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ABSTRACT

EFFECTIVE FIELD THEORY ON MANIFOLDS WITH BOUNDARY

Benjamin I. Albert

Jonathan Block

In the monograph Renormalization and Effective Field Theory, Costello made

two major advances in rigorous quantum field theory. Firstly, he gave an inductive

position space renormalization procedure for constructing an effective field theory

that is based on heat kernel regularization of the propagator. Secondly, he gave

a rigorous formulation of quantum gauge theory within effective field theory that

makes use of the BV formalism. In this work, we extend Costello’s renormalization

procedure to a class of manifolds with boundary and make preliminary steps towards

also extending his formulation of gauge theory to manifolds with boundary. In

addition, we reorganize the presentation of the preexisting material, filling in details

and strengthening the results.
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Chapter 1

Introduction

Effective field theory, in the context of the renormalization group, was developed

by Wilson [7] [8] based on earlier work of Kadanoff [4]. There are many variations,

but the basic procedure involves two steps: mode elimination and rescaling [5] [3].

In this introduction, we shall present the intuitive idea of mode eliminination and

how it relates to the body of the paper.

Suppose that we have an action functional S[ΛH ](φ) describing physics below

an energy scale ΛH . Then the action functional S[ΛL](φ) describing physics at a

lower energy scale should be given by “eliminating the modes” with energy between

ΛL and ΛH . This is described by the renormalization group equation (RGE)

eS[ΛL](φ)/~ =

∫
φ′∈E(ΛL,ΛH ]

eS[ΛH ](φ+φ′)/~Dφ′. (1.1)

where the integral is over E(ΛL,ΛH ], the space of fields with energy between ΛL and

ΛH . And S[Λ](φ) is defined on the low energy fields φ ∈ E[0,Λ]. Equivalently, we can
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write

S[ΛL](φ) = ~ log

∫
φ′∈E(ΛL,ΛH ]

eS[ΛH ](φ+φ′)/~Dφ′. (1.2)

In order to define the effective action S[Λ](φ), one might be tempted to let Λ→∞

and write

S[Λ](φ) = ~ log

∫
φ′∈E(Λ,∞)

eS(φ+φ′)/~Dφ′. (1.3)

but this limit will not exist due to ultraviolet divergences. However, the limit should

exist after an appropriate renormalization of the functional integral (1.3).

The focus of the first part of this thesis will be on constructing effective field

theory, albeit in a slightly different formulation, which we now begin to move to-

wards.

For the remainder of the introduction, for expository reasons, we shall work

with a scalar theory on a compact manifold M . Let D be the Laplacian on M ,

E = C∞(M), and the “modes” the eigenvalues of D. Assume that the action is of

the form

S(φ) = −1

2
〈φ,Dφ〉+ I(φ). (1.4)

where 〈φ,Dφ〉 =
∫
M
φDφ is the quadratic part of the action. Because φ ∈ E[0,Λ] and

φ′ ∈ E(Λ,∞) are orthogonal,

S(φ+ φ′) = −1

2
〈φ,Dφ〉 − 1

2
〈φ′, Dφ′〉+ I(φ+ φ′). (1.5)
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If S[Λ](φ) = −1
2
〈φ,Dφ〉+I[Λ](φ), then the renormalization group equation simpifies

to

eI[ΛL](φ)/~ =

∫
φ′∈E(ΛL,ΛH ]

e−
1
2
〈φ′,Dφ′〉/~+I[ΛH ](φ+φ′)/~Dφ′. (1.6)

or equivalently

I[ΛL](φ) = ~ log

∫
φ′∈E(ΛL,ΛH ]

e−
1
2
〈φ′,Dφ′〉/~+I[ΛH ](φ+φ′)/~Dφ′. (1.7)

Let P = P (ΛL,ΛH) be the inverse of the quadratic form 〈φ′, Dφ′〉 on E(ΛL,ΛH ]

and let ∂P be the second order contraction operator associated to P . By Wick’s

theorem on the finite dimensional vector space E(ΛL,ΛH ], the integral (1.6) is equal

to the Wick contraction

V (P, I[ΛH ]) := e~∂P eI[ΛH ]/~. (1.8)

and (1.7) is equal to the expression

W (P, I[ΛH ]) := ~ log[e~∂P eI[ΛH ]/~]. (1.9)

While the version of effective field theory with sharp energy cutoffs described

above paints an intuitive physical picture, there are disadvantages to working with

it, as discussed in [3]. Costello gives an alternative approach that comes from

noticing the relationship between the uncut propagator and the heat kernel. Let

Kt(x, y) be the heat kernel for D. That is

∂tKt(x, y) +DxKt(x, y) = 0 (1.10)
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and limt→0+

∫
M
Kt(x, y)φ(y) dy = φ(x). Then if the integral

G(x, y) =

∫ ∞
0

Kt dt (1.11)

exists the operator it induces provides an inverse to D on E(0,∞). That is, away

from the energy zero fields.

Instead of cutting off the space of fields, we work with the entire space of fields

E and introduce the regularized propagator

PL
ε =

∫ L

ε

Kt dt (1.12)

An effective field theory now becomes a collection of length scale regularized inter-

actions satisfying

I[L] = ~ log[e
~∂
PLε eI[ε]/~]. (1.13)

or more compactly I[L] = W (PL
ε , I[ε]).

We naively might try to define the scale L effective interaction as

I[L] = lim
ε→0+

~ log
[
exp

(
~∂PLε

)
exp (I/~)

]
(1.14)

However, this limit may not exist and expression then has to be renormalized. That

is, an interaction functional I(ε) with counterterms for I is constructed such that

I[L] = lim
ε→0+

~ log
[
exp

(
~∂PLε

)
exp ((I − I(ε))/~)

]
(1.15)

exists.

In Chapter 2, we define the spaces to which the propagator P and the interaction

functional belong. We define stable Feynman graphs which give a way of organizing
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the combinatorics of the contractions in V (P, I) and W (P, I). Theorem 1 expresses

V (P, I) as a summation over all stable graphs while Corollary 1 expresses W (P, I)

as a summation over connected stable graphs.

In Chapter 3, we state and prove several variations of Wick’s theorem. In 3.1.2,

we calculate the 1 dimensional Gaussian integral

Im,α(a, b) =

∫ b

a

xme−αx
2/2 dx (1.16)

in terms of I0,α(a, b) and Ji,α(a, b) = xie−αx
2/2|x=b

x=a for i < m. The formula reduces

to expected results on R and R+ which are recalled in 3.1.1 and 3.1.3 respectively.

In 3.1.4, we generalize the formula for Im,α(a, b) to one for

Im,α,β(a, b) =

∫ b

a

xme−αx
2/2+βx dx. (1.17)

The proof, which is analogous to the one in 3.1.2 is omitted. The next two sections

are focused on the many variables Wick’s theorem. That is, the computation of the

integral

∫
P

xm1 . . . xmke
−Q(x)/2 dx (1.18)

where Q(x) is a nondegenerate quadratic form. In 3.1.5, we recall the standard

statement of Wick’s theorem on P = Rn and give a proof by diagonalizing the

quadratic form and applying the result of 3.1.1. This will be used to calculate the

counterterms on Rn in 4.1.4. In 3.1.6 it is shown that the result of 3.1.2 is sufficient

to compute (1.18) inductively, when P is any polytope. Lastly, we show that as
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long as P is bounded the Q(x) may be degenerate and even inhomogeneous. In

this case, the result of 3.1.4 can be applied iteratively to compute the answer. We

specialize to the case relevant for the counterterms on Hn, the upper half space with

the Euclidean metric, in 4.1.6.

Chapter 4, in particular Section 4.1, forms the body of the paper. We begin

with 4.1.1, where the construction of the counterterms in general is motivated by

carrying out the procedure for the Feynman weight associated to a particular 1-loop

graph in the φ4
4-theory. The renormalization procedure is based on the ability to

cover (0,∞)k and a fortiori (ε, 1)k by sets defined by inequalities of the form ti ≤ tRj ,

where R ≥ 1. In the next section, the covering lemma that was proved by Costello

in [3] is strengthened and proved. Much more detail about the nature of the sets

in the cover is given. Other preliminary concepts needed for the renormalization

procedure like local functionals and the form of their Feynman weights are then

discussed.

In 4.1.4, we formulate Costello’s renormalization procedure on Rn. We give

explicit formulas whenever possible and fill in a few steps in the argument omitted

by Costello, such as the introduction of what we call spanning tree coodinates.

In 4.1.5, we show how to control the error and how the basic result of 4.1.4 can

be used inductively to provide counterterms on each of sets in the cover of (ε, 1)k

where k is the number of edges in the Feynman graph whose weight we are trying

to renormalize.
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In 4.1.6, the renormalization is adapted to Hn, the upper half space with the

Euclidean metric. The procedure does not carry over without modification since

the quadratic form in the integral computing the Feynman weight is both no longer

non-degenerate and no longer homogeneous. Luckily, this difficulty can be circum-

vented by a clever change of coordinates in the direction normal to boundary. The

counterterms have a more complicated form than those on Rn, but we argue that

the inductive procedure of 4.1.5 can be carried out with appropriate modifications.

In 4.1.7, we correct what seems to be an oversight in Costello’s reasoning in [3].

On a compact manifoldM , Costello uses the asymptotic expansion of the heat kernel

Kt(x, y) ∼ e−d(x,y)2/4t
∑

i φi(x, y)ti, but for each chart in a cover replaces d(x, y) with

the coordinate distance ‖x − y‖. Thus, taking a partition of unity, the Feynman

weight under consideration becomes a sum of integrals whose integrands will contain

the exponential of a quadratic form, which allows us to apply Wick’s theorem.

However, it does not seem to be correct that Kt(x, y) ∼ e−‖x−y‖
2/4t
∑

i φi(x, y)ti,

at least not uniformly in x and y. Again, we show how this difficulty is not fatal.

While the counterterms will not simplify as they do on Rn, through the introduction

of spanning tree coordinates, one can still bound the error. The inductive step in

the constuction thus remains valid.

The culmination of these results is 4.1.8 where we show the renormalization

procedure can be carried out on a class of compact manifolds with boundary where

the argument reduces that of 4.1.6 near the boundary and 4.1.7 away from the
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boundary.

In Section 4.2 we move beyond the construction of counterterms for each Feyn-

man weight and construct the counterterms ICT (ε) for the entire effective interac-

tion.

Chapter 5, contains preliminary work done towards extending Costello’s for-

mulation of quantum gauge theory within effective field theory to manifolds with

boundary.

In 5.1.1, we recall the required graded linear algebra and state and verify the

classical master equation for generalized Chern-Simons theory. In the last part of

5.1.1, we show that the requisite algebraic assumptions on the space of fields for

the classical master equation to hold can be satisfied beginning from the data of

a compact smooth manifold M of dimension n and a graded Lie algebra g with a

symmetric bilinear pairing κ of degree n−3. In 5.1.2, following [1], we extend these

constructions in our language to manifolds with boundary.

Lastly, in Section 5.2, we recall and generalize slightly some of the constructions

that can be found in [2] and [6], as a preliminary step towards adapting them to

manifolds with boundary.
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Chapter 2

Feynman Diagrams

2.1 General Setup

Let E be a graded object in an appropriate symmetric monoidal category, which

contains a field K as its monoidal unit. For toy examples one can work with the

category of finite dimensional vector spaces. For quantum field theory one will need

to work with a category of topological vector spaces like the category of nuclear

spaces with the projective tensor product. The identifications (E ⊗ F)∗ ∼= E∗ ⊗F∗

and Hom(E ,F) ∼= E∗ ⊗F will be made throughout. We will not dwell on the issue

any further.

Fix an element P ∈ Sym2(E) which will be called a propagator. We define the

algebra of formal power series on E ,

O(E) =
∏
n≥0

Hom(⊗nE ,K)Sn =
∏
n≥0

Symn(E∗) (2.1)
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Here Sym means taking coinvariants of the n-fold tensor product with respect to the

symmetric group action. An element of I ∈ O(E)[[~]] is of the form I =
∑

i,k≥0 Ii,k~i,

where Ii,k ∈ Symk(E ,R). Let

O(E)+[[~]] ⊂ O(E)[[~]] (2.2)

be the functionals of the form I =
∑

i,k≥0 Ii,k~i, where I0,k = 0 for k < 3 and

I1,0 = 0. We will see the reason for this restricted class of functionals later in the

section.

We are interested in combinatorial formulas for “functional integrals” of the

form

V (P, I) = e~∂P eI/~ (2.3)

and

W (P, I) = ~ log(e~∂P eI/~), (2.4)

where ∂P denotes the contraction operator 1
2

∑
i ∂P (1)

i
∂
P

(2)
i

where P =
∑

i P
(1)
i ⊗P

(2)
i .

Lemma 1 (Feynman Expansion).

V (P, I) =
∑
{ni,k}

∑
j

C({ni,k}, j)~p({ni,k},j)∂jP
∏
i,k

I
ni,k
i,k (2.5)

where

C({ni,k}, j) =
1

j!

∏
i,k

1

ni,k!

10



and

p({ni,k}, j) =
∑
i,k

i ni,k −
∑
i,k

ni,k + j.

In the outer summation, we sum over the collection of double sequences of non-

negative integers {ni,k}i,k≥0 with the requirement that for all but finitely many i, k,

ni,k = 0.

Proof. By the multinomial formula

exp

(∑
i,k

Ii,k~i−1

)
=
∑
j

(
∑

i,k Ii,k~i−1)j

j!

=
∑
j

∑∏
i,k

~(i−1)ni,k

ni,k!
I
ni,k
i,k ,

where the inner sum is over sequences of nonnegative numbers {ni,k} such that∑
i,k ni,k = j. We can reexpress this as a single sum over sequences of almost all

zero nonnegative integers {ni,k}

exp

(∑
i,k

Ii,k~i−1

)
=
∑
{ni,k}

∏
i,k

~(i−1)ni,k

ni,k!
I
ni,k
i,k .

Thus,

V (P, I) =
∑
{ni,k}

∑
j

~j

j!
∂jP
∏
i,k

~(i−1)ni,k

ni,k!
I
ni,k
i,k

=
∑
{ni,k}

∑
j

C({ni,k}, j)~p({ni,k},j)∂jP
∏
i,k

I
ni,k
i,k

It remains to investigate the combinatorial structure of the expression

∂jP
∏
i,k

I
ni,k
i,k .

11



Before doing so, we shall make a definition.

Definition 1. A stable graph is defined by

V (γ) a set of vertices

E(γ) a set of edges each connecting two vertices

T (γ) a set of tails each connected to a single vertex

and a function g : V (γ)→ Z≥0 associating a “genus” to each vertex.

There is a natural preorder on vertices: If v1 has g(v1) = i1 and valency k1, and

v2 has g(v2) = i2 and valency k2, then v1 � v2 if i1 < i2 or i1 = i2 and k1 ≤ k2.

2.2 Feynman Diagram Expansion

Begin with the expression

V (P, I) =
∑
{ni,k}

∑
j

(
1

j!2j

∏
i,k

1

ni,k!

)
~p({ni,k},j)

(∑
l

∂
P

(1)
l
∂
P

(2)
l

)j∏
i,k

I
ni,k
i,k .

.

Let Ii1,k1 , . . . , Iin,kn be the sequence of interactions for which ni,k 6= 0. Recall that

the propagator P ∈ Sym2 E with P =
∑

l P
(1)
l ⊗P

(2)
l , and we are assuming that E is

ungraded. Make the substitution Ii,k = SkIi,k/k! where SkIi,k =
∑

σ∈Sk I
σ
i,k = k!Ii,k.

Then

V (P, I) =
∑
{ni,k}

∑
j

(
1

j!2j

∏
i,k

1

ni,k!(k!)ni,k

)
~p({ni,k},j)

(∑
l

∂
P

(1)
l
∂
P

(2)
l

)j∏
i,k

(SkIi,k)
ni,k .

12



Then (∑
l

∂
P

(1)
l
∂
P

(2)
l

)j∏
i,k

(SkIi,k)
ni,k .

will be a sum over contractions that can be parametrized by injections Q : H → V

of the set H = {1(1), 1(2), . . . , j(1), j(2)} into the set of inputs to the interactions

V = {1(1), . . . , k
(1)
1 , . . . , 1(n), . . . , k

(n)
n }.

Since Ii,k ∈ Sym• E∗ and I
ni,k
n,k ∈ Sym• E∗, we can reorder the contractions so

that the images of the index (1) elements in H, Q(1(1)), . . . , Q(j(1)) are in ascending

order. There are j! contractions that will be reordered to the same contraction in

this way. We can also reorder so that Q(α(1)) comes before Q(α(2)). There are 2j

contractions that will be reordered to the same contraction in this way.

Injections up to these reorderings are in one-to-one correspondence with parti-

tions of V into j subsets with two elements and 1 additional subset containing the

remaining |V | − 2j elements. Let Q({ni,k}, j) be the collection of such partitions

and for Q ∈ Q({ni,k}, j) let wQ(P, I) denote the corresponding contraction.

Then

V (P, I) =
∑
{ni,k}

∑
j

∑
Q∈Q({ni,k},j)

(∏
i,k

1

ni,k!(k!)ni,k

)
~p({ni,k},j)wQ(P, I) (2.6)

Any partition Q ∈ Q({ni,k}, j) determines a stable graph γ in an obvious way.

Consider Qγ({ni,k}, j), the collection of partitions which determine the same stable

graph γ. Let G({ni,k}, j) =
∏

i,k(S
ni,k
k o Sni,k). Note that

|G({ni,k}, j)| =
∏
i,k

ni,k!(k!)ni,k

13



This acts on V by permuting the interactions of type i, k and their k inputs. As

a consequence, it acts on Q({ni,k}, j). In fact, it acts transitively on Qγ({ni,k}, j).

The stabilizer subgroup of a given partition Q ∈ Qγ({ni,k}, j) is equal to Aut(γ),

the group of automorphisms of the stable graph γ. By the orbit-stabilizer theorem,

the number of partitions which determine the same stable graph γ is given by

|G({ni,k}, j)|
|Aut(γ)|

=

∏
i,k ni,k!(k!)ni,k

|Aut(γ)|
(2.7)

Therefore,

Theorem 1 (Feynman Diagram Expansion). For a stable graph γ, we define

g(γ) = b(γ) +
∑
v∈V (γ)

g(v) (2.8)

where b(γ) is the first Betti number of γ. Let C(γ) be the number of connected

components of γ. Then

V (P, I) =
∑
γ

1

|Aut(γ)|
~g(γ)−C(γ)wγ(P, I) (2.9)

Proof. The constant p({ni,k}, j) =
∑

i,k ini,k −
∑

i,k ni,k + j has a very simple inter-

pretation in terms of the stable graph γ since

∑
v∈V (γ)

g(v) =
∑
i,k

i ni,k,

|V (γ)| =
∑

i,k ni,k and |E(γ)| = j. Using the fact that

b(γ) = |E(γ)| − |V (γ)|+ C(γ), (2.10)
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and the definition

g(γ) = b(γ) +
∑
v∈V (γ)

g(γ) (2.11)

we have

p({ni,k}, j) = g(γ)− C(γ). (2.12)

Lastly define wγ(P, I) to be wQ(P, I) where Q is any partition that determines γ.

The formula now follows from (2.6) and (2.7).

Now we describe a combinatorial formula for W (P, I) = ~ log(e~∂P eI/~) or equiv-

alently eW (P,I)/~ = e~∂P eI/~.

Corollary 1.

W (P, I) =
∑
γ conn

1

|Aut(γ)|
~g(γ)wγ(P, I) (2.13)

Proof. If γ1 ∪ · · · ∪ γk is the disjoint union of not necessarily distinct connected

stable graphs γ1, . . . , γk, then it is clear that

g(γ1 ∪ · · · ∪ γk) = g(γ1) + · · ·+ g(γk)

C(γ1 ∪ · · · ∪ γk) = C(γ1) + · · ·+ C(γ2)

and if γ = (∪k1γ1) ∪ · · · ∪ (∪knγn) where γ1, . . . , γn are distinct

|Aut(γ)| = k1! . . . kn!|Aut(γ1)|k1 . . . |Aut(γn)|kn

15



Thus,

exp (W (P, I)/~) = exp

(∑
γ conn

1

|Aut(γ)|
~g(γ)−1wγ(P, I)

)

=
∑
{kγ}

∏
γ conn

1

|Aut(γ)|kγkγ!
~kγ(g(γ)−1)w∪kγ γ(P, I)

=
∑
γ

1

|Aut(γ)|
~g(γ)−C(γ)wγ(P, I)

In the second line above, for each sequence {kγ}γ conn in the outer summation,

kγ = 0 for all but finitely many γ, and kγ is a nonnegative integer for all γ.

Corollary 2. For I ∈ O(E)+[[~]],

W (P, I) ∈ O(E)+[[~]]
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Chapter 3

Wick’s Theorem

3.1 Bosonic Wick’s Theorem

3.1.1 Wick’s Theorem on R

In one variable, Wick’s theorem reduces to the statement

∫ ∞
−∞

xme−αx
2/2 dx =


√

2π (2k)!
k!2k

1
α(2k+1)/2 if m = 2k

0 if m = 2k + 1.

(3.1)

= Cm
1

α(m+1)/2
(3.2)

3.1.2 Wick’s Theorem on (a, b)

There are several ways of proving the formula for R which one might try to adapt.

The proof by integration by parts seems the best suited and is the one we develop

17



here.

We wish to compute the integral

Im,α(a, b) =

∫ b

a

xme−αx
2/2 dx

for −∞ ≤ a ≤ b ≤ ∞ and to check that the result agrees with the standard formula

for a = −∞ and b =∞. Let

Jm,α(a, b) = xme−αx
2/2

∣∣∣∣x=b

x=a

.

By integration by parts,∫ b

a

xme−αx
2/2 dx =

∫ b

a

xm−1(xe−αx
2/2) dx

=
m− 1

α

∫ b

a

xm−2e−αx
2/2 dx− xm−1

α
e−αx

2/2

∣∣∣∣b
a

That is,

Im,α(a, b) =
m− 1

α
Im−2,α(a, b)− 1

α
Jm−1,α(a, b). (3.3)

For m even, we can thus express Im,α(a, b) in terms of I0,α(a, b) and Jl,α(a, b) where l

ranges over odd integers less than m. For m odd, since I1,α(a, b) = −(1/α)J0,α(a, b),

we can express Im,α(a, b) in terms of Jl,α(a, b), where l ranges over even integers less

than m.

We can then prove a precise formula by induction:

Proposition 1.

Im,α(a, b) =
Cm
αm/2

I0,α(a, b)−
bm−1

2
c∑

i=0

C̃i,m
αi+1

Jm−1−2i,α(a, b), (3.4)

18



where Cm = 0 when m is odd and Cm = (m− 1)!! when m is even and for all m

C̃i,m =
(m− 1)!!

(m− 1− 2i)!!
(3.5)

Proof. The even and odd base cases when m = 0 and m = 1 are clearly satisfied.

Suppose the result is true for Im,α(a, b). Then using (3.3),

Im+2,α(a, b) =
m+ 1

α

Cm
αm/2

− m+ 1

α

bm−1
2
c∑

i=0

C̃i,m
αi+1

Jm−1−2i,α(a, b)

− 1

α
Jm+1,α(a, b)

and

(m+ 1)C̃i,m =
(m+ 1)!!

(m+ 1− 2(i+ 1))!!

= C̃i+1,m+2

so

m+ 1

α

bm−1
2
c∑

i=0

C̃i,m
αi+1

Jm−1−2i,α(a, b)

=

bm−1
2
c∑

i=0

C̃i+1,m+2

α(i+1)+1
J(m+2)−1−2(i+1),α(a, b)

=

b (m+2)+1
2

c∑
i=1

C̃i,m+2

αi+1
J(m+2)−1−2i(a, b)

The induction step is now completed by employing the fact that

(m+ 1)Cm
ααm/2

=
Cm+2

α(m+1)/2
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As a → −∞ and b → ∞, we have Jm,α → 0 and I0,α →
√

2π/α. Combining

this with identity for the double factorial

(2k − 1)!! =
(2k)!

k!2k

we recover the statement of Wick’s theorem on R.

3.1.3 Wick’s theorem on R+

Note that if a = 0 and b = ∞, then Jl,α = 0 for l 6= 0 and J0,α = −1. Since

(2k)!! = 2kk!,

∫ ∞
0

xme−αx
2/2 dx =


Cm
αm/2

I0,α(0,∞) m even

C̃
m,m−1

2

α(m+1)/2J0,α(0,∞) m odd

(3.6)

=


√

2π (2k)!
k!2k+1

1
α(2k+1)/2 if m = 2k

2kk! 1
αk+1 if m = 2k + 1.

(3.7)

3.1.4 Generalized Wick’s Theorem on (a, b)

In 4.1.6 we shall encounter integrals of polynomials with respect to inhomogeneous

quadratic forms. Here we establish the one dimensional result that can be used

iteratively to calculate such integrals explicitly.

We wish to compute the integral

Im,α,β(a, b) =

∫ b

a

xme−αx
2/2+βx dx
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for −∞ ≤ a ≤ b ≤ ∞ and to check that the result agrees with the standard formula

for a = −∞ and b =∞. Let

Jm,α,β(a, b) = xme−αx
2/2+βx

∣∣∣∣x=b

x=a

.

Firstly, (3.3) generalizes to

Im,α,β(a, b) = − 1

α
Jm−1,α,β(a, b) +

β

α
Im−1,α(a, b) +

m− 1

α
Im−2,α,β(a, b). (3.8)

The following is a generalization of Proposition 1

Proposition 2.

Im,α,β(a, b) =−
m−1∑
i=0

∑
{aj}∑
aj=i

β|a
−1(1)|∏

k∈a−1(2)(sk − 1 +m− i)
α|l(a)|+1

Jα,β,m−i−1 (3.9)

+
∑
{aj}∑
aj=m

β|a
−1(1)|∏

k∈a−1(2)(sk − 1)

α|l(a)| Iα,β,0 (3.10)

where {aj} ranges over finite sequences such that aj ∈ {1, 2} for all j. We use l(a)

to denote the length of the sequence {ai} and si =
∑l(a)

j=1 aj.

We shall not give the proof which is a straightforward induction like the proof

of Proposition 1. However, let us just check that it reduces to the formula of

Proposition 1 in the case that β = 0. Since 00 = 1 and 0k = 0 for k > 0 the only

nonzero terms in the sums will come from sequences with a−1(1) = ∅. But there

is exactly one such sequence such that
∑
aj = i for i even and it has l(a) = i/2

and no such sequences for i odd. It is clear that this then becomes the formula of

Proposition 1.
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3.1.5 Wick’s theorem on Rn

Suppose that A is an invertible symmetric n×n matrix and consider the associated

quadratic form Q(x) = 〈x,Ax〉 = xiAijx
j. We wish to compute the integral

IJ,A =

∫
P

xm1 . . . xmke
−Q(x)/2 dx

where J = (j1, . . . , jn) is a multi-index such that xj11 . . . x
jn
n = xm1 . . . xmk and P is

a polytope.

Theorem 2 (Wick’s Theorem on Rn). For k even

∫
Rn
xm1 . . . xmke

−Q(x)/2 dx =

√
2π√

det(A)

∑
β

k/2∏
j=1

A−1
m
β

(1)
j

,m
β

(2)
j

(3.11)

where the sum is over partitions of the set 1, . . . , k into k/2 subsets of 2 elements.

Here β
(1)
j and β

(2)
j denote respectively the first and second elements of the j-th set

in the partition.

Proof. Let D denote the diagonalization of A and assume that D has diagonal

entries α1, . . . , αn. In this new basis, using the change of basis matrix S, we have a

linear combination

∑
i1,...,ik

Si1m1
. . . Sikmk

∫
Rn
yi1 . . . yike

−α1x2/2 . . . e−αnx
2/2 dx.

Apply Wick’s theorem on R separately in each variable. For each such integral, this
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gives

1
√
α1 . . . αn

n∏
i=1

Cki
αkii

=
1√

det(A)

n∏
i=1

Cki
Dki
ii

=
(
√

2π)n√
det(A)

∑
β

k/2∏
j=1

D−1
i
β

(1)
j

,i
β

(2)
j

where the sum is over partitions of the set 1, . . . , k into k/2 subsets of 2 elements.

We then switch the order of summation so that the sum over partitions is the outer

sum and then

(
√

2π)n√
det(A)

∑
β

∑
i1,...,ik

Si1m1
. . . Sikmk

k/2∏
j=1

D−1
i
β

(1)
j

,i
β

(2)
j

=
(
√

2π)n√
det(A)

∑
β

k/2∏
j=1

A−1
m
β

(1)
j

,m
β

(2)
j

3.1.6 Wick’s Theorem for Polytopes

The purpose of this section is to show that the result of 3.1.2 can be used inductively

to calculate a Wick integral over a polytope in Rn.

By the spectral theorem, A can be diagonalized by an orthogonal transformation.

This will produce a linear combination of integrals of the form

∫
P

xk1
1 . . . xknn e

−α1x2
1/2 . . . e−αnx

2
n/2 dx.

where P is some polytope.

Decompose the integral as

∫
P ′

∫ bn

an

xk1
1 . . . xknn e

−α1x2
1/2 . . . e−αnx

2
n/2 dxndx

′.
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where P ′ is the projection of P onto the hyperplane xn = 0 and an and bn are

piecewise linear in the variables x1, . . . , xn−1. The subdomains where an is linear

are the projections of the (n−1)-dimensional faces of P onto the hyperplane xn = 0.

Denote an arbitrary projection of an (n− 1)-dimensional face by P a. Similarly, use

P b for an arbitrary subdomain where bn is linear.

We apply Wick’s theorem in one variable to xn to get a linear combination of

elements of the form

∫
P ′
xk1

1 . . . x
kn−1

n−1 e
−α1x2

1/2 . . . e−αn−1x2
n−1/2Jm−2i−1,αn(an, bn) dx′ (3.12)

and an element of the form

∫
P ′
xk1

1 . . . x
kn−1

n−1 e
−α1x2

1/2 . . . e−αn−1x2
n−1/2I0,αn(an, bn) dx.

By substituting the definition of Jm−2i−1,α, terms of the first form are equal to

the summation

∑
P b

∫
P b
xk1

1 . . . x
kn−1

n−1 e
−α1x2

1 . . . e−αn−1x2
n−1/2bkn−2i−1

n e−αnb
2
n/2 dx′

−
∑
Pa

∫
Pa
xk1

1 . . . x
kn−1

n−1 e
−α1x2

1 . . . e−αn−1x2
n−1/2akn−2i−1

n e−αna
2
n/2 dx′

We emphasize that bn|P b is a linear function in the variables x1, . . . , xn−1 and simi-

larly for an|Pa .

Let us focus our attention on any term involving bn|P b = d1x1 + · · ·+ dn−1xn−1;

that is, those in the first summation. The analysis for terms involving an|Pa in the

second summation is similar.
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Since P b is a polytope, to complete the inductive step, it suffices to show that

α1x
2
1 + · · ·+ αn−1x

2
n−1 + αn(d1x1 + · · ·+ dn−1xn−1)2 (3.13)

is nondegenerate. Let d be the thought of as a column vector. Let c =
√
αnd and

let A = diag(α1, . . . , αn−1). Then

det(A+ αndd
t) = det(A) det(I + A−1cct)

= det(A)(1 + ctA−1c) = det(A)(1 + |
√
A−1c|2) > 0

which implies that the quadratic form is nondegenerate.

3.1.7 Generalized Wick’s Theorem for Compact Polytopes

In Section 4.1.6, the counterterms that will be introduced to renormalize the theory

on Hn will involve integrals of the form

∫
Pu

e−Q(z,u,t)zK
′
dz (3.14)

where Pu is given by the inequalities

0 ≤ u+ z1

0 ≤ u+ z2 − z1

. . .

0 ≤ u+ zm−1 − zm−2

0 ≤ u− zm−1.
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and Q(z, u, t) =
∑

i,j aijzizj +
∑

i biuzi

We reexpress the above inequalities in a form which makes it possible to calculate

the integral.

−u ≤ z1 ≤ (m− 1)u

z1 − u ≤ z2 ≤ (m− 2)u

. . .

zm−3 − u ≤ zm−2 ≤ 2u

zm−2 − u ≤ zm−1 ≤ u

So for zK
′
= zp1

1 . . . z
pm−1

m−1 , we have
∫
Pu
e−Q(z,u,t)zK

′
dz is equal to

∫ (m−1)u

−u
· · ·
∫ u

zm−2−u
e−

∑
i,j aijzizj−

∑
i biuzizp1

1 . . . z
pm−1

m−1 dzm−1 . . . dz1. (3.15)

Despite the quadratic form being inhomogeneous with homogeneous part not nec-

essarily being nondegenerate, since the bounds are linear and finite we are able to

inductively apply the result of 3.1.4.
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Chapter 4

Renormalization

4.1 Heat Kernel Counter Terms

4.1.1 A Motivating Example

Because of the inherent complexity of the renormalization procedure for a general

Feynman graph, it is helpful to begin with an example that can elucidate most of

the structure that arises. For the sake of simplicity and concreteness, we will work

in the φ4 theory, i.e. the scalar field theory theory with classical interaction

I = c
1

4!

∫
φ4. (4.1)

Nothing needs to be done at the 0-loop level, since the limit

lim
ε→0+

wγ(P
L
ε , I) (4.2)

already exists for any tree γ.
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To illustrate what happens at the higher loop level, we will work with the 1-loop

graph γ

.

The Feynman weight wγ(P
L
ε , I) is computed by labelling the vertices by the

interaction I, the edges by the propagator PL
ε , and the tails by the input field φ

I I

φ

φ

φ

φ

PL
ε

PL
ε

.

and then contracting. As defined in (1.12), the regularized propagator PL
ε is the

integral of the heat kernel Kt over the time interval [ε, L]. This produces an integral

wγ(P
L
ε , I)[φ] =

∫
[ε,L]2

fγ,I(t1, t2)[φ] dt1dt2 (4.3)

where

fγ,I(t1, t2)[φ] =

∫
M2

Kt1(x1, x2)Kt2(x1, x2)φ(x1)2φ(x2)2. (4.4)

Make the definition Φ(x1, x2) = φ(x1)2φ(x2)2 to avoid unecessary detail in subse-

quent equations.

We begin with the case M = Rn, where the heat kernel is given by

Kt(x1, x2) = (4πt)−n/2e−|x1−x2|2/4t. (4.5)
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Making the substitution for Kt and the change of variables

w = x1 + x2 (4.6)

y = x1 − x2 (4.7)

we have

fγ,I(t1, t2)[φ] = C(t1t2)−n/2
∫

(Rn)2

e
−|y|2

(
1

4t1
+ 1

4t2

)
Φ(w, y). (4.8)

for some constant C.

Let ΦN(w, y) be the Taylor polynomial of degreeN of Φ(w, ·) and define fNγ (t1, t2)[φ]

by substituting ΦN(w, y) in place of Φ(w, y) in the above formula for fγ,I(t1, t2)[φ].

Roughly, we would like to define wNγ (PL
ε , I) likewise by substituting fNγ,I(t1, t2)[φ]

for fγ,I(t1, t2)[φ] in the above formula (4.3) for wγ(P
L
ε , I). Then we would hope that

by making N sufficiently large, we can sufficiently control the error |fγ,I(t1, t2)[φ]−

fNγ,I(t1, t2)[φ]| to force the limit limε→0+ [wγ(P
L
ε , I)− wNγ (PL

ε , I)] to exist.

This is the idea in spirit, but there are additional subtleties needed to ensure

we can always sufficiently bound the error. Firstly, we give an ordering to the

edges. Our graph is symmetric with respect to interchange of the edges, so, for this

particular graph, in fact we can assume without loss of generality that t1 ≤ t2.

Choose R > 2. If tR2 ≤ t1 we will indeed be able to bound the error by

|fγ,I(t1, t2)[φ]− fNγ,I(t1, t2)[φ]| ≤ Ct−Rn2

∫
Rn
e−|y|

2/2t2|y|N+1 (4.9)

≤ Ct−Rn2 t
1
2

(N+1)+n
2

2 (4.10)
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for some constant C and then by making N large enough we can ensure that 1
2
(N +

1) + n
2
−Rn ≥ 0. Let N1 be such an N .

It is worth fleshing out the structure of fγ,I(t1, t2)[φ], which is of independent

interest. Write ΦN(w, y) =
∑
|K|≤N ΨK(w)yK so that

fγ,I(t1, t2)[φ] = C(t1t2)−n/2
∑
|K|≤N

∫
Rn
e
−|y|2

(
1

4t1
+ 1

4t2

)
yK
∫
Rn

ΨK(w). (4.11)

Applying Wick’s theorem to the integral over y, we have

fγ,I(t1, t2)[φ] =
∑
|K|≤N

FK(t1, t2)
1
2

∫
Rn

ΨK(w). (4.12)

Note that for each K, FK(t1, t2) is a rational function of t1 and t2 and
∫
Rn ΨK(w)

is a local functional of φ.

If t1 ≤ tR2 , however, we must do something different. Essentially, we begin by

choosing the subgraph γ′ of γ corresponding to the edge labelled by t1

γ′

.

and treating the edges outside γ′ as input tails. Let

fγ′,γ,I(t1, t2)[φ] = fγ,I(t1, t2)[φ] (4.13)

= C(t1t2)−n/2
∫

(R)2

e−|y|
2/4t1Ψ(w, y, t2) (4.14)

where Ψ(w, y, t2) = e−|y|
2/4t2Φ(w, y). Now define

fNγ′,γ(t1, t2)[φ] = C(t1t2)−n/2
∫

(R)2

e−|y|
2/4t1ΨN(w, y, t2) (4.15)
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where ΨN(w, y, t2) is the order N Taylor polynomial of Ψ(w, y, t2). Then because

the (N + 1)-st derivative in the y variable of Ψ(w, y, t2) is bounded by a constant

times t
−(N+1)
2 , we have the bound

|fγ′,γ,I(t1, t2)[φ]− fNγ′,γ,I(t1, t2)[φ]| ≤ C(t1t2)−n/2t
−(N+1)
2 t

1
2

(N+1)+n
2

1 (4.16)

≤ Ct
−n

2
−(N+1)

2 t
R
2

(N+1)

2 (4.17)

≤ Ct
(R2 −1)(N+1)−n

2

2 . (4.18)

This is why we require that R > 2, so that for N sufficiently large
(
R
2
− 1
)

(N +

1)− n
2
≥ 0. Let N2 be such an N .

The counterterm is given by

wct
γ (PL

ε , I) =

∫
ε≤t1,t2≤L
tR2 ≤t1

fN1
γ,I (t1, t2)[φ] +

∫
ε≤t1,t2≤L
t1≤tR2

fN2

γ′,γ,I(t1, t2)[φ] (4.19)

by construction, the limit

lim
ε→0+

[wγ(P
L
ε , I)− wct

γ (PL
ε , I)] (4.20)

exists, as desired.

In the case of the Euclidean half space Hn, the Dirichlet heat kernel is given by

Kt(x1, x2) = (4πt)−n/2[e−|x1−x2|2/4t − e−|x1−x∗2|2/4t] (4.21)

where x2 is the reflection through the boundary. We will try to follow the same

procedure writing

wγ(P
1
ε , I) =

∫
[ε,1]2

∫
(H4)2

Kt1(x1, x2)Kt2(x1, x2)Φ(x1, x2) (4.22)

31



which is equal to

∫
[ε,1]2

[fγ,I;0,0(t1, t2)[φ] + fγ,I;1,0(t1, t2)[φ] + fγ,I;0,1(t1, t2)[φ] + fγ,I;1,1(t1, t2)[φ]]

(4.23)

where

fγ,I;0,0(t1, t2)[φ] = C(t1t2)−2

∫
(H4)2

e−|x1−x2|2(1/4t1+1/4t2)Φ(x1, x2) (4.24)

fγ,I;0,1(t1, t2)[φ] = −C(t1t2)−2

∫
(H4)2

e−|x1−x2|2/4t1+−|x1−x∗2|2/4t2Φ(x1, x2) (4.25)

fγ,I;1,0(t1, t2)[φ] = −C(t1t2)−2

∫
(H4)2

e−|x1−x∗2|2/4t1+−|x1−x2|2/4t2Φ(x1, x2) (4.26)

fγ,I;1,1(t1, t2)[φ] = C(t1t2)−2

∫
(H4)2

e−|x1−x∗2|2/4t1−|x1−x∗2|/4t2Φ(x1, x2). (4.27)

where C is some constant.

Introduce the coordinates, w = x1+x2

2
and y = x1−x2

2
and x1,n = u + z and

x2,n = u− z.

When tR2 ≤ t1, take the Taylor expansion to order N at 0 of Φ(x1, x2) in y and
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z substitute it in the definition of fγ,i,j(t1, t2)[φ] to get

fNγ,I;0,0(t1, t2)[φ] = C(t1t2)−2

∫ ∞
0

∫ u

−u

∫
(R3)2

e−(|y|2+z2)(1/t1+1/t2)ΦN(w, u, y, z) (4.28)

fNγ,I;1,0(t1, t2)[φ] = C(t1t2)−2

∫ ∞
0

∫ u

−u

∫
(R3)2

e−(|y|2+u2)/t1−(|y|2+z2)/t2ΦN(w, u, y, z)

(4.29)

fNγ,I;0,1(t1, t2)[φ] = C(t1t2)−2

∫ ∞
0

∫ u

−u

∫
(R3)2

e−(|y|2+z2)/t1−(|y|2+u2)/t2ΦN(w, u, y, z)

(4.30)

fNγ,I;1,1(t1, t2)[φ] = C(t1t2)−2

∫ ∞
0

∫ u

−u

∫
(R3)2

e−(|y|2+u2)(1/t1+1/t2)ΦN(w, u, y, z) (4.31)

where C is some new constant. One can show that we get the same bound

|fγ,I;i,j(t1, t2)[φ]− fNγ,I;0,0(t1, t2)[φ]| ≤ Ct
1
2

(N+1)+n
2
−Rn

2 . (4.32)

for all i, j. Details will be given in 4.1.6.

Upon examining the structure of the fNγ,I,i,j(t1, t2)[φ], we find that we no longer

have a summation of local integrals, each weighted by the square root of some

rational function in t1 and t2. For example,

f 0
γ,I;0,0(t1, t2)[φ] = C(t1t2)−2

(
t1t2
t1 + t2

)3/2 ∫
H4

∫ u

−u

[
e−z

2(1/t1+1/t2)
]
φ(w, u)4 (4.33)

f 0
γ,I;0,1(t1, t2)[φ] = C(t1t2)−2

(
t1t2
t1 + t2

)3/2 ∫
H4

[
e−u

2/t1

∫ u

−u
e−z

2/t2

]
φ(w, u)4 (4.34)

f 0
γ,I;1,0(t1, t2)[φ] = C(t1t2)−2

(
t1t2
t1 + t2

)3/2 ∫
H4

[
e−u

2/t2

∫ u

−u
e−z

2/t1

]
φ(w, u)4 (4.35)

f 0
γ,I;1,1(t1, t2)[φ] = C(t1t2)−2

(
t1t2
t1 + t2

)3/2 ∫
H4

[
e−u

2(1/t1+1/t2)

∫ u

−u
1

]
φ(w, u)4 (4.36)
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In fact,

f 0
γ,I;1,1(t1, t2)[φ] = 0 (4.37)

and

f 0
γ,I;i,j(t1, t2)[φ] =

∫
H4

F (t1, t2, u)φ(w, u)4 (4.38)

for (i, j) 6= (1, 1), which is no longer a local integral due to the presence of F (t1, t2, u).

We shall investigate the structure of these “pseudo-local” integrals more carefully

in 4.1.6.

Lastly, on the set where t1 ≤ tR2 , we introduce the notation fγ′,γ,I,i,j(t1, t2)[φ] for

fγ,I,i,j(t1, t2)[φ] as before and construct fNγ′,γ,I,i,j(t1, t2)[φ] analogously to the way we

did on Rn. We can bound the error similarly, but again fNγ′,γ,I;i,j(t1, t2)[φ] will not

be a sum of local integrals of φ each multiplied by the square root of a rational

function in t1 and t2. The case N = 1 makes evident the general structure

f 1
γ′,γ,I;0,0(t1, t2)[φ] = C(t1t2)−2t

3/2
1

∫
H4

[∫ u

−u
e−z

2/t1

]
φ(w, u)4 (4.39)

f 1
γ′,γ,I;0,1(t1, t2)[φ] = −C(t1t2)−2t

3/2
1

∫
H4

[
e−u

2/t2

∫ u

−u
e−z

2/t1

]
φ(w, u)4 (4.40)

f 1
γ′,γ,I;1,0(t1, t2)[φ] = −C(t1t2)−2t

3/2
1

∫
H4

[
2ue−u

2/t1
]
φ(w, u)4 (4.41)

f 1
γ′,γ,I;1,1(t1, t2)[φ] = C(t1t2)−2t

3/2
1

∫
H4

[
2ue−u

2(1/t1+1/t2)
]
φ(w, u)4. (4.42)

More details will be given in 4.1.6.
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4.1.2 Covering (0,∞)|E(γ)|

Let k = |E(γ)|. We denote t = (t1, . . . , tk). For each permutations σ ∈ Sk, there is

a subset

Sσ = {t ∈ (0,∞)k : tσ(1) < · · · < tσ(k)}. (4.43)

and it is clear that

∪σ∈SkSσ = (0,∞)k. (4.44)

The procedure we are about to describe is applied separately within each of the

Sσ, but we work within

Sid = {t ∈ (0,∞)k : t1 < · · · < tk}.

for notational clarity. We assume that R > 1.

Definition 2. For j ∈ {1, . . . , k − 1}, let

Bj
R = {t ∈ Sid : tj < tRj+1}. (4.45)

For i, j ∈ {1, . . . , k} with i < j, define

Ci,j
R = {t ∈ Sid : tRj < ti}. (4.46)

and define

Di,j
R = Sid \ Ci,j

R

= {t ∈ Sid : tRj > ti}.
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And lastly for j ∈ {2, . . . , k − 1}, define

AjR = Bj
R ∩ C

1,j
R (4.47)

= {t ∈ Sid : tj < tRj+1 and tRj < t1} (4.48)

and let A1
R = B1

R and Ak = C1,k
R .

Note that Dj,j+1
R = Bj

R. A couple of facts about these subsets are collected in

the following proposition:

Proposition 3. For i1 < i2 < i3.

Ci1,i2
R ∩ Ci2,i3

S ⊂ Ci1,i3
RS (4.49)

and similarly

Di1,i2
R ∩Di2,i3

S ⊂ Di1,i3
RS (4.50)

Proof. If t ∈ Cj1,j2
R ∩ Cj2,j3

S , then tRi2 < ti1 and tSi3 < ti2 . This implies that

tRSi3 < ti1 .

The proof of the second inclusion is similar.

The following statements are trivially true:

Proposition 4. For j ∈ {1, . . . , k − 1}, let

B̃j
R = {t ∈ Sid : tα < tRβ , for α ≤ j and j + 1 ≤ β}. (4.51)
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For i, j ∈ {1, . . . , k} with i < j, define

C̃i,j
R = {t ∈ Sid : tRα < tβ, for α ≤ i and j ≤ β}.}. (4.52)

Then B̃j
R = Bj

R and C̃i,j
R = Ci,j

R

Proposition 5. For j1 ≤ j2, if Ci,j1
R ⊇ Ci,j2

R .

The next two proposions are needed to prove Theorem 4.

Proposition 6. Ci,j
R ∩D

l,m
R = ∅ for i ≤ l and m ≤ j.

Proof. If tRj < ti and tl < tRm. Then

ti ≤ tl < tRm < tRj < ti,

a contradiction.

Proposition 7. Bl
R ∩ C

i,j
R = ∅ for i ≤ l < j.

Proof. Since Bl
R = Dl,l+1

R , we can apply the previous proposition.

Definition 3. We consider sequences of the form 1 = i0 < i1 < · · · < im ≤ k, where

m ≤ k − 1. For any sequence of this form I, we define the sets EI
R = ∩mj=0E

I
R,j,

where EI
R,i is defined such that

EI
R,0 =


B1
Rs1 if m = 0

Sid otherwise
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and

EI
R,j = C

ij−1,ij
Rsj

∩Dij−1,ij+1

Rsj

and for j = m

EI
R,m =


C
im−1,im
Rsm ∩Dim−1,im+1

Rsm ∩Bim
Rsm+1 if im 6= k

C
im−1,im
Rsm if im = k.

where s0, . . . , sm is a fixed sequence.

Theorem 3. Their closures E
I

R form a cover of (0,∞)k.

Proof. If t1 ≤ tR
s1

2 , then t ∈ B1

R. Thus let m = 0.

Otherwise, assume let i1 be the largest integer such that tR
s1

i1
≤ t1 = ti0 . Then

i1 ∈ C
i0,i1
Rs1 . If i1 = k, let m = 1. If i1 < k, then t ∈ Di0,i1+1

Rs1 . If ti1 ≤ tRi1+1 then

t ∈ Bi1
Rs2 and we let m = 1.

Otherwise, let i2 be the largest integer such that tR
s2

i2
≤ ti1 . Then i2 ∈ C

i1,i2
Rs2 . If

i2 = k, let m = 2. If i2 < k, then t ∈ Di1,i2+1
Rs2 . If ti2 ≤ tR

s3

i2+1 then t ∈ Bi2
Rs3 and we

let m = 2.

And so on . . .

Theorem 4. The sets EI
R are disjoint.

Proof. We prove this by induction. Consider the distinct sequences 1 = i0 < i1 <

· · · < im ≤ k and 1 = j0 < j1 < · · · < jn ≤ k, where without loss of generality we

assume that m ≤ n.
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Suppose that il 6= jl, but i1 = j1, . . . , il−1 = jl−1. Then

EI
R,l ∩ EJ

R,l ⊆ C
il−1,il
Rsl ∩Dil−1,il+1

Rsl ∩ Cil−1,jl
Rsl ∩Dil−1,jl+1

Rsl

= ∅.

because Ci,j
R ∩D

i,m
R = ∅ for m ≤ j by Proposition 6.

It is also possible that i1 = j1, . . . , im = jm, but m < n. Then

EI
m ∩ EJ

m+1 ⊆ Bim
Rsm+1 ∩ C

im,jm+1

Rsm+1

= ∅.

by Proposition 7.

Now specialize to a specific sequence s0 = 1 and si = 2i−1 for i > 0.

Theorem 5. Consider the sequence 1 = i0 < i1 < · · · < im ≤ k. Then

EI
R ⊆ Aim

R2m

Proof. If m = 0, it is clear that EI
R ⊆ A1

R = B1
R.

If m > 0,

EI
R ⊆


Ci0,i1
R ∩ Ci1,i2

R ∩ Ci2,i3
R2 · · · ∩ Cim−1,im

R2m−1 ∩Bim
R2m if im < k

Ci0,i1
R ∩ Ci1,i2

R ∩ Ci2,i3
R2 · · · ∩ Cim−1,im

R2m−1 if im = k

⊆


Ci0,im
R2m ∩Bim

R2m if im < k

Ci0,im
R2m if im = k

= Aim
R2m
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The construction of the counterterms in 4.1.5 will be based on a refinement of

the covering {EI

R}. For l < k, given a sequence l = i0 < · · · < im ≤ k, introduce

the more general sets EI
R which are defined by applying the definition of EI

R, but

replacing the set {t1 < · · · < tk} with the set {tl < · · · < tk}. For l = 1, we recover

EI
R in the sense in which it was defined earlier.

The following is a corollary of Theorem 3:

Corollary 3. Consider the collection of sequences of the form

1 = i
(1)
0 < i

(1)
1 < · · · < i

(1)

m(1)

i
(1)

m(1) = i
(2)
0 < i

(2)
1 < · · · < i

(2)

m(2)

. . .

i
(p−1)

m(p−1) = i
(p)
0 < i

(p)
1 < · · · < i

(p)

m(p) = k.

Then the sets

E
I(1)

R ∩ EI(2)

R · · · ∩ EI(p)

R (4.53)

form a cover of Sid.

4.1.3 Local Functionals and Feynman Weights

Differential Operators

Let M be a smooth manifold, let E be a graded vector bundle and let R be the

trivial line bundle. Let E = Γ(E) and C∞(M) = Γ(R). A differential operator
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P : E → R is an R-linear map E → C∞(M) which can be given locally using

Einstein notation

s = αiei 7→ aIj
∂αj

∂xI

where e1, . . . , er is a local (homogeneous) frame for E on some sufficiently small

coordinate neighborhood U , and α1, . . . , αr and aIi are functions on U .

Equivalently, there is a bundle map ιP : J(E)→ R, where J(E) is the jet bundle

of E. The differential operator P is determined by ιP by composing with the jet

prolongation of s, j(s) : M → J(E). That is, P (s) = ιP ◦ j(s).

Local Functionals

Definition 4. A local functional I ∈ Okloc(E) of degree k is a functional I ∈ Ok(E)

of the form

I(s) =
m∑
β=1

∫
M

Dβ,1(s) . . . Dβ,k(s) (4.54)

for some collection of differential operators Di,j : E → R.

Substituting the local formula for the differential operators

Dβ,j(α
iei) = (aβ,j)

I
k

∂αk

∂xI

we get that locally

I(αiei) =
m∑
β=1

∫
U

(aβ,1)
Iβ,1
jβ,1

. . . (aβ,k)
Iβ,k
jβ,k

∂αjβ,1

∂xIβ,1
. . .

∂αjβ,k

∂xIβ,k
(4.55)

=

∫
U

aI1,...,Ikj1,···jk
∂αj1

∂xI1
. . .

∂αjk

∂xIk
. (4.56)

for a collection of functions aI1,...,Ikj1,...,jk
on U .
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Evaluation of wγ(P, I)

We shall work in the ungraded case. For notation simplicity, we shall also assume

from hereon out that E = R, although the method remains valid for any vector

bundle.

We would like to describe the form of wγ(P
L
ε , I) when I ∈ Oloc(E)[[~]] is a power

series of local functionals and

PL
ε =

∫ L

ε

Kt dt (4.57)

where Kt is the heat kernel of M .

For each vertex v ∈ V (γ), we associate the functional Ig(v),k(v), where k(v) is the

valency of the vertex v. Assume that within a given chart U ,

Sk(v)Ig(v),k(v)(α
i
1ei, . . . , α

i
k(v)ei) =

∫
U

aI
v1
,...,Iv

k(v) ∂α1

∂xIv
1 . . .

∂αk(v)

∂xIv
k .

where Iv
1
, . . . , Iv

k(v)
ranges over multi-indices with |Iv1|+ · · ·+ |Ivk | ≤ ord Ig(v),k(v)

Choose an ordering on the set of half edges v1, . . . , vk(v) incident on each vertex v

and an orientation on each edge. Then γ determines the maps

Q : T (γ)→ ∪v∈V {v1, . . . , vk(v)}

Q1 : E(γ)→ ∪v∈V {v1, . . . , vk(v)}

Q2 : E(γ)→ ∪v∈V {v1, . . . , vk(v)}

where Q1 and Q2 map an edge to its first and second half edges respectively, and

Q maps a tail to itself. Also denote by v1(e) and v2(e) the first and second vertices

of the edge e. Similarly, let v(h) denote the vertex of the tail h.
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With these data, we can give the expression

wγ(P
L
ε , I)[α] =

∫
(ε,L)|E(γ)|

fγ,I(t)[α]. (4.58)

where for M = Rn,

fγ,I(t)[α] =

∫
Rn|V (γ)|

∏
v∈V (γ)

aI
v1
,...,Iv

k

(xv)
∏

e∈E(γ)

∂Kt(xv1(e), xv2(e))

∂xI
Q1(e)

∂xI
Q2(e)

∏
h∈T (γ)

∂α(xv(h))

∂xIQ(h)

(4.59)

where k is used to stand for k(v). If M is a compact manifold then choose a

partition of unity subordinate to a finite cover of M (on which E is trivialized).

Then fγ,I(t)[α] is a sum of integrals of the form

∫
U |V (γ)|

χ
∏

v∈V (γ)

aI
v1
,...,Iv

k

(xv)
∏

e∈E(γ)

∂Kt(xv1(e), xv2(e))

∂xI
Q1(e)

∂xI
Q2(e)

∏
h∈T (γ)

∂α(xv(h))

∂xIQ(h)
(4.60)

where χ is the partition of unity function for the open set U in the cover and αi are

the coordinates of α in U .

Due to the symmetry of PL
ε and Ii,k, the value of wγ(P

L
ε , I) is independent of

the choices of ordering and orientation.

4.1.4 Counterterms on Rn: Preliminaries

For simplicity, in this section and subsequent sections in this chapter, we shall only

consider scalar field theories.

When working with Rn, we shall really mean locally on a flat compact manifold.

Essentially, all that this means is that the input fields will be compactly-supported
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functions. The procedure can also be carried out on Rn in earnest by working with

Schwartz functions instead of compactly supported functions.

On Rn, the heat kernel has the simple form

Kt(x, y) = (4πt)−n/2e−|x−y|
2/4t. (4.61)

Derivatives of Kt

Proposition 8. For a multi-index I = (i1, . . . , in), ∂Kt
∂xI

is a polynomial in x1, . . . , xn,

y1, . . . , yn and 1/t which is multiplied by Kt. The degree in 1/t is |I|.

The proof is a consequence of the Lemma 2 in Section 4.1.9 which also gives

explicit formulas for the single variable derivatives.

Proof of Proposition 8. For a multi-index I = (i1, . . . , in),

∂Kt

∂xI
= P1,i1 . . . Pn,inKt. (4.62)

Powers of t in wγ(P
L
ε , I)

Let O(γ) be the sum of the orders of the local functionals Ig(v),k(v) for all v ∈ V (γ).

As a consequence of Corollary 8, if we group the terms in wγ(P
L
ε , I) by their powers

of t, we see that

wγ(P, I)[α] =

∫
(ε,L)|E(γ)|

fγ,I(t)[α]. (4.63)
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where J is a multi-index and

fγ,I(t)[α] =
∑

−O(γ)≤|J |≤0

tJ−n/2
∫
Rn|V (γ)|

e−
∑
e∈E(γ) Qe/4teΦJ . (4.64)

This formula requires some explanation. The outer integral is over the time

variables. Secondly, let

tJ−n/2 =
∏

e∈E(γ)

tje−n/2e .

In the exponential, Qe = ‖xv1(e) − xv2(e)‖2.

The multi-index I : E(γ)→ Z and for each I, ΦI a sum of terms of the form

∏
v∈V (γ)

Dvα(xv)

where for each vertex v,

Dvα = Dv,1α . . .Dv,lα (4.65)

is a product of differential operators applied to α.

Spanning Tree Coordinates

We would like to evaluate (4.64). This will require a special change of coordinates.

Choose a spanning tree T of γ. For each edge in the tree we define a coordinate

ye = xv1(e) − xv2(e).

Proposition 9. Given a spanning tree T , the coordinates ye = xv1(e) − xv2(e) for

e ∈ E(T ) and

w = x1 + · · ·+ x|V (γ)| (4.66)
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form a coordinate system on Rn|V (γ)|.

Proof. This is a linear transformation from R|V (γ)| to R|V (γ)|. It is invertible if and

only if it has trivial kernel. But if ye = 0 for all e ∈ T (γ) then xi = xj for all i and

j. The condition that x1 + · · ·+ x|V (γ)| = 0 then implies that xi = 0 for all i.

The quadratic form Q(x) =
∑

e∈E(γ)Qe(x)/4te can be written in the spanning

tree coordinates as Q(w, y).

Let A be the matrix of Q(0, y). Then A is an n(|V (γ)| − 1) by n(|V (γ)| − 1)

matrix.

Proposition 10. The quadratic form Q(w, y) is independent of w.

Proof. For any edge e ∈ E(γ), let f e1 , . . . , f
e
l(e) be the unique path of edges in T

connecting v1(e) and v2(e). Then

xv1(e) − xv2(e) =

l(e)∑
i=1

(xv1(fei ) − xv2(fei )) =

l(e)∑
i=1

yfei .

Therefore,

Q(x) =
∑
e∈E(γ)

Qe(x)/4te

=
∑
e∈E(γ)

∥∥∥∥∥∥
l(e)∑
i=1

yfei

∥∥∥∥∥∥
2

/4te

= Q(w, y)

which clearly does not depend on w.
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Proposition 11. The matrix B = (4
∏

e∈E(γ) te)A has entries that are integer

polynomials in {te}e∈E(γ). Consequently, Pγ = detB is an integer polynomial in

{te}e∈E(γ).

Proof. It is clear that the matrix B, which is the matrix of the quadratic form

(4
∏

e∈E(γ) te)Q(0, y), has entries which are polynomials in {te}e∈E(γ) with integer

coefficients.

Proposition 12.

detA = 4−n(|V (γ)|−1)t−n(|V (γ)|−1)Pγ (4.67)

and

A−1 =
1

Pγ
C, (4.68)

where C is a matrix with polynomial entries in te.

Proof. To prove the second statement, use Cramer’s rule

B−1 =
1

detB
adj(B) =

1

Pγ
adj(B) (4.69)

and that A−1 = (4
∏

e∈E(γ) te)B
−1. So, the statement follows by letting C =

(4
∏

e∈E(γ) te) adj(B).

Taylor Expansion of ΦI

In (4.64), replace ΦJ in fγ,I(t)[α] with its Taylor polynomial of degree N ′ in y,

ΦN ′(w, y) =
∑
|K|≤N ′ cJ,Ky

K , where N ′ is a non-negative integer to be determined.
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This gives

fN
′

γ,I(t)[α] =
∑
|K|≤N ′

−O(γ)≤|J |≤0

tJ−n/2
∫
Rn|V (γ)|

e−
∑
e∈E(γ) Qe(w,y)/4tecJ,K(w)yK dydw (4.70)

=
∑

|K|≤N ′,K even
−O(γ)≤|J |≤0

tJ−n/2IKA (t)

∫
Rn
cJ,K(w) dw (4.71)

where

IKA (t) =

∫
Rn(|V (γ)|−1)

e−〈y,Ay〉yK dy. (4.72)

and cJ,K is a function of w only.

We can calulate IKA rather explicitly. This is the content of Theorem 9 in 4.1.9.

The structure of cJ,K

In this section we prove that ΨJ,K(α) =
∫
Rn cJ,K(w) dw is a local functional.

Recall that cJ,K(w) = ∂ΦJ
∂yK

(0, w) and that

ΦJ =
∏

v∈V (γ)

Dvα(xv) (4.73)

where Dv is a product of differential operators. So

cJ,K(w) =
∏

v∈V (γ)

D̃vα(w). (4.74)

D̃v is a product of differential operators on Rn
xv . Finally, we see that

ΨJ,K(α) =

∫
Rn

∏
v∈V (γ)

D̃vα(w) dw (4.75)

is a local functional.
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Alternatively, we can say that ΦJ is a sum of terms of the form

f
∏

h∈T (γ)

∂α(xv(h))

∂xI
h

v(h)

(4.76)

where f is a compactly supported function and Ih is a collection of multi-indices,

one for each tail h, satisfying the condition
∑

h∈T (γ) |Ih| ≤ O(γ). This implies that

∂ΦI
∂yJ

is a sum of terms of the same form, but satisfying the condition
∑

h∈T (γ) |Ih| ≤

O(γ) +N ′ + 1.

From (4.71) and (4.122) it is now clear that

Corollary 4.

fN
′

γ,I(t) =
∑

|K|≤N ′,K even
−O(γ)≤|J |≤0

PKA (t)

QJ,KA (t)
ΨJ,K(α). (4.77)

where QJ,KA is of homogeneous degree

−|J |+ n

2
|E(γ)|+ n(|V (γ)| − 1)(|E(γ)| − 1)(|K|+ 1)/2. (4.78)

and the degree of PKA is given within Theorem 9 in 4.1.9.

As an aside, note that for a fixed spanning tree T , xv and {ye}e∈E(T ) and w are

related by a linear coordinate change. In order to calculate cJ,K , one would like to

make this change explicit. Let e1, . . . , el with v1(e1) = v and v2(e2) = w be the

unique path in T connecting v and w. Then

xv − xw =
l∑

i=1

yei

and thus we can express xv in terms of {ye}e∈E(T ) and w using the equation

xv =
1

|V (γ)|

[
w +

∑
w 6=v

(xv − xw)

]
.
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4.1.5 Counterterms on Rn: Error Bounds and Iteration

Bounding the Error

Importantly, an elementary change of variables gives the following bounds

Proposition 13.

∫
Rn|V (γ)|

e−
∑
e∈E(γ) Qe/4te|yK | ≤ Ct

1
2

(|K|+(|V (γ)|−1))

k ≤ Ct
n(|V (γ)|−1))
k (4.79)

for some constant C > 0.

The last inequality above is a consequence of the assumption tk ≤ 1. Thus,

Proposition 14.

|IKA (t)| ≤ Ct
1
2

(|K|+n(|V (γ)|−1))

k ≤ Ct
n(|V (γ)|−1))
k (4.80)

and consequently,

|fN ′γ,I(t)[α]| ≤

∑
p

Cp
∏

h∈T (γ)

‖α‖ph

 t
n
2

(|V (γ)|−1)−R|E(γ)|n
2
−RO(γ)

k (4.81)

≤ ‖α‖|T (γ)|
O(γ)+N ′t

n
2

(|V (γ)|−1)−R|E(γ)|n
2
−RO(γ)

k (4.82)

(4.83)

where the summation is over multi-indices p : T (γ)→ Z≥0 such that
∑

h∈T (γ) ph ≤

O(γ) +N ′ and ‖α‖ph is the Cph norm of α.

Let k = |E(γ)|. Assume that we order the edges so that t1 ≤ · · · ≤ tk and

tRk ≤ t1 so that t ∈ AkR and that t ∈ (0, 1)k.
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|fγ,I(t)[α]− fN ′γ,I(t)[α]| ≤
∑

|K|=N ′+1

t
−RO(γ)
k t−n/2

∫
Rn|V (γ)|

e−
∑
e∈E(γ)Qe/4tedK(w)|yK |

(4.84)

≤
∑

|K|=N ′+1

t
−RO(γ)−|E(γ)|n/2
k

∫
Rn|V (γ)|

e−
∑
e∈E(γ)Qe/4tkdK(w)|yK |

(4.85)

≤ Ct
1
2

(N ′+1)+n
2

(|V (γ)|−1))

k t
−RO(γ)−R|E(γ)|n/2
k

∑
|K|=N ′+1

∫
dK(w) dw

(4.86)

using Proposition 13. In the formula above,

dK(w) =
∑
J

sup
y

∣∣∣∣∂ΦJ

∂yK
(y, w)

∣∣∣∣
But

sup
y

∣∣∣∣∣∣f
∏

h∈T (γ)

∂α(xv(h))

∂xI
h

v(h)

∣∣∣∣∣∣ ≤ sup
y
|f | · sup

y,w

∣∣∣∣∣∣
∏

h∈T (γ)

∂α(xv(h))

∂xI
h

v(h)

∣∣∣∣∣∣
≤ sup

y
|f |

∏
h∈T (γ)

‖α‖ph

where ph = |Ih|. Note that supy |f | is a compactly-supported function in the variable

w. Thus, ∫
dK dw ≤

∑
p

Cp
∏

h∈T (γ)

‖α‖ph

where the summation is over multi-indices p : T (γ)→ Z≥0 such that
∑

h∈T (γ) ph ≤

O(γ) +N ′ + 1.

In conclusion, we have shown that
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Theorem 6.

|fγ,I(t)[α]− fN ′γ,I(t)[α]| ≤

∑
p

Cp
∏

h∈T (γ)

‖α‖ph

 t
1
2

(N ′+1)+n
2

(|V (γ)|−1)−R(O(γ)+n
2
|E(γ)|)

k

(4.87)

where the summation is over multi-indices p : T (γ)→ Z≥0 such that
∑

h∈T (γ) ph ≤

O(γ) +N ′ + 1.

Inductive Construction of the Counterterms

We shall use Corollary 3, which gives a finite cover of (0, 1)k given by sets of the form

E
I(1)

R ∩EI(2)

R · · · ∩EI(p)

R , for p ≤ k. The structure of the multi-indices I(1), . . . , I(p) is

given in 3 and the sets EI
R are defined in Definition 3.

Also we shall need Theorem 5 which states that for EI
R where I is a sequence of

the form 1 < i1 < · · · < im ≤ k with m < k, we have EI
R ⊆ Aim

R2m , where

Aim
R2m = {t1 < t2 < · · · < tk : tim < tR

2m

im+1 and tR
2m

im < t1}. (4.88)

Theorem 7. For any sequence I(1), . . . , I(p) as in Corollary 3, for nonnegative

integers N ′1, . . . , N
′
p.

|fγ,I(t)[α]− fN
′
1,...,N

′
p

γ,I (t)[α]| ≤ ‖α‖|T (γ)|
l

∑
i

Cit
di , (4.89)

where l some positive integer, where di = di(N
′
1, . . . , N

′
i) increases linearly in N ′i

for N ′1, . . . , N
′
i−1 fixed and sufficiently large, and where f

N ′1,...,N
′
p

γ,I (t)[α] is defined by

iterative Taylor expansion of fγ,I(t)[α] as illustrated in the proof of the theorem.
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Proof. Fix an ordering of the edge set so that we can identify E(γ) = {e1, . . . , ek} =

{1, . . . , k}. The procedure should be carried out in

Sσ = {t ∈ (0,∞)k : tσ(1) < · · · < tσ(k)}. (4.90)

for each permutation σ ∈ Sk. However, we shall work in Sid for notational simplicity.

For general p, we would consider the cover of Sid by sets of the form E
I(1)

R ∩

E
I(2)

R · · · ∩ EI(p)

R , for each of the k! possible orderings of the edges of γ.

For illustrative purposes and notational simplicity we prove the main theorem

only for p = 2. The inductive step in the proof of the general case is similar. Let

i(1) = i
(1)

m(1) and let R1 = R
s
m(1)+1 and R2 = R

s
m(2)+1 so that we are working within

E
I(1)

R ∩ EI(2)

R ⊆ A
i(1)

R1
∩ AkR2

= {t ∈ Sid : tR1

i(1) ≤ t1 and ti(1) ≤ tR1

i(1)+1
and tk ≤ tR2

i(1)+1
}

where the inclusion follows from Theorem 5. Note that i
(2)

m(2) = k.

The collection of edges e1, . . . , ei(1) determines a subgraph of γ, which we denote

by γ′. The remaining edges ei(1)+1, . . . , ek form the edge set of γ/γ′.

A tail h ∈ T (γ′) will either be in T (γ) or will be one of the two half edges

forming an edge in E(γ). In the formula above, T (γ′, γ) = T (γ′) ∩ T (γ) and

E(γ′, γ) = E(γ′)∪ F (γ′, γ), where F (γ′, γ) is the set of all edges in γ for which one

half edge making up the edge is a tail in γ′. Let V (γ′, γ) denote the vertices not in

γ′ that are incident on an edge in F (γ′, γ).

The integral in the formula for fγ,I(t)[α] is over Rn|V (γ)| and we can order the

53



integration so that we integrate first with respect to the vertices in V (γ′). This

inner integral, which is of the form

∫
Rn|V (γ′)|

∏
v∈V (γ′)

aI
v1
,...,Iv

k

(xv)
∏

e∈E(γ′,γ)

∂Kt(xv1(e), xv2(e))

∂xI
Q1(e)

∂xI
Q2(e)

∏
h∈T (γ′,γ)

∂α(xv(h))

∂xIQ(h)
(4.91)

Let us use gγ′,γ,I(t)[α] to denote the integral above. It is a function of t =

{te}e∈E(γ′,γ) and xv for v ∈ V (γ′, γ). Let fγ/γ′,I,g(t)[α] be as in (4.64) but with the

functional g(t) for t = {te}e∈E(γ′,γ) used for the distinguished vertex in γ/γ′.

Use the same procedure which led to Corollary 4 and Theorem 6. We have that∣∣∣gγ′,γ,I(t)[α]− gN
′
1

γ′,γ,I(t)[α]
∣∣∣ is less than or equal to∑

p

Cp
∏

h∈T (γ′)

‖α‖ph
∏

e∈F (γ′,γ)

‖Kte‖ph(e)

 t
1
2
N ′1+C(γ′,n,R1)

i(1)

where

C(γ′, n, R1) =
1

2
+ (|V (γ′)| − 1)

n

2
−R1

(
O(γ′)− |E(γ′)|n

2

)
.

But

‖Kte‖ph(e)
≤ Ct

−n
2
−ph(e)

e ≤ Ct
−n

2
−ph(e)

i(1)+1

for some constant C, and thus

∏
e∈F (γ′,γ)

‖Kte‖ph(e)
≤ Ct

−|F (γ′,γ)|n
2
−
∑
e∈F (γ′,γ) ph(e)

i(1)+1

≤ Ct
−|E(γ)|n

2
−O(γ′)−N ′1−1

i(1)+1

for some constant C.
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Thus,
∣∣∣gγ′,γ,I(t)[α]− gN

′
1

γ′,γ,I(t)[α]
∣∣∣ is less than or equal to∑

p

Cp
∏

h∈T (γ′)

‖α‖ph

 t
R1
2
N ′1+R1C(γ′,n,R1)−|E(γ)|n

2
−O(γ′)−N ′1

i(1)+1
.

So as long as R1 > 2,
∣∣∣gγ′,γ,I(t)[α]− gN

′
1

γ′,γ,I(t)[α]
∣∣∣ and consequently∣∣∣∣fγ/γ′,I,gγ′,γ,I (t)[α]− f

γ/γ′,I,g
N′1
γ′,γ,I

(t)[α]

∣∣∣∣
will be bounded by a power of tk, can it d1(N ′1) which grows linearly with N ′1.

To finish the argument, we need to show the same thing for

|f
γ/γ′,I,g

N′1
γ′,γ,I

(t)[α]− fN
′
2

γ/γ′,I,g
N′1
γ′,γ,I

(t)[α]|

From Proposition 14,

|gN
′
1

γ′,γ,I(t)[α]| ≤

∑
p

Cp
∏

h∈T (γ′)

‖α‖ph

 t
n
2

(|V (γ)|−1)−R1|E(γ)|n
2
−R1O(γ)−R1N ′1

i(1) .

Let C1(N ′1, γ
′, γ, n,R1) be the power of ti(1) in the inequality above.

We are able to bound |f
γ/γ′,I,g

N′1
γ′,γ,I

(t)[α]− fN
′
2

γ/γ′,I,g
N′1
γ′,γ,I

(t)[α]| by

C‖α‖|T (γ)|
l t

1
2
N ′2+ 1

2
+(|V (γ/γ′)|−1)n

2
−R1(O(γ)+N ′1)+R1C1(N ′1,γ

′,γ,n,R1)

k

for some positive integer l.

In conclusion, using the triangle inequality and that we can bound

|fγ/γ′,I,gγ′,γ,I (t)[α]− fN
′
2

γ/γ′,I,g
N1
γ,γ′,I

(t)[α]| ≤ C1t
d1(N ′1)
k + C2t

d2(N ′1,N
′
2)

k

where by d1(N ′1) grows linearly in N ′1 and d2(N ′1, N
′
2) grows linearly in N ′2 for N ′1

fixed.
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4.1.6 Counterterms on the Euclidean Upper Half Space

The Dirichlet heat kernel on the upper half space Hn = {(x1, . . . , xn) ∈ Rn : xn > 0}

with the Euclidean metric is given by

Kt(x, y) = (4πt)−n/2[e−|x−y|
2/4t − e−|x−y∗|2/4t], (4.92)

where y∗ is the reflection through the hyperplane yn = 0.

Note that Kt is solves the heat equation, for y ∈ ∂Hn
+, Kt(x, y) = 0, and

lim
t→0+

∫
Hn
Kt(x, y)φ(y) dy = φ(x)

for any φ ∈ C∞(Hn).

Similarly to 4.1.4, we form

wγ(P
L
ε , I)[α] =

∫
(ε,L)|E(γ)|

fγ,I(t)[α] (4.93)

but now

fγ,I(t)[α] =
∑
β

∑
−O(γ)≤|J |≤0

tJ−n/2
∫
Hn|V (γ)|

e−
∑
e∈E(γ)Q

(βe)
e /4teΦJ,β (4.94)

where Q
(1)
e = ‖xv1(e) − xv2(e)‖2 and Q

(−1)
e = ‖xv1(e) − x∗v2(e)‖2 and β ranges over

all functions E(γ) → {−1, 1}. As in 4.1.4, we wish to apply Wick’s theorem after

taking the Taylor expansion of ΦJ,β.

Coordinate System on Hn|V (γ)|

Using the decomposition Hn = R(n−1)×R≥0 introduce the coordinates xv = (xv, xv,n).

Split the integral into an integral over R(n−1)|V (γ)| followed by an integral over
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(R≥0)|V (γ)|. The quadratic form with these coordinates becomes

∑
e∈E(γ)

‖xv1(e) − xv2(e)‖/4te

plus the part depending on the variables xv,n

∑
e∈β−1(1)

|xv1(e),n − xv1(e),n|2/4te +
∑

e∈β−1(−1)

|xv1(e),n + xv1(e),n|2/4te

We shall only concentrate on the part of the quadratic form depending on the

variables xv,n since the integral over the variables xv can be treated by the methods

of 4.1.4.

Choose an ordering on the set of vertices and consider the basis, f|V (γ)| = e1 +

· · ·+ en, f1 = e1 − e2, . . . , f|V (γ)|−1 = e|V (γ)|−1 − e|V (γ)|. This induces the coordinate

system u, z1, . . . , z|V (γ)|−1 on R|V (γ)| related to standard coordinates by

x1,n = u+ z1 = u+ z̃1

x2,n = u+ z2 − z1 = u+ z̃2

. . .

x|V (γ)|−1,n = u+ z|V (γ)|−1 − z|V (γ)|−2 = u+ z̃|V (γ)|−1

x|V (γ)|,n = u− z|V (γ)|−1 = u+ z̃|V (γ)|

In this coordinate system the second part of the quadratic form becomes

∑
e∈β−1(1)

|z̃v1(e) − z̃v2(e)|2/4te +
∑

e∈β−1(−1)

|2u+ z̃v1(e) + z̃v2(e)|2/4te.
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Let P be the plane spanned by fi for i between 1 and |V (γ)| − 1 the subscript

indicates the dependence on {te}e∈E(γ). Then for u ≥ 0

u(e1 + · · ·+ e|V (γ)|) + P

intersects (R≥0)|V (γ)| in a bounded set (in particular a simplex) whose projection

onto P we denote Pu.

Taylor Expansion of ΦJ

For a fixed spanning tree of γ, choose spanning tree coordinates on R(n−1)||V (γ)|,

ye = xv1(e) − xv2(e) and w = x1 + · · · + x|V (γ)| on R(n−1)||V (γ)|. As in the previous

section, choose coordinates z1, . . . z|V (γ)|−1 and u on (R≥0)|V (γ)|.

In these coordinates, the quadratic form
∑

e∈E(γ) Qe/te decomposes into a sum

of three terms

Q(y, t) +Q(β)(z, u, t) +Q(β)(u, t),

where as in the proof of Proposition 10,

Q(y, t) =
∑
e∈E(γ)

∥∥∥∥∥∥
l(e)∑
i=1

yfei

∥∥∥∥∥∥
2

/4te,

Q(β)(z, u, t) =
∑

e∈β−1(1)

|z̃v1(e) − z̃v2(e)|2/4te +
∑

e∈β−1(−1)

|z̃v1(e) + z̃v2(e)|2/4te

+
∑

e∈β−1(−1)

u(z̃v1(e) + z̃v2(e))/te
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and

Q(β)(u, t) =

 ∑
e∈β−1(−1)

t−1
e

u2.

We shall Taylor expand ΦJ in fγ,I(t)[α] in both y and z to order N ′. For

fN
′

γ,I(t)[α] we have a sum of integrals of the form

tJ−n/2
∫
R≥0

∫
Pu

∫
R(n−1)|V (γ)|

e−Q(y,t)−Q(β)(z,u,t)−Q(β)(u,t)cJ,K,K′,βy
KzK

′
dydwdzdu,

over |K| + |K ′| ≤ N ′, J even, −O(γ) ≤ |J | ≤ 0 and β functions E(γ) → {−1, 1}.

Also, cJ,K,K′,β, the Taylor coefficient is a function of w and u only.

The integral over y gives an answer like that of Theorem 9 and Corollary 4, but

with the dimension n replaced by n − 1 in all the formulas. The integral over z

exists because Pu is a bounded set. Let

φK′(u, t) =

∫
Pu

e−Q
(β)(z,u,t)zK

′
dz (4.95)

Let

IK,K′(u) =

∫
Pu

∫
R(n−1)(|V (γ)|−1)

e−Q(y,t)−Q(β)(z,u,t)yKzK
′
dydz (4.96)

=
PKA (t)

QKA (t)
φK′(u, t) (4.97)

where PKA (t) and QKA (t) are defined analogously to the functions in 4.

Then fN
′

γ,I(t)[α] becomes a sum of integrals

tJ−n/2
∫
Rn−1

∫
R≥0

e−Q
(β)(u,t)IK,K′(u)cJ,K,K′,β(w, u)dudw (4.98)

=tJ−n/2
PKA (t)

QKA (t)

∫
H
e−Q

(P )(u,t)φK′(u, t)cJ,K,K′,β(w, u)dudw (4.99)

=
PKA (t)

QJ,KA (t)
ΨJ,K,K′(t, α) (4.100)
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This is not quite the product of a function of t and a local functional because

ψK′(u, t) = e−Q
(P )(u,t)φK′(u, t) depends on t.

Recall that cJ,K,K′(w, u) = ∂ΦJ
∂yK∂zK′

(0, w, 0, u) and that

ΦJ =
∏

v∈V (γ)

Dvα(xv)

where Dv is a product of differential operators. So

cJ,K,K′(w, u) =
∏

v∈V (γ)

D̃vα(w, u).

D̃v is a product of differential operators. Finally, we see that the integrand in

ΨJ,K,K′(t, α) =

∫
Hn
ψK′(u, t)

∏
v∈V (γ)

D̃vα(w, u) dudw (4.101)

is almost a local functional with ψK′(u,u) as the t-dependent factor. For t1 ≤ · · · ≤

tk, we do have control on the t dependence

|ψK′(
√
tku, t)| ≤ Ct

1
2

(|K′|+|V (γ)|−1)

k . (4.102)

We will show how to the renormalization procedure can be adapted to this

situation in the next section.

Bounding the Error

Note that

Proposition 15.∫
P√tku

∫
R(n−1)(|V (γ)|−1)

e−Q(y,t)−Q(β)(z,
√
tku,t)|yK ||zK′ | dydz ≤ t

1
2

(N ′+n(|V (γ)|−1))

k (4.103)

where |K|+ |K ′| = N ′.
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Assume that we have ordered the set of edges so that t1 ≤ · · · ≤ tk and tRk ≤ t1

for some R > 1. By Taylor’s theorem |fγ,I(t)[α] − fN ′γ,I(t)[α]| is bounded above by

a sum of terms of the form

t
−RO(γ)
k t−n/2

∫
R≥0
u

∫
Pu

∫
R(n−1)|V (γ)|

e−
∑
e∈E(γ)Qe/4tedK,K′,β(w, u)|yK ||zK′ | (4.104)

over multi-indices |K|+ |K ′| = N ′ + 1 and β : E(γ)→ {−1, 1}. Each such term is

bounded above by

t
−RO(γ)−R|E(γ)|n/2)
k

∫
R≥0
u

∫
Pu

∫
R(n−1)|V (γ)|

e−
∑
e∈E(γ)Qe/4tkdK,K′,β(w, u)|yK ||zK′ | (4.105)

≤ t
1
2

+ 1
2

(N ′+1+n(|V (γ)|−1))

k t
−RO(γ)−R|E(γ)|n/2)
k

(∫
dK,K′,β(w,

√
tku)CK,K′(u) dwdu

)
(4.106)

≤ t
1
2

(N ′+2)+n
2

(|V (γ)|−1))

k t
−RO(γ)−R|E(γ)|n

2
k

(∫
eK,K′,β(w)CK,K′(u) dwdu

)
(4.107)

where

CK,K′(u) = e−|β
−1(−1)|u2

∫
Pu

|z|K′ dz
∫
R(n−1)(|V (γ)|−1)

e−Q(y)yK dy (4.108)

is a Schwartz function in u for β−1(−1) 6= 0, and

eK,K′,β(w) = sup
u
dK,K′,β(w, u).

It remains to understand the integral∫
eK,K′,β(w)CK,K′(u) dwdu

in terms of the field α and its derivatives. In the formula above,

dK,K′,β(w) =
∑
J

sup
y,z

∣∣∣∣ ∂ΦJ

∂yKzK′

∣∣∣∣
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so

eK,K′,β(w) =
∑
J

sup
y,z,u

∣∣∣∣ ∂ΦJ

∂yKzK′

∣∣∣∣ .
But ΦJ is a sum of terms of the form

f
∏

h∈T (γ)

∂α(xv(h))

∂xI
h

v(h)

where f is a compactly-supported function and Ih is a collection of multi-indices, one

for each tail h satisfying the condition
∑

h∈T (γ) |Ih| ≤ O(γ). This implies that ∂ΦI
∂yKzK′

is a sum of terms of the same form, but satisfying the condition
∑

h∈T (γ) |Ih| ≤

O(γ) +N ′ + 1.

So

sup
y,z,u

∣∣∣∣∣∣f
∏

h∈T (γ)

∂α(xv(h))

∂xI
h

v(h)

∣∣∣∣∣∣ ≤ sup
y,z,u
|f | · sup

y,w,z,u

∣∣∣∣∣∣
∏

h∈T (γ)

∂α(xv(h))

∂xI
h

v(h)

∣∣∣∣∣∣
≤ sup

y,z,u
|f |

∏
h∈T (γ)

‖α‖ph

where ph = |Ih|. Note that supy,z,u |f | is a compactly-supported function in the

variable w. Thus,

∫
eK,K′,β(w)CK,K′(u) dwdu ≤

∑
p

Cp
∏

h∈T (γ)

‖α‖ph

where the summation is over multi-indices p : T (γ)→ Z≥0 such that
∑

h∈T (γ) ph ≤

O(γ) +N ′ + 1.

In conclusion, we have shown that
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Theorem 8.

|fγ,I(t)− fN ′γ,P,I(t)| ≤

∑
p

Cp
∏

h∈T (γ)

‖α‖ph

 t
1
2

(N ′+2)+(|V (γ)|−1)n
2
−RO(γ)−R|E(γ)|n

2
k

(4.109)

where the summation is over multi-indices p : T (γ)→ Z≥0 such that
∑

h∈T (γ) ph ≤

O(γ) +N ′ + 1.

Inductive Construction of the Counterterms

We will only note the differences from Section 4.1.5.

The proof of Theorem 7, which was given only in the case p = 2 involves two

steps. In the first step, we show that
∣∣∣gγ′,γ,I(t)[α]− gN

′
1

γ′,γ,I(t)[α]
∣∣∣ is bounded by tk

to a power that grows linearly in N ′1. This implies that

∣∣∣fγ,I(t)[α]− fγ/γ′,I,gN′
γ′,γ,I

(t)[α]
∣∣∣

is bounded by a power of tk that grows linearly in N ′1, where we have used that

directly from the definitions, we have

fγ,I(t)[α] = fγ/γ′,I,gγ′,γ,I (t)[α].

In the second step, we show that∣∣∣∣∣fγ/γ′,I,gN′1γ′,γ,I (t)[α]− fN
′
2

γ/γ′,I,g
N′1
γ′,γ,I

(t)[α]

∣∣∣∣∣
is bounded by a power of tk that grows linearly in N ′2 for N ′1 fixed. This will

require a slight modification from the procedure of Section 4.1.5. To construct
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f
N ′2

γ/γ′,I,g
N′1
γ′,γ,I

(t)[α], we start with f
γ/γ′,I,g

N′1
γ′,γ,I

(t)[α], which is formed from the Feynman

rules applied to the pointed graph γ/γ′, where we place the functional g
N ′1
γ′,γ,I on the

distinguished vertex.

In the case of Hn, g
N ′1
γ′,γ,I is no longer a sum of functions of t1, . . . , ti(1) multiplied

by local functionals applied to the inputs on the tails of γ′. Now the local functional

depends on t in the integrand.

When forming f
N ′2

γ/γ′,I,g
N′1
γ′,γ,I

(t)[α] from f
γ/γ′,I,g

N′1
γ′,γ,I

(t)[α] only take the Taylor ex-

pansion of the factors in the integrand of g
N ′1
γ′,γ,I that do not depend on t. That is,

in the integrand of each ΨJ,K,K′ , neglect the first factor ψK′(u, t) and only take the

Taylor expansion of the second factor. Because |ψK′(
√
tku, t)| ≤ t

1
2

(|V (γ)|−1)

i(1) , this

will contribute factor of t
R1
2

(|V (γ)|−1)

k to the bound on∣∣∣∣∣fN ′2γ/γ′,I,g
N′1
γ′,γ,I

(t)[α]− f
γ/γ′,I,g

N′1
γ′,γ,I

(t)[α]

∣∣∣∣∣
so the overall power of tk will in fact be the same as in the case of Rn.

4.1.7 Counterterms on a Compact Manifold

The asymptotic formula for the scalar heat kernelKt(x, y) ∼ (4πt)−n/2e−d(x,y)2/4t
∑

i φi(x, y)ti

states precisely that there exists some sequence of smooth functions φi on M ×M

supported on a neighborhood of the diagonal such that

‖Kt(x, y)− (4πt)−n/2e−d(x,y)2/4t

N∑
i=0

φi(x, y)ti‖l = O(tN−n/2−l), (4.110)
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Let

KN
t (x, y) = (4πt)−n/2e−d(x,y)2/4t

N∑
i=0

φi(x, y)ti.

Beginning from (4.60), for each edge, we replace Kt with KN
t . We let fNγ,I denote

the result of making all |E(γ)| of such substitutions. Assume that we’ve ordered

the edges so that t1 ≤ · · · ≤ tk. Then

|fγ,I(t)[α]− fNγ,I(t)[α]| ≤ ‖α‖|T (γ)|
O(γ)

k∑
i=1

Cit
N−n/2−pi
i

∏
j 6=i

t
−pj−n/2
j

for some nonnegative integers pj with
∑

j pj ≤ O(γ) and some constants Ci. Thus

|fγ,I(t)[α]− fNγ,I(t)[α]| ≤ C‖α‖|T (γ)|
O(γ) t

N−O(γ)−|E(γ)|n
2

k .

An analogous statement to Proposition 8 can be made for KN
t giving that

Proposition 16. For the heat kernel in (4.61)

∂KN
t

∂xki
= Pi,ke

−d(x,y)2/4t (4.111)

where Pi,k is a Laurent polynomial in t of degree between −k and N .

Therefore, we have a formula

fγ,I(t)[α] =
∑

−O(γ)≤|J |≤|E(γ)|N

tJ−n/2
∫
U |V (γ)|

e−
∑
e∈E(γ)Qe/4teΦJ (4.112)

where Qe = d2(xv1(e), xv2(e)).
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Spanning Tree Coordinates

Choose a spanning tree T and vertex v0 of γ. For any vertex v of γ, there is a

unique path ev1, . . . , e
v
l(v) from v0 to v. We can then make the inductive definition

Definition 5. Spanning tree coordinates are defined by w = xv0 and {ye}e∈T where

ye is defined inductively so that xv2(e) = expxv1(e)(ye1 ,...,yel )
(ye) where e1, . . . , el is the

unique path from v0 to v1(e).

The reason for introducing these coordinates is that for all e ∈ T ,

d(xv1(e), xv2(e)) = ‖ye‖.

More explicitly, the spanning tree is the union of q maximal paths originating at v0.

Let us denote the i-th such path by e
(i)
1 , . . . , e

(i)
li

. Let V
(i)

1 be a neighborhood of the

zero section in TM such that Φ
(i)
1 : V

(i)
1 → U

(i)
1 ⊆ M ×M given by (xv0 , ye(i)1

) 7→

(xv0 , expxv0 (y
e
(i)
1

)) is a diffeomorphism. Inductively, given Φ
(i)
j−1 : V

(i)
j−1 → U

(i)
j−1 ⊆M j

let exp
(i)
j−1 = pj ◦ Φ

(i)
j−1, where pj is the projection onto the last factor. Now let

V
(i)
j be a neighborhood of the zero section in (exp

(i)
j−1)∗TM such that the map

Φ
(i)
j : V

(i)
j → U

(i)
j ⊆M j+1 given by

(
xv0 , ye(i)1

, . . . , y
e
(i)
j

)
7→

Φ
(i)
j−1(xv0 , ye(i)1

, . . . , y
e
(i)
j−1

), exp
exp

(i)
j−1

(
xv0 ,ye(i)1

,...,y
e
(i)
j−1

)(yej)


is a diffeomorphism.

We then take the fiber product over M of the maps Φ
(i)
li

which produces the

desired diffeomorphism

V
(1)
l1
×M · · · ×M V

(q)
lm
→M |V (γ)|.
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Taylor Expanding ΦJ and Bounding the Error

Taking the Taylor expansion of Φ with respect to {ye}e∈E(γ).

fN,N
′

γ,I (t)[α] =
∑
|K|≤N ′

−O(γ)≤|J |≤N |E(γ)|

tJ−n/2
∫
U |V (γ)|

e−
∑
e∈E(γ)Qe/4tecJ,K(w)yK dydw

(4.113)

=
∑

|K|≤N ′,K even
−O(γ)≤|J |≤N |E(γ)|

tJ−n/2
∫
U

cJ,K(w)IKA (w, t) dw (4.114)

=
∑

|K|≤N ′,K even
−O(γ)≤|J |≤N |E(γ)|

tJ−n/2ΨK(t, α) dw (4.115)

This differs from the case of Rn where IKA (w, t) does not depend on w. Note that∫
U
cJ,K(w)IKA (w, t) dw is not a local functional due to the factor of IKA (w, t), which

depends on t. We will say below why the procedure to construct the counterterms

still works.

We have the bound

Proposition 17.

∫
U |V (γ)|

e−
∑
e∈E(γ) Qe/4te|y|K dy ≤ Ct

1
2
|K|+n

2
(|V (γ)|−1)

k (4.116)

Proof. This follows from the fact that

e−
∑
e∈E(γ)Qe/4te ≤ e−

∑
e∈E(T ) Qe/4te = e−

∑
e∈E(T ) ‖ye‖2/4te
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Using Proposition 17, the bound on

|fNγ,I(t)[α]− fN,N
′

γ,I (t)[α]|

can be established as in the proof of Theorem 6.

As in the case of Hn, in the proof of Theorem 7 we make the following modifica-

tion. When forming f
N2,N ′2

γ/γ′,I,g
N1,N

′
1

γ′,γ,I

from fN2

γ/γ′,I,g
N1,N

′
1

γ′,γ,I

only take the Taylor expansion

of the factors in the integrand of g
N1,N ′1
γ′,γ,I that do not depend on t. That is, in the

integrand of each term ΨJ,K , neglect the factor IKA (w, t) and only take the Taylor

expansion of the other factor.

Because |IKA (w, t)| ≤ t
n
2

(|V (γ)|−1)

i(1) , this will contribute factor of t
R
2

(|V (γ)|−1)

k to the

bound on ∣∣∣∣∣fN2,N ′2

γ/γ′,I,g
N1,N

′
1

γ′,γ,I

(t)[α]− fN2

γ/γ′,I,g
N1,N

′
1

γ′,γ,I

(t)[α]

∣∣∣∣∣
so the overall power of tk will be the same as in the case of Rn.

4.1.8 Counterterms on a Compact Manifold with Boundary

The renormalization procedure can also be carried out in the case of compact Rie-

mannian manifolds with boundary M , such that there exists a neighborhood W of

∂M that is isometric to a product ∂M × [0, ε).

When we have such a manifold with boundary M , the double of M which will be

denoted by M ′ will be a smooth compact manifold without boundary equipped with

an involution p 7→ p∗ that sends a point p to its reflection through the boundary.
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The Dirichlet heat kernel on M is

Kt(x, y) = K ′t(x, y)−K ′t(x, y∗) (4.117)

where K ′t(x, y) is the heat kernel on M ′.

The existence of an asymptotic expansion of K ′t(x, y) implies that

Kt(x, y) ∼ e−d(x,y)2/4t
∑
i

φi(x, y)ti + e−d(x,y∗)2/4t
∑
i

ψi(x, y)ti (4.118)

where ψi(x, y) = −φi(x, y∗).

This can be used to define fNγ,I and to show that |fγ,I(t)[α]−fNγ,I(t)[α]| is bounded

by a power of tk the increases linearly with N .

Choose a finite cover U1, . . . , Um of ∂M by coordinate neighborhoods. This

induces a finite cover U1 × [0, ε), . . . , Um × [0, ε) of W ∼= ∂M × [0, ε) by coordinate

neighborhoods.

Then choose a finite cover V1, . . . , Vm′ of the complement of M × [0, ε).

On the open sets Ui that intersect the boundary, since M is a product, we can

use the Pythagorean theorem and the square distance becomes

d2
M(x, y) = d2

∂M(x, y) + |xn − yn|2 (4.119)

Therefore, on these open sets we can apply the analysis of 4.1.6 for the direction

normal to the boundary and the analysis of 4.1.7 to the ∂M direction. On open

sets Vi whose closures do not intersect the boundary,

Kt(x, y) ∼ e−d(x,y)2/4t
∑
i

φi(x, y)ti (4.120)

so we can apply the analysis of 4.1.7.
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4.1.9 Appendix

Lemma 2. For the heat kernel in (4.61)

∂Kt

∂xki
= Pi,kKt (4.121)

where Pi,k is polynomial in xi and yi and 1/t. The degree of Pi,k in 1/t is k.

Proof. We would like to find an explicit expression for Pi,k.

Note that

∂Kt

∂xi
=
xi − yi

2t
Kt.

For each sequence of the form s1, . . . , sk′ where sj ≥ 1 for all j and s1+· · ·+sk′ =

k, consider the functions

Fs1,...,sk′ (t, xi, yi) =


∂s1xi
[(

xi−yi
2t

)s2 . . . ∂sk′−1
xi

[(
xi−yi

2t

)sk′ ] . . . ] k′ even

(
xi−yi

2t

)s1 ∂s2xi [(xi−yi2t

)s3 . . . ∂sk′−1
xi

[(
xi−yi

2t

)sk′] . . . ] k′ odd.

We argue by induction that

∂kKt

∂xki
=

∑
s1+···+sk′=k
sj≥1 for all j

Fs1,...,sk′Kt.
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For k = 1, this is clearly true. Suppose it is true for some k ≥ 1, then

∂k+1Kt

∂xk+1
i

=
∂

∂xi

∑
s1+···+sk′=k
sj≥1 for all j

Fs1,...,sk′Kt

=
∑

s1+···+sk′=k
sj≥1 for all j

∂xiFs1,...,sk′Kt

+
∑

s1+···+sk′=k
sj≥1 for all j

Fs1,...,sk′

(
xi − yi

2t

)
Kt

=
∑

s1+···+sk′=k+1
sj≥1 for all j

Fs1,...,sk′Kt.

In fact, we can be more precise. That is, for k′ even

Fs1,...,sk′ =
sk′ !

(sk′ − sk′−1)!
. . .

(sk′ − sk′−1 + · · ·+ s2)!

(sk′ − sk′−1 + · · · − s1)!

((xi − yi)/2t)sk′+sk′−2+···+s2

(xi − yi)sk′−1+sk′−3+...s1

as long as sk′−sk′−1 + · · ·+s2i−s2i−1 ≥ 0 for all i ≥ 1 such that 2i ≤ k′. Otherwise

Fs1,...,sk′ = 0. If k′ is odd then Fs1,...,sk′ =
(
xi−yi

2t

)s1 Fs2,...,sk′ .
The leading term of Pi,k in 1

t
is Fk =

(
xi−yi

2t

)k
.

Theorem 9.

IKA (t) =
1

P
(|K|+1)/2
γ

PKA . (4.122)

where PKA is a homogeneous polynomial in t of degree R(γ, n,K) = C1(γ, n) +

|K|C2(γ, n) for constants C1(γ, n) and C2(γ, n) which are defined in the body of the

proof of the theorem.
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Proof. Writing yK = ym1 . . . ym|K| , we have

IKA =

∫
Rn(V (γ)−1)

e−〈y,Ay〉ym1 . . . ym|K| dy

=
(
√
π)n(V (γ)−1)

√
detA

∑
β

|K|/2∏
i=1

(A−1)m
β

(1)
i

,m
β

(2)
i

=
(
√
π)n(V (γ)−1)

P
1/2
γ

2n(|V (γ)|−1)tn(|V (γ)|−1)/2 1

P
|K|/2
γ

∑
Q

|K|/2∏
i=1

C
Q

(1)
i ,Q

(2)
i
,

where we have used Proposition 12 and Wick’s Theorem on Rn. Let

PKA = (
√
π)n(V (γ)−1)2n(|V (γ)|−1)tn(|V (γ)|−1)/2

∑
Q

|K|/2∏
i=1

C
Q

(1)
i ,Q

(2)
i
. (4.123)

Recall the definition of C which is
(

4
∏

e∈E(γ) te

)
adj(B). But B is n(|V (γ)| − 1)

by n(|V (γ)| − 1) and its entries are homogeneous of degree |E(γ)| − 1 in {te}e∈E(γ).

So adj(B) has entries of degree (|E(γ)| − 1)[(n|V (γ)| − 1) − 1]). Therefore C has

entries of degree

(|E(γ)| − 1)[n(|V (γ)| − 1)− 1] + |E(γ)| = (|E(γ)| − 1)n(|V (γ)| − 1) + 1 (4.124)

This implies that PKA is of homogeneous degree

Rγ(n,K) = n|E(γ)|(|V (γ)| − 1)/2 +
|K|
2

[(|E(γ)| − 1)n(|V (γ)− 1) + 1] (4.125)

With the definition of PKA in hand, the theorem is now evident.
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4.2 Construction of an Effective Field Theory from

a Local Functional

In this section, we show that an effective action can be constructed from a local

functional I ∈ O(E)[[~]] using a procedure that is based on Theorem 7.

Do the following for each sequence I(1), . . . , I(p) as in Corollary 3: Let N ′1 be

the smallest nonnegative integer such that d1(N ′1) ≥ 0. Let N ′2 be the smallest

nonnegative integer such that d2(N ′1, N
′
2) ≥ 0 and so on. Then by Theorem 7,

|fγ,I(t)[α]− fN
′
1,...,N

′
p

γ,I (t)[α]| ≤ C (4.126)

for some constant C. Let E
I(1),...,I(p)

R = E
I(1)

R ∩ EI(2)

R · · · ∩ EI(p)

R ,

Let

wCT
γ (P 1

ε , I)[α] =
k∑
p=1

∑
I(1),...,I(p)

∫
E
I(1),...,I(p)

R

f
N ′1,...,N

′
p

γ,I (t)[α] dt (4.127)

We can integrate this formula on (ε, 1)k ∩ EI(1),...,I(p)

R . This gives

|wγ(P 1
ε , I)[α]− wCT

γ (P 1
ε , I)[α]| ≤ C(1− εk). (4.128)

In particular, by Lebesgue’s dominated convergence theorem, we can let ε→ 0+.

Thus, the limit as ε → 0+ of wγ(P
L
ε , I)[α] − wCT

γ (P 1
ε , I)[α] exists as well. We

shall call this the renormalized Feynman weight.

The counterterms for the effective action are defined by

ICT
i,k (ε) = WCT

i,k

P 1
ε , I −

∑
(i′,k′)≺(i,k)

ICT
i′,k′(ε)

 , (4.129)
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where

WCT
i,k (P 1

ε , I) =
∑
γ conn

g(γ)=i,T (γ)=k

1

|Aut(γ)|
~g(γ)wCT

γ

P 1
ε , I −

∑
(i′,k′)≺(i,k)

ICT
i′,k′(ε)

 (4.130)

.

Then the effective action is defined by

I[L] = lim
ε→0+

W (PL
ε , I − ICT(ε)). (4.131)

This is well-defined because for all i, k,

Ii,k[L] = lim
ε→0+

Wi,k(P
L
ε , I − ICT(ε)) (4.132)

= lim
ε→0+

Wi,k

PL
ε , I −

∑
(i′,k′)≺(i,k)

ICT
i′,k′(ε)

− ICT
(i,k)(ε)

 . (4.133)
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Chapter 5

Gauge Theory

5.1 Classical BV Theory

5.1.1 On Manifolds without Boundary

Graded Lie Algebras

Instead of a graded Lie algebra g consider its shift g[1]. Then the bracket [·, ·]

becomes a symmetric bilinear map of degree 1 that we denote `2(·, ·). Let s be the

suspension map g[1]→ g. Then for X, Y ∈ g[1] the product `2 is defined by

`2(X, Y ) = (s−1 ◦ [·, ·] ◦ s⊗ s)(X, Y ) (5.1)

= (−1)|X|s−1[sX, sY ]. (5.2)

One can readily see that

`2(X, Y ) = −(−1)|X|+(|X|+1)(|Y |+1)s−1[sY, sX] = (−1)|X||Y |`2(Y,X) (5.3)
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On g[1] the Jacobi identity becomes

`2(`2(X, Y ), Z) + (−1)|Z||Y |`2(`2(X,Z), Y ) + (−1)|X|(|Y |+|Z|)`2(`2(Y, Z), X) (5.4)

In particular if X has degree 0, then

`2(`2(X,X), Y ) = −2`2(`2(X, Y ), X) (5.5)

and

`2(`2(X,X), X) = 0 (5.6)

A symmetric bilinear pairing κ of degree d−2 on g becomes a degree d symplectic

pairing 〈·, ·〉 on g[1].

Graded Lie Algebra Modules

Suppose that M is a graded module for the graded Lie algebra g. That means that

there is an action of g on M such that

X · Y ·m− (−1)|X||Y |Y ·X ·m = [X, Y ] ·m. (5.7)

The prototypical example arises in BF theory, where g acts by the coadjoint

representation on g∗[d − 3], for some integer d. One can combine g and g∗[d − 3]

into a single Lie algebra g ⊕ g∗[d − 3] by defining [X,m] = X · m and [m,X] =

−(−1)|X||m|[X,m] and extending the bracket by zero on g∗[d− 3].

For any module M one can constuct as above the Lie algebra g⊕M which we

call the crossed product Lie algebra. The Jacobi identity of g⊕M is equivalent to

the statement that g is a Lie algebra and M is a module for g.
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In what follows, it is natural to shift and consider instead g[1] ⊕M [1]. Once

again, what the Lie bracket [·, ·] corresponds to will be denoted `2(·, ·).

Maurer Cartan Elements

If A ∈ g[1] is an element of degree 0, then one can deform a differential d to

dA = d+ `2(A, ·). We compute

(d+ `2(A, ·))2B = d(dB + `2(A,B)) + `2(A, dB) + `2(A, `2(A,B)) (5.8)

= −`2(dA,B)− `2(A, dB) + `2(A, dB)− 1

2
`2(`2(A,A), B) (5.9)

= −`2

(
dA+

1

2
`2(A,A), B

)
(5.10)

Therefore d2
A = 0 if A is a Maurer-Cartan element. Another standard computation

establishes the Bianchi identity

dA

(
dA+

1

2
`(A,A)

)
= d

(
dA+

1

2
`2(A,A)

)
+ `2

(
A, dA+

1

2
`2(A,A)

)
(5.11)

= −1

2
`2(dA,A)− 1

2
`2(A, dA) + `2(A, dA) = 0. (5.12)

In what follows, we will see the Maurer-Cartan equation, but not necessarily for

a homogeneous element of degree 0. Suppose that A = A(m) + · · · + A(n), where

m ≤ n and |Ai| = i. Then

dA+
1

2
`2(A,A) = 0 (5.13)

is equivalent to

dA(k) +
∑
i+j=k

1

2
`2(A(i), A(j)) = 0 (5.14)

for all k.
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Vector Fields

We shall only assume that we have a finite dimensional vector space or nice infinite

dimensional graded vector space like a nuclear Fréchet space E in which case we

would take the appropriate dual and tensor product. Given a polynomial function

F , we write DnF ∈ Symn E∗ for its components.

We identify E with its tangent space; in other words, a constant vector field is

an element X ∈ E . More generally, a vector field X is defined to be an element of

Hom(Sym• E , E). We write DnX ∈ Hom(Symn E , E) for its components. A constant

vector field X acts on a polynomial function F = DnF by

(XF )(A1, . . . , An−1) =
n∑
i=1

±F (A1, . . . , X, . . . , An−1) (5.15)

= nF (X,A1, . . . , An−1). (5.16)

and XF = Dn−1(XF ).

More generally, suppose X = DmX for m ≥ 0; i.e. X is homogeneous and is

not necessarily constant. Intuitively, we should let X act like a derivation and then

symmetrize. We have XF (A1, . . . , Am+n−1) is equal to

C ′m,n
∑

σ∈Sm+n−1

±nf(X(Aσ(1), . . . , Aσ(m)), Aσ(m+1), . . . , Aσ(m+n−1)) (5.17)

=Cm,n
∑

σ∈Sh(m,n−1)

±f(X(Aσ(1), . . . , Aσ(m)), Aσ(m+1), . . . , Aσ(m+n−1)) (5.18)

where C ′m,n = 1
(m+n−1)!

and Cm,n = m!n!
(m+n−1)!

. Here Sh(m,n − 1) denotes the set of
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(m,n− 1) shuffles, i.e. the permutions σ ∈ Sm+n−1 satisfying the conditions

σ(1) < · · · < σ(m) (5.19)

σ(m+ 1) < · · · < σ(m+ n− 1). (5.20)

Generalized Chern-Simons Theory

Assume the existence of a degree 1 symmetric product `2(·, ·) satisfying (5.4) and

a differential Q compatible with `2(·, ·). Also assume the existence of a degree −1

symplectic pairing on E , which we denote 〈·, ·〉, that is compatible with Q and `2 in

the sense that

〈Q(·), ·〉 ∈ Sym2 E∗ (5.21)

〈`2(·, ·), ·〉 ∈ Sym3 E∗ (5.22)

Let I(·, ·, ·) := 1
6
〈`2(·, ·), ·〉 and let

K(·, ·) =
1

2
〈Q(·), ·〉 (5.23)

Then K and I will also be symmetric polynomials of degree 0 as a consequence of

the conditions (5.21) and (5.23). This means that |A1| + |A2| = 0 is necessary to

have K(A1, A2) 6= 0. This implies that

K(A1, A2) = (−1)|A1||A2|K(A2, A1) = (−1)|A1|K(A2, A1). (5.24)

Similarly, |A1|+|A2|+|A3| = 0 is necessary to have I(A1, A2, A3) 6= 0, which implies

that I(A1, A2, A3) = (−1)|A1|I(A2, A3, A1).
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Note that the condition

〈QA1, A2〉+ (−1)|A1|〈A1, QA2〉 = 0 (5.25)

for all A1, A2 ∈ E is equivalent to (5.21)

Define the generalized Chern-Simons action

S(A) = K(A) + I(A). (5.26)

Then

XS(A) = 2(−1)|X| ·K(A,X) + 3(−1)|X| · I(A,A,X) (5.27)

= (−1)|X|〈QA+
1

2
`2(A,A), X〉 (5.28)

Let XS be the vector field defined by D1XS(A1) = QA1 and D2XS(A1, A2) =

1
2
`2(A1, A2). The Chern-Simons equation of motion XS(A) = 0 is the familiar

Maurer-Cartan equation for A. By definition in our convention, this is the Hamil-

tonian vector field of S because XS = (−1)|X|〈XS, X〉. It is sometimes also called

the BRST operator.

Generalized BF Theory

We now define the generalized BF action. Assume that E = E1 ⊕ E2 and there is

a symmetric product `2 on E with `(A,B) ∈ E2 for all A ∈ E1 and B ∈ E2 and

`2(B1, B1) = 0 for all B1, B2 ∈ E2. Suppose that 〈·, ·〉 is a degree −1 symplectic

pairing the such that for all A1, A2 ∈ E1 and B1, B2 ∈ E2, we have 〈A1, A2〉 =

〈B1, B2〉 = 0. Let Q be a compatible differential on E .
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The BF action is just the Chern-Simons action for this theory.

S(A+B) = K(A+B) + I(A+B) (5.29)

= 2K(B,A) + 3I(B,A,A) (5.30)

Using the calculation from the previous section, we have that

(X + Y )S(A+B) = (−1)|X|〈Q(A+B) +
1

2
`2(A+B,A+B), X〉 (5.31)

+ (−1)|Y |〈Q(A+B) +
1

2
`2(A+B,A+B), Y 〉 (5.32)

= (−1)|X|〈QB + `2(A,B), X〉+ (−1)|Y |〈QA+
1

2
`2(A,A), Y 〉

(5.33)

Therefore the Hamiltonian vector fieldXS+YS has E1 componentXS withD1XS(A) =

QA and D2XS(A) = 1
2
`2(A,A) and it has E2 component YS with D1YS(A+B) = QB

and D2YS(A+B) = `2(A,B). The familiar (perhaps) BF equations of motions are

given by XS(A) = 0 and YS(A+B) = 0.

Classical Master Equation

The purpose of this section is to define and verify the classical master equation for

generalized Chern-Simons theory and a fortiori generalized BF theory. For some

other polynomial function F we can define the Poisson bracket with the generalized

Chern Simons action S as

{S, F} := XSF. (5.34)
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We would like to show that {S, S} = 0. This is called the classical master

equation. We can prove this one of two ways: by showing that XSS = 0 or showing

that 〈XS, XS〉 = 0.

Using the definition of the action of a vector field on a polynomial function

F = D2F +D3F , we calculate the four terms of XSF .

D1XS(D2F )(A1, A2) = D2F (Q(A1), A2) + (−1)|A1||A2|D3F (Q(A2), A1) (5.35)

and

D1XS(D3F )(A1, A2, A3) = D2F (Q(A1), A2, A3) + (−1)|A1||A2|D2F (Q(A2), A1, A3)

(5.36)

+ (−1)(|A1|+|A2|)|A3|D2F (Q(A3), A1, A2) (5.37)

and

D2XS(D2F )(A1, A2, A3) =
C2,2

2
[D2F (`2(A1, A2), A3) (5.38)

+ (−1)|A2||A3|D2F (`2(A1, A3), A2) (5.39)

+(−1)|A|1(|A2|+|A3|)D2F (`2(A2, A3), A1)
]

(5.40)

(5.41)

and lastly, D2XS(D3F )(A1, A2, A3, A4) will be a sum with summands given by the

±C2,3

2
D3F (`2(Aσ(1), Aσ(2)), Aσ(3), Aσ(4)) (5.42)

for each of the
(

4
2

)
= 6 shuffles σ in Sh(2, 2).
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Finally we turn to the case F = S the generalized Chern-Simons action where

we claim that each of these four terms vanish. Notice that the vanishing of (5.35)

is equivalent to our assumption (5.25). The vanishing of (5.36) and (5.38) are each

equivalent to our assumption that the differential Q compatible with `2(·, ·) and

(5.25). Lastly, the vanishing of D2XS(D3S) = D2XS(I) is is a consequence of our

assumptions (5.22) and (5.4). Therefore, the classical master equation holds.

Chern-Simons and BF on a Closed Manifold

Let M be a closed 3-manifold and let (g, [·, ·], κ) be a quadratic Lie algebra. Define

E• = Ω•(M, g)[1]. We denote the Lie bracket after shifting by `′2(·, ·). We define

`2(ω1 ⊗X1, ω2 ⊗X2) = (−1)|X1||ω2|(ω1 ∧ ω2)⊗ `′2(X1, X2). (5.43)

for ωi ⊗Xi ∈ E•. A short calculation shows that

`2(ω1 ⊗X1, ω2 ⊗X2) = (−1)(||ω1|+|X1|)(|X2|+|ω2|)`2(ω2 ⊗X2, ω1 ⊗X1), (5.44)

verifying that `2(·, ·) is a symmetric product on E•. Let 〈·, ·〉′ be the degree 2

symplectic pairing induced by shifting the compatible symmetric bilinear form κ on

g. We define

〈ω1 ⊗X1, ω2 ⊗X2〉 = (−1)|X1||ω2|
∫
M

ω1 ∧ ω2 〈X1, X2〉′ (5.45)

Then 〈·, ·〉 is a degree −1 symplectic pairing on E•.
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Let Q = d⊗ 1, where d is the de Rham differential. Then

〈Q(ω1 ⊗X1), ω2 ⊗X2〉 = (−1)|X1||ω2|
∫
M

dω1 ∧ ω2 〈X1, X2〉′ (5.46)

= −(−1)|X1||ω2|(−1)|ω1|
∫
M

ω1 ∧ dω2 〈X1, X2〉′ (5.47)

= −(−1)|ω1|+|X1|〈ω1 ⊗X1, Q(ω2 ⊗X2)〉 (5.48)

which is equivalent to the statement that 〈Q(·), ·〉 is a symmetric polynomial on E•.

Secondly the compatibility of [·, ·] and κ is the statement that for all X, Y, Z ∈ g,

κ(X, [Y, Z]) = −(−1)|X||Y |κ(Y, [X,Z]) (5.49)

which on g[1] implies that

〈`′2(·, ·), ·〉′ ∈ Sym3(g∗[−1]). (5.50)

On E•, we have the desired consequence

〈`2(·, ·), ·〉 ∈ Sym3(E•)∗ (5.51)

Lastly, `′2(·, ·) satisfies the shift of the Jacobi identity, which implies that `2

satisfies it too; that is,

`2(`2(X, Y ), Z) + (−1)|Z||Y |`2(`2(X,Z), Y ) + (−1)|X|(|Y |+|Z|)`2(`2(Y, Z), X) = 0.

(5.52)

In the case of BF theory, let M be a closed manifold of any dimension n. Then

we consider the crossed product Lie algebra g ⊕ g∗[n − 3] we can symmetrize and

extend the duality pairing by 0 to construct a symmetric bilinear pairing κ of degree
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n− 3. Then κ, by construction is compatible with [·, ·]. On g[1]⊕g∗[n− 2] the shift

of the crossed product algebra κ becomes 〈·, ·〉′ a symplectic form of degree n − 1,

as desired.

Let

E• = Ω•(M)⊗ (g[1]⊕ g∗[n− 2]) ∼= Ω•(M, g)[1]⊕ Ω•(M, g∗)[n− 2]. (5.53)

The symplectic pairing 〈·, ·〉 on E• coming from the integration pairing on M and

〈·, ·〉′ is of degree −1 and satisfies the desired properties.

5.1.2 On Manifolds with Boundary

Generalized Abelian Chern-Simons

On a manifold with boundary M , integration by parts introduces an integration over

∂M . There is also a natural map π : EM → E∂M of degree 0 restricting fields EM on

M to fields E∂M on ∂M . We shall try to account for this structure algebraically in

our generalized setting.

As before all the linear objects should be taken in an appropriate category like

the category of finite dimensional vector spaces or the category of nuclear Fréchet

spaces. Suppose that EM and E∂M are two such objects and there is map between

them π : EM → E∂M . Let EM have a degree −1 symplectic pairing 〈·, ·〉M and let

E∂M have a degree 0 pairing 〈·, ·〉∂M . Let Q be a differential on EM that satisfies
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the property

〈QA1, A2〉M + (−1)|A1|〈A1, QA2〉M = 〈πA1, πA2〉∂M . (5.54)

We shall also assume the existence of a differential on E∂M which we will also

denote by Q, and use the context to distinguish between the two operators. For

a1, a2 ∈ E∂M we shall in fact assume that Q satisfies

〈Qa1, a2〉∂M + (−1)|a1|〈a1, Qa2〉∂M = 0 (5.55)

Define the abelian generalized Chern-Simons action on EM by

SM(A) = KM(A) (5.56)

where

KM =
1

2
〈Q(·), ·〉 (5.57)

for A ∈ EM .

Then (5.54) means that unfortunately, KM(·, ·) is no longer symmetric, and its

failure to be symmetric is measured by π∗〈·, ·〉∂M .

We can still act on it with a constant vector field X ∈ EM to get

XKM(A) =
1

2
[〈QX,A〉M + (−1)|X|〈QA,X〉M ] (5.58)

= (−1)|X|〈QA,X〉M + 〈πX, πA〉∂M (5.59)

= (−1)|X|〈XSM , X〉M + 〈πX, πA〉∂M (5.60)
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We compute

〈XSM , XSM 〉M(A) = −XSMD2SM(A) + 〈πXSM (A), πA〉 (5.61)

= 2 〈Q(πA), πA〉∂M (5.62)

= π∗S∂M(A) (5.63)

where we define the boundary correction as S∂M(a) = 2〈Qa, a〉∂M for a ∈ E∂M which

is a quadratic polynomial of degree 1.

Following [1], for the purpose of quantum field theory we shall want to assume

the existence of additional structure. Assume the existence of a polarization on the

space of boundary fields. In this generalized setting, that simply means that we can

choose subspaces B∂M and P∂M such that

E∂M = B∂M ⊕ P∂M . (5.64)

Also assume the existence YM , a subspace of EM such that π(YM) ⊆ P∂M and

that

〈QA1, A2〉M + (−1)|A1|〈A1, QA2〉M = 0. (5.65)

In what follows, EM will be replaced with a new space of fields YM ⊕ B∂M . We

shall try to replace SM by defining a new action functional on YM ⊕B∂M . To start,

we naively substitute A + a ∈ YM ⊕ B∂M , assume that 〈a, ·〉M = 〈·, a〉 = 0 and try
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to formally integrate by parts

K(A+ a) =
1

2
〈Q(A+ a), A〉M +

1

2
〈Q(A+ a), a〉M (5.66)

=
1

2
〈QA,A〉M +

1

2
〈Qa,A〉M (5.67)

=
1

2
〈QA,A〉M +

1

2
〈a, πA〉∂M (5.68)

From now on K as a polynomial function on YM ⊕ B∂M will be defined by the

expression on the last line.

For X ∈ YM a constant vector field, we compute

XK(A+ a) = (−1)|X|〈XS(A), X〉M +
1

2
〈πa, πX〉∂M (5.69)

where XS(A) = QA and thus

XSK(A+ a) = (−1)|X|〈XS(A), XS(A)〉M +
1

2
〈a, πXS(A)〉∂M (5.70)

=
1

2
〈a, πQA〉∂M (5.71)

(5.72)

Generalized abelian BF Theory

We now define the generalized abelian BF action. Assume that EM = EM,1 ⊕

EM,2. Suppose that 〈·, ·〉M is a degree −1 symplectic pairing the such that for all

A1, A2 ∈ E1 and B1, B2 ∈ E2, we have 〈A1, A2〉M = 〈B1, B2〉M = 0. Suppose that

E∂M = E∂M,1 ⊕ E∂M,2 and has a pairing 〈·, ·〉∂M with the analogous properties as

〈·, ·〉M . Suppose we have a map π : EM → E∂M . Let Q be a differential on EM
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that satifies (5.54). And denote by the same letter Q the differential on E∂M that

satisfies (5.55).

For the purposes of quantum field theory, assume that we can choose subspaces

B∂M,i and P∂M,i such that

E∂M,i = B∂M,i ⊕ P∂M,i. (5.73)

Also assume the existence YM,i, a subspace of EM,i such that π(YM,i) ⊆ P∂M,i

and that on YM = YM,1⊕YM,2, we have (5.65). Then for A+ a ∈ YM,1⊕B∂M,1 and

B + b ∈ YM,2 ⊕ B∂M,2, we have following

K(A+B + a+ b) =
1

2
〈QA,B〉M +

1

2
〈QB,A〉M +

1

2
〈a, πB〉∂M +

1

2
〈b, πA〉∂M

(5.74)

= 〈QA,B〉M +
1

2
〈πB, πA〉∂M +

1

2
〈a, πB〉∂M +

1

2
〈b, πA〉∂M

(5.75)

BF Theory on a Compact Manifold with Boundary

Following [1], on a compact manifold with boundary M , choose a decomposition of

the boundary as ∂M = ∂1M ⊕∂2M . Let Ω•(M)Di be the space of differential forms

on M with Dirichlet boundary conditions on ∂iM . Then define

EM,1 = Ω•(M, g)[1] (5.76)

EM,2 = Ω•(M, g∗)[n− 2] (5.77)
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and

E∂M,1 = Ω•(∂M, g)[1] (5.78)

E∂M,2 = Ω•(∂M, g∗)[n− 2]. (5.79)

Let π : EM → E∂M be the map induced by pullback of forms to the boundary. and

define

B∂M,1 = Ω•(∂1M, g)[1] (5.80)

B∂M,2 = Ω•(∂2M, g∗)[n− 2] (5.81)

and

YM,1 = Ω•(M, g)D1[1] (5.82)

YM,2 = Ω•(M, g∗)D2[n− 2]. (5.83)

Define 〈·, ·〉M and 〈·, ·〉∂M to be the integration pairings on M and ∂M respectively.

Because for ωi ∈ Ω•(M)Di, we have ω1∧ω2 always vanishes on the boundary, (5.65)

is satisfied on YM = YM,1 ⊕YM,2. It is straightforward that the other properties of

the previous section are satisfied, as well.
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5.2 Quantum Effective BV Theory

5.2.1 On Manifolds without Boundary

Choose a “gauge fixing” Q∗, a map E → E of degree −1. Define

D = [Q,Q∗] = QQ∗ +Q∗Q, (5.84)

a map of degree 0.

Since E is a topological vector space it makes sense to state the heat equation

for φ : (0,∞)→ E

∂tφ(t) +Dφ(t) = 0. (5.85)

Suppose that there exists a degree 1 integral kernel Kt : (0,∞)→ E ⊗E , satisfying

∂tKt + (D ⊗ id)Kt = 0 (5.86)

and define e−tDφ = Kt ? φ, where

K ? φ = (id⊗ 〈·, ·〉)(Kt ⊗ φ). (5.87)

for K ∈ Sym2 E∗. Then e−tDφ satisfies the heat equation because

∂te
−tDφ = −(id⊗〈·, ·〉)(D ⊗ id)(Kt ⊗ φ) (5.88)

= −D(id⊗〈·, ·〉)(Kt ⊗ φ) = −De−tDφ (5.89)

We claim that (1⊗Q)Kt = −(Q⊗ 1)Kt is equivalent to the desired relation

Qe−tD = e−tDQ. (5.90)
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This is because

Q(Kt ? φ) = −(id⊗ 〈·, ·〉)(Q⊗ id⊗ id)(Kt ⊗ φ) (5.91)

= (id⊗ 〈·, ·〉)(id⊗Q⊗ id)(Kt ⊗ φ) (5.92)

= −(id⊗ 〈·, ·〉)(id⊗ id⊗Q)(Kt ⊗ φ) (5.93)

= (id⊗ 〈·, ·〉)(Kt ⊗Qφ) (5.94)

= Kt ? (Qφ). (5.95)

We define the propagator PL
ε =

∫ L
0

(Q∗ ⊗ id)Kt. The propagator satisfies the

equation

(Q⊗ id + id⊗Q)PL
ε =

∫ L

ε

[(Q⊗ id)(Q∗ ⊗ id)− (Q∗ ⊗ id)(id⊗Q)Kt (5.96)

=

∫ L

ε

[(Q⊗ id)(Q∗ ⊗ id) + (Q∗ ⊗ id)(Q⊗ id)Kt (5.97)

= −
∫ L

ε

∂tKt (5.98)

= Kε −KL (5.99)

This implies that

[Q, ∂PLε ] = ∆L −∆ε (5.100)

where ∆L = −∂KL and ∂X is the contraction operator of a symmetric tensor X ∈

Sym• E acting on functions. We call ∆L the regularized BV operator and define the

regularized Poisson bracket by

{f, g}L = ∆L(fg)−∆Lf g − (−1)|f |f∆Lg (5.101)
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We wish to construct a family of effective interactions I[L] ∈ Sym• E∗[[~]] satis-

fying Costello’s renormalization group equation

eI[L]/~ = e
~∂
PLε eI[ε]/~ (5.102)

and the quantum master equation

QI[L] +
1

2
{I[L], I[L]}+ ~∆LI[L] = 0. (5.103)

Because

(Q+ ~∆L)eI[L]/~ = (Q+ ~∆L)eI[L]/~ (5.104)

=

[
QI[L]

~
+
{I[L], I[L]}

2~
+ ∆LI[L]

]
eI[L]/~ (5.105)

The quantum master equation is equivalent to the condition (Q+ ~∆L)eI[L]/~ = 0.

This exponential form of the quantum master equation is often more convenient to

work with. One important consequence of (5.100) is that

(Q+ ~∆L)eI[L]/~ = (Q+ ~∆L)e
~∂
PLε eI[ε]/~ (5.106)

= (Q+ ~∆L)e
~∂
PLε eI[ε]/~ (5.107)

= e
~∂
PLε (Q+ ~∆ε)e

I[ε]/~ (5.108)

Thus, the quantum master equation is satisfied at all length scales if it is satisfied

at any particular length scale.

Suppose that for some classical interaction functional I, the naive effective quan-

tization

I[L] = lim
ε→0+

~ log
[
exp

(
~∂PLε

)
exp (I/~)

]
(5.109)
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exists. Can we calculate the obstructon (aka anomaly) to I[L] satisfying the quan-

tum master equation? Using the same manipulation as above,

(QI[L] + 1
2
{I[L], I[L]}+ ∆LI[L])

~
eI[L]/~ = (Q+ ~∆L)eI[L]/~ (5.110)

= lim
ε→0+

e
~∂
PLε (Q+ ~∆ε)e

I/~ (5.111)

= lim
ε→0+

e
~∂
PLε (Q+ ~∆ε)e

I/~ (5.112)

= lim
ε→0+

e
~∂
PLε

(
QI + 1

2
{I, I}ε + ~∆εI

~

)
eI/~

(5.113)

We are assuming that I satifies the classical master equation so that we can sub-

stitute QI = −1
2
{I, I}.

Naive Quantization at 1-loop

In this section, we adapt the arguments in 2 dimensions in [2] and [6] to show that

the 1-loop quantization for generalized Chern-Simons theory exists.

On Rn, the heat kernel on differential forms has a very elegant form

Kan
t (x1, x2) = (4πt)−n/2e−|x1−x2|2/4t

∏
i

(dxi2 − dxi1) (5.114)

(5.115)

Expand

n∏
i=1

(dxi2 − dxi1) =
∑

I∪J=[n]

(−1)|I|+σ(I,J)dxI1 ∧ dxJ2 (5.116)
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where I = i1 < · · · < ij and J = j1 < · · · < jk are disjoint multi-indices and σ(I, J)

is the sign of the unshuffle premutation needed to put I followed by J in increasing

order. Because

∑
I∪J=[n]

(−1)|K|+σ(I,J)dxI1 ∧ dxJ2 ∧ dxK2 = (−1)|K|+|K|(n−|K|)dxK1 ∧ dx2 (5.117)

= (−1)|K|ndxK1 ∧ dx2 (5.118)

and the integral
∫
Rnx2

is of degree n, we have

∫
Rnx2

[
(4πt)−n/2e−|x1−x2|2/4t

n∏
i=1

(dxi2 − dxi1)

] [
φ(x2)dxK2

]
= φ(x1, t)dx

K
1 (5.119)

where φ(x1, t) is the solution of the scalar heat equation with φ(x1, 0) = φ(x1).

For the purpose of Chern-Simons theory, let g be a graded Lie algebra of dimen-

sion m with compatible symmetric bilinear pairing of degree n− 3.

Choose a X1, . . . , Xk, Y1, . . . , Yk, Z1, . . . , Zl ∈ g[1] each linearly independent so

that

〈Xi, Yj〉′ = δi,j (5.120)

and

〈Xi, Yj〉′ = δi,j (5.121)

This implies that |Xi| + |Yi| = 1 − n and 2|Zi| = 1 − n. Clearly, l 6= 0 only if n is

odd.

95



We define the Casimir element

Cg =
∑
i

(aiX
i ⊗ Y i + biY

i ⊗X i) +
∑
i

ciZ
i ⊗ Zi (5.122)

= Cg,1 + Cg,2 (5.123)

We would like to study when Kt = Kan
t ⊗ Cg is a heat kernel on E•.

Let

Kt ? (ω ⊗X) = (−1)(n−1)|ω|
(

id⊗
∫
M2

)
(id⊗ 〈·, ·〉′)Kan

t ⊗ ω ⊗ Cg ⊗X (5.124)

=

(
id⊗

∫
M2

)
(Kan

t ⊗ ω)⊗ (id⊗ 〈·, ·〉′)Cg ⊗X (5.125)

Therefore in order to have

lim
ε→0+

Kan
t ? (ω ⊗X) = ω ⊗X (5.126)

for all ω ⊗X ∈ E• it is necessary and sufficient that

X =
∑
i

[(−1)(n−1)|Xi|aiX
i〈Y i, X〉+

∑
i

(−1)(n−1)|Y i|biY
i〈X i, X〉 (5.127)

+
∑
i

(−1)(n−1)|Zi|ciZ
i〈Zi, X〉] (5.128)

Therefore ai = (−1)|Xi|+1, bi = (−1)(n−1)|Yi| and ci = (−1)(n−1)|Zi|.

So, how does Cg behave under transposition of factors?

τCg =
∑
i

[(−1)|Y
i||Xi|aiY

i ⊗X i + (−1)|Y
i||Xi|biX

i ⊗ Y i] (5.129)

+
∑
i

(−1)|Z
i|ciZ

i ⊗ Zi (5.130)
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But

(−1)|Y
i||Xi|bi = (−1)|Y

i| = (−1)nai (5.131)

(−1)|Y
i||Xi|ai = (−1)(n−1)|Xi|+1 = (−1)nbi (5.132)

(5.133)

So if l = 0,

τCg = (−1)nCg,1 (5.134)

and if l 6= 0 and therefore n is odd we have

τCg = −Cg,1 + (−1)
n−1

2 Cg,2. (5.135)

This means that in the case l 6= 0 we require that n− 1 is congruent to 2 modulo 4.

For l = 0,

τKt = τKan
t ⊗ τCg (5.136)

= (−1)n(−1)nKan
t ⊗ Cg = Kt (5.137)

That is, Kt is symmetric, as desired.

97



We calculate the contraction of Cg with `′2(·, ·)

n`′2(·, ·)(Cg) =
∑
i

[(−1)|Xi|+1`′2(X i, Y i) + (−1)(n−1)|Yi|`′2(Y i, X i)] (5.138)

+
∑
i

(−1)(n−1)|Zi|`′2(Zi, Zi) (5.139)

=
∑
i

[(−1)(n−1)|Xi|`′2(Y i, X i) + (−1)(n−1)|Yi|`′2(Y i, X i) (5.140)

+
∑
i

|Zi| even

`′2(Zi, Zi) (5.141)

(5.142)

For this to be 0 we must require |Zi| is odd for all i. We must also requrie that

k = 0 or n− 1 is odd.

But ∆εI = 0 on Rn for all n without needing such conditions on Cg because Kan
t

pulled back to the diagonal in M ×M is 0.

Let Q∗ = d∗ ⊗ id. In coordinates, on Rn

d∗x = −
∑
i

ι ∂

∂xi

∂

∂xi
. (5.143)

We compute

PL
ε =

∫ L

ε

Q∗Kt =

∫ L

ε

d∗Kan
t ⊗ Cg = (P an)Lε ⊗ Cg (5.144)

where

d∗Kan
t = (4πt)−n/2e−|x1−x2|2/4t

∑
i

(xi2 − xi1)

2t

∏
i 6=j

(dxj2 − dx
j
1) (5.145)
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For any tree γ, limε→0+wγ(P
L
ε , I) exists. This is by a simple inductive procedure.

If γ1 and γ2 are graphs for which limε→0+wγi(P
L
ε , I) exists, then if γ is γ1 and γ2

with a tail of γ1 connected to a tail of γ2, it follows that limε→0+wγ(P
L
ε , I) exists.

The 1-loop quantization exists for generalized Chern-Simons, but the argument

relies on the structure of the classical interaction I. It is clear from the previous

parragraph that that it suffices to show the existence of the limit when γ is a wheel

of n edges for all n ≥ 0.

Because wγ(P
L
ε , I)(α1, . . . , α|T (γ)|) is equal to

±wan
γ ((PL

ε )an, Ian)(ω1, . . . , ω|T (γ)|)w
alg
γ (Cg, I

alg)(X1, . . . , X|T (γ)|) (5.146)

where αi = ωi ⊗Xi, it suffices to show that

lim
ε→0+

wan
γ ((PL

ε )an, Ian) (5.147)

exists.

Let x0, . . . , xm be coordinates on (Rn)m+1 and identify x0 = xm+1. Make the

change of variables yα = xα − xα−1 for α = 1, . . . ,m and y0 = x0. Note that

m+1∏
α=1

∑
i

(xiα − xiα−1)
∏
i 6=j

(dxjα+1 − dxjα) (5.148)

is a form of degree (m+1)(n−1) = mn+n−m−1 on Rnm. Therefore for n > m+1

it must vanish.

Since dyim = −
∑m

α=1 dy
i
α, it is in the subspace generated by the 1-forms dyiα for

α = 1, . . . ,m. For n = m + 1, it is also at each point in the ∧nmRnm so it must
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again vanish. These statements imply that for n ≥ m− 1

wan
Γm+1

((PL
ε )an, Ian) = 0 (5.149)

Before proceding, let

M(t, ε) =



1
t1

+ 1
ε

1
ε

. . . 1
ε

1
ε

1
t2

+ 1
ε
. . . 1

ε

...
...

. . .
...

1
ε

1
ε

. . . 1
tm

+ 1
ε


(5.150)

Lemma 3.

det(M(t, ε)) = (t1 . . . tm)−1

(
1 + ε−1

m∑
i=1

ti

)
(5.151)

=
t1 + · · ·+ tm + ε

t1 . . . tmε
(5.152)

and

M−1(t, ε) =



t1 +
t21

ε+t1+···+tm
t1t2

ε+t1+···+tm . . . t1tm
ε+t1+···+tm

t2t1
ε+t1+···+tm t2 +

t22
ε+t1+···+tm . . . t2tm

ε+t1+···+tm

...
...

. . .
...

tmt1
ε+t1+···+tm

tmt2
ε+t1+···+tm . . . tm + t2m

ε+t1+···+tm


(5.153)

For m+ 1 > n , limε→0+w
an
Γm+1

((PL
ε )an, Ian) exists. This is a consequence of the

fact that wan
Γm+1

((PL
ε )an, Ian)(ω0, . . . , ωm) is bounded by

∫
[0,L]

∫
(Rn)m

m∏
α=0

dtα
(4πtα)n/2

e−
∑m
α=1 |yα|2/4tα−|

∑m
a=1 yα|/4tm+1 (5.154)
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which is finite because upon performing the Gaussian integral and is equal up to a

constant to

∫
[0,L]

m+1∏
α=1

dtα

t
n/2
α

1

det(M(t, ε))n/2
=

∫
[0,L]

1

(t1 + · · ·+ tm+1)n/2
(5.155)

≤
∫

[0,L]

1

(t1 . . . tm+1)
n

2(m+1)

<∞ (5.156)

This implies that for 2(m+ 1) > n,

lim
ε→0+

wan
Γm+1

((PL
ε )an, Ian) (5.157)

exists, so in particular, the limit exists for m+ 1 > n.

We conclude that

lim
ε→0+

wγ(P
L
ε , I) (5.158)

exists in generalized Chern-Simons theory on Rn, for all graphs γ with b(γ) = 1.
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