop bidirectional BMI appli-

cations include a deep brain stimulation (DBS) for Parkinson Disease and epilepsy.

H. Rhew et al. from the University of Michigan, Ann Arbor proposed a closed-loop

DBS system in 2014 [11]. The system detects the abnormal energy in the LFP and

adjusts the stimulation current using a PI controller. W. Chen et al. from the Na-

tional Chiao Tung University proposed a closed-loop neural prosthetic in 2014 [10].

The proposed design detects the seizure event and delivers a deep brain stimulation

with parameters modulated from the internal brain state.

In addition, closed-loop neural interfaces are also important for electrophysiolog-

ical studies [282]. A. Wallach et al. from the Technion proposed a neuronal response

clamp in 2011 [263]. In this work, a closed-loop technique enabling control over the in-

stantaneous response probability of a neuron was proposed using a PID controller. It

has been used to characterize the input-output neuronal relationship. Sense-stimulate

devices with closed-loop controllers have also been proposed for neuromodulatory ap-

plications [8]. In addition, the closed-loop stimulation of the sleep slow oscillation

has been proposed to enhance memory [271].

In summary, there are many different configurations and mechanisms for using

a closed-loop neural interface, and it is critical for a wide range of prosthetics and

neuroscience research. Thus, the design of an energy efficient bi-directional neural

interface with a closed-loop controller is highly desirable.
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5.3.3 Design of a Closed-loop Neural Interface with a PID

controller

5.3.3.1 Introduction

As reviewed in section 5.3.1, the PID controller is the most commonly used control

loop feedback mechanism [5]. The brain is a highly non-linear, dynamic time-variant

system, which can hardly be accurately modeled. A PID controller needs only the

process variables and the target value, not requiring the knowledge of a system model

or the underlying process. Thus the PID controller has a wide range of potential

applications in the neuroprosthetic development and neuroscience research. However,

it has not been reported to be integrated into the BMI hardware for on-chip closed-

loop operation. In this work, a programmable PID controller in the analog domain

has been designed to enable a variety of closed-loop experiments.

The basic working principle of the PID controller is briefly reviewed here. A PID

controller calculates the difference between the desired reference and the measured

output of the plant under test as the error value e(t). The output of a PID controller

u(t) in the time domain is:

u(t) = Kpe(t) +Ki

∫
e(t)dt+Kd

de(t)

dt
(5.4)

where Kp, ki, and Kd are coefficients for the proportional, integral and derivative

terms, respectively. By tuning the three parameters of the model, a PID controller

can meet different process requirements.
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There are four major characteristics of a closed-loop step response, including: i)

the rise time, which is the time it takes for the system’s output to rise to 90% of the

desired level; ii) the overshoot, which is the peak level higher than the steady state,

usually normalized against the steady state; iii) the settling time, which is the time

it takes for the system to converge to the steady state; and iv) the steady-state (S-S)

error, which is the difference between the steady-state output and the desired output.

The effect of each controller parameter Kp, Ki, and Kd are summarized in Table 5.3.

It should be noticed that the tuning is usually more complicated in practice.

Table 5.3: Effects of PID Parameters [5]

Parameter Rise Time Overshoot Settling Time S-S Error Stability

KP Decrease Increase Small change Decrease Degrade

KI Decrease Increase Increase Eliminate Degrade

KD Minor change Decrease Decrease
No effect

in theory

Improve if

Kd is small

5.3.3.2 System and Circuit Implementation

The PID controller has been implemented in both analog [283, 284] and digital do-

mains [285, 286]. The analog implementation has the advantages of low-power con-

sumption and a compact layout, especially when the input and output are both analog

signal. In this work, the PID controller is implemented in Gm-C blocks. The block

diagram of the overall closed-loop system is shown in Fig. 5.17. The system consists

of the closed-loop controller, a neural recorder, a neural feature extraction unit, a

neural stimulator, and the buffers for connecting them. In the PID controller, the

error signal is the difference between the extracted neural feature and a pre-set refer-

ence value. The output of the PID controller is a weighted sum of the proportional,
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Figure 5.17: The block diagram of the overall system using the designed PID
controller.

the derivative, and the integral terms of the error signal. The neural stimulator work-

s as the actuator in the system. The output of the PID controller can be used to

modulate the stimulating current amplitude, the stimulating frequency, or the stim-

ulation pulse width. The sensor in the system is the neural recorder and the neural

feature extraction unit. Any neural feature, including the spectral energy, the ac-

tion potential firing rate, can be used as the input of the PID controller. In this

work, the action potential fire-rate is calculated and converted to a voltage signal in

the embedded MCU. However, this part can be easily integrated on-chip by using a

frequency-to-voltage converter or an analog integrator.

The circuit schematic of the PID controller is shown in Fig. 5.18. The PID con-

troller consists of 6 programmable Gm blocks and 2 capacitors. The circuit schematic

of the Gm block and the biasing current generation module can be found in Fig. 3.4

and Fig. 3.6 from Chapter 3, respectively. The parameters for each of the P , I, and

D components are independently programmable. The transfer function of the PID
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Figure 5.18: The circuit schematic of the designed PID controller.

controller is given by:

Vout(s)

Verr(s)
=
gm1

gm6

+
gm3

gm6(1 +
sC1

gm2

)
+

gm5

gm6(1 +
gm4

sC2

)
(5.5)

where Verr=Vref − Vin. The gain of the P, I and D components are KP=gm1/gm6,

KI=gm3/gm6, and KD=gm5/gm6.

The basic parameter choosing and tuning of the PID controller have been re-

viewed in section 5.3.1. For a complex neural system where the accurate model can

hardly be achieved, the plant exploration based method can be used. The initial

estimation of the optimal operating points can be learned from the Zeigler-Nichols

tuning method [287]. The final controller parameters can be determined by using an

iterative procedure, based on the least-root-mean-square error. Considering the re-

quirement of a BMI system, sufficient phase margin for stability must be guaranteed.

Since an in-depth study of the control theory is not the focus of this work, the well
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established PID tuning theory will not be discussed here. More information can be

found in references [288, 289].

5.3.3.3 Experimental Results

The design has been fabricated in IBM 180nm CMOS technology. The micrograph

of the fabricated chip and the layout of the PID module are shown in Fig. 5.19, with

major blocks highlighted. The PID module occupies a silicon area of 100µm×75µm,

Figure 5.19: The microphotograph and the layout of the PID controller module.

including the digital registers. The bench testing was conducted to evaluate the

designed PID controller. The in-vivo bi-directional closed-loop experiments will be

discussed in the next Chapter.

The basic function and tuning of the PID controller were tested with a 2nd-order

RC ladder network, as shown in Fig. 5.20. The transfer function of the RC network
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Figure 5.20: The 2nd order RC ladder network used for testing the PID controller.

is given by:

H(s) =

1

R1R2C1C2

s2 + s(
1

R1C1

+
1

R2C1

+
1

R2C2

) +
1

R1R2C1C2

(5.6)

The output of the RC ladder network is fed back to the PID controller and

compared with a pre-set reference signal to find the error signal. A step change from

0.8V to 0.9V was given at the reference. The measured transient response of the

system in different configurations are shown in Fig. 5.21. The design proves to be

programmable over a large range, and useful in versatile closed-loop applications.

In addition, a closed-loop neuronal response clamp experiment [263, 282] was set

up to test the proposed PID controller. The nervous system of man’s and animals’

response to the rapidly changing sensory information is highly variable with complex

dynamics. The dynamic response is reflected from a single neuron to a neuronal

network. Thus, it is important to study the behavior in a closed-loop approach in

the appropriate context of a realistic input-output dependency. The voltage-, and

current-clamps are well-known techniques [282] in the closed-loop electrophysiology.

Recently, a dynamic neuronal response clamp technique was proposed to study the

threshold dynamics of a neuron using extracellular stimulation and recording. A

modified version of this technique is employed to test the proposed closed-loop system.

The diagram of the designed testing system is illustrated in Fig. 5.22. The major
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Figure 5.21: The measured transient response of the PID controller in different
configurations. The ratio of the Kp, Ki, and Kd are (a) 1-2-0 (b) 2-1-0 (c) 1-0-1
and (d) 1-1-1.

Figure 5.22: Diagram of the testing configuration of the PID controller. The major
blocks used are the PID controller, a stimulator, an action potential detector, a
neuron model, and a lossy integrator for finding spike rate. The on-chip stimulator
is configured in the test mode to output continuous current. The lossy integrator
is implemented in the MCU. The neuron is modeled by another MCU.

blocks used are the PID controller, a neural stimulator, an action potential detector,

a neuron model, and a lossy integrator for finding spike-rate. The integrate-and-fire
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model [206] for the single neuron employed in this experiment can be expressed as:

τm
dV

dt
= Vm − V (t) +RmIs(t) (5.7)

where τm ≈ 10ms is the membrane time constant, Vm is the resting membrane poten-

tial, V (t) is the actual membrane potential as a function of time, Rm ≈ 107Ω and Is(t)

is the stimulation current. Once the membrane potential reaches a certain threshold

VTH , an action potential occurs and reset the potential back to its resting membrane

potential. In this test, an off-chip microcontroller (Atmel XMEGA 128A4U [290])

with an integrated ADC and DAC was used to model the neuron. The MCU is run-

ning at a sampling rate of 100KHz, corresponding to a time resolution dt = 10µs. The

continuous time differential equation is simplified by a discrete difference equation for

the implementation in the MCU. The MCU’s ADC measures the RmIs[t], and the

DAC generates V [t] based on the following equations:

V [t] =


Vm +RmIs[t− 1] + τmV [t− 1]

1 + τm
V [t− 1] < VTH

Vm V [t− 1] > VTH

(5.8)

The stimulator was reconfigured in a testing mode to output a continuous stim-

ulation current to meet the requirement of intracellular stimulation. The stimulation

current amplitude was modulated by the output voltage of the PID controller. The

neural model responded to the stimulation current, generating the membrane poten-

tial. The action potential detector module evaluated the membrane potential voltage

with a pre-defined threshold voltage. The output of the detector was a PWM wave,

which was sent to the integrator and converted to a voltage proportional to the spike

rate. In this work, the spike rate was converted to a voltage in the embedded MCU.
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The difference between the integrator’s output voltage and the reference voltage was

sent to the PID controller.

Fig. 5.23 shows 12 test trials with different proportional-integral-derivative pa-

rameters. The dots indicate the action potential’s time stamps. The same reference

Figure 5.23: The measured transient response of the dynamic neuronal clamp with
different PID parameters. Relative values of P, I and D components are shown on
the right.

was set at time 0, the neuron responded to the stimulation current until it settled at

a constant firing rate.

Fig. 5.24 shows 12 testing trails with different references. The neuron settled at

a relative constant firing rate proportional to the reference, in a manner based on the

choice of the P, I, and D terms. The test results showed that by programming the

parameters, one can control the behavior of the neuron without the knowledge of the

exact model [282].
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Figure 5.24: The measured transient response of the dynamic neuronal clamp with
different references.

In summary, in this work, the importance of closed-loop control of the BMI device

is analyzed, and the mechanisms of different closed-loop BMI devices are reviewed.

As the most commonly used closed-loop controller, a general-purpose PID controller

is selected to be implemented for the operation of a bi-directional closed-loop BMI

device. The system and circuit implementation of the PID controller are presented,

and the function of the designed chip has been evaluated in bench testing. The

proposed design provides a promising solution for a wide range of neural science

investigations.



Chapter 6

System Integration and Animal

Experiments

6.1 Introduction

Behavioral and in-vivo animal experiments have been used through the history of

biomedical research. The non-human animal experiments have become one of the

most important methodologies in modern neuroscience research, and are highly valu-

able for the development of the brain-machine interface (BMI). However, most of the

available medical instrumentation are designed for human medical treatments, which

may not work well on animals. It is especially challenging if the designed experimen-

t requires monitoring of the animal’s brain activities or giving real-time stimulation

feedback while the animal is freely behaving. In addition, the study of neural modula-

tion and closed-loop control also requires a custom designed wearable or implantable

BMI device to perform on-chip signal processing, feature extraction, classification,

243
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machine learning, neuromodulation, and mapping. In summary, the design and in-

tegration of a wireless BMI for freely behaving animals is of great practical value

and provides a very powerful tool for both neuroscience research and neuroprosthetic

development.

Previous chapters have discussed the neural interface design from several per-

spectives. However, a complete system is more than the simple summing of indi-

vidual building blocks. More importantly, many practical design issues are usually

overlooked and underemphasized in the literature. A system that has been perfect-

ly characterized in bench testing may not necessarily work well in an actual animal

experiment. In this chapter, a custom system integration for animal experiments,

especially during free behavior experiments is discussed. The methodologies and ex-

perimental results are presented in details.

The chapter is organized as follows. Section 6.2 presents the general purpose

experimental platform, namely the PennBMBI. A custom designed command and

communication protocol is presented, with a user-friendly interface. Wireless neural

recording, stimulating and sensing functions have been verified in both anesthetized

and awake rats. Section 6.3 presents a custom designed watermaze experiment for

the study of augmenting perception through modulated electrical stimulation of so-

matosensory cortex. A waterproofed wireless neural stimulator and a complete an-

imal tracking and neuromodulation experimental system are presented. Section 6.4

describes a bi-directional neural interface system for freely behaving monkeys. Long-

term neural stimulation and recording during awake, sedated and sleeping monkeys

are presented. A study in the hippocampal gamma-slow oscillation coupling using the

developed system was also described. All procedures used in the studies presented
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in this chapter were approved by the institutional animal care and use committee

(IACUC) of the University of Pennsylvania.
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6.2 The PennBMBI: A General Purpose Experi-

mental Platform

6.2.1 Introduction

In this section, the design of a general purpose wireless brain-machine-brain interface

(BMBI) system is presented. The system integrates four battery-powered wireless de-

vices for the implementation of a closed-loop sensorimotor neural interface, including

a neural signal analyzer, a neural stimulator, a body-area sensor node and a user-

friendly graphic interface implemented on a PC. The neural signal analyzer features

a four channel analog front-end with configurable passband, gain stage, digitization

resolution, and sampling rate. The target frequency band is configurable from EEG

to single unit activity. A noise floor of 4.69µVrms is achieved over a bandwidth

from 0.05Hz to 6kHz. Digital filtering, neural feature extraction, spike detection,

sensing-stimulating modulation, and compressed sensing measurement are realized

in a central processing unit integrated into the analyzer. A flash memory card is

also integrated into the analyzer. A 2-channel neural stimulator with a compliance

voltage up to ±12V is included. The stimulator is capable of delivering unipolar or

bipolar, charge-balanced current pulses with programmable pulse shape, amplitude,

width, pulse train frequency and latency. The system also includes a multi-functional

sensor node, consisting of an accelerometer, a temperature sensor, a force sensor and

a general sensor extension port. A computer interface is designed to monitor, control

and configure all aforementioned devices via a wireless link, according to a custom

designed communication protocol. Wireless closed-loop operation between the sen-

sory devices, neural stimulator, and neural signal analyzer can be configured. The
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proposed system was designed to link two sites in the brain, bridging the brain and

external hardware, as well as creating new sensory and motor pathways for clinical

practice.

6.2.2 System Overview

Fig. 6.1 illustrates the block diagram of the PennBMBI system. In general, four types

of devices are required to interface with the brain, the body and the PC, including i)

a neural signal analyzer, ii) a deep brain stimulator, iii) a smart sensor node, and iv)

a PC interface board with the graphic user interface (GUI).

Figure 6.1: The BMBI system include four kinds of devices: neural signal analyzer,
neural stimulator, body-area sensor node and computer interface. All devices can
be configured wirelessly in a computer GUI. Possible closed-loop operation between
devices are shown.

The first block includes a four-channel analog front-end with a high input impedance.

The analog front-end records neural signals from EEG to single unit activity, with

the strength of the input signal varying from less than 1µV to around 1mV, and the

frequency band varying from DC to 10kHz. Configurable analog band-pass filters

are used to suppress electrode offset, and to bandpass the signal in the frequency of
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interest. An additional programmable gain stage and an analog to digital convert-

er (ADC) with a programmable sampling rate and resolution are employed. Digital

filtering, neural feature extraction, spike detection, sensing-stimulating modulation,

and compressed sensing measurement are realized in a central processing unit inte-

grated on board. The flash memory card is activated in the low-power operation

mode, for compressed sensing recovery verification, and for data backup.

The second block is a dual-channel stimulator with a high driving capability that

enables a charge-balanced current stimulation up to 400 µA with a compliance voltage

of ±12V for functional electrical stimulation. The device can be wirelessly controlled

to deliver capacitively coupled current pulses with programmable pulse shape, width,

pulse train frequency and latency.

The third block is a multi-functional body-area sensor node is included in the

system, which enables communication of the sensory information to the brain with

sensor-controlled wireless neural stimulation, and also enables the communication of

the motor information to an effector with wireless neural recording and processing.

The sensor node integrates a 3-axis accelerometer, a temperature sensor, a force sensor

and a general extension port connected to an ADC, which can be used with different

commercial sensors, such as pressure sensor, motion sensor, etc.

In addition, a graphic user interface has also been implemented for all device

configurations, data acquisition, and simple signal analysis. A wireless link is imple-

mented between all the devices for data transfer and on-line configuration.
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6.2.3 Hardware Implementation

6.2.3.1 Neural Signal Analyzer

A Neural Signal Analyzer (NSA), with a dimension of 56mm × 36mm × 13mm, is

designed to perform general neurological signal recording and analysis, as shown in

Fig. 6.2. The NSA integrates a four-channel analog front-end, a central processing

Figure 6.2: Photograph of the PennBMBI neural signal analyzer (NSA) in front,
rear, and side view. The wireless module and Micro SD card are not shown in the
front view.

unit (CPU), a 2.4 GHz wireless transceiver, a removable Micro SD card, a power

management unit, and other peripheral circuits. An extension board holding the

Micro SD socket can be plugged in through the connector as shown in the front and

back view when necessary.

The analog front-end integrates four independent amplifier channels, sharing a

tissue ground driving circuit. The block diagram of the front-end circuit is shown

in Fig. 6.3. A supply voltage of 3.3V is used. The common mode voltage is set

to be 1V. Configurable gain stages and filters are designed in order to meet the
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requirement of recording neurological signals with different bandwidth and signal

levels [92]. The differential input signal is AC coupled to the instrumentation amplifier

with a high input impedance and a corner frequency of 0.5Hz. This is compatible

with standard high impedance electrodes and removes the DC offset resulting from

the electrode polarization. The gain of the instrumentation amplifier is fixed at 200,

with a bandwidth of 12.5kHz [291]. Resistors with a low-temperature coefficient (TC)

are used to minimize gain drift. An integrator implemented by amplifier A4 (Fig. 6.3)

with a configurable capacitor is used as a high pass filter. Amplifier A5 is used to

provide an additional gain stage with configurable low pass filter.

Figure 6.3: Architecture of the analog front-end. VCM is the common mode voltage.
A1∼A4 forms the instrumentation amplifier with high pass filter. A5 works as
the second gain stage with configurable gain and low pass filter. The third gain
stage has a programmable gain. The ADC digitizes the amplified neural signals
at configurable sampling rates and resolution. A6 and A7 are shared by the four
channels to drive the shield potential and tissue ground.

An Atmel 32-bit AVR Microcontroller AT32UC3C1512C [292] is implemented

in the NSA. The MCU integrates a 12-bit pipeline ADC with a multiplexer, S/H

circuit, and a programmable gain stage. A programmable gain ranging from 46dB

to 102dB in total is achieved. In the recording mode, a peripheral direct memory

access (DMA) controller is used for digital data acquisition, data buffering, and serial

peripheral interface (SPI) accessing. Captured signals can be sent out via the wireless
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module or to the Micro SD card through SPI. The DMA handshakes with peripheral

interfaces directly, while the central processor core is in the sleep mode to save power.

On-line neural signal processing is performed in the 32-bit floating point DSP

core in the MCU. Various function blocks are built, including,

• Digital bandpass filter: Type-I real Finite Impulse Response (FIR) filter is

used as a bandpass filter. Six frequency bands are pre-defined, and the filter

coefficients with 24 taps and 10 taps are pre-written in the flash memory for

different filtering requirements.

• Time-domain feature extractor: Common time-domain features, such as

line-length, area, energy, maximum/minimum, and zero-crossing, are extracted

in real-time by a proper configuration of the sliding window length and overlay.

• Spectral energy feature extractor: 16/128-point FFT is used for spectral

analysis.

• Compressed sensing: Neural signal features sparsity in certain basis/dic-

tionaries [152], enabling a near lossless reconstruction under sub-Nyquist sam-

pling. A signal agnostic compressed sensing measurement is implemented in the

CPU. The input signal vector length N is set to be 512, and the measurement

number M (M<N) can be programmable to 256, 128, 64, or 32. y = Φx is

realized as the compressed sensing measurement, where x ∈ RN×1 is the input

neural signal, y ∈ RM×1 is the measurements, and Φ ∈ RM×N is the measure-

ment matrixes. Pseudo-random projection stored in the flash memory is used

for the implementation of Φ. The reconstruction is performed on the receiver

end using a convex optimization algorithm.
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• Action potential detection: The filters are configured to first extract signals

in the band of 300 to 6kHz. An amplitude threshold Sth is set for a rough

unsupervised spike sorting for input signals in the frequency band of 300 to

6kHz. The value of Sth is four-times the estimation of the standard deviation

of the background noise. Two time-amplitude windows are used to perform

the discrimination of the action potentials after the input signal crosses the

threshold with a positive derivative.

The NSA wireless transceiver can be configured to different operation modes,

sending recorded raw data, neural features, spike time stamps, or compressed sensing

measurements to the GUI, respectively. It also enables the sending of mapped stimuli

patterns to the stimulating device, or receiving triggers for recording from other

devices.

The NSA is powered by a rechargeable 3.7V lithium-ion battery (UBP002). A

supply voltage of 3.3 V is used for the analog front-end, digital microcontroller and

wireless transceiver. The quiescent current of the analog front-end is 380µA per

channel. The CPU consumes 490µA per MHz. The 950 mAh battery supports the

device for overnight continuous recording.

6.2.3.2 Neural Stimulators

A dual-channel neural stimulator with a size of 43mm × 27mm × 8mm, as illustrated

in Fig. 6.4, is designed to deliver bipolar or unipolar, charge-balanced current pulses

with programmable pulse shape, amplitude, width, pulse train frequency and latency.

The stimulator integrates a current driving back-end, a microcontroller (MCU) with
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Figure 6.4: Photograph of the neural stimulator. The stimulator includes a current
driving back-end, a MCU with integrated DAC and ADC, a wireless transceiver, a
power management unit.

integrated DAC and ADC, a wireless transceiver, a power management unit, and

other peripheral circuits.

A dual DC-DC converter is used for boosting the voltage from a 3.7V lithium-ion

battery to ±12V to drive the output current stage, in order to provide a sufficient

compliance voltage for stimulating through high impedance electrodes. The converter

will be switched to idle mode when no stimulation is to be delivered in order to

reduce power consumption. A modified Howland current source is employed as a bi-

directional current driving stage, as illustrated in Fig. 6.5. Amplifiers A1 to A4 are

implemented using high-voltage dual supply op-amps with JFET inputs. A resistor

trimmer is used to trim the equal value resistor network to achieve good common

mode rejection ratio (CMRR) and high output impedance from the Howland current

source. A feedback capacitor is added for stability. Different transconductance can be

selected by setting the gain resistors in order to get a large dynamic range. Amplifier

A2 is a unity-gain buffer used to reduce the requirement for calibration under different

gain settings.

A feedback integrator, A3, is used in an idle mode to improve the stability as well
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Figure 6.5: Circuit schematic of the high compliance voltage current source output
stage. Arbitrary stimuli waveform is generated by a digital to analog converter.
V-to-I gain is programmable to provide a high dynamic range.

as to reduce the current leakage [6]. Amplifier A4 is implemented for buffering the

electrode potential, and the impedance of the electrode is calculated in the MCU. A

low impedance threshold is set to stop stimulating in the case of electrode shorting.

In addition, a blocking capacitor is used in each channel to prevent direct current

injection and limits the maximum net charges.

The two channels are used as differential input of the Howland current source to

minimize the offset. The DAC is shut down and both inputs are grounded in idle mode

to reduce power consumption. The ADC is triggered twice during the stimulation

phase to estimate the compliance voltage on the electrode, as well as to evaluate the

impedance. If the electrode impedance is lower than a user-defined threshold, all the

stimulation will be stopped and an alert will be sent to the computer.

6.2.3.3 Body Area Sensors

The multi-functional body area sensor node has a dimension of 31mm × 13mm ×

8mm, as shown in Fig. 6.6. The sensor node integrates a microcontroller, a 3-axis
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Figure 6.6: The photograph of sensor node in comparison with a Quarter.

digital accelerometer, a temperature sensor, and a flexiforce sensor.

The accelerometer interfaces with the MCU through I2C protocol. The outputs

of the thermistor and the force sensor are analog signals, which are digitized using

an 8-bit SAR ADC integrated in the MCU. General-purpose ports are saved for up

to 12-channel potential extensions of the sensor node. The sensor node is powered

by a 2.65g, 110mAh rechargeable lithium battery. The power consumption of all the

modules used in the sensor node is listed in Table 6.1.

Table 6.1: Power consumption of the sensor node

Microcontroller 240µA Accelerometer [293] 23 µA

RF Sleep [294] 0.9µA Thermistor < 7µA

RF Transmit 7mA Flexiforce sensor < 50µA

Total Working 321 µA Total Transmit 7.3 mA

6.2.3.4 Computer Interface

A PC interface board with high-speed USB 2.0, and a Matlab-based graphic user

interface (GUI), as illustrated in Fig. 6.7, have been built for wireless monitoring,
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controlling and configuring all devices. The closed-loop operation can also be easily

Figure 6.7: Matlab based Graphic User Interface (GUI). Six major panels are in-
cluded in the GUI, which are: 1) PC configuration; 2) recording device configura-
tion; 3) stimulator configuration; 4) body-area sensors configuration; 5) closed-loop
configuration; 6) display windows.

configured in the GUI. All the devices receive interprets and commands from the PC

GUI and talk to the target device through a corresponding channel/address via a

wireless link. There are six major panels of the GUI, including: 1) PC configura-

tion panel, where the communication port can be configured. All the configurations

(including other panels) can be exported or loaded; 2) analyzer configuration panel,

where the gain, sampling rate/resolution, filter pass-band can be configured for each

individual channel. For the signal processing modes performed in hardware, the time

window size and threshold for spike detection can also be configured; 3) stimulator

configuration panel, where the amplitude, pulse width, pulse train number, and time

interval of the stimuli can be configured; 4) body-area sensors configuration, where



257

parameters for sensor nodes can be configured; 5) closed-loop configuration, where

closed-loop operation between different devices can be configured; 6) display windows,

where the output from analyzers and sensor nodes can be displayed in real time.

6.2.4 Experimental results

6.2.4.1 Bench Testing

Fig. 6.8 shows the measured input referred noise spectrum of the analog front-end

in the neural signal analyzer. The integrated noise is 4.69µVrms in a wide band.

Figure 6.8: Input referred noise spectrum of the analog front-end.

The noise efficiency factor [104] is 14.6. The mid-band gain error is 0.87% and the

measured CMRR at 1kHz is 67.4dB. The measured frequency responses in different

configurations are shown in Fig. 6.9. Bandpass filters with different gain are inte-

grated, e.g. 10 to 200Hz with a gain of 66dB, 300 to 6kHz with a gain of 66dB, and

10 to 200Hz with a gain of 78dB.
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Figure 6.9: The measured frequency response of the analog front-end in different
configurations. (blue) 10 to 200Hz with a gain of 66dB, (red) 300 to 6kHz with a
gain of 66dB, (magenta) 10 to 200Hz with a gain of 78dB.

The output currents of the neural stimulator are measured under different loads.

Fig. 6.10 (a) shows the standard deviation of the output current of anodic and ca-

thodic drivers across the different loads. The standard deviation is calculated for each

output current with all the different loads. The average of the calculated standard

deviation for different currents in the output stage is 3.91µA. Fig. 6.10 (b) shows the

average current mismatch between the anodic and cathodic electrodes across differ-

ent loads. The average mismatch with respect to the corresponding output current is

0.75%. The stimulator is also tested in 0.9g/100mil Sodium Chloride using a 75µm

tungsten electrode. Fig. 6.11 shows the measured voltage across the bipolar elec-

trodes for different stimulation current levels. A blocking capacitor of 1µF is used.

The characteristics of the neural signal analyzer and the neural stimulator are sum-

marized in table 6.2. A lower than 10−3 bit error rate (BER) is measured in the

wireless module for a distance of 3m in a normal animal experiment environment.

Two open-loop experiments have been performed to verify the system level oper-

ation. In the first experiment, the NSA to stimulator pathway is tested. As shown in
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(a)

(b)

Figure 6.10: The measured output current for different loads (1kΩ, 2kΩ, ..., 8kΩ).
(a) shows the standard deviation of the output current across different loads. (b)
shows the average current mismatch between anodic and cathodic electrodes across
different loads.

Fig. 6.12(a), the neural signal is first captured by the NSA. On-board AP detection

is performed using a dual threshold comparison method. A pass window is generated

when the input signal crosses the threshold. An AP is denoted when two pass win-

dows are detected. Once an AP is detected, as shown in the zoomed-in view in Fig.

6.12(b), a CMD CFG is wirelessly sent from the NSA to the stimulator, triggering

a group of pulse stimulation. In the second experiment, the sensor to stimulator
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Figure 6.11: Measured stimulation pulses with different amplitudes in Sodium Chlo-
ride solution.

Table 6.2: Specifications of the PennBMBI system

Neural Signal Analyzer

Supply voltage 3.3V Supply current 380µA/ch

Input Impedance >200MΩ Offset tolerance 1V

I-Amp Noise floor 4.69 µVrms I-Amp CMRR >61dB

ADC resolution 12 bit

Neural Stimulator

Output current 0 ∼ 1mA DAC resolution 6 bit

Compliance voltage ±12V Output impedance > 100MΩ

Standard deviation 1.71 µA Driver mismatch 0.75%

pathway is tested. As shown in Fig. 6.13, the amplitude of the sensing result is en-

coded into the frequency of the pulses generated from the stimulator. A CMD CFG

command is wireless continuously sent to the stimulator from the sensor node. The

argument is encoded according to the digitized output of the sensor node.
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(a)

(b)

Figure 6.12: Measured wireless closed-loop operation from the neural signal ana-
lyzer and the stimulator. Zoomed-in view of (a) is shown in (b).

6.2.4.2 In-Vivo Testing

To further evaluate the PennBMBI, we performed several basic tests of the wireless

neural recording, stimulating and sensing functions in both anesthetized and awake

rats. The neural recording was performed in an anesthetized rat with a tungsten
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Figure 6.13: Measured wireless closed-loop operation from sensor node and deep
brain stimulator.

microelectrode placed in the whisker motor cortex. The analyzer was configured to

have a passband of 300∼6KHz, a sampling rate of 21 KSps, and a gain of 72dB.

The recorded action potentials (APs) are shown in Fig. 6.14. The results show that

the neural signal analyzer faithfully recorded the APs with a signal-to-noise ratio

comparable to a commercial system.

Figure 6.14: Action potentials recorded by the neural signal analyzer. Detected
spikes are marked by red triangles.

In order to evaluate the quality of the captured data, the neural signal was



263

simultaneously recorded by a rack-mounted commercial system (RZ2 Workstation,

Tucker-Davis Technologies). A comparison of the signals recorded by the two systems

is shown in Fig. 6.15. The recording shows two different neurons firing APs in close

Figure 6.15: Comparison between data captured by the PennBMBI analyzer (black)
and the RZ2 Neurophysiology Workstation (red).

succession.

To demonstrate the sensor and stimulator nodes, an awake rat with a chronically

implanted stimulating microelectrode in the lateral hypothalamus was placed in an

operant conditioning chamber with a lever press. The sensor node detected the lever

press and wirelessly sent a trigger to the stimulator worn on the rat’s back to deliver

a stimulus train (30 of 100µA, 200µs constant current pulses) to the micro-electrode.

This setup allowed the rat to associate the lever press with the rewarding sensation of

hypothalamic stimulation. This result provides one example of how the various nodes

of the PennBMBI, in this case, the sensor and stimulator, can be flexibly combined

to enable a wide range of neuroscience and neural engineering experiments in freely

behaving animals.
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6.3 The Watermaze

6.3.1 Introduction and Background

Sensation and perception are essential abilities for human and animals. Loss of sensa-

tion due to nerve damage prevents even basic activities of daily living. Even though

many recently developed neutrally-controlled prosthetics successfully replaced motor

pathways, somatosensory feedback is critical for paralyzed individuals to adequately

use them, which has often been underscored. Recently, there has been an increased

interest in conveying lost information through direct brain stimulation using a neu-

roprosthetic device [38]. These strategies rely on the brain learning to use remapped

or artificial stimuli to inform actions. A common paradigm to study this learning

process involves using brain stimulation to guide rats through a maze [295]. These

so-called “rat-robot” studies have mapped a number of different navigation signals

to brain stimulation [296]. All used land-based mazes with a discrete number of ac-

tions and goal locations. A concern with these studies is that the rats could simply

memorize a few stimulus-response contingencies rather than learn a more generalized

stimulus-dependent navigation strategy.

In this work, a new rat-robot paradigm is developed using a classic test of rodent

navigation: the Morris water maze (MWM). In the MWM, the rat swims in a large

circular tank looking for a hidden, submerged platform on which to stand [297]. In

our task, the submerged platform was positioned randomly on each trial to dissociate

visual cues from the platform location, and the rats navigated to the platform using

only the sensation encoded from the brain stimulation. The experiment setup is

illustrated in Fig. 6.16. For simplicity, the experiment system is referred to as
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watermaze system. Custom hardware and software were developed to support the

watermaze experiment. The findings suggest that rats can quickly interpret artificial

percepts to guide behavior, which is important for sensorimotor neuroprostheses.

Figure 6.16: Illustration of the developed perception augmentation experiment.
(a) shows a rat wearing the developed wireless waterproof neuroprosthetic. The
electrodes are chronically implanted in the somatosensory cortex. (b) shows the
experimental setup. A rat navigates to a hidden platform using only the perception
established from the stimulation. (c) illustrates the estimated rat’s swimming traces
with/without the simulation guidance.

The watermaze experiment was designed by Dr. Andrew Richardson, and was

conducted by Yohannes Ghenbot, Sam Deluccia, Solymar Maldonado, Gregory Boyek
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and other research fellows and students in the Translational Neuromodulation Labo-

ratory, University of Pennsylvania. The data analysis was performed by Dr. Andrew

Richardson and Yohannes Ghenbot.

6.3.2 System Overview

The block diagram of the watermaze system is shown in Fig. 6.17. The watermaze

Figure 6.17: The block diagram for the watermaze system. (a) shows the computer
with graphic interface, camera, and a wireless dongle to the wireless neuroprosthetic
device.

system including both hardware and software. The hardware system consists of i) a

wireless neuroprosthetic device, and ii) a computer with a camera and a wireless don-

gle. The software system consists of i) the animal tracking and modulation algorithm,

and ii) the communication and stimulation protocol in the neuroprosthetic device and

the computer. It should be noticed that, even though the system is optimized for this

experiment, it can be generalized to perform many similar neuroscience experiments.
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The developed perception augmentation experiment can also be understood as a

typical closed-loop system, as illustrated in Fig. 6.18. The wireless neuroprosthetic

device works as the actuator, while the tracking image sensor finds the error signal,

which is the distance between the rat’s location and the hidden platform, or the

heading of the rat.

Figure 6.18: The typical closed-loop diagram for the developed perception augmen-
tation experiment.

6.3.3 Hardware Implementation

6.3.3.1 Design of the Watermaze Stimulator

The block diagram of the watermaze stimulator is shown in Fig. 6.17. The water-

maze stimulator consists of 1) a micro-controller for overall processing and control, 2)

a stimulator back-end for driving stimulating electrodes, a DAC might be included,

3) a wireless transceiver for communication, 4) a power management unit for pow-

ering the whole device, and 5) an impedance monitoring module for reading back
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the compliance voltage of the electrodes for monitoring the electrode impedance and

guarantee the safety of the electrode during the experiment.

In this work, an 8/16 bit microcontroller ATxmega128A4U [290] from Atmel is

used as the central processor. It communicates with a 2.4GHz wireless transceiver

from Nordic Semiconductor nRF24L01 [294] for retrieving device configuration and

stimulation commands, and sends back the compliance voltage for estimating the

electrode impedance during the stimulation.

The power management unit includes a single channel LDO TPS791 [298] from

Texas Instruments for powering the microcontroller and some peripheral circuits.

The chip has a full-scale output current of 100mA, with a very low dropout voltage of

38mV. The RMS noise is 15µV. A dual channel DC/DC converter LT1945 [299] from

Linear Technology is used to generating high voltage for powering the stimulating

output stages. The chip takes input as low as 1.2V, so potentially can be powered

by coin batteries. Regulated positive and negative outputs can be generated up to

± 34V, setting by feedback resistors’ ratio. The converter consumes 12µA in the

active mode and less than 1µA in the shutdown mode. In the first two generations

of the watermaze stimulators, an inverting charge pump LTC1983 [300] from Linear

Technology is used to generate negative supply. The chip gives fixed -3V with ±4%

accuracy with an input voltage from 2.3V to 5.5V. The full-scale output current is

100mA, with a flyback capacitor of 1µF. The battery used in the first generation is

LP-402025 from Sounddon. A 150mAh Lithium Ion Polymer battery from Pkcell is

used in the following generations.

The first generation watermaze stimulator has a two PCB layers structure, and

a wireless transceiver with PCB antenna. The circuit schematic for the output stage
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is shown in Fig. 6.19. The core circuits are two Holland current sources (A1-A5).

The output current of the current source is the input voltage over the gain resistor,

independent of the load impedance. A blocking capacitor C is used to block the

DC current path to the brain. The DAC integrated in the microcontroller is used to

set the input voltage. The output range of the DAC is ground to reference voltage,

which is set to be VDD. A1 works as a level shifter, shifting the output range around

the ground. A trimming resistor is used to tune the output voltage. The DAC

generate the stimulation voltage output waveform, while the driving sites convert the

voltage waveform to the current in a programmable transimpedance by tuning the

gain resistor RG. A2 − A5 are designed using high voltage op-amps OPA2140 [301]

from Texas Instruments. These op-amps operate with dual supplies up to ±18V. In

this version of watermaze stimulator, the supply voltages are designed to be ±15V

to provide up to 300uA into a load of 50kΩ. The switches SC , SA, and SD are

for connecting the output stages to the driving electrodes. More than one pair of

bipolar electrodes can be designed by adding a multiplexer without much area and

power penalty. The only drawback is the lack of ability in driving two stimulating sites

simultaneously. However, a near simultaneous stimulation by switching the electrodes

are more than sufficient in most cases. When no stimulus is to be delivered, the op-

amps are disabled to save power, and the switches SD short the electrodes to ground

in order to prevent current leakage. Notice that since the blocking capacitors still

isolate the circuits from the tissue, there is no DC current path even in this case.

The dimension of the final assembled devices is 36mm×20mm×19mm. The 3D

construction of the first generation watermaze stimulator is shown in Fig. 6.20. The

photo of the assembled device is shown in Fig. 6.21.

The second generation watermaze stimulator is designed on a single PCB board.
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Figure 6.19: The circuit schematic of the first generation watermaze stimulator.

Figure 6.20: The 3D construction of the 1st generation of the watermaze stimulator
board. (a-1) and (a-2) are the top boards, and (b-1) and (b-2) are the bottom board.

The circuit schematic is shown in Fig. 6.22. The second generation still uses two dual

supplies (VDDH, VSSH, VDDL, VSSL), and a Holland current source. Two DAC

channels from the microcontroller are used to set a differential input to the Holland
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Figure 6.21: (a) The 3D construction of the 1st generation of the watermaze s-
timulator board. (b) the photo of the assembled stimulator board. Wires are for
electrodes and battery charging.

current source, which removes one trimming resistor, and reduces the risk from a

resistor drifting caused DC stimulation current. Two channels are designed in this

version, using multiplexer ADG409 from Analog Devices. The wireless transceiver

nRF24L01, antenna and related matching circuits are also soldered directly on the

PCB.

The 3D construction of the second generation watermaze stimulator is shown in

Fig. 6.23. The photo of the assembled device is shown in Fig. 6.24. The whole device

is coated with PDMS for waterproofing.

The third generation watermaze stimulator is designed with a goal to simply

the design and to improve the robustness. A single high supply voltage is used

instead of dual supplies, and the stimulation is passed between the bipolar electrodes

alternatively for generating Pseudo positive and negative compliance voltages. The

circuit schematic is shown in Fig. 6.25. A1 is a regulating op-amp which is used

to produce a high output impedance. The output current is set by VDAC/RG. The

VDAC is programmable so the output current is also programmable. Notice that the
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Figure 6.22: The circuit schematic of the 2nd generation watermaze stimulator.

Figure 6.23: The 3D construction of the 2nd generation watermaze stimulator
board. (a) is the top view and (b) is the bottom view.

op-amp is powered in the low supply voltage, and the high supply voltage is only used

to drive the stimulating electrode. Switches S3 and S4 are used to purge the blocking

capacitors and discharge the residue charges.

The 3D construction of the third generation watermaze stimulator is shown in
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Figure 6.24: The photo of the assembled 2nd generation watermaze stimulator
board. Wires are for electrodes and battery charging. The whole device is coated
with PDMS for waterproofing.

Figure 6.25: The circuit schematic of the 3rd generation watermaze stimulator. The
tuning voltage VDAC is generated by the microcontroller.

Fig. 6.26. The photo of the assembled device is shown in Fig. 6.27. The whole device

is coated with PDMS for waterproofing.

The electrodes of the stimulator are multiplexed to the ADC. The compliance

voltages of the electrodes are measured at the beginning and the end of the stimu-

lation phase, as shown in Fig. 6.28. The spreading resistance can be estimated by
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Figure 6.26: The 3D construction of the 3rd generation of the watermaze stimulator
board. (a) is the top view and (b) is the bottom view.

Figure 6.27: The photo of the assembled 3rd generation watermaze stimulator
board. Wires are for electrodes and battery charging. The whole device is coated
with silicon for waterproofing.

Rs = V1/IS, where V1 is the voltage between the two electrodes at the beginning of

the stimulating phase, and IS is the stimulation current. An impedance baseline is

measured every time before an experiment. During the experiment, if V1 is much

less than the baseline compliance voltage, it indicates that the equivalent resistance

between the electrodes drops significantly, possibly because the electrodes are shorted

by water. The experiment should stop since little current is actually passing between
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the electrodes. On the other hand, if V1 is much larger than the baseline, the elec-

trodes may lose connection with the tissue, or a much larger current than the designed

value is passing the tissue, possibly because of an electronic failure. The experiment

must be halted in both cases to keep the animal safe from tissue damage.

Figure 6.28: (a) The equivalent circuit model for the electrode interface. (b) A typ-
ical stimulation waveform between the electrodes EA and EC . Compliance voltages
at the beginning and end of the stimulation phase are measured for estimating the
impedance.

6.3.3.2 Electrode and electrode connector

Electrodes were chronically implanted in the sensory cortex. Different electrodes

have been tried in this project, including commercial and custom-made tungsten

and stainless steel electrodes. The final selected electrode is a 2-channel commercial

electrode with relatively low impedance.

In practice, it takes a considerable amount of practice and time to put the jacket

with the device on an awake rat every time before an experiment. The process can

be somewhat easier when the rats got used to the jacket, but it can still be time con-

suming. So a magnetic connector was used in the early stage of this experiment, since

it makes the docking process much easier. However, we later found that the magnets

cannot provide a secure connection for this experiment, and the water may short the
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electrodes through the magnets. The connector of the finally selected electrode has

a screw thread to prevent water from shorting the electrodes. The impedance of the

electrodes should still be checked before and during the experiment to make sure the

animal receives the stimulation without potential danger for brain tissue damage.

6.3.3.3 Image Sensor and Computer Interface

The computer program is compatible with most USB webcams on the market. How-

ever, there are two issues worth attention: the viewing angle of the camera and the

autofocus and exposure feature. Since the camera is facing the water, many webcams

have trouble in focusing, and often give a wrong exposure due to the reflection of

light. Different webcams have been tried, including a Microsoft LifeCam VX-5000,

a Logitech HD Webcam C310, a Logitech HD Webcam C615. The camera that was

decided to be used for this project is the Microsoft Q2F-00013 USB 2.0 LifeCam.

The camera has a wide angle covering the tank area, and the exposure time can

be manually set in the Matlab program. The camera also can be securely mounted

on the ceiling on top of the water tank. Notice that even a resolution of 1080p is

supported, 640×480 is more than sufficient for the tracking purpose in this task. A

higher solution will potentially cause a processing delay.

The PC interface from the PennBMBI system was also used in this project.

The interface mainly consists of a 16/8-bit XMEGA microcontroller and a 2.4GHz

wireless transceiver. The microcontroller has a USB 2.0 module integrated for the

communication with the computer. With a full-speed USB, the communication delay

can be minimized.
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6.3.4 Software Implementation

6.3.4.1 Communication Protocol

The software is implemented using Matlab on a computer, and in C language on the

microcontroller. The flowchart of the computer program is shown in Fig. 6.29. The

program mainly has three operation modes, i) the testing mode ii) the animal training

mode, and iii) the experiment mode.

Figure 6.29: The flowchart of the computer program.

The testing mode includes both wireless communication and electrode impedance

test. Both tests need to be run every time before the animal is set into the water
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for the experiment. In the animal training mode, the image sensor tracks the rat

swimming but no stimulation is delivered. The training mode helps the animal get

used to swimming in the water tank, and learn the existence of a hidden platform

in the tank. After the rat reaches the hidden platform, it will be rewarded to be

motivated. Also, the control data is collected in this mode for analysis and comparison

purposes. In the experiment mode, the image sensor tracks the rat swimming, and the

computer maps the location and/or direction of the rat to a stimulation sequence.

The established mapping algorithms include i) binary mapping, ii) linear mapping

and iii) Gaussian mapping. In the binary mapping, the rat receives a simulation

train only if it’s heading towards the hidden platform. In the linear mapping, the

simulation frequency is modulated by the distance between the rat’s location and the

platform in a linear relation, as

fstim = α ·
√

(x− x0)2 + (y − y0)2 + β (6.1)

where x, y are the location of the rat, x0, y0 are the location of the platform. α is the

gain factor, and β is the offset parameter. Notice that if α is positive, the rat receives

a higher frequency stimulation when it swims away from the target. If α is negative,

it receives higher stimulation frequency when it swims towards the platform. The

offset β should be set so that the stimulation frequency is a positive parameter in

the range of 0.5Hz to 300Hz. In the Gaussian mapping, the animal’s distance to the

platform maps to the stimulation frequency according to the Gaussian distribution,

as

fstim = fmax · e
−(x− x0)2 + (y − y0)2

2σ2 (6.2)
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where fmax is the designed maximum frequency, and σ is the standard deviation.

Versatile mapping functions can be easily implemented in this program.

The computer program updates 10 frames per second, and sends the updated

stimulation parameters to the wireless neuroprosthetic. If the animal reaches the

hidden platform, the program stops. The user can set the radius of the target. The

program checks the load impedance every second to guarantee the safety of the animal.

The experiment stops immediately if the measured impedance or compliance voltage

is out of the safe range. In addition, an interrupt service allows the user to halt the

experiment at any time. The program sends the stop command to stop the stimulation

before the computer program ends.

The flowchart of the neuroprosthetic device is shown in Fig. 6.30. The program

has a main routine and an interrupt service routine. After powering on, the device

performs the initializations. The wireless module will be configured in the receiving

mode and then the CPU will be put in the sleep mode to lower the system’s power

consumption. Once a RF package is received, the device first checks if this is a stop

command. Once the stop command is received, the device disconnects the output

driver from the electrodes to prevent any potential damage to the animal. Next, the

device sends a signal back to the computer indicating the stop command has been

executed. The stop command is also used for testing the wireless communication.

A wireless communication is established if the computer can successfully read back

the response from the device. The computer program retries to establish the wireless

handshake ten times before timeout.

If the received package is not a stop command, the device checks the working

mode, and performs accordingly. In the impedance testing mode, the device delivers
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Figure 6.30: The flowchart of the program implemented in the neuroprosthetic
device.

one pulse train according to the received parameters. Since the impedance testing

mode is a manually triggered simulation mode, it can also be used for studying the

animal’s reaction to the stimulation out of the water. In the regular experiment

mode, a watchdog timer is first started. The timer counts 6 seconds, and if no new

RF package is received, the stimulation stops. This is to prevent the failure of wireless

communication during an experiment.
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The DAC is set according to the stimulation amplitude, and the local finite state

machine is set according to the timing parameters. The stimulator runs according to

the current time interval until the next command is received. Fig. 6.31 illustrates

the timing for the stimulator in two scenarios, when the stimulation time interval is

shorter, or longer than the time per frame. The finite state machine will update the

real stimulation frequency according to the most recent wirelessly received command.

Figure 6.31: Illustration of the timing of the stimulator in the neuroprosthetic.
Each red dot is a stimulation pulse train, and the green dot indicates the current
time in each subplot. (a) shows the delivered pulses when the stimulation interval
is less the time per frame, and (b) shows the delivered pulses when the stimulation
interval is larger than the time per frame. The finite state machine will correct the
stimulation time interval according to the latest command.
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6.3.4.2 Animal Tracking

The animal tracking algorithm was implemented in the Matlab program. After acquir-

ing the image frame from the camera, the program first extracts the red components

of the image. Notice that since each pixel consists of R (red), G (green), and B (blue)

components, the extracted image has the same dimension as the original image. Then

the image is filtered by a median filter to suppress the noise. The image is then con-

verted to binary using a predefined threshold. The threshold can be used to tune how

sensitive the algorithm is and should be adjusted according to the environmental light

condition. The center of the detected area is then used as the location of the object.

The algorithm only considers the object with smaller coordinations when multiple

areas are detected. So a drawback of this algorithm is that it won’t tell if multiple

red objects existed in the scene. This error is avoided by not placing other red objects

in the scene. Since most part of the scene is the water tank, the error is not hard to

be avoided.

6.3.4.3 User Interface

A friendly user interface has been designed for using the program, as shown in Fig.

6.32. There are mainly 6 panels in the GUI. The communication panel sets the port

used to communicate with the PC interface. The used port can be found in the

Device Manager in Windows. A Target Position panel where the location and radius

can be set. Initially, these positions will display NA. In the target setting mode, a

set of random locations and start angles will be generated. But the user can always

manually set these parameters.
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Figure 6.32: Matlab based Graphic User Interface (GUI).

In the settings panel, there are several options for running and control the pro-

gram. Firstly, there are options for saving the frames, saving the path, and plotting

the path. Fig. 6.33 shows a frame of the captured video during the experiment.

The large green circle shows the submerged platform, the yellow dot shows the start

location. The red curve shows the swimming trace. The left top corner shows the

current distance to the platform and the total distance the rat has been traveled in

this trial.

There are several working modes one needs to choose before running the ex-

periment. Check the wireless testing mode box, then press the “Start” button, the

program will try to communicate with the device. If it successfully reads back from

the device, the edit window turns green and shows “Good!”. If the communication

cannot be established after ten tries, the window turns red and displays “Bad!”.

Check the impedance testing mode box, then press the “Start” button. The program
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Figure 6.33: One frame of the captured video during the experiment with displayed
information highlighted. The large green circle shows the submerged platform, the
yellow dot shows the start location. The red curve shows the swimming trace. The
left top corner shows the current distance to the platform and the total distance
the rat has been traveled in this trial.

will send stimulation commands and read back the compliance voltage for estimating

the electrode and load impedance. Check the debug without stimulation mode box,

then press the “Start” button, the program will load the camera and track the rat

swimming, but no stimulation will be delivered to the rat. This mode can be used

for training the animal and getting the control data.

In the simulation panel, several parameters for the stimulation can be set. The

parameters include i) number of pulse per train (8 bit), ii) pulse amplitude in µA (8

bit), iii) pulse width in µs (8 bit), iv) time interval between pulses in µs (16 bit), and

a threshold for the electrode impedance in kΩ. If the detected impedance is lower

than the threshold, the impedance window in the information panel will turn red

for a warning. The input number will be truncated to the maximum number of bits

allowable for the designed registers in the microcontroller.
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In the mapping function panel, the user can select which function to use for map-

ping the detected rat’s location to the stimulation frequency. The panel also includes

windows for entering parameters for the mapping functions. The established map-

ping functions include a binary mapping, a linear mapping, and a Gaussian mapping.

More mapping functions can be added in the Matlab program.

The information panel is for displaying the tracking results and compliance volt-

age readouts in real-time. If the read back impedance is lower than the user-defined

threshold, the window turns red. If the compliance voltage cannot be read back, the

window will turn yellow and display “999”, which is the error code. Otherwise, the

window is green in normal operation.

6.3.5 Experimental Results

The experimental results using the developed watermaze device will be presented

in this section. A pair of electrodes was implanted in the somatosensory cortex of a

Long-Evans rat. Fig. 6.34 shows a rat wearing the wireless waterproof neuroprosthetic

device. The jackets used for housing the device are dyed red for the color-based object

tracking.

A couple paradigms, modulation algorithms and parameter combinations are s-

tudied in this work. Initially, the rats swam in random directions until the platform

was found or the trial timed out (60 s). A typical example of the swimming trace be-

fore the simulation is shown in Fig. 6.35 (a). The performance significantly improved

over the course of about 50 trials, as shown in Fig. 6.35 (b). The poor performance

on the catch trials, in which no stimulation was delivered, confirmed that the learned

behaviors were guided by the stimulation.
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Figure 6.34: A rat wearing the wireless waterproof neuroprosthetic device.

Figure 6.35: The in-vivo experimental results. (a) and (b) are webcam captured
frames during the experiments. The small yellow and large green circles indicate
the start and platform locations, respectively. These were superimposed on the
video frame and not visible to the rat. (a) shows the swimming trace of the rat
without the simulation, and (b) shows the swimming trace with the simulation
guidance.

Fig. 6.36 shows the stimulation pulses versus time, together with the rat’s dis-

tance to the target platform. Each red vertical line indicates a stimulus pulse. During
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Figure 6.36: A typical trial with stimulation. The animal receives a stimulation
when it swims away from the platform. The stimulation pulses are marked by red
vertical lines in this figure. It clearly shows the animal turned the direction when
it received the stimulation.

this experiment, the rat receives a stimulation when it swims away from the platform.

There are in total of 710 stimulus pulses delivered in this 12s trial. The result clearly

shows that the rat learned to turn around when it received the stimulation.

In the following analysis, the platform’s locations are restricted to one in each

quadrant for better quantization. The four locations are separated by 90 degrees with

equal distance to the center of the tank, as illustrated in Fig. 6.37. In each trial,

the platform is randomly placed in one of the four locations. The rat is initially set

free at the center of the water tank, and it had no visual clue of the location of the

platform. A total of 139 trials are conducted in this setup, including 124 trials with

stimulation and 15 catch trials without stimulation. Naturally, the chance for the rat

to visit each of the four locations should be equal, since the platform is randomly

placed. Fig. 6.38 compares the percentage of the trials when the rat finds the correct

location on the 1st visit to one of the four locations with and without the stimulation.
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Figure 6.37: Illustration of the four possible platform locations P1 − 4. In this
experiment setup, the platform was randomly placed in one of them. The rat was
initially set free at the center of the water tank in each trial.

Without the stimulation, the percentage for the correct visit is around 20%, while

with the stimulation, the percentage is 65%. This result clearly indicates that the rat

has learned to use the stimulation.

Figure 6.38: In a total of 139 trials consisting of 124 stimulation trials and 15 catch
trials, the percentage of trials in which the rat reaches the correct platform in its
first visit is 65% with stimulation, and 20% without stimulation.
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Fig. 6.39 compares the percentages of trials when the rat’s first visited location

is the platform’s location in the previous trial with and without the stimulation. In

Figure 6.39: The chance for the rat’s first visit is the platform location in the
previous trial is 17.5% with stimulation, and 46.2% without stimulation.

17.5% of the trials with stimulation, the rat’s first visited location is the platform’s

location in the previous trial, while in 46.2% of the trials without stimulation, the

rat’s first visited location is the platform’s location in the previous trial. The result

indicates that the rat relies mainly on its memory to find the location of the platform

if no stimulation is presented.

Finally, Fig. 6.40 compares the number of locations the rat visited until it found

the actual platform. The result is again the average of the 139 total trials conducted

in this setup, including 124 trials with stimulation and 15 catch trials without stimu-

lation. The average times of trials with stimulation are 1.8 times, while trials without

stimulation are 3.7 times. The error bars show the standard deviation of the data.

The result indicates that for the trials with the stimulation, the rat finds the platform

much faster than those trials without the stimulation.
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Figure 6.40: The average times of platform visits are 1.8 times with simulation,
and 3.7 times without stimulation guidance. The error bars show the standard
deviation in the data.

In summary, this section has presented a custom designed wireless BMI plat-

form consisting of a wireless waterproof neuroprosthetic, an animal tracking system

and a user interface. The design features a failure prevention mechanism for animal

safety. A custom software framework has also been developed to support the exper-

iments. The experiment is the first wireless sensory encoding experiment conducted

in a freely swimming animal. The experimental results indicate that animals can

quickly interpret artificial percepts to guide behavior. The result is important for

the development of sensorimotor neuroprosthetics. More importantly, with the fully

programmable wireless interface to the neuroprosthetic, the developed system can

be used as a general purpose platform for investigating different sensory encoding

experiments in freely behaving animals.
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6.4 Bidirectional Neural Interface for Freely Be-

having Macaque

6.4.1 Introduction and Background

Sensations and actions are inextricably linked. Behavioral goals are achieved by sam-

pling the environment with the available sensory modalities and modifying actions

accordingly. Somatosensory feedback is especially important to the dexterous hand

movement control. Recent developments in hand prosthetics with motor pathway

replacement alone have shown not to be adequate enough for use of a paralyzed hand

[37]. Artificial sensation restoration is needed for this technology to meet the per-

formance required for clinical adoption. The sensation may be restored with direct

electrical microstimulation of the brain [38]. Fig. 6.41 illustrates the envisioned bidi-

rectional clinical hand neuroprosthesis with motor function restored through brain-

controlled stimulation of hand muscles, and somatosensation restored through sensor

controlled electrical stimulation of the brainstem. The cuneate nucleus (CN) in the

dorsal brainstem carries fine touch and proprioceptive information from the upper

body, and is a suitable sensory encoding site. Besides, its compact representations

may be reliably activated artificially. Recently, the Translational Neuromodulation

Laboratory (TNL) at the University of Pennsylvania demonstrated the first success-

ful chronic interface to the CN of macaques [302], which allows us to investigate the

sensation encoding with CN microstimulation in the monkeys.

In this section, the design and integration of a bidirectional BMI system are pre-

sented. The system is custom designed for the operation in freely behaving monkeys.
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Figure 6.41: Envisioned bidirectional clinical hand neuroprosthesis. Motor function
is restored through brain-controlled electrical stimulation of hand muscles, and
somatosensation is restored through sensor controlled electrical stimulation of the
brain. The motor pathway replacement has been extensively studied, and this work
is focused on the sensation restoration.

It has been used to explore the aforementioned sensory mapping, hippocampal oscilla-

tion during sleep and awake, and related research. The detailed system architecture,

integration method and the animal experimental results are presented.

6.4.2 System Integration

Fig. 6.42 shows an illustration of the custom designed BMI device for freely behaving

monkey experiments. The detailed system configuration varies for different experi-

ments. The overall BMI system includes multiple custom ICs and discrete electronic

components. The electrodes are chronically implanted, with connectors cemented on

the skull to mate with the BMI device. The custom IC performs the noise sensitive
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Figure 6.42: Illustration of the BMI device housed in a chamber (not to scale). The
electrodes will be chronically implanted with universal nano-connecters through the
skin, secured by dental cement. (*electrode type varies with different applications).

neural signal recording, energy-efficient neural feature extraction, and high safety

electrical stimulation.

A general-purpose low-power microcontroller (MCU) is integrated into the sys-

tem for the configuration and control of the ICs, handling of the data packets, and per-

forming certain closed-loop algorithms. Several MCUs have been used in this design,

with different performance, hardware interface and features. Table 6.3 compares three

of the most commonly used MCUs in this work. The 32-bit Tiva TM4C123GH6PM

[303] from Texas Instruments is the mainly used for the monkey project. Compared

with the 32-bit AT32UC3C0512C from Atmel, which is previously used to upgrade

the PennBMBI system, the AT32UC3C0512C is more power efficient and features

more open source libraries. However, the AT32UC3C0512C and several DSP from

Analog devices and TI have more powerful signal processing ability, which will be im-

portant for heavy duty on-chip neural feature extraction. The ATxmega128A4U [290]

from Atmel has been introduced in the previous sections for the PennBMBI system
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Table 6.3: Comparison of MCUs used in this work

Features TM4C123GH6PM ATxmega128A4U nRF51822

CPU 32-bit 8/16-bit 32-bit

Voltage 3.3V 1.6-3.6V 1.8-3.6V

Clock 80MHz 32MHz 16MHz

Flash 256kB 128kB 128kB

RAM 32kB 8kB 16kB

EEPROM 2kB 2kB NA

UART 8x 5x 1x

SPI 4x 2x 12-bit 2x

USB USB 2.0 USB 2.0 NA

ADC 2x 12-bit 12x 12-bit 8x 10-bit

DAC NA 2x 12-bit NA

Wireless NA NA 2.4GHz

Package LQFP 64pin TQFP 44pin QFN 48pin

and the watermaze project. Compared with the AT32UC3C0512C, ATxmega128A4U

features smaller package, lower power consumption, and lower cost. It also includes a

12-bit digital to analog converter which is useful to generate configuration voltage ref-

erence. At the same time, both AT32UC3C0512C and ATxmega128A4U don’t have

wireless module integrated, which means an additional wireless module has to be in-

tegrated on board. So a wireless MCU, nRF51822 is used in a couple of applications

with space restraint. The wireless protocol in the nRF51822 is air compatible with

the nRF24L01+, which is used in the PennBMBI system and the watermaze project.

And the wireless module also features Bluetooth 4.0 protocol for communication with

workstations and mobile devices. The nRF51822 has a 32-bit ARM Cortex M0 core,

with rich hardware interfaces including UART, SPI, and ADC. However, the process-

ing ability is still much weaker than the AT32UC3C0512C and ATxmega128A4U, so

limited on-chip signal processing can be performed, especially when streaming data

near the full wireless data rate.
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A Micro-SD card module is integrated in the system for wireless recording where

there is no need for real-time display or processing. An FAT32 file system is im-

plemented on the Micro-SD card. An open source Generic FAT file system module

FatFs [304] is modified for this work. The FatFs is a generic FAT/exFAT file system

written in ANSI C and independent of the platform. Additional IO interface layers

are written so that both the AT32UC3C0512C and ATxmega128A4U can use the file

system. Notice that wiring into the SD card doesn’t require a file system. However,

writing data without a file system will result in a limited address range of sectors.

According to the SD protocol, the maximum data sector reached without a filesys-

tem is 2GB. Moreover, no file system means no direct access from a computer file

system. The reading and writing of the SD card would need a custom hardware or

software. In this work, the FAT32 file is implemented for easy access, better organiza-

tion, and future extension. A configuration file can be easily edited and saved on the

card. The parameters for the recorder and stimulator can be set in the configuration

file, including sampling frequency, buffer size, file length, file name, stimulation pulse

width, pulse interval, the number of pulses per group, and the number of groups with

different pulse configurations.

The BMI device is powered by 3.7V Lithium batteries. A reliable and high

capacity battery is a key component in a wearable device. A lot of different batteries

are available on the market. The Polymer Lithium batteries from Adafruit are used

in this work. The batteries are lightweight and offer the highest energy density among

Lithium batteries on the market. Coin batteries and non-rechargeable batteries have

also been used in this project for several extremely small sensor nodes. The power

management module on chip includes i) battery protection, charging and management

circuit; ii) power management modules including switching converter and LDOs. The
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AT32UC3C0512C and ATxmega128A4U are powered by 3.3V, and the nRF51822 is

powered by 1.8V. So nRF51822 has the power advantage over the other two. The most

power hungry components being the wireless modules (36mW during transmitting)

or Micro-SD card (40mW during writing).

Fig. 6.43 (a) shows a photograph of monkey D with one of the custom designed

chamber. The chamber has a diameter of 30mm and a height of 40mm. The cap of

Figure 6.43: The photograph of (a) monkey D with one of the custom designed
chamber and (b) monkey M with two of the custom designed chambers. Each
chamber has a diameter of 30mm and a height of 40mm.

the chamber is secured by screws. There are three six channel electrodes implanted

with connectors in the chamber. Fig. 6.43 (b) shows a photograph of the monkey

M with two of the custom designed chambers. There are four 32-channel electrode

arrays implanted, with two connectors in each chamber.

A couple of devices have been developed for several different experiments. Fig.

6.44 shows the photographs of several devices. Fig. 6.44 (a) shows a bi-directional

BMI with one recording channel and one stimulation channel. The device has an

on-board Micro-SD card for data storage. The recording and stimulation modules
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Figure 6.44: Photographs of several assembled devices for the chamber. (a) A
bi-directional BMI device with micro-SD card, (b) a 32-channel wireless neural
recorder, and (c) a 16-channel wireless bi-directional BMI.

have separated grounds for stimulation artifacts suppression. Fig. 6.44 (b) shows a

32-channel wireless neural recording device. The device features a continuous 12-hour

recording with real-time data streaming. The MCU integrated is AT32UC3C0512C.

Fig. 6.44 (c) shows a 16-channel wireless bi-directional BMI device. The MCU
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integrated is nRF51822.

Custom designed ASIC have been used in these BMI devices. Fig. 6.45 shows the

block diagram of the basic version of the bi-directional custom IC. The main building

Figure 6.45: The block diagram of the basic version of the bi-directional BMI ASIC.

blocks include i) analog front-end, ii) stimulator back-end, iii) data converters, and

iv) peripheral modules.

Fig. 6.46 shows the block diagram of the proposed bi-directional neural interface

with energy-efficient neural feature extraction and on-chip PID closed-loop controller.

The SoC mainly consists of 1) 16-channel neural front-end with neural feature

extraction units and closed-loop controller, 2) 16-channel programmable neural stim-

ulators, 3) data converters, 4) power management, analog references, and peripheral

circuits. The detailed circuit implementation has been presented Chapter 2 to 5. The
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Figure 6.46: Architecture of the bi-directional, closed-loop brain-machine inter-
face system. The system includes a custom system-on-chip (SoC) and supporting
electronics.
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configuration of the SoC is stored in the flash memory of the MCU, and it can be

programmed wirelessly by the Bluetooth link. Once the device is powered up, the

MCU first reads the default configuration in the flash memory, and then configures

the chip accordingly. The interface between the MCU and the chip is shown in Fig.

6.47. The configuration and data readout are through a simplified two-wire interface

(TWI) module. The TWI module supports standard I2C protocol [305] which is

compatible with most general purpose MCU. The MCU works as the master and the

chips work as slaves. The MCU first sends the address and the chip with the same

address response. Only two pads are used to set up the address, thus, the current

implementation can support up to 4 chips (64 channels in total). This can be easily

expanded in the future to support 127 chips (full 8-b address). The START , STOP

and ANSWER commands are also shown in Fig. 6.47.

T3168 and XKT510 are used as the wireless power transmitter and receiver ICs.

The wireless charging uses a switching frequency of 125kHz. MC73831 is used for

battery management. A 3-axis accelerometer ADXL345 has also been integrated into

the system, with 3-wire SPI interface to the MCU.

6.4.3 Experimental Results

The proposed system has been fabricated in standard printed circuit board (PCB) and

CMOS technology. The PCB features FR-4 material, 2 or 4 layers, 0.8mm thickness,

minimum trace and spacing 0.15mm, minimum hole diameter 0.2mm, minimum via

diameter 0.15mm. The PCB surface uses hot air solder leveling (HASL) lead-free

finishing.
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Figure 6.47: (a) Communication interface between the chip and general purpose
MCU (not all pads are shown), (b) communication data format. The MCU (master)
writes the gray sectors.

The basic version of the neural interface SoC have been fabricated in both On-

Semi 0.5µm CMOS technology and IBM 180nm CMOS technology. Fig. 6.48 (a)

shows the die photo of the implementation in 0.5µm CMOS. The major building

blocks are low noise amplifiers and neural stimulator back-ends. The chip occupies

a silicon area of 3mm×3mm including the IO pads. The supply voltage is 3.3 to

5V. Fig. 6.48 (b) shows the die photo of the implementation in IBM 180nm CMOS

technology. The chip occupies a silicon area of 4.5mm×1.5mm including the IO pads.

The major building blocks are i) analog front-end, ii) stimulator back-end, iii) data

converters, and iv) peripheral modules.
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Figure 6.48: A micrograph of the basic version of the bi-directional neural inter-
face SoCs in (a) On-Semi 0.5µm CMOS technology, and (b) IBM 180nm CMOS
technology. Major building blocks are highlighted.

Fig. 6.49 shows the die photos of the proposed bi-directional neural interface

with energy-efficient neural feature extraction and PID closed-loop controller. Fig.

6.49 (a) is the first version including 12 channels with debugging and testing struc-

tures, and Fig. 6.49 (b) shows the second version including 16 channels. Both chips

occupy a silicon area of 4.5mm×1.5mm, including the IO pads. The major building

blocks are highlighted in the figure, including: 1) neural front-end with neural feature

extraction units and closed-loop controller, 2) programmable neural stimulators, 3)

data converters, 4) power management, analog references, and peripheral circuits.

Table 6.4 summaries the key specifications of the bi-directional neural interface SoC.
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Figure 6.49: The micrographs of the bi-directional neural interface with the pro-
posed energy-efficient neural feature extraction and PID closed-loop controller. (a)
shows the first version with 12 channels with debugging and testing structures. (b)
shows the second version with 16 channels. Major building blocks are highlighted.

The developed BMI devices have been used in a few experiments with freely

behaving monkeys. The experimental results presented in the following analysis were

conducted in the monkey (Macaca mulatta) O, D, and F (8-12 kg), with a focus

on a study of the hippocampal (HIPP) gamma-slow oscillation coupling in macaques

during sedation and sleep. The slow oscillation (SO) of non-rapid eye movement sleep

plays a critical role in the consolidation of newly-formed memories [306]. There is

substantial behavioral evidence linking the amount of SO activity after learning to

the strength of both procedural and declarative memories [307, 308]. These effects

of SO on HIPP activity have been studied in rodents and cats, but have not been

documented in primates. In this work, we recorded the HIPP field potentials during

sedation and during natural sleep. In addition, electrical stimulation was delivered

to HIPP afferents in the parahippocampal gyrus (PHG) during sedation and awake

to study the effects of the sleep like SO on excitability.
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Table 6.4: Key Specifications of the Bi-directional Neural Interface SoC

Analog

Front-end

LNA Gain 40dB

LNA Bandwidth 0.3Hz - 7kHz

LNA Integral Noise 4.57uV

LNA Power 9uW

LNA NEF/PEF 4.77/41.1

THD (10mVpp Input) -61dB

CMRR/PSRR 81dB/71dB

PGA + Filters Power/ch 8uW

Energy

Extraction

Center frequency 1Hz - 200Hz

Tuning steps 64 natural log

Quality Factor 1 - 8

Window length 10 - 500ms

Ex + PID Power/ch 7uW

Spike

Discriminator

Algorithm Window discrimination

Amplitude Thresholds 6-bit

Latency 10us

Avg. Power/ch 4uW

ADC

(Volt Mode

/Curr Mode)

Sampling Rate 1MSps/250KSps

ENOB 9.1/7.9

FoM(fJ/step) 34.2/10.7

Power (at 200KSps) 7uW/0.5uW

Stimulator

Stim. Current 4mA/200uA

Amplitude Res. 6-bit

Pulse width 1us - 255us

Total

Power

Chip Power/ch 56uW/ch

MCU + Wireless (avg) 8mW

In preparation of the monkey for this experiment, a post was first attached to

the skull with screws and acrylic, and magnetic resonance (MR) images of the brain

were acquired with fiducial markers. A sterile surgery was performed to implant the

electrode arrays using an MR-guided neuronavigation system. Fig. 6.50 illustrates

the implanted electrode array. The platinum electrode sites are shown as red boxes

and the electrode trajectories are shown as black outlined rectangles. The dimen-

sions of the electrode sites are indicated at the bottom. Typical MRI and CT image
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with the visible hippocampal array is shown in Fig. 6.50 (b). Colored regions in-

dicate different neuroanatomical areas. Since the goal of this project is to identify

Figure 6.50: (a) Illustration of the implanted depth electrode arrays. (b) MRI and
CT image with the visible hippocampal array.

potential closed-loop stimulation paradigms for modulating memory for human pa-

tients, clinical microelectrodes were used in this study, rather than the conventional

microelectrodes. Single neurons cannot be collected from these electrodes, but the

field potentials were sufficient to document the regionally-specific SO and effective

PHG-HIPP connectivity for the objective of this study.

Fig. 6.51 shows the power spectrums recorded from the three electrode arrays

in the hippocampus, entorhinal cortex and medial septum, respectively. The signal

was recorded using the developed BMI device on a Micro-SD card. The device was

placed in the chamber during the sedation, and retrieved the next time the monkey

was brought to the lab. Different brain states, from sedation, recovery, awake and

sleep can be told from the spectrums. Both time and frequency domain features and

chewing artifacts verify the reliability of the recording.
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Figure 6.51: The power spectrums of the long-term recordings of the monkey D
from the three electrode arrays: (a) hippocampus, (b) entorhinal cortex, and (c)
medial septum.

Fig. 6.52 shows the recorded spectrum of the recovery process from anesthesia

in monkey D and monkey F, respectively. Both recordings show a period of an

increase of the high-frequency oscillation after the sedation, which is the effect of the

ketamine-dexmedetomidine.
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Figure 6.52: The recorded spectrum of the recovery process from anesthesia in (a)
monkey D and (b) monkey F.

Separate sessions were conducted with a focus on quantifying neural connectivity.

In order to study during stimulation reversal and awake states, the developed bi-

directional BMI device was configured to deliver a single bipolar charge-balanced pulse

with an amplitude of 2mA in every 30 seconds to the entorhinal cortex. The same

device recorded the evoked response in the hippocampus. In this way, the PHG-HIPP

connectivity in consistent states defined by oscillatory activity was studied. Fig. 6.53

shows a stacked plot of 278 responses, aligned by the on-set the of the stimulation.

The stimulation artifacts are marked by the red arrow. Thanks to the fast artifact

recovery design as described in Chapter 5, the evoked potentials can be clearly seen
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Figure 6.53: The stacked plot of in total of 278 stimulation triggered evoked po-
tentials recorded using the developed BMI device.

from the recording without any signal corruption. The experiment was repeated on

Monkey D approximately two months. These results demonstrate the reproducibility

and stability of the effects. Fig. 6.54 shows the average waveform of the responses.

In the next experiment, a programmable pulse train was delivered to the medial

septum. The stimulation frequency was switched between 20 to 80Hz during one ses-

sion. Fig. 6.55 compares the evoked potentials from three states: sedation, recovery
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Figure 6.54: The average response waveform of the stimulation triggered evoked
potentials in the hippocampus.

and awake. The plots are the average of over a 3-hour recording with stimulation

Figure 6.55: Recording of the stimulus-evoked potentials. Stimulus trains of 40 Hz
and 60 Hz in different brain states are shown. The plots show an triggered average
over 3 hours recording in total, with stimulation every 30 seconds.

delivered every 30 seconds. In all three states, the stimulation pulse train evoked

an oscillation in the hippocampus at 40 and 60 Hz. The oscillation continues for at

least one cycle after the stimulation pulse train. Due to the high stimulation current

(2mA) and the high compliance voltage (12V), the battery typically last 3-4 hours

for the stimulation-recording sessions.
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Fig. 6.56 illustrates the Gamma-dependence of hippocampal EPs in sedated

versus awake animals. Time course of EP peaks and pre-stimulus gamma power in

Figure 6.56: Time course of EP peaks and pre-stimulus gamma power in across
three behavioral states: sedated (red, black circles), recovery (gray circles), and
awake (blue circles). Gamma (30-50 Hz) power was calculated in a 300-ms window
preceding each stimulus.

monkey D across three behavioral states: sedated (red, black circles), recovery (gray

circles), and awake (blue circles). Gamma (30-50 Hz) power was calculated in a

300-ms window preceding each stimulus. The horizontal axis is scaled to stimulus

number, not absolute time. PHG stimuli during sedation in the lab were delivered

every 5s by a commercial stimulator. PHG stimuli during recovery and awake periods

in the home cage were delivered every 30s by the custom designed BMI stimulator.

Stimulus amplitude was 0.5mA in both cases. The reversal agent, atipamezole, was

given between the sedated and recovering states. In both monkeys the recovery

periods show a transient increase in HIPP gamma-band activity and steady increase

in the peak amplitude of the EP.
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Thus the gamma-dependence of the evoked HIPP responses were specific to the

sedated state and the responses overall were weaker than during the awake state.

The results were replicated in Monkey F using instrumentation recording. Fig. 6.57

Figure 6.57: Mean EPs during sedation (red, black) and awake (blue) for (a) mon-
key D and (b) monkey F. 95% confidence intervals on the mean are shown in gray.

compares the EPs during sedation and awake in for Monkey D and Monkey F. 95%

confidence intervals on the mean are shown in gray.

Fig. 6.58 (a) shows the power spectral density of the hippocampal recordings

during recovery (gray) and awake (blue) states in monkey F. Monkey F exhibited

similar HIPP oscillatory activity during recovery from sedation as Monkey D, with an

increase in gamma power and a decrease in low-frequency power relative to the awake

states. Fig. 6.58 (b) shows the distribution of gamma amplitude across sedated (red,

black) and awake (blue) recording sessions in monkey F. The sedated distribution
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was colored black and red to highlight its bimodal nature and correspondence to the

bimodal EP response amplitudes as in Fig. 6.56 and Fig. 6.57. The higher mode of

Figure 6.58: (a) The power spectral density of the hippocampal recordings during
recovery (gray) and awake (blue) states in monkey F. (b) Distribution of gamma
amplitude across sedated (red, black) and awake (blue) recording sessions in monkey
F.

the sedation distribution (red) aligned with the awake gamma amplitude distribution

(blue), while the lower mode (black) was not presented in the awake distribution.

In summary, the custom developed BMI system has enabled our collaborators

from the Perelman School of Medicine, to perform key experiments in freely moving

monkeys. The study above shows that the ketamine-dexmedetomidine sedation in

primates produces phase-amplitude coupling of gamma and slow oscillations in the

PHG-HIPP network. This work presents the first study to directly compare the

macaques HIPP field potentials in sleep to sedation. The study suggests that future

investigations of the SO in primates would best be conducted during natural slow-

wave sleep rather than sedation.

To conclude, a comparison with the recently reported designs of the bidirectional

neural interfaces is listed in Table 6.5. Compared with the state-of-the-art design,

this work is the first reported wireless bidirectional, closed-loop BMI system used for
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long-term freely behaving animal experiments and investigation. This design shows

a promising and practical solution for the future development of animal experiments

based on primate models.
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Chapter 7

Conclusion and Future Works

7.1 Summary of the Work

This work has presented the analysis and design of a BMI system. To the best of my

knowledge, this is the first thesis dedicated to studying the bidirectional closed-loop

BMI system. The main motivation of this work is the fact that many significant

meaningful neuroscience experiments, especially in freely behaving animals, cannot

be conducted without custom designed electronics. With the close collaboration of

neuroscientists and engineers, this work was able to identify and address several prac-

tical and important issues of the BMI system design. The developed system has been

successfully used in several animal experiments often resulting in significant new ob-

servations.

The main work and key contributions of this thesis are summarized as follows.

In the first chapter, a brief historical review of BMI development was given. A com-

prehensive survey and review with a focus on the BMIs with the bidirectional neural

315
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interface were performed. Consecutively, an overview of the system architecture of

the BMI system was presented. Design considerations and key specifications were

summarized. The configurations for the closed-loop operations were illustrated.

In the following three chapters, the design, analysis, and experimental results

of the main building blocks of a BMI system, namely the neural signal recording

module, the neural feature extraction module, and the neural stimulator module.

In Chapter 2, the design of a general purpose low-noise instrumentation amplifier

and a low-power ADC were discussed. In addition, a novel pre-whitening neural

amplifier was proposed to increase the equivalent dynamic range of the front-end.

The pre-whitening processing takes advantage of the neural signal characteristics,

significantly relaxing the ADC design without sacrificing the signal quality. The

compressive sensing technique was also used to reduce the wireless data rate of the

recording front-end.

In Chapter 3, commonly used neural features for closed-loop operations were

summarized. The circuit implementation for energy efficient feature extraction of

both local field potential and action potential were presented. A natural logarithmic

domain neural energy extraction circuit was proposed to provide a sufficient frequency

resolution for low-frequency brain oscillations with a minimum number of tuning

steps. A low-power action potential discriminator was designed and implemented

in current-mode circuits. A matched filter was proposed to extract phase-amplitude

coupled neural features. The performance of the matched filter was further improved

by employing the proposed pre-whitening filter.

Chapter 4 presented the analysis and design of the electrical neural stimulator.

The background and mechanisms of neurostimulation were first reviewed, followed
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by a description of physical and electrical models of the electrode and electrolyte

interface. Then, an overview of electrical stimulator design was given, including

an analysis of methods for stimuli generation, stimulation waveform, and electrode

configuration. The methods for achieving the charge balance was also discussed. Next,

a general purpose neural stimulator was designed, followed by a novel net-zero charge

neural stimulator design. Instead of focusing on circuit matching and residue charge

removal, this work attempts to achieve a net-zero charge by employing feedback. The

developed chip has been validated in both in-vitro and in-vivo experiments.

Chapter 5 discussed the design of a bidirectional closed-loop BMI from two im-

portant perspectives, the bidirectional neural interface and the on-chip closed-loop

control and operation. The stimulation artifact is a known issue in simultaneous neu-

ral stimulation and recording. The long lasting stimulation artifact blanks the record-

ing front-end and corrupts the signal. Previous designs proposed different methods

to address this problem, however, all have constraints in their applications. In this

work, a study of the stimulation artifacts in different recording and stimulator con-

figurations were studied, and conclusions and design recommendations were given.

In addition, the mechanisms of the closed-loop operation of the BMI were reviewed

and summarized. Followed by the design of a general-purpose programmable PID

controller. The implementation of the closed-loop controller is important for both

neuroscience research and neuroprosthetic development.

Chapter 6 presented the system integration and animal experiments. The design

of a general-purpose experimental platform was first described. Custom communica-

tion protocol and user-friendly interface were developed and used extensively in most

animal experiments in this work. Then, a watermaze experiment was presented. A
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complete experimental system was designed, including a wearable waterproofed s-

timulator designed to be worn by a rat, an animal location tracking system, and a

computer based control interface. Different stimulation parameters and versatile neu-

romodulation algorithms can be configured in the system. Moreover, the design of a

bidirectional neural interface device for the operation in a freely behaving monkey was

presented. Long-term experiments of neural stimulation and recording during awake,

sedated and sleeping monkeys were given. A study in the hippocampal gamma-slow

oscillation coupling using the developed system was also described. The design shows

a promising and practical solution for the future experiments using non-human pri-

mate models.
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7.2 Future Work

A decade ago, Mikhail A. Lebedev and Miguel A.L. Nicolelis predicted that the

future BMIs will have sensory feedback directly delivered to the cortical or subcortical

somatosensory area, and the closed-loop BMIs would be the ideal tool to restore

motor functions [264]. This prediction has inspired this thesis. With the efforts of

scientists and engineers around the world, we are stepping into the future of BMI at

an incredible pace. Nevertheless, several bottlenecks still need to be overcome.

(1) Interfacing: The direct interface between the neuron and electronics are still a

challenge, preventing the long-term safe neural stimulation and recording. Novel

interfacing material and electronics still need to be developed;

(2) Wireless Communication: Although a lot of work has been done in devel-

oping wireless neural recorders, a more reliable solution for real-time streaming

of multiple-channel signal for recording single neuron activities is still highly

desirable. The ideal solution would fully consider the trade-offs between the

bandwidth and power consumption, with a minimum data corruption;

(3) On-chip Processing: On-chip processing is important for reducing the wireless

data rate, and more importantly, to support the real-time closed-loop operation,

which is the ultimate goal for the development of most BMI devices. The on-

chip operation is usually much more reliable than streaming the data through

the a wireless link and rely on an external processing station. However, the

limited power budget and on-chip resources place a significant challenge on the

on-chip neural signal processing design. With the help of artificial intelligence
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and deep learning techniques, the on-chip neural signal processing is one of the

most promising research areas in the next few years;

(4) Power Consumption: Low-power is always an important design considera-

tion for BMI devices, for both extending battery life and minimizing the tissue

damage caused by the generated heat. Developing low-power circuit design tech-

niques as well as exploring energy harvesting opportunities would be the path

to overcome this power challenge;

(5) Packaging: Biocompatible packaging is critical in the developing of implantable

BMI devices. The ideal implantable BMI device would be fully sealed with only

wireless interfaces for communication, programming, and battery recharging.

It should be noticed that the aforementioned challenges and opportunities are

mainly from the electrical engineering perspective. In addition, the development of

fundamental neuroscience and neural engineering innovations have always been the

main driving force in the BMI research. So, the biggest opportunity is the close col-

laboration between the neuroscientists and electrical engineers, as well as scientists

and engineers in all related fields. With further improvements in performance, re-

liability, and range of applications, the BMI technology would benefit a larger and

larger population, revolutionize our way of interacting with the external world, and

fundamentally help us understand ourselves.



Appendix A

Acronyms

AP Action Potential

ASIC Application-Specific Integrated Circuit

BMI Brain Machine Interface

CMRR Common Mode Rejection Ratio

CN Cuneate Nucleus

CR Compression Ratio

CS Compressed Sensing

DAC Digital to Analog Converter

DBS Deep brain stimulation

DNL Differential Non-Linearity

ECoG Electrocorticography

EEG Electroencephalogram

ENOB Effective Number of Bits

FES Functional Electrical Stimulation

FoM Figure of Merit
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INL Integral Non-Linearity

LFP Local Field Potential

LNA Low Noise Amplifier

NEF Noise Efficiency Factor

NI Neural Interface

OTA Operational Transconductance Amplifier

PEF Power Efficiency Factor

PGA Programmable Gain Amplifier

PID Proportional-Integral-Derivative

PSD Power Spectrum Density

SAR Successive Approximation Register

SFDR Spurious-Free Dynamic Range

SNR Signal to Noise Ratio

SoC System on Chip

TIA Transimpedance Amplifier

a



Appendix B

Propositions

During my five years Ph.D. study and research, I made the following propositions and

conclusions, which I think are useful and even defendable. I hope these words would

be helpful for the readers from another perspective. This can also be considered as

a short version of the thesis without involving the details of electrical and neural

engineering.

• When people talk about the brain, it is the brains talk about themselves. Co-

incidently, we often misunderstand ourselves, and we often have no idea what

we are talking about.

• The electrode mismatch causes an amplifier with a perfect CMRR to fail, and

the charge diffusion causes a stimulator with a perfect current matching to

fail. Despite the complex and elegant circuit design one may have, the biggest

challenge is to identify the real problem.

323



324

• Our nervous system and electrical circuits rely on negative feedback, while our

social relationship rely on the opposite.

• When life gives you a stimulus, don’t be afraid and figure out the path. (Learnt

from the rat in the watermaze experiment)

• Make a system work may be easy, make it work on a monkey is usually a

different story.

• Conventional low-noise amplifier designs optimized for a noise efficiency factor

often ignore the fact that the information contained in the signal is what really

matters. Techniques like pre-whitening filter and compressive sensing, which

significantly reduce the system power while preserving the dynamic range and

bandwidth of the signal, are the keys for the next generation neural recorder

design.

• When you are doing Ph.D. research, trivial problems will almost always domi-

nate your time. But never, never let trivial problems dominate your mind.
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