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ABSTRACT

EFFECTIVE FIELD THEORY ON MANIFOLDS WITH BOUNDARY

Benjamin I. Albert

Jonathan Block

In the monograph Renormalization and Effective Field Theory, Costello made
two major advances in rigorous quantum field theory. Firstly, he gave an inductive
position space renormalization procedure for constructing an effective field theory
that is based on heat kernel regularization of the propagator. Secondly, he gave
a rigorous formulation of quantum gauge theory within effective field theory that
makes use of the BV formalism. In this work, we extend Costello’s renormalization
procedure to a class of manifolds with boundary and make preliminary steps towards
also extending his formulation of gauge theory to manifolds with boundary. In
addition, we reorganize the presentation of the preexisting material, filling in details

and strengthening the results.
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Chapter 1

Introduction

Effective field theory, in the context of the renormalization group, was developed
by Wilson [7] [8] based on earlier work of Kadanoff [4]. There are many variations,
but the basic procedure involves two steps: mode elimination and rescaling [5] [3].
In this introduction, we shall present the intuitive idea of mode eliminination and
how it relates to the body of the paper.

Suppose that we have an action functional S[Ay](¢) describing physics below
an energy scale Ay. Then the action functional S[A](¢) describing physics at a
lower energy scale should be given by “eliminating the modes” with energy between

Ar and Ap. This is described by the renormalization group equation (RGE)
SN/ _ / eSIAl6+d) Dy (1)
€L Ay

where the integral is over £, 4,1, the space of fields with energy between Ay and
Ap. And S[A](¢) is defined on the low energy fields ¢ € &£y a). Equivalently, we can
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write

S[As)(@) = hlos | SInl6+0) /Dy (12)

PEE AL A
In order to define the effective action S[A](¢), one might be tempted to let A — oo

and write

SIAl(6) = Filog / S+ (1.3)

&' EE(A 00
but this limit will not exist due to ultraviolet divergences. However, the limit should
exist after an appropriate renormalization of the functional integral .

The focus of the first part of this thesis will be on constructing effective field
theory, albeit in a slightly different formulation, which we now begin to move to-
wards.

For the remainder of the introduction, for expository reasons, we shall work
with a scalar theory on a compact manifold M. Let D be the Laplacian on M,
E = C>(M), and the “modes” the eigenvalues of D. Assume that the action is of

the form

S(6) = ~3(6. D6) + 1(9). (1.4

where (¢, D¢) = [,; D¢ is the quadratic part of the action. Because ¢ € Ep ) and

@' € E(n,00) are orthogonal,

S0+ ) =~ (6, D8) ~ (8, DY) + (6 + &), (1.5



If S[A](¢) = —3(¢, Do) +I[A](¢), then the renormalization group equation simpifies

to

JAL)@)/h _ / ¢~ (6. DY) /14 TAR] 6+ B g (1.6)
YEE N A ]
or equivalently
I[AL)(¢) = hlog / g™ 24 DIHIAHN+/AD g (1.7)
&' E€ENL A

Let P = P(Ar,Ag) be the inverse of the quadratic form (¢, D¢') on En, )
and let dp be the second order contraction operator associated to P. By Wick’s
theorem on the finite dimensional vector space £, 4, the integral (1.6) is equal

to the Wick contraction
V(P,I[Ay]) = e"rellAul/, (1.8)
and is equal to the expression
W (P, I[Ay]) := hlog[e"r elhul/h] (1.9)

While the version of effective field theory with sharp energy cutoffs described
above paints an intuitive physical picture, there are disadvantages to working with
it, as discussed in [3]. Costello gives an alternative approach that comes from
noticing the relationship between the uncut propagator and the heat kernel. Let

Ki(x,y) be the heat kernel for D. That is



and limy_o+ [,, Ki(2,y)o(y) dy = ¢(x). Then if the integral

G(z,y) = /000 K dt (1.11)

exists the operator it induces provides an inverse to D on £ ). That is, away
from the energy zero fields.
Instead of cutting off the space of fields, we work with the entire space of fields

& and introduce the regularized propagator
L
Pl = / K, dt (1.12)

An effective field theory now becomes a collection of length scale regularized inter-

actions satisfying
_ hOpL I[e]/h
I[L] = hlogle " *&e ]. (1.13)

or more compactly I[L] = W(PE, I[e]).

We naively might try to define the scale L effective interaction as

I[L] = lim hlog [exp (hdpe) exp (I/N)] (1.14)

e—0t
However, this limit may not exist and expression then has to be renormalized. That

is, an interaction functional I(e) with counterterms for I is constructed such that

I[L] = lim Rhlog [exp (hdpe) exp (I — I(€))/h)] (1.15)

e—0F
exists.
In Chapter[2| we define the spaces to which the propagator P and the interaction
functional belong. We define stable Feynman graphs which give a way of organizing
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the combinatorics of the contractions in V(P, I) and W (P, I). Theorem (1| expresses
V(P,I) as a summation over all stable graphs while Corollary (1| expresses W (P, I)
as a summation over connected stable graphs.

In Chapter [3| we state and prove several variations of Wick’s theorem. In[3.1.2]

we calculate the 1 dimensional Gaussian integral

b
Ly.o(a,b) :/ a"e 2 4y (1.16)

—az?/ 2|2=b for i < m. The formula reduces

in terms of Iy 4(a,b) and J; ,(a,b) = x'e

to expected results on R and RT which are recalled in [3.1.1] and [3.1.3| respectively.

In (3.1.4] we generalize the formula for I,, ,(a,b) to one for
b 2
Imap(a,b) = / gm0 2B g (1.17)

The proof, which is analogous to the one in [3.1.2]is omitted. The next two sections
are focused on the many variables Wick’s theorem. That is, the computation of the

integral

/ O s G (1.18)
P

where @Q(x) is a nondegenerate quadratic form. In [3.1.5, we recall the standard
statement of Wick’s theorem on P = R" and give a proof by diagonalizing the

quadratic form and applying the result of [3.1.1] This will be used to calculate the

counterterms on R™ in [.1.4] In[B3.1.6]it is shown that the result of B.1.2]is sufficient

to compute ((1.18) inductively, when P is any polytope. Lastly, we show that as



long as P is bounded the Q(xz) may be degenerate and even inhomogeneous. In
this case, the result of can be applied iteratively to compute the answer. We
specialize to the case relevant for the counterterms on H", the upper half space with
the Euclidean metric, in |4.1.6

Chapter [ in particular Section [4.1] forms the body of the paper. We begin
with [£.1.7], where the construction of the counterterms in general is motivated by
carrying out the procedure for the Feynman weight associated to a particular 1-loop
graph in the ¢}-theory. The renormalization procedure is based on the ability to
cover (0, 00)* and a fortiori (e, 1)* by sets defined by inequalities of the form ¢; < tF,
where R > 1. In the next section, the covering lemma that was proved by Costello
in [3] is strengthened and proved. Much more detail about the nature of the sets
in the cover is given. Other preliminary concepts needed for the renormalization
procedure like local functionals and the form of their Feynman weights are then
discussed.

In 4.1.4, we formulate Costello’s renormalization procedure on R". We give
explicit formulas whenever possible and fill in a few steps in the argument omitted
by Costello, such as the introduction of what we call spanning tree coodinates.
In [A.1.5] we show how to control the error and how the basic result of can
be used inductively to provide counterterms on each of sets in the cover of (e, 1)*
where £ is the number of edges in the Feynman graph whose weight we are trying

to renormalize.



In [4.1.6] the renormalization is adapted to H", the upper half space with the
Euclidean metric. The procedure does not carry over without modification since
the quadratic form in the integral computing the Feynman weight is both no longer
non-degenerate and no longer homogeneous. Luckily, this difficulty can be circum-
vented by a clever change of coordinates in the direction normal to boundary. The
counterterms have a more complicated form than those on R", but we argue that
the inductive procedure of can be carried out with appropriate modifications.

In , we correct what seems to be an oversight in Costello’s reasoning in [3].
On a compact manifold M, Costello uses the asymptotic expansion of the heat kernel
Ky(x,y) ~ e~ dzv)?/4 >, di(z, y)t', but for each chart in a cover replaces d(x, y) with
the coordinate distance ||z — y||. Thus, taking a partition of unity, the Feynman
weight under consideration becomes a sum of integrals whose integrands will contain
the exponential of a quadratic form, which allows us to apply Wick’s theorem.
However, it does not seem to be correct that Ki(x,y) ~ e I*=9P/4 S 6 (x, y)t,
at least not uniformly in z and y. Again, we show how this difficulty is not fatal.
While the counterterms will not simplify as they do on R", through the introduction
of spanning tree coordinates, one can still bound the error. The inductive step in
the constuction thus remains valid.

The culmination of these results is [£.1.8 where we show the renormalization

procedure can be carried out on a class of compact manifolds with boundary where

the argument reduces that of near the boundary and away from the



boundary.

In Section we move beyond the construction of counterterms for each Feyn-
man weight and construct the counterterms I°7(€) for the entire effective interac-
tion.

Chapter [5 contains preliminary work done towards extending Costello’s for-
mulation of quantum gauge theory within effective field theory to manifolds with
boundary.

In [5.1.1], we recall the required graded linear algebra and state and verify the
classical master equation for generalized Chern-Simons theory. In the last part of
5.1.1, we show that the requisite algebraic assumptions on the space of fields for
the classical master equation to hold can be satisfied beginning from the data of
a compact smooth manifold M of dimension n and a graded Lie algebra g with a
symmetric bilinear pairing x of degree n — 3. In , following [1], we extend these
constructions in our language to manifolds with boundary.

Lastly, in Section [5.2] we recall and generalize slightly some of the constructions
that can be found in [2] and [6], as a preliminary step towards adapting them to

manifolds with boundary.



Chapter 2

Feynman Diagrams

2.1 General Setup

Let £ be a graded object in an appropriate symmetric monoidal category, which
contains a field K as its monoidal unit. For toy examples one can work with the
category of finite dimensional vector spaces. For quantum field theory one will need
to work with a category of topological vector spaces like the category of nuclear
spaces with the projective tensor product. The identifications (€ ® F)* = £* @ F*
and Hom(&, F) = £* ® F will be made throughout. We will not dwell on the issue
any further.

Fix an element P € Sym?(£) which will be called a propagator. We define the

algebra of formal power series on &,

0(€) = | [ Hom(®"€,K)s, = [ [ Sym™(£7) (2.1)

n>0 n>0



Here Sym means taking coinvariants of the n-fold tensor product with respect to the
symmetric group action. An element of I € O(&)[[A]] is of the form I = Y7, I; 17",

where I;; € Sym*(£,R). Let
O(&)"[[r]] c OE)[[R]] (2.2)

be the functionals of the form [ = Zi,kzo Ii,kh", where Iy, = 0 for £ < 3 and
Iy = 0. We will see the reason for this restricted class of functionals later in the
section.

We are interested in combinatorial formulas for “functional integrals” of the

form
V(P,I) = eorel/h (2.3)
and
W (P, I) = hlog(e"rel/t), (2.4)
where dp denotes the contraction operator 3 >, 9,18, where P =, Pi(l) ®Pi(2).

Lemma 1 (Feynman Expansion).

V(P =Y N C({nix}, st dal TT 17 (2.5)

{nik} J ik

where

Clinahd) = ~ [ —

! 7 1!
Iy Tk

10



and

p({nink,3) = Jinis— Y nix+J

In the outer summation, we sum over the collection of double sequences of non-
negative integers {n;}ix>o with the requirement that for all but finitely many i, k,

Nik = 0.

Proof. By the multinomial formula

exp (Z L 1) = Z ’k i

J

Z 1) Nk

"2 H L
n; k zk ’
where the inner sum is over sequences of nonnegative numbers {n;;} such that

Y ikNik = j. We can reexpress this as a single sum over sequences of almost all

zero nonnegative integers {n; s }
7’ l)nz k

exp (Z ]ivkhi_1> Z H n”“.
ik

{nzk} i,k 7

Thus,

h] h('L n "z
= 2.2 5% H ’“

{nz k} ]

Z ZC’ {n}, j)RPUmabD g, HIZLI';IC

{nl k} J

It remains to investigate the combinatorial structure of the expression
AL
ik

11



Before doing so, we shall make a definition.

Definition 1. A stable graph is defined by

V(y) a set of vertices

E(v) a set of edges each connecting two vertices

T() a set of tails each connected to a single vertex

and a function g : V(y) — Z=° associating a “genus” to each vertex.

There is a natural preorder on vertices: If v; has g(v;) = ¢; and valency k;, and

vg has g(vy) = iy and valency ko, then vy < vy if iy < iy or iy = is and ky < k.

2.2 Feynman Diagram Expansion

Begin with the expression

J
- S5 (T e (o ) T

{77/1 k} J

Let I, iy, - - -, 1i, k, be the sequence of interactions for which n; , # 0. Recall that
the propagator P € Sym? & with P = > B ®P( ). and we are assuming that & is

ungraded. Make the substitution I; ;, = Skfi’k/k! where Skfiyk =53 ng =k .

ocESE

Then

1 7 _—
=22 ( 127 Hn ! (k!)m> pr b (Zaﬂl ) [L(S" L)

{nz k} J ik

12



Then

J
(S0 ) Tt
l

ik

will be a sum over contractions that can be parametrized by injections Q) : H — V
of the set H = {1M 1@ 50 @1 into the set of inputs to the interactions
V=00, kW am Y

Since I;; € Sym®&* and I:f,f € Sym®&*, we can reorder the contractions so
that the images of the index (1) elements in H, Q(1M), ..., Q(jV) are in ascending
order. There are j! contractions that will be reordered to the same contraction in
this way. We can also reorder so that Q(a(Y)) comes before Q(a?). There are 27
contractions that will be reordered to the same contraction in this way.

Injections up to these reorderings are in one-to-one correspondence with parti-
tions of V' into j subsets with two elements and 1 additional subset containing the
remaining |V| — 2j elements. Let Q({n;},j) be the collection of such partitions
and for Q € Q({nix},j) let wo(P, I) denote the corresponding contraction.

Then

vien=>Y Y > (H W) pPAranh- Doy (P, 1) (2.6)

{ni,k} J QEQ({nz,k}7]) ivk

Any partition @ € Q({n;x},7) determines a stable graph - in an obvious way.
Consider Q. ({n;x},7), the collection of partitions which determine the same stable

graph 7. Let G({nix},j) = [1;4(Sg"" % Sn,,). Note that

)

13



This acts on V by permuting the interactions of type i, k and their £ inputs. As
a consequence, it acts on Q({n;x},7). In fact, it acts transitively on Q,({n;x},7).
The stabilizer subgroup of a given partition @) € Q. ({n;x},7) is equal to Aut(y),
the group of automorphisms of the stable graph . By the orbit-stabilizer theorem,

the number of partitions which determine the same stable graph ~ is given by

G({nixt, 7)) TLipmin! (B
[Aut(y)] — [Aut(y)] (2.7)

Therefore,

Theorem 1 (Feynman Diagram Expansion). For a stable graph v, we define

g() =b(M+ > gv) (2.8)

veV(y)

where b(7y) is the first Betti number of . Let C(v) be the number of connected

components of v. Then

V(P I)= ; mhg(”‘cmwv(R I) (2.9)

Proof. The constant p({nix},7) = >, inix — D _; 5 Mik +J has a very simple inter-

pretation in terms of the stable graph v since

> glw) =D inig,

V()| =2, nik and [E(y)] = j. Using the fact that

b(v) = EM] = V(v + C(v), (2.10)

14



and the definition

g =v()+ > 9(v) (2.11)
veV(y)
we have
p({nik}t:3) = g(v) — C(v). (2.12)

Lastly define w, (P, I) to be wq(P, ) where @ is any partition that determines +.

The formula now follows from (2.6) and ({2.7)). ]

Now we describe a combinatorial formula for W (P, I) = hlog(e"re!/") or equiv-

alently e (PN/h — ghdpl/h,

Corollary 1.

1
W(P,I) = — 1w, (P, ) (2.13)
7%%” | Aut(7)| !
Proof. Tf vy U --- U v is the disjoint union of not necessarily distinct connected

stable graphs vy, ..., 7, then it is clear that

g U Un) =gmn)+ -+ g(w)

CnU-—-Un)=Cn)+-+C(n)
and if v = (UM y) U -+ U (UFn+,,) where 74, ..., 7, are distinct

| Aut(y)] = k! k! Aut(y)[F .| Aut ()™

15



Thus,

1

exp (W(P,I)/h) = exp < mhﬂﬂ—lwv(ﬂ 1))

7y conn

_ 1 F(9(1)—1)
=2 11 A wu, (P, 1)

{k} v conn

1
_ = pIm=CM) P
2. Thato) wilB0)

In the second line above, for each sequence {k,}, conn in the outer summation,

k., = 0 for all but finitely many v, and £, is a nonnegative integer for all . m

Corollary 2. For I € O(&E)Y[[n]],

W(P,I) € O&)[[Al]

16



Chapter 3

Wick’s Theorem

3.1 Bosonic Wick’s Theorem

3.1.1 Wick’s Theorem on R

In one variable, Wick’s theorem reduces to the statement

om Rl 1 iy = 2k

0o 2 /9 K12k o (2k+1)/2
/ zme™ /2 dy = (3.1)
- 0 ifm = 2%k + 1,
1

3.1.2 Wick’s Theorem on (a,b)

There are several ways of proving the formula for R which one might try to adapt.

The proof by integration by parts seems the best suited and is the one we develop

17



here.

We wish to compute the integral
b 2
Lo(a,b) = / amem w2 dy

for —oo < a < b < oo and to check that the result agrees with the standard formula

for a = —o0 and b = 0o. Let

r=b
Jm,a(av b) = xme—ax2/2

r=a

By integration by parts,

b b
/azme_axz/?dx:/ :Um_l(ive_axQ/z)da:
m—1 [°
= x

xm—l b
/ m—26—o¢:c2/2 dr — 6—041:2/2
(67 (0% a
That is,
m—1 1
I 7b = 1m-2a 7b - " YIm-1la 7b' 3.3
sty =" ) = 2 (e 33)

For m even, we can thus express I,, o(a, b) in terms of Iy ,(a,b) and J; 4(a, b) where [
ranges over odd integers less than m. For m odd, since I1 (a,b) = —(1/a)Jo.a(a,b),
we can express I, o(a,b) in terms of J; ,(a, b), where [ ranges over even integers less
than m.

We can then prove a precise formula by induction:

Proposition 1.

Crn N
Ino(a,b) = —"=Ina(a,b) — > i1 m1-2ia(a,0), (3.4)

a™/2

18



where Cy, = 0 when m is odd and C,, = (m — 1)!! when m is even and for all m

S (m—1)N

im = m (3.5)

Proof. The even and odd base cases when m = 0 and m = 1 are clearly satisfied.

Suppose the result is true for I,, ,(a,b). Then using (3.3,

1™ -

m+1 C, m+1 & Cim
-— )

Im+27a(a, b) = Jm—1—2i,a(a7 b)

a a™/2 aitl
i=0
1
- & m+1,a(a> b)
and
~ (m 4+ 1)!!
1)C;,, = :
(m+ D = T 26 £ 1)1
= ~i+1,m+2
SO

Z “— Jm—1-2i.a(a,b)

Ci+1,m+2
= > e e aaena(d)
1=0
[ )

Ci,m+2
= Z Wj(m+2)—1—2i (a,b)

=1

The induction step is now completed by employing the fact that

(m—I— 1>Cm . Cm+2
aa™/2 T am+1)/2

19



As a - —oo and b — oo, we have J,,,, — 0 and Iy, — /27/a. Combining
this with identity for the double factorial

(2k)!

(2 -l =

we recover the statement of Wick’s theorem on R.

3.1.3 Wick’s theorem on R™

Note that if ¢ = 0 and b = oo, then J;, = 0 for [ # 0 and Jy, = —1. Since

(2k)!! = 2FK!,
Cm, I 0
> 2 am/2 O,a( 700) m even
/ e 0 /2 dr = (36)
0 é m—1
| Joa(0,00) m odd

(

/o _(2k)! 1 . B
2T okt e L m= 2k

2Pkl if m =2k + 1.
3.1.4 Generalized Wick’s Theorem on (a,b)

In we shall encounter integrals of polynomials with respect to inhomogeneous
quadratic forms. Here we establish the one dimensional result that can be used
iteratively to calculate such integrals explicitly.

We wish to compute the integral
b 2
Lnapla,b) = / e 2B 1o
a

20



for —oo < a < b < 0o and to check that the result agrees with the standard formula

for a = —o0o and b = co. Let
) r=b
Imapla,b) =ame " /2+Bz
r=a
Firstly, (3.3)) generalizes to
1 3 1

L opla,b) = - m—1.a,8(a,b) + — Im 1a(a,b) + T]m 2.0.5(a, D). (3.8)
The following is a generalization of Proposition

Proposition 2.

m—1 a=1(1)] _ _ 4
B W a1y (36 — 1 +m — 1)
Imasl(a,b) Z G Jagmoior  (3.9)
=0 {a;}
Za;:i
Bl erafl(Q)(Sk - 1)
+ ) T L0 (3.10)
{a;}
zaj]:m

where {a;} ranges over finite sequences such that a; € {1,2} for all j. We use l(a)

to denote the length of the sequence {a;} and s; = Eé(j)l a;.

We shall not give the proof which is a straightforward induction like the proof
of Proposition [l However, let us just check that it reduces to the formula of
Proposition (1] in the case that 3 = 0. Since 0° = 1 and 0* = 0 for k¥ > 0 the only
nonzero terms in the sums will come from sequences with a=!(1) = (). But there
is exactly one such sequence such that > a; = ¢ for i even and it has l(a) = i/2
and no such sequences for ¢ odd. It is clear that this then becomes the formula of
Proposition [I}

21



3.1.5 Wick’s theorem on R"

Suppose that A is an invertible symmetric n X n matrix and consider the associated

quadratic form Q(x) = (v, Az) = 2 A;;27. We wish to compute the integral

Ija= / Loy - - .xmke*Q(’”)p dx
P

where J = (ji,...,jn) is a multi-index such that zJ' ... 2/ = x,,, ... 2, and P is
a polytope.
Theorem 2 (Wick’s Theorem on R"). For k even
k/2
/n [ Q@)/2 gy det Z H m5<1 my (3.11)
g J=1
where the sum is over partitions of the set 1,...,k into k/2 subsets of 2 elements.

Here 5j(-1) and BJ(-Q) denote respectively the first and second elements of the j-th set

i the partition.

Proof. Let D denote the diagonalization of A and assume that D has diagonal
entries aq, ..., a,. In this new basis, using the change of basis matrix S, we have a
linear combination

. . _ 22 _ 22
g SEI...SfT’jk/ Yiy - Yipe T emomm 2
Rn

11500k

Apply Wick’s theorem on R separately in each variable. For each such integral, this

22



gives

el L b 115
paley det(A) L1 D
k/2
det Z H ﬁ<1) Zﬁ(2)
where the sum is over partitions of the set 1,...,k into k/2 subsets of 2 elements.

We then switch the order of summation so that the sum over partitions is the outer

sum and then

k/2 k/2
7 i —1 _

3.1.6 Wick’s Theorem for Polytopes

The purpose of this section is to show that the result of can be used inductively
to calculate a Wick integral over a polytope in R".
By the spectral theorem, A can be diagonalized by an orthogonal transformation.

This will produce a linear combination of integrals of the form
/ x’fl .. .:Cﬁ”e*al"’“"%/2 e /2 g
P

where P is some polytope.

Decompose the integral as
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where P’ is the projection of P onto the hyperplane z, = 0 and a, and b, are
piecewise linear in the variables xq,...,x,_;. The subdomains where a,, is linear
are the projections of the (n—1)-dimensional faces of P onto the hyperplane x,, = 0.
Denote an arbitrary projection of an (n — 1)-dimensional face by P*. Similarly, use
P? for an arbitrary subdomain where b, is linear.

We apply Wick’s theorem in one variable to z, to get a linear combination of

elements of the form

n

Eno1 —on a2 o g2
/ x’fl xyte azi/2 | eman 1%—1/2(]7,1_22-_1,%(@”, b,) dx’ (3.12)
!/

and an element of the form

n

ko1 _ 2 . 2
/ gt g/t emonn @20 by d.
/

By substituting the definition of J,,_2;_1 4, terms of the first form are equal to

the summation

E / x'fl .. .xff‘_‘fe—a”% .. .e_o‘"*”i*1/2bfl"_2i_1e_a”bi/2 dx’
b
P
pb
k Ko 1 ey 2 122 91 2
— E / N el I 13”"*1/2&,’2" 2imlgmanan/2 gy
a
Pa

We emphasize that b, |ps is a linear function in the variables 1, ..., z,_; and simi-
larly for a,|p,.

Let us focus our attention on any term involving b, |ps = dyz1 + -+ + dpy 12T _1;
that is, those in the first summation. The analysis for terms involving a,|p, in the
second summation is similar.
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Since P’ is a polytope, to complete the inductive step, it suffices to show that
a2 a2 Fap(diry e d i) (3.13)

is nondegenerate. Let d be the thought of as a column vector. Let ¢ = /o, d and

let A =diag(aq,...,a,-1). Then

det(A + apdd") = det(A) det(I + A ect)

= det(A)(1 + tA™ ) = det(A) (1 + |[VA—1e?) > 0

which implies that the quadratic form is nondegenerate.

3.1.7 Generalized Wick’s Theorem for Compact Polytopes

In Section [4.1.6| the counterterms that will be introduced to renormalize the theory

on H" will involve integrals of the form

/ e~ QEut) K gy (3.14)

u

where P, is given by the inequalities

OSU"‘Zl

O0<u+4+2zy— 2z

0<u+2zm_1— Zm-2

0<u—2zpn_1.
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and Q(z,u,t) = >_, a2z + 3, biuz;
We reexpress the above inequalities in a form which makes it possible to calculate

the integral.

Zm—-3 — U S “m—2 S 2u

Zm—2 — U< Zpo1 S U

’ _ _ ’ .
So for 2% = 2" .. 2Pt we have [, e Qut) K" 42 is equal to
u
(m—1)u u
/ e / e i GsFE T2 bz P Pty . (3.15)
—u Zm—_2—U

Despite the quadratic form being inhomogeneous with homogeneous part not nec-

essarily being nondegenerate, since the bounds are linear and finite we are able to

inductively apply the result of 3.1.4]
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Chapter 4

Renormalization

4.1 Heat Kernel Counter Terms

4.1.1 A Motivating Example

Because of the inherent complexity of the renormalization procedure for a general
Feynman graph, it is helpful to begin with an example that can elucidate most of
the structure that arises. For the sake of simplicity and concreteness, we will work

in the ¢* theory, i.e. the scalar field theory theory with classical interaction

1 4
Nothing needs to be done at the 0-loop level, since the limit

lim w,(P*, 1) (4.2)

e—0+

already exists for any tree 7.
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To illustrate what happens at the higher loop level, we will work with the 1-loop

graph v

The Feynman weight w,(PX, ) is computed by labelling the vertices by the

interaction I, the edges by the propagator PL, and the tails by the input field ¢

¢ PL ¢
L
o ke 6

and then contracting. As defined in (1.12), the regularized propagator P is the

integral of the heat kernel K; over the time interval [¢, L]. This produces an integral

w, (PF, 1)) = fra(ti, t2)[@] dtdts (4.3)

[e,L])?

where

fri(t to)[¢] = Ky, (1, 22) Kiy (w1, 22) p(1)* P (9)°. (4.4)

M2
Make the definition ®(x1,25) = @(x1)*¢(x2)? to avoid unecessary detail in subse-
quent equations.

We begin with the case M = R", where the heat kernel is given by
K21, 20) = (4mt) " 2e lor—w2l/4 (4.5)
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Making the substitution for K; and the change of variables

W =T+ Ty (46)
Y =T — T2 (4.7)
we have
f%[(tl, tg)[gb] = C(tltg)_n/Q / 6*”‘%@*@)(})(1&;, y) (48)
R™)?

for some constant C.

Let ®" (w,y) be the Taylor polynomial of degree N of ®(w, -) and define f2Y(t1,t2)[¢]
by substituting " (w,y) in place of ®(w,y) in the above formula for f, ;(t1,t2)[d)].

Roughly, we would like to define wfyv (P, I) likewise by substituting fwj\f (t1,t2)[¢]
for f, 1(t1,t2)[¢] in the above formula for w,(P¥, I). Then we would hope that
by making N sufficiently large, we can sufficiently control the error |f, r(¢1,%2)[¢] —
S (t1,12)[8)]] to force the limit limeo+ [wy (PY, I) — w (PF, )] to exist.

This is the idea in spirit, but there are additional subtleties needed to ensure
we can always sufficiently bound the error. Firstly, we give an ordering to the
edges. Our graph is symmetric with respect to interchange of the edges, so, for this
particular graph, in fact we can assume without loss of generality that ¢; < ts.

Choose R > 2. If t§ < t; we will indeed be able to bound the error by

n

| Froa (t1, 02) 0] — £ (t1, 12)[0]] < Ctan/ eI 2ty N+ (4.9)

(N+1)+2

1
< Cty 2 (4.10)
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for some constant C' and then by making N large enough we can ensure that %(N +
1)+ % — Rn > 0. Let Ny be such an N.
It is worth fleshing out the structure of f, ;(¢1,%2)[¢], which is of independent

interest. Write ®"(w,y) = 37 <y Vi (w)y™ so that

Frr(ti, ta)[0] = Cltits) ™2 > /R e—y|2(4gl+4g2)yf</ Ui(w).  (411)

n
|K|<N

Applying Wick’s theorem to the integral over y, we have

Fra(tita)lg] = > Fi(tr, 1) /n Uk (w). (4.12)

|K|<N R

Note that for each K, Fg(t1,t5) is a rational function of ¢; and ¢, and fR” Uk (w)
is a local functional of ¢.

If t; <t however, we must do something different. Essentially, we begin by
choosing the subgraph 7' of v corresponding to the edge labelled by ¢,

/

v

and treating the edges outside 4" as input tails. Let

vt ta)o] = fra(ti, t2)[@] (4.13)

= O(tltg)_n/2 / e_|y|2/4t1\11(w, Yy, tz) (414)
(R)?

where U(w,y, 1) = e ¥*/42(w, y). Now define

Nt ta)[¢] = C(tyty) /2 /(W e WG (4 4y 1) (4.15)
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where U (w, y,t5) is the order N Taylor polynomial of W(w,y,t5). Then because

the (N + 1)-st derivative in the y variable of W(w,y,t5) is bounded by a constant

(N+1)

times t, , we have the bound

(N+1)+2

| ot (1, t2)[0) — £ (11, 10)[0]] < O(tite) /2, N Ve2 (4.16)
_n_ R
< oty 2 WY (4.17)
(%—1)(N+1)—%
< Cty : (4.18)

This is why we require that R > 2, so that for N sufficiently large (% — l) (N +
1) — 5 > 0. Let N; be such an N.
The counterterm is given by

W (PET) = / 9t 1)) + / P2 (tt)le] (419)

e<t1,to<L e<t1,t2<L
tE <ty t <tlt

by construction, the limit

lim [w, (P*, 1) — wS' (P, )] (4.20)

e—0T
exists, as desired.

In the case of the Euclidean half space H", the Dirichlet heat kernel is given by
Ky(1,22) = (4mt) /2 [emIm el o mlm =i/t (4.21)

where x5 is the reflection through the boundary. We will try to follow the same

procedure writing
YUV(Pel,I) = / Ktl(l'l,xz)KtQ(xl,.]fg)q)(iCl,l'g) (422)
[e,1]2 J (H*)?
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which is equal to

/[ - Ly 000t t2)[0] + fyr10(t, t2)[0] + fy 01 (t, t2)[0] + fyr0a(t, t2) (6]

(4.23)

where

f'y,I;0,0(tlat2)[¢] _ C(tltg)_Q/ ) e—\m—x2|2(1/4t1+1/4t2)(1)(x173:2) (4'24)
(H*)?

fyr01(t, t2) @] = —C(t1t2)2/ ) 67‘“*“'2/4“*"“’”33‘2/4t2<1>(:r;1,xg) (4.25)
(H*)2

frro(ti ta)[¢] = —C(t1t2)2/ e lmr el At e e P G () ) (4.26)

(E)?

fraaa(ty, t2)[¢] = C(tlfﬂ)_z/ ; e O (4.27)
(H*)?

where C' is some constant.

Introduce the coordinates, w = T4 and § = B2

and 1, = u + z and
Loy =1U— 2.

When t2R < ty, take the Taylor expansion to order N at 0 of ®(x1,z5) in ¥ and
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z substitute it in the definition of f,; ;(t1,t2)[¢] to get

oot ol = Clo) > [ [ ] e mng N g, ) (428)
0 —u J (R3)2

ot 28] = Cltata) / / / o (T2 12 1T+ N (15, 1, 7, 2)
o JouJ®?)?

(4.29)

ot o] = Clt) [ [ [ e g (5.2
0 —u J (R?)
(4.30)

fN_ ty, 1o ¢ = tito —2 ' e ([ +u*)(1/t2 1/t2)<I>N w,u,y, 2 4.31
~,0;1,1
o 0 —u J (R?)2

where C' is some new constant. One can show that we get the same bound

L(N+1)+2—Rn

| g (b 22)[8] — Fir00(t1, £2)[9]] < Ct3 (4.32)

for all 7, j. Details will be given in 4.1.6]

Upon examining the structure of the fvj\f Tij

(t1,t2)[¢], we find that we no longer
have a summation of local integrals, each weighted by the square root of some

rational function in ¢; and t5. For example,

— - tits i b —22(1/t1+1/t2) 0
Yiaottlel = Cloea) (22 ) [ [ e ot (139

3/2 - u

£ o1t t2)[0) = C(tats) < bt ) / €u2/t1/ 6z2/t2} ¢(w, u)" (4.34)
R t1 4+ to e | —u

t1ta 3/2 [ .2 Yo
I a0ty 02)[0] = Ctaty) 2 < ) / e " /tQ/ e ? /tl] o(w,u)* (4.35)
R t1 + to | _u

tita N2 T s u
fOI~1 1(t1,t2)[¢] _ O(tth)—Q ( 102 ) / e U (1/t1+1/t2)/ 1] ¢(m7 u)4 (4.36)
hhh t, +ty | 7u
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In fact,

Fra(tit2)[g] =0 (4.37)

and

1t )6 = / Flty, ta, w)(@, u)* (4.38)

e
for (z,7) # (1,1), which is no longer a local integral due to the presence of F'(t1, to, u).
We shall investigate the structure of these “pseudo-local” integrals more carefully
in

Lastly, on the set where ¢; < ¢, we introduce the notation f./ . r;;(t1,t2)[¢] for
fr1,5(t1, t2)[¢] as before and construct £ (t1,2)[¢] analogously to the way we
did on R™. We can bound the error similarly, but again fi\fm 1t t2)[¢] will not

be a sum of local integrals of ¢ each multiplied by the square root of a rational

function in ¢; and t5. The case N = 1 makes evident the general structure

. ’ —C —2,3/2 { u _22/,51] w, u) 4.39
Frrroolti ] = Clat) 24 [ | [ =] ow,u) (4.3

o roa(ty ta)[¢] = _C(t1t2)2t?/2/ {€u2/t2/ 622/“1 ¢(w, u)* (4.40)
H4 —u

foarao(t t2)[g] = _O(t1t2)_2ti}/2/ [2%_“2/“} ¢ (w, u)* (4.41)
H4
fymraa(ti t2)[9] = C(t1t2)2t:1))/2/ [27“37”2(1#1“#2)} o(w, u)". (4.42)
H4

More details will be given in [4.1.6]
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4.1.2 Covering (0, 00)F0)

Let k = |E(7)|. We denote t = (t1,...,t;). For each permutations o € S, there is

a subset
Sy ={t € (0,00)" : tyy < < tom}- (4.43)
and it is clear that
Uses, S = (0,00)F. (4.44)

The procedure we are about to describe is applied separately within each of the

Sy, but we work within
Suu={tc(0,00)%:t; <--- <t;}.
for notational clarity. We assume that R > 1.
Definition 2. For j € {1,...,k— 1}, let
B ={t € Siu:t; <th,}. (4.45)
Fori,je{l,...,k} withi < j, define
Cy ={teSy:th <t} (4.46)

and define

Dif = 5\ CF

_ . 1R
={te Su:th >t}
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And lastly for j € {2,...,k — 1}, define

Al = BN CY (4.47)

={t e Suu:t; <ty and tf <t} (4.48)
and let Ay, = Bl and A* = CO5*.

Note that Dﬁj R Bﬁ%. A couple of facts about these subsets are collected in

the following proposition:

Proposition 3. For i, < iy < i3.

Og,iz N ngé C ngs (4.49)
and similarly

Proof. Tt t € C17* N C#7 | then th < t;, and ¢§ <t;,. This implies that
e < ty,.
The proof of the second inclusion is similar. O
The following statements are trivially true:
Proposition 4. For j e {l,...,k—1}, let

B{%:{tGSid:tQ<tg, fora<jandj+1<p}. (4.51)
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Fori,je{l,...,k} withi < j, define

Chl ={t € Siy: th <ts, fora <iandj < p}.}. (4.52)
Then Bﬁg = Bgz and C’Ej = C’;%j
Proposition 5. For j; < 7o, if C]i%’jl ) Cf%’jQ.

The next two proposions are needed to prove Theorem [4]
Proposition 6. C';éj N D%m =0 fori <l and m < j.
Proof. If ti* < t; and t; < t];. Then
i<t <th <th<t,

a contradiction. O
Proposition 7. BL N CY =0 fori <1< j.
Proof. Since Bl = D%H, we can apply the previous proposition. n

Definition 3. We consider sequences of the form 1 =iy < iy < -+ < iy, < k, where

m < k — 1. For any sequence of this form I, we define the sets B = ;-”ZOEII%J,

where Ef, ; is defined such that

By ifm=0
Ezl%,o =

Sia otherwise
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and

I _ 7’] 17ZJ i 1ﬂg+1
El, = N D;

and for j =m

im—1,0 im—1,im+1 vy
Crn ™ A D A Bim o if i, £ K

r _
ER,m -
z —1, o
where Sg, ..., Sy 1S a fired sequence.

Theorem 3. Their closures E; form a cover of (0, 00)*.

Proof. Tf t; <" then t € E;. Thus let m = 0.

Otherwise, assume let i; be the largest integer such that t/7" < ¢; = t;,. Then
i€ Ot It iy =k, let m = 1. If iy < k, then t € D' I ¢, < 8, then
te F;m and we let m = 1.

Otherwise, let i; be the largest integer such that ¢/ <t¢;. Then iy € 61}%;;2. If
iy =k, let m = 2. 1 iy < k, then t € D21 If £, < t5°°) then t € By, and we

let m = 2.

And soon ... O
Theorem 4. The sets EY, are disjoint.

Proof. We prove this by induction. Consider the distinct sequences 1 = iy < 11 <
m<kand1l=7jy <7 <-<j, <k, where without loss of generality we
assume that m < n.
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Suppose that i; 7 ji, but iy = ji, ..., i-1 = ji-1. Then
EI[%,Z N EI{E,Z - Cgs—ll,il N D;’é;ll,iﬂrl N Cg;ll,jl N Djllzglhlerl
= 0.

because O3 N DY™ = () for m < j by Proposition @
It is also possible that iy = j1, ..., %, = Jm, but m < n. Then
ELNE],., C B, NCxl
= 0.
by Proposition [7]
Now specialize to a specific sequence sy = 1 and s; = 27! for i > 0.
Theorem 5. Consider the sequence 1 =g < i1 < -+ <1, < k. Then
I im

Proof. If m = 0, it is clear that F, C A}, = Bp,.

If m >0,
(
. 7. . 7. . 7- im— ,im i, . .
I C;;? 1A C;% 2 A ngl?s N CR2m1_1 N Bj%zm if i, <k
Ern C <
R
Cit N O™ N O Ol i if i, = k
\
4
O OV Bl iy, < k
C
ngf;" if i, =k
\
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]

The construction of the counterterms in 4.1.5 will be based on a refinement of
the covering {E;} For | < k, given a sequence | = i < --+ < i,, < k, introduce
the more general sets E5 which are defined by applying the definition of E%, but
replacing the set {t; < --- < t;} with the set {t, < --- < t;}. For | =1, we recover
EL in the sense in which it was defined earlier.

The following is a corollary of Theorem [3}

Corollary 3. Consider the collection of sequences of the form
1=4" <t <o <)

(1 (2 (2 .(2
i =i <P <<,

(p—1 . . .
@7(5@—)1) = ng) < ng) << fo}m = k.
Then the sets
—7 —7® —1(®)

ER mER "'ﬂER (4.53)

form a cover of Siy.

4.1.3 Local Functionals and Feynman Weights
Differential Operators

Let M be a smooth manifold, let £ be a graded vector bundle and let R be the
trivial line bundle. Let & = I'(E) and C*(M) = I'(R). A differential operator
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P : E — Ris an R-linear map & — C*(M) which can be given locally using

Einstein notation

: ;007
S=we; — (Ij@
where eq, ..., e, is a local (homogeneous) frame for £ on some sufficiently small
coordinate neighborhood U, and o, ..., a" and a! are functions on U.

Equivalently, there is a bundle map ¢p : J(FE) — R, where J(F) is the jet bundle
of E. The differential operator P is determined by ¢p by composing with the jet

prolongation of s, j(s): M — J(FE). That is, P(s) = tp o j(s).

Local Functionals

Definition 4. A local functional I € OF (€) of degree k is a functional I € OF(E)

loc

of the form
I(s) =) / Dg(s) ... Dg(s) (4.54)
p=1"M
for some collection of differential operators D; ; : E — R.

Substituting the local formula for the differential operators

; o
Dy j(a'e;) = (a,@,j)i@

we get that locally

i Iga I, dadsn Dadsk
I(Oé ei) = Z /U(alﬁ’l)jg'l e (aﬁ7k)j;: 81‘154 c. a.Z‘Iﬁvk (455)
B=1
Iy
_ /U a2 (4.56)



Evaluation of w, (P, I)

We shall work in the ungraded case. For notation simplicity, we shall also assume
from hereon out that £ = R, although the method remains valid for any vector
bundle.

We would like to describe the form of w. (P, I) when I € O,c(E)[[A]] is a power

series of local functionals and
L
Pl = / K dt (4.57)

where K, is the heat kernel of M.
For each vertex v € V/(7), we associate the functional Iy k), where k(v) is the

valency of the vertex v. Assume that within a given chart U,

k(v) i PN Pt Oan Do)

S Ig(v),k(v)(alez, R 70%(1;)61) /Ua 8;51“1 . aggp’k .
where I°", ... 1" ranges over multi-indices with [I*"| + - -+ + [I*"| < ord To(0) k(o)
Choose an ordering on the set of half edges v, ..., v*®) incident on each vertex v

and an orientation on each edge. Then v determines the maps

Q:T(y) = Upey {0, ..., 0"}

Q1 E(7) = Upep {0, ..., 0"}

Q2 E(7) = Upey {0, ..., 0"}
where )1 and ) map an edge to its first and second half edges respectively, and
@ maps a tail to itself. Also denote by v;(e) and vq(e) the first and second vertices

of the edge e. Similarly, let v(h) denote the vertex of the tail h.
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With these data, we can give the expression

w(PLD) = [ el (4.59

where for M = R",

aJ}IQl(e)@l‘IQZ(E) ax]Q(h)
eV e€E(v) heT(v)

ol ok 0K, Loy (e)s Tug(e Oa T,
TR I | IR | Ry § Uity

(4.59)
where k is used to stand for k(v). If M is a compact manifold then choose a
partition of unity subordinate to a finite cover of M (on which E is trivialized).

Then f, ;(t)[a] is a sum of integrals of the form

L aK—t(ale(e)7 $U2(6)> (904(.%1,(;0)
/V(-y)| X H @ (1;”) H alel(e) aleQ(e) H &BIQ(h) (4'60)
v ’UGV(’Y) CeE(’y) hGT('y)

where Y is the partition of unity function for the open set U in the cover and o' are
the coordinates of v in U.
Due to the symmetry of P* and I, the value of w,(PX,I) is independent of

€

the choices of ordering and orientation.

4.1.4 Counterterms on R": Preliminaries

For simplicity, in this section and subsequent sections in this chapter, we shall only
consider scalar field theories.
When working with R", we shall really mean locally on a flat compact manifold.

Essentially, all that this means is that the input fields will be compactly-supported
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functions. The procedure can also be carried out on R" in earnest by working with
Schwartz functions instead of compactly supported functions.

On R", the heat kernel has the simple form

K (z,y) = (4mt) " 2ele-wlP /4, (4.61)
Derivatives of K,
Proposition 8. For a multi-index I = (i1, ... ,1,) % is a polynomial in x1, ..., T,,

Yty -, Yn and 1/t which is multiplied by K. The degree in 1/t is |I|.

The proof is a consequence of the Lemma [2] in Section which also gives

explicit formulas for the single variable derivatives.

Proof of Proposition[8 For a multi-index I = (i1, ...,4,),

0K,
ant =P, ...P.; K, (4.62)

Powers of t in w.(PF, 1)

Let O(v) be the sum of the orders of the local functionals I, k() for all v € V(7).
As a consequence of Corollary , if we group the terms in w. (PF, I) by their powers

of t, we see that

wP D= [ (1.63
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where J is a multi-index and

_ J—n/2 _ZEGE(’Y) Qe/‘“@c{) . 4.64
f'Y,I(t)I:Oé] Z t /R;TLV('Y) ¢ ! ( 6 )

—O(y)<]JI<0

This formula requires some explanation. The outer integral is over the time

variables. Secondly, let

tJ—n/Z — H tie_n/2-
e€EB(v)

In the exponential, Q¢ = ||y, (e) — Tua(e)||*-

The multi-index [ : E(y) — Z and for each I, ®; a sum of terms of the form

H D,a(x,)

veV(y)

where for each vertex v,
Dya = D,ja...D, (4.65)

is a product of differential operators applied to «.

Spanning Tree Coordinates

We would like to evaluate (4.64). This will require a special change of coordinates.

Choose a spanning tree T" of 7. For each edge in the tree we define a coordinate

Ye = Tyy(e) — Luy(e)-

Proposition 9. Given a spanning tree T', the coordinates ye = Ty, () — Tuy(e) fOT

e€ E(T) and
w=2a1+ -+ Ty(y), (4.66)
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form a coordinate system on R™V!,

Proof. This is a linear transformation from RO to RVO) . Tt is invertible if and
only if it has trivial kernel. But if y. = 0 for all e € T'(y) then z; = x; for all ¢ and

J. The condition that xy + - -+ + zy(y) = 0 then implies that z; = 0 for all . O

The quadratic form Q(z) = 3__c () Qe(x)/4te can be written in the spanning
tree coordinates as Q(w,y).
Let A be the matrix of Q(0,y). Then A is an n(|V(y)| — 1) by n(|[V(y)| — 1)

matrix.
Proposition 10. The quadratic form Q(w,y) is independent of w.

Proof. For any edge e € E(v), let ff,..., ff(e) be the unique path of edges in T

connecting v (e) and vy(e). Then

l(e) I(e)

Loy (e) — Tua(e) = Z(x’vl(f x’vz(fe nye

i=1
Therefore,
Qz) = Y Qelx)/4t,
e€E(y)
© 2
-3 S
e€B(y) || i=1
= Q(w,y)
which clearly does not depend on w. O]
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Proposition 11. The matriv B = (4]].cp(, te)A has entries that are integer

polynomials in {t.}ecp(y). Consequently, P, = det B is an integer polynomial in
{te}ecry)-

Proof. 1t is clear that the matrix B, which is the matrix of the quadratic form
(4] Leep() te)Q(0,y), has entries which are polynomials in {tc}eer(,) With integer

coeflicients. O

Proposition 12.

det A = 4—11(\‘/'@)\—l)t—n(lV(W)l—l)p7 (4.67)
and
1
Al = — 4.
PG (4.68)

where C' is a matriz with polynomial entries in t..

Proof. To prove the second statement, use Cramer’s rule

d@:%@@) (4.69)

and that A" = (4][.cp(,te)B~". So, the statement follows by letting C' =

(4 HeEE('y) te) adj(B). u

Taylor Expansion of &;

In (4.64), replace ®; in f, ;(t)[a] with its Taylor polynomial of degree N’ in v,
ON'(w,y) = > k< Crxy™, where N' is a non-negative integer to be determined.
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This gives

fﬂ]{\f][(tﬂa] _ Z /2 /an(w e~ 2een(y) Qe(w,y)/4teCJ7K(w)yK dydw (470)
K|<N’
fO‘(ngIJlso

= Z tJ—n/QIf(t)/ CJ7K<w)d'LU (4.71)

|[K|<N',K even "
—O(y)<]J1<0

where

5 (t) = e~ AN YK dy. (4.72)
RV I-1)

and ¢k is a function of w only.

We can calulate Z% rather explicitly. This is the content of Theorem |§| inf4.1.9,

The structure of c;x

In this section we prove that W; g (o) = [on cyx(w) dw is a local functional.

Recall that ¢ x(w) = %(O,w) and that

;= [[ Doa(z,) (4.73)
)

veV (y

where D, is a product of differential operators. So

crx(w) =[] Doa(w). (4.74)
veV(y)

D, is a product of differential operators on R7 . Finally, we see that

U, x(a) = /R II Dee(w)dw (4.75)

" vevi(y)

is a local functional.
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Alternatively, we can say that ®; is a sum of terms of the form

Oa(xymny)
B

heT(v) (k)

(4.76)

where f is a compactly supported function and I" is a collection of multi-indices,
one for each tail h, satisfying the condition >, cp, |1 "| < O(y). This implies that

gq? is a sum of terms of the same form, but satisfying the condition 3, 7. | " <

O(y)+ N +1.

From (4.71)) and (4.122) it is now clear that

Corollary 4.

o= Y 20y ) @

|[K|<N',K even QA (t)
—0(m)<17]<0

where Qi{K 1s of homogeneous degree
—|J]+ g|E(7)| + (V) = DIEW) = DK+ 1)/2. (4.78)
and the degree of P is given within Theorem@ mn .
As an aside, note that for a fixed spanning tree T', z, and {y.}ccp(r) and w are
related by a linear coordinate change. In order to calculate c; g, one would like to

make this change explicit. Let eq,...,e; with v1(e;) = v and ve(e3) = w be the

unique path in 7" connecting v and w. Then

— Ty = Z yel

and thus we can express z, in terms of {y.}ccp(r) and w using the equation

e Yo, ]

w#v

Ly =
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4.1.5 Counterterms on R": Error Bounds and Iteration
Bounding the Error
Importantly, an elementary change of variables gives the following bounds

Proposition 13.

/ e EeGE('y)Q /4t5
ReIVONI

for some constant C' > 0.

The last inequality above is a consequence of the assumption ¢, < 1. Thus,

Proposition 14.

1 " _ n B
and consequently,
)]l < Ec | A (4.81)
heT(v)
S ||Oz||\OT(’;Y)+N/t2(‘V(’Y)‘*l)*R|E(’Y)|%*RO('Y) (482)
(4.83)

IA

where the summation is over multi-indices p : T(7y) — Z=° such that D her(y) Ph

O(v) + N and ||c||p, is the CP» norm of .

Let k = |E(v)|. Assume that we order the edges so that t; < --- < t; and
t? <ty so that t € A% and that t € (0, 1)".

50



U —RO n — e e
@] = ] < Y 00 /Q/Rnwe Seen @/t g (0)]y¥]

|K|=N"+1

(4.84)
< Z £ ROG )In/2/ ¢ Tt @/ gy (1) |y |

K|=N'+1 RAIVE]

(4.85)

<Oté(zv/+1)+ F(VOI-D), Row) RIE(y)|n/2 Z /dK
|K|=N'+1
(4.86)

using Proposition [I3] In the formula above,

But

Oa(x, Oa(x,
sup 1 TT 25500 < supls-sup | TT 2550

Ih Ih
Vol heT(y) Oy YU L ET(y) 0,
< sup|f] H el|p,,
v heT(v)

where pj, = |I"*|. Note that sup, | f| is a compactly-supported function in the variable

w. Thus,

[iwdw=30, T el

P heT ()

where the summation is over multi-indices p : T(y) — Z= such that ZheT(v) pr <
O(y)+ N +1.
In conclusion, we have shown that
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Theorem 6.

1 ®lal = 25wl < [ 326, T lal,, | 02V eIm-romssEmn

heT ()

(4.87)

where the summation is over multi-indices p : T(y) — Z=° such that zheT(w) pr <

O(y)+ N+ 1.

Inductive Construction of the Counterterms

We shall use Corollary which gives a finite cover of (0, 1)* given by sets of the form
—r1)  —7(®2 —1() .
Ep NER ---NEg ,for p <k. The structure of the multi-indices ™M, ... I® is
given in |3 and the sets E% are defined in Definition .

Also we shall need Theorem |5 which states that for EL where I is a sequence of

the form 1 < iy < --+ < i, < k with m < k, we have Ef, C A", where
Al ={ty <ty < -+ <ty :t, < B and 87 < 4y}, (4.88)

Theorem 7. For any sequence IV, ... I® as in Corollary @ for nonnegative

integers Ny, ..., Np.

N/,...N

()] = £ ®)la]] < ol > G, (4.89)
where | some positive integer, where d; = d;(Nj,..., N]) increases linearly in N
for Ni,...,Nj_, fived and sufficiently large, and where f. N ’N,( t)[a] is defined by

iterative Taylor expansion of f 1(t)[a] as illustrated in the proof of the theorem.
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Proof. Fix an ordering of the edge set so that we can identify E(v) = {e1,...,ex} =

{1,...,k}. The procedure should be carried out in
S, = {t € (0, OO)k : tg(l) < < ta(k)}~ (490)

for each permutation o € S;. However, we shall work in Sjq for notational simplicity.
—
For general p, we would consider the cover of Sijq by sets of the form E; N
—7(2) —1(P) . .
Ep ---NER |, for each of the k! possible orderings of the edges of ~.
For illustrative purposes and notational simplicity we prove the main theorem

only for p = 2. The inductive step in the proof of the general case is similar. Let

i = ifigl) and let R; = R°»W+1 and Ry = R°»®+1 50 that we are working within

—7  —7® —i()

R R R
={t e Sq: tidy <t and ta) < ti(ll)—l—l and t;, < ti<?>+1}

where the inclusion follows from Theorem [5| Note that 2'7(7322) = k.

The collection of edges ey, ..., e;q) determines a subgraph of v, which we denote
by 7. The remaining edges ;1) 1, ..., e, form the edge set of v/

A tail h € T'(y) will either be in T'(y) or will be one of the two half edges
forming an edge in E(y). In the formula above, T(v',v) = T(y') N T(v) and
E(,v)=E®)UF(#,7), where F(v,7) is the set of all edges in « for which one
half edge making up the edge is a tail in 7/. Let V(+/,7) denote the vertices not in
~' that are incident on an edge in F'(v/, ).

The integral in the formula for f, ;(t)[a] is over R"V®! and we can order the
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integration so that we integrate first with respect to the vertices in V(7). This

inner integral, which is of the form

L 8Kt($vl(e),xv2(e)) aa(xv(h))
/RnV(W H a4 (Iv) H O I(© 912 H W (4.91)

veV(Y) e€E(y ) heT (V')

Let us use ¢ ~.(t)[a] to denote the integral above. It is a function of t =

teteer( ) and x, for v € V(v/,7). Let f,/ 1 4(t)[a] be as in (4.64]) but with the
O v/ 1.g

functional g(t) for t = {t.}ecr(y,,) used for the distinguished vertex in y/v'.

Use the same procedure which led to Corollary 4l and Theorem [6] We have that

N/

Gy 1(t)[a] — g, 1 (t)[a]| is less than or equal to

N+C N, R
Zc IT lel, TI Wil | 20ireo
heT(v") eEF (v )
where
/ 1 ! n ! / n
Csm Re) =5+ (VO = 15 = B (06) = [BG)]5).
But

ph(e)

Ph
<Ot <:C751(1)+1

[

Ph(e)

for some constant C', and thus

7N -3, .
H HKterh(e) > Ct (1 Y3 €F(~' ) Ph(e)
e€F(y'1)

(113 -0()~Nj -1
Ctz(l +1 B !

for some constant C.
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N/

Thus, |gy~.1(t)[a] — 97,71771(‘5)[&]‘ is less than or equal to

L N/ 4+ R, C (v ;n,R1)—| E()| 2 —O(y') =N}
ZC H |04||ph tz(21)+1 1C(Ysn,Ra)—|E(7)|5 -0y 1
heT(v")

Nl

So as long as Ry > 2, |gy A 1(t)[a] — g, I(t)[a]‘ and consequently

fﬂ//’yﬂ[,gﬂ//ml (t)[a] - f N{ (t)[a]

VY La

will be bounded by a power of t, can it d;(/N]) which grows linearly with N7.

To finish the argument, we need to show the same thing for

f (6)[a] — £ (t)[e]|

! I Ni
v/ It 1 v/v I,g’y/ oI

From Proposition [14]

Ny (V-1 —R1|E(v)|5 —R10(v)—R1N;
g0 Ol < [ D¢ T e, |2 Ce R,
heT(y")

Let C1(N7{,v,v,n, Ry) be the power of t,u) in the inequality above.

We are able to bound |f ®)a] — ., (t)]a]| by

’Y/’yllg'y"yl ’Y/’Y’Ig'y"yl

o |T(7)|t%Né+%+(\V(v/v’)l—l)%—Rl(O(v)JrN{)+R101(N{77’7%n,R1)
ol 7

for some positive integer [.

In conclusion, using the triangle inequality and that we can bound

ot (©)a] = £ (t)]a]] < Cutt ™ 4 Oyt

N-
VALl

where by d;(N]) grows linearly in Nj and do(N7, N3) grows linearly in Nj for Ny

fixed.

%)
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4.1.6 Counterterms on the Euclidean Upper Half Space

The Dirichlet heat kernel on the upper half space H" = {(z1,...,z,) € R" : z,, > 0}

with the Euclidean metric is given by
Ky, y) = (dmt) 2 (e vl — emlemr e, (4.92)

where y* is the reflection through the hyperplane y,, = 0.

Note that K, is solves the heat equation, for y € 0H", Ky(z,y) = 0, and

lim [ Ki(z,y)é(y)dy = ¢(x)

t—0t H™
for any ¢ € C>°(H").

Similarly to [4.1.4] we form

w (P = [ ol (1.99

but now

(5e)
ra®] =" Y / e Teeni) U ey (4.94)
5 ~0()=lI<0 e
where QY = |24, () = Zupo[|? and QY = |24, ) — 5, ll? and B ranges over

all functions E(y) — {—1,1}. As in4.1.4] we wish to apply Wick’s theorem after

taking the Taylor expansion of ® ;4.

Coordinate System on H"V()

Using the decomposition H" = R™ Y x RZC introduce the coordinates Ty = (Ty, T p)-

n—1)|V

Split the integral into an integral over R I followed by an integral over
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(R=)VOI. The quadratic form with these coordinates becomes

Z ”Em(E) - E112(6)”/4t€

e€E(y)

plus the part depending on the variables z, ,

Z |xv1(e),n - xvl(e),n|2/4te + Z |xv1(e),n + x’l}1(6),n|2/4t6
e€f—1(1) e€f=1(-1)

We shall only concentrate on the part of the quadratic form depending on the
variables z,,, since the integral over the variables T, can be treated by the methods

of 1.4
Choose an ordering on the set of vertices and consider the basis, fjy () = e1 +
ceeden, fi1=e1—e9,. ., f|V(V)|—1 = €V(y)|-1 — €V(y)|- This induces the coordinate

system u, 21, ..., 2|y (y)|—1 On RV related to standard coordinates by

Tipn=U+21=Uu+2

Top =U+ 22 — 21 = U+ 2

TV (y)~1n = U+ ZV(y)|-1 = ZV(y)|-2 = U+ Zv(y)-1

Ty (y)n = U = 2V (y)|-1 = U+ Zv(y)

In this coordinate system the second part of the quadratic form becomes

D @~ Fn@lP e+ DY [2ut Fuo + Fuol /4
e€f~1(1) e€f~1(-1)
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Let P be the plane spanned by f; for i between 1 and |V ()| — 1 the subscript

indicates the dependence on {t.}ccg(y). Then for u >0
u(er +--- +eyp)) + P

intersects (R=")V)! in a bounded set (in particular a simplex) whose projection

onto P we denote P,,.

Taylor Expansion of ¢

For a fixed spanning tree of v, choose spanning tree coordinates on ]R("_I)”V(V)‘,
Ve = Tuor(e) — Tun(e) a0d W = Ty + +++ + Tjy(y) O R™=VIVOI - Ag in the previous
section, choose coordinates 21, . .. zjy (-1 and u on (RZ%)VOL

In these coordinates, the quadratic form )Qe /te decomposes into a sum

e€E(y

of three terms

Q. t) + Q¥ (z,u, t) + QW (u,t),

where as in the proof of Proposition |10,

I(e) 2

- Z nyie /4te’

e€B(y) || =1

Q(B) (Z7 u, t) = Z ’gvl(e) - 2v2(e)‘2/4te + Z ‘gvl(e) + 2v2(e)|2/4te

eeB—1(1) e€f=1(-1)

+ Z zvl + gvg(e))/te

ecB1
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and

Q(ﬁ)(u’w: Z ol R

e€f=1(-1)
We shall Taylor expand @, in f, ;(t)[a] in both ¥ and z to order N'. For

N/

~7(t)[a] we have a sum of integrals of the form

¢/ / . / / e e~ QE)-QDu)-QP TR K gmdidzdu,
R 3 ]R'nf vy

over |K|+ |K'| < N', J even, —O(~) < |J| < 0 and g functions E(y) — {—1,1}.
Also, ¢y k. i, the Taylor coefficient is a function of w and u only.

The integral over 7 gives an answer like that of Theorem [9] and Corollary [4], but
with the dimension n replaced by n — 1 in all the formulas. The integral over z

exists because P, is a bounded set. Let

oo (u, t) = / e QP ut) K g (4.95)

Let
T = [ [y OO N g a0
_ g?i; E:;W(u,t) (4.97)

where P (t) and Q (t) are defined analogously to the functions in [4]

Then f7 (t)[a] becomes a sum of integrals

tJ—n/Q/ / e—Q(")(uvt)zKﬁK,(U)CLK’K,#;(@, w)dudw (4.98)
Rnfl RZO
(¢
Qi (t) Ju
PA(t)
_ Ut 4.100
Q:{{K(t) 7.1 (b, a) ( )
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This is not quite the product of a function of t and a local functional because
Vo (u, ) = e Q7@ (4, t) depends on t.

Recall that ¢ g g (0, u) = 8@/2%(0,@, 0,u) and that
H D,a(x,)

where D, is a product of differential operators. So

ey (W, u) HDawu

D, is a product of differential operators. Finally, we see that the integrand in

Uk (t, ) = Vi (u,t) H D,a(w, u) dudw (4.101)
e veV(v)
is almost a local functional with ¢/ (u, u) as the t-dependent factor. For t; < ... <

tr, we do have control on the t dependence
e (Vi £)] < Ce2IEHYOI=D, (4.102)
We will show how to the renormalization procedure can be adapted to this
situation in the next section.
Bounding the Error

Note that

Proposition 15.

_ / L(N'4n -
/ / e~ QEO-QP Tt K || K| g < 13V IV (g 103
RO=D(V()|-1)

where | K|+ |K'| = N'.
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Assume that we have ordered the set of edges so that t; < --- <t and th <t
for some R > 1. By Taylor’s theorem |f, ;(t)[ca] — f%(t)[a“ is bounded above by

a sum of terms of the form

t, "0 e e M dye ey () [ 2] (4104)
rRZ? Jp, JR-DIVO)

over multi-indices |K|+ |K'| = N+ 1 and 8 : E(y) — {—1,1}. Each such term is

bounded above by

t}:RO(’y)—R|E(’Y)n/2)/ / / e_ZeEE”)Qe/‘“’“dKK/5(E,u)|§K||zK'| (4.105)
R0 Jp, JRO-DIVO) o

11N/ 4 14n 1y B " -
< AV 100 IO ([ () ) i

(4.106)

< t%(mzw%avm\fl» (RO -FIEWI3 ( / ex x 5(w)Cre g (u) dde) (4.107)
where

Crr(u) = e 1B (=D . 2| dz /R(nmvw)l) e QWG gy (4.108)

is a Schwartz function in u for 371(—1) # 0, and
ex.x p(w) = sup dr o p(W,u).
It remains to understand the integral
/6K7K/75(E)C’K7K/(u) dwdu

in terms of the field a and its derivatives. In the formula above,

0P,

oy 2K

dic k(W) = ) sup
Y,z
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SO

8<I>J
oy

ex k(W) = Y sup
7 Uzu

But ®; is a sum of terms of the form
F H da( xv(h )
nerty OTutn
where f is a compactly-supported function and I” is a collection of multi-indices, one
for each tail & satisfying the condition 3, ) [ h| < O(v). This implies that 5 af’K,
is a sum of terms of the same form, but satisfying the condition }, 7, || <
O(y)+ N +1.

So

Dar(y( da(x,
sup £ ]] )| < up £ sup HM

Ih > e IR
Y2, U heT () ox Y,2,U YW, 2,U heT () al'v(h)
<suplf| ] Ny,
PEN T her()
where p, = |I"]. Note that sup;., |f] is a compactly-supported function in the

variable w. Thus,

[ eneatw)Cresctw dwdn < 376, T] Nl

P heT(v)

IN

where the summation is over multi-indices p : T(y) — Z=" such that > her(y) Ph
O(y)+ N +1.

In conclusion, we have shown that
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Theorem 8.

’ $(N'+2)+([V(7)|-1) 3—RO(y)—RIE()| 5
fa®) = 2501 < (DG TT el | 2 R o
P heT (v)

(4.109)

N

where the summation is over multi-indices p : T(7y) — Z=° such that > her(y) Ph

O(v)+ N +1.

Inductive Construction of the Counterterms

We will only note the differences from Section

The proof of Theorem [7] which was given only in the case p = 2 involves two

N/

steps. In the first step, we show that |g, . r(t)[a] — gﬁ/,f%l(t)[a]‘ is bounded by ¢

to a power that grows linearly in Nj. This implies that

Fra®)lal = £ gy (Olal]

is bounded by a power of t; that grows linearly in Ni, where we have used that

directly from the definitions, we have

fra(t)]e] = Fomdgy (t)[al.

In the second step, we show that

(t)[a] —

N/
’ 1
VY9

(t)[a]

v/ ,givlim .
is bounded by a power of t; that grows linearly in NV} for Ny fixed. This will
require a slight modification from the procedure of Section [4.1.5l To construct
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N (t)[c], we start with f v (t)[a], which is formed from the Feynman

Nt ,
’Y/Fy/’l’g“r’lml v/ ’I’g“/’,%l

rules applied to the pointed graph 7/4’, where we place the functional gi\f’{% ; on the
distinguished vertex.

In the case of H", gi\,@% ; is no longer a sum of functions of ¢1,. .., ¢;a) multiplied
by local functionals applied to the inputs on the tails of /. Now the local functional
depends on t in the integrand.

(t)[] only take the Taylor ex-

N/
v/ 1yt

When forming f* v (t)[a] from f
VALt v

pansion of the factors in the integrand of gi\,ff% ; that do not depend on t. That is,
in the integrand of each W i i, neglect the first factor 15 (u,t) and only take the

1 _
Taylor expansion of the second factor. Because |[¢x:(yv/Tru,t)| < tf(ﬂv(w 1), this

(IVnI-1)

Ry
will contribute factor of ¢,? to the bound on

N (t)]a] —

t)|a
’Y/’Y’,I,gf:;i’,y,l 7/7/7179'\]:;{7’%[( )[ ]

so the overall power of ¢, will in fact be the same as in the case of R".

4.1.7 Counterterms on a Compact Manifold

The asymptotic formula for the scalar heat kernel K (z, y) ~ (4nt) /2= 4@u)* /4 S b (. y)t!
states precisely that there exists some sequence of smooth functions ¢; on M x M

supported on a neighborhood of the diagonal such that

N
50, ) — (dmt) /2640837 6 )t = O ), (4110)

1=0
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Let

N
K (w,y) = (dmt) "2e @01N 7 g (2, )t

=0
Beginning from (4.60)), for each edge, we replace K; with K¥. We let fév ; denote
the result of making all |E(y)| of such substitutions. Assume that we’ve ordered

the edges so that ¢t < --- < ;. Then

|Fr®)la] = £5 ()]l < oo *zow Sanl | [P

JFi
for some nonnegative integers p; with ) iDi < O(7) and some constants C;. Thus
| f.1(8)[a] — ( )[a]] < C”OZH Itk —OM-IEMIZ

An analogous statement to Proposition [§ can be made for K} giving that

Proposition 16. For the heat kernel in (4.61))

OKN 2
= P, e dw)/u 4.111
ok (4.111)
where P, i, s a Laurent polynomial in t of degree between —k and N.
Therefore, we have a formula
Fall= S e / e Tecry Qeliegp (4.112)
UiVl

O <SJISIEM)IN

where ), = dZ(xvl(e)a xvz(e))‘

65



Spanning Tree Coordinates

Choose a spanning tree 7" and vertex vy of . For any vertex v of 7, there is a

unique path ef, ... s €1() from vy to v. We can then make the inductive definition

Definition 5. Spanning tree coordinates are defined by w = x,, and {y.}eer where
Ye 18 defined inductively so that Ty, = exp%l(e)(yel’.‘_,yﬁl)(ye) where eq, ..., e is the

unique path from vy to vi(e).

The reason for introducing these coordinates is that for all e € T,

d(xvl(e)a xm(e)) = llwell

More explicitly, the spanning tree is the union of ¢ maximal paths originating at vy.
Let us denote the i-th such path by egi), ey el(f). Let Vl(i) be a neighborhood of the
zero section in T'M such that @gi) : Vl(i) — Ul(i) C M x M given by (xvo,yegi)) >
(Tvg, €XPy, (ye(li>)) is a diffeomorphism. Inductively, given <I>§-i_)1 : Vj(i)l — U;i_)l C M

()
®

(@)

let exp;”; = pj o ®;”;, where p; is the projection onto the last factor. Now let

Vj(i) be a neighborhood of the zero section in (exp(i) )*T'M such that the map

7—1

@;i) : Vj(i) — U]@ C M7+ given by

(4)
(xvo,yem,---,ye(i)) = | 25 (s Y05 Y0 ) exp
! J ! i1 €XP; g | Tugo¥ (i)s-Y (i)
el e]71

)(yej)
is a diffeomorphism.
We then take the fiber product over M of the maps @l(j) which produces the
desired diffeomorphism
Vlgl) Xap e X Vlf:) s MVl
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Taylor Expanding ¢; and Bounding the Error

Taking the Taylor expansion of ® with respect to {¥e }ecr(q)-

fAj}N/ (el = Z e /|v( )l e ere) Qe/4teCJ,K(w)yK dydw
UV

| K|<N
—O()<JISNIE®M)]

(4.113)

_ S (I-n/2 /U ey (W) T (w, ) dw (4.114)

|[K|<N’,K even
—O(M<IJISNIE(®)|

= > 720 (b, o) dw (4.115)

|K|<N’,K even
—O(M<IJISNIE(®)|

This differs from the case of R” where Z% (w,t) does not depend on w. Note that
Jor o (w)IE (w, t) dw is not a local functional due to the factor of Zf (w, t), which
depends on t. We will say below why the procedure to construct the counterterms
still works.

We have the bound

Proposition 17.
1 n —
/ e 2een(y @e/Ale || K gy < Cté‘K‘“(‘V”)' Y (4.116)
Ulviml

Proof. This follows from the fact that

e~ 2eeB(y) Qe/Me o= eep(r) Qe/Me — o= Xeer(r) lyell?/4te
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Using Proposition [17], the bound on

@) a] = £5 (0) el

can be established as in the proof of Theorem [6]
As in the case of H", in the proof of Theorem [7] we make the following modifica-

tion. When forming fNQ’Né , from [ NN only take the Taylor expansion

Ni,N
e B v/ 1g.,

iRty iRty

"M that do not depend on t. That is, in the

of the factors in the integrand of gi\,[ I

integrand of each term W, neglect the factor ZX (w, t) and only take the Taylor

expansion of the other factor.

n _ R _
Because |ZX (w, t)] < tf(l()‘v(w)l 1), this will contribute factor of ¢ WO 45 the
bound on
Na,N/ N
f a2 Ny, N} (t)[a] - f 2 Ny, N} (t)[a]
V9 V9

so the overall power of t;, will be the same as in the case of R".

4.1.8 Counterterms on a Compact Manifold with Boundary

The renormalization procedure can also be carried out in the case of compact Rie-
mannian manifolds with boundary M, such that there exists a neighborhood W of
OM that is isometric to a product M x [0, ¢€).

When we have such a manifold with boundary M, the double of M which will be
denoted by M’ will be a smooth compact manifold without boundary equipped with

an involution p — p* that sends a point p to its reflection through the boundary.
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The Dirichlet heat kernel on M is

where KJ(z,y) is the heat kernel on M’.

The existence of an asymptotic expansion of Kj(x,y) implies that
Ki(,y) ~ e 04 S g0, ) 4 e o037 g (g (4.118)

where ¥;(z,y) = —¢;(z, y").

This can be used to define f2; and to show that | £, ;(t)[e]— £ (t)[a]| is bounded
by a power of t; the increases linearly with N.

Choose a finite cover Uy,...,U,, of M by coordinate neighborhoods. This
induces a finite cover U; x [0,¢€),...,U,, X [0,€) of W = OM x [0,¢€) by coordinate
neighborhoods.

Then choose a finite cover Vi, ..., V,, of the complement of M x [0, €).

On the open sets U; that intersect the boundary, since M is a product, we can

use the Pythagorean theorem and the square distance becomes
iy (z,y) = d3p (Z,9) + 2 — yul* (4.119)

Therefore, on these open sets we can apply the analysis of for the direction
normal to the boundary and the analysis of to the OM direction. On open

sets V; whose closures do not intersect the boundary,
Kt('I? y) ~ e—d(w,y)2/4t Z ¢l(x7 y)tz (4120)

so we can apply the analysis of 4.1.7]
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4.1.9 Appendix

Lemma 2. For the heat kernel in (4.61))

0K,

S = Pk (4.121)

where P,y is polynomial in x; and y; and 1/t. The degree of Piy in 1/t is k.

Proof. We would like to find an explicit expression for P, j.

Note that
0K i — Yi
t_ Y K,
For each sequence of the form sy, ..., siy where s; > 1 for all j and s;+---+sy =
k, consider the functions
o [(mamy* g [(mem) ] ] K even

()" 03 [(252)° .05 (552 ] K odd

2t T4 2t 2t

We argue by induction that

K,
W - Z FSl ..... Sk’Kt‘

g 81+~~~+8k/:k’
5;2>1 for all j
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For k = 1, this is clearly true. Suppose it is true for some k > 1, then

- "t 7 F,
axf—"l a%‘

8k+1 K 8
t Z K,

1yeeesSg/
s14-+s =k
5;>1 for all j

_ Z 8xiF817~~~75k/ Kt

s1+-+s =k
s;>1 for all j

Ti —Yi
+ Z Fsl,...,sk/ ( 2t ) Kt

51+~~+Sk/=k
s;2>1 for all j

= Z Fsl,...,sk/Kt~

51+"'+3k’:k+1
5;>1 for all j

In fact, we can be more precise. That is, for k' even

Sk/! (Sk/ — Spr1+ -+ 82)! ((931 _ yi)/2t)sk/+sk/*2+m+32
(Sk;/ — Sk’—l)! e (Sk/ — Spr_1+ - — 51)! ($z _ yi)sk’—lJFSk/_ng.-.sl

F =

1yeesSg/

as long as sy — Spr_1 + -+ -+ S9; — S9;—1 > 0 for all 7 > 1 such that 2¢ < k’. Otherwise
Fy .5, = 0. If K is odd then F, , = (2%)" F,

ot EPTCIWE

The leading term of P, in % is Fj, = (_xlgityl)k -

Theorem 9.

1
K K
v

where PX is a homogeneous polynomial in t of degree R(y,n,K) = Ci(y,n) +
|K|Cy(7y,n) for constants Ci(y,n) and Cy(7y,n) which are defined in the body of the

proof of the theorem.
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Proof. Writing y™ = Y, - . . Ym,,,, we have

K _ —(y,Ay)
Iy = /Rn(vmn e Yma - - Yy, dy

(yr)ve-n e
= Vaaa 2 L

3 =1
. 1K/2
(V)" W) v -1z L
= P on([V(MI=1)4n(IV (v I Z H CQ§1),Q§2)’
Y Y Q =1

where we have used Proposition (12| and Wick’s Theorem on R". Let

IK|/2
PX = (/) VO Dgn VDV OD2 3™ TT 6 e (4.123)
Q i=1

Recall the definition of C' which is (4 [ecrey te> adj(B). But Bis n(|V(y)] — 1)
by n(|V (7)| — 1) and its entries are homogeneous of degree |E(y)| — 1 in {t.}ecn(y)-
So adj(B) has entries of degree (|E(v)| — 1)[(n|V(y)| — 1) — 1]). Therefore C' has

entries of degree

(IEM =DV =1) =1+ [EM)| = (EM] = Dn(V(N)] = 1) + 1 (4.124)

This implies that P is of homogeneous degree

K]

Ry (n, K) = n|EMI(IV(N)] = /2 + = (IEM)] = Dn(V(y) = 1) + 1] (4.125)

With the definition of P% in hand, the theorem is now evident.
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4.2 Construction of an Effective Field Theory from

a Local Functional

In this section, we show that an effective action can be constructed from a local
functional I € O(€)[[A]] using a procedure that is based on Theorem [7}

Do the following for each sequence IV, ... I® as in Corollary : Let N{ be
the smallest nonnegative integer such that dy(N7) > 0. Let NJ be the smallest

nonnegative integer such that dy(N7, N3) > 0 and so on. Then by Theorem [7]

[fra®)le] = £ 7)) < C (4.126)
—IW @ ) (@) —I®)
for some constant C'. Let E; """ ™= ; N E; <N ; ,

Let

-----

k
WP =Y Y [ Al (4.127

p=1 (1) 1P
—7( (p)
We can integrate this formula on (e, 1)* N E; """ ™ This gives
jwy (P}, 1[a] —wS™ (P D] < C(1 - €°). (4.128)

In particular, by Lebesgue’s dominated convergence theorem, we can let € — 0.
Thus, the limit as e — 0% of w, (P", I)[a] — wS™ (P}, I)[a] exists as well. We
shall call this the renormalized Feynman weight.

The counterterms for the effective action are defined by

IS =W | PLI= > I(e) |, (4.129)
(& K<)
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where

1
CT(plr) = S S TL I L g ISt 4.1
Wz,k ( € ) Z |Aut(7)| ’UJ,Y € » k% o i’k (€> ( 30)

7y conn
9(v)=,T(v)=k

Then the effective action is defined by

I[L] = lim W(PE T —1°7(e)). (4.131)

e—0t

This is well-defined because for all i, k,

Lig[L] = Tim W (PF, 1= 197()) (4.132)
= lim | W, PhI— ) I | — Ik (9)] . (4.133)

(& k") = (i,k)
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Chapter 5

Gauge Theory

5.1 Classical BV Theory

5.1.1 On Manifolds without Boundary
Graded Lie Algebras

Instead of a graded Lie algebra g consider its shift g[1]. Then the bracket [, ]
becomes a symmetric bilinear map of degree 1 that we denote f5(+,-). Let s be the

suspension map g[1] — g. Then for X,Y € g[1] the product /5 is defined by

((X,Y)=(s"0o[,]os®s)(X,Y) (5.1)

= (=)l s X, sY). (5.2)
One can readily see that
0(X,Y) = —(=D)XHIXED D =115y, s X = (=1)X Vg, (v, X) (5.3)

1)



On g[1] the Jacobi identity becomes
G0(X,Y), Z) + ()PP (6(X, 2),Y) + (=1) X020, (0,(Y, 2), X) - (5.4)
In particular if X has degree 0, then
l(0(X, X),Y) = =20(4,(X,Y), X) (5.5)
and
l(l(X,X),X)=0 (5.6)

A symmetric bilinear pairing x of degree d—2 on g becomes a degree d symplectic

pairing (-, -) on g[1].

Graded Lie Algebra Modules

Suppose that M is a graded module for the graded Lie algebra g. That means that

there is an action of g on M such that
X-Y-m—(-DEWVYy. X . m=[XY] - m. (5.7)

The prototypical example arises in BF theory, where g acts by the coadjoint
representation on g*[d — 3], for some integer d. One can combine g and g*[d — 3]
into a single Lie algebra g & g*[d — 3] by defining [X,m] = X - m and [m, X| =
—(=1)IImI[X m] and extending the bracket by zero on g*[d — 3].

For any module M one can constuct as above the Lie algebra g & M which we
call the crossed product Lie algebra. The Jacobi identity of g & M is equivalent to
the statement that g is a Lie algebra and M is a module for g.
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In what follows, it is natural to shift and consider instead g[1] & M[1]. Once

again, what the Lie bracket [-, -] corresponds to will be denoted f5(,-).

Maurer Cartan Elements

If A € g[l] is an element of degree 0, then one can deform a differential d to
da =d+ l3(A,-). We compute
(d+ly(A,))’B = d(dB + {5(A, B)) + (o(A,dB) + l5(A, ((A, B)) (5.8)
1

— 0, (dA + %@(A, A), B) (5.10)

Therefore d4 = 0 if A is a Maurer-Cartan element. Another standard computation

establishes the Bianchi identity
1 1 1
da <dA + EZ(A, A)) =d (dA + 5EQ(A, A)) + Uy <A, dA + 562(14, A)) (5.11)
_ —%EQ(dA, A) - %@(A, dA) + (A, dA) = 0. (5.12)

In what follows, we will see the Maurer-Cartan equation, but not necessarily for
a homogeneous element of degree 0. Suppose that A = A + ... + AM™ where

m <n and |A;| = i. Then

1
dA + §€2<A, A)=0 (5.13)
is equivalent to
1 ) )
dA® —y(AD ADY =0 5.14
+ 3 50 4%) (514

for all k.
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Vector Fields

We shall only assume that we have a finite dimensional vector space or nice infinite
dimensional graded vector space like a nuclear Fréchet space £ in which case we
would take the appropriate dual and tensor product. Given a polynomial function
F, we write D,,F € Sym" £* for its components.

We identify £ with its tangent space; in other words, a constant vector field is
an element X € £. More generally, a vector field X is defined to be an element of
Hom(Sym* &£, ). We write D, X € Hom(Sym" &, &) for its components. A constant

vector field X acts on a polynomial function F' = D, F' by

(XF)(Ay,.. Apy) =Y £F(Ay,. . X, Agy) (5.15)
=1
:nF(X,Al,...,An,l). (516)

and XF =D, 1(XF).

More generally, suppose X = D, X for m > 0; i.e. X is homogeneous and is
not necessarily constant. Intuitively, we should let X act like a derivation and then
symmetrize. We have X F(Aq, ..., Anin_1) is equal to

qun,n Z :tnf(X(Ag(l), e ,Aa(m)), Aa(m+1), ce ,Aa(m+n_1)) (517)

UeSm«knfl

=Crn Y X (Aoq) - Aaim)s Aomat)s - - s Aotman—1)) (5.18)

o€Sh(m,n—1)

where C), = i and Cp = —mnl_ Here Sh(m,n — 1) denotes the set of

1
(m+n—1 (m+n—1)
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(m,n — 1) shuffles, i.e. the permutions o € S,, 1,1 satisfying the conditions
o(l) <--- < a(m) (5.19)
om+1)<---<o(m+n-—1). (5.20)
Generalized Chern-Simons Theory

Assume the existence of a degree 1 symmetric product 5(-, -) satisfying (5.4]) and
a differential @) compatible with f5(+,-). Also assume the existence of a degree —1
symplectic pairing on £, which we denote (-, ), that is compatible with @ and /5 in

the sense that

(Q(-),-) € Sym*&* (5.21)

<€2('7 ')7 > € Sym3 & (522)
Let I(-,-,-) := ¢(la(-, ), ) and let
K(,) =5(Q(),") (5.23)

Then K and [ will also be symmetric polynomials of degree 0 as a consequence of
the conditions (5.21)) and (5.23)). This means that |A;| + |A2| = 0 is necessary to

have K (A, A2) # 0. This implies that
K(Ay, Ay) = (=1)AAd g (Ay) Ay) = (—1D)MTK (A, AY). (5.24)

Similarly, |A;|+|As|+]As| = 0 is necessary to have I(A;, Ay, A3) # 0, which implies
that I(Al, AQ, Ag) = (-1)|A1|I(A2, Ag, Al)
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Note that the condition
(QA1, Ag) + (—1)M1l(A;, QAL) =0 (5.25)

for all Ay, Ay € £ is equivalent to (5.21))

Define the generalized Chern-Simons action

S(A) = K(A) + I(A). (5.26)
Then

XS(A) =2(-DX K(A, X) +3(-1)*1. 1(A, A, X) (5.27)

~ (—)RQA + %EQ(A,A),)Q (5.28)

Let Xg be the vector field defined by D;Xg(A;) = QA; and Dy Xg(Ay, Ag) =
%£Q(A1,A2). The Chern-Simons equation of motion Xg(A) = 0 is the familiar
Maurer-Cartan equation for A. By definition in our convention, this is the Hamil-
tonian vector field of S because XS = (—1)X(Xg, X). It is sometimes also called

the BRST operator.

Generalized BF Theory

We now define the generalized BF action. Assume that £ = & & & and there is
a symmetric product ¢5 on £ with ¢(A,B) € & for all A € & and B € & and
l3(B1, By) = 0 for all By, By € &. Suppose that (-,-) is a degree —1 symplectic
pairing the such that for all A, A; € & and By, By € &, we have (A, Ay) =
(B1, B2) = 0. Let @ be a compatible differential on £.
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The BF action is just the Chern-Simons action for this theory.

S(A+B)=K(A+B)+I1(A+ B) (5.29)

=2K(B,A)+31(B,A,A) (5.30)
Using the calculation from the previous section, we have that

(X +Y)S(A+B) = (~1)XNQA+ B) + S0o(A+ B, A+ B), X) (5.31)
+(-1)(Q(A+ B) + %&(A+B,A+B),Y> (5.32)
= (~)XUQB + (4, B), X) + (—1) (@A + S6:(4, 4),Y)
(5.33)
Therefore the Hamiltonian vector field Xg+Ys has £ component Xg with D; Xg(A)
QA and Dy Xs(A) = 305(A, A) and it has & component Ys with D,Ys(A+B) = QB
and DyYs(A+ B) = l3(A, B). The familiar (perhaps) BF equations of motions are

given by Xg(A) =0 and Ys(A+ B) = 0.

Classical Master Equation

The purpose of this section is to define and verify the classical master equation for
generalized Chern-Simons theory and a fortiori generalized BF theory. For some
other polynomial function F' we can define the Poisson bracket with the generalized

Chern Simons action S as

{S,F} = XgF. (5.34)
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We would like to show that {S,S} = 0. This is called the classical master
equation. We can prove this one of two ways: by showing that X¢S = 0 or showing
that (Xg, Xg) = 0.

Using the definition of the action of a vector field on a polynomial function

F = DyF + D3F, we calculate the four terms of XgF'.
D1 Xs(DyF)(Ay, Ay) = DyF(Q(Ar), Ag) + (-1 D3 F(Q(A,), A1) (5.35)
and

D1 Xs(DsF)(Ay, Ag, As) = DoF(Q(A1), Ag, As) + (=1) M4 D F(Q(A,), Ay, As)

(5.36)
+ (—1)AHA2DI41 Dy (Q(As5), Ay, Ay) (5.37)
and
DQXS(DQF)(Al, AQ, Ag) - % [DQF(EQ(AM AQ), Ag) (538)
+ (=1)2l4sI Dy P (05(Ay, As), Ay) (5.39)
+(—1)An 144D D, (0, ( Ay, Ag), A1) (5.40)
(5.41)

and lastly, Do Xg(D3F) (A1, Ag, A3, Ay) will be a sum with summands given by the

C
istF (L2(As(1)s Av(2)), Ao(3)s Ao(ay) (5.42)

for each of the (}) = 6 shuffles o in Sh(2,2).
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Finally we turn to the case F' = S the generalized Chern-Simons action where
we claim that each of these four terms vanish. Notice that the vanishing of
is equivalent to our assumption ([5.25)). The vanishing of and are each
equivalent to our assumption that the differential () compatible with ¢5(-,-) and
(5-25). Lastly, the vanishing of Dy Xg(D3S) = DyXg(I) is is a consequence of our

assumptions (5.22)) and (5.4). Therefore, the classical master equation holds.

Chern-Simons and BF on a Closed Manifold

Let M be a closed 3-manifold and let (g, [, -], k) be a quadratic Lie algebra. Define

E* =Q°(M,g)[l]. We denote the Lie bracket after shifting by £,(-,-). We define
O(w1 ® X1, w2 ® Xa) = (—1)F12l (0w A wy) @ 6h(X1, Xa). (5.43)
for w; ® X; € £°. A short calculation shows that
lo(wy ® X1, ws @ Xo) = (_1)(Hw1\+|X1|)(IX2|+\w2\)gQ(w2 ® Xy, w1 @ X1), (5.44)

verifying that lo(-,-) is a symmetric product on £°. Let (-,-)" be the degree 2
symplectic pairing induced by shifting the compatible symmetric bilinear form x on

g. We define
<OJ1 & Xl,UJQ X X2> = (_1)\X1Hw2\ / w1 A w2 <X1,X2>/ (545)

M

Then (-,-) is a degree —1 symplectic pairing on E°.
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Let Q = d ® 1, where d is the de Rham differential. Then

(Qwr ® X1, wn @ Xp) = (—1) Xl / duy A s (X1, Xo)' (5.46)
M

= _(_1)|X1Hw2|<_1)|o.)1| / w1 A dwsy <X17X2>/ (5.47)

M

= _(_1)|w1‘+‘X1|<W1 ®X1,Q(W2 ®X2>> (548)

which is equivalent to the statement that (Q(-),-) is a symmetric polynomial on £°.

Secondly the compatibility of |-, -] and & is the statement that for all X, Y, Z € g,
k(X [Y, Z]) = —(- ) Wk(Y, [X, 2)) (5.49)
which on g[1] implies that
(t5(,), )" € Sym®(g*[~1]). (5.50)
On &°, we have the desired consequence
(€a(-,-), ) € Sym®(€°%) (5.51)

Lastly, £,(-,-) satisfies the shift of the Jacobi identity, which implies that /5

satisfies it too; that is,

l(0o(X,Y), Z) 4+ (=1)Z W ey (05(X, Z),Y) + (= 1) X1 HZD g, (0,(Y, Z), X) = 0.
(5.52)
In the case of BF theory, let M be a closed manifold of any dimension n. Then
we consider the crossed product Lie algebra g & g*[n — 3] we can symmetrize and
extend the duality pairing by 0 to construct a symmetric bilinear pairing s of degree

84



n—3. Then k, by construction is compatible with [-,-]. On g[1]® g*[n — 2| the shift
of the crossed product algebra xk becomes (-, )" a symplectic form of degree n — 1,

as desired.

Let

& =M (glll@g'n-2) = (Mg)l] @ (M,g")n—-2].  (5.53)

The symplectic pairing (-,-) on £° coming from the integration pairing on M and

(-,-)" is of degree —1 and satisfies the desired properties.

5.1.2 On Manifolds with Boundary
Generalized Abelian Chern-Simons

On a manifold with boundary M, integration by parts introduces an integration over
OM. There is also a natural map 7 : £y — Egpr of degree 0 restricting fields £, on
M to fields Egp on OM . We shall try to account for this structure algebraically in
our generalized setting.

As before all the linear objects should be taken in an appropriate category like
the category of finite dimensional vector spaces or the category of nuclear Fréchet
spaces. Suppose that £, and £y are two such objects and there is map between
them 7 : Ey — Egnr. Let &y have a degree —1 symplectic pairing (-, )y, and let

Eanr have a degree 0 pairing (-, )op. Let @ be a differential on &£y, that satisfies
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the property

(QA1, Ag)ar + (—D)MNAL QAL ar = (mAL, T A onr. (5.54)

We shall also assume the existence of a differential on &y which we will also
denote by @, and use the context to distinguish between the two operators. For

a1, as € Egpr we shall in fact assume that () satisfies
(Qa, az)anr + (—1)" a1, Qaz)ors = 0 (5.55)
Define the abelian generalized Chern-Simons action on &, by
Su(4) = Ky (4) (5.56)
where

(@), ) (5.57)

for Ae& M-
Then (5.54) means that unfortunately, Kj,(-,-) is no longer symmetric, and its
failure to be symmetric is measured by 7*(-, ).

We can still act on it with a constant vector field X € &, to get

XEn(A) = L[QX. A)ys + (-1 QA X)) (5.58)
= (=)YHQA, X)y + (r X, T A)on (5.59)
= (=) Xg,,, X)) + (X, 1A ons (5.60)
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We compute

<X5M7 XSM>M(A) = _XSMDQSM(A) + <7TXSIW (A)7 ﬂ-A> (561)
=2(Q(mA), mA)om (5.62)
— " Sonr(A) (5.63)

where we define the boundary correction as Spys(a) = 2(Qa, a)srs for a € Egpy which
is a quadratic polynomial of degree 1.

Following [1], for the purpose of quantum field theory we shall want to assume
the existence of additional structure. Assume the existence of a polarization on the
space of boundary fields. In this generalized setting, that simply means that we can

choose subspaces Byy; and Pyys such that
Eom = Ban © Pour- (5.64)

Also assume the existence V), a subspace of £y such that 7(Vy) C Payr and

that

(QAL, A + (—1)MI(A, QA y = 0. (5.65)

In what follows, £, will be replaced with a new space of fields Vs @ Bayr. We
shall try to replace Sy, by defining a new action functional on Yy, & Byys. To start,

we naively substitute A + a € Yy @ By, assume that (a, )y = (-,a) = 0 and try
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to formally integrate by parts

K(A+a) = L{QUA+a), A+ 3{Q(A+a),a) (5.66)
= SQA, Ay + 5(Qa, A) (5.67)
_ %(QA, Aar + %(a, T A our (5.68)

From now on K as a polynomial function on YV, ® Bgys will be defined by the
expression on the last line.

For X € Y\ a constant vector field, we compute

XEK(A+a) = (—1)X(Xg(A), X)ur + %(m X )ons (5.69)

where Xg(A) = QA and thus

XsK (A +a) = (~1)¥(X5(A), Xs(ADas + 3 (0 mXs(A))ou (5.70)
= 2 (0, 7QA)on (5.71)
(5.72)

Generalized abelian BF Theory

We now define the generalized abelian BF action. Assume that &y = 1 @
Ena. Suppose that (-, )y is a degree —1 symplectic pairing the such that for all
Ay, Ay € & and By, By € &, we have (A, As)y = (B1, Bo)y = 0. Suppose that
Eomt = Eana ® Eomr2 and has a pairing (-, -)gn with the analogous properties as

(-, )am- Suppose we have a map 7 : Ey — Eyn. Let @ be a differential on &y
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that satifies (5.54). And denote by the same letter @) the differential on ), that

satisfies ((5.55)).

For the purposes of quantum field theory, assume that we can choose subspaces

Ban,i and Payr; such that
Eoni = Banri @ Poni- (5.73)

Also assume the existence Yy, a subspace of Ey; such that 7(Vari) € Ponr

and that on YVyr = Va1 @ Var2, we have (5.65). Then for A+a € Va1 @ Boara and

B +b € Y2 @ Ban2, we have following

1 1 1 1
§<QA7B>M + §<QB7A>M + §<a77TB>8M + §<ba 71-"4>8M

K(A+B+a+b)=
(5.74)

= (QA, Bhar + 5B, A}y + 5 (0, mB)ons + 3 b A
(5.75)

BF Theory on a Compact Manifold with Boundary

Following [1], on a compact manifold with boundary M, choose a decomposition of
the boundary as OM = M @ 0, M. Let Q*(M)p; be the space of differential forms

on M with Dirichlet boundary conditions on 9; M. Then define

Eny = Q° (M, g)[1] (5.76)

Enz = (M, g")[n — 2] (5.77)

89



and

Eonry = Q°(OM, g)[1] (5.78)

Eontn = Q*(OM, g")[n — 2. (5.79)

Let m: Eyr — Esnr be the map induced by pullback of forms to the boundary. and

define
Bom, = Q° (01 M, g)[1] (5.80)
BaM,2 = Q‘(@QM, g*)[n — 2] (581)
and
Vg = Q(M,g)pi[1] (5.82)
Yo = Q (M, g")pan — 2]. (5.83)

Define (-, ) and (-, -)gpsr to be the integration pairings on M and OM respectively.
Because for w; € Q*(M)p;, we have w; Awsy always vanishes on the boundary, (5.65))
is satisfied on Var = Va1 @ Vuro. It is straightforward that the other properties of

the previous section are satisfied, as well.
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5.2 Quantum Effective BV Theory

5.2.1 On Manifolds without Boundary
Choose a “gauge fixing” *, a map & — £ of degree —1. Define
D =1[Q,Q"] =QQ"+Q"Q, (5.84)

a map of degree 0.
Since £ is a topological vector space it makes sense to state the heat equation

for ¢ : (0,00) — &
0rp(t) + Do(t) = 0. (5.85)
Suppose that there exists a degree 1 integral kernel K; : (0,00) — E® & | satisfying
oK+ (D®id)K; =0 (5.86)
and define e P ¢ = K, x ¢, where
Kx¢=(0d® (-, )(K; ® ¢). (5.87)
for K € Sym?E*. Then e *P¢ satisfies the heat equation because

e P =—(1d (-, ))(D ®@id) (K, ® ¢) (5.88)

— _D(ide(,))(K, ® ) = —De s (5.89)
We claim that (1 ® Q)K; = —(Q ® 1)K} is equivalent to the desired relation
Qe P =ePQ. (5.90)
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This is because

QK% ¢) = —(id @ (-,-)(Q®id®id)(K; ® ¢) (5.91)
= (id® (-, ))(i[d®Q ® id)(K; ® ¢) (5.92)
= —(id® (-, ))(id®id ®Q)(K; ® ¢) (5.93)
= (id® (-, ))(K: ® Q9) (5.94)
= K, % (Q¢). (5.95)

We define the propagator P = fOL(Q* ® id) K;. The propagator satisfies the

€

equation

(Q ®id +id ®Q)PF = / (Q®id)(Q*®id) — (Q* ®id)(Id®Q)K,  (5.96)

- [ (@e)@ e+ (@ e)@edK  (59)

= - /L O K (5.98)
=K — Ky (5.99)
This implies that
[Q,0pL] = AL — A, (5.100)
where A, = —0k, and Ox is the contraction operator of a symmetric tensor X €

Sym® £ acting on functions. We call Ay the regularized BV operator and define the

regularized Poisson bracket by

(£}, = Anlfg) = Afg— (=D fALg (5.101)
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We wish to construct a family of effective interactions I[L] € Sym® £*[[h]] satis-

fying Costello’s renormalization group equation

LI/ — MOpr Ilel/h (5.102)

and the quantum master equation

QIL] + 3 (I[L], I1L]} + hALI[L) = 0. (5.103)

Because
(Q + AL/ = (Q + hAL)e!H/n (5.104)
— | LY | gy eree (5.105)

The quantum master equation is equivalent to the condition (Q + hAp)e! [L/h = (.
This exponential form of the quantum master equation is often more convenient to

work with. One important consequence of (5.100)) is that

(Q + RAL) T = (Q + hA L )e"rE /T (5.106)
= (Q + hAL)"rE T/ (5.107)
= "5 (Q + hA e/ (5.108)

Thus, the quantum master equation is satisfied at all length scales if it is satisfied
at any particular length scale.
Suppose that for some classical interaction functional I, the naive effective quan-

tization

I[L] = lim hlog [exp (hdpr) exp (I/N)] (5.109)

e—0t
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exists. Can we calculate the obstructon (aka anomaly) to I[L] satisfying the quan-

tum master equation? Using the same manipulation as above,

IL]+ 2{I[L), I[L ApI[L
— ] hdpL Ael/n
= lim ™" (Q + hA e (5.111)
= lim ¢"PH(Q + hA e (5.112)
e—
1
— lim "k (Q] T3 {£, 1} + hAJ) el/h
e—07t h
(5.113)

We are assuming that [ satifies the classical master equation so that we can sub-

stitute QI = —3 {1, I}.

Naive Quantization at 1-loop

In this section, we adapt the arguments in 2 dimensions in [2| and [6] to show that
the 1-loop quantization for generalized Chern-Simons theory exists.

On R", the heat kernel on differential forms has a very elegant form

K2 (xy, 20) = (4mt) "2 lor—eal/2t H(dx; — da) (5.114)
(5.115)
Expand
ﬁ(dx; —dry) = Y (=)D A daf (5.116)
i=1 10J=[n)
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where I =iy <--- <ijand J = j; < --- < j; are disjoint multi-indices and o (I, J)
is the sign of the unshuffle premutation needed to put I followed by J in increasing
order. Because
> (—)EF D dgg A dad A dal = (1)K g KA ey (5.117)
1UJ=[n]

= (=1)/EIndg B A day (5.118)
and the integral fR" is of degree n, we have

/ [<4m>"/2e“2'2/4tf[<dxé—dxi> [$(a2)dak] = p(a1,t)dzf  (5.119)
Rz,

i=1
where ¢(z1,t) is the solution of the scalar heat equation with ¢(xy,0) = ¢(x1).
For the purpose of Chern-Simons theory, let g be a graded Lie algebra of dimen-
sion m with compatible symmetric bilinear pairing of degree n — 3.
Choose a X1,..., X3, Y1,..., Y, Z1, ..., Z; € g[l] each linearly independent so

that

(Xi,Y;)" = i (5.120)
and

(Xi, Y))' =0y (5.121)

This implies that | X;| + |Y;| =1 —n and 2|Z;| = 1 — n. Clearly, [ # 0 only if n is

odd.
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We define the Casimir element

Co=) (X' @Y +bY' @ X))+ ¢Z'® 2

i

a1+ Cyo

We would like to study when K; = K" ® Cj is a heat kernel on £°.

Let

K+ (w®X) = (—1)r bkl <1d®/M2> (d®@ ()K" @w®Cy@ X

= (id@/M) (K" @w)® ([id® (,))Cy® X

Therefore in order to have

lim K"

e—0t

*(wRX)=we X

for all w ® X € £° it is necessary and sufficient that

X — Z[( 1)(n 1)|X; |a Xz Yz

)

Therefore a; = (—1)Xi+1 b, = (—1)

)+
+2 (-

71)|Yz| and Ci — (—1)(77'71)‘Zi“

(n— 1)\Y1|bzyz<X1’ X>

(n—1) ‘Z|c Zz<zz X>]

So, how does Cy behave under transposition of factors?

7Cy = Z ‘Yll‘xlaYZ@)Xl

+y (~)Wezi e 7
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DIy, X @ V7]

(5.122)

(5.123)

(5.124)

(5.125)

(5.126)

(5.127)

(5.128)

(5.129)

(5.130)



But

(DY I¥I = ()Y = (~1)"a

(=), = (—1)n DI — (g,

Soif [ =0,

and if [ # 0 and therefore n is odd we have

n—1

TOg = —0Uy1 + (—1)70972.

(5.131)
(5.132)

(5.133)

(5.134)

(5.135)

This means that in the case | # 0 we require that n — 1 is congruent to 2 modulo 4.

For [ =0,

7K = 7K™ ® 704

= (C(KE 9 Gy = Ky

That is, K; is symmetric, as desired.
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We calculate the contraction of Cy with £5(-, )
nly(-,-)(Cy) = Z[(—l)‘xi‘“ﬁ'z(X’} Y+ (-0l X))
+ Y0y 7, )
= Yl IR X) + ()M, X

D IRAAN A

|Z| even

k=0ormn—11is odd.

(5.138)

(5.139)

(5.140)

(5.141)

(5.142)

For this to be 0 we must require |Z’| is odd for all i. We must also requrie that

But A = 0 on R" for all n without needing such conditions on Cyj because K™

pulled back to the diagonal in M x M is 0.

Let Q* = d* ® id. In coordinates, on R"

We compute

L L
pe [f@rm [Mrmec,- (oo,

where

* 7-an —n —|z1—xa|? (xz_xz) j j
I K™ = (4rt) %] ”“Z%g(d@—dﬂ)
i i#]
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For any tree 7, lim._,o4 w, (PX, I) exists. This is by a simple inductive procedure.
If v, and 7, are graphs for which lim,_,; w,, (PF, I) exists, then if 7 is 7, and v,
with a tail of 7; connected to a tail of s, it follows that lim. o wV(PEL, I) exists.

The 1-loop quantization exists for generalized Chern-Simons, but the argument
relies on the structure of the classical interaction I. It is clear from the previous
parragraph that that it suffices to show the existence of the limit when ~ is a wheel

of n edges for all n > 0.

Because w, (PX, I)(ou, ..., aip@)) is equal to
Fwl ()™, 1) (wi, - wir)wy S(Cy, 1) (X1, - X)) (5.146)

where «o; = w; ® X, it suffices to show that

15(% w((PF)™, 1) (5.147)
exists.
Let wo, ..., 2, be coordinates on (R™)™! and identify zy = x,,41. Make the
change of variables y, = v, — ro_1 for a =1,...,m and yo = xo. Note that
m+1
| | D | Gty (5.148)
a=1 i i#j

is a form of degree (m+1)(n—1) = mn+n—m—1on R"". Therefore for n > m+1
it must vanish.
Since dy!, = — > 0", dy’,, it is in the subspace generated by the 1-forms dy’, for

a=1,...,m. For n = m+ 1, it is also at each point in the A" R"" so it must
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again vanish. These statements imply that for n > m — 1

wrm+1((PL)an ]an> =0

Before proceding, let

Lemma 3.

and

M7t e) =

t

1 1 1 1
t1+e € €
1 1 1 1
€ t2+e €
M(t,e) =
1 1
c tm+

det(M(t,€)) = (t1...ty) " (1 +e! it)

R

tl e tmE
+ t] tito t1tm
ettt tm eFt1tttm s ettt tm
t2
taty to + 2 totm
ettt +tm 2T ittt ettt +im
tmti tmto P t2,
ett1tttm ett1tttm : ett1tttm

(5.149)

(5.150)

(5.151)

(5.152)

(5.153)

Form+1>n, limeop wit | ((PE)an, [2n) exists. This is a consequence of the

fact that wan

Cons1

foo o I

(PL)=, I*™)(wo, . .

€

,Wy,) is bounded by

47Tt )"/2
o (

100

- Z;nzl ‘ya|2/4ta_‘ 22”:1 Yal|/Atm41

(5.154)



which is finite because upon performing the Gaussian integral and is equal up to a

constant to

m+1 1
(5.155)
/[OL] H n/Q det(M(t, €))"/2 /[OL] (tr+ -+ tg)™/?

/ L e (5.156)

0,L] (t1...tyy1)2m+D

IN

This implies that for 2(m + 1) > n,

im wi? | ((PF)™, 1) (5.157)

e—0t

exists, so in particular, the limit exists for m + 1 > n.

We conclude that
lim w, (P", 1) (5.158)

e—0t

exists in generalized Chern-Simons theory on R", for all graphs  with b(v) = 1.
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