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The biscarbazole skeleton is present in compounds produced by the plants of the
Rutaceae family with over 20 naturally occurring molecules. Bishydroxycarbazoles, an
important class of these alkaloids, are garnering increased interest for their potential
antimalarial, cytotoxic, anti-HIV, and antimicrobial activity. Previous methods to form
biscarbazoles are limited to racemic couplings to form the biaryl linkage. The goal of the
project is to use a chiral vanadium catalyst and oxygen to achieve high enantioselectivity
in a more efficient oxidative coupling. For a range of five substrates, enantioselectivies
of 72-79% ee and yields up to 87% were obtained. This technique provides a potential
route to various natural products, such as bismurrayfoline E. With the ability to
synthesize these natural products, avenues are opened for further study of their biological
activity.
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Introduction

Biaryl compounds are commonly found in natural products as well as various
chiral ligands. The biscarbazole skeleton, a biaryl derived from carbazoles, is seen in
various alkaloid-based natural products. As highlighted in red in Figure 1, the
biscarbazole carbon skeleton is a dimer of a carbazole, an indole like structure with an
additional aromatic ring.

Figure 1. Natural Products with Biscarbazoles Skeletons

Bismurrayafoline E

Most of these natural products, including bismahanine, bis-7-hydroxygirinimbine-
A and bismurrayfoline E (Figure 1), are obtained from the Murraya koenigii leaf ">
This plant is from the family Rutaceae, which is native to India. Besides use as a
flavoring and traditional medicine, the natural products from these leaves have cytotoxic,
anti-HIV, and antiradical properties.

Most stereocenters in molecules arise from sp’-hybridized carbons with four
different substituents. The biscarbazoles possess a different form of chirality called, axial
chirality. Due to the steric bulk of individual monomers, there is a high energy barrier to



rotation around the biaryl bond via the planar conformation. Enantiopure biaryl
molecules have proven useful because they make good targets for ligands. Examples of
these include BINAP, BINOL, and MOP (Figure 2).* The natural products in Figure 1
also possess this axial chirality. Bisisomahanine is found to be axially racemic, while the
other two natural products have unknown chirality.”*

Figure 2. Possible Enantiopure Biaryl Molecules*
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There are currently many syntheses of carbazoles monomers, but the
corresponding dimerization is a challenging task. In addition, the reported methods to
form these dimers do not allow generation of biscarbazoles with stereocontrol.” For
example, the Bringmann group reported the first total synthesis of a biscarbazole, based
on the Murraya alkaloid murrastifoline-F structure, in the year 2000 (Figure 3). In this
study, it was noticed that protecting the nitrogen together with the use of lead tetraacetate,
boron trifluoride etherate, and acetonitrile allowed C-C bonds to form between the
carbazoles instead of C-N bonds. Problems with this method include the stoichiometric
use of harmful reagents such as lead acetate. In 2013, the Knolker group developed a
method to dimerize carbazoles to generate the biscarbazole alkaloids murrafoline A,
murrafoline B, murrafoline C, and murrafoline D through the use of palladium and
copper.® However, none of these products have a chiral biaryl bond.

Figure 3. C,C-coupling Using an N-Protected Carbazole’
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Other approaches to form chiral biaryl biscarbazoles have been reported, including
common oxidants such as, di-tert-butyl peroxide, copper chloride, para-chloroanil,
benzoyl peroxide, and copper sulfate.”'”"" For example, the dimerization of bis-2-
hydroxy-3-methylcarbazole has been studied by Bringmann. As expected, the achiral



oxidant para-chloranil generated only racemic product. In fact, very few methods to
provide enantiocontrol have been demonstrated in the formation of the chiral biaryl
bonds."” In addition, there is no work showing the stereoselective coupling of ortho-
ortho, C1-C1 bonds. (Figure 4.) Notably, a methyl group substituent prevents coupling at
the aromatic carbon that is both ortho to the phenol and para to the carbazole nitrogen.

Figure 4. Bringmann’s Synthesis of Bis-2-hydroxy-3-methylcarbazole'?
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Bringmann developed a route to an axially chiral biscarbazole in 2001." His
approach does not use an oxidative coupling to generate the biaryl bond, but uses a
palladium catalyzed C-H insertion. Furthermore, the two substrates 1 and 2 are first
united via an ester bond to generate 3 for a more facile intramolecular coupling to form 4.
The strained ester bridge causes facile isomerization of the chiral axis yielding an
opportunity to use dynamic kinetic resolution. The chiral axis is significantly more stable
once formed because of the strain caused by the bulk of the methyl group interfering with
the ester. Thus, the stereochemistry of the biaryl bond was established after its formation
by means of a dynamic kinetic resolution of 4 via reduction of the ester with BINAL to
form § with 64% ee and 20% yield. While this strategy was ultimately successful for
forming the targeted compound with enantiocontrol, the selectivity levels were only
moderate and the method required several additional functional group maniupulations.

Scheme 1. Bringmann Enantioselective Carbazole Synthesis
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Recently, the Kozlowski lab has developed a complementary coupling method to
provide regioselective ortho-ortho’, C1-C3, coupling of unsubstituted carbazoles (Figure



5).! In Lei’s work, the ortho-ortho’, C1-C3, coupling pattern was found to be favored
over the ortho-ortho, C1-Cl1, pattern resulting in 7.1. The ortho-ortho product, 7.2, was
initially expected to form because of the electron donation from the aniline. Together
with electron donation from the alcohol, the C1-position is the most electron-rich, and the
most readily oxidized; however, only one of the monomers reacts at the ortho position
while the other monomer reacts at the ortho’ position. This outcome is attributed to the
increased steric hindrance between the two monomers during bond formation between
the two ortho-sites. To override this inherent selectivity, methyl groups are installed at
C3 to force the ortho-ortho, C1-C1, coupling as had been shown to be effective
previously (Figure 4).

Figure 5. Oxidative Coupling Patterns of 1-Hydroxycarbazoles'
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In the past, the Kozlowski group used copper-diaza-cis-decalin catalysts for
asymmetric oxidative coupling of naphthols."* However, copper has proved ineffective in
enantioselective phenol couplings. With electron-rich phenols, no enantioselectivity was
seen although the copper catalysts were high reactive. Addition of a coordinating ester
adjacent to the phenol, as was successful with the naphthols, led to low reactivity due to
the electron-withdrawing character of the ester.'

As a result the Kozlowski group surveyed other catalysts for phenol coupling.
The primary issue is that phenols are much less reactive than 2-naphthols, because of an
intrinsically lower oxidation potential of phenols which do not have the same means of
electron delocalization as is possible with 2-naphthols. Encouragingly, literature reports
indicated that VO(acac), is effective as a racemic catalyst for phenol couplings in 62-66%
yield after 48-120 h."” In addition, chiral vanadium catalysts have been reported to form
BINOL from 2-naphthol with a 90% ee.'®

Using this starting point, the Kozlowski group developed a promising asymmetric
couplings of phenols."”” The optimal vanadium catalyst V1 was determined after testing
various other ligands as shown in Figure 6. Catalyst V2 provided an initial result of 37%
ee in Lee’s phenol couplings, followed by an improved 60% ee after additive
optimization. The ligands (V3, V4, V5) were also explored. V3 resulted in a 77% ee, but
modification to catalyst V4 provided a drop in selectivity resulting from the loss of a
sterically hindering group. VS provided a significant improvement in selectivity.

The dimeric scaffold was abandoned because the monomer was more easily
tunable, while also maintaining a competitive enantiomeric excess. Interestingly, such
vanadium Schiff base monomers are only moderately effective in naphthol coupling."
Catalyst V1 was discovered by testing various R groups on the aromatic ring. Electron
withdrawing groups destabilize the vanadium (V) oxidation state that forms during the
redox reaction thereby forming a more reactive catalyst.



Figure 6. Asymmetric Phenol Coupling
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Oxidative couplings can proceed via a range of different mechanisms, including
radical-radical, radical anion, and cationic variants. There is evidence that vanadium
catalyzed oxidative couplings of phenol substrates can proceed via a radical-radical
pathway." In addition, Gong and Sasai undertook extensive studies of a vanadium
catalyzed asymmetric naphthol couplings and compiled compelling evidence of a metal
bound radical-radical coupling.'®,"”

On the basis of this prior work, a catalytic cycle is proposed where phenol
coordinates to the vanadium (I1) and becomes oxidized to keto radical equivalent 12.
This coordination is followed by the radicals coupling to form I3. Afterwards, the
vanadium catalyst is released and re-oxidized using oxygen gas, while the coupled
product tautomerizes in order to form the final product (Figure 7). According to this
mechanism, we proposed that carbazoles would be more reactive in an oxidative coupling
reaction as they are more electron rich and, hence, more oxidizable."”



Figure 7. Proposed Mechanism of Oxidative Couplings
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The goal of this research is to develop a process to form biscarbazoles with high
yields, above 80%, and enantioselectivity, above 80%. The work in this thesis uses a very
different approach to this type of structure where the axial chiral bond is established in an
intermolecular oxidative asymmetric coupling rather than by a resolution after bond
formation (see Scheme 1). Specifically, the ortho-ortho, C1-C1, coupling of the 3,9-
dimethyl-9H-carbazol-2-0l (Figure 8) will be attempted.

Chiral vanadium catalysts have been previously used by the Kozlowski group in
the dimerization of phenols and indoles, and this work centers on expanding that
reactivity to carbazoles. The monomeric units of the biscarbazole natural products
contain a phenol group and an amine. Because of these two electron-donating groups,
oxidation of the corresponding monomers is expected to be more facile than with phenol
allowing generation of intermediates that can undergo dimerization.*

The vanadium catalyst V1 works best with phenols having substitution at the C2
and C5 positions. The C5 substitution is necessary to create a chiral axis. The C2 methyl
groups were found to be necessary to achieve high selectivity with the corresponding C2
hydro compound give very low selectivity. This same methyl substitution will be
employed with 3,9-dimethyl-9H-carbazol-2-ol, 8.1, the simplest and initial carbazole
substrate used in the series. Other alterations to each individual step in carbazole
formation will be indicated as structure x.1-4.

Also vanadium catalysts with similar ligands will be employed to couple the
carbazoles. It is unclear if the carbazole nitrogen in either its free N-H or protected N-Me
forms would allow similar selectivities to those seen with the phenols from Figure 6.



With the biscarbazole compounds, a high enantiomeric excess, above 90% ee (95:5
enantiomeric ratio) is the desired result.

Figure 8. Proposed Work
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If the primary vanadium catalyst V1, does not provide adequate enantiomeric
excess and yields, these other catalysts, as shown in Figure 9, will be used in hopes of
improving the reactivity. These derivatives of V1 are the next logical screening targets
based on the fact that they provided some selectivity in the coupling of phenols. Once
the biscarbazole is formed, with a yield above 80% and an enantiomeric excess above
80%, other substrates with the basic carbazole structure will be explored (18.1-18.5). The
substituents will test how electronics affect the reactivity of carbazole with the vanadium
catalysts. These substituents will include electron donating as well as electron
withdrawing groups such as methyl and fluoro.

Figure 9. Supplementary Catalysts
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Materials and Method

General Consideration: Unless otherwise noted, all non-aqueous reactions were carried
out under an atmosphere of dry Argon in dried glassware. When necessary, solvents and
reagents were dried prior to use. THF was distilled from sodium benzophenone ketyl.
Toluene, dioxane, and methylene chloride were distilled from CaH,. Analytical thin layer
chromatography (TLC) was performed on EM Reagents 0.25 mm silicaOgel 254-F plages.
Visualization was accomplished with UV light. Chromatography was performed using a
forced flow of the indicated solvent system on EM Reagents Silica Gel 60 (230-400
mesh). '"H NMR Spectra were recorded on a Briiker AM -500 (500 MHz) spectrometer.
Chemical shifts are reported in ppm from tetramethylsilane (O ppm) or from the solvent
resonance (CDCl;) 7.26 ppm, acetone-d, 2.05 ppm). Data are reported as follows:
chemical shifts, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br= broad, m
= multiplet) , coupling constants. IR spectra were taken on a Jaso FT/IR-480 Plus
spectrometer or an Applied Systems React IR1000. Mass spectra were obtained on a




Waters LC-TOF mass spectrometer (model LCT-XE Premier) with ionization mode of
either CI or ES. An analytical Chiralpak IA column (4.6 mm x 250 mm, 5 u m) from
Daicel was used with an Agilent 1100 series. Enantiomeric excesses were determined
using analytical high performance liquid chromatography (HPLC) with UV detection at
254 nm. Optical rotations were taken on a Jasco polarimeter with a sodium lamp.

o
MeO NH2

2-Chloro-5-methoxy-4-methylaniline

4-Amino-5-chloro-2-methoxybenzoic acid (3.05 g, 15.1 mmol) was suspended in
chlorobenzene (30 mL) and cooled to 0 °C. Neat BH,«SMe, (4.3 mL, 45.3 mmol) was
added with vigorous stirring. When effervescence ceased, the mixture was heated for 3 h
at 80 °C and then for 18 h at 130 °C. The reaction was quenched by addition of aqueous
Na,CO; (aq) (1 M, 50 mL). The mixture was extracted with CH,Cl, (3 x 50 mL), dried
(MgS0,), filtered, and the solvent was removed under reduced pressure to give a yellow
solid. The product was purified by column chromatography (SiO,) to yield a white
powder: (2.10 g 81%): '"H NMR (360 MHz, CDCl;) & 6.90 (s, 1H), 6.40 (s, 1H), 5.05 (s,
2H), 3.68 (s, 3H), 1.96 (s, 3H). Spectra are in accord with those previously reported.”'

Cl
L

MeO N

H
General Procedure A
A mixture of NaOz-Bu (0.24 g, 2.5 mmol), Pd(OAc), (0.004 g, 0.020 mmol), and HP(#-
Bu),BF, (0.008 g, 0.025 mmol) was suspended in toluene (0.83 M). 2-Chloro-5-methoxy-
4-methylaniline (0.086 g, 0.5 mmol) and an aryl bromide (0.51 mmol) were added, and
the mixture was heated at reflux for 18 h. The mixture was quenched by addition of HCl
(aq) (2 M). The mixture was extracted with dichloromethane, dried (MgSO W filtered,

and the solvent was removed under reduced pressure. The product mixture was subjected
to column chromatography (SiO,)

o
MeO N

H
Following General Procedure A, Brown oil, 770 mg, 76%, R, = 0.6 (EtOAc/Hexanes =
1/4) '"H NMR (500 MHz, d.-acetone) & (ppm) 7.30 (t,J = 6.3,2H), 7.13-7.10 (m, 3H),
6.99 (s, 1H), 6.8 (s, 1H), 5.94 (s, 1H), 3.71 (s, 3H), 2.13 (s, 3H); "C NMR (125 MHz, d,-
acetone) O 157.1, 143.3,138.8,130.7,129.2, 120.9, 120.0, 118.2,113.8,101.3,55.0, 14.5
IR (KBr) 3420, 1512, 1200, 605 cm™; HRMS calcd for C14H14CINO [M+H]" 248.0842,

found 248.0842
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MeO N

H
Following General Procedure A, Yellow oil, 440 mg, 22%, R, =0.75 (EtOAc/Hexanes
= 1/4) "H NMR (500 MHz, d-acetone) 7.12 (d,J = 8.0, 2H), 7 08 (s, 1H),7.04 (d,J =8.5,
2H), 6.72 (s, 1H), 6.72 (s, 1H), 5.88 (br s, 1H), 3.96 (s, 3H), 2.32 (s, 3H), 2.12 (s, 3H);

3C NMR (500 MHz, d,-acetone) 2 rotamers, IR (KBr) 3420, 2921, 1589, 606 cm’;
HRMS (ES-TOF) calcd for C,sH,,CINO [M+H]" 262.0999, found 262.1003.

jouel
MeO H
Following General Procedure A, Brown oil, 1550 mg, 99%, R; = 0.55 (EtOAc/Hexanes
= 1/4); '"H NMR (500 MHz, de-acetone) 7.20-7.17 (m, 2H), 7. 12 (s, 1H), 7.07-7.04 (m,
2H), 6.83 (s, 1H), 6.78 (s, 1H), 3.72 (s, 3H), 2.09 (s, 3H); "C NMR (500 MHz, d,-
acetone) 157.2 (d,J =219), 156.9,139.0, 130.7,121.0 (d,J =8.0),119.6,115.7 (d,J =
22),112.2,98.8,97.7,55.5,15.2; IR (KBr) 3420, 1609, 1200, 602, cm™; HRMS (ES-

TOF) calcd for C,,H,,CIFNO [M+H]" 266.0748, found 266.0743.

L
MeO N F
Following General Procedure A, Brown oil, 768 mg, 50%, R; = 0.45 (EtOAc/Hexanes
= 1/4); '"H NMR (500 MHz, d.-acetone) 7.24 (dd,J = 7.0, 15 0 1H),7.18 (s, 1H), 7.11 (s,
1H),6.95 (s, 1H),6.90 (dd,J =2.0,8.0, 1H),6.79 (td,J = 2.5, 12.0),6.58 (dt,] = 2.5, 8.0),
3.79 (s, 3H), 2.13 (s, 3H); "C NMR (500 MHz, d.-acetone) 163.8 (d, J = 243), 156.9,
144.6 (d,J =10.0),137.1,131.0,130.6 (d,] =10.0), 121.3,114.2,113.6 (d,J = 2.5),
108.0 (d,J =21.3),104.7 (d,J =25.0),101.3,55.7, 154 IR (KBr) 1604, 1582, 1518, 834,

815,776,767, 678,615 cm’; HRMS (ES-TOF) calcd for C,,H,,NOFCI [M+H]"
266.0748, found 266.0740.

R
MeO NN

H
General Procedure B
A mixture of NaO#-Bu (0.24, 2.5 mmol), Pd(OAc), (0.004, 0.02 mmol), and HP(#-
Bu),BF, (0.008, 0.025 mmol) was suspended in dioxane (0.328 mL, 1.25 M). The
chlorobiphenylaniline (0.41 mmol) was added as a solution in dioxane (0.164 mL, 2.5 M).
The mixture was heated at reflux for 18 h. After cooling, the mixture was quenched by
addition of HCI (aq) (2 M, 3 mL). The organic phase was extracted with CH,Cl, (2 x 20
mL), dried (MgSO W filtered, and the solvent was removed under reduced pressure. The

product mixture was subjected to column chromatography (SiO,)



MeO: I N I
H

Prepared following General Procedure B. Spectral data were in agreement with those
reported.”

MeO II N II
H

Following General Procedure B, Brown solid, 1.39 g, 83%, R, = 0.3 (EtOAc/Hexanes =
1/4); "H NMR (500 MHz, d.-acetone) 7.79 (s, 1H), 7.74 (s, 1H), 7.25 (d,J = 8.0, 1H),
7.12(d,J=7.0),6.84 (s, 1H), 3.91 (s, 3H), 2.56 (s, 3H), 2.35 (s, 3H); C"> NMR (500
MHz, ds-acetone) 157.3, 140.3, 138.2, 127.5,125.0,123.5,121.0,118.9,117.9, 115.8,
110.1,92.6,54.8,20.6, 15.0; IR (KBr) 3390, 2920, 1634, 1615, 818,746 cm'; HRMS

(ES-TOF) calcd for C,sH,(NO [M+H]*226.1232, found 226.1229.

MeO N
H

Following General Procedure B, Yellow solid, 240 mg, 18%, R, = 0.2 (EtOAc/Hexanes
= 1/4); '"H NMR (500 MHz, d-acetone) 10.08 (s, 1H), 7.81 (s, 1H), 7.69 (dd,J =2.5,9.3,
1H),7.40 (dd,J=44,8.8,1H),7.04 (td,J =2.6,9.35, 1H), 7.01 (s, 1H), 3.89 (s, 3H),
2.30 (3H); "C NMR (500 MHz, d-acetone) 157.9, 157.3 (d,J = 231), 141.2,136.3,123.9
(d,J=9.7),1214,118.5,1157(d,J=3.8),111.1,111.0(d,J=14.6),104.4 (d,] =23.8),
92.6,54.9,16.0; IR (KBr) 1486, 847, 822,803, 783, cm™; HRMS (ES-TOF) calcd for
C,,HsNOF [M+H]" 230.0981, Found 230.0986.

MeO II N II F
H

Following General Procedure B, Yellow solid, 60 mg 5%, R, = 0.5 (EtOAc/Hexanes =
1/4); "H NMR (500 MHz, d.-acetone) 10.18 (s, 1H), 7.92 (dd,J =5.0,5.0, 1H), 7.78 (s,
1H),7.15(dd,J=24,10.0, 1H), 7.03 (s, 1H), 6.90-6.86 (m, 1H), 3.89 (s, 3H), 2.30 (s,
3H); "C NMR (500 MHz, d.-acetone) 161.0 (d, J = 235),157.2,140.4 (d,J = 12.7),
140.4,120.9,120.0,119.8 (d,J=10.6),118.6,115.5,106.2(d,1=24.3),97.2(d,]J =
26.3),92.8,54.9,15.9; IR (KBr) 3396, 2921, 1611, 841, 808,742 cm™; HRMS (ES-
TOF) calcd for C,,H,,NOF [M-H] 228.0825, Found 228.0822.
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HO NN

H
General Procedure C
The methoxycarbazole (4.92 mmol) was dissolved in dichloromethane (49.2 mL, 0.1 M).
After cooling to —78 °C, a solution of boron tribromide (1 M in dichloromethane, 7.9
mmol) was added over a period of 11 min and the solution was allowed to warm to room
temperature. The reaction mixture was stirred for 15.5 h at room temperature. The
mixture was subsequently quenched with methanol under cooling, transferred to a
separation funnel with ethyl acetate, and washed several times with water and brine.
After extraction of the aqueous layer with ethyl acetate, the combined organic layers were
dried over sodium sulfate, the solvent was evaporated, and the mixture was purified by

chromatography (SiO,) to provide the product.

Bowel
H

Following General Procedure C, Brown solid, 510 mg, 94%; R, = 0.05
(EtOAc/Hexanes = 1/4); "H NMR (500 MHz, d.-acetone) 9.77 (s, 1H), 8.18 (s, 1H), 7.73
(s,1H),7.71(d,J=0.5,1H),7.24 (d,J =8.0,1H),7.05(dd,J=1.2,8.2, 1H), 6.92 (s,
1H), 2.44 (s, 3H), 2.33 (s, 3H); "C NMR (500 MHz, d,-acetone) 154.7,140.5, 138 4,
127.4,125.0,123.9,121.3,1189,116.6,116.1,110.1,96.2,20.7, 15.9; IR (KBr) 3398,
1603, 826,744,719, 640 cm™'; HRMS (ES-TOF) calcd for C,,H,,NO [M+H]* 212.1075,
Found 212.1080.

HO N
H

Following General Procedure C, Brown solid, 166 mg 90%; R; = 0.1 (EtOAc/Hexanes
= 1/4); "H NMR (500 MHz, ds-acetone) 9.94 (s, 1H), 8.34 (s, 1H), 7.78 (s, 1H), 7.66 (dd,
J=26,95,1H),7.35(dd,J=4.5,8.8, 1H), 7.03-6.99 (dt,] =2.6,9.0, 1H), 6.97 (s, 1H),
2.35 (s, 3H); "C NMR (500 MHz, d-acetone) 157.0 (d,J = 231), 155.3, 141.3, 136.3,
1242 (d,J=10.0),121.6,117.2,1158 (d,1=3.8),1109,110.7 (d,1=14.8),104.4 (d,J
=23.8),96.2, 15.8; IR (KBr) 3406, 1485, 1406, 1257, 1146, 1013, 600 cm™; HRMS (ES-
TOF) calcd for C,;H,NOF [M-H]* 214.0668, Found 214.0672.

H

Following General Procedure C, Brown solid, 69 mg, 99%; R, = 0.1 (EtOAc/Hexanes
= 1/4); "H NMR (500 MHz, d,-acetone) 10.06 (s, 1H), 8.26, (s, 1H), 7.89 (dd,J =5.5, 8.5,
1H),7.74 (s, 1H), 7.11 (dd,J =2.5,10.5),6.96 (s, 1H), 6.86 (dt,J =2.5,J =8.5, 1H) 2.33
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(s, 3H); "C NMR (500 MHz, d¢-acetone) 161.0 (d,J = 235), 154.6, 140.6 (d,J = 14.8),
140.6,121.2,120.3,119.7(d,J =10.5),1174,115.7,106.2 (d,] =24.1),970 (d,] =
26.3),96.5,15.9; IR (KBr) 3406, 1486, 1293, 834, 820, 810, 781, 600, cm™; HRMS (ES-
TOF) calcd for C,;H,NOF [M-H]* 214.0668, Found: 214.0669.

o

Me
A solution of 2-hydroxycarbazole (0.092 g, 0.47 mmol) and DMF (0.07 mL) in dry THF
(1 mL) was added drop-wise to NaH (0.028 g, 1.17 mmol) under a nitrogen atmosphere
with stirring at room temperature. After 10 min, a 1 M solution of Mel (0.067 mL, 0.47
mmol) was added and stirring was continued for 2 h. The resulting mixture was cooled to
0 °C and quenched with water (0.4 mL). After removing the solvent under vacuum, the
product was washed with acidic aqueous solution and purified by column
chromatography (SiO,) to provide the product. Brown solid, 10 mg 23%; R, = 0.4
(EtOAc/Hexanes = 1/4); '"H NMR (500 MHz, d.-acetone) 8.29 (s, 1H),7.94 (d,J =7.5,
1H),7.80 (s, 1H) 7.39 (d,J =8.0, 1H), 7.30 (dt,J = 1.0,7.5, 1H), 7.10 (dt, J =0.5, 8.0,
1H), 6.89 (s, 1H), 3.76 (s, 3H), 2.35 (s, 3H); "C NMR (500 MHz, d,-acetone) 157.3,
139.8,123.6,123.2,1209,118.8,118.4,118.0,115.8,110.3,110.2,92.4,54.7,15.7; IR
(KBr) 2922, 2853, 1634, 1604, 815, 740,719, 621 cm™'; HRMS (ES-TOF) calcd for
C,,H,NO [M-H] 212.1075, Found 212.1083.

=R

HO NN
Bn

General Procedure D
A solution of 2-hydroxycarbazole (0.092 g, 0.47 mmol) and DMF (0.07 mL) in dry THF
(1 mL) was added drop-wise to NaH (0.028 g, 1.17 mmol) under a nitrogen atmosphere
with stirring at room temperature. After 10 min, a 1 M solution of BnCl (0.067 mL, 0.47
mmol) was added and stirring was continued for 2 h. The resulting mixture was cooled to
0 °C and quenched with water (0.4 mL). After removing the solvent under vacuum, the
product was washed with acidic aqueous solution and purified by column

chromatography (SiO,) to provide the product.

Dowel
Bn

Following General Procedure D, Yellow solid, 81 mg, 53%; R, = 0.4 (EtOAc/Hexanes

= 1/4); "H NMR (500 MHz, d-acetone) 9.82 (s, 1H), 7.73 (s, 1H), 7.70 (s, 1H), 7.28-7.26
(m,2H),7.23(d,J=80,1H),7.19 (t,J=7.5,2H),7.10 (t,J=7.8,1H),7.03 (dd,J =10,
8.0, 1H), 4.34 (s, 2H), 2.43 (s, 3H), 2.42 (s, 3H); "C NMR (500 MHz, d,-acetone) 151.7,
140.7,139.8,138.5,128.3,128.0,1274, 125.6,125.0,124.1,119.3,118.9,116.8, 116.3,

110.1, 109.0, 30.5,20.6, 16.5. IR (KBr) 3421, 2919, 2852, 1494, 863, 796, 735,697 cm™;
HRMS (ES-TOF) calcd for C,,H,,NO [M+H]* 302.1545, Found: 302.1545.
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HO N
Bn

Following General Procedure D, Yellow solid, 193 mg, 81%; R; =0.35
(EtOAc/Hexanes = 1/4); "H NMR (500 MHz, d.-acetone) 8.40 (s, 1H), 7.85 (s, 1H), 7.73
(dd,J=5.0,90,1H),7.41 (dd,J=5.0,10.0, 1H), 7.28-7.19 (m, 3H), 7.15-7.13 (m, 2H),
7.05 (td,J=1.0, 10.0, 1H), 6.89 (s, 1H), 5.50 (s, 2H), 2.34 (s, 3H); *C NMR (500 MHz,
ds-acetone) 1574 (d,J =231), 155.6,141.7,137.9,137.0, 128.6, 127.2,126.5, 1239, (d,
J=10.0),122.0,117.5,115.3,1109 (d,J =25.0),109.3(d,J=8.7),104.6 (d,J =23.8),
94.9,46.1,15.7; IR (KBr) 1633, 862, 828,791, 729, 696, 626 cm™; HRMS (ES-TOF)
calcd for C,,H,;FNO [M+H]" 306.1494 Found: 306.1497

Bn

Following General Procedure D, Yellow solid, 57 mg, 83%; R; = 0.17 (EtOAc/Hexanes
= 1/4); "H NMR (500 MHz, d,-acetone) 8.38 (s, 1H), 7.84 (s, 1H), 7.28-7.19 (m, SH),
7.14(d,J=70,2H),691 (s, 1H),6.84 (ddd,J=1.5,1=7.0,J =8.5,1H),5.50 (s, 2H),
2.33 (s, 3H); "C NMR (500 MHz, d-acetone) 157.6, 155.0, 1430, 140.3,137.5, 128.5,
127.2,126.4,1245 (J=8.25),123.7(J=3.0),1179,112.8,111.0,J =21.0), 104.9,
104.4 (J=19.3),94.3,46.2, 15.5; IR (KBr) 1470, 883, 776, 741,715,702, 693 cm™;
HRMS (ES-TOF) calcd for C,,H,sFNO [M-H] 304.0876 Found: 304.0875

General Procedure for Asymmetric Oxidative Hydroxycarbazole Coupling (E)

To a 5 mL microwave vial was added hydroxycarbazole (0.10 mmol, 2.0 mg) and
catalyst 11a (0.020 mmol, 4.0 mg). The vial was sealed with a septum and solvent (0.20
mL) was added. Afterwards, AcOH (6.25 equiv, 20 pL). Oxygen was added via active
purge. The septum was replaced with a crimping cap and the vessel was sealed and
stirred for the indicated time at the indicated temperature. The reaction mixture was then
directly chromatographed on silica gel using ethyl acetate/hexane to elute the product.
The product was prepared for analysis by dissolving in pure methanol to provide a clear
solution. Afterwards the product was filtered through a glass frit to filter off solids.
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Analysis was done by Chiralpak TA 1.0 mL/min 90:10 hexanes:i-PrOH or Chiralpak 1A
1.0 mL/min 95:5 hexanes:i-PrOH.

Me
PoRg
Following General Procedure E, Yellow solid, 4.1 mg, 83%; R, =0.53
(EtOAc/Hexanes = 1/4); 'H NMR (500 MHz, d-acetone) 8.03 (dt,J = 0.8, 7.8, 2H), 8.00
(q,J=1.0,2H),7.31-7.30 (m, 4H), 7.25 (s, 1H), 7.16 (ddd,J =2.9,5.2,7.9, 2H), 3.45 (s,
6H), 2.45 (s, 6H); "C NMR (500 MHz, d,-acetone) 153.9, 141.7,139.8,123.9,122.9,
122.1,118.8,118.6,117.0,116.3,108.4,101.7,29.3, 16.3; IR (KBr) 3509, 2924, 2854,
1626, 1603, 882, 768, 737 cm™'; HRMS (ES-TOF) calcd for C,;H,,N,O, [M+H]"

421.1916, found: 421.1928. [ « ], -31.80; CSP HPLC (Chiralpak AD, 1.0 mL/min,
90:10 hexanes:i-PrOH): ty(/) = 16.6 min, ty(2) = 20.9 min.

S>wel
HO N
Bn
I?n
HO ! N!
F

Following General Procedure E, Yellow solid, 4.8 mg 95%; R, = 0.47 (EtOAc/Hexanes
= 1/4); "H NMR (500 MHz, d,-acetone) 7.94 (s, 2H), 7.78 (dd, J = 2.5,9.0, 2H), 7.06 -
6.98 (m, 6H), 6.85-6.84 (m, 6H), 6.45-6.44 (m,4H),4.82 (d,1=17.3,2H),4.69 (d,] =
17.3),2.20 (s, 6H) >C NMR (500 MHz, d,-acetone) 157.6 (d,J =231), 1544, 1400,
138.0,1379,127.6,126.2,125.3,123.7 (d,J =10.0), 122.5,117.8,116.5,111.1 (d,J =
2.5),109.8 (d,J=10.0),104.2 (d,J =25.0),100.9,46.8,16.2; IR (KBr) 3515,2923,
1627, 856,796, 781,703 cm™; HRMS (ES-TOF) calcd for C,,H,,F,N,O, [M+H]*
609.2354, found 609.2368; [ « |,>* —24.167, CSP HPLC (Chiralpak IA, 1.0 mL/min,
90:10 hexanes:i-PrOH): tR(/) = 8.9 min, tR(2) = 9.7 min.
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Bn
Bn

peie

Following General Procedure E, Yellow solid, 17.2 mg, 86%; R; =0.60
(EtOAc/Hexanes = 1/4) '"H NMR (500 MHz, d,-acetone) 8.07, (d, J = 8.0, 2H), 7.96 (s,
2H),7.33 (t,J=7.5,2H),7.27 (t,J=7.5,2H),7.11 (d,J =8.0,2H),6.70 (t,J =7.0,2H),
6.83(t,]J]=70,4H),6.24 (d,]=7.0,4H),4.73 (s,2H),4.71 (d,J =17.5,2H),4.62 (d,] =
17.5,2H),2.17 (s, 6H); "C NMR (125 MHz, d-acetone) 153.6, 141.7,139.0, 138 .0,
127.5,126.0,125.4,123.9,123.1,122.0,119.0,118.6,117.5,116.8,109.0, 101 .0, 46.5,
16.2; IR (KBr) 3513, 2923, 1603, 736, 706 cm™'; HRMS (ES-TOF) calcd for C,,H;;N,O,

[M-HJ* C,,H,,N,0, 571.2386, found 571.2380[ a 1,2 ~36.480; CSP HPLC (Chiralpak
IA, 1.0 mL/min, 90:10 hexanes:i-PrOH): tR(7) = 7.8 min, tR(2) = 11.2 min.

Bn
?n

Following General Procedure E, Yellow solid, 16.9 mg, 83%; R, =0.6
(EtOAc/Hexanes = 1/4) 'H NMR (500 MHz, d,-acetone) 7.89 (s, 2H), 7.84 (s, 2H), 7.06
(dd,J=1.8,7.5,2H),6.97 (d,J =8.0,2H), 6.86-6.82 (m, 6H), 6.71 (s, 2H), 6.45 (s, 2H),
6.46-642 (m,2H),4.77 (d,J=17.1,2H),4.58 (d,J=17.1,2H), 2.49 (s, 6H), 2.19 (s,
6H); "C NMR (125 MHz, d.-acetone) 140.0, 139.2, 138.3, 128.1, 127.3, 126.1, 125 4,
125.2,123.3,121.9,118.6,117.2,116.7,108.9, 108.8, 100.9, 46.6,20.5, 16.2. IR (KBr)
2920, 1608, 793, 733,701 cm™'; HRMS(ES-TOF) calcd for C,,H;,N,O, [M+H]*

601.2855, found 601.2849 [  ],** —146.593; CSP HPLC (Chiralpak IA, 1.0 mL/min,
90:10 hexanes:i-PrOH): tR(/) = 9.5 min, tR(2) = 14.1 min.
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Bn
?n

Following General Procedure E, Yellow solid, mg, 17.8 mg, 93%; R, =0.6
(EtOAc/Hexanes = 1/4); "H NMR (500 MHz, d-acetone) 7.95 (s, 2H), 7.21 (td,J = 5.5,
8.1,2H), 7.06 (s,2H),6.91 (d,J =8.1,2H),6.89 (d,J = 8.1, 2H), 6.84-6.82 (m, 6H),
6.45-6.43 (m, 4H),4.85(d,J =17.9,2H),4.60 (d,J = 17.4,2H), 2.21 (s, 6H); °C NMR
(125 MHz, d¢-acetone) 157.7 (J = 243),153.9 144.1 J =10.6), 138.7.137.5, 127.5, 126.1,
125.2,1246 (J=20.1),1244 (J=20.1),118.4,114.1,110.8,105.3,104.7 (J = 18.7),
101.0,47.0,16.2; IR (KBr) 3519, 1601, 965, 709 cm™; HRMS (ES-TOF) calcd for
C,H,,F,N,O, [M-H] 607.2197, found 607.2191, [ « 15> =1.9753; CSP HPLC (Chiralpak
IA, 1.0 mL/min, 95:5 hexanes:i-PrOH): tR(/) = 5.1 min, tR(2) = 5.6 min.

CHO
; OH
t-Bu

Dry formaldehyde (0.7 g, 23.3 mmol) was added in portions to a mixture of 4-tert-
butylphenol (1.0 g, 6.66 mmol), triethylamine (2.6 mL, 18.8 mmol) and anhydrous MgCl,
(2.0 g,20.6 mmol) in 50 mL of THF. The mixture was refluxed for 8 h, cooled to room
temperature, acidified with 3N HCI (70 mL), and extracted with diethyl ether (3 x 30 mL).
The ether layer was washed with water (50 mL), and brine (50 mL), and dried using
MgSO,. Removal of solvent yielded a crude product and it was purified by column
chromatography to yield a 3-(tert-butyl)-2-hydroxy-benzaldehyde as yellow oil (710 mg,
61% yield). Spectral data matched those reported in the literature.

O,N CHO

L,

t-Bu

In a 100 mL round-bottomed flask was placed 3-(terz-butyl)-2-hydroxybenzaldehyde
(710 mg, 4.0 mmol) in HOAc (12 mL). Nitric acid (4.0 mL, 96 mmol) was added
dropwise at 0 °C and stirred for 1 hour at ambient temperature. The resulting mixture was
poured into iced water (100 mL) with vigorous stirring. The orange precipitate formed
was filtered through a sintered glass, then washed with water (10 mL). The crude product
was recrystallized from ethanol to give 360 mg (65% yield) Spectral data matched those

reported in the literature.
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t-Bu

O-N X N O
Oy
OMe
t-Bu 0

All glassware was flame dried. A mixture of L-fert-leucine (0.34) and 3-fert-butyl-5-
nitro-2-hydroxybenzaldehyde (0.34 mmol) in MeOH:CH,Cl, (2 mL, 1:1) was heated to
reflux and monitored by TLC. The reaction mixture was cooled to room temperature and
VO(OEt); (0.34 mmol) was added. After 3 h under argon atmosphere, solvent was
removed under reduced pressure to afford the catalyst.

Results and Discussion

The initial substrate is 8.1, 2-hydroxy-3,9-dimethyl-9H-carbazole (Scheme 2) was
prepared following literature reports as outlined in Scheme 1. Starting with 4-amino-5-
chloro-2-methoxybenzoic acid 1, reduction provided the methyl group needed in 2.*' The
reduction is necessary to form the methyl group that will be block off the potential
formation of ortho-ortho’ biscarbazole during the oxidative coupling. Subsequent
Buchwald Hartwig amination and concerted metallation deprotonation formed the
carbazole moiety of 12.*' Demethylation with boron tribromide is used to form the known
compound 3-hydroxycarbazole, 13.> Based on past research from the Kozlowski group,
it is necessary to have a hydroxyl group in order for the catalyst to bind to the substrate
and to oxidize readily." A methoxy group will not allow for a mild, selective coupling to
occur. Finally, previous research revealed that the regioselective coupling would not
occur in the presence of the free pyrrole,' which could also oxidize at the nitrogen. Thus,
methylation of the pyrrole nitrogen is necessary to form the starting material for the
project, 8.1. Specifically, compound 14.1 was doubly deprotonated with sodium hydride,
and the more nucleophilic functional group, nitrogen, was selectively methylated by
adding one equivalent of methyl iodide.** Optimization of these routes was not performed
as the primary goal was to probe the asymmetric oxidative coupling.

Scheme 2. Synthesis of Primary Substrate for Reaction Screening
1) BH3SMe, Pd(OAC), 4 mol% Pd(OAc); 4 mol%

HO,C Cl CeHsCl NaOtBu Cl NaOtBu
j@[ _0°C15 min_ j@[ [HPBUSI[BF ] j@i @ [HP{BU,]IBF ]
MeO NH, 80 °C3h toluene dloxane

3) 130 °C18 h bromobenzene reflux 18 h
10 11.1 reflux 18 h 12. 1

81% 95%

1) DCM -78°C

_ 2)BBry20°C . CHal
HO I}l
Me

DMF
13. 1

THF
2h
78%

14.1 8.1
93% 63%

The first set of conditions that was examined in the asymmetric coupling of
carbazoles, 14.1 and 8.1, mirrored those used in asymmetric phenol couplings in our
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group. Namely, vanadium catalyst V1 was used (Scheme 3).”° This catalyst was prepared
by treatment of 2-(terz-butyl)phenol 15 with paraformaldehyde and magnesium chloride
to generate the formylation product 16."” Subsequent, nitric acid treatment yielded the
nitrated product 17. L-tert-Leucine was condensed with this aldehyde to yield a Schiff
base that is treated with VO(OE?t), to generate catalyst V1.

In order to properly evaluate the selectivity of the reaction through HPLC, a
racemic standard was required. To make the racemic standard, the carbazoles were
subjected to 50 mol % VO(acac),under 1 atm oxygen in a 1 M solution of toluene. After
purification, standards were obtained that gave two peaks of equal area upon passage
through an analytical chiral stationary phase HPLC column.

Scheme 3. Synthesis of Primary Vanadium Catalyst

(CH20), O,N CHO
MaCly | ~CHO  HNO; \©:
_—

OH " THE, reflux 7 SOH  AcOH,0°C B on
t-Bu t-Bu =
2-(tert-butyl)phenol 60% (for 2 steps)
15 16 17

t-Bu=tert-butyl

t-Bu

1. L-tert-Leucine
O,N o)
MeOH:DCM, reflux - \N)\f
_— = O/‘V,O
2. V(OEt), t 7 OMe
3 t-Bu o
quant.
\"A |

Carbazole couplings were examined using the same protocol as for the asymmetric
phenol couplings except that 20 mol % catalyst V1 was employed rather than 10 mol%
catalyst. As expected from prior work, the substrate lacking a blocking group on nitrogen
(14, R = H) did not undergo coupling due to oxidation of the nitrogen to other byproducts
(Table 1, entry 1).' With 8.1 (R = Me), initial results were promising (Table 1, entry 2)
providing the product in 58% ee with 100% conversion after 48 hours (half-life ~ 6 h).
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Table 1. Oxidative Coupling Optimization*

HO N

toluene, O,, 0°C—rt
2 days

t-Bu

OZN\Q\/QN\J\fO
_y—0
0 é’\OMe

t-Bu

\'Al

\'L)

“Conditions = 1 mmol carbazole, 0.2 mmol vanadium catalyst, toluene (0.5 M).”
Conversions were estimated by TLC, yields were not taken before ee optimization

Entry R V.Cat. Additive T (°C) Conversion (%)’ ee (%)
1 H V1 none rt 0 n/a
2 Me V1 none rt 100 58
3 Me A\ | 0.2 LiCl rt 100 52
4 Me A\ | 6.5 equiv AcOH  rt 100 62
5 Me Vi 6.5 equiv AcOH 0 85 72
6 Me V9 6.5 equiv AcOH 0 85 69
7 Bn A\ | 6.5equivAcOH 0 85 73
8 Bn V9 6.5equivAcOH 0 85 62

Other variables to improve the enantioselection were investigated. Lithium
chloride, which was found to improve enantioselectivity in the asymmetric phenol
coupling (see Figure 6), did not cause a significant change in this case (Table 1, entry
3)."” However, the addition of another additive that had been successful in the phenol
asymmetric coupling, acetic acid, was beneficial providing the product with 62% ee
(Table 1, entry 4). Lowering the temperature to 0 °C improved the selectivity further to
72% ee (Table 1, entry 5). This result seemed reasonable because lowering the
temperature decreases the possibility of reaching the higher energy transition state to the
minor product. Use of the more complex catalyst that exhibited good enantioselectivity
in naphthol and phenol coupling, V9, did not improve the enantioselectivity'’ (Table 1,
entry 6).

At this juncture, we speculated that the low enantioselectivity might arise from
insufficient steric interactions between the catalyst and substrate in the transition state
leading to the minor product. To increase these steric interactions with the aims of further
destabilizing the pathway to the minor enantiomer, a larger alkyl group was investigated
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on the nitrogen center, which is directly adjacent to the axial chiral bond being formed.
An N-benzyl group was thus surveyed which was obtained by treating compound 5 with
2.5 equivalents of sodium hydride to generate the dianion. Subsequent treatment with 1
equivalent of 1 M benzyl chloride in THF allowed for nucleophilic attack onto benzyl
chloride by the more basic anilide vs phenoxide anion to generate 18.1 (Figure 10).

Figure 10. Benzylation of Carbazoles

BnCl
_—
HO N THF HO N

H 6h Bn

14 18

43%

Initial trials with the N-benzyl analog 18 were very promising showing high
selectivity (>95%ee). However, Houng Kang in our lab noted that some of the product
did not fully dissolve in the 10% isopropanaol/hexane solution that was being analyzed
by chiral phase HPLC. After fully dissolving the reaction product in 100% chloroform
and analyzing, the N-benzyl analog 18 (Table 1, entry 7) was found to only give slightly
higher selectivity (73% ee) relative to the N-methyl compound (Table 1, entry 5) under
the same conditions. Again, the use of catalyst V9 results in poorer enantiomeric excess
with this compound (Table 1, entry 8). The differential solubility, however, indicates
that the racemate can be removed by trituration to afford highly enantioenriched product.
It should also be noted that during Lei Liu’s work that N-benzyl protected carbazoles
were one of the few substrates that decreased the selectivity for ortho-ortho’ coupling
and improved ortho-ortho coupling.' Normally, in Lei’s work, the ortho-ortho coupling
remained at 2-3% yield, but with a benzyl coupling, the yield went up to 8%, while
simultaneously lowering the ortho-ortho’ yield from 70% to 56%. This result could
potentially arise from s-stacking interactions between the two benzyl groups from the
separate monomers.

The optimal conditions, based off of enantiomeric excess, [20 mol % catalyst V1,
1 M toluene, 0° C, 6.5 equiv AcOH, O,] were established. With these conditions in hand,
a series of substrates was screened, 18.1-18.3. To form each of these new carbazoles
substrates, it is only necessary to change the bromobenzene used in the initial Buchwald
Hartwig coupling step (Table 2). This change will result in various groups on carbons C5
to C8 of the final carbazoles.
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Table 2. Additional Substrates for Asymmetric Oxidative Coupling
Pd(OAC), (4 mol%)
NaOtBu (2.5 mol%) 1M BBr, (1 equiv)

I:[C' /@ [HPtBUS][BF ] (5 mol%)
R e — O O R
dioxane .
MeO N reflux 18 h MeO: ‘ :H:‘ DCM, -78-20 °C
12

155 h
BnClI (1 equiv) 13
NaH (2.5 equiv)
—_———
HO N 2h HO N
H Bn
14 18

Substitution 12 Yield 13 Yield 14 Yield 18 Yield

(%) (%) (%) (%)
6-Fluoro 12.2 33 13.2 27 53 81 18.2 82
6-Methyl 12.3 61 13.3 20 54 98 18.3 67
7-Fluoro 124 95 134 9 5.5 88 184 56

There was significant difficulty when attempting to make some of these substrates.
The 6-phenyl, 7-methyl, 8-fluoro, 5,7-dimethyl, 8-hydroxy, 6-nitro, 7-phenacyl, and 6-
trimethylsilyl, were attempted, but did not yield sufficient amounts of substrate for study
in the asymmetric coupling. Specifically, these compounds decomposed during various
steps of the synthesis step of the synthesis (Figure 11). Most substrates had difficulty
during the cyclization to form the carbazole, or during the benzylation process. The
benzylation did not occur with the 7-methyl, 8 fluoro, nor the 5,7-dimethyl compounds.
The 8-hydroxy and 7-phenacyl did not undergo cyclization in usable yield. Lastly, the
TMS group on the 6-trimethylsilyl carbazole was cleaved after attempting to demethylate
using BBr;, resulting in the loss of the silyl group.

With three additional substrates in hand (18.2-18.4), the same conditions as from
Table 1, entry 7 were applied. Overall, the addition of fluoro groups to the distal ring at
C7 or C8 slightly enhanced the enantiomeric excess, whereas a methyl group did not
indicating that electron withdrawing groups are benefical (Table 3, entries 2-4). The

Figure 11. Failed Carbazole Substrates

Pd(OAc), 4 mol%

BnCl NaOtBu

cl
BT JOLQ e
—_—
DMF dioxane
H N H N
HO N THF HO N ° ! reflux 18 h ° !
H oh Bn H o OH B OH
Pd(OAC) 4 mol% 5%
BnCl NaOtBu
—_—
HO N DMF HO N Ph dioxane Ph
bOF THF Bn E HO N refux1sh  HO N
2h H O H (e}
<5%
1) DCM -78 °C
BnCl 2)BBr; 20°C
(L = L gt e
HO N HO N
\ DMF \
MeO N HO N
H Bn
THF : b

2h
yield for some of the reactions was not as high, because of the significantly slower rates

caused by the decrease in temperature from 25 to 0 °C which resulted in significant
amounts of starting material remaining even after 48 h.
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Table 3. Substrate Scope

¥
20 mol % V. Cat V1.
HO N AcOH

Bn

toluene, O,, 0 °C
48h

Entry R Position Substrate Yield (%) ee (%)
1 H n/a 18.1 86 73

2 F 6 18.2 82 79

3 F 7 183 83 76

4 Me 6 184 67 73
Conclusion

In summary, an effective system to catalyze asymmetric coupling of carbazoles
has been developed. This work describes the first enantioselective coupling of carbazoles
using a chiral catalyst. Specifically, the coupling of 2-hydroxy-3-methylcarbazoles
proceeds with moderate enantioselectivity under very mild reaction conditions. The
original hypothesis that catalyst V1 would be effective for carbazoles based upon its
selectivity in the coupling of phenols is correct. It can be claimed that V1 is an
appropriate catalyst for a variety of carbazoles as well as aromatic phenol-based
couplings.
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Director:
Rakesh K. Kohli

Mass Spectrometry Center

Request for Analysis

Department of Chemistry
University of Pennsylvania
Philadelphia, PA 19104
Phone: (215) 898-8164

Name: Paul Sung

Date: 7725718 |)/4/1¢

Room:IAST 4070

Sample Title: Ms-I-% ¢

Phone: 3-4249

Formula: cyH, LIVO

Professor: Marisa Kozlowski

Purchase Order:

Info Required:

Molecular Weight (°C standard):

CKO

Low Res.: FW = 147.7m0
HighRes.: _ V
Other: (Exact Mass from ChemDraw)
47,0764
Structure: Sample Location:
Hood #:
a A =i Refrig. #: = 24
A Freezer:
ned 1 Call:
Safety Information: Solvents: Use Don't Use
MeOH
Harmful: Yes/No CH.Cl,
If Yes, Specify: Hexane
Acetonitrile

Other Acetone V

If in Solution:
Solvent:
Approx. Concentration:

For MS Lab Use:

Calculated Value: 24§, o 84%
Observed Value:
Error (ppm): 2438 o B4z

(inen]) ™
gwo/g““’
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mental Composition Report

Page 1
single Mass Analysis
Tolerance = 5.0 mDa / DBE: min =-1.5, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron lons
227 formula(e) evaluated with 3 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C:0-200 H:0-200 N:0-10 0:0-13 Cl: 11
06-Dec-2016
PDS-I-55 47 (2.333)
1: TOF MS ES+
1.08e+004
100 248.0842
%
250.0830
262.1790 289.1140
213.1175 246.2074 251.0855
ol (o BI516  230.1209233.0639 3 [( | 263.1864 273.1610 2771682 .
220.0 230.0 24|0‘0 250.0 260.0 270.0 280.0 290.0
Minimum: -1.5
Maximum: 5.0 10.0 50.0
Mass Calc. Mass mDa PPM DBE i-FIT Formula
248.0842  248.0842 0.0 0.0 7.5 42.0 Cl4 H15 N O Cl
248.0802 4.0 16.1 3.5 151.9 C9 H15 N3 03 Cl
248.0874 -3.2 -12.9 -0.5 393.8 C3 H15 N7 04 Cl
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Director:

Rakesh K. Kohli

Mass Spectrometry Center  Department of Chemistry

University of Pennsylvania
Request for Analysis Philadelphia, PA 19104
Phone: (215) 898-8164

Name: Paul Sung

Date: 7/25/16

Room:IAST 4070

Sample Title: Opi- 1 14

Phone: 3-4249

Formula: #. ¢. u,~0

Professor: Marisa

Kozlowski

Purchase Order:

Info Required:

Molecular Weight (*°C standard):

Low Res.: FW = 3¢\ 3090
High Res.: Vv
Other: (Exact Mass from ChemDraw)
Jol lugr
Structure: Sample Location;
- Hood #:
~ ) Refrig. # _ o
/@:,/g Freezer:
HO Call:
&
Safety Information: Solvents: Use Don't Use
MeOH
Harmful: Yes/No CH.Cl; - -
If Yes, Specify: Hexane -
Acetonitrile
Other Acetone V
If in Solution:
Solvent:
Approx. Concentration:
For MS Lab Use:

Calculated Value: 92 1545
Observed Value: %1545

o @wﬂ L8 'S
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Elemental Composition Report

single Mass Analysis

Tolerance =5.0 PPM / DBE: min = -1.5, max = 80.0
Element prediction: Off

Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron lons

740 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

C:0-52 H:0-70 B:0-3 N:0-4 0:04 Cl:01

Page 1

01-Sep-2016
PaulS_2_74 57 (2.823)
1: TOF MS ES+
1.05e+003
100 302.1545
%
301.1399 309.6680
295.6455 297.1460 299.1772 303.1620 SUBISTS it e 1508 310.1079311 2473
o f | 1, .| 304.3028 i 307.2639 ] Tt
e e e 0 LA o o o o o e e S L A B AL AL ALY AL BRSNS LR A e e
296.0 298.0 300.0 302.0 304.0 306.0 308.0 310.0
Minimum: -1.5
Maximum: 5.0 5.0 80.0
Mass Calc. Mass mDa PPM DBE i-FIT Formula
302.1545  302.1545 0.0 0.0 12.5 40.3 C21 H20 N O
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