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The purpose of this thesis is to investigate a type system for databases and object-oriented 

programming and to design a statically typed programming language for these applications. Such 

a language should ideally have a static type system that supports: 

polymorphism and static type inference, 

rich data  structures and operations to  represent various data models for databases including 

the relational model and more recent complex object models, 

central features of object-oriented programming including user definable class hierarchies, 

multiple inheritance, and data abstraction, 

the notion of extents and object-identities for object-oriented databases. 

Without a proper formalism, it is not obvious that the construction of such a type system is possible. 

This thesis attempts to construct one such formalism and proposes a programming language that 

uniformly integrate all of the above features. 

The specific contributions of this thesis include: 

A simple semantics for hlL polymorphism and axiomatization of the equational theory of ML. 

A uniform generalization of the relational model to  arbitrary complex database objects that 

are constructed by labeled records, labeled variants, finite sets and recursive definition. 

A framework for semantics of types for complex database objects. 

The notion of conditional typing schemes that extends Milner's typing scheme for h lL to  a 

wide range of complex structures and operations. 

A formulation of the notion of classes and inheritance in an ML style static type system. 



The notion of views that enable us to represent object-oriented databases in an ML style 

static type system. 

A proposal of a polymorphic programming language, Machiavelli, for databases and object- 

oriented programming with static type inference. 

In addition to the above technical contributions, a prototype implementation of Machiavelli that 

embodies most of the features presented in this thesis has been done in Standard M L  of New Jersey. 
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Chapter 1 

Introduction 

1.1 Motivations and Purposes 

The term "impedance mismatch" has been coined [75, 131 t o  describe the phenomenon that the 

structures and operations available in a programming language do not usually match those needed 

for database systems. This problem is painfully familiar to anyone who has used a high-level 

programming language to communicate with a database. This mismatch is particularly unfortunate 

when database programming cannot share the benefits of recent developments in the theory of 

types in programming languages. Among them most important ones are polymorphism [94, 781 

and stat ic  t ype  inference [78, 341, which should have had apparent practical advantages for many 

database applications. A similar situation exists in the field of object-oriented programming. In 

the development of object-oriented languages [44, 331, various practical ideas such as classes and 

multiple inheritance have been proposed and implemented. The advantages of these features seem 

orthogonal to those of conventional notion of types and the integration of them into a type system 

of a programming language is highly desirable. However, a proper formalism that enables us to 

integrate these features in a type system with polymorphism and static type inference has not yet 

been well established. 

The motivation of this thesis is to attempt to solve these mismatch problems and to develop a 

programming language that unifies databases and object-oriented programming in a modern type 

system. Such a language should provide a programming environment where the programmer can 

enjoy both the capability of database management and the desirable features of ob ject-oriented 



programming with all the benefits of a modern type system. Recent studies in the area of object- 

oriented databases [13, 171 and "semantic" data models [58] suggest that such integration is highly 

desirable. Such a language should be also suitable for many other applications whose main interest is 

manipulation of highly structured data such as knowledge representation [18] and natural language 

processing [97]. It is therefore hoped that the integration should also contribute t o  solve the "high- 

level" impedance mismatches between database systems and other applications. 

One desirable feature of a programming language for those data intensive application is s t a t i c  

type-checking. The main objective of static type-checking is to  detect inconsistency in applications 

of operations to  data before program execution. This eliminates certain programming errors at 

early stages of programming development. This should be particularly important for data intensive 

applications. Data structures such as schemes in database systems and class definitions in object- 

oriented programming are large and complex structures. Much of programming errors in these 

applications would show up as type errors  were those data  structures a part of the type structure of 

the program. Therefore a type system in which such errors can be anticipated by a static analysis 

of the program is, I believe, a prerequisite for a good programming language for data intensive 

applications. As argued in [106], static type-checking may also contributes to efficient execution of 

programs by eliminating run-time type-checking. 

Until recently, statically typed languages were justly criticized for being too cumbersome. First, 

they did not allow certain types of generic code; and second the type declarations, while admittedly 

useful as documentation, were often tedious and obvious. With the inventions of polymorphism 

[94, 781 and static type inference [78,34], however, I believe that a static type system can overcome 

these disadvantages. The M L  family of languages - including Standard hlL [48] and hiiranda [lo71 

- are successful examples. In those languages, the programmer is not required to  specify types of 

programs. The type system tnfers  a most general polymorphic type for any type correct programs. 

By this mechanism, those languages achieve much of the flexibility of dynamically typed languages 

like Lisp without sacrificing the advantages of the static type-checking. hloreover, I believe that an 

hiL style type system can achieve a proper integration of databases and object-oriented systems in 

a statically typed programming language if it is extended with the following features: 

1. records and variants to  represent various data structures, 

2. the structures and operations rich enough to represent various data models for databases 

including the relational model [29], nested relations (36, 62, 951 and complex object models 

[59, 14, 41, 



3. user definable classes, data abstraction and multiple inheritance for object-oriented program- 

ming, 

4. object-identities and extents for object-oriented data models [13, 171. 

The last two years have seen considerable research into the integration of records and variants 

in an ML style type system to support an aspect of object-oriented programming [ I l l ,  105, 85, 63, 

38, 931 - including a contribution of a part of this study ([85]) - which shows that the integration 

of the first is now possible. However, there seems no existing approach that integrates the other 

three features in an ML style type system. For 2, the problem is seen by simply noting that no 

existing polymorphic type system can represent even the relational model - perhaps the simplest 

form of a data  model for databases. As pointed out in (101, no existing type system can type-check 

the polymorphic natural join operation. For 3, there have been some efforts [7] and suggestions [63] 

toward the integration of user definable classes, data abstraction and inheritance in a static type 

system. However, to  my knowledge, there is no formal system that integrates these features in an 

M L  style type inference system. hloreover, there appears to be no static type system of any kind 

that successfully deals with 4. The purpose of this thesis is to develop an ML style type system 

that uniformly integrates all the above features and to propose a programming language having 

that type system. 

It is also desirable for the language to  have a clean mathematics semantics. Such a semantics 

should provide a better understanding of the interaction of various features of the language and 

should be useful for further extensions of the language. This thesis also attempts to construct a 

semantic framework for the polymorphic core of the proposed language. 

The following example illustrates the flavor of the language proposed in this thesis. Consider a 

function which takes a set of records (i.e. a relation) with Name and Salary information arid returns 

the set of all Name values that correspond to Salary values over 100K. For example, applied to the 

relation (set of records) 

{ [ N a m e  = "Joe" ,  S a l a r y  = 234561, 

[ N a m e  = " Fredme, S a l a r y  = 1234561, 

[ N a m e  = "Helen",  S a l a r y  = 1320001) 

this function should yield the set {"Fred", " H e l e n l l ) .  Such a function is written in the language as 

follows: 

fun w e a l t h y ( S )  =select z . N a m e  



where z E S 

with z.Salary > 100000; 

T h e  select. .  . where.. .with form is simple syntactic sugar for more basic program structure. 

Although n o  da ta  types are mentioned in the code, the type system infers the following type 

information 

wealthy : { [ ( s l ) Sa la ry  : i n t ,  Name : s z ] }  - i s z )  

which means that  wealthy is a function that takes a homogeneous set of records, each of type 

[ (s l )Sa lary  : i n t ,  Name : sz]  and returns a homogeneous set of values of type sz ,  where s:! is a type 

variable ranging over all types on which equality is defined and [ ( s l ) Sa la ry  : in t ,  Name : sz]  is a 

type variable ranging over arbitrary record types that  contains Salary : int and Name : s? fields. 

Consequently, the type system will allow wealthy t o  be applied, for example, t o  relations of type 

{ [ N a m e  : string, Age : i n t ,  Salary : i n t ] )  

and also t o  relations of type 

{ [ N a m e  : [First : string, Last : str ing],  Weight : int ,Salary : i n t ] ) .  

Moreover, the type system statically checks the type correctness of each application and computes 

the result type by instantiating the type variables. 

1.2 Organization of Thesis 

One of the purposes of this thesis is t o  design a typed programming language that  is rich enough 

to  represent various da ta  structures used in a wide rage of da ta  intensive applications. For such a 

language, recursively defined types and objects are essential. In order t o  treat recursive structures 

uniformly, we use regular trees as a mathematical tool to  represent them. In order to  make this 

thesis self-contained, I have gathered in chapter 2 standard results about regular trees as well as 

some standard mathematical notations and definitions. Everything there is standard knowledge. 

My recommendation to  the reader is to  go over this chapter quickly to  familialize himself notations 

and then t o  use this chapter as references when needed. 

T h e  rest of the thesis consists of the following five investigation t o  achieve the purpose stated 

in the previous section: 



- 
1. an analysis of ML and a construction of a semantic framework for ML polymorphism, 

2. a type system for complex database objects and its semantics, 

3. an extension of ML type inference method to records, variants and complex database objects, 

4. a formulation of classes for object-oriented programming, 

5. a method to represent object-oriented databases in an ML style type system. 

All of these five investigations lead to the proposal of Machiavelli - a polymorphic language for 

databases and object-oriented programming. The first of them gives a framework to understand 

ML's syntactic properties and t o  define a denotational semantics. This will serve as a starting point 

of the development of Machiavelli. The second investigation formulates the structures of domains 

for databases and constructs a type system for complex database objects. Then, by combining the 

above two, the third investigation develops the polymorphic core of Machiavelli as an extension of 

hlL. The rest of the two extend the core language to represent object-oriented systems and object- 

oriented databases. I think that this thesis is best read by reading from cover to cover going through 

all of the above five topics in that order. However, in order to  reconcile diverse interests of the 

readers, I organize each of these five investigations as a relatively self-contained chapter (chapter 3 

to chapter 7). For this reason, I do not make a independent chapter for backgrounds of this entire 

thesis but include an introductory section in each chapter giving enough background for each topic. 

In particular the analysis of ML in chapter 3 and the construction of a framework for database 

domains in chapter 4 can be read independently. The subsequent developments are of course based 

on the above two investigations. However, they can be read using the above two cl~apters as 

references. I will try to provide appropriate reference keys to  major results in chapter 3 and 4 .  

The readers whose main interest is type systems of programming languages and their denotational 

semantics would start with chapter 3 and then go to chapter 5 and 6. The readers whose main 

interest is data  models and database programming may start with chapter 4 continue on chapter 

5 and then go to chapter 7. The readers whose main interest is object-oriented programming and 

programming language design may go directly to  chapter 5 and continue on chapter 6 and 7 .  In 

the rest of this section, I outline these five investigations. 

In chapter 3, I begin our investigation with ML type system. After analyzing the existing 

approachs t o  ML's type inference system and its semantics, an alternative proof system for hlL type 

inference is given. This proof system only requires simple types but is shown to be equivalent (in a 

very natural sense) to the proof system given by Damas and Milner [34]. A semantic framework for 

ML polymorphism is then proposed and an axiomatization of the equational theory of h lL terms 



is given. The proposed framework requires no more semantic material than what is needed for 

modeling the simple type discipline, yet it provides a better account for ML's implicit type system. 

The axiomatization of the equational theory corresponds exactly to the proposed semantics. The 

analogs of the completeness theorems that Friedman proved [37] for the simply typed lambda 

calculus are proved with respect to the proposed semantics. The framework is then extended to 

languages with various type constructors, constants and recursive types (via regular trees). At the 

end of the chapter, it is also shown that certain full abstraction result for typed languages can be 

transferred t o  the corresponding ML like languages. 

Chapter 4 investigates type systems for databases and their semantics and proposes a concrete 

type system for complex database objects. I t  starts the investigation with the analysis of the 

relational model. The relational model is characterized independently of the underlying tuple 

structure. By generalizing this abstract analysis, the notions of dafabase type s y s t e m s  and database 

d o m a i n s  are defined as characterizations of the structures of type systems for databases and their 

semantics domains. Based on these abstract characterizations, a concrete database type system 

for complex database objects and its database domain are constructed. The proposed type system 

allows arbitrary complex structures constructed by labeled records, labeled variants, finite sets and 

recursive definition. Moreover, it is a proper generalization of the relational model to those complex 

structures. In addition to  standard operations for records, variants and sets, jo in  and pro jec f ton  

are available as polymorphically typed computable functions on those complex structures (even on 

recursively defined structures). 

By combining the results of the previous two chapters, chapter 5 defines a programming language 

as an extension of ML. This language is the polymorphic core of Machiavelli - the language I 

propose in this thesis. In order to develop a type inference algorithm for the core language, a new 

paradigm for type inference - the notion of condi t ional  typing s c h e m e s  - is proposed. By allowing 

typing schemes to include conditions on substitutions of type variables, it extends hlilner's method 

uniformly t o  a wide range of structures and operations. Using this mechanism, an algorithm to 

compute a principal conditional typing scheme is developed. At the end of the chapter, extended 

examples of database programming are given. 

Chapter 6 extends the core language with parameterized class declarations, which allows the 

programmer t o  build a hierarchy of classes connect.ed by multiple inheritance declarations. This 

extension achieves a proper integration of multiple inheritance in object-oriented programming and 

ML style abstract data  types with type parameterization. A formal system to type-check class 

definitions and to infer typings of raw terms containing method names are defined. It is then 

shown that the extended language is sound with respect to the type system of the core language 



by showing the property that if a typing is provable in the extended type system then the typirrg 

obtained by unfolding all class names and method names by their implementations is provable in 

the type system of the core language. The type inference algorithm for the core language defined 

in the previous chapter is then extended to  include classes. It is shown that it still computes a 

principal conditional typing scheme for any typable raw terms. 

Chapter 7 presents a method to  represents object-oriented databases. Major properties of 

objects in object-oriented databases can. be captured by the combinations of references and variants. 

I then introduce the notion of views (sets of structures with "identities") and show that various 

operations in object-oriented databases are naturally represented by the combination of viewing 

functions and the operation join and projection generalized in chapter 4. 

Chapter 8 concludes the thesis and discuss some possible topics for further investigation. 

Appendix contains the abstract syntax of Machiavelli (including classes definitions). 



Chapter 2 

Mat hemat ical Preliminaries 

2.1 Basic Notions and Notations 

T h e  domain and the range of a function f are denoted by dom( f )  and ran( f )  respectively. We 

write f : A - B for a function f such that  dom( f )  = A and ran( f )  = B. I f  f is a function 

and A & d o m ( f )  then f ( A )  is the set { f ( a ) \ a  E A ) .  T h e  restrict~on of a function f t o  a set 

A C d o m ( f ) ,  denoted by f rA ,  is the function f' such that d o m ( f f )  = A and f f ( a )  = f ( a )  for all 

a E A. We write { x l  := v l ,  . . . , x,  := v,) for the function f such that  dom( f )  = { x l , .  . . ,x,) and 

f ( x ; )  = v; ( 1  < i 5 n )  (assuming that  all xi are distinct). For a function f : A -- B ,  f {x := v )  is 

the function f' such that  d o m ( f ' )  = A U { I ) ,  f ( x )  = v and f l ( a )  = f ( a )  for all a such that a # x .  

I f  f ,  g are functions such tha t  ran(g)  5 dom( f )  then f o g is the composltzon of f and g defined as 

dom( f o g )  = dom(g) and f 0 g ( x )  = f ( g ( z ) )  for all z E dom(g).  

For a set A ,  P ( A )  is the set of all finite subset of A.  If A is a finite set then we denote by \A1 

the cardinality of A.  Let A. B be a sets. The  product of A and B, denoted by A x B, is the set 

( ( x ,  y)lx E A ,  y E 5). If A is the singleton set { x )  then we write x x B for { z )  x B. Similarly for 

B x x .  

A relation on a set A is a subset of A x A .  If r is a relation on A and z ,  y E A, we usually write 

x r y t o  denote ( z ,  y) E r .  Let r be a relation on a set A ,  x ,  y,  z be any elements in A. r is reftezzve 

i f f  x r x .  r is symmetnc iff x r y implies y r z. r is antzsymmetric iff x r y and y r z implies x = y. 

r is transttive i f f  x r y and y r z implies x r z .  

A preorder on a set A is a reflexive transitive relation on A. A partial order (or oredertng) is 



an antisymmetric preorder. A partial order r on A is a linear order iff for any x ,  y E A either x r y 

or y r  x. 

Definition 2.1 (Preordered Sets and Partially Ordered Sets) A preordered set (PI 5) is a 

set P endowed with a preorder 5 on P. A partially ordered set ( o r  poset) (P, C) is a set P endowed 

with a pariial order on  P. 

When the preorder (partial order) 5 (_C) is understood, we sometimes write P for (P, 5) ((P, g ) )  

and say a preordered set ( a  poset) P. 

Let (PI 5 )  be a preordered set and A P. An element p E P is an upper bound of A i f f  a 5 p 

for all a E A. An element p is a least upper bound of A iff for any element of x E P, p 5 x iff x is 

an upper bound of A. An element p f P is a lower bound of A iff p 5 a for all a E A.  An element 

p is a greatest lower bound of A i f f  for any element of x E P, x 5 p iff x is a lower bound of A.  The 

following property is an immediate consequence of the definition: 

Proposition 2.1 In a poset, least upper bounds and greatest lower bounds are untque. I 

Let (P,E) be a poset and A C_ P. We write U A  for the least upper bound of A and flA for the 

greatest lower bound of A (if they exists). For x, y E P, we write x U y and x fl y respectively for 

U{",Y) and ~{x,Y). 

Definition 2.2 (Pairwise Bounded Join Property) A preordered set (P, 5 )  has the pairwzse 

bounded join property i f f  for any p11p2 E P if {pl,p2) has an upper bound then it has a least upper 

bound. 

Let (P, 5) be a preordered set. For an element p E P, we denote by [p] the equtvaletice class 

containing p defined as [p] = { X ~ X  5 p,p 5 I). 

Definition 2.3 (Quotient Poset) The quotient poset [(P,z)] of a preordered set (P, <) 2s the 

poset (PIS, 5 where PIS = {blip E P) and [p] 5 / ~  [q] iff p 5 q. 

It  is easily verified that the relation i/e in the above definition is well defined in the sense that it 

does not depend on the representatives of equivalence classes. For [(P, s)], the following results is 

an immediately consequence of the definition: 

Lemma 2.1 If (P, 5) has the pairwise bounded join property then so does [(P, s)]. 1 



2.2 Labeled Trees 

We shall use labeled trees to represent types and data structures. In particular, a class of trees called 

regular tree play a central role. The main reference on this subject is a work by Courcelle [32]. In 

this section I have gathered from [32] definitions and standard results (with some adaptation of 

their presentations) that are useful in the subsequent investigation. I include proofs only for those 

results whose presentations differ from those found in [32]. 

2.2.1 Definitions and Basic Properties 

Let X be a set of symbols. A string over A is a finite sequence of symbols in A. \Ve denote by 

S* the set of all string over X .  The empty string is denoted by c .  We identify an element x E .I' 

and the string consisting of the symbol x (the string of length one). The concaienatlon of a string 

a  and a string b is denoted by a  . b .  A string a is a prefix of a string b if there is another string c 

such that b = a .  c .  A prefix a  of a string b is proper if a  # b .  The length of a string a  is denoted 

by la( .  (Note that the notation 1x1 is overloaded.) For a natural number n and x E S, we write xn 

for the string of n x's. For convenience, we define x0 = 6 .  If A  E S* and a  E S', then we denote 

by a .  A the set { a  . b l b  E A )  and by A / a  the set { b ) a .  b E A ) .  

Throughout this thesis, we assume that t.here is a given countably infinite set L of symbols 

(ranged over by 1 ,  11 , .  . .), called labels, equipped with a linear order <. For a technical convenience 

we assume that L is closed under products, i.e. there is an injective function prodcode : ( L  x L )  - C. 
We use the injection prodcode implicitly and treat L as if it satisfies ( L  x L )  c L .  In particular, 

( L  x L )*  L* .  On ( L  x L)*  we define the mappings first*, seconh inductively as follows: 

On { ( a ,  b)la E L' ,  b E L o ,  ( a (  = (bl) ,  we define  air' as follows: 

For a E ( L  x L)', the following equation always holds: 

pair* ( f i r s T ( a ) ,  s e c o n b ( a ) )  = a  



Figure 2.1: An example of a finite labeled tree 

The following definition of labeled trees is due to Ai't-Kaci[G]. Let F be a (not necessarily finite) 

set of symbols. 

I Definition 2.4 (Labeled Trees) A labeled F-tree I S  a functton a : A - F such that 

I .  A is a prefix-closed subset of L*, 1.e. for any a ,  b E C*, if a .  b E A then a E -4, and 

2. A is finitely branching, i.e. if a E .-I then the set { / la  . 1 E A }  is finrte. 

If d o m ( a )  is finite then a is finite otherwise it is infinite. The set of all labeled F-trees and the set 

of all finite labeled F-trees are denoted respectively by T m ( F )  and T(F). 

As an example, let a be the function such that d o m ( a )  = { c ,  1 1 ,  I ? ,  i1 . I ? }  and 

Then a is the tree shown in figure 2.1. As an example of infinite labeled trees, let list'"' be the 

following function: 

dom(l is t in ' )  = { ( r  . tl)"ln 2 0) U 

{ ( r  . ti)" . r ( n  2 0}  U 

{ ( r  . ti)" . lln 2 0 )  u 

{ ( r  . ti)" . r . hdln 2 0 )  



Figure 2.2: An example of an infinite labeled tree 

and 

listint((r . ti)") = sum 

listi"'((r . tl)" . r )  = prod 

listint((r . ti)" . 1 )  = nil 

listint((r . tl)" . r . hd) = int 

Then list'"' is the tree depicted in figure 2.2. This tree can be regarded as a represetation of the 

type of integer lists. 

If a E T M ( F )  and a E dom(a) then a/a  is the tree a' such that dom(crl) = dom(a)/a,  and for 

all b E dom(al),  al(b) = a(a - b ) .  

Definition 2.5 The set of sublrees of a tree a ,  denoted b y  Sub trees (a) ,  1s the set {a/ala E 

dom(a)).  

For any element f E F ,  we also denote by f the one node tree such that dom( f )  = (€1 and 

f ( ~ )  = f .  Let a, , . . . ,  an E T m ( F ) ,  11 , . . . ,  1, E C and f E F .  \Ve write f( l l  = a1 , . . . ,  1, = a n )  

to  denote the tree a such that dom(a) = (€1 u ( I 1  . dom(al))  u .. - U ( I ,  . dom(an)),  a ( € )  = f ,  

a(li . a) = ai(a)  for all a E dom(ai) ( 1  5 i 5 n ) .  For example, an equation that holds for the tree 

list'"' in the above example can be written using this notation as follows: 

/istint - - sum(1 = nil, r = prod(hd = int , ti = list'"')). 

A labeled tree can be regarded as a notational variant of a tree defined in [32] based on a tree 

domain [45]. Let N be the set of natural numbers and N+ be the set of positive ones. A tree 



- 
domain A is a subset of N;  such that ( 1 )  for any a ,  b E N ; ,  if a . b E A then a E A, ( 2 )  for any 

a E N; and n E N + ,  if a .n E A then for any 15  i 5 n,  a .  i E A .  A ranked alphabet is a set of 

symbols F associated with a mapping r : F - N called a ranking function. 

Definition 2.6 Let F be a ranked alphabet with the ranking function r .  A n  F-tree a is a function 

a : A -+ F such that A is a tree domain and for any a E A if r ( a ( a ) )  = n then a . i E A iff 

l s i s n .  

The  set of all F-trees is denoted by t m ( F ) .  For a set F of function symbols, FF is the ranked 

alphabet F x P ( L )  with the ranking function r defined as r ( ( f ,  L ) )  = JLI.  The set of labeled 

trees T m ( F )  has one-to-one correspondence to the set of trees t m ( F F )  Let a E T m ( F )  with 

d o m ( a )  = A .  Define a function 8,  : A -. N; by induction on the length la1 of a E A as follows: 

g o ( € )  = f t  

0 , (a .  1 )  = B ( a ) .  i where i is the natural number such t,hat 1 is the i-th smallest label 

under << in { / la  . I  E A ) .  

Also define a function qa : A - FF as follows: 

~ a ( a )  = ( a ( a ) ,  { / la  ' 1  E A ) ) .  

Now define a function 4 : T m ( F )  - t m ( F F )  as d o m ( d ( a ) )  = Ba(A) and 4 ( a ) ( a )  = t 7 a ( 0 i 1 ( a ) )  

Proposition 2.2 The function t$ : T m ( F )  -+ t m ( F F )  is a btjectton. 

Proof We first show that 8, is injective and therefore 4 is well defined. By simple induction, 

IOa(a)l = lal. Suppose Ba(a) = Ba(b). We need to  show that a = b. The proof is by induction on 

the length of Ba(a).  Suppose Ba(a) = c. Then la1 = 161 = and therefore a = b = c. Suppose 

Ba(a) = c .  i. (a1 = (61 = Icl + 1. Let a = a ' .  I ,  and b = b' . l b .  Then since Ba(a)  = 0,(b) and 

by the definition of 0 ,  Ba(al)  . i = Ba(b l ) .  i. This implies Ba(al )  = Oa(bl). Then by the induction 

hypothesis, a' = b'. By the definition of B a ,  1, = l b  and therefore a = b. 

By the definition of 0 ,  it is clear that Ba(A)  is a tree domain. For the arity restriction, suppose 

r ( ( t $ ( a ) ) ( a ) )  = n.  Then ( 4 ( a ) ) ( a )  = (f ,  (11, .. . , l , ) )  such that ( 1 1 , .  . . , i n )  = {lI(B, ' (a))  . 1 E 

d o m ( a ) } .  Then by the definition of B a ,  a . i E d o m ( d ( a ) )  iff i 5 n. Therefore @(Q)  E t C o ( F F ) .  

For ,O E t m ( F F ) ,  define a function pp on dom(,O) by induction on the length of strings as  follows: 

~ 4 ( € )  = 0 

p p ( a .  i) = pp(a )  - 1 where 1 is the i-th smallest label under << in L 

such that  @ ( a )  = (f ,  L ) .  



and a function up as u p ( a )  = f  iff P ( a )  = ( f ,  L )  for some L. Now define a function II, on t m ( F F )  

such that  d o m ( $ ( P ) )  = p p ( d o m ( P ) )  and $ @ ) ( a )  = ~ ~ ( ~ p ' ( a ) ) .  Similar to the proof that 8, is 

injective, it is shown that pp is injective. By the definition of pp it is also clear that  p p ( d o m ( P ) )  

is prefix closed. Therefore II, is well defined and $ ( P )  E T m ( F ) .  

Let a : A -. F be any element in T m ( F ) .  We show $($(a ) )  = a by showing the properties that 

(1) for any a ,  a  E d o m ( a )  iff a E d o m ( $ ( $ ( a ) ) )  and that ( 2 )  for any a E A, @ ( a )  = ( $ ( d ( a ) ) ) ( a ) .  

Since d o m ( $ ( d ( a ) ) )  = pd( , ) (Ba(dorn(a) ) ) ,  ( 1 )  is shown by showing that for all a E dom(cr), 

~ + ( ~ ) ( 8 , , ( a ) )  = a .  Proof is by induction on the length of a .  Basis is trivila. Let a .  1 E d o m ( a )  and 

i be the natural number such that 1 is the i t h  smallest label in { I J a .  1 E d o m ( a ) ) .  Then we have: 

~ o ( a ) ( B a ( a  ' 1 ) )  

= ~ , a ) ( e a ( a )  . i) 

= ( p + ( a ) ( 6 a ( a ) ) )  . I' where 1' is the i th  smallest label in L such that 

d ( a ) ( O a ( a ) )  = ( f ,  L )  for some f .  

But by the definition of 4 ,  4 ( a ) ( B a ( a ) )  = ( a ( a ) , { l l a  . I  E d o r n ( a ) ) ) .  Therefore 1 = 1' and hence by 

the induction hypothesis, pd(,)(O,(a . I ) )  = a.1.  For (2) ,  suppose $ ( d ( a ) ) ( a )  = f .  By the definition 

of $, d ( a ) ( p y k ) ( a ) )  = ( f ,  L )  for some L. By the definition of 4, a ( ~ ; ' ( p ; / ~ , ( a ) ) )  = f .  But we 

have shown that p+(a)(O,(a)) = a .  This implies that 8,'(p;:a,(a)) = a.  Therefore & ( a )  = f .  

The property 4(II,(a)) = a is shown by similar reasoning. Therefore 4-' = $. 

Because of this connection, we can regard labeled trees as trees and vice versa. In particular, all 

properties on trees shown in [32] can be applied to  labeled trees. In what follows, we will use the 

term trees for labeled trees. 

Lemma 2.2 Let &.a' be trees of the forms a = f ( l l  = a l , .  . . , I n  = a,), a' = f ( l ;  = a; ,  . . . ,I: = 

a : ) .  T h e y  are equal i f f  f  = g ,  { I l , .  . . , I , )  = (1'1,. . . , I ; )  and a l l i  = a l / l i  for all 1 5 i < n. 1 

The  following two lemmas hold only for finite trees: 

Lemma 2.3 (Definition by Structural Induction) There ezists one and only one mapping ( : 

T ( F )  -- A such that 

1. ((f) = b a s e ( f )  for  all f  E F ,  



where base and step are given mappings of the following types: 

base : F - A ,  

step : U F x ( l l x A ) x . . . x ( l n x A ) - A . 1  

{ I ,  ,..., i m l € P ( f )  

L e m m a  2.4 (P roo f  b y  S t r u c t u r a l  Induc t ion)  In order to prove a property P on the set T ( F ) ,  

it suffices to prove that: 

1. for all f E F ,  P ( f  ), 

2. for all f E F ,  (11,. . . , i n }  E P ( C ) ,  and a l ,  . . . ,an E T ( F ) ,  i f  P ( a l ) ,  . . . , P(a,)  then 

P ( f  ( 1 1  = a l ,  . . . , 1, = a,)) .  I 

2.2.2 Substitutions and Unifications on Trees 

We first introduce trees containing variables. Let V be a set of vartables disjoint from F .  We denote 

by T m ( F ,  V) the set of trees generated by the set of function symbols F U V such that there are 

no outgoing edge from variable nodes, i.e. a E T m ( F ,  V )  i f f  a E T m ( F  U I.') and if a ( a )  E V then 

there is no 1 E C such that a - 1  E dom(a) .  T ( F ,  V )  is the set of finite trees in T m ( F ,  V ) .  

Definition 2.7 (Subs t i tu t ions)  A first-order substitution (or simply substttution) 0 is a function 

from V to T m ( F ,  V )  such that B(v) # v for only finitely many v E V .  Let a E T m ( F ,  V) be any 

tree. The result of simultaneous substitution of B(v) for v E V in a ,  denoted by 8*(a) ,  is the tree 

a' defined as: 

d o m ( o l )  = d o m ( o )  u U { a  . dom(O(v))la E d o m ( o ) . a ( o )  = v }  

and 

a f ( a )  = a ( a )  i f a  E d o m ( a )  and a ( a )  @ V ,  

.'(a) = e ( a ( b ) ) ( c )  i f  a = b . c,  o ( b )  E C'. 

Since a and B(v)  (for any v )  are trees, @ * ( a )  is a well defined tree. 

When restricted to  finite trees, the above definiton of application of substitution is equivalent 

t o  the following inductive definition: 

8 ' ( ~ )  = B(v) if u E V ,  

e * i l  = , . . . 1 = , )  = f ( i ,  = B * ( Q ~ ) ,  . . . ,I,,  = e * ( ~ , ) )  
for all f E F ,  (11,. . . , 1,) E P ( C )  



which is also characterized by the unique homomorphic extension of 8 to  T ( F ,  V ) .  T h e  function 

8' on T m ( F ,  V )  can be also defined by a unique extension of the above inductive definition [32]. 

Since various syntactic structures such as pairs and sequences can be regarded as trees, we apply 

8' directly t o  those syntactic structures containing trees. 

If 0 is a substitution, then we denote by dom(8) the set {vlv E V,O(v) # v ) .  Let V be a set of 

variables. A restr ic t ion of a substitution 8 to  V ,  denoted by O r V ,  is the substitution 8' defined as 

follows: 

= 
otherwise. 

Note that  notations dom(8) and 8tV are overloaded with the corresponding notions of functions. 

Distinction of them should be clear from our usage of meta notations and the context. If dom(0) = 

( 1 1 , .  . . , i n }  and 8(v , )  = ai ( 1  < i < n) then we shall use the notation [vl := a l , .  . . , v ,  := a,]  

and a[v l  := a l ,  . . . . v, := a, ]  for 8 and Bg(a) respectively. If 8 ,9  are substitutions then their 

cornpositton is the substitution defined as 8' o 9. In what follows, we will identify the mapping 0' 

with 8.  In particular, we write 8 o 7 for the composition of 8 and 7 

A substitution 8 is ground for a tree a if 8(a )  E T m ( F ) .  A tree a' is a subsiitutaon instance 

(or simply ins tance)  of a if there is some substitution 8 such that  a' = 8(a ) .  If 8 is gound for a 

then a' is a ground instance of a .  

Def in i t ion  2.8 (Unif ier)  A substitution 8 i s  a unifier of trees a ,  P f T m ( F ,  V )  if O(a) = 8 ( P ) .  

.4 unif ier  8  as more general than 8' if there is another  substztutron 9 such that 8' = 9 o 8.  

Substitutions induce the following preorder on trees containing variables: 

Def in i t ion  2.0 Lel 0.0 E TW(F, V ) .  a as more general than 0, denoted by 3 5 a ,  1s there 1s 

s o m e  subslztution 0 such that p = f?(a). 

2.2.3 Regular Trees 

An important class of trees in T m ( F )  is the set of regular trees. Since "'all properties' of regular 

trees are decidablen[32], they provide rich yet computationally feasible datastructures for databases 

and other information systems. 

Def in i t ion  2.10 ( R e g u l a r  T r e e s )  A tree a E T m ( F )  zs rrgular iff the set Sub t rees (a )  is finzte. 

T h e  set of all regular trees in T m ( F )  is denoted by R ( F ) .  



On regular trees, the following properties hold. 

P r o p o s i t i o n  2.3 1 .  T ( F )  C R ( F )  C T w ( F )  

2. A n y  subtree o f  a regular tree is  regular. 

3. The  set of symbols occurring in  a regular tree is finile. 

4. R ( F )  is closed under substitution. W e  mean by this that 6 ( a )  is regular if 6 ( v )  is regular for 

a l l v  E V .  I 

Intuitive way of understanding the definition is that regular trees are trees that contain only 

finite amount of information. This intuition corresponds to  the property that a regular tree has a 

finite representation. There are several equivalent representations of regular trees. Following [ 6 ] ,  

we use Moore machines to  represent them. 

D e f i n i t i o n  2.11 ( M o o r e  M a c h i n e )  A Moore machine is a 5-tuple (Q ,  s ,  F ,  6 ,  o ) ,  where Q is a 

finrte set of states, s is a distinguished element in Q called the start state, F is the set of output 

symbols, 6 is a partial function from Q x L t o  Q called the state transition function such that for 

any q E Q ,  (1 E L1E(q,l) is defined) is finite and o is the output function from Q to F .  

In the above definition, the input alphabet is implicitly assumed to be the fixed set L of labels. 

Because of the restriction on 6 ,  a Moore machine under the above definition behaves like a Moore 

machine under a standard definition (such as in [52]) where the input alphabet L is finite and 6 is 

defined as a total function on Q x L. 

As is done in standard finite state automata (521, we extend 6 to the partial function E' on 

Q x L* as follows: 

6 ' (q , e )  = q 1  

( 1 )  = q' for all I E C such that 6(q ,  I )  = q',  

6'(q,  a . I )  = q" for all a E L*, 1 E L such that 6'(q,  a )  = q', 6 (q1 ,  I )  = q".  

A state q E Q is reachable i f  there is some a E L* such that 6 ' ( s ,  a )  = q.  a is called a path from s to  

q .  Each state q E Q in a Moore machine M = (Q, s ,  F ,  6 ,  o )  represents a function form a subset of L' 

to F. Define Ai(q)  as the function such that d o m ( M ( q ) )  = {a E L016*(q ,a )  = q' for some q' E Q) 

and h!(q ) (a )  = o(6' ( q ,  a ) )  for all a E dom(M) .  

The following theorem establishes the relationship between Moore machines and rkgular trees, 

which corresponds to the equivalence between regular trees and regular systems shown in [32]. 



Theorem 2.1 For any Moore machine M = ( Q , s , F , 6 , o ) ,  M ( q )  E R ( F )  for any q E Q .  Con- 

versely, for any regular tree a € R ( F )  there is a Moore machine M = ( Q , s ,  F , 6 , o )  such that 

a = M ( s ) .  

Proof Let M = ( Q , s ,  F , 6 , o )  be a Moore machine. For any a ,  b E L*, and q E Q ,  if 6*(q ,a  .b) = q' 

for some q', then by the definition of 6', 6*(q ,a )  = q" for some q". Therefore d o m ( M ( q ) )  is prefix 

closed. By the  restriction of 6, {lla . 1 E dorn(M(q) ) )  is finite. Therefore M ( q )  E Tw ( F ) .  Since 

M ( q ) / a  = M ( ~ 5 * ( ~ , a ) )  for all a E d ~ m ( M ( ~ ) ) ,  I S u b t r e e s ( M ( q ) ) )  5 IQI and hence finite. This 

establishes M ( q )  E R ( F ) .  

Let a0 E R ( F )  be any regular tree with the set of subtrees S u b t r e e s ( c r o )  = { a o ,  . . . . a,) .  Define 

the Moore machine Ma,  = ({go,  . . . , q,), qo, F ,  6, o )  as follows: 

1. 6 is the function such that S(p , , l )  is defined and equal to qj iff 1 E d o m ( a i )  and ai l1  = a j ,  

2 .  o is defined as ~ ( q i )  = Q ~ ( c ) .  

Then for any a E C', it is shwon by simple induction on la1 that a E dom(h,L,(qo))  iff a E dom(ao)  

and M,,(q)(a) = f iff a o ( a )  = f. Therefore i\f,,(q) = a. I 

We say tha t  a regular tree a is represented b y  a Moore machine 121 if M ( s )  = a .  

The  following construction on Moore machines will be often useful to  determine various relations 

on regular trees via hloore machines. 

Definition 2.12 (Product Machine) Let z be an equtvalence relatton on C .  Cruen two hloore 

machtnes A i l  = ( Q l ,  s l ,  F 1 ,  b l ,  o l )  and M? = ( Q 2 ,  s 2 F 2 ,  6?, 0 2 ) ,  a product machrne of All and hi2 

modulo E, denoted by ( A l l  x M ? ) / z  , ts the hloore machtne ( Q , s , F , 6 , o )  such that: 

I .  Q = ( Q 1  U ($1) x ( Q 2  U {%)) where $ is a new dtsftnguished symbol that does not appear tn 

M ,  or hl?, 

4.  6 ( ( x ,  y ) , l )  I S  defined and equal to ( x ' ,  y') iff one of the following holds: 

(a )  1 = ( I I , ~ ? ) ,  11 # $ , / I ,  # S, 11 - 1 2 ,  x E Q l ,  y E Q z ,  and 61(x ,11)  = x1,62(yr12) = y', 

( b )  1 = ( 1 1 , 1 2 ) ,  11 # $,I? = 3, x E Q 1 ,  6 1 ( x , 1 1 )  = x ' ,  y' = E and either y = % or there is no 

1; such ihat l l  - 1; and b2(yr 1;) is defined, 



( c )  1 = ( / I , / , ) ,  11 = $, 12 # $, y E Q2,  b2(y, 1 2 )  = y', x' = $ and either x  = $ or there is m 

1; such that 1; 12 and h l ( x ,  1;)  is defined, 

5. o ( ( x i ,  x2))  = ( 0 1 ~ 0 2 )  such thai 0; = o i ( x i )  if xi E Qi otherwise 0; = $ (i f {1,2}) .  

If 21 is the identity relation = on C then we write M1 x M2 for ( M 1  x M2)/=. The construction of 

a product machine is clearly effective. 

For a given equivalence relation 21, & is the equivalence relation on C* defined as follows: 

a.11 2 b  .12 if a  2. b  and 11 2 12. 

For product machines, the following are immediate consequences of the definition: 

Lemma 2.5 Let hill = ( Q l , s l , F 1 , 6 l , o l ) ,  M2 = (Q2 ,~2 ,F2 ,62 ,02 )  and ( Q , s , F , 6 , o )  = ( M I  x 

M2 )I=. 

1. If  6* ( s , a )  = (91, q2), 91 E Ql,q2 E Q2 then firsl'(a) & seconb(a)  and 6;(s l , f irs t ' (a))  = ql ,  

6 ; ( ~ 2 ,  seconb(n))  = 92. Conversely, if there are a ,  b  such that a  & b, 6 ; ( s l ,  a )  = ql and 

6 5 ( ~ 2 , b )  = 92 then b*(s,pair*(a, b ) )  = ( q l ,  q2). 

2. If  6*(s ,  a )  = ( q ,  x ) ,  q  E Q1 then 6; (s l  , f i rs tm(a))  = q  and first'(o((q, I ) ) )  = o l (q ) .  If 6 ' (s ,  a )  = 

( x ,  q ) ,  q  E Q2 then 6; ( ~ 2 ,  seconb(a))  = q  and seconb(o(x,  q ) )  = 02(q) .  

3. If 6 ; (S l , a )  = q  then there is some b  such that first'(b) = a ,  6*(s ,  b) = ( q ,  x) and o l (q )  = 

firsf ( o ( ( q , x ) ) ) .  If 6;(s2,  a )  = q  then there ts some b  such that seconb(b) = a  and 6 ' (s ,b)  = 

(I ,(?) and 02(q) = ~ e ~ ~ n ~ q ,  I ) ) ) .  1 

On Moore machines defined on the same set of output symbols F ,  we define an equivalence 

relation w as M I  zz h!f2 i f f  M l ( s l )  = h f 2 ( s 2 )  where s l ,  s2 are the start  states of A l l ,  12.12 respectively. 

Theorem 2.2 The relation M1  zz M2 is dectdable. 

Proof The idea of the following proof is due to Hopcroft and Karp [53], who defined an algorithm 

to decide whether two finite state automata accept a same regular set or not. 

Let M1 = (Q1,  s l ,  F 1 ,  61, o l ) ,  M2 = ( Q 2 ,  s2, F 2 ,  6 2 ,  02 ) .  We will show that M1 = M2 iff for any 

reachable state q in M1 x M2 ,  q  is of the form ( q l ,  q2) such that q1 E Q l ,  q2 E Q2 and o(q )  = ( f ,  f )  

for some f E F. Suppose 1141 M2 .  d o m ( M l ( s l ) )  = dom(M2(s2 ) )  and for any a  f d o m ( M l ( s l ) ) ,  



o l ( 6 ; ( s l , a ) )  = 02(S; ( s2 ,a ) ) .  Therefore, for any a E L*, there is some reachable ql E Q 1  such 

that S ; ( s l ,  a )  = ql and o l ( q l )  = f for some f E F i f f  there is some reachable q2 E Q 2  such that 

6; ( s2 ,a )  = q2 and 02(q2)  = f .  Then by lemma 2.5, for any reachable state q in M 1  x M 2 ,  q is of 

the form ( q l ,  92) and o(q)  = ( f ,  f )  for some f f F. 

Conversely, suppose M 1  x M 2  satisfies the condition. Then {pair*(a ,  a)la E d o m ( M l ( s l ) ) )  = 

{pair*(a ,  a)la E d o m ( M 2 ( s 2 ) ) )  and for any a E d o m ( M l ( s l ) ) ,  0 (6*( ( s l ,  s z ) ,  pair* ( a ,  a ) )  = 

( O ~ ( ~ ; ( S ~ , ~ ) ) , O ~ ( ~ ; ( S ~ , O ) ) )  = ( f ,  f )  f o ~ s o m e  f E F. This implies M l ( s 1 )  = M 2 ( ~ 2 ) .  I 

By the relationship between Moore machines and regular trees (theorem 2.1) the above theorem 

implies: 

Corollary 2.1 Equality on regular trees is dectdable. 

This property was first shown by Ginali 1411. Alternative proofs can be found in [32] 

Another important property on regular trees is the decidability of the unification problem shown 

by Huet 155): 

Theorem 2.3 (Huet) There is an algorithmU which, given a pair of regulartrees a, /3 E R ( F ,  V ) ,  

returns either a substitution or failure such that if it returns a substitution then it is a most general 

unifier of cr and D otherwise they have no unifier. I 

Finally we define term representations of Moore machines (and therefore regular trees). Let e 

denote terms given by the following syntax: 

where v stands for auxiliary variables, f stands for a given set F of output symbols, and 1 stands 

for the set L: of input symbols. A variable occurrence v is bound occurrence if it is in ( rec  v . .  .) 

otherwise it is free. A term e is proper if it does not contain free variables and if e G ( r e c  v .  e')  

then e' is a term of the form f (11  = e l , .  . . , in = en) .  We denote the set of proper terms generated 

by F by the following syntax: 

e ::= f I f ( 1  = e , .  . . , l  = e )  I ( rec  v .  e ( v ) ) .  

A proper term e denotes the Moore machine Me = ( Q ,  go, F ,  6, o )  defined as follows: 

1 .  Q = { q f  1 for each occurrence f in e ) ,  



2. qo = 4, where f is the outmost occurrence of an output symbol in e ,  

3. o(q,) = f ,  and 

4. 6 is the following function: 

6(qf,  1) = qg if f , g  are occurrences in a subterm of the forms f (. . . , I  = g ,  . . .), 

f( . . . ,  l = g (  . . . )  , . . .  ), or f (  . . . ,  1 = ( r e c  v .g  . . .)  , . . .  ), 

6(qf,l)  = qg if f is the occurrence in a subterm of the form f ( .  . . , I  = v ,  . . .) and 

g is the occurrence in its innermost surrounding subterm of the  form 

(rec v .  g(.  . .)). 

Conversely, for any hloore machine M = (Q, s,  F, 5, o) there is a term enr that  represents iM. Define 

a partial ordering 5 on reachable states in Q as follows: q 5 q' iff the shortest path from s to  q is 

a prefix of the shortest path form s to  q'. We define two mappings X l ,  X2 respectively on Q x Q 

and Q as follows: 

i f q < p  
R ~ ( P >  9) = 

X2(q)  otherwise 

and 

X ~ P )  = ( rec  p .  o(p)(ll = X l ( p ,  6(p, h ) ) ,  . . . , I n  = X I ( P ,  6(p, 1,)))) 

where (11,. . . ,1,} = {116(p, 1) is defined). 

Since 5 is a well founded partial ordering, the above definition is well defined. Then the term X ~ ( S )  

represents M .  

As an example, let M = ({ql, q?, q3), q l ,  { f , g ,  h ,  . . .), 6 ,  o) such that 

h(91,l l)  = qs, 

6(91,/2) = 93, 

6(q?r 13) = 91, 

and 

491)  = fr 

o ( ~ 1 )  = g,  

493)  = h .  

Then TL2(M) = ( r e c  ql.  f ( l l  = ( rec  qz.g(13 = ql ) ) ,  l2 = (rec q3.h))). Note that  a term representation 

of a Moore machine is not unique. The  above machine (modulo renaming of state names) also has 

the following simpler term representation: (rec q. f ( l l  = g(13 = q ) ,  l2 = h) ) .  



Chapter 3 

Analysis of ML : its Syntax and 

Semantics 

This chapter analyzes the syntactic properties of the polymorphic core of the programming language 

ML and proposes a framework for denotational semantics for M L polymorphism. These analyses 

provide bases for the subsequent development of a type system and a language for databases and 

object-oriented programming. Most of the results of this chapter were presented in [84]. 

3.1 Introduction 

XIL is a strongly typed programming language sharing with other typed languages the property that  

the type correctness of a program is completely checked by static analysis of the program - usually 

done a t  compile time. Among other strongly typed languages, one feature that  distinguishes h1L is 

its lmplicit  type system. Unlike explicitly-typed languages such as Algol [log], Pascal [64] and Ada 

[60], ML does not require type specifications of bound variables (formal parameters). T h e  type of a 

program is automatically injerred by ML type system. Through this type inference mechanism, M L  

achieves much of the convenience of dynamically typed languages without sacrificing the desired 

feature of complete static type-checking. As an example, consider the following definition of the 

factorial function in ML: 

fun fact n = if n = 1 then 1 

else n * (fact (n - 1)); 



Besides the notational differences, the above definition has the identical structure to  the following 

definition in Lisp: 

(def un fac t  (n) 

(cond ((equal n  1) 1)  

( t  (mu1 n ( fact  (sub n 1)))))) 

In particular, both of them have no mention of types. However, in ML, the compiler statically 

in f e r s  the type int -> int of fac t .  By this mechanism, the type correctness of hiL programs is 

completely checked at compile time. This contrast with Lisp (and any other dynamically typed 

languages), where type errors such as the one in (defun foo . . . ( fact  '("a" "b" " c M ) ) .  . )  

are not caught until something goes wrong at run-time, often with a disastrous consequence. 

Another important feature of ML is that it supports polymorphzsm in a static type system. This 

is achieved by inferring a m o s t  general  (or prrncipaf)  t ype - scheme  of any type correct program. A 

principal type-scheme of a program represents the set of all possible types of the program. capturing 

the polymorphic nature of the untyped program code. By this mechanism, hlL also achieves much 

of the flexibility of dynamically typed languages in a static type system. For example, from the 

following definition of identity function: 

fun id  x = x ;  

ML type system infers the following type-scheme: 

where 'a is a t y p e  variable representing arbitrary types. As a consequence, id  can be used as an 

identity function of any type of the form T - r. The type correctness of each application of id  is 

statically checked. hloreover, the result type of the application is also statically determined. For 

example, id("aU) yields an expression of type string and id(3)  yields an expression of type i n t .  

There are two major existing approaches to denotational semantics for ML polymorphism; the 

one by Milner [78] (extended by MacQueen, Plotkin and Sethi [72]) based on an untyped language 

and the other by Mitchell and Harper [79] based on an explicitly-typed language using Darnas and 

Milner's type inference system (341. As I shall suggest in this chapter, however, neither of them 

properly explains the behavior of ML programs. Because of the implicit type system, ML behaves 

differently from both untyped languages and explicitly-typed languages. In order to understand 

ML, we need to develop a framework for denotational semantics and equational theories that give 



precise account for ML's implicit type system. The goal of this chapter is t o  propose such a 

framework, which will provide a basis t o  extend safely its type system t o  include various structures 

and operations for databases and object-oriented programming. In the rest of this section, we review 

the two existing approaches in subsection 3.1.1, 3.1.2 and outline our approach in subsection 3.1.3. 

3.1.1 Milner's original semantics 

In [78], Milner proposed a semantic framework for ML based on a semantics of an untyped language. 

He defined the following two classes of types: 

where b stands for base types and t stands for type variables. Here we call them types  and type- 

schemes respectively. Type-schemes containing type variables represent all their substitution in- 

stances and correspond t o  polymorphic types. He defined the preorder of generalness on type- 

schemes as the preorder on trees induced by substitution (definition 2.9),  i.e. p is more general than 

p' iff p' is an  substitution instance of p. He then gave the algorithm W that infers most general 

type-schemes for the following raw terms: 

e ::= x 1 (Ax. e)  I (e e )  ] if e then e else  e I fix x e ( let x = e in e end. 

He interpreted an lllL typing e : p as the semantion assertion [el E [1P], i.e. the denotation of e 

is an element of the denotation of p and sllowed that  the type inference algorithm W is sound under 

this interpretation. The denotation of a raw term is defined as an element of a domain satisfying 

the following domain equation: 

= B1 + . . . + B, + [I/ - V ]  + { w r o n g }  

where B 1 , .  . . , B, are domains corresponding t o  base types and wrong represents run-time error. 

T h e  denotation of a type is defined as a subset of V not containing wrong. The  denotation of a 

type-scheme is defined as the intersection of the denotations of all its instance types. This semantics 

was extended t o  recursive types by MacQueen, Plotkin and Sethi [72]. (See also [51, 30) for related 

studies.) 

This semantics explains the polymorphic nature of M L  programs and verifies that hIL typing 

discipline prevents all run-time type errors. However, this semantics does not completely fit the 

operational behavior of ML programs. As an example, consider the following two raw terms e l  and 



e2 with their principal type-schemes: 

where parentheses are omitted, assuming left association of applications. Under the call-by-name 

version of Milner's semantics, which is also the semantics defined by MacQueen, Plotkin and Sethi, 

the above two raw terms have the same meaning. Indeed, if we were t o  ignore their type-schemes 

and regard them as terms in the untyped lambda calculus, then they would be P-convertible t o  each 

other and would be regarded a s  equal terms. However, ML is apparently a typed language, and as 

terms of ML, these two behave quite differently. For example, under any evaluation strategy, the 

term ( ( e l  1) 2) is evaluated to  2 but ( ( e a  1) 2) is not even a legal term and AIL compiler reports 

a type error. This is one of the most noticeable difference between meanings of terms and should 

be distinguished by any semantics. From this example, we can also see that the equality on hlL 

programs is different from the equality on terms in the untyped lambda calculus. 

Moreover, this semantics requires a model of the set ofall untyped lambda terms, many of which 

do not have typing and therefore d o  not correspond t o  ML programs. 

3.1.2 Damas-Milner type inference system and Mitchell-Harper's anal- 

ysis 

Damas and hlilner presented a proof system for typing judgements of ML [34]. They redefined the 

set of types of h lL  as the following two classes: 

p  is hlilner's type-scheme. We call n  a genenc type-scheme. Free type variables and bound type 

variables are defined as in the second-order lambda calculus (or the polymorphic lambda calculus) 

(94,421. We write n [ p l / t l , .  . . , p n / t n ]  for the generic type-schemeobtained from n  by simultaneously 

substituting each free occurrence t i  by pi.  

Definition 3.1 A generic type-scheme Vt l  . . . t , .  p  is a generic znstance of V t ;  . . . t & .  p' if each t j  

zs not free in Vt;  . . . t A .  p' and p  = p1[t', := p l ,  . . . , t &  := p,] for some type-schemes p l ,  . . . , p,. A 

type n is more general than A', denoied by n' z,, n ,  if x' is a genenc tnstance of a .  

Note that  the relation a' z,, a is decidable. A Damas-hlilner type asstgnmend scheme is a 

function from a finite subset of variables to generic type-schemes. 



Definition 3.2 (Damas-Milner Type Inference System) A Damas-Mi lner  typing scheme is 

a formula of the f o m  I? t> e : x that is derivable in the following proof sys tem:  

r D e : n  
(GEN) if t not free in  r 

I' D e  : V2.n 

r D e l  : i r  r { x : = x }  b e ? :  p 
(LET)  

I' plet  x = e l  ine2  end : p 

We write DM I- I' D e : x if r D e : x is derivable in the proof system. In this formalism, hlL 

terms are typing schemes. We call them Damas-Milner terms. 

Based on this derivation system, Mitcl~ell and Harper proposed another framework to explain 

implicit type system of M L  [ i g ] .  In what follows, we shall only discuss their analysis of the core 

of hIL. However, it should be mentioned that their approach also provides an elegant treatment of 

Standard AIL'S modules [47]. 

They defined an explicitly-typed language, called Core-ShfL. The set of types of Core-SAIL is 

the same as those in Damas-hlilner system. The set of pw- terms  of Core-SAIL is given by the 

following abstract syntax: 

hf ::= x I ( i l l  hf) I (Xx:p.i'll) I ( A 1  p) I ( A t . i l 1 )  I let x :  n = 121 in XI end 

where ( h i  p )  is a type application and ( A t .  111) is a type abstraction. 

Definition 3.3 (Terms of Core-XML) Core-SAIL t e r m s  are formulae of the f o r m  I' b ill : n 

that are derivable zn the following proof sys iem: 



T D M : x  
(TABS) if t  not free in r 

r D ( A t . M )  : V t . a  

r b M 1  : pi-pa r D M 2  : pl 
(APP) 

r b (MI Mz) : P2 

We write MH t- r D A4 : T if r I> 11f : a is derivable from the above typing rules. 

Define the type erasurt of a pre-term M, denoted by e rase (h f ) ,  as follows: 

erase(x)  = x 

erase((Ad1 M 2 ) )  = (erase(ill1) erase(M2)) 

erase((Ax : p. hf)) = (Ax .  erase(M))  

erase((At. i l l ) )  = e rase (M)  

erase((ll1 p ) )  = e rase (M)  

erase(1et x : n = M 1  in M2 e n d )  = l e t  x = era~e(A.1~)  in erase(M2)  end  

They showed the following relationships between Core-XhlL and Damashlilner system. 

T h e o r e m  3.1 (Mi tche l l -Harper)  If M H  t- r b Ad : n then DM t- r b erase(h1) : a.  

If DM t- r b e : a then there ez~s t s  a Core-XML pre-term M such that e ra se (h l )  e and 

M H  t- r b M : n .  hforeover, A1 can be computed effectively from a proof of r b e  : a .  1 

Based on this relationship, they concluded that Core-XML and Damas-Milner system are "equiv- 

alent" and regarded ML as a "convenient shorthand" for Core-XhlL. 

If we could indeed regard ML terms as syntactic shorthands for Core-XML terms then equational 

theory and model theory could be those of Core-XML. Core-XML is a restricted form of the second- 

order lambda calculus whose equational theory and model theory are well investigated (see [20] 



and references therein). However, the above result does not establish any syntactic mapping from 

DamasMilner terms to  Core-XML terms. It only established a correspondence between Core-XhIL 

terms and derivat ions of Damas-Milner terms, which can be infinitely many for a single D a m a s  

Milner term. This means that  there are, in general, infinitely many distinct Core-XML terms that  

correspond to  a given DamasMilner term. For example, consider the Damas-Milner term: 

Any Core-XML term of the form 

for any type-scheme p corresponds t o  the above typing. 

One way t o  overcome this difficulty is t o  choose a particular Core-XhlL term among possibly 

infinitely many choices. Such a choice seems possible if we assume a particular type inference 

algorithm, but we would like t o  avoid such an assumption as a part of a formal characterization 

of hfL. Another possibility would be to  consider a Damas-hiilner term as an equivalence class of 

Core-XML terms. One plausible equivalence relation is the convertibility (or equality) relation. If 

a Damas-Milner term corresponds t o  a (subset of)  convertibility class of Core-XML terms then any 

model of Core-XML in which the convertibility relation is valid yields a semantics of Damas-Milner 

terms. Unfortunately, however, a Damas-Milner term in general do not correspond t o  a (subset of) 

convertibility class of Core-XML terms. As a counter example, consider the following Damas-hlilner 

term: 

{ x : V t . t  - i n t , y : V t . t  - t )  p ( x  y )  : in t .  

T h e  following two Core-XhIL terms both correspond to  derivations of the above term: 

{x : V t .  t  -- in t ,  y  : V t .  t - t )  b ( ( r  (boo1 -+ 6001)) ( y  6001)) : in t ,  

{ x  : Vt .  t - in t ,  y  : Vt .  t  -- t )  b ( ( x  ( in t  - i n t ) )  ( y  i n t ) )  : in t .  

But these two terms are both in normal form and are therefore not convertible. 

iVe also think that  Damas-Milner system and the corresponding explicitly-typed language Core- 

XML are too strong t o  explain ML's type system. As argued by hlilner in [78], i t  is hlL's unique 

feature and advantage that  ML supports polymorphism without int.roducing explicit t.ype abstrac- 

tion and type application. Note that  this account of ML only used non-generic type-schemes. As 

such a language, M L  can be better understood without using generic type-schemes, whose semantics 

requires the construction of very large spaces. 



3.1.3 A simple framework for ML polymorphism - 

From the above analyses, it appears that ML is different from both untyped languages and explicitly 

typed languages. In order to  understand ML properly we will develop a framework for semantics 

that accounts for ML's implicit type system. Such a semantics should be useful to reason about 

various properties of ML programs including equality on programs and operational semantics. 

A strategy was already suggested in Mitchell-Harper approach. We can use an explicitly typed 

language as an "intermediate language" to define a semantics of ML. In this chapter, we use 

the simply typed lambda calculus. Usage of the simply typed lambda calculus to  explain ML 

polymorphism was suggested in Wand's analysis [110], where ML terms are regarded as shorthands 

for terms in the simply typed lambda calculus. Wand's approach, however, shares the same difficulty 

as in Mitchell-Harper's analysis. It only gives meanings to derivations. Moreover, it does not deal 

with polymorphic terms, i.e. those terms whose type-schemes contain type variables. 

We first define an inference system and semantics of ML iyptngs (typing schemes that do not 

contain type variables) and then generalize them to ML terms (i.e. typing schemes). Parallel 

to the relationship between Damas-hlilner system and Core-XML, derivations of typings in our 

system correspond to terms of the simply typed lambda calculus. Here is the crucial point in the 

development of our semantic approach: we show that if two typed terms correspond to derivations 

of a same ML typing then they are &convertible (theorem 3.7). This guarantees that any semantics 

of the simply typed lambda calculus, in which the rule ( P )  is sound, indeed yields a semantics of 

hlL typings. We regard a general ML term as a representation of a set of typings. The denotation 

of an ML term is then defined as the set of denotations of the typings indexed by the set of types 

represented by its t,ype-scheme. For example, we regard the denotation [0 D Ax. x : t - t ]  as the 

set {(r - r, ~ X X  : T. X ] ) I T  E Type). 

Equational theories are defined not on raw terms but on typingschemes. Two typing schemes are 

equal iff their type-schemes are equal and ram terms are convertible to each other. This definition 

correctly models the behavior of ML programs. Type-schemes determine the compile-time behavior 

of programs and raw terms determine their run-time behavior. iVe then prove the soundness and 

completeness of equational theories. This confirms that our notion of semantics precisely captures 

and justifies the informal intuition behind the behavior of M L  programs. 

Our semantic framework can be extended to languages with constants, type constructors and 

recursive types (via infinite regular trees). Our semantic framework can also be related to certain 

operational semantics. tVe show that if a semantics of the typed lambda calculus is fully abstract 

with respect to  an operational semantics then the corresponding semantics of M L  is also fully 



abstract with respect to  an operational semantics that satisfies certain reasonable properties in 

connection with the operational semantics of the typed lambda calculus. This results enables us 

to transfer various existing results for full abstraction of typed languages to ML-like languages. A 

limitation to  this program is due t o  the fact that our interpretation needs the soundness of the rule 

( , B )  Such models, of course, while good for "call-by-name" evaluation, are not computationally 

adequate for the usual "call-by-value" evaluation of ML programs. Thus, our full abstraction result 

seems helpful only for ML-like languages with "lazy" evaluation strategy such as Miranda [lOi], 

Lazy ML [ l l ]  and Haskel [54]. 

3.2 The Language Core-ML 

IVe first present our framework for the set of pure raw terms, the same set analyzed in [34, 791. 

LVe call the pure language Core-hIL. Later in section 3.5 we extend our framewoiks to  a language 

allowing constants, arbitrary set of type constructors and recursive types (via regular trees). 

3.2.1 Raw terms, types and type-schemes 

LYe assume that we are given a countably infinite set of variables V a r  (ranged over by x). 

Definition 3.4 (Raw Terms of Core-ML) The  set of raw t e rms  of Core-ML (ranged over b y  

e )  1s defined b y  the followzng abstract syntax: 

e ::= x 1 ( e  e )  I Ax. e I let x = e in e end 

The notion of bound variables and free variables in a term are defined as in the lambda calculus 

[49, 151 with the additional rule that x in let x = el in ez end is a bound variable. We write F l ' ( e )  

for the set of free variables in e .  IVe write e [ e l / x l , .  . . , e n / x n ]  for the raw term obtained from e by 

simultaneously replacing free occurrences of 2 1 , .  . . , x, by e l , .  . . , en with necessarv bound variable 

renaming. 

In order to show various properties of raw terms by induction, we define their complexity 

measure. We first define let degree that is to  measure nesting of let expressions. A let dgree 

asslgnmen L is a function form a subset of variables to natural numbers. Define let dgree of e 

under  L ,  denoted by l d ( L , e ) ,  by induction on the structure of e as follows: 



- 
(el ez)) = Id(L,e1) + ld(L,e2) 

ld(L, Ax. e) = l d ( ~ t ~ ~ ~ ( ~ ) \ ~ ~ ) ,  e) 

ld(L, let x = el in e2 e n d )  = 1 + ld(L{x := ld(L, el)}, ez) 

For this mesurement, we have the following substitution property: 

Lemma 3.1 For any raw terms el,e2, 

Proof T h e  proof is by induction on the structure of e l .  We only show the case for e? l e t  x = 

e i  in e5 e n d .  Other cases can be easily shown by using the induction hypothesis and the definition 

of ld(L,e).  Suppose e2 le t  y = e$ in e: end :  

1. Subcase x = y: 

ld(L{x := ld(L, e l ) ) ,  l e t  x = e i  i n  e i  e n d )  

= 1 + ld(L{x := ld(L,el)){x := ld(L{x := l d ( ~ , e l ) ) , e i ) ) , e q )  

(by the definition of ld(L, e)) 

= I +  ld(L{x := ld(L{x := l d ( ~ , e l ) ) , e i ) ) , e i )  

= 1 + ld(L{x := l d ( ~ ,  et[el/x])}, e i )  

(by the induction hypothesis) 

But since ( le t  x = e i  in ez end)[el/x] let x = ei[el/x] i n  e: e n d ,  by the definition of 

ld(L, e) ,  

ld(L, (let  x = e i  in e i  end)[el/x]) = 1  + ld(L{x := l d ( ~ ,  e i [e l /x])) ,  e;). 

Therefore ld(L{x := Id(L,el)) ,ez)  = ld(L,ez[el/x]). 

2. Subcase x # y: 

ld(L{r := ld (L ,e l ) ) , l e t  y = e i  i n  e; e n d )  

= 1 + ld(L{x := ld(L, el)}{y := ld(L{x := l d ( ~ ,  el)),e:)),e$) 

(by the definition of ld(L, e)) 

= 1 + ld(L{y := ld(L{x := l d ( ~ , e l ) } , e i ) ) { x  := l d ( ~ , e l ) } , e i )  

(since z # y) 

= 1 + ld(L{y := ld(L{x := ld(l,el)),e~)),e~[el/+]) 



(by the induction hypothesis) 

= 1 + l d ( L { y  := l d ( ~ ,  e : [ e l / x ] ) ) , e ~ [ e l / x ] )  

(by the induction hypothesis) 

But since ( l e t  y = ea in e$ e n d ) [ e l / x ]  = l e t  y = e a [ e l / x ]  in e : [ e l / x ]  e n d ,  by the definition 

of l d ( L ,  e ) ,  

I d ( L ,  ( l e t  y = e: in e: e n d ) [ e l / x ] )  = 1 + l d ( L { y  := l d ( ~ ,  e i [ e l / x ] ) ) , e ; [ e ~ / x ] ) .  

Therefore l d ( L { z  := l d ( L ,  e l ) ) ,  e:!) = l d ( L , e ? [ e l / x ] )  

Def in i t ion  3.5 ( C o m p l e x i t y  M e a s u r e  of  R a w  T e r m s )  The  compleztty of a raw t e r m  e 2s the 

lexzcographzcal patrtng of l d ( 0 . e )  and the sl:e of e .  

By lemma 3.1, we immediately have the following property of the complexity of raw terms: 

P r o p o s i t i o n  3.1 1. For any raw term e l , e 2 ,  the compleztty of let x = el in e? e n d  1s strtctly 

greater than  that o f  e 2 [ e l / x ] .  

2. For a n y  raw t e r m  e ,  the compleztty of e zs strzctly greater t h a n  that of any proper subterm of 

e .  I 

The  intended meaning of l e t  x = el in e? e n d  is to bind x to  el in e:! and to  denote operationally 

the expression e : ! [ e l / x ] .  For a raw term e ,  the let expanszon of e ,  l e texpd(e) ,  is the raw term 

without let-expression obtained from e by repeatedly replacing the outmost suhterm of the form 

l e t  x =  e l  in e:! e n d  by e 2 [ e l / x ] .  

Proposition 3.2 For a n y  rntu term e ,  le iezpd(e)  exzsts. 

P r o o f  Sinse each expansion step strictly reduces the complexity of the raw term, the expansion 

process terminates, yielding a unique raw term. I 

We assume that we are given a set Li of base types (ranged over by b )  and a countably infinite 

set T v a r  of type variables (ranged over by t ) .  

Def in i t ion  3.6 ( T y p e s  and Type-scl lemes o f  C o r e - M L )  T h e  set of types,  T y p e  ranged over 

by r ,  I S  gtven by the followtng abstract syntax:  



The set of type-schemes, T s c h e m e  ranged over by p, is  given by the following abstract syntax: - 

Since T s c h e m e  can be regarded as a set of trees, the notion of substitutions, instances e.t.c. we 

defined in section 2.2.2 apply to T s c h e m e .  

3.2.2 Typings, typing schemes and terms of Core-ML 

A type assignment A  is a function from a finite subset of V a r  to T y p e .  

Definition 3.7 (Core-ML Typings)  A typlng is a formula of the form A De : T that 1s derivable 

in  the following proof sysiem: 

d D e l [ e z / x ] : r  d D e ? : r l  
(LET) 

A   let I= e? i n e l  end  : T 

In the rule (LET), r' may be any type. IVe write M L  I- A  D e : T if A D e : r is derivable in the 

above proof system. A dertuatton A of A  D e : T is a proof tree for A  D e : T in the above proof 

system. 

For this proof system we have the following properties: 

L e m m a  3.2 I f  M L  t A  b e : T then d o m ( A )  _> FL'(e). 

Proof  By induction on the complexity of e .  I 

L e m m a  3.3 I f  ML I- A  b e : r then M L  I- A' b e  : T for any A' such that A  A' (as graphs). 

Proof  By induction on the complexity of e. I 

A type assignment scheme C is a function from a finite subset of Var to Tscheme .  



Def in i t ion  3.8 ( T y p i n g  s c h e m e s )  A typing scheme is a  formula of the form C D e : p such that 

f o r  a n y  s u b s t i t u t ~ o n  9 ground for  C and p ,  M L  I- B(C) D e : B(p) .  

In other words, a typing scheme is a formula whose ground instances are typings. JYe write 

M L  I- C b e  : p if C b e  : p i s  a typingscheme. 

In [78, 341, an ordering is defined only on type-schemes (generic type-schemes) and a type 

inference algorithm is defined with respect t o  a given type assignment. Here, we follow [79] and 

generalize the ordering on type-schemes (5 ,  definition 2.9) to  typing schemes and characterize the 

type inference problem based on the ordering. 

Def ini t ion 3.9 ( P r e o r e d e r  on T y p i n g  s c h e m e s )  A typing scheme C1 D e  : pl is more general 

than a  typing scheme C 2  D e  : p2, denoted by C2 D e  : p? Z,, S1 [> e  : P I ,  if ( C 2 l d o r n ( " ) ,  P 7 )  5 

( E l ?  P I ) .  

We also use Z,, as a relation on the set of pairs of a type assignment scheme and a type-scheme 

and write ( S ? ,  p?)  ZML ( E l ,  p1 )  if if ( C 2 r d 0 m ( C l ) ,  p ? )  5 ( S 1 ,  p1) .  Note that  more general also means 

less entries in a type assignment scheme. A typing scheme X D e  : p is most  general (or pnnczpal)  

if 2' D e  : p' z,, C D e  : p for any typing scheme C' D e  : p'. We then have: 

Proposition 3.3 IfS P e : p is a  principal typing scheme then { A  b e  : T J A  D e  : T z,, S D e  

p )  = { A  D e  : T ~ M L  I- A D e : T ) .  

P r o o f  T h e  inclusion 

is by definition of typing schemes and by lemma 3.3. The  inverse i~iclusion is an immediate conse- 

quence of the facts that typings are also typing schemes and 2 b e  : p is principal. 1 

This means that  a principal typing scheme represents the set of all provable typings. In what follows. 

we regard typing schemes as representatives of equivalence classes under the preorder z,,. This 

equivalence relation corresponds t o  the relation induced by renaming of type variables (without 

"collapsing" distinct variables). 

Def in i t ion  3.10 ( T e r m s  o f  C o r e - M L )  T e r m s  of Core-h lL  am (not necessarzly pnnczpal) typzng 

schemes.  



According t o  this definition, it is not clear whether it  is decidable or not that a given string of 

symbols is a term or not. The answer is positive as a consequence of the decidability of type- 

checking problem below. 

Non principal typing schemes correspond to programs with (partial) type specifications which 

are supported in ML and can be easily added to our definition. A term containing type variables 

corresponds t o  a polymorphic program in Core-ML. A raw term e in a term C [> e : p represents 

the computational contents of the term and determines its run-time behavior. The pair ( S , p )  

represents the typing contexts in which e is meaningful and determines the compile-time behavior 

of the term. 

3.2.3 Type Inference Problem 

Under our characterization, the problem of type-checking in Core-hIL is stated as follows: 

given a type assignment scheme C ,  a raw term e and a type-scheme p, determine whether 

M L  F S D e : p or not. 

The type inference problem is stated as follows: 

given a raw term e ,  determine the set { ( S ,  p ) J M L  I- S D e : PI.  

The following theorem, which is essentially due to Hindley [SO], solves both of the problems: 

Theorem 3.2 There  rs a n  a l g o n t h m  P 7 S  whach, g tven any  r a w  t e r m  e ,  y te lds  e t ther  fazlure o r  

( S , p )  s u c h  that  tf P 7 S ( e )  = (X,p)  then  S D e : p 1s a pnnc tpa l  typzng s c h e m e  otherwtse  e h a s  n o  

typ"'9. 

Proof In the following proof, we assume a linear order < on I 'ar and treat ( S , p )  as a tree 

( ( I ,  : pl ) ,  . . . , (z,, p,), p) where ( 11 , .  . . , I,) = dom(E). S(zi) = pi and 11 < . . . < I,. Algorithm 

P 7 S  is defined by cases. In the following description of the algorithm, if unification U(. . .) fails 

then the algorithm returns fazlure.  

? 7 S ( e )  = (C,p)  where 

(1)  Case e G I: 

E = {I := t )  ( t  fresh) 

p = t  



(2) Case e ( e l  en ) :  

let 

( E l ,  P l )  = P T S ( e 1 )  

( C Z ,  ~ 2 )  = P T S ( e 2 )  
1 2; = C ~ { X :  := t l ,  ..., x: :=tA)  where 

{ x : ,  . . . , x : )  = dom(C2) \ d o m ( C ~ ) ,  ( t i , .  . . , tk fresh) 

S ;  = S 2 { x :  := t : ,  . . . , x$ := t ;}  where 

{x: ,  . . . , x:} = dom(C1) \ dom(C?),  ( t : ,  . . . , t; fresh) 

0 = U ( ( C { ,  pl 1, ( X I ? ,  p2 -+ t ) )  ( t  fresh) 

in 

s = e(s',), 
p = 9( t ) .  

(3)  Case G Ax. e  1 : 

let 

( 2 1 ,  P I )  = P T S ( e i )  

in 

if x E dom(S1) then 

S = ~ , r d o m ( ~ l ) \ { " l ,  

P = S i ( 1 )  - P i  

else 

T - T  
- - - I ,  

p = t - pl ( 2  fresh). 

(4) Case e let x  = el in e? end: 

let 

( S 1 , p l )  = P T S ( e l )  

( E 2 , ~ 2 )  = P 7 S ( e ? [ e l l r l )  

2: = S 1 { x ~  : = t i ,  . . . ,  x i  : = t i )  where 

{zi,. . . , x k )  = dom(C2) \ d o m ( E l ) ,  ( t i , .  . . , I,!, fresh) 

PI ,, = P -2{x: := t: ,  . . . ,2b := t : )  where 

{x: ,  . . . , x,?,,) = dom(C1)  \ dom(C2) ,  ( t : ,  . . . , t$ fresh) 

s = U ( S ; ,  S',) 



Since in each case P T S  is called on raw terms with strictly smaller complexity, the algorithm 

always terminates. 

In order to  show the desired property of the algorithm P T S  we use the following results: 

Lemma 3.4 If P T S ( e )  = ( C , p )  then F V ( e )  = dom(C) .  

Proof By induction on the complexity of e.  The basis is trivial. The induction step is by cases in 

terms of the structure of e. Cases other than Ax. e' are immediate consequences of the induction 

hypothesis. Suppose e  - Ax. e'. By the induction hypothesis, F V ( e l )  = dom(C1) .  I f  x  E F V ( e J )  

then d o m ( C )  = d o m ( C 1 )  \ { x )  = F V ( e t )  \ { I )  = F V ( A x .  e l )  otherwise d o m ( C )  = d o m ( S 1 )  = 

F V ( e f )  = F V ( A x .  e l ) .  I 

We also use the following property of the unification algorithm U ,  which follows directly from 

theorem 2.3: 

Proposition 3.4 Let a ,  b  be t e n s  that do no share common vanables. For any term c ,  c 5 a,  c 5 b 

i f l U ( a ,  b) = 8 and c 5 f?(a) for some 0. I 

Using these properties, we show the necessary property of the algorithm by showing the property 

of principal typing scheme: M L  I- A D e  : T iff A D e  : r  zML E D e  : p (proposition 3.3). Proof 

is by cases in terms of the structure of e.  The type assignment schemes ( S , S 1  etc ), type-schemes 

( p I p l  etc) and type variables (1, t 1  etc) in the following proof refer to  those in the corresponding 

cases of the description of the algorithm. 

1. Case e  z x :  M L  I- A b x  : T iff x  f d o m ( A )  and A ( x )  = r. Then by the definition of ZML, 

M L  t- A [> x  : r i f f  (A ,  T) z,, ({x := t ) , t ) .  

2 .  Case e  - ( e l  e n ) :  By the typing rules, M L  I- A b ( e l  e z )  : r iff 

(A)  there is some rl such that M L  F A  b el : r1 - r and M L  I- A D e:, : r l .  

By the induction hypothesis, ( A )  iff 

(B) there is some TI such that ( A ,  TI  - T )  ZML ( C I , P I ) ,  (A ,  T I )  5ML ( & , P Z ) .  



By lemma 3.2 and lemma 3.4, dom(A)  _> FV(e1)  U F V ( e 2 )  = dom(C1) U dom(C2) .  Then by 

the constructions of C:, Ci, ( B )  iff 

(C) there is some r1 such that (A ,  rl -, r )  ZML ( C i , p l )  and (A ,  r l )  ZML (Z',, p,). 

Since t introduced in the algorithm is fresh, (C) iff 

(D) there is some rl such that (A ,  7 1  -, T )  ZML (Xi ,  P I )  and ( A ,  7 1  + T )  ZML (xi, ~2 - 1 ) .  

By definition of P 7 S ,  ( C ; , p l )  and ( C i l p 2  + 1 )  do not share type variables. Therefore by 

proposition 3.4, (D) iff there is some r1 such that ( A ,  TI  - T )  Z,, (e(C;) ,  B ( p 2  - 1 ) )  where 

U((C\, p l ) ,  (C!,, p2 --, t ) )  = 8. Therefore M L  t- A D (el  e?) : r  iff ( A ,  r )  ZML ( C ,  p). 

3. Case e  Ax. e l :  By the typing rules, M L  t- A P Ax. el : r  iff there are some r l , r?  

such that T = r1 + T? and M L  t- A { x  := T I )  D el : 9 .  By the induction hypothesis, 

M L  t- A { x  := r l }  D el : T? i f f  ( A { x  := r l } , ~ ? )  zML (C1 ,p l ) .  Suppose x  E dom(C1). Then 

( A { z  := r l ) , r 2 )  ZML ( C 1 , p l )  iff ( A , r l  - 7 3 )  ZML - PI ) .  Suppose 

x  dom(C1) .  Then since t  is fresh ( A { x  := r1 ) , r2 )  ZML ( X I ,  P I )  iff (d.71 - 7 2 )  ZML 

( S l ,  t -- p1). Therefore M L  F A D Ax. el : T iff (A ,  T )  zML ( S ,  p ) .  

4. Case e E let x  = el in e2 end. By the typing rules, M L  t- A b let x = el in e? end : r iff 

( A )  there is some T I  such that M L  t- A D el : rl and M L  t- A P e2[e l / x ]  : T 

By the induction hypothesis, (A)  iff there is some rl such that ( A ,  T I )  Z,, ( E l ,  p i ) ,  ( A ,  r )  ZML 

(C2,p2) .  Similar to the case for e  z (el e?) ,  ( A , T I )  ZML ( S i r  P I  ), and ( A ,  r )  ZML ( X 2 ,  p-2) 

iff (A,  r l )  ZML (O(S',), B ( p l ) ) ,  (A ,  r )  ZML ( 6 ( Z i ) ,  B(p2))  here U ( C ; ,  C(?) = 6.  Therefore 

M L  t- A D let x  = el in e? end : r iff (A. r )  zML ( E , p ) .  

(End of the proof of theorem 3.2) 1 

The decidability of the type-checking problem follows from the decidability of the relation Z1 b e  : 

p1 zML Z? b e  : p2. The set { ( S , p ) l M L  t- S  b e  : p} is determined by the principal typing 

scheme using proposition 3.3. 

3.2.4 Relation to Damas-Milner System 

The typing derivationsystem for Core-AIL is significantly simpler than that of Damas-Milner system 

and has a particularly simpler proof for the existence of a complete type inference algorithm as 

demonstrated above. Nevertheless, for closed terms, they are essentially equivalent in the sense of 



the following two theorems (theorem 3 . 3  and 3 . 4 ) .  For any generic type-scheme x = V t l  . . . t,. pol 

define the type scheme p, as p, = po[tl  := t i , .  . . , t ,  := t k ]  where t ; ,  . . . , t i  are fresh type variables. 

T h e o r e m  3.3 For a closed r a w  t e r m  e ,  if DM t- 0 D e : x t h e n  M L  t- 8 D e : p,. 

Proo f  The proof uses the following lemmas: 

L e m m a  3.5 For a n y  e ,  r ,  x ,  DM I- r D e : ir i f l  DM I- r r F v ( e )  De : x .  

Proo f  By induction on the height of a derivation of r D e : x.  I 

L e m m a 3 . 6  F o r a n y e , r , i r ,  DMI-r  D e  : x i f f D M t - I '  D e  : p,. 

P r o o f  Suppose DM t- r D e : ir. Then by the rule ( I N S T ) ,  D M  I- r D e : p,. Suppose 

DM t- r b e : p,. Since t i ,  . . . , t i  are fresh, by repeated applications of the rule ( G E N ) ,  DM t- 

r D e : V t i  . . . t k .  p,. But since ir z,, V t ;  . . . t k .  p,, by the rule ( I N S T ) ,  DM I- r D e : x .  I 

L e m m a  3.7 I f  DM I- r D e : x t h e n  it  has  a derivat ion s u c h  ihat  all appl icat ions  of the  rule 

( INST)  are ammediate ly  preceded by a n  ins tance  of t h e  a t t o m  s c h e m e  ( V A R ) .  

Proo f  We first show the following property on typing derivations: 

if a derivation A of r t> e : p contains a sub-derivation A' of r D e : p' then p is a 

substitution instance of p' .  

By the typing rules, only rules applied between the root of A' and the root of A are either ( G E N )  

or ( I N S T ) .  The property is then shown by a simple induction on the number of the rules applied 

between the two roots. 

The lemma is proved by induction on the structure of e using the above property. 

1. Case of e x :  Any derivation of r b x : x must have the node r b x : r(x)  a t  its leaf and 

can only contain applications of the rules ( G E N )  and ( I N S T ) .  It is then shown by induction 

that  r must satisfies either x z,, r(x)  or x = r ( x ) .  If r(x)  = x then the one node typing 

derivation tree 



satisfies the condition. Otherwise x z,, r ( x )  then the following derivation tree satisfies the 

condition: 

2.  Case of e (el e 2 ) :  By the typing rules, lemma 3.6 and the property shown in the beginning 

of the proof, there are derivations A l ,  A? respectively of r D  e l  : pl -- p,  and r P e? : pl 

for some p l .  Then by the induction hypothesis, there are derivations A;, A; of r t> e l  : 

p1 - Pr and r P e? : pl satisfying the condition. Then we have the following derivation of 

J? D  ( e l  ez )  : pn satisfies the condition: 

Since the type variables introduced in p,  are fresh, by repeated applications of the rule ( G E N ) ,  

we have a derivation of r D ( e l  e ? )  : n  satisfying the condition. 

3. Case of e G Ax.e:  By the typing rules and the pr0pert.y shown in the beginning of the proof, 

there is a derivation A of r { z  := p l )  D e : p? such that  p, = p l  - p?. B y  the induction 

hypothesis. there is also a derivation A' of r { x  := p l )  b e  : p2 satisfying the condition. Then 

we have the following derivation of J? D A x .  e  : pl - pr, satisfies the condition: 

Similar to  the case for e  G ( e l  e l ) ,  there is a derivation of D A x .  e  : n  satisfying the 

condition. 

4. Case of e  l e t  x = e l  in e? e n d :  By the typing rules and the property shown in the 

beginning of the proof, DM F T { x  := n l )  b e?  : p, and DM I- r b e l  : n' for some n'.  By 

the induction hypothesis, there are derivat.ions A1. +I2 respectively of T { x  := n ' }  b e ?  : p  and 

r b e l  : n1 satisfying the condition. Then we have the following derivation of r b l e t  x = 

e l  in e? e n d  : p, satisfies the condition: 

A1 A? 
(LET)  

I? b l e t  x = e l  i n  e2 end : p ,  

Similar to  the case for e  ( e l  e ? ) ,  there is a derivation of J? b l e t  x = e l  in e2 e n d  : x 

satisfying the condition. 



Lemma 3.8 There i s  some  sl such that D M  t r D e l  : sl and D M  t I'{x := s l }  D e? : s i f f  

there is s o m e  s:! such that DM t- r D e l  : s 2  and DM I- r D e 2 [ e l / x ]  : s.  

Proof In  order t o  prove this lemma, we need the follopwing theorem proved by Damas and hlilner 

[34] : 

Proposition 3.5 (Damas-Milner) Let r be any  type assignment scheme.  If e has a typing under 

r then there is a generic type scheme n such that for any typing scheme D M  I- r D e : n', 

x' ZDM s .  I 

This is a direct corollaries of a stronger theorem shown in [34] .  If e has a typing scheme under T ,  

then we call a generic type scheme satisfying the above property as pnnczpal typzng scheme under 

r. Using this proposition, we proved the lemma by showing the following stronger property: 

Let xl be a principal type scheme of e l  under r. DM I- r{x := n l )  D e? : a iff 

DM t- r D e ? [ e l / x ]  : s iff 

Since it is easily verified that the provability of typing schemes is preserved by renaming of bound 

variables. we assume without any loss of generality that  x is distinct from all bound variables in e .  

By lemma 3 .5  we can also assume that  x dom(r). 

Let A be a derivat.ion for DM t- r{x := s l )  D e? : x .  Let A' be a tree obtained form A by 

replacing each occurrence of x in A by el and deleting all the entry x := x l .  Only typing rules 

in DM t- that  depend on the structure of terms are the rules ( V A R )  and ( A B S ) .  All other typing 

rules depend only on types of subterms. Therefore the applications of the typing rules in A' other 

than (ABS)  and ( V A R )  remain valid inference steps. Since x is distinct from any bound variables 

and the rule ( A B S )  does not depend on the st.ructure of the body e of the lambda term Xy. e ,  the 

applications of the rule ( A B S )  in A' are also valid inference steps. A' is therefore a valid derivation 

tree except for the subtrees of the form: 

Now let A" be the tree obtained from A' by replacing all subtrees of the above form by a derivation 

for 

r D e l  : xl 



Since .xl is a principal typing scheme under r such a tree always exists. Then A" is a valid derivation 

tree for D M  t- r D  e 2 [ e l / x ]  : T. 11 

We now prove the theorem. Suppose D M  t- I' p e  : n. By lemma 3.5 and lemma 3.6, D M  t- 

0 D  e  : p,. We need to  show M L  I- 8 D  e  : p,. Proof is by induction on l d ( 0 ,  e ) .  

Basis:  By lemma 3.7 and the fact that  e does not contain let-expression, 0 D e  : p ,  has a derivation 

A such that  it does not contain applications of (GEN) or (INST).  This means that  any ground 

instance of A is a derivation in M L  t-. Therefore M L  I- 0 D e  : r for any ground instance (A, r )  

of ( C , p , ) .  Hence M L  t- 0 b e  : p,. 

Induct ion Step:  Proof is by cases in terms of the structure of e .  Cases other than that  of e 

l e t  x  = el in e? end are immediate consequences of the corresponding induction hypothesis. 

Suppose D M  t- 0 D l e t  x = el in e? end : p, .  Then by typing rules and the property shown 

in the proof of lemma 3.7, D M  k {x := x l )  p e2  : p, and D M  I- 0 D  e l  : n l  for some T I .  

By lemma 3.8 and 3.6, this is equivalent t o  D M  I- 0 D  e 2 [ e l / x ]  : p, and D M  I- 0 b e l  : p' for 

some pi .  Since l d ( 0 , e ? [ e l / x ] )  and l d ( O , e l )  are strictly less than ld(0,let x = e l  in e? e n d ) ,  by the 

induction hypothesis, M L  I- 0 D e 2 [ e l / x ]  : p, and M L  I- 0 p e l  : p' for some p i .  Then by the 

rule (LET) in M L  t-, M L  t- 0 D l e t  x = e l  in e2  end : T for any instance r of p,.  This implies 

M L  t- 0  let x  = el in e2 end : p, I 

Theorem 3.4 For  a closed raw t e r m  e ,  if M L  t- 0  D e  : p then DM t- 0 b e  : p .  

Proof By induction on l d ( 0 , e )  using lemma 3.8. If 1 4 0 ,  e )  = 0 then any derivation in M L  I- 

is also a derivation in D M  F. Induction step is by cases in terms of the structure of e .  Cases 

other than l e t  x  = e l  in e:! end are immediate consequences of the induction hypothesis. Suppose 

M L  t- 8 D  let x = e l  i n  e2 end : p .  By typing rules in M L  I-, M L  I- 0 t> e ? [ e l / x ]  : p 

and M L  t- 0 D  e l  : p' for some p'. By the induction hypothesis. D M  I- 0 D e 2 [ e l / x ]  : p and 

D M  t- 0 b e l  : p'. Then by lemma 3.8, there is some n such that  D M  I- { x  := x )  b e? : p and 

D M  t- 0 D el : x .  Then by the rule (LET) in D M  t-, D M  I- 0 b l e t  x  = el  in e? end : p.  I 

As we have demonstrated through theorem 3.2, 3.3, and 3.4, hIL's syntactic properties are 

understood without using generic type-schemes. This corresponds to  our semantics which only 

requires the semantic space of the simply typed lambda calculus. However, our typing derivation 

system suggests a potentially inefficient type inference algorithm. The  algorithm P'TS we defined 

in theorem 3.2 is indeed potentially inefficient compared to  algorithm W defined in [78]. P7S infers 

a typing scheme of l e t  x = el i n  e? end by inferring a typingscheme of e ? [ e l / x ] .  This may involves 



- 
repeated inferences of a typing scheme of el because of multiple occurrences of x in e z ,  which is 

clearly redundant. The extra typing rules for generic type-schemes in DamasMilner system and the 

corresponding control structures of the algorithm W can be regarded as a mechanism to  eliminate 

the redundancy and could be considered as implementation aspects of ML type inference. 

3.2.5 Equational theories of Core-ML 

An equation of an equational theory of Core-ML is a formula of the form C D el = e? : p. 

Definition 3.11 (ML-theory) A n  ML-theory consists of a gtven set of equatzons E M ,  satisfying 

the properties: 

S D el  = e? : p E E i f l  for any ground instance (d,~) of ( S , p ) ,  A D el = e? : r E E 

and the following set of rules: the axiom schemes ( a ) ,  ( P ) ,  (v), the Inference rule scheme (0 obtatned 

from respective rule schemes tn the untyped lambda calculu [I51 by tagging S and p, the set of rule 

schemes for usual equational reasoning (i.e. reflexivity, symmetry,  transtttvzty and congruence), the 

following axiom scheme: 

( l e t )  S D (let x = el in e? end) = ( e z [ e l / x ] )  : p, 

and the following inference rule scheme: 

S D e l = e ? :  p 
( t h i n n i n g )  zf C c 2' (as graphs). 

S' D el = e? : p 

We call a set of equations E M ,  satisfying the above property a5 a set of JlL-equattons. \Ye write 

E M ,  I-,, E D el = e? : p if S D e l  = e? : p is derivable from the axioms and E M ,  using the 

inference rules. X set of hlL-equations E M ,  determines the ML-theory ThML(E , , , ) .  \Ve sometimes 

regard Th , , (EML)  as the set of all equations that are provable by the theory. 

hlL-theory is intended to model euality among terms of Core-hlL. For this purpose, we are 

usually interested in only those euqations that correspond to pairs of Core-hIL terms. 

Definition 3.12 (Well typed ML-equation) A n  equation C b el = e? : p 1s well typed i f  

M L I - S  b e l  : p a n d M L I - S b e ? :  p. 

\Ve also say that  a set of hlL equations is well typed if all its elements are well typed. It is easily 

checked that  if E M ,  is well typed and axioms are restricted t o  well type equations then T h M L ( E M L )  



is also well typed. In what follows, we restrict a set of ML-equations E M ,  and axioms to be well 

typed ones. For example, C D ((Ax. e l )  e 2 )  = e l [ e 2 / x ]  : p is an instance of the axiom shceme ( P )  
only if M L  i- C D ( ( A x .  e l )  e z )  : p and M L  t- C D e l [ e 2 / x ]  : p.  

The theory Th,,(8) corresponds to the equality on Core-ML terms. We write C D el =,, e2 : p 

for @I-,, C D e l  = e:! : p. 

If we exclude the rule of symmetry from the set of rules, then we have the notion of reductions. 

\Ve write EM, I-,, C D e l  -+ e2 : p if C D e l  : p is reducible to C D e2 : p using EM, and 

the set of rules. In particular, the empty set determines the pr]-reducibility, for which we write 

A P e l  - ,,e2 : T. 

3.3 Semantics of Core-ML 

In this section, we first define the explicitly-typed language T A  that corresponds to derivations of 

Core-ML typings. We then define the semantics of Core-hlL relative to a semantics of TA.  

3.3.1 Explicitly-typed language T A  and its semantics 

The set of types of T A  is exactly the set T y p e  of types of Core-ML. The set of pre-terms is given 

by the following abstract syntax: 

Definition 3.13 (Te rms  of  T , I )  The set of t e n s  of T;Z t s  the set of formulae of the form A b 

A1 : T that are derzvable 111 the followtng proof sys tem:  

Note that in this system, a formula has at most one derivation. IVe write T A  I- A D M : r if 

A D M : T is derivable from the above typing rules. T A  is clearly a representation of the simply 

typed lambda calculus [49], whose equational theory and model theory are well understood. 



An equation of an equational theory of T A  is a formula of the form A D MI = M2 : T .  - 

Definition 3.14 (TA-theory) A T A - t h e o y  consists of a given set ETA of equattons and the fol- 

lowing set of rules: the aziom schemes ( a ) ,  ( P ) ,  (7) and the inference rule scheme (<) of the simply 

typed lambda calculus [49], the set of rule schemes for usual equational reasoning and the following 

inference rule scheme: 

A b M 1 = M 2 :  T 
(thinning) if A C A' (as graphs) 

A' D M1 = M:, : T 

We write ETA I - , ,  A D M I  = Af?  : T if A p A l l  = M? : r is derivable from the axioms and ETA 

using the inference rules. A set of TA equations ETA determines the TA-theory ThTA(ETA). JVe 

sometimes regard ThTA(ETA)  as the set of all equations that are provable by the theory. 

Parallel to ML-theory, we deifine well typed T A  equations. 

Definition 3.15 (Well typed T A  equation) An equatton C D M1 = Ma : p zs well typed zf 

T A  t- S D M 1  : p and T A  t- Z b : p .  

We also say that a set of T A  equations is well typed if all its elements are well typed. It is easily 

checked that if ETA is well typed and axioms are restricted to  well type equations then ThTA(ETA) 

is also well typed. In what follows, we restrict a set of T A  equations ETA and axioms to be well 

typed ones. 

The following notations and notions are defined parallel to those in Core-ML: A P MI =,, 
h.iz : T, the notion of reductions, ETA F T A  A D iCll -.-. ~bf?  : T ,  and A D Aill - ,,Ail2 : r .  

Following Friedman, (371 we define a model of T A  as follows: 

Definition 3.16 (E'rames and Extensional Frames) A frame ts a pnzr (F, e )  where F 2s a set 

{ F , ~ T  E T y p e )  such that each F, ts non-empty and . ts a farntly of b ~ n a y  operatzons .,,,,, : 

F, ,,,, x F,, --. F,,. A frame ts ettensronal tf 

We usually write 3 for (3, e). Given a frame 3, a map 4 : F,, - F,, is representable if there is 

some f E F,,,,, such that V d  E F,, .$(d) = f d  (f is a representattve of 4 ) .  In an extensional 

frame, representatives are unique. For a frame 3 and a type assignment A, an FA-environment E 

is a mapping from dom(A) to  U 3  such that ~ ( z )  E Fa(,) We write ~ n v ~ ( d )  for the set of all 

3A-environments. 



Definition 3.17 (Models of T A )  A n  eztensional frame 3 is a model of T A  lf there ts a semantic 

mapping [I on ternas of T A  satisfying the following equations: for any E E ~ n v ~ ( A ) ,  

[A D x : T I E  = &(I) 

[A D AX : 71. hif : T I  -+ ~ 2 1 ~  = the representative o f &  such that 

(Vd E F, , ) (4(d)  = [A{x := r l )  b M : T ~ ] E { X  := d } )  

[A D ( M  N )  : T I E  = [A P M  : r l - - + r ] ~ o [ A  D N  : T ~ ] E  

Note that for a given extensional frame, such a semantic mapping does not necessarily exist, but if 

one exists then it is unique. If M is a model, then we write Mu] for the unique semantic mapping. 

An equation A D M = N : r is valid in a model M ,  write M /=,, A I> M = N : r ,  if 

,M[A D M : 70 = M[iA D M : TI. Let V a l i d r A ( M )  be the set of all T.4 equations that are 

valid in M .  Write M k,, F for F C V a l i d r A ( M ) .  For T A  we have the following soundness and 

completeness of equational theories [37]: 

Theorem 3.5 (Friedman) Forany m o d e l M  and any Th- theory  Th,,(E,,), i f M  kT,, ETA then 

T h T A ( E T A )  C_ V a l i d r A ( M ) .  For any TA-theory T ,  there ezists a model? such that V a l i d r A ( ? )  = 

T .  1 

3.3.2 Relationship between TA and Core-ML 

Parallel to the relationship between Damas-Milner system and Core-XhIL, derivations of Core-ICIL 

typings correspond to terms of T A .  Define a mapping typedterm on derivations of Core-h,IL typings 

as follows: 

(1) If A is the one node derivation tree 

then t y p e d t e r m ( A )  = x. 

( 2 )  If A is a tree of the form 

A1 
( A B S )  

A D Ax. e l  : r1 + r2 

then t y p e d t e r m ( A )  = Ax : T I .  t y p e d t e r m ( A l ) .  



(3) If A is a tree of the form 

A 1 A 2 
(APP)  

A b (el e2) : T 

then typedterm(A) = (typedterm(A1) typedterm(A2)) 

(5) If A is a tree of the form 

A1 A2 
(LET) 

A b le t  x = el i n  e2 e n d  : T 

then typedterm(A) = typedterm(Al). 

The type erasure of a pre-term A1, denoted by erase(M),  is the raw term defined as follows: 

erase(x) = x 

erase((hfl A t 2 ) )  = (erase(hfl) erose(Al?)) 

erase((Ax : p. h l ) )  = (Ax. erase(M)) 

The following theorem corresponds to theorem 3.1: 

T h e o r e m  3.6 If T A  I- A b M : T then there i s  a derivation A of A b erase(h1) : T in Core- 

ML such that typedterm(A) --= 121. If A is a typing derivation of A D e : T then letexpd(e) z 

erase(typedterm(A)) and T A  I- A typedterm(A) : T. 

P r o o f  The first statement is easily proved by induction on the structure iLl 

The second statement is shown by induction on the hight of A.  JVe only show the case for let 

expression. Suppose 4 is a typing derivation of A b let  x = e l  in  el, e n d  : T then A must be of 

the form: 

A 1 A2 
(LET)  

A b l e t  z = e l  i ne2  e n d  : T 

By the definition of typedterm, typedterm(A) = typedterm(A1). By the typing rules, A1 is 

a derivation of the typing A b e2[el/x] : r.  By the induction hypothesis, letexpd(e2[el/x]) - 
erase(typedterm(A)) and T A  i- A b typedterm(A) : T.  But by the definition of letezpd, 

letezpd(e?[el/x]) = letexpd(1et x = el i n  e? e n d ) .  I 



Unlike the relationship between Core-XML and Damas-Milner system, we also have the following 

desired property: 

Theorem 3.7 If AI ,A2 are iyping derivadions of a  same typing A D e  : r then the following 

equation holds: 

A D t yped term(A1)  =,, t y p e d t e r m ( A 2 )  : r .  

Proof The proof uses the following lemmas: 

Lemma 3.9 Lei A D M : r  and A D e  : T be respectively TA term and Core-ML term such 

that e r a s e ( M )  E e .  If A p M -- ,,All : r then there I S  e' such that e r a s e ( M 1 )  e' and 

A D e  -. ,,el : r .  Conversely, if A D e  - ,,el : r  then there 2s M' such that e r a s e ( M 1 )  r e' 

and A D M - ,,M1 : r .  

Proof This is proved by observing the following facts: (1) there is a one-one correspondence 

between the set of pr]-redexes in M and the set of Brj-redexes in e ,  ( 2 )  if erase((Xx : T. M I )  hl?) 

( ( A x . e l )  e z )  then erase(h.ll[x := M 2 ] )  G e l [ x  := e?] ,  and ( 3 )  if erase(Ax : T .  M x )  3 (Ax .ex )  then 

e r a s e ( M )  z e.  I 

Note that this result, combined with the property of the reduction rule ( l e t )  and the connection 

between T A  terms and typing derivations of M L  implies that if T A  has the strong normalization 

property then so does Core-ML, which was suggested in [49, remark 15.321. Technical difficulty of 

treating bound variables mentioned in [49. remark 15.321 was overcome by our presentation of TA. 

Lemma 3.10 If two ierms A D : r  and A b All : T are In d-normal form and e r a s e ( h f l )  E 

erase(M2) then M 1  M?.  

Proof The proof is by induction on the structure of A f l .  The basis is trivial. The induction step 

is by cases. 

1. Case of M I  E Ax : T I .  M i :  By the typing rules, T A  t A { x  := T I )  D Mi : r? for some r? 

and r = rl T?. Since erase(h11) E erase (M2) ,  M? must be of the form Ax : T I .  M; such 

that erase(l21;) E erase(h1;). By the typing rules, T A  k A{r := r ; )  b Af2 : ri for some 

6 and r  = T;. Therefore rl = T I ,  r? = rT:. By definition, A{x := r l )  b M i  : r2 and 

A { x  := 71) b 111; : T? must be also in &normal form. Then by the induction hypothesis, 

MI M; .  This implies M1 r M?. 



2. Case of M I  r (. . . (3: M t ) .  . - M r ) :  By the typing rules, T A  I- A D M: : rf' for some rk 

1 < i < n. It is shown by simple induction that A ( z )  = T: - r: -. - - .  -- 71" -+ r.  Since 

erase(M1) erase(M2),  M2 must be of the form ( -  . . ( z  M;). . . M;) and e r a s e ( ~ f )  E 

erase(Mi) ,  1 < i 5 n. Then similarly we have T A  t- A D M; : r; for some r;, 1 5 i 5 n and 

A ( z )  = ri -+ r; -. . - . -+ r; - T .  This implies r; = r;, 1 < i 5 n.  Then by the induction 

hypothesis, ~f M;,  1 5 i 5 n. Hence we have M1 5 M2. 

Since M I  is in /3-normal form, we have exhausted all cases. I 

We now prove the theorem. Let M I  E typedterm(Al) ,  M2 E typedterm(A2). Also let A D Mi : r ,  

A D M; : T be normal form terms such that A D M I  -..,,Mi : r and A D M2 Mi : T (such 

M;, M; always exist). By lemma 3.9, there are normal form terms d D el : T and A b e n  : T 

such that erase(M;) E e l ,  erase(M4) e2 and A D e  -, ,,el : T and A D e  --. ,,e? : T .  By 

the uniqueness of normal form, el  e?. Thus erase(Mi)  erase(M4). Then by lemma 3.10, 

M ;  E Mi .  (End of the proof of theorem 3.7) I 

3.3.3 Semantics of Core-ML 

We define the semantics of Core-ML relative to a model of T A .  We first define the semantics of 

Core-ML typings and then "lift" them to general Core-hlL terms. 

Defini t ion 3.18 (Semantics  of  Core-ML Typings)  The semantics of Core-hlL t  yptngs rela- 

tive to a  model M of T A  is defined as 

for some denvatton A  for A D e  : T .  

By theorem 3.7 and the soundness of T A  theories (theorem 3.5), this definition does not depend 

on the choice of A .  

For a given type assignment scheme C, the set of admissible type assignments under S denoted 

b y  T A ( C )  is the set { A J d o m ( C )  C dom(A) ,  38. ~ l ~ ~ ~ ( ~ ) =  O(C)) .  Under a given type assignment 

A ,  the set T P ( A ,  C  De : p )  of the types associated with a term C De : p is the set ( ~ 1 3 8 .  (dtdom(') 

, r )  = O(C,p) ) .  For a model M = ( { F ,  (T  E T y p e ) ,  e)  and a set of types S, we write IIT E S. F, for 

the direct product (i.e. the space of functions f such that dom( f )  = S ,  f ( T )  E F,). 

Defini t ion 3.19 (Semantics  of Core-ML Te rms)  The semantics MiC b e  : p I M L  of a Core- 

AIL term C  De : p relatitfe to a modelM is the functton which takes a t y p e  assignmeni A  € T A ( C )  



and an environment E E EnvM(A) and returns an element in I I r  E T P ( A ,  C D e : p). F,, defined 

as follows: 

M [ C  D e : pjMLAc = { ( r , M [ A  D e : r I M L ~ ) l r  E T P ( A ,  C D e : p)) 

For example, 

M 10 D Ax. x : t 4 tJMLA& = {(r + T, MIA D Ax : r .  z : T -* r ] ~ ) ( r  E Type) 

Now if each element of F,,,,, is a function from F,, t o  F,, then by the extensionality property of 

M,  we have 

MI0 D Ax. x : t --+ tJMLAc = { ( r  -* T ,  i d ~ ~ ) l r  f Type) 

where i dx  is the identity function on X. 

3.4 Soundness and Completeness of Core-ML Theories 

Let M be a given model of TA. M also determines the semantics of hIL. We say that  an equation 

A D el  = ez : p is valid in M ,  write M kML S D el  = ez : p, iff .M[C D el : pnML = M[IC D e:, : 

pjML (as mappings). Let V a l i d M L ( M )  be the set of all equations in Core-ML that  are valid in M .  

Write M bML F for F E V a l i d M L ( M ) .  

Theorem 3.8 ( S o u n d n e s s  o f  C o r e - M L  T h e o r i e s )  Let EM, be any set of AIL-equations and M 

be any model. If M k,, EM,, then ThM,(EML) 5 V a l a d M L ( M ) .  

P r o o f  Define mappings @. Q between sets of AIL-equations and sets of TA-equations as: 

@(EM,)  = {A D hl = hr : r13(A D el  = e:, : r)  E E,,L such that  

erase(h1) r letezpd(el), erase( N )  E letezpd(e?)) 

E T A  = (2 b el  = e:, : plV(A, T )  if (A,  T) 5 ( C ,  p) then 3 (A b M I  = hf:, : r)  f ETA 

such that  erase(llf l)  E leterpd(el), erase(M2) E Ieiezpd(e2)} 

T h e  proof uses the following lemmas 

L e m m a  3.11 For any set of ML-equaltons E,,,, \k(Th,,(@(EML))) = ThML(EM,). 

P r o o f  By our assumptions on EM, and the properties of the rules of ML-theories, S b el  = 

e:, : p E ThML(EML) iff for all ground instance ( A ,  r )  of (C ,p ) ,  A b el = es : r E ThML(EML). 



- 
By definition of 9 ,  Q(Th,A(O(EML))) also has this property. It is therefore enough to show that 

A t> el = e2 : T E ThML(EML) iff A D e l  = e2 : r  E 4(ThTA(O(EML)) ) ,  which is proved by the 

relationship between sets of rules of T A  and those of Core-ML and the definition of O. I 

L e m m a  3.12 For any model M ,  V a l i d M L ( M )  = Q(Va l id rA(M) ) .  

Proo f  Suppose C I> e l  = e2  : p E V a l i d M L ( M ) .  For any ground instance ( A ,  r )  of (C,p) ,  

M I A  D el : r jML = M I A  t> e2 : r jML.  Let A l l  A2 be derivations of A b e l  : T and A D e? : T 

respectively. Then erase(typedterm(Al)) letezpd(el), erase(typedterm(A2)) - letezpd(e?), and 

M [ A  D typedterm(Al) : T] = M [[A D typedterm(A2) : r ] .  Therefore by definition C D e l  = 

e;! : p E Q(Val idTA(M)) .  Conversely, suppose 5 t> e l  = e2 : p E O(Va l id rA(M) ) .  Let ( A , T )  

be any instance of (C, p ) .  By the definition of O, there are M I ,  M? such that,  A b fill = M z  : 

r  E V a l i d T A ( M ) ,  erase(Ml) letezpd(el), erase(M2) E le texpd(e2) .  Let A l ,  A2 be derivations 

of A D e l  : r and A D er, : r  respectively. Then it is shown by using lemmas 3.9 and 3.10 that 

A b typedterm(A1) =,, M1 : T and A b typedterm(A2) =,, hf? : T. Then by theorem 3.5, 

Mud b e l  : rBML = Mud t> e? : r J M L  Since ( A , T )  is arbitrary instance of ( C , p ) ,  we have 

C D e l  = e? : p E V a l i d M L ( M ) .  I 

We now conclude the proof of the theorem. Suppose M bML EML. By the definitions of 9 and 

M [ ] ,  M ETA @(EM,). By theorem 3.5, Th,,(@(EML)) v a l i d T A ( M ) .  Since O is monotone 

with respect to  c, by lemma 3.11 and 3.12, T h M L ( E M L )  E V a l i d M L ( M ) .  ( E n d  of the proof of 

theorem 3.8) 1 

T h e o r e m  3.9 (Rela t ive  Completeness  of Core-ML Theories)  For any set of AIL-equations 

EM, and any model JM, tf V a l i d T A ( ~ )  = ThTA(@(EML) )  then ValidML(..2.i) = Thh+L(EhfL) 

P r o o f  By lernrna3.11 and 3.12. 1 

Then by theorem 3.5, we have: 

Coro l la ry  3.1 (Comple teness  of Core-ML Theor ies )  For a n y  hfL-theory G ,  there erzsts a 

model 1; such that Va l idML( ( j )  = G .  I 

As a special case of theorem 3.9, for any model M ,  we have V a l i d M L ( M )  = ThML(0)  i f  

V a l i d r A ( M )  = ThTA(0) .  Now let S be a full t y p e  structure, that is, let Fb be a countably infinite 

set, F,,,,, be the set of all functions from F,, to F,, and is the function application. Friedman 

showed that (371 Val id rA(S )  = ThTA(0) .  Then we have: 



C o r o l l a r y  3.2 v a l i d M L ( S )  = ThML(0) .  I 

This means that  =,, is sound and complete for the full type structure generated by countably 

infinite base sets. Since =,, is decidable (see remark on lemma 3.9), this implies that the set of all 

true ML equations in- the full type structure is decidable. 

3.5 Extensions of Core-ML 

As a programming language, Core-ML should be extended t o  support recursion and various da ta  

types including recursive types. This is done by adding constants and extending the set of types 

and type-schemes as (possibly infinite) trees generated by various type constructor symbols. \Ye 

call the extended language ML.  

We assume that we are given a set of type constructor symbols Tycon (always containing the 

function type constructor : -). As observed in [31, 1101, an appropriate class of infinite trees t o  

support  recursive types is the set of regular trees. 

Def in i t ion  3.20 ( T y p e s  and T y p e - s c h e m e s  of ML) The set Type  of types of 1l1L is the set 

R ( T y c o n )  of regular trees. The set Tscheme of type-schemes is the set R ( T y c o n , V )  of regular 

trees. 

As an example of a recursive types, the following infinite type-scheme in a term representation we 

have defined in section 2.2 represents a polymorphic list type: 

( rec  v .  nil + ( t  x v ) )  

where + and x are binary type constructors representing sum and product and nil is a trivial type 

which has only one element representing the empt.y list. The following recursive type corresponds 

t o  the type of the set of all pure lambda terms: 

(rec  v .  v -- v ) .  

We also extend the language with a set of constant symbols. In order to  preserve ML's implicit 

type system, we assume that  we are given a set Const  of pairs of a constant symbol and a type. 

We write c : T for an element of Cons t .  

Def in i t ion  3.21 (Raw Terms of ML) The set of raw terms of h f L  is  given by the followtng 

syntax: 

e ::= x 1 c 1 Ax. e I ( e  e )  I l e t  x = e i n  e end 



where c stands for the set of constant symbols that appear in Const.  

For example, products can be introduced by assuming the following set of constants 

pair : TI + ~2 - (r l  x r2)  for each TI, 72, 

first : (r1 x 72) -+ TI for each TI,  1 2 ,  

second : ( r l  x 12) -4 TZ for each TI, ~ 2 .  

Definition 3.22 (Typings of  ML) The typing derivation system for ML is the one obtained from 

that of Core-ML by adding the following axiom: 

On the types of constants, we need the following assumption to  preserve the existence of principal 

typing scheme and decidability of type inference problem: 

Assumpt ion  3.1 For each constant symbol c appears in Cons t ,  there is a type-scheme p such that 

the set of all ground instances of p coincides with the set { T I C  : T E C o n s t ) .  

We write c : p for such a type-scheme p. This condition is satisfied by many standard data 

structures. For example. the sets of types of pair, f i r s t ,  second are represented by the following 

type-schemes: 

pair : t1 - t 2  -L ( t l  x t ? ) ,  

first : ( i  x t 2 )  + t l ,  

second : ( t l  x t 2 )  - t ? .  

As we will see in chapter 5, however, there are data structures and operations essential to databases 

and object-oriented programming that do not satisfy the assumption. 

Under this assumption, the type inference problem of M L  is still decidable. 

T h e o r e m  3.10 There is an algorithm T ~ S +  which, given any law ierm e satisfying assump- 

iion 3.1, yields either failure or ( C , p )  such that if T7S+(e)  = ( C , p )  then C b e : p is a principal 

typing scheme otherwise e has no typtng. 

P r o o f  Algorithm ~ 7 s '  is obtained from algorithm P 7 S  defined in the proof of theorem 3.2 by 

adding the case: 



(5) Case e r c: 

C =  0, 

p is the type-scheme such that  c : p 

Clearly this addition does not change the termination property of the algorithm. 

T h e  proof that  p'TSf has the desired property is obtained by adding the case for e r c to the 

inductive proof of lemma 3.4 and the inductive proof of the property that  M L  I- A D e : T iff 

A D e : T zML C h e : p in the proof of theoremg 3.2. Both of them are immediate consequences 

of the definitions. 

All other parts of the proof remain valid without any change. In particular, the extension of the set 

of types t o  regular trees does not change the proof since the proof of theorem 3.2 uses an unification 

on regular trees. I 

With those extensions, hIL uniformly support both recursive types and recursion. For recursion. 

the special term constructor fix x. e (which is built in fun declaration in Standard ML) is no longer 

necessary. As observed in [72], if recursive types are allowed then fixed point combinators are 

typable. For example, the following well known fixed point combinators: 

and 

y,,,,,, = (XzAx. x(:zx))(X:Xx. x(:rx)) 

have the following principal typing schemes: 

and 

M L  0 b Yturing : ( t  t )  t -  

Moreover, the algorithm PTS can infer these principal typing schemes. Later in section 5.6 we will 

consider another fixed point combinator given by Plotkin [go] that  represents recursive function 

definition under the call-by-value evaluation strategy. 

T h e  extended language also infers recursive types for recursively defined functions. This elim- 

inates the mandatory requirement of recursive type declarations in Standard hIL. As an example 

suppose we have the following primitives for sum types: 



- fun s e l f  x = x x;  
> val s e l f  : (rec  v .  v --, t )  

- fun loop x = se l f  se l f  x; 
> val loop : t l  --. t2  

- fun i s n i l  1 = i f  i s 1  1 then t rue  e l se  f a l s e ;  
> val i s n i l  : ( t  1 + t 2 )  -* boo1 

- fun ca r  1 = i f  i s n i l  1 then loop Null e l se  f i r s t  (outr  1 ) ;  
> val car  : ( I l  + ( t 2  x t 3 ) )  --. t2 

- fun cdr 1 = i f  i s n i l  1 then loop Null e l s e  second (outr  1 ) ;  
> val cdr  : ( t l + ( t 2 X t 3 ) ) ' t 3  

- fun length 1 = i f  i s n i l  1 then 0 e l se  1 + (length (cdr 1)); 
> val length : ( r e c  u .  ( t l  + ( t 2  x u ) )  - int 

Figure 3.1: Examples of Type Inference with Recursive Types 

is1 : (t1+t2)--.booll  

in1 : t l  - ( t l  + t 2 ) ,  

inr  : 2 1  -+ (t? + t l ) ,  

out1 : ( 1 ,  + t 2 )  - t l l  

outr : ( t l  + t 2 )  -L t2  

together with the primitive constants pair,firsi and second for products we have defined earlier. Fig- 

ure 3.1 shows type inference for recursive types by simulating an interactive session using Standard 

ML conventions. 

In order to define a semantics of the extended language, we need to extend the simply typed 

lambda calculus T A  and its semantics. We call the extended language T A + .  

Definition 3.23 (Syntax  of T A + )  The set of pre-terms of T A +  is the set of pre-terms of T A  

eztended with the set of typed constants { c T l c  : r E C o n s t ) .  The proof system for typings of T A +  

is the one obtained from that o f T A  b y  adding the following rule: 

The notion of models is also extended with constants. 

Definition 3.24 (Models  of T A + )  A n  ettended frame is a frame mith a function C on constants 



such that C ( c T )  E F,. An eztensional eztended frame is a model of T A +  if there is a semantic 

mapping I] on terms o f T A +  satisfying the conditions of  the model o f T A  (definition 3.17) and the 

following equation: 

[A D c* : rje = C ( c T ) .  

Breazu-Tannen and Meyer extended [19] Friedman's soundness and completeness of equational 

theories t o  languages with constants and a set of types satisfying arbitrary constraints. Since the 

set of types of T A +  satisfies their definition of type algebm, the soundness and completeness of 

equational theories (theorem 3.5) still holds for T A + .  

T h e  relationship between T A f  terms and derivations of ML typings is essentially unchanged 

and theorem 3.6 still holds (by adding the case for constants). However, theorem 3.7 no longer 

holds for T A + .  There are non convertible T A +  terms that  correspond t o  a same ML typing. For 

example, consider the ML typing: 

0 b (second((patr Ax. x ) 1 ) )  : in t .  

T h e  following two T A +  t,erms both correspond to  derivations of the above typing: 

0 (secon&(int-int)xint)-int ( ( p  at .$in'-in')-int-((int-+int)xint) x : i n t .  x ) l ) )  : i n t ,  

fj t> (second((bool-bool)xint)--int ((pai~bool-bool)-int-((bool-bool)xint) x : bool. 1) l ) )  : in t .  

But they are not convertible to  each other (in =,,). An obvious implication of this fact is that we 

cannot interpret constants arbitrarily. In order to  define a semantics of ML terrns via a semantics 

of T A + ,  we need the following restriction: 

Definition 3.25 A model M of T A +  is abstract if e r a s e ( h l )  e r a s e ( N )  implies MIA D A1 : 

T I ]  = Mud r> N : T I .  

Abstract models are models in which the following equations are valid: 

( e rasure )  A b A.1 = N : T if e r a s e ( h l )  = e r a s e ( N ) .  

By the completeness theorem for equational theories, T A +  alwzys has an abstract model. We 

further think that  the class of abstract models covers a wide range of standard models of languages 

with standard set of constants. For example, ordinary interpretation of pair and second certainly 

satisfy the above condition and suggests an abstract model. Any abstract model of T A +  yields 

a semantics of ML.  The  definition of a semantics of ML relative to  an abstract model of T A f  is 

the same as before (definition 3.18).  The  well definedness of the definition follow directly from the 



property of abstract model instead of theorem 3.7. The soundness and completeness of equationd- 

theories of ML (theorem 3.8 and 3.9) hold with respect to the class of abstract models. Proofs are 

the same as before except that we use the condition of abstract models in place of theorem 3.7. 

The condition of abstract models can be regarded as a necessary condition for fully abstract models 

we will exploit in the next section. 

3.6 Full Abstraction of ML 

One desired property of a denotational semantics of a programming language is full abstraction 

[77, 92,  81,  761, which roughly says that the denotational semantics coincides with the operational 

semantics. In this section, we will show that if a model of TA+ is fully abstract for an operational 

semantics of TA+ then it is also fully abstract for the corresponding operational semantics of ML.  

Following [92, 761, we define an operational semantics as a partial function on closed terms of 

base types. Let ETA, EML be respectively the evaluation functions of TA+ and ML determining their 

operational semantics. We write &(X) 4 y to means that L ( S )  is defined and equal to  y. On the 

operational semantics of TA+ we assume that it depend only on structure of terms. Formally, we 

assume ITA t o  satisfy the following property: 

Assumpt ion  3.2 For two terms 0 b M  : b  and 0 b N  : b i f  e r a s e ( A f )  e r a s e ( N )  then ETA(O t> 

M  : b ) U 0  b c b  : b iflETA(O D N  : b ) y 0  b c b  : 6. 

We believe that this condition is satisfied by most operational semantics of explicitly-typed pro- 

gramming languages. On the operational semantics of EML we assume the following property on 

evaluation of let-expressions: 

Assumpt ion  3.3 EML($ D  e  : b)  0 b c  : b  iflEML(O D letezpd(e) : 6) U 0 D c  : 6. 

This condition correspond to the equality axiom ( l e t ) .  Note that the rule ( l e t )  corresponds to  

the rule ( p )  and does not agree with the call-by-value evaluation strategy. Finally we assume the 

following relationship between the operational semantics of TA+ and that of hfL:  

Assumpt ion  3.4 For terms 0 D  M : b of TA+ and 0 b e  : b  of AIL, zf e r a s e ( M )  z e  then 

ETA(O b M  : b) U. 0 D cb : b iflEML(O D e  : 6) 4 0 D c  : b. 

We believe that in most cases it is routine to  construct EML from given ETA that satisfies the 

condition and vice versa. 



A context C [  ] in TA+ is a TA+ pre-term with one "hole" in it. We omit a formal definition. 

A context C [ ]  is a closing b-context for A D M : T if there is a derivation of T A  t- 0 D C [ M ]  : b 

such that  its sub-derivation of (the occurrence in C[A4] of) M is a derivation of A D A4 : r. 

Defini t ion 3.26 ( O p e r a t i o n a l  Equ iva lence  in T A )  Two TA+ terms A D M  : r and A D N : T 

T A  
are operationally equivalent, denoted by A D M x N : T ,  iff for any closing b-context C[  ] for 

these two t e r n s ,  ETA(O D C [ M ]  : b) JJ 0 D cb : b i f f  ETA(O D C [ N ]  : b) JJ 0 D cb : b. 

In ML, under our assumption on let-expressions, it is enough t o  consider raw terms and contexts 

that  do not contain let-expression. Therefore we define a context c[ ] in ML as a context of the 

untyped lambda calculus. A context c [ ]  is a closing b-context for C 1> e : p if there is a derivation 

of 0 t> c[e] : b such that its subderivation of e is a derivation of an instance of C D e : p. 

Def in i t ion  3.27 ( O p e r a t i o n a l  Equ iva lence  in ML) Two lZlL terms C Del : p and 2 De:! : p 
M L 

are operationally equivalent, denoted by C D el x e2 : p, iff for any closing b-context c [ ]  for these 

two terms,  EML(O t> c[e l]  : b) &0 D c : b iff EML(O D c[e:!] : b) U 0 D c : b. 

Defini t ion 3.28 (Ful l  A b s t r a c t i o n )  A model M is fully abstract for ETA i f  M bTA A D M = 

N : r i f f  A D M 2 N : T .  A mode M is fully abstract for EML i f  M bML S b el = e 2 : P i 8  
M L 

C p e l  x e:! : p. 

Note that  a model M is fully abstract for ETA then it is an  abstract model (definition 3.25). This 

means that  any fully abstract model for ETA yields a semantics of AIL. Moreover, we have: 

Theorem 3.11 If a model M is fully abstract for ETA then M ts nlso fully abstract for EML. 

P r o o f  Let M be any fully abstract model for ETA. By our assumption on EML and the definition 

of M[DML, it is sufficient to  show the condition of full abstraction for EML for terms that do not 
M L 

contain let-construct. Suppose C b el x e2 : p, where e l ,  e2 d o  not contain let-construct. By the 
M L M L 

definition of FZ , A b el  x e2 : r for any ground instance (A, r)  of (C,  p ) .  Let A b M : r ,  A b N : T 

be TA+ terms that correspond t o  derivations of A D el  : T and A b e2 : r respectively. Let C [ ]  

be any closing b-context for A b M : T and A b N : r. Let c [ ]  be the context obtained by 

erasing all type sppecification. Then e r a e ( C [ M ] )  c [ e l ] ,  e r a s e ( N )  = c[e2] and c [ ]  is a closing b 

contex for A b el : r and A D e:, : T .  By assumption 3.4, ETA(A b C [ M ]  : b) JJ 0 b cb : b iff 

EML(d b c [ e l ]  : b)  0 b c  : b and ETA(d b C [ N ]  : b )  U 0 b c b  : b iff EML(d bc[e:!]  : b)  U 0 Dc : b. 
M L T A  

Since d b e l  x e2 : T ,  A b M x N : T. By the full abstraction of M for ETA and by the definition 
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of M [[IML, M E M L  C D el = e:! : p.  Conversely, suppose M kM, C 'D el = e:! : p, where e l ,  ez 

do not contain let-construct. Let c [ ]  be any closing bcontext for C D el : p  and C D el : p. Let 

A 1  be a derivation of 0 D c [e l ]  : b such that it contains a subderivation A 2  of A D e l  : r where 

(A, r) is an instance of (C, p).  Since c [ ]  is a closing bcontext for C D el  : p, such A l  always exists. 

Since C D e2 : p is a term, there is a derivation A3 of A D ez : r.  Then by typing rules and the 

definition of contexts, the derivation A4 obtained from A 1  by replacing the subtree A? by A3 is a 

derivation of 0 b c [ e z ]  : b .  Let M I  s t y p e d t e r m ( A l ) ,  M2 z t yped te rm(A2) ,  M3 G t yped te rm(A3) ,  

M4 3 t yped te rm(A4) .  Then erase (M2)  e l ,  erase(M3)  r ez .  Clearly M I ,  M4 respectively contain 

M 2 ,  M3 as subterms. Moreover, the TA+ contexts obtained from M I ,  hI4 by replacing respectively 

M 2 ,  M3 with the 'hole' are identical. Call this context C [  1. Then e r a s e ( C [ M 2 ] )  c [ e l ]  and 

e r a s e ( C [ M 3 ] )  5 c[e?] .  Since M b M L  C D el = el  : p, M bT, A D 1142 = M3 : r. By the full 

abstraction of M for ETA, ETA(@ D C [ M 2 ]  : r )  U 0 b cb : b iff ETA(O b C[hl3] : r )  U 0 b cb : b .  

B y  assumption 3.4, EML(O D c [e l ]  : b )  IJ 0 D c  : b iff EML(O D ~ [ e ? ]  : b )  lJ 0 p c : b .  1 

The importance of this result is that we can immediately apply results already developed for 

explicitly typed languages to implicitly typed language with hlL polymorphism. As an example, 

Plotkin constructed [92] a fully abstract model of his language PCF with parallel conditionals.  

It is not hard to define the "ML version" of PCF (with parallel conditionals) by deleting type 

specifications of bound variables and adding let expressions. i ts operational semantics can be also 

defined in such a way that it satisfies our assumptions. We then immediately have a fully abstract 

model for the ML-version of PCF. 



Chapter 4 

Database Domains 

This chapter constructs a theory of database domains and proposes a type system for complex 

database objects. They will not only provide a unform framework for various data  models for 

databases including the relational model, nested relations, and complex object models but they 

also enable us t o  integrate those da ta  models into an hlL style polymorphic type system we have 

investigated in the previous chapter. This integration will be carried out in the next chapter. hlost 

of the results in this chapter were presented in ($31. 

4.1 Introduction 

There have been a number of attempts to  develop da ta  models to  represent complex database ob- 

jects beyond the first-normal-form relational model. Examples include nested relations [36, 2, 89,961 

and complex object models [59, 14, 41. (See also [57] for a survey.) As we have argued in sec- 

tion 1.1, however. these complex da ta  structures and associated database operations have not been 

well integrated in a type system of a programming language, creating the problem of "impedance 

mismatch". I believe that  the major source of this nusmatch problem is poor understanding of the 

properties of types for databases and the structures of domains for database objects. Traditionally, 

the theory of types of programming languages has been focussed on function types and domains of 

functions. Neither the properties of database type systems nor their relationship to  type systems 

of programming languages have been well investigated. 

T h e  goal of this chapter is to construct a theory of database type systems that  will serve as 

a "bridge" between complex da ta  models and type systems of programming languages and t o  



propose a concrete database type system that is rich enough to represent a wide range of complex 

database objects. Later in chapter 5, by integrating the type system we develop in this chapter 

and ML type system we have analyzed in the previous chapter, we will develop a strongly typed 

polymorphic programming language for databases and other data  intensive applications. In the rest 

of this section, we overview the data structures and operations needed for databases and outline 

our strategy. 

4.1.1 Data Structures for Database Objects 

As suggested by Cardelli (241, one way to represent complex objects in a programming language is 

to  use labeled records and labeled disjoint unions (or labeled variants) found in many programming 

languages such as Pascal, Standard ML [47], Amber [23] and Galileo (71. The following is an 

example of a labeled record expression: 

[Name = [Firstname = "Joe", Lastname = "Doe"],  Dept = *@SalesM, Ofice = 2781. 

Types for expressions can be easily defined. For example, the above record is given the following 

type: 

[Name : [Firstname : s tr ing,  Lastname : s tr ing] ,  Dept : s tr ing,  Ofice : i n t ] .  

Assuming computable equality on each atomic type, equality on expressions that do not contain 

functions is computable and it is not hard t o  introduce (finite) set expressions on those complex 

expressions. These three data constructors - record, variant and set - are basic building blocks for 

complex object models. In database literature, they are respectively called aggregation, generahza- 

tion and grouprng. Tuples in the relational model [29] are represented by records that only contain 

atomic values and relations are simply sets of those records. Data structures in various forms of 

non-first-normal-form relations [36, 2,  89, 961 are represented by the combination of record and 

set constructors. Data structures in complex object models [4, 59, 141 correspond to unrestricted 

nested structures generated by the above three constructors. When combined with recursive defini- 

ton (or cyclic data  constructor), unrestricted nesting of these three constructors seem rich enough 

to represent virtually all complex data models. 

It is not hard t o  integrate these data  structures into a type system of a programming language. 

Many languages allow unrestricted nesting of records and variants. Some languages such as hliranda 

[I071 also allow recursively defined types and expressions. As we have mentioned, finite sets can also 

be introduced in those type systems. Moreover, recent studies on type inference [ I l l ,  85, 63, 931 - 

including a contribution of a part of this study ( [85] )  which will be presented in the next chapter 



- show that these data structures can be integrated in a polymorphic type system with static type 

inference. Therefore, as  far as data structures are concerned, type systems of several programming 

languages seem to have sufficient expressive power to  represent databases. 

4.1.2 Operations on Complex Objects 

In a programming language, in addition to the operations that construct these structures, the 

following standard operations are available (or can be easily added): 

field selection from a record, 

field modification (update) of a record, 

cases analysis for a variant, 

standard set theoretic operations and a primitive for mapping a function over a set. 

I t  is therefore tempting to  represent a database of complex objects as a set of complex expressions 

which is manipulated by functions defined using the above primitive operations. 

An obvious problem of this approach is that, in practice, both expressions and sets become very 

large and contain a great deal of redundancy. This problem is elegantly solved in the relational 

model by the introduction of the two database operations - (natural) join and projection. Instead 

of representing a database as one large set (relation) of complex tuples, we can first project it 

onto various small relations and then represent a database as a collections of those small relations. 

Larger relations are obtained by joining these small relations when needed. In order to  integrate 

complex database objects in a programming language, it is therefore essential to  generalize join 

and projection so that they work uniformly on complex expressions and to introduce them in a 

programming language. I further believe that properly generalized join and projection together with 

standard operations on complex expressions form a sufficiently rich set of operations for complex 

database objects. It will be also shown in chapter 7 that join and projection play essential roles in 

manipulating object-oriented databases. 

There have been some arguments on expressive power of sets of operations on data structures 

for databases. A well known example is that the relational algebra cannot compute the transitive 

closure of a given relation [5 ] .  However, the lack of such computational power does not imply 

incompleteness of the set of operations on database objects. It simply suggests the desideratum 

that data models should be integrated into a standard computational paradigm such as function 



- 
abstraction and recursion, which are readily available in programming languages. For example, it 

is unnatural to  try to compute a transitive closure by a set of primitive operations for records and 

sets. I t  is even more unnatural to  require such computational power for those primitive operations. 

The computation of a transitive closure naturally suggests iteration or recursion and is of course 

computable if the relational algebra is integrated in a programming language where recursion or 

iteration are available. 

4.1.3 A Strategy to Generalize Join and Projection 

There are several efforts to  generalize join and projection beyond the first normal form relations 

[96 ,  88, 3 6 ,  621. However, their definitions still depend on the underlying tuple structures using 

some forms of unnesting or flattening operations. For example, in [96] the notion of partition 

normal  form relations was introduced, which is essentially those that can be transformed into first 

normal form relations by unnesting. By imposing further restrictions on partition normal form 

relations they extended join to  non first normal form relations. However, the justifications for these 

ad hoc restrictions are not clear besides the fact that the relational algebra including join can be 

extended to those restricted non first normal form relations. Here we would like to  extend join 

and projection uniformly to arbitrary complex database objects including recursively defined ones 

in such a way that they can be integrated in an ML style type system as polymorphically typed 

computable functions. It should be worth noting that  join and projection in the relational model 

are polymorphic operations in the sense that are defined uniformly over relations of various types. 

Join and projection in the relational model are based on the underlying operations that compute 

a join of tuples and a projection of a tuple. By regarding tuples as partial descriptions of real-world 

entities, we can characterize these operations as special cases of very general operations on partial 

descriptions; the one that combines two consistent descriptions and the one that throws away part 

of a given description. For example, if we consider the following non-flat tuples 

t 1  = [Name = [Fn = @'Joeu]]  

and 

t Z  = [Name = [ L n  = @'Doeb']]  

as partial descriptions, then the combination of the two should be 

1 = [Name = [Fn = "Joe",  Ln = * * D o e " ] ] .  

Conversely, the tuple t 1  is considered as the result of the projection of the partial description t on 



the structure specified by the type 

[Name : string, [Fn : string]]. 

Operations that combine partial information also arise in other areas of applications. Examples 

include the meet operation on Ait-Kaci's Qterrns [6] and the "unification" operation on feature 

slructures representing linguistic information (see [lo21 for a survey). 

Based on this general intuition, in this chapter, we propcse a framework for type systems for 

database objects and their denotational semantics. We then construct a concrete database type 

system and its semantic domain. The type system contains arbitrarily complex expressions definable 

by labeled records, labeled variants, finite sets and recursive definition. On its semantic domain, 

join and projection are defined as polymorphically typed computable functions. Furthermore, we 

carry out these constructions in a completely effective way. In our framework, we require types 

and objects to  be finitely representable and the properties needed to define database operations to 

be decidable. This means that,  once we have constructed a type system and its semantic domain 

based on our framework, it not only provides an uniform and elegant explanation of the properties 

of the type system and the structures of domain of complex database objects, but it also provides 

representations and algorithms to integrate them into a programming language. 

We start  with our investigation by analyzing the relational model. This analysis will also serve 

as an introduction to the subsequent abstract characterizations of database type systems and their 

semantic domains. Based on the analysis of the relational model, in section 4.3, we characterize 

the structures of type systems in which polymorphic join and polymorphic projection are definable 

and propose a framework for their denotational semantic. In section 4.4, we define a concrete type 

system for complex database objects and construct its semantic domain. A part of the construction 

of the semantic domain (subsection 4.4.4) is based on the idea we have developed in [22] that a 

certain ordering on powerdomains can be used to generalize the relational join uniformly t o  complex 

objects and the idea due t o  Ait-Kaci [6] that a rich yet computationally feasible domain of values 

is nicely represented by labeled regular trees. I have also noticed that Rounds' recent work 1971 

achieves a result similar to one presented in subsection 4.4.4. 

4.2 Analysis of the Relational Model 

We first give a standard definition of the relational model. Since our purpose is to  extract the 

essence of the type structure of the model, we define the model as a typed data structure. We also 

integrate null values in the model. The importance of null values has been widely recognized and 



% [ N a m e  = "Joe Doe", Age = 21, Salary  = 210001 
[ N a m e  = "John Smith",  Age = nullint ,Salary = 340001 1 
: { [ N a m e  : s tr ing,  Age : in t ,Salary  : i n t ] ]  

" John Smith" I nulLinr 1 34000 

Figure 4.1: A Simple Relation and its Representation as a Table 

several approaches have been proposed [16, 100, 68, 1121. Among them, we adopt the approach 

that null values represent non-informative values [112]. This approach fits well in our paradigm 

that database objects are partial descriptions and plays a crucial role in our theory of semantic 

domains of database type systems, which will be developed in the next section. 

We continue to assume that L and B are respectively a given set of labels and a given set of base 

types. We also assume that we are given a set ( D b J b  E 8) of pairwise disjoint sets of atomic values. 

It should be noted that Db does not necessarily coincide with the set Fb for the type b in a model 

of a programming language we have defined in section 3.3. It is required that Db E Fb (or there is 

some injective mapping from Db to Fb) but we do not assume the inverse inclusion. For example, 

when recursive functions are definable, Fd should contain a value that corresponds to expressions 

that diverge, which is not an element of Db.' For each base type b, we introduce a special symbol 

nullb for the null value of the type b. We say that c has the type b if c E Db or c = nullb. 

Definition 4.1 (Tuples and Relations) A tuple type T has the followtng syntax [ I l  : b l ,  . . . , I n  : 

b,] where I l l . .  . , I ,  are painuise distinct elements of L and bl . . . , b, E 5. A tuple t of the tuple 

type [ I l  : b l , .  . . ,In : b,] is a term of the form [ I 1  = c l , .  . . ,ln = c,] such that c, has ihe type 

b; (1 5 i 5 n ) .  A relation type ( o r  relation scheme in the database literature) R is a t e r n  of the 

form { T l  for some tuple type T .  A relation instance r of the relation type { T )  is a term of the 

form g t l , .  . . , t n J  such thai each t i  (1 < i 5 n )  is a tuple of the type T .  

Regarding a tuple t as a function from a finite subset L C to U b E B  Db U {nullblb E B), we write 

dom( t )  for the set of labels in t and t(1) for the value corresponding t.o the label I .  Similar notations 

are used for tuple types. Figure 4.1 shows a simple example of relation instance and its standard 

representation as a table. 

Relation instances are terms representing sets, for which the following equations hold: 

{ t l , .  . . ,t,) = { t i , ,  . . . , t,,l if i l , .  . . ,in is a permutation of 1,. . . , n 



and 

{ t l , t 2 , t 3 , .  . .] = g t z I  t,, . . .] if t ,  = 1,. 

We consider relation instances as equivalence classes of the above equality. Under this equality, 

relation instances behave exactly like sets of tuples, on which ordinary set-theoretic operations are 

defined. Based on this fact, we treat relation instances as sets of tuples and apply ordinary set- 

theoretic notions directly to  them. Readers might think that this strictly syntactic treatment only 

introduces (trivial but annoying) complication to the model that were simpler and more intuitive 

if we treated them just as sets. This had been true if we were only interested in sets of finite tuples 

such as flat relations in the relational model. However, it is no longer possible to maintain such 

intuitive treatment when we allow infinite structures through recursive definition. Our syntactic 

treatment provides a uniform way to deal with complex structures involving recursively defined 

data.  

Among the operations in the relational algebra, we only define join and projection. As we have 

argued, these two operations make the model a successful data model for databases. They also 

distinguish the model from standard type systems of programming languages. As we will see in 

section 5.7, other operations are definable using standard operations on records and sets. 

Two tuple types T11T2 are consistent if for all 1 E dom(Tl )  n dom(Tz) ,  T I ( / )  = Tz(1). Let 

T 1 , T 2  be two consistent tuple types. Define jointype(Tl,T2) as the type T such that d o m ( T )  = 

d o m ( T l ) ~ d o m ( T 2 )  and T(1) = T I ( / )  if 1 E d o m ( T l )  otherwise T(1)  = T2(l) .  The two tuples t l ,  t2  are 

consistent if for all 1 E dom(t n d o m ( t 2 )  one of the following hold: (1) t l ( 1 )  = t2(1), ( 2 )  t l ( 1 )  = nullb 

and t2(1) E Da or ( 3 )  t l ( l )  E Da and t2(1) = nullb. Two relation types {Tl]D,f(T2T) are cons~stent 

if T l ,  T2 are consistent. For two consistent relation types {TI 1, { T z ) ,  define jointype(%Tl}}, {T?)) 

as the relation type f(jointype(T1, Tz)). 

Definition 4.2 (Relational Join) If t i l t 2  are consisfent tuples then the join of t 1 , t 2 ,  denoted by 

join(t 1 ,  t 2 ) ,  is the following tuple t :  

d o m ( t )  = dom(t1) U dom( t2) ,  

t l ( l )  if 1 E d o m ( t l )  and either 1 $l dorn(t2) or t 2 ( l )  = null( 
t(1) = 

t2(1) oihemzse 

If r l , r2  are relation instances having consistent relation types then the (natural) join of r l ,  rz,  

denoted by join(rll  r 2 ) ,  is the relation instance { join( t l ,  t 2 ) ( t l  E rl ,  t 2  E r2, t l r  t2  are  consistent^. 

For jo in( t l  , t 2 )  and join(rl  , r z )  the following properties hold: 



Proposition 4.1 Let t l ,  t 2  be tuples of the type Tl,T2 respectively. If join(t1, t2) is defined then 

it has the type jointype(Tl,T2).  

Let r l ,  r2 be relation instances of the type R1, R2 respectively. I f  join(r1, r2) is defined then it 

has the type jointype(R1, R2).  

Proof By definition, d o m ( t )  = dom( jo in type(T l ,T2) ) .  Let 1 be any label in dom( t ) .  Then either 

j o i n ( t l , t 2 ) ( l )  = t l ( l )  with the type T(1) or jo in ( t l , ta ) ( l )  = t2 ( l )  with the type Tz(1). But by 

definition, T I ( / )  = jo in type(T l ,Tz ) ( l )  for all I E dom(T1).  Similarly for T2. Thus t has the type 

jointype(T1, Tz). 

R 1 ,  R2 must respectively be of the forms {T1) , ( (T2) .  Let t be any tuple in j o i n ( r l , r 2 ) .  By 

definition, there are some t l  E rl  and t 2  E r2 such that t = jo in( t1 , tz ) .  By the previous result, 

t has the type jo intype(Tl lT2) .  Then by definition, r has the type { j o i n t y p e ( T l , T ? ) ] ,  which is 

equal to  jo intype(R1,  R2). I 

Definition 4.3 (Relational Projection) If t is a tuple of the form [ I 1  = c l ,  . . . , I ,  = c,, . . .] such 

that each ci has the type b, ( i  5 n )  then the projection o f t  onto the type T = [ I 1  : b l , .  . . . l,, : h,], 

denoted b y  projectT(t), is the tuple [11 = c l , .  . . , I ,  = c,]. 

If r is  the relation instance such that for all t E r ,  projectT( t )  is defined then the projectton of 

r onto the type { T I ,  denoted by p r ~ j e c t f ( ~ B ( r ) ,  is the relation instance {projecF(t) l t  E r ] .  

For projecF(t)  and projectuTB(r), the following properties are immediate consequence of the defi- 

nitions: 

Proposition 4.2 f f  projecP(t) is defined then it has the type T .  ~f pro3ectgT1B(r) 2s defined then 

it has the type { T I .  I 

When restricted to tuples without null values, the above definitions are straightforward trans- 

lations of the corresponding definitions in the relational model found for example in [log, 35, 731. 

The operation join is extended to relations containing null values. Figure 4.2 shows an example of 

a join of relations containing null values. 

Note that the definition of join reflects the intended semantics of null values. Projection is 

specified by a type not just a set of labels. This will allow us to generalize the relational projection 

to complex structures. 

Remark: The combination of non-informative null values and join operation may sometimes 



"Joe Doe" 

"Mary Jones" 

join(r1, ra) 

Figure 4.2: Join of Relations Containing Null Values 

Name 
"Joe Doew 

"John Smith" 

yield counter-intuitive results.' For example, the join of the two relations 

Instructor course Course Student 

"MathllO" " K .  Jones" " CIS31 0 " #'Joe Doe" 

nullstring I IS .  Brown1' nullstring John Smith8@ 

Age 
21 

nulknt 

is the relation 

Course I Instructor I Student 

Salary 
21000 
34000 

Office 
103 
278 

which suggests that instructor " S .  Brown1* is related to students "Joe Doe", "John Srnzihl*, al- 

though no such relationship is implied by the two original relations. Based on this observation, it 

has been argued [61] that join (as well as other relational operations) could not be extended "se- 

mantically correctly" to this form of null values. This is, however, not the problem of interpretation 

of null values but the problem of join operation. Without null values, join still yields same kind of 

counter-intuitive results. For example, the join of 

"MathllO" 

"CIS310" 

nullatring 

Name '.- 1 ;;;; 
"Joe Doe" 

"John Smithe* 1 21 21 1 34000 

" K .  Jones8 

"S .  Brown" 

'IS. Brownw 

is the relation 

"JohnSmithlB 

"Joe Doe" 

"John Smith" 

'This was pointed out to me by Tomasz knielinski 



Name 

"Joe  Doe" 

" J o e  Doe" 

"John Smith" 

"John Smith" 

Salary 

which suggests that "Joe  Doell is related to both the salaries of 21000 and 34000.  Intuitively, 

the situation is stated that natural join as defined in the relational model does not necessarily 

"preserve semantics of relations". In order to investigate the problem, we need t o  construct a 

model of our "real world" and to define semantics of relations with respect to the model. This is 

out of the scope of this thesis and I refer the interested readers to [82] where this problem was fully 

investigated in the context of flat relations with null values and it was shown that join can be given 

a satisfactory semantics which is completely compatible to non informative null values. This study 

can be extended to complex database objects we are investigating in this chapter. 

Returning to our problem of extending join and projection, the above definitions apparently 

depend on the underlying structure of flat tuples. Here, we would like to characterize join and 

projection independently of the underlying data structures so that we can generalize them uniformly 

to a wide range of complex data structures and introduce them into a type system of a programming 

language. Our guiding intuition is the idea we have exploited in [22] that database objects are partla1 

descript ions of real-world entities and are ordered in terms of their "goodness of descriptions". The 

idea of partial description was originally suggested by Lipski [69] .  The corresponding order structure 

was studied by Biskup [16] and Zaniolo [I121 in connection to null values and is closely related to 

the orderings on $-terms [6] and directed graphs [ 9 7 ] .  

For generality and simplicity, we treat tuples and relations uniformly. We call both tuple types 

and relation types f lat  description types (ranged over by a) and tuples and relation instances 

flat descript ions (ranged over by d). For each flat description type a, we write Do for the set 

of descriptions of the type a. A flat description type represents a structure of descriptions. Such 

structures are naturally ordered to represent the intuition that one contains the other. For example, 

if al = [ N a m e  : s t r ing ,Age  : int] and a* = [ N a m e  : s tr ing,Age : in i ,  O f i c e  : ant], then the structure 

represented by a? contains the structure represented by al. This intuitive idea is formalized by the 

following ordering: 

Definition 4.4 (Ordering on Flat Description Types) T h e  information ordering < on flat 

descript ion types  is the smallest relation containing: 

[ll  : b , ,  . . . , ln : bn] < [11 : b l , .  . . , l n  : b", . . .I, 



This relation is clearly a partial order. Moreover, since it is based on the inclusion of fields of 

records, this ordering has the following properties: 

1. < on the set of description types has the pairwise bounded join property, and 

2. the ordering relation < is decidable and least upper bounds (if they exist) are effectively 

computable. 

The importance of this ordering is that it provides the following characterization of the types 

of the relational join and the relational projection: 

Theorem 4.1 (Types of Relational Join and Projection) Let d l ,  d? be flat descnpitons of 

the iypes 0 1 ,  an respectively. 

1. If join(dl,  d 2 )  is defined then a1 U a2 ezisls and join(dl, d 2 )  has the type a l  a? 

2. I fpro jecT(d l )  is defined then a < a1 and projecT(dl) has the type a .  

Proof The property of join follows from proposition 4.1 and the fact that jotntype(ul, u2) is defined 

iff a1 U 02 is defined and, when they are defined then their values are equal. (In what follows, we 

usually write F = G to mean that F is defined iff G is defined and when they are defined then 

their values are equal). The property of project follows from proposition 4.2 and its definition. 1 

CVe can then give the following type schemes (polymorphic types) to join and projection: 

jorn : ( a l  x a*)  - 01 Ua2 for all a l ,  a2 such that ol tJ a? exists, 

profecf : 6 2  -C a1 for all al,u:! such that a1 < a?. 

Since the ordering relation is decidable and least upper bounds are effectively computable, these 

types allow us to type-check expressions containing joins and projections. 

We next characterize these operations themselves using orderings on descriptions. As observed 

in [16, 1121, the introduction of null values induces the following ordering on tuples: 

[ I 1  = X I , .  . .,In = I,] E [ I l  = y1,. . . , I ,  = y,] iff either x ,  = nullb or zi = yi (1 5 i < n). 
This ordering is interpreted as the ordering of "goodness of descriptions". The following is an 

example of this ordering: 

[Name = Joe Doe1*, Age = n ~ l & , ~ ]  t [Name = "Joe Doe", Age = 211. 



.- . 

It is clear that for any tuple type T this ordering is a partial order on DT with the pairwise bounded 

join property. Join on tuples of a same type is characterized as the least upper bound operation 

under this ordering, which formalizes our intuition that join is an operation that combines partial 

descriptions: 

Propos i t ion  4.3 (Jo in  of Flat Tuples )  If t l ,  t 2  E DT then j o i n ( t l ,  t 2 )  = t l  U t 2  

Proo f  By definitions. 1 

For a relation type R, an appropriate ordering on DR to  characterize join on DR turns out to be 

the ordering known as Smyth  powerdomain ordering [104]. To define the ordering, we first define 

the preorder 5 :  

{ t l , .  . . , t n ]  5 { { t i , .  . . , t A l  if V t i  E { t i , .  . . , t & ) 3 t i  E ( 2 1 , .  . . , i n ) .  t i  C t ; .  

The relation 5 is not antisymmetric. However, we can take the quotient poset (definition 2.3) 

induced by the preorder: 

Proposition 4.4 For any  relation type R,  [ (DR,  <)I i s  a poset wi th the pairwise bounded join 

property.  

P r o o f  5 is clearly transitive and reflexive and therefore ( D R ,  5 )  is a preordered set. Let rl and 73 

be any elements in DR under 5 .  Let r = f ( j o i n ( t l ,  t 2 ) l t l  E r l ,  t 2  E r 2 ,  t l ,  t 2  are  consistent]. Since 

t l  U t2 = j o i n ( t l , t ? ) ,  as a special case of the result shown in [104], r is a least upper bound of 1.1 

and r z .  Then the proposition follows from lemma 2.1. 1 

We regard a relation instance as a representative of the corresponding equivalence class induced by 

the above preorder and write d l  U d 2  for the least upper bound of the corresponding equivalence 

classes. We also write ( D R ,  g )  for [ ( D R ,  <)I. Readers are referred to  [22, 821 for the intuition 

and relevance of this ordering in various aspects of databases. For the purpose of formalizing the 

relational model, this ordering provides the following characterization of join on relations we have 

shown in [22]: 

Propos i t ion  4.5 ( Jo in  of F l a t  Relat ions)  If r l ,  r2 E D R  then j o t n ( r l ,  r 2 )  = r1  U 7-2 = r .  I 

In order to  characterize projections and joins of descriptions of different types, we interpret the 

partially ordered space of flat description types by a space of domains connected by coercions. 



Definition 4.5 (Coercions between Relational Domains) The set of up-coercions is the set 

of mappings {4,,,,, la1 Q u z )  defined as 

1. i f  6 1  = [I1 : bl , .  . ., In : b,], = [ I 1  : 61,. . . , I n  : bn, ln+l : bn+l,. . . , I n + ,  : b,+,] ( n , m  2 0) 

then 

2. i f  ul = #4 ] ,  6 2  = {4B and at 6 ah then 

401-oz(r) = {dJu;-u;(t)lt E r%.  

The set of down-coercions is the set of mappings {t,lJol-u,la2 < a l )  dejned as 

I .  if u l  = [ I l  : b l ,  . . . , I n  : b,, . . .] and UL, = [ I l  : 61,. . . , ln : b,] ( n  2 0 )  then 

t,lJu14u2([ll = C 1 , .  . . In = Cn, . . . I )  = [ I 1  = C1,. . - , I n  = ~ n ] ,  

2. i f  u1 = #dl%, a2 = Q41 and a ;  6 a; then 

IIo,-u,(r) = #IIo;-o;(t)lt E .J. 

Intuitively, an up-coercion coerces a description to a description of larger structure by '.paddingn 

extra part of structure with null values. A down-coercion on the other hand coerces a description 

to  a description of a smaller structure by "throwing away" part of its structure. For example, i f  

a1 = [Name : stnng, Age : int],  

a? = [Name : string, Ofice : int], 

a3 = [Name : string, Age : ini, Ofice : tnt], 

t 1  = [Name = "Joe", Age = 211, 

12 = [Name = elJoelt ,  Ofice = 2781, 

t3 = [Name = "Joe",  Age = 21, Ofice = 2781 

then 

q ! ~ ~ ~ - ~ ~ ( t ~ )  = [Name = "Joe", Age = 21, Ofice = nullint], 

q5u2-u3(t2) = [Name = "Joe",  Age = nulli,t, OBce = 2781, 

1Cius-a1(t3) = t l ,  

u - 3  = t2. 



- 
We then have the following equations: 

This example suggests that computing a join of descriptions of types al ,  a2 corresponds to coercing 

them to descriptions of the type a1 U a2 followed by computing their least upper bound. The 

projections correspond to down-coercions. Indeed we have: 

Theorem 4.2 (Relational Join and Projection) Let d l  and d2 be any  flat descriptions of types  

a1 , a2 respectively and a be any  type such that a < 1 7 1 .  

Proof By the definitions of 6 and join, j o i n ( d 1 , d l )  = join(601~(o,uo2~(d~),6u2-~uluO~)(d~)). 

Then the property of join follows from propositions 4.3 and 4.5. The property of projection is by 

definitions. I 

The semantic space of the relational model is therefore characterized by the set 

{ ( D o ,  C)la is a flat description type) 

connected by the set of pairs of u p  and down-coercions 

associated with the set of join operations { j o i n ~ , l x o 2 ) , ~ 0 1 u 0 2 ~ ~ a ~  U a? exists) defined as 

and the set of projection operations { p r ~ j e c ~ : , , ~  la1 < a 2 )  defined as 

The importance of this characterization is that it applies to  any set of domains on which we 

can define information orderings and appropriate sets of coercions. Based on this analysis, in the 

next section, we formally define the structures of type systems for databases and their semantic 

domains. 



4.3 Database Domains 

As a generalization of the set of flat description types in the relational model, we define the notion 

of database  t y p e  s y s t e m s :  

Definition 4.6 (Da tabase  T y p e  Sys tems)  A database  t y p e  s y s t e m  i s  a poset  o f  t y p e s  s u c h  t h a t  

1. it h a s  t h e  pairwise  bounded jo in  proper ty ,  a n d  

2. t h e  o rder ing  re la t ion  i s  decidable a n d  least  u p p e r  bounds  ( i f  t h e y  e z i s t )  are e f fec t ive ly  c o m -  

putable.  

We call each type in a database type system a descr ip t ion  t ype .  A description type represents 

a structure of descriptions and the ordering on types represents the containment ordering of the 

structures they represent. The pairwise bounded join condition is necessary for the types of joins 

to be well defined. The decidability conditions is necessary for effective type-checking. 

Each description type should denote a domain of descriptions. As a generalization of domains 

of flat descriptions in the relational model, we define the notion of descr ip t ion  d o m a i n s :  

Definition 4.7 (Descript ion Domains)  A descr ip t ion  d o m a i n  i s  a poset  ( D ,  C) sat is fy ing:  

1. D h a s  t h e  b o t t o m  e l e m e n t  n u l l D ,  i.e. f o r  a n y  d E D, n u l l D  & d ,  

2. D h a s  t h e  patnuise  bounded jo in  proper ty ,  

3. t h e  order ing  re la t ion  E i s  decidable and  least  u p p e r  bounds  ( i f  t h e y  e z i s t )  a re  e f fec tzve ly  c o m -  

putable.  

Condition 1 allows us to represent a non-informative value which is essential for partial descriptions. 

Condition 2 states that if we have two consistent descriptions then the combination of the two is 

also representable as a description. This is necessary for join t o  be well defined. Condition 3 is 

needed for effective computation of joins and other operations. 

It should be noted that description domains are models of types of database objects and not 

models of general types in programming languages such as function types. In particular, they 

should not be confused with S c o t t  d o m a i n s  [ lo l l  which is used to  give semantics to  untyped lambda 

calculus and programming languages with recursively defined functions [98]. Both notions share 

similar order structures and are based on a similar intuition that values are ordered in terms of 

"goodness of approximation". However, the properties of the two orderings are fundamentally 



different. The ordering on a description domain is just a computable predicate, which is introduced 

to generalize join and projection as computable polymorphic functions on complex database objects. 

On the other hand Scoit ordering can be regarded as a predicate on the computability itself and 

in principle not computable. As an example of the difference, the bottom element in a description 

domain is simply an atomic value and does not corresponds to  non terminating computation (or 

"divergent value") denoting the bottom element in a Scott domain. We also do not assume the 

directed completeness.  As we will see in the next section, recursive (cyclic) types and objects are 

restricted to  those that have a finite representation and are modeled by regular values not by limit 

points of ascending chains of the ordering. 

By abstracting underlying tuple structures in the definition of up-coercions and down-coercions 

between relational domains, we interpret an ordering on description types as a relation induced 

by a special class of mappings between description domains. A function f : Dl + D? between 

description domains D l ,  D2 is monotone iff for any I, y E D l ,  x 5 y implies f ( x )  C f(y). 

Definition 4.8 (Embeddings  and Projec t ions)  A monotone function d : Dl - D2 is an 

embedding if ihere ez is ts  a function 11 : D2 - Dl such that ( I )  for any  z E D2,  $ ( $ ( x ) )  C x and 

(2)  for  any x E D l ,  +(+(I)) = x. The function + i s  called a projeciton. 

A pair of embedding and projection is a special case of Galois connections (or adjunc t ions ) ,  for 

which the following result is well known [40]: 

L e m m a  4.1 Given  an embedding 4 : Dl - D z ,  the corresponding projection I S  uniquely deter- 

mined b y  4. I 

If qh is an embedding, we sometimes denote by q5R the corresponding projection 

If a pair of description domains ( D l ,  D2)  has an embedding-projection pair (Q : Dl - D2,  t~ : 

D2 - D l )  then D2 contains an isomorphic copy D; = 4(D1) of Dl and for any element d in D2 

there is a unique maximal element d' E D', such that d' C d. We regard this property as the 

semantics of the ordering of description types. 4 maps an e l e m e ~ t  d E Dl to  the least element 

d' E D2 such that d' contains all information in d. + maps an element d f D2 to a unique maximal 

element d' E Dl that contains only information in d and is regarded as a database projection 

from D2 to  D l .  The set of up-coercions we have defined on relational domains are indeed a set of 

embeddings between relational domains. The corresponding set of projections is exactly the set of 

down-coercions. 



Our characterization of the ordering on types can be regarded as a refinement of one of the 

characterizations of subtypes proposed by Bruce and Wegner [21], where the notion of subtypes is 

characterized in three ways; one of them being that the larger set contains an isomorphic copy of 

the smaller. It is also related to the notion of information capacity of data structures studied in 

[56] where an ordering on various data structures was defined by using mappings between sets of 

objects. 

Finally we define a semantic space of a database type system as a space of description domains 

partially ordered by a set of embedding-projection pairs. 

Definition 4.9 (Database Domains) A database domatn rs a patr ( D o m ,  E m b )  of a set of de- 

scription domains Dorn and a set of embeddings Ernb among Dorn sattsfying the followtng condi- 

tions: 

1. For any two domains D l ,  D2 E Dom,  there as at most one 4 E Ernb such that 4 : Dl - D?. 

We wnte  for an embedding from Dl  to D2.  

2. For any domatn D E Dom, 4o-o E Emb.  

3. Ernb as closed under composition. 

4- For any two domains D1,D2 E Dom, if there is some D E Dorn such that d D , , ~  E Ernb 

and ~ D , + D  E Ernb then there is a unique D' E Dorn depending only on D l ,  D2 such that 

~ D , - D I  E Emb,  ~ D , - D J  E E m b  and for any D" E Dorn rf  9D,,D11 E Ernb and E 

Ernb then 4D,,D,, E Emb. 

5. For any 4 E Emb,  both d and d R  are computable, r.e. there I S  an algortthm to compute ~ ( d )  

and d R ( d ' )  for any grven d E d o m ( 9 )  and d' E d o m ( d R ) .  

Ernb defines the relation on Dorn such that D l  and D:! are related iff there is E Emb. 

This is intended to model an ordering on description types. Condition 1 means that there is only 

one way to  interpret the ordering between two description domains. hloreover, 

Proposition 4.6 The relairon defined by Ernb 1s a pariral order wrth the parrwzse bounded join 

property. 

Proof From condition 2 and 3, the relation is reflexive and transitive. For anti-symmetricity, 

suppose 4 x - y  E Ernb and dY,x E Ernb for some X , Y  E Dom. Apply condition 4 to  X (a s  D l )  

and Y (as D 2 ) .  Since 4 ~ - x  E Ernb and d y - y  E Emb,  both X and Y satisfy the property of D' 



- 
in condition 4. Then the uniqueness of D' in condition 4 implies X = Y.  The pairwise bounded 

join property is an immediate consequence of condition 4. 1 

Definition 4.10 (Models of Database Type Systems) Let (T, 6 )  be a database type s y s t e m .  

A database domain  (Dom, Emb) i s  a model  of ( T ,  6 )  if there is a mapping p : T -- Dorn such 

that for  any al, a 2  E T ,  a1 < a 2  ifl~,(,,),,(,,) E Emb. 

Remember that on description domains we imposed the conditions that the ordering is decidable 

and least upper bounds are computable. Combined with the computability condition on embeddings 

and projections, they guarantee that join and projection defined as 

are always computable functions. This means that if a database type system has a model. then 

join and projection are available as computable functions with the following polymorphic types: 

join : (al  x a 2 )  - a1 u a 2  for all al, a 2  such that a1 LI a? exists (4.3) 

projecf  : a1 - a 2  for all u l ,  a 2  such that ul < a 2  (4.4) 

The relational join and the relational projection are special cases of the above functions on flat 

tuple structures. Moreover, from the previous results, we have: 

Theorem 4.3 The  set of  Pat  description types  wi th the informatton ordenng  < is a database type 

s y s t e m .  T h e  pair o f  the set  of relational domains and the set of up-coercions 

as a database domatn and a model  of the poset of  flat descnpt ion  t ypes .  1 

We therefore claim that the notions of database type systems and database domains are a proper 

generalization of the relational model. The advantage of our characterization is that it is indepen- 

dent of the actual structures of types and objects. This allows us to  generalize the relational model 

to  a wide range of complex data structures, even those that include recursively defined types and 

objects. In the next section we construct a database type system and its database domain, which 

I believe t o  be rich enough to cover virtually all proposed representations of complex database 

objects. 



4.4 A Type System for Complex Database Objects 

In addition to  finite structures representable by finite terms, we would like to allow recursively 

defined structures, which naturally appear in descriptions of real-word entities. As demonstrated 

by Ait-Kaci [6], an appropriate formalism are regular trees, which provides a sufficiently rich yet 

computationally feasible representation for recursive data structures. We therefore develop our 

type system and its domain using regular trees. However, this generality creates a slight technical 

complication that we cannot use induction to define structures and to prove properties. This 

may yield less intuitive definitions and might decrease the readability of the rest of the paper. In 

order to prevent this situation, for major definitions and properties, we give equivalent inductive 

characterizations on finite trees. They will not be used in the subsequent development and we shall 

omit the proofs of their equivalence to the original definitions restricted to finite trees. They can 

be proved by usual structural induction. 

4.4.1 Set of Description Types 

We begin with types. Using regular trees (definition 2.10), the set of types for complex database 

objects is defined as follows: 

Definition 4.11 (Se t  of Descript ion Types)  The set of descrtption type constructors 2s the set 

F ,  = {Record, Varian2,Set) U B. A description type 1s a regular tree a E R ( F , )  sattsfying the 

following conditions: 

1. i f  a ( a )  = Set then { I  E Lla . I  E d o m ( a ) }  = { e l m l ) ,  

2. if a .  el- E d o m ( u )  for some a E C* then a ( a )  = Set, 

3. i f u ( a )  E 5,  then the set { l  E Lla .I E d o m ( a ) }  is empty. 

A description type a is finite if it is finite as a tree. The set of all description types and the set of all 

finite description types are denoted by Dtypew and D t y p e  respectively. Record, Variant and Set 

represent the record, the variant and the set type constructors respectively. Condition 1 restricts 

set types to be homogeneous sets. Let a l ,  . . . ,an E Dtype". We use the following notations: 

[11 : 6 1 , .  . . , I n  : on] for Record(ll = u l ,  . . . ,In = a,), 

( 1  : a ,  . . . 1 : ) for Variant(ll = ul ,  . . . , I n  = a,), 

{ a )  for Set(elm1 = a )  



unit = [ I  
point = [X-cord : int, Y-cord : int] 

intlist = (rec  v .  (Cons : [Head : int, Tail:  u ] ,  Nil : uni t ) )  

object = [Name : string, Age : int] 

person = (rec p. [Name : string, Age : int, Parents : { p ] ] )  

employee = (rec e. [Name : string, Age : int, Parents : {person] ,  
Sala y : int, Boss : el)  

student = [Name : string, Age : int, Parents : {{person), Courses : {s tr ing]]  

working-student = [Name : string, Age : int ,  Parents : {person}}, 
Courses : {s t r ing] ,Sa lay  : int, Boss : employee] 

flights = {[Flight : [F-id : int, Date : string], Plane : string]) 

flown-by = {[Plane : string, Pilots : {[Name : strrng, Emp-id : i n t ] ] ] ]  

schedule-data = {[Flight : [F-id : int, Date : string], Plane : string, 
Pilots : {{[Name : stnng, Emp-id : i n t ] ] ] ]  

Figure 4.3: Examples of Description Types 

Similar shorthands are adopted in term representations of regular trees. Figure 4.3 shows examples 

of description types in term representation. In this example, as well as in all other examples we will 

show later, identifiers such as  unit are used purely as syntactic shorthands t o  avoid repetitions and 

have no significance themselves. As seen in these examples, infinite trees correspond to  recursively 

defined types. 

The  set of finite description types D t y p e  coincides with the following inductively defined set 

DtypeO : 

1 .  b E DtypeO for any b E B, 

2-  [ I 1  : u l , .  . . ,In : an] E DtypeO if 01 , .  . . , an  E DtypeO and i l , .  . . , in  E l ( n  o ) ,  

3. ( 1 1  : u l , .  . . , I ,  : a n )  E DtypeO if U , ,  . . . , a n  E DtypeO and 1 1 ,  . . . ,In E l ( n  01, 

where li is not a label of the form elm,. 

On the set D t y p e m ,  we define the following ordering t o  capture the ordering of the contairiment 

of the structures: 

Definition 4.12 (Information Ordering on D t y p e m )  Let u l ,  uz E D t y p e m .  The lnfonna- 

tron ordering 6 on D t y p e m  is the relation defined as: ul < u:, t f f  d o m ( u l )  C dorn(a2) and for any 
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Figure 4.4: Examples of Ordering on Description Types 

a E dom(ul), u l (a )  = uz(a) and if ul(a)  = Variant then {I E Cia . 1  E dom(u1)) = { I  E L I u .  1 E 

dom(u2)). 

This ordering can be regarded as a special case of the subsumption ordering on A'it-Kaci's $-terms 

(61. The condition on variant nodes means that in order for two variant types to be ordered, they 

must have the same set of variants. The intuition behind this condition is that if a variant type ul 

has a component 1 : ui and a2 has no I-component, then for a value v of the type a1 corresponding 

to the component 1 : a; there is no value v' of the type a 2  that is related in structure to  v and 

therefore al and a? are not related. Figure 4.4 shows examples of the information ordering on 

Dtypem among the description types defined in figure 4.3. 

The ordering 6 ,  when restricted to the set of finite description types Dtype ,  coincides with the 

following inductively defined relation Go: 

b Go b for all b E B 

[Il :61 ,  ... , i n  : u n ]  <O [Il : ~ / ~ , . . . , l n  :u; ,... ] i fu ,  (Ou:( i< n)  

u {u'J if u G o  u' 

( 1  : 1 , .  . . 1 : u <" (11 : u;, . . . , ln  : 0;) if u, ui (i  5 n)  

From the inductive characterization of <, it is easy to check that (D type ,  <) is a poset with 

pairwise bounded join property, < is decidable and least upper bounds (if they exist) are effectively 

computable. The following two propositions show that these properties still hold for general de- 

scription types. Their proof can be constructed from the proof of the similar properties shown in 

[6]. Since the proofs involve general techniques we will repeatedly use in proofs of various properties 

of the type system, we include their detailed proofs. 



Proposition 4.7 (DtypecO, <) is a poset with the pairwise bounded join property. 

Proof For any a E D t y p e m ,  clearly a < a .  Let a l ,  a2,a3 be any elements in D t y p e m .  Suppose 

a1 < a:! and a2 < a l .  Then dom(al )  = dom(a2) and for all a E dom(a l ) ,  a l ( a )  = o?(a) .  

Therefore a1 = a:!. Suppose a1 < a:! and a:! < as. Then dom(a1) dom(a2) dom(a3). 

Let a be any element in dom(al) .  a l ( a )  = az (a )  = as(a) .  Suppose a l ( a )  = Variant. Then 

{ I  E Cla . I  E dom(a l ) )  = { I  E L ( a .  1 E dom(az ) )  = { I  E C ( a .  1 E dom(a1)).  Therefore a1 < a3 and 

hence < is a partial order on D t y p e m .  

For the pairwise bounded join property, suppose a l ,  a2 have an upper bound. Let a' be the tree 

defined as dom(al )  = dom(a l )  U dom(a2) and for a E dom(a) ,  

al  ( a )  if a E dom(o1) 
u l (a )  = 

a z ( a )  otherwise. 

Then for any a E dom(a l ) ,  a l ( a )  = a l (a )  and if a l ( a )  = Variant then { I  E Lla .I E dom(u l ) }  = 

{ I  E Cla .I E dom(ol ) ) .  Therefore a1 < a'. For any a E dom(a2) \ dom(a l ) ,  by the definition of u' ,  

02(a)  = a t ( a )  and { I  E Lla-1 E dom(a2))  = { I  E Lla.1 E dom(al ) ) .  Suppose a E dom(a l )ndom(a2) .  

Since ul,u:! have an upper bound, a l ( a )  = a2(a )  = al (a)  and { I  E Cla . 1 E dom(u2) )  = { I  E 

LJa  . 1 E d o m ( a l ) }  = { I  E Lla .  1 E dom(ai)) .  Therefore a:! < a ' .  Since dom(a1) dom(o)  and 

dom(a2) c dom(a ) ,  dom(ai)  c dom(u).  Let a E dom(al ) .  If a E dom(a l )  then a i (a )  = a l ( a )  = 

a ( a )  otherwise a E dom(a2) then oi (a)  = u z ( a )  = u ( a ) .  Suppose a l ( a )  = Vanant. Then we have 

{ I  E Cla.1 E dom(ai ) )  = { I  E Cla.1 E dom(ai ) )  = { I  E Lla.1 E dom(a ) )  where i = 1 if a E dom(a1) 

otherwise i = 2. Therefore a' < a and hence a' is the least upper bound of a l ,  a?.  I 

The proof of the following proposition defines an algorithm to compute the least upper bound 

of consistent description types. 

Proposition 4.8 The ordeflng < on D t y p e m  is decidable and for any descrzption types a l ,  a?,  1 1  

is decrdable whether al,a:! have an upper bound or not and if they have an upper bound then thezr 

least upper bound is effectively computable. 

Proof Let Mu, = (91, s l ,  F , ,  61, o l ) ,  Mu, = (Q2, s2, F , ,  62,02) be hloore machines representing 

a1 and a2 respectively. Let M = (Q, s ,  F, 6,o)  = Mu, x M,, ,  the product machine (definition 2.12) 

of Mu, and Mu, .  

We show that  a1 < a2 iff M has the following properties: for any reachable state q in h l ,  

1 .  q is either q = (ql ,qz)  for some ql E Q I ,  92 E Q 2  or q = ($, q z )  for some q? E Q?, 



3. if q  = ( q i , q z ) , q ~  E Qi,qz E Qz,  ~ ( q )  = (Variant, Variant) and 6(q, l )  = q1 for some 1 then 

ql=(q: ,q ; )  for some q: E Q 1 , q ; ~ Q 2 .  

By lemma 2.5, the condition 1 is equivalent to  dom(a l )  C dom(a2)  and the condition 2, 3 are 

respectively equivalent to the two conditions of the definition of the ordering <. 

Next we show that if 0 1 ,  a2 have an upper bound then M  has the following properties: for any 

reachable state q  in M ,  

1 .  ~ ( q )  is one o f  the forms: ( f ,  f ) , ( f , % ) , ( $ ,  f )  for some f E F T ,  

2. if q  = ( p i ,  qz), ql E  91, qz E Qz,  o(q) = ( Variant, Variant) and 6(q, I )  = q' then q' = ( q ; ,  9 ; )  

for some q; EQl ,qa  EQ2.  

Suppose a l ,  a? has an upper bound. Then for any a  E dom(a l )  n dom(a?) ,  u l ( a )  = a?(a)  = f for 

some f  E F,. By the property of product machine, this implies 6*(s ,  paiT(a, a ) )  = ( f ,  f ) ,  which 

establishes the property 1. Suppose a l ( a )  = a2 (a )  = Variant then by the definition of 6 ,  for all 

1 E C, a  . I  E dom(a1) iff a .  1 E dom(a2). By the property of product machines, this implies the 

second condition. 

Finally we show that if M  satisfies the above condition then we can construct a Moore machine 

representing the least upper bound of a l ,  an. Suppose M  satisfies the above two conditions. Define 

MuIUu3 as the Moore machine ( Q ,  s ,  F ,  6', 0') where 

1.  Q , s ,  F  are same as those of M ,  

2 .  6' is defined as bl(q, l )  = q' iff 6 (q , ( l , l ) )  = q' or 6(q, ( 1 ,  $)) = q1 or 6 ( q ,  ( $ , I ) )  = q' ,  

3. o1 is defined as ol(q)  = f if o(q)  is one of the forms ( f ,  f ) ,  ( f ,  $), ( S ,  f  ). 

Since by the definition of product machine, at  most one of 6(q, ( I ,  I ) ) ,  6(q, ( 1 ,  S ) )  or 6(q, (%, 1 ) )  is 

defined, 6' is well defined. By lemma 2.5 and the definition of hdulUu2, dom(hdUlUu2(s ) )  = 

d o m ( M l ( s l ) )  U dom(M2(s2) ) .  By the definition of M  and M,,uu2, for all a  E d o m ( ~ b l ~ ( s ~ ) ) ,  

6 ; ( s l r  a )  = q, o l (q )  = f  iff 6"(s,  a )  = (q ,  x ) ,  ol((q,  x ) )  = f for some x ,  and if o l ( q )  = Variant then 

bl (q ,  I )  is defined iff 6 ( (q , x ) ,  1 )  is defined. Therefore M,,~, , (s)  satisfies the other two conditions 

of the definition of < and hence M l ( s l )  6 M1(s ) .  Similarly M 2 ( ~ 2 )  < M ' ( s ) .  Let a  be any up- 

per bound of 0 1 , ~ ~ .  Since for a  f dom(M1(s ) )  either a  € Ml(s1)  and M 1 ( s ) ( a )  = M l ( s l ) ( a )  or 

a  E dom(M2(s2) )  and M1(s ) (a )  = M2(s2 ) (a ) ,  M 1 ( s )  d a  follows from Ml(s1)  < a  and Mz(sz )  < a .  



Since the product machine and the machine Mo,ua, are effectively constructed, we have proved the 

proposition. I 

Combining proposition 4.7 and 4.8, we have: 

Theorem 4.4 (Dtypew , Q )  is  a database type system. I 

The following are examples of least upper bounds of description types defined in figure 4.3: 

employee U student = working-student, 

flights i-! flown-by = schedule-data. 

From examples shown in figure 4.4 and the above examples, we can see that Q is a generalization of 

the information ordering on types in the relational models to complex structures including recursive 

structures represented by infinite trees. 

4.4.2 Universe of Descriptions 

In order to construct a model of (D typew,  Q ) ,  we first define a set of possible descriptions. 

Definition 4.13 (Universe of Descriptions) The  set of  description constructors is  the set F d  = 

{Record,  In j ,  S e t )  u(UbEB Db) u {nu l l b (b  E B) .  A description is a regular tree d E R ( F d )  sattsfytng 

the following conditions: for all a E d o m ( d ) ,  

I .  i f  d ( a )  = Set then  { I  E Lla  . I  E d o m ( d ) )  = { e l m l , .  . . , elm,) for some n > 0 ,  

2. if a . e l q  E d o m ( d )  for  some a E t' then d ( a )  = Set ,  

3. i f  d ( a )  = I n j  then the set {I E Lla . I  E d o m ( d ) )  is  either a singleton set or  the empty  set,  

4. if d ( a )  E Db or  d ( a )  = nul la  then  the set {I E t l a .  1 E d o m ( d ) )  is the  empty  set.  

A description d is finite if it is finite as a tree. The set of all descriptions and the set of all finite 

descriptions are denoted by D o b j m  and D o b j  respectively. I n j  is a variant constructor (injection 

to a variant type). I n j  node with no outgoing edge represents null values of variant types. 

Let d l ,  . . . , d ,  E D o b j m  . We use the following notations: 

[ I I  = d l ,  . . . , I ,  = d,] for Record(l1 = d l , .  . . , I ,  = d,), 

{ { d l  . . . , d for Set(elml = d l , .  . . , e l m ,  = d,). 



Unity = [ I  
Point23 = [X-cord = 2,  Y-cord = 31 

Onelist = Inj(Cons = [Head = 1, Tail = Inj(Ni1 = Unity)])  

Null-person = ( rec  p. [Name = n~ l l s t r ing ,  Age = nullint, Parents = { p J ] )  

Null-employee = ( rec  e. [Name = nullstring,  Age = null int ,  Parents = fI Null-person], 
Salary = null int ,  Boss = e l )  

John = [Name = "John  Smitho1,  Age = 34, Parent = { Null-person], 
Salary = 23000, Boss = Null-employee] 

Mary1 = [Name = " M a y  Blake", Age = 21, Parent = {Null-person],  
Courses = {"rnath120", "phi134OU, ulogicl lO"J] 

Mary2 = [Name = " M a y  Blakeee, Age = 21, Parent = {Null-person],  
Salary = 9000, Boss = John] 

Mary3 = [Name = "Mary  Blake", Age = 21, Parent = Null-person], 
Courses = Q"math12OW, "phi1340m, "logicl lO"J,  
Salary = 9000, Boss = John] 

Flights = 8 [Flight = IF-id = 001, Date = " 8  Aug"], Plane = "Concord"],  
[Flight = [F-id = 83, Daie = " 9  Aug"],  Plane = "707"] ,  
[Flight = [F-id = 116, Date = "10  Aug"],  Plane = "74 7"]}} 

Flown-by = 1( [Plane = "Concorde', Pilots = f( [Name="JonesW, Emp-td = 5566111, 
[Plane = "707" ,  Pilots = fI [Name = "Clark1@, Emp-id = 11221, 

[Name = " Copely", Emp-td = 22331, 
[Name = "Ch in" ,  Emp-id = 33441 J ] ,  

[Plane = " 747",  Pilots = { [Name = "Clarke*,  Emp-id = 11221, 
[Name = "Jones" ,  Emp-id = 5566]}}]] 

Schedule-data = { [ Plane = "Concord1@, Pilots = { [ N a m e  = "Jones" ,  Emp-id = 5566])}, 
Flight = [F-id = 001, Date = " 8  Auge*]] ,  

[ Plane = " 707",  Pilots = { [ N a m e  = "Clarkm,  Emp-id = 11221, 
[Name = "Copely", Emp-td = 22331, 
[Name = "Ch in" ,  Emp-ad = 3 3 4 4 ] J ,  

Flight = [F-id = 83, Date = " 9  Aug"]] ,  
[ Plane = " 747",  Pilots = { [ N a m e  = luClark ta ,  Emp-id = 11221, 

[Name = IaJones", Emp-td = 5566]}},  
Flight = [F-id = 116, Date = 1'10 A U ~ ~ ~ ] ] )  

Figure 4.5: Examples of Descriptions 



- 
Figure 4.5 shows examples of descriptions. 

The set of finite descriptions Dobj coincides with the following inductively defined set Dob j O :  

1 .  c E DobjO for any c E B b ,  b E B,  

2. nullb E DobjO for any b E B, 

3.  [ I1  = d l , .  . . , I n  = d,] E DobjO if d l , .  . . , dn E DobjO and 1 1 ,  . . . , I n  E L: ( n  2 O) ,  

4. I n j E  Dobjo, 

5. Inj(1 = d )  E DobjO if d E DobjO and I E C, 

6. { d l , .  . . , d n ]  E DobjO if d l , .  . . , dn E DobjO ( n  2 0 ) .  

where li is not a label of the form e l m .  

4.4.3 Typing Relation 

Description types represent structures of descriptions. A description d has a description type a if 

d has the structure represented by a .  This relationship is formalized by the typing relation: 

Definition 4.14 (Typing Relation) Let w be the equivalence relation on L defined as I1 z I 2  iff 

l1 = l2 or l l  = elm,, l2 = elmj for some i ,  j .  Define the consistency relat~on : b  between Fd arid F ,  

as follows: f g i f lone  of the following holds: 

1 .  f = 9 ,  

2. f = Inj and g = Variant, 

3. f E Dg and g E B,  

4.  f = nullg. 

The typing relation d : a between Dobjm and Dtypem is defined as: d : a ifl for all a E d o m ( d ) ,  

I .  there is some a' such that a & a', d (a )  a ( a l ) ,  

2. if d ( a )  = Record then ( 1  E L ( a  .I  E dom(d)}  = { I  E Cla' .I  E d o m ( a ) }  



Unity  

Po in t23  

Onelisl  

Null-person 

Null-employee 

John 

Mary1 

Mary2  

Mary3  
F l i g h t  

Flown-by 

Schedule-data 

: unit 

: point 

: intlist 

: person 

: employee 

: employee 

: student 

: employee 

: working-student 

: flights 

: flown-by 

: schedule-data 

Figure 4.6: Examples of Typing Relation 

The equivalence relation z "ignores" the difference due to the positions e l m l ,  . . . , elm,  of occur- 

rences of subtrees in the set constructor S e t ( e l m l  = d l , .  . . , elm, = d,). = is the extension of % 

on C defined in 2.2.3. Figure 4.6 shows examples of typing relations between descriptions defined 

in figure 4.5 and description types defined in figure 4.3. 

When restricted to the set of finite descriptions Dobj,  the above typing relation coincides with 

the following relation :" on Dobj x Dtypem defined by induction on Dobj: 

1. c :" b for all c E Ba, 

3.  [ l ,  = d l ,  .. . , I ,  = d,] :" [ I l  : al,. . . , l ,  : a,] if dl :O ul,. . . ,d, :" a,, 

4. Inj :" a for any variant type a, 

5. Inj(1 = d) :O (. . . , I  : a,. . .) if d :" a, 

Note however that d E Dobj and d  :" u does not implies that a E Dtype because of variant 

types, i.e. rules 4 and 5 in the above definition. 

From the above inductive characterization of the typing relation, it is easy to check that for any 

finite description d and any description type a it is decidable whether d : a or not. This property 

is essential to  develop a type-checking algorithm. Fortunately, this property still holds for general 

descriptions: 



Proposition 4.9 For any d E D o b j m ,  a E D t y p e W ,  the property d : a is decidable. - 

Proof Let M d  = ( Q d ,  sd,  F d r  6d, o d )  and M u  = (Q,, s,, F , ,  6,, 0,) be Moore machines representing 

d and a respectively. Let M = ( Q ,  s ,  F ,  15, o )  be the product machine (Md x Mu)/= where zz is the 

equivalence relation on C defined in definition 4.14. We show that d : a iff M satisfies the following 

conditions: for any reachable state q ,  

1. if q = ( q i , ~ ) , q l  E Q1 then x E Q2 and o(q )  = ( f , g )  such that f : b  g ,  

2. if q = (91,921, 91 E Q i ,  92 E Q 2 ,  o(q) = (Record, Record) and 6(q ,  I )  = q' then 1 = ( l ' ,  / I ) ,  1' # $. 

By lemma 2.5, M satisfies the condition 1 iff for any a E dom(M1 ( s l ) ) ,  there is some a' such 

that a & a', 6; (sd ,  a )  = q l ,  6 i ( s u ,  a ' )  = 42, and od(q l )  : b  oU(q2).  Since Md,  M ,  represent d ,  a 

respectively, this condition is equivalent to  the condition 1 of the definition of the typing relation. 

The equivalences of the condition 2 of the propositions and the condition 2 of the definition of the 

typing relation are immediate consequences of their definitions. 

Since M is effectively constructed and the above property is clearly decidable, the proposition is 

proved. I 

4.4.4 Description Domains 

For each description type, the typing relation defines the set of descriptions of that type. By 

defining a proper ordering, we turn this set into a description domain. 

Courcelle described [32] the notion of a coherent and stmpltfiable relation on S u b t r e e s ( d l )  x 

S u b t t e e s ( d ? )  as a relation - satisfying the condition that if 

then f = g and d, - d: ( 1  5 i 5 n). By generalizing this and combining it with Smyth powerdomain 

preorder, we can generalize the information ordering on flat descriptions to D o b j m :  

Definition 4.15 (Information Preorder on D o b j m )  The i n f o m a t t o n  ordertng on the set F d  

of description constructors is the following partial ordering c ~ :  

f c~~ i f f f  = g  o r f  =nul lb  a n d g E D b  

The information preorder 5 on D o b j m  is the relation defined as: d l  5 ds  iff there ts  a relation -, 

called a substructure relation, on S u b t r e e s ( d 1 )  x S u b t r e e s ( d 2 )  satisfytng ihe following properiies: 



1. d l  - d 2 ,  

2. i f d  - dl then  d ( c )  L~ d l ( c ) ,  

3. i f  d - dl ,  d (c)  E {Record, I n j )  and 1 E d o m ( d )  ihen  1 E dom(d1)  and d l1  - d l / l ,  

4. if d - dl ,  d (c)  = Set then for  all 1 E {I  E LIl E d o m ( d l ) )  there is some 1' E {I E Cjl  E d o m ( d ) }  

such that d / l l  - d l / l .  

The relation 5,  when restricted to  the set of finite descriptions D o b j ,  coincides with the 

following inductively defined relation 5 " :  

c 5 "  c f o r a l l c E B b ,  

nullb so c for all c E B b ,  

nullb d o  nu l lb ,  

[ I 1  = d l , .  . . , I ,  = d,] 5 "  [ I l  = d:,  . . . , I ,  = d:,  . . .] if di 5" d: ( 1  5 i 5 n), 

Inj  5 "  Inj ,  

Inj  so Inj(1 = d )  for all d ,  

Inj(1 = d )  5" Inj(1 = d') if d 5 "  dl ,  

{ d l , .  . . , d , ]  5 "  {4 , .  . . , d L 8  if Vd' E i d ; , .  . . , d k ) .  3d  E { d l , .  . . , d,}. d 5 "  d' 

On a substructure relation -, the following property hold: 

Lemma 4.2 Lei - be a substructure relation on  S u b t r e e s ( d l )  x S u b t r e e s ( d s ) .  

F o r d ;  E S u b t r e e s ( d l ) , d a  E S u b t r e e s ( d 2 ) ,  i f d ;  - d: then d\ 5 d;. 

Proof Immediate consequence of the fact that the restriction of a substructure relation to 

S u b t r e e s ( d ;  ) x S u b t r e e s ( d ; )  is also a substructure relation. I 

We next show that 5 is a preorder having the desired properties. Rounds' recent work [97] also 

independently shows a similar result for a certain class of labeled directed graphs. 

Proposition 4.10 The  relation 5 is a preorder on D o b j m  with the pairwise bounded join property. 

Proof The strategy of the following rather long proof is the combination of the technique suggested 

in [6] t o  construct a least upper bound of two regular trees by tracing the moves of two Moore 

machines representing them in "parallel" and the property of Smyth powerdomain preorder shown 



in [104] that  if s l  and s2 are finite subset of a a poset then { d l  U d21dl E s l ,  d 2  E s2 and d l  LI d 2  

exists] is a least upper bound of s l  and s2 under the Smyth preorder. 

For any description d ,  the identity relation on S u b t r e e s ( d )  is a substructure relation and d 5 d. 

Suppose d l  5 d 2  and d 2  5 d s  Let -1 and -2 be substructure relations on S u b t r e e s ( d 1 )  x 

S u b t r e e s ( d 2 )  and S u b t r e e s ( d 2 )  x Subtr e e s ( d s )  respectively. Then the composition of the two 

relations r l ,  r2 also satisfies the conditions of substructure relation. Therefore d l  5 d3 and 5 is a 

preorder . 

We next show that 5 has the pairwise bounded join property by showing the following stronger 

property: there is an algorithm taking any two descriptions d l ,  d 2  that determines whether d l ,  d 2  

have an upper bound or not and that if d l ,  d2 have an upper bound then computes (one of) their 

least upper bound. Let Md, = ( Q l ,  s l ,  Fd, 6 1 , o l )  and Md, = ( Q 2 ,  5 2 ,  Fd, 6 ? , 0 2 )  be Moore machine 

representing d l ,  d g  respectively. Let M = ( Q ,  s ,  F d ,  6 , o )  be the product machine (Ad l  x A l s ) / z .  

We say that  a state q in M is consis tent  iff it satisfies the condition that if q = ( q , ,  q?)  for some 

q1 E Q l ,  92 E Q z  then o ( q )  = ( f ,  g )  for some f ,  g  E Fd such that f ,  g has an upper bound under 

C~ and if o ( q )  E { ( R e c o r d ,  R e c o r d ) ,  ( I n j ,  I n j ) )  and 6 ( q ,  ( I 1 ,  1 ' ) )  = q' for some I' then q' is consistent. 

.We first show that if d l ,  d 2  has an upper bound then the start  state s  is consistent. Suppose s  is 

not consistent. Then there is some a E L* satisfying the following conditions: (1) for any proper 

prefix b of a ,  o ( s , b )  E { ( R e c o d ,  R e c o d ) , ( I n j ,  I n j ) ) ,  and (2) 6 * ( s , a )  = ( q l , q z ) ,  ql E Q I ,  q? E Q 2 ,  

and o ( ( g 1 , q z ) )  = ( f , g )  such that { f , g )  has no upper bound. Now suppose to  the contrary that 

there is some d such that d l  5 d and d 2  5 d .  By the definition of 5 and lemma 4.2, d l / a  5 d / a  

and d 2 / a  5 d / a ,  which contradicts the fact that o ( ( q l ,  412)) = ( f ,  g) such that { f ,  g} has no upper 

bound. 

Next we show that if s is consistent then d l , d 2  has a least upper bound by const.ructing one. 

Suppose s  is consistent. Define M '  = ( Q ,  s ,  F d ,  b', 0 ' )  from M as follows: 

1.  Q , s  are same as M ,  

2. 6 ' ( q ,  I )  is defined and equal to  q' iff one of the following hold: 

(a) ~ ( q )  E { ( R e c o r d ,  Record) ,  ( I n j ,  Inj)) and one of the following hold: (i) S ( q ,  ( I ,  1 ) )  = q', (ii) 

6(91(1,  $)I = 9' or (iii) 6 ( q ,  ( $ 7  1 ) )  = q',  

(b) o ( q )  = ( S e t , S e t ) ,  I = elmi and 6 ( q , ( e l m j ,  e l m k ) )  = q' where ( e l m j ,  e l m k )  is the i f h  

smallest symbol under the total order << on L in the set { ( e l m , ,  e lm , )JS (q ,  ( e l m , ,  e lm,))  

is defined and consistent}, 

(c) 9 = ( 9 1 ,  $1 and 1 = ( 1 ,  $) or q = ($, q z )  and I = ($, I ) ,  



3. o' is defined as 

( x U y if o(q) = ( x ,  y ) ,  x ,  y E Fd and x u y exists 

if o(q)  = (x, $) 
o'(n> = 

if 4 9 )  = ($, Y )  

I $ otherwise. 

We show that M 1 ( s )  is a least upper bound of d l ,  d2. Let S1 = {Ml(q) lq  E Q l ,  q reachable), S 2  = 

{ M 2 ( q ) J q  f Q 2 , q  reachable), and S = {M1(q) lq  E Q,  q reachable). Then S1 = S u b t r e e s ( d l ) ,  S? = 

S u b t r e e s ( d 2 )  and S = S u b t r e e s ( M 1 ( s ) ) .  Define the relation -1 between S1 and S as M l ( q )  

M1(q')  iff q' = ( q , x )  for some x .  Then it is easily checked that this relation satisfies the con- 

ditions of substructure relation and therefore dl 5 M 1 ( s ) .  Similarly d2 5 iCil(s). Let d be any 

upper bound of d l , d s .  Let -',,-; be substructure relations on S u b t r e e s ( d 1 )  x S u b t r e e s ( d )  

and S u b t r e e s ( d 2 )  x S u b t r e e s ( d )  respectively. Define the relation -- on S x S u b t r e e s ( d )  as 

M 1 ( q )  d' iff one of the following hold: (1) q = ( 9 1 ,  %), hf l (q1)  N; d' ,  ( 2 )  q = (8, q2), Mz(q2) --; d l ,  

or ( 3 )  q = (q1,q2) ,  M l ( q l )  --', d', M2(q2)  --h d'. Then satisfies conditions 1,2,3 of the definition 

of a substructure relation (definition 4.15). For condition 4 ,  suppose M 1 ( q )  -- d' and Al l (q )  = Set. 

If q = ( q l ,  $) or q = ($, q2) then condition 4 follows from the fact that -;, -5 are substructure 

relations. Suppose q = (91, 92). Then M l ( q l )  --; d and M2(q2)  --I2 dl. If I E dorn(dl) for some 

1 E L, then there is some 1 1 ,  l2 E L such that hl (q l ,  1 1 )  = q:, 62(q2,l2) = q; ,  M l ( q ; )  --; dl / l  and 

hd2(q;) -5 d l / l .  By lemma 4.2, M l ( q ; )  5 d'll and M2(q;) 5 d' l l .  Let M i ,  M:, M" be respec- 

tively Moore machines obtained from M I ,  M2,  M' by respectively replacing their start states with 

qi q;, (q; ,  9;). Clearly M l ( q i )  = M i ( q $ ) ,  M2(q;) = M:(q;) and M" = ( M i  x M$)/=. Since Mi ( 9 ; )  

and M z ( q i )  has an upper bound, (q',,q;) is consistent. By definition, 11 = elm, and 13 = elmj for 

some i, j. Then by the definition of M' there is some 1' such that 6'(q, 1') = ( q ;  , q i )  and therefore 

hl1(q)/1' - d1/1. 

Since M' is effectively constructed, the proposition was proved. I 

The above proof also establishes that least upper bounds are effectively computable. For the 

Moore machine M' defined in the above proof, it can be also easily shown that dl  5 d? i f f  ,\I1 

satisfies the following conditions: for all reachable state q in M',  ( 1 )  seconb(q)  E Q?,  ( 2 )  i f  

q = ( q l , q 2 ) , ~ 1  E Qlrq2 E Q2 then ol(q1) C~ 02(q2) and if o(q)  = Set then for all I? such that 

5?(q2, 1 2 )  is defined there is some l1 such that 6'(q,  ( I 1 ,  1 2 ) )  is defined. Therefore we have: 

Proposition 4.11 The relation 5 on D o b j m  is decidable and least upper bounds (~f they e x ~ s t )  

are effectively computable. 1 



The next proposition show that the typing is preserved by least upper bound. 

Proposition 4.12 If d l  : a ,  d2 : a  and d  is a  least upper bound of d i ,d2  then d  : a .  

Proof Let dl ,d2  be any descriptions and M' be the Moore machine representing a least upper 

bound of dl and d2 constructed in the proof of propaition 4.10. By the construction of M I ,  for 

any a  E d o m ( M 1 ( s ) )  either there is some b  E dom(d l )  such that a  & b and d l ( b )  gb M t ( s ) ( a )  or 

there is some c E dom(d2)  such that a c and d?(c) cb M 1 ( s ) ( a ) .  Since for some x ,  y E F d ,  if 

x L~ y and x : b  f for some f E F, then y :' f ,  in either case a  satisfies the conditions of the 

definition of the typing relation d  : a .  I 

Definition 4.16 For any descnption type a  E Dtypem,  the domatn D,  associated with a  t s  the 

pose2 [({did : a ) ,  3 1 .  

Theorem 4.5 For any a ,  Do is a  descnption domarn. 

Proof We show that D, has a bottom element. By definition of D,, it is suffices to  show 

the existence of a description d  such that d  5 dt for all d' E {dld : a ) .  Define a mapping 

nullval : F ,  - Fd as 

null, if f E B 

otherwise. 

For any a ,  define the description N u l l ( u )  as follows: 

1 .  a  E d o m ( N u l l ( u ) )  iff a  E d o m ( u )  and there is no proper prefix b  of a such that a ( b )  = Chnnai, 

and 

2. for all a  E d o m ( N u l l ( u ) ) ,  N u l l ( a ) ( a )  = nullaal(u(a)).  

From this definition, it is easy to check that N u l l ( a )  : a  and N u l l ( u )  5 d  for any description 

d  : a .  Then the theorem follows from propositions 4.10, 4.1 1, 4.12 and lemma 2.1. 1 

4.4.5 A Model of the Type System 

We now define the set of embedding-projection pairs to connect the set of description domains and 

turn them into a database domain. 



For defining functions and properties on D,, the following definitions and results are useful. Let 

( P I ,  < I ) ,  ( P 2 ,  I?)  be a preordered sets. A function f : PI -. P2 is monotone iff for any pl, pz f P I ,  

if p1 I l  pz then f ( p l )  52 f (p2) .  For a monotone function f : Pl - P?, define [ f  : P& - P& 

as [ f ] ( [ x ] )  = [ f ( x ) ] .  Since f is monotone, [ f ]  is well defined in the sense that it does not depend on 

representatives of equivalence classes. It is also clear that [ f ]  is monotone. The following lemma is 

an immediate consequence of the definition. 

L e m m a  4.3 Let ( P I ,  11), (P2 ,  I z )  be preordered sets and f : Pl + P2, g : P2 -. Pl be monotone 

functions. If for all p E P I ,  g ( f ( p ) )  = p and for all P E Pz, f ( g ( p ) )  1 2  P then ( I f ] ,  (91) 2s an 

embedding-projection pair between [ ( P I ,  < I ) ]  and [(P?, I?)].  I 

Definition 4.17 Let u l ,  a? f D t y p e m  such that ul < a?. q5,,-,, zs a functzon from {dld : a l }  to 

{did : u 2 )  defined as follows: a E dom(~,,,,,(d)) ifl either ( 1 )  a E dom(d) or (2)- there are some 

a l ,  a?, bl such that a = al . a? and a ]  z bl satisfying: 

I .  al E dom(d),  d ( a l )  = Record and for any non empty prefix a3 of a* there ts no a4 such that 

al . a3 & a4,  a4 E dom(d),  

2. bl - a? f dom(u)  and for any proper prefiz a3 of a?, a(bl . a3) # Vanant, 

and for any a E dom(~,,,,,(d)), 

if a E dom(d) 
dul-na(d)(a) = 

nullual(az(b)) t f  a dom(d)  where b & a,  b E dom(a )  

where nullual is the function from F, to Fd defined in the proof of theortm 4.5'. 

tl~u,,o, 1s a mapprngfrom {d(d : a?} to {dld : u l }  defined as follows: p,,-,,(d) I S  the restrtctton 

of d such that a E dom(ll,,,,,)(d) t f la  f dom(d) and there 8s some b E dom(o?)  such that a & b.  

Define 

Embm = { d ~ ~ - ~ ~ l ~ l ,  U? f DtypeCo,  a l  < a ? ) ,  

E m b  = { d u , - u , l ~ ~ ,  a? E D t y p e ,  a l  < a ? ) ,  

P r 0 j W  = { ~ 0 , - ~ ~ 1 6 1 , a ? E  D t y p e w , u 2  < a l ) ,  

P f o j  = { $ o l - a 2 J a ~ r  a2 E D t y p e , a z  < u l } .  

Since for any a,b in dom(u) ,  if a & b then a = b, the above definition of ~,,,,, is well defined. 

Propos i t ion  4.13 For any 0 1 , 0 2 ,  a1 < a?, ( [d  ,,,,, 1, [$ ,,,,, 1) zs an embeddzng-projection patr 

beiween D,, and Do,. 



- 
Proof For any element d such that d : a l ,  let dl = q5,,,,,(d) and dl1 = $,,,,,(dl). By the 

definitions of q5,,,,, and d : a l ,  a E d o m ( d )  iff a E d o m ( d l )  and there is some b E d o m ( a l )  such 

that  a & b, and for any a E d o m ( d ) , d l ( a )  = d ( a ) .  By the definition of $,,,,, , a E dom(dl1)  iff 

a E d o m ( d l )  and there is some b such that a & b, b E d o m ( a l ) .  Also for any a E dom(dl1) ,  dI1(a) = 

d l ( a ) .  Therefore d = dl1 and hence $ ,,,,, (q501-a,)(d) = d .  

For any element d such that  d : a?, let d' = $,,,,,(d) and dl1 = d,,,,,(dl). Define a relation - on 

S u b t t e e s ( d l 1 )  x S u b t r e e s ( d )  as follows: for dl E S u b t r e e s ( d V ) ,  d2 E S u b t t e e s ( d ) ,  d l  - d? iff 

either there is some a E d o m ( d l )  such that  dl  = d1I/a and d? = d l a ,  or there is some a ,  b such that 

a tif d o m ( d l ) ,  a & b, dl = dl1/b and d2 = d l a .  Since 6 E d o m ( d l ) ,  dl' - d .  Suppose d l  = d1I/a,  d? = 

d / a  for some a E d o m ( d l ) .  By the definitions of 4,, ,,, and $,,,,, , dI1(a) = d l ( a )  = d ( a ) .  Suppose 

dl  = dl1/b,  d n  = d / a  for some a tif d o m ( d l ) ,  a & b. Then by the definition of ~,,,,,, there is some c 

such that  c & b, c E d o m ( a 2 )  and d"(b) = nullval(a2(c)) .  By the property of nullval, dl1(b) E~ d ( a ) .  

Therefore in both case d l ( € )  C~ d3(c) .  The  other conditions of substructure relation (condition 3-4) 

can be easily checked by distinguishing cases whether a E d o m ( d l )  or not and using the property 

of the typing relation and the definition of 4,,,,, in the latter case. 

For the monotonicity of 4,,,,,, let d l ,  d? E {dld : 01) and d', = 4,,,,,(dl), d; = @,,,,,(d~). 

Suppose there is a substructure relation - on S u b t r e e s ( d 1 )  x S u b t r e e s ( d ? ) .  Define a relation -I 

on S u b t r e e s ( d i )  x S u b t r e e s ( d ; )  as follows: d -I dl iff either ( 1 )  there are a ,  b such that  dl  / a  - 
d z / b  and d = d ' , /a ,d l  = d i / b  or ( 2 )  there are a ,  b , c  such that  d l / a  - d2 /b ,  d = d i / a . c ,  dl = d z / b . c ,  

and for any nonempty prefix d of c a.d @ d o m ( d l ) ,  b.d # d o m ( d 2 ) .  I t  can then be checked that -' is a 

substructure relation. For the monotonicity of $,,,,, , let d l ,  dg E {dld : a ? )  and d; = ~,, , , , (dl) ,  

d; = +,,,,,(dz). Suppose there is a substructure relation - on S u b t r e e s ( d 1 )  x S u b t r e e s ( d ? ) .  

Define a relation -I on S u b t r e e s ( d ; )  x S u b t r e e s ( d 6 )  as: d - I  dl iff there are a ,  b such that 

d l / a  - dglb  and d = d i / a , d l  = dh/b. Then it is easily verify that -I is a substructure relation. 

Then the proposition follows from lemma 4.3. 1 

For Emb and P r o j ,  there are inductive definitions. We first define functors (function con- 

structors) for records, variants and sets. 

1. Records. 

Let f l  : a: -+ a:, . . . , fn : a: - a: be any functions and cn+l , .  . . , cn+, be any constants 

(n, m > 0 ) .  [ / I  = f l ,  . . . . I n  = f n ,  ln+l = cn+l , .  . . , ln+, = cn+,] is the function on records of 

type [ I 1  : a:, . . . ,In : a:] defined as 



and [ I 1  = f l  , . . . , I k  = f k ,  1k+1 = ak+l, . . . , I n  = a,] (0 5 k 5 n) is the function on records of 

type [ I 1  : u: ,  . . . , I k  = a:,lk+l = ak+l,. . .,In = a,] defined as 

2.  Variants. 

Let f l  : a: - a:, . . . , f n  : a,!, - a: be any functions. ( I l  = f l ,  . . . , I n  = f n )  is the function 

on variants of type ( I l  : a: ,  . . . , In  : a,!,) defined as 

( 1 1  = f l ,  ..., In  = fn) ( ln j )  = Inj, 

( I l  = f l ,  . . . . I n  = fn)(Inj(li = d ) )  = Inj(li = f i (d)) ( l  5 i 5 n). 

3. Sets. 

Let f : a1 - a? be any function. 4 f ] is the function on sets of type {{a l ]  defined as 

Then Emb coincides with the following inductively defined set Embo: 

1. idb E EmbO for any b E B where idb is the identity function on Bb,  

2. [ I 1  = do;,,; , . . .  In  = dat-a:,ln+l = N ~ l l ( u ~ + ~ ) ,  ..., In+, = Null(an+,)] E EmbO if 

~ o ; d o ; , . .  . . 4,:-,: E EmbO and un+l,. . . ,an+, E D t y p e  where Null(ai)  is the mapping 

defined in theorem 4.5, 

The  P r o j  coincides with the following inductively defined set Projo:  

1. idb E ProjO where idb is the identity function on Bb, 

2. [11 = $,;,,,;, . . .lk = $,:-,:, 1k+1 = at+l , .  . . . In  = an] E ProjO if $,;-,;, . . . ,$,:-,: E 

Pro jO  and ak+l,. . . ,an E D t y p e  



From the inductive characterization of E m b  and Proj it is easy to  see that all embeddings 

and projections between finite types are computable functions. This necessary property still hold 

for general embeddings and projections. 

Proposition 4.14 Elements of E m b w  and Projm are all computable functions. 

Proof We first show for the embeddings in E m b m .  Let a1 Q a? and d  : 0 1 .  Let !Md = 

(Qd,  sd, Fd ,  6d, od) and Mu, = (Q,, , F,, 6,,, o,,) be Moore machines representing d , a 2  respectively. 

Let Ad = (Q, s ,  F ,  6 ,  o) = (Md x Mu,)/= be the product machines modulo the equivalence relation 

= defined in definition 4.14. Define M' = ( Q ,  s ,  F d ,  6', 0') from M as follows: 

1. Q , s  are same as M .  

2. 6 ' (g , l )  is defined and equal to  qt iff either 6 ( q , ( l , l r ) )  = q  and 1 # $, or 6(q,  ( $ , I ) )  = and 

~ ( q )  $! {( Inj, E'ariant), ($, Variant), (Set ,  S e t ) } ,  

3. o' is defined as 

if 4 9 )  = ( f ,  g ) ,  f # 
if o(q)  = (%, g ) ,  g # $ 

otherwise. 

It can then be checked that M 1 ( s )  = Q , , - ~ ,  ( d ) .  

For the projections in Projm, let u2 Q a1 and d  : a , .  Let Afd = (Qd , sd ,  F d , b d , o d )  and Al,,  = 

( Q o z ,  F,, bU2, oo2 )  be hloore machines representing d,  a? respectively. Let ,id = ( Q ,  s .  F ,  6 ,  o )  = 

(Md x Mu,) /= .  Define M' = ( Q ,  s, Fd,  6 ' ,  o t )  from Af as follows: 

1. Q , s  are same as M, 

2.  6 ' (q , l )  is defined and equal t o  q' iff S(q,(I ,  1 ' ) )  = q  and I' # S 

3. o' is defined as 

f i f o ( q )  = ( f , g ) , g  # S 
o'(9) = 

otherwise. 

Then by lemma 2.5,  M 1 ( s )  = tLu,-u,(d). I 

We now have the following theorem: 

Theorem 4.6 ( { D U l a  E D t y p e m } , { [ d ] ( d  E E m b W } )  t s  a  database domatn and a  model of 

( D t y p e w  . Q ) .  



Proo f  By proposition 4.13, for all 4 E Emb", [4] is an embedding. Since Dtypem is a poset 

with the pairwise bounded join property, conditions 1 - 4 of a database domain (definition 4.9) 

are satisfied by the set {[t#~]I4 E E m b m } .  Condition 5 is shown by proposition 4.14. The mapping 

p : Dtypem - {Dola E Dtype") is given as p(u) = Do. 1 

This theorem says that we have successfuIly completed the constructions of a type system for 

complex database objects and its semantic domain. The type system allows arbitrarily complex 

objects constructed by records, variants, finite sets and recursive definition. This demonstrates 

that our mathematical characterizations of database type systems and their semantic spaces are 

general enough to provide a semantic formulation of a database domain that is rich enough to cover 

virtually all existing representations of complex database objects. 

Another important implication of the above theorem is its computational contents. It guarantees 

that for arbitrarily complex types, various properties needed to compute joins and projections and 

to type-check expressions are always effectively computable. As we will show in the next chapter, 

these properties enable us to develop a practical programming language that integrates the database 

type system we have constructed and an hlL-style polymorphic type system. 

Joins and projections are given by equations (4.1) and (4.2), which are always computable 

functions. An actual algorithm to compute them can be easily extracted from the proof of the 

theorem. hloreover, there are generic ways t o  compute joins and projections. For joins, we have: 

Propos i t ion  4.15 If dl : ul ,  dn : u2 are descripttons such that u = a1 U a? t h e n  

P r o o f  By the definitions of 4 and Null, ~ , , , , ( d l )  = dl u Null(u) and 4,,, ,(d2) = d , ~  hrull(u). 

Then we have : $, , , , (d l )  LI 4,,,,(d2) is defined iff (d l  U dz)  U Null(a) is defined iff dl U dz is 

defined. The equation follows from the fact that Null(u) is the bottom element of the set Do. 1 

Since we have shown that least upper bounds are effectively computable, the above result gives 

a generic way to compute joins. For projections, the definitions of $,,,,, is already generic in 

the sense that  it does not depend on ul .  Define the partial function Proju as follows: for any 

description d,  Proju(d) is the restriction of d such that a E dom(dl) iff a E dom(d) and there is 

some b E dom(u) such that a & b .  Since the definition of Proju and $,,,, is identical except 

their domains, we have: 



Proposition 4.16 If d  is  a description of type a such that a' < a then 

p r o j o ' ( d )  = $,,,~(d). 

For static type-checking, since join and projection have polymorphic type schemes (4.3) and 

(4 .4) ,  the result types of joins and projections are always determined from the types of their 

arguments. hloreover, theorem 4.6 guarantees that they are effectively computed. The following 

are examples of joins of descriptions in figure 4.5: 

The types of the above two joins are working-student and schedule-data respectively, which are 

computed from the types of their arguments. This property allows us to develop a static type 

system. 



Chapter 5 

A Polymorphic Language for 

Databases and Ob ject-Oriented 

Programming 

This chapter combines ML type system we have analyzed in chapter 3 and the type system for 

complex database objects we have constructed in chapter 4 and defines a programming language 

that achieves the integration of records, variants and database objects. We call the language 

Machiavelli maintaining the name we gave to the language in [87]. Later in chapters 6 and 7, the 

language is extended to integrate the other desirable features we discussed in the introduction of 

the thesis. Some of the results in this chapter were presented in [85]. 

5.1 Introduction 

Machiavelli extends the polymorphic programming language ML with 

labeled record and labeled variants with associated operations field selection, field modifica- 

tion, and case statement, and 

complex database objects and the associated database operations lozn and projection. 

We work out this extension preserving the ML's central feature of static type-checking, polymor- 

phism and static type inference. 



Let us first illustrate how ML type system is extended by simple examples. In section 1.1, we 

have defined the function wealthy: 

fun w e a l t h y ( X )  = select x .Name  

where z E X  

with x.Salary  > 100000; 

for which Machiavelli infers the following type information 

wealthy : fI [ (s l )Name : s z , S a l a r y  : i n t ] ]  --c { s * ] .  

As we have explained, the above type expression means that wealthy is a function that takes a 

homogeneous set of records, each of the type [ ( s l ) N a m e  : s2 ,Salary  : i n t ] ,  and returns a homo- 

geneous set of values of the type s? .  s? is a description type variables representing an arbitrary 

description type we have constructed in section 4.4 and [ ( s l ) N a m e  : sz, Salary : in t ]  is a condi- 

tional type vanable which intuitively represents an arbitrary record type that contains Name : sa 

and Salary  : int fields. 

The function wealthy is polymorphic with respect to the description type variable s? of the 

values in the Name field (as representable in hfL) but is also polymorphic with respect to the 

conditional type variable [ ( s l ) N a m e  : s l ,  Salary : in t ] .  In this second form of polymorphism, 

wealthy can be thought of as a "method" in the sense of object-oriented programming languages 

where methods associated with a class may be inherited by a subclass, and thus applied to  objects of 

that subclass. This second form of polymorphism is illustrated by the following example. Suppose 

we implement person objects by expressions of the type 

[ N a m e  : s tr ing,  Age : int]  

and want to define a function increment-age which takes a person object and returns a new person 

object whose Age is incremented by one. The function is written in Machiavelli as follows: 

fun increment-age p = modify(p, Age,p.Age + 1)  

where modify is the primitive that modifies (or updates) a record a t  a specified field with a specified 

value. Machiavelli finds the following type for this function: 

increment-age : [ (s )Age : int]  --, [ ( s )Age  : in t ] .  



This says that incrementnge is a function which takes a record of any type containing Age : int 

field and retuns a record of the same type. By this mechanism, Machiavelli achieves the similar goal 

to the system for multiple inheritance originally proposed by Cardelli [24]. For example, suppose 

we implement employee objects by expressions of the type: 

[Name : string, Age : int ,  Salary : int] .  

Since the type [Name : string, Age : in t ,  Salary : int]  is an instance of [(s)Age : in t ] ,  the following 

type is an instance of the type of increment-age: 

[Name : string, .4ge : int,Salary : int] + [Name : string,Age : int ,Salary : int] 

and therefore incrementage can also be applied to an employee object returning an employee 

object. 

In the rest of this section, we review existing approaches to  integrate records, variants and 

complex database objects in a static type system and outline our strategy. 

5.1.1 Records and Variants for Object-oriented Progran~ming 

There are numerous arguments on the features of object-oriented programming. Here we will not 

go into the argument on the "essence" of object-oriented programming but instead we concentrate 

on the following features: 

method inheritance, 

user definable class hierarchies based on an inheritance relation 

data  abstraction, 

which I believe to  be the major contributions of object-oriented programming. Among these fea- 

tures, the method inheritance mechanism is a form of polymorphism in the sense that it allow 

methods to  be applied to various structures sharing certain common properties. In this chapter 

we only consider this feature. I believe that this mechanism is a basic feature of a type system 

that should be integrated in the polymorphic core of the language. The other two features will be 

treated in the next chapter by extending lllachiavelli with a new construction for classes. 



- 
Method Inheritance by Subtyping 

Perhaps the first serious attempt to integrate method inheritance in a static type system was [24] 

by Cardelli. He argued that the essential feature of "objects" can be captured by labeled records 

and labeled variants. Of course records and variants alone do not achieve the features of object- 

oriented programming such as classes and data  abstraction. However, we can agree with this view 

under the interpretation that these data structures enable us to implement the essential features of 

object-oriented programming. Indeed in object-oriented programming languages such as Smalltalk 

1441, objects are implemented by a set of "instance variables" associated with "states" which can 

be naturally regarded as labeled record structures. 

It is straightforward to  add labeled records and labeled variants to  a simple type system. Indeed 

many programming languages such as Pascal satisfactorily integrate them into a static type system. 

In such a type system objects can be implemented using record types and variant types. For 

example, the following types can be regarded as types for classes person and employee: 

person = [ N a m e  : s tr ing,Age : i n t ] ,  

mployee = [Name  : s t r ,  Age : i n t ,  Salary  : in t ] .  

Methods can be implemented by functions on those types. For example, the following function 

fun n a m e ( z  : person) = z. Name 

extracts the value of Name from a person object and can be regarded as a method of the class 

person, where r.1 denotes the selection of the 1 field from the record r .  Note that in a simply typed 

language, it is mandatory to specify the type of a formal parameter as in the above example. An 

obvious drawback to these simple type systems is that they do not support method inheritance. 

Since the body of the function name is also meaningful to  objects of the type employee,  we would 

also like to  use this method for objects of the type employee. However, a simple type discipline 

does not allow such application. As a result, we are forced to define the same function for the type 

employee.  

Cardelli observed that the method inheritance such as those in the above example is related to 

the structures of record types and variant types and proposed a type system that supports method 

inheritance [24].  He defined the subtype relation, which is based on the following relation on record 

types and variant types: 

[ I ,  : T I  ,.... l,, : T,, , . . .  ] 5 [11  :ri  , . . . ,  In : r:] if ri 5 T: ( 1  5 is n), 



( I l  : T ~ ,  ..., In  : T ~ )  5 ( I l  : ri , . . . ,  In  :T:  ,...) if T~ 5 T,! ( 1  5 i 5 n ) .  

The  complete subtype relation is obtained by "lifing" these relation t o  function types by the fol- 

lowing rule: 

if T I  5 TZ and ~3 5 ~4 then + ~3 5 T I  - r4. 

He then defined a type system where the following rule is derivable: 

Because of this rule, a function defined on a type can be applied to values of all its subtypes. For 

example, the function name defined above can be applied not only t.o objects of the type person 

but also t o  objects of the type employee because employee 5 person and any object o that  has 

the typing o : employee also has the typing o : person. Cardelli and Wegner extended this type 

system t o  integrate polymorphism using explicit type abstraction [27] (where the rule (TRANS)  is 

an inference rule). 

However, the type system of this kind that have been so far proposed suffer from the problem 

called "loss of type information". The  problem was first pointed out in [27] in the context of 

Cardelli's original type system. To  see the problem, consider the method that  extracts N a m e  field. 

In the following examples, we use X notation to  represent functions. If the type of N a m e  field is 

s tr ing,  then the method is implemented by the following function in (241: 

name1 Ax : [ N a m e  : string].  x .Name.  

Any types that  are subtype of the type [ N a m e  : string] inherit this method. Moreover, the result 

type is string as we expect. Now consider the case where the type of N a m e  field is itself a record 

type such as [ F n  : s tr ing,  L n  : string].  The  method is implemented by the following function: 

name2 Ax : [ N a m e  : [ F n  : string,  L n  : s tr ing]] .  x.Name 

Again any types that  are subtype of the type [ N a m e  : [ F n  : s tr ing,  L n  : s tr ing]]  inherit this 

method. However, the result type is not always the one we expect. For example, consider the 

following application: 

name2([Name = [ F n  = @'Joe1', h4i = "hf", L n  = "Doe"] ) .  

Since the type of [ N a m e  = [ F n  = *'Joe1*, hli = * ' h i w ,  L n  =  d do el'] is [ N a m e  : [ F n  : s tr ing,  h l i  : 

s tr ing,  L n  : string]] which is a subtype of the type [Name : [ F n  : string,  L n  : s t r i n g ] ] ,  the above 

application is well typed. Since nema2 is a function that extracts N a m e  field form a record, we 



expect this application to  yield the value [ F n  = "Joe",  M i  = I 'M",  L n  = "Doe"].  We therefore 

expect the type of this application to be [ F n  : string, M i  : string, L n  : s tr ing] .  However, in his 

system, the actual result type is [ F n  : string, L n  : string].  This example shows that an application 

of an inherited method from a super type sometimes "loses" type information. Since the language 

is strongly typed, this also means the serious problem of Ices of information of object itself. In the 

above example, the Mi filed of the object returned by the inherited method name2 can never be 

accessed. 

In [27] a new construction, bounded quantification, is introduced, which is a generalized form 

of type abstraction [94]. The introduction of type abstraction obviously enhances the expressive 

power of the language. However, the introduction of bounded quantification does not eliminate the 

problem of loss of type information. In the first place, the terms we have just examined are still 

terms of the language. Secondly, although the int,roduction of type parameters allows us t o  apply 

a term to an appropriate type, it does not guarantee that the term will not be prone to loss of 

type information. For example, in the new type system, the function that extract Name field is 

implemented by the following polymorphic term: 

pname = Atl.Atl 5 [ N a m e  : t2].Xx : t l .x .Name 

where At is type abstraction and At 5 r is bounded type abstraction. By instantiating the type 

variable t 2  with [Ln  : s tr ing,  F n  : s tr ing] ,  we have the term: 

pnamel Atl 5 [ N a m e  : [ L n  : s tr ing,  F n  : s tr ing]]Xz : t l . x .Name 

with the type 

V t l  5 [ N a m e  : [Ln  : string, F n  : string]].t l  - [Ln  : string, F n  : string].  

t 1  can be instantiated with any type that is a subtype of [ N a m e  : [ L n  : s tr ing,  F n  : s t r ing]] .  Take 

[ N a m e  : [ L n  : s tr ing,  M i  : sting, L n  : s tr ing]]  and we have the term 

Ax : [ N a m e  : [ L n  : string, Ali : sting, L n  : string]].x.Name 

whose type is 

[ N a m e  : [ L n  : s tr ing,  A.li : sting, Ln : s tr ing]]  -- [ L n  : string, L n  : s t r ing] .  

Then by applying it to the object [ N a m e  = [ L n  = **JoeB', M i  = ".iCI1*, Ln = "Doe"]] ,  we have an 

object of the type [ L n  : string, Ln : string].  But since pname is a function that extracts N a m e  

field, we expect the result of the above application to yield [ L n  = "Joeo4 ,  Adi = " d l " ,  L n  = *'Doe"]. 

We apparently lost the type information of Mi : string. 



A precise analysis of the loss of type information phenomenon is certainly desirable. Meanwhile, 

the following analysis may contribute towards understanding part of the problem. Using the rule 

(TRANS)  to  type-check the terms containing field selection e.1 seems to fail t o  reflect the precise 

operational behavior of this program construction, which is 

A typing rule that would fit this is: 

e : rl 
(dot) where rl is a record type containing 1 : 72. 

e . l : ~ z  

The associated condition coincides with the subtype relation rl 5 [ I  : only i f  r? has no proper 

subtype. However, if r? is a type that has proper subtypes such as record types, then the condition 

associated with the typing rule (dot) is strictly stronger than the subtype relation. In the original 

type system [24], this may help explaining why, for example, n a m e 2  exhibits loss of type informa- 

tion, but n a m e 1  does not. An appropriate relation to type-check terms containing field selection 

seems not the subtype relation but the filed inclusion relation among record types. 

The same mismatch between the operational behavior of e.1 and the rule (TRANS) remains in the 

new type system [27]. As we have seen in the example of p n e m a ,  the bounded quantification does 

not correct the mismatch. Moreover, the bounded quantification does not provide an alternative 

to  the rule (TRANS) to  type-check terms containing filed selection. In [27] it is suggested that "now 

that we have bounded quantifiers, we could remove the other mechanism [of inheritance], requiring 

exact matching of types on parameter passing...". This should mean that the rule ( T R A N S )  could 

be removed, since this is the only rule to achieve non-exact matching of types on parameter passing 

in the type system of [27]. If we do this, however, we will lose much of the power of representing 

inheritance, as shown below: 

Proposition 5.1 Let N be a t e r m  in F U N  [27] that contarn 2.1 where x is a free vanable  zn e .  If 

Ax : rl. M has a typing derivation In the iype sys tem of F U N  then ei ther  r is not a type variable 

o r  the derivat ion contains the application of the rule (TRANS). 

Proof A typing judgement in FUN is a formula of the form C, A D M : r where A is a type 

assignment and C is a subtype assumption. For the complete definition of the type system of FUN, 

readers are referred to  [27]. 

The proposition is proved by the following property of the type system. Let A be a type assignment 

such that A ( z )  = t for some type variable t .  Then any derivation for C, A b 1.1 : T must contains 



the application of the rule ( T R A N S ) .  I 

This implies that without the rule ( T R A N S ) ,  functions containing field selection e.1 cannot be 

polymorphic even with the existence of bounded quantification and therefore if the  TRAN TRANS) is 

removed then we lose most of the power to represent inheritance. 

The presence of the rule ( T R A N S )  also raises some problems with primitive operations that are 

important for database programming such as join and equality. Here we consider the treatment 

of equality. There are at least two forms of equality that are commonly used in programming 

languages. One is the identity between run-time objects in store. Examples include Amber's 

equality primitive [23] and eq predicate in Lisp. In this view [ N a m e  = "Joe"] = [Name = ~'Joell] 

is presumably false, and the best we could say about equality is that it is a function of type 

TI x TZ - bool. Another form is the "structural" equality which tests whether two expressions 

denote the same value or not. Examples of this equality include the equality primitive = in Standard 

ML and equal in Lisp. For this form of equality, we would expect a type error if it is applied to  

values of different types. This is the type checking rule adopted in Standard ML. However, with 

the existence of the rule ( T R A N S ) ,  this desirable type discipline cannot be enforced. For example, 

consider the untyped term A t .  x = [ N a m e  = "Joe"]. In ML the type [Name  : string] - bool 

is inferred for this term, but with the addition of ( T R A N S ) ,  it is legitimate to  apply this function 

to  [ N a m e  = "Joe", Age = 211 - something that in the untyped case we would expect to raise a 

run-time type error! 

Method Inheritance by Type Inference 

Wand observed [ I l l ]  tliat the method inheritance is a mechanism to capture tlie polymorphic nature 

of operations associated with records and variants and can be achieved by hiL style polymorphism 

through type inference. If a type system can infer the most general type for operations on record 

such as field selection, then those operations can be applied to  any records to which the application 

is type correct. The major problem in accomplishing this idea is that basic operations on records 

and variants do not have a principal type-scheme and therefore the conventional type inference 

algorithm (theorem 3 . 2 )  cannot be directly applicable to these operations. The problem is seen 

in Standard hlL1, which integrates labeled records but cannot find a type for functions whose 

arguments are partial matches for records such as 

fun name [Name = x, ...I = x 

'In Standard ML, the syntax for records is {I = e , .  . . , I  = e ) .  Here we use the syntax [ l  = e , .  . . , I  = el. 



where "..." in [Name = I ,  ...I is the patter in Standard ML that  matches any sequence of fields that 

do not contain Name field. Although Standard ML compiler reports a type error for the above 

definition, this function is well typed in the sense that it has a typing. For example, if we specify 

a type of the argument as  in: 

fun name ([Name = x ,  ...I : [Name : s t r ,  Age : int]) = x 

then Standard ML compiler find the following correct type for the function: 

[Name : s t r ing,  Age : int] --, string. 

The  problem is that there is no principal typing scheme because of the condition associated with 

the field selection. 

\%'and [ I l l ]  tried to solve this problem by decomposing type expressions into two languages, 

TE and R E ,  respectively called type expressions and row expressions. (His language also contains 

labeled variants. Here we restrict attention to labeled records. Labeled variants can be understood 

similarly.) TE and R E  are defined as follows: 

TE ::= t I L I TE -- TE I [RE], 

R E  := y 1 6 1 RE(1:  T E )  

where t ,  y are variables ranging over TE, R E  respectively and 0 is a constant symbol denoting the 

empty row. R E  satisfies the following equality rules: 

His type system contains the following typing rules for records. 

A t  el :b]   ate?:^ 
(with) 

A k e l  with 1 := e? : Ip(1 : r)]  

where T and p ranges over arbitrary types and rows respectively. The rule for e.1 is now represented 

without any condition. The necessary condition is correctly captured by the equality rule (5.1). 

Therefore the  primitive operators . . . with 1 := . . . and . . . .I do have principal type schemes [y] x t - 
[y(1 : t ) ]  and [y(l : t)] -+ t respectively in TE and R E .  Since R E  equipped with the equality rule 



(5.1), any ground instances of these type schemes are types of these operators. However, RE  is 

no longer freely generated. Because of this fact, equations between TE and RE in general do not 

have most general solution. This reflects the fact that in his language there is a typable term that 

has no principal typing scheme. For example, the following term has a typing under his set of type 

inference rules but has no principal typing scheme: 

(Ax. Xy. r (y(x with 1 := 1)) (y [ I  = 11)) [1= true]. 

His type inference algorithm produces the following equations on RE to infer the type of y: 

[y(l : int)] = [a(/ : int)] 

which does have a solution but has no most general one. Because of this fact, his unification-based 

type inference algorithm cannot find a solution and reports a type error. 

We overcome this problem by extending the notion of typing schemes to  allow conditions on type 

variables. In our system, the term Ax. 1.1 has the following principal conditional typing scheme: 

where [(tl)l : t?] is a type variable t l  associated with the condition that substitutions of t i  are 

restricted to  those 0 such that B(tl) is a record type containing 1 : 8(t2) field. By this mechanism 

we solve the type inference problem for records and variants. Several other solutions have been 

also proposed [38, 105, 25, 63, 26, 931. An advantage of our method is that it allows us to  extend 

M L  type system uniformly to a wide range of data structures and operations including complex 

database objects and associated operations join and projection. 

5.1.2 Integrating Database Objects 

Nre turn our attention to  the problem of integrating complex database objects and associated 

operations into programming languages. Since our objective of this subsection is to identify the 

problems, we will not attempt to  give a comprehensive survey. Readers are referred t o  [lo] for an 

excellent survey in this area. 

Historically database systems are developed relatively independently of programming languages. 

Many database systems were built as stand alone systems with a special data manipulation lan- 

guages often called database query languages. A typical example is SQL [8] for System R [9]. 

Obvious problem of these languages is that they are extremely limited in expressive power because 

of the lack of general programming capability, which also makes it difficult to integrate databases 

with other applications. 



In order to  overcome this disadvantages, several embedded l anguages  - the languages that embed 

a database query language as subroutine calls in a general purpose programming language - have 

been developed. The problem of this ad hoc solution is that the interface between a database and a 

host language is usually limited t o  primitive types such as integers and strings. The database struc- 

tures such as records and relations are not recognized by the host language. As a result, database 

programming cannot make full use of the expressive power and the type-checking capability of the 

host language. 

The designers of certain database programming languages, notably Pascal-R [9D] and Galileo 

[7] have recognized this mismatch problem and have implemented languages in which a database 

can be directly represented in there type systems. Type checking in both of the languages is static 

and the database types are relatively simple and elegant extensions to  the existing type systems 

of the programming languages on which they are based. Galileo also allows complex database 

objects and incorporates a form of inheritance based on the subtype rule we have just analyzed. 

However, these languages do not support database operations such as join and projection. Database 

programming is done by using special iteration primitives (for each.. .in.. . d o  in Pascal-R and 

for.. .in.. .with.. .do in Galileo). Such iteration primitives are of course useful and necessary. 

But we would also have database operations on "bulk" of data  such as join and projection. As we 

have argued in section 4.1, these operations are extremely useful in many database programming. As 

we will see in chapter 7 they are also useful t o  represent object-oriented databases. These language 

also do not integrate polymorphism and static type inference - the other essential features of 

good programming languages. To my knowledge, no attempt has been made to integrate database 

structures into a type system with polymorphism and static type inference. 

In the previous chapter, we have solved the problem of constructing a type system for complex 

database objects with generalized join and projection. In this chapter we solve the problem of 

integrating them into an ML style type system. In order to achieve this goal we first extend the 

type system of 1 l L  to include the database type system we have developed in the previous chapter. 

We then define a set of constants for constructing and manipulating complex database objects and 

extend the proof system for typings to include these new constants. For the extended language, we 

develop a type inference algorithm. It turns out that our proposal of condrironal typrng schemes we 

have explained in the previous subsection is general enough to include structures and operations 

for databases. 



5.2 Definition of Machiavelli 

5.2.1 Types and Description Types 

The set of Type (ranged over by r )  of Machiavelli is the set of regular trees denoted by the following 

term representations (subsection 2.2.3): 

T ::= b 17 -7  1 [ l :  r ,... , l  : r ]  l ( 1  : r  ,... , l :  T )  1 { T I  1 ( r e c v . r ( v ) )  

where b stands for base types. By the interpretation defined in subsection 2.2.3, each expression 

denotes a regular tree. The set of regular trees denoted by the following language is exactly the set 

Dtypeco of description types we have constructed in section 4.4: 

a ::= b I [ I  : a , .  . . , I  : a] 1(1 : a , .  . . ,I : a) I {a}} I ( r ec  v .  a(v)) .  

We apply directly the ordering we have defined on Dtypew to those type expressions. For conve- 

nience, we assume a set of special labels # l , .  . . , #i, . . . and use the following shorthand: 

5.2.2 Raw Terms 

We first define the set Cons t s  of constants of Machiavelli to  represent records, variants and complex 

database objects and associated operations. 

For labeled records, labeled variants and sets, the necessary constants are the following: 

1. Record constructor constants: 

for all finite sequence of (distinct) labels ( I 1 ,  . . . , i n )  and for all types T I .  . . . , rn 

2. Variant constructor constants: 

variant' : rl -+ r? 

for all labels 1 and all pair of types rl,r2 such that r 2  is a variant type containing 1 : 7 1 ,  i.e. 

T? is a regular tree such that ~ ~ ( 6 )  = V a r i a n t ,  1 E dom(r2)  and r? / l  = T I .  

3. Set constructor constants: 

setn : a - . . . - a - {a] (n argument curried function) - 
n 

for all description type a and integer n.  



In order to  represent cyclic (recursive) database descriptions, we define the set of description 

constructor constants. This requires several steps. The set of constructor ezpressions (ranged over 

by c )  is given by the following syntax: 

c  ::= x I ~ e c o r d ( ' ~ . . . . " " ) ( c ~ ,  . . . , cn)  I var ian t l (c )  ISetn(cl ,  . . . , c,) I (rec  x. c) .  

x in (rec  x .  c )  is a bound variable. As for lambda terms, we write F V ( c )  for the set of free 

variables in c  and c[c l / x ]  for the constructor expression obtained from c  by replacing x  by cl with 

necessary bound variable renaming. A constructor expression c  has a description type a  under a 

type assignment A, denoted by A b c  : a ,  if it is derived by the following typing rules: 

A D c l  : a1 . . .  A P C ,  : a ,  
( R E C O R D )  

A t> ~ e c o r d ( l ~ ~ ~ - . ~ ' ~ ) ( c ~ ,  . . . , c,) : [ I l  : a l ,  . . . . I n  : a,] 

d D c : a l  
( V A R I A N T )  if a? is a variant type containing 1 : a ,  

A D v a r i a n t l ( c )  : a? 

d Dcl  : u . . .  A D C ,  : u 
(SET) 

A D S e t n ( c l ,  . .  . , c,) : { a n  

A { x  : = a )  D C  : a  
( R E C )  

A D (rec x .  c )  : a  

We write C E  I- A D c  : a  i f  A D c  : a  is derivable in the above proof system. For this typing 

system the following properties are proved as in lemma 3.5 and lemma 3.8: 

Lemma 5.1 If  C E  I- A D c  : a  then C E  I- AtFV(') DC : a .  If C E  t- A D c  : a  and x  @ d o m ( A )  

then C E  I- A { x  := a ' )  b c  : a  for any a ' .  I 

Lemma 5.2 If  C E  I- A { x  := u l )  b c  : a* and C E  I- A b c' : a1 then C E  I- A D c[c ' /x]  : a?. I 

By this lemma and the rule ( R E C ) ,  we have: 

P r o p o s i t i o n  5.2 If C E  I- A b (rec  x .  c )  : a  then C E  t- A b c[(rec x .  c ) / x ]  : a .  1 

A constructor expression c  is proper if it is not a variable and if c  ( rec  x .  c') then c' is one 

of the  form ~ e c o r d ( ' ~ ~ . . . , ' ~ ) ( c ~ ,  . . . , c,), Irarinat '(cl)  or S e t n ( c l ,  . . . , c,). The set of description 



constructor constants is now defined as the set: 

{ c ( z l . . . . , z m )  : g1 d . . .  - 6, - a( 
F V ( c )  = { X I , .  . . , x,), c  is proper and CE I- {xl := al, . . . , x, := a,) t> c  : a) 

For cyclic description constructor constants, the following property hold. 

Proposition 5.3 IJ ( rec  x. : a i s  a description constructor constant then so i s  

~ [ ( r e c  x. C ) / X ] ( ~ ~ , . . . ~ ' * )  : a. 

Proof By F V ( ( r e c  x .  c ) )  = FV(c[ ( rec  I. x ) / x ] )  and proposition 5 . 2 .  1 

This property corresponds to  unfolding of a recursive definition. 

Cyclic description constructors should not be confused with fixed point constructors such as 

( f i x  x  e )  in M L  [T8]. Cyclic descriptions denote regular trees of descriptions we have developed in 

chapter 4. As an example, consider the cyclic description: 

( ( r e c  z. ~ e c o r d ( ~ ~ ~ ~ ~ ' ~ ~ ' ) ( h , x ) ) ( ~ )  1 )  : (rec  v .  [ H e a d :  in t ,Tai l  : v ] ) .  

This denotes a regular tree represented by a finite graph and therefore the evaluation of .this 

expression always terminates under any evaluation strategy. On the other hand 

j x  x. [Head = 1 , T a i l =  x] 

should denotes a fixed point of the function Ax. [Head = 1,Tail  = x] (which is also definable 

in Machiavelli using a fixed point combinator). If the interpretation of the function abstraction 

is "strict" then the latter denotes "bottom". Operationally this corresponds to  the fact that the 

evaluation of the latter expression diverges under the "call-by-value" evaluation. As we have pointed 

out in section 3.5, fixed point combinators are definable in our language and therefore we do not 

need t o  include fixed point constructors (or equivalently special constants I' : ( r  - r) - r) .  We 

will comment more on this topic when we will discuss recursive function definitions in Machiavelli 

(subsection 5.6.1). 

Finally we define constants for operations on these data  structures: 

1. Field selectors: 

select' : T I  + r? 

for all 1 and pair of types T I ,  T? such that rl is a record type containing 1 : 7 2 .  



2. Field modification: 

modify1 : TI  - 7 2  - rl 

for all 1 and pair of types r l ,  T? such that TI  is a record type containing 1 : T?. 

3. Case analysis for variants: 

for all finite sequences of (distinct) 1 1 ,  . . . , I n  and all types TI,. . . , rn, T. 

4. Set unions: 

union : { a ]  - {{a] - {{a] 

for all description types a.  

5. Cartesian product of sets: 

for all n and description types a l ,  . . . ,a,. 

6. Mapping a function over a set: 

m a p  : (a1 - a?) - ga l ]  - {{a?] 

for all description types a l ,  a?. 

7. Join of descriptions: 

join : a1 -a? -03 

for all description types al ,az ,  as such that a3 = a1 u a?. 

8. Consistency check for two descriptions: 

con : a1 - a:! - bool 

for all description types a l ,  a? such that a ]  U a2 exists 

9. Projection of descriptions: 

proju : al - a 

for all description types a,al  such that a < a1 

10. Equality on descriptions: 

eq : a - a - bool. 
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We define the set Cons t s  of constants of Machiavelli to  be the set of all the above typed 

constants (i.e. pairs of a constant symbol and a type) and the set of typed atomic values and 

standard primitives on atomic types (such as addition on integers and conditional on boolean). 

Definition 5.1 (Set of Raw T e r m s  of Machiavelli ) The set of raw terms of Machiavelli 

(ranged over b y  e )  is the set given by the following syntaz: 

e ::= c I x I Ax. e ( ( e  e )  ( let x = e in e end 

where c stands for ihe set of symbols (c13r. c : r E C o n s t s ) .  

Note that  this definition is an instance of the definition of the set of raw terms of hIL (defini- 

tion 3.21). 

For the raw terms, we use the following syntactic shorthands: 

( r ec  z. e )  ( r ec  1.. ~ ( ~ ~ ~ . - - ~ ~ ~ ) ) ( e ~ )  . . . ( e n )  

where e c("l,.. - Z n ) [ e l / x l , .  . . , e n / x n ] .  

In examples we also use the following syntactic sugar for case statements: 

(case e of ( 1 1  = x l )  * e l , .  . . , (1 ,  = I,) * en)  o 

(case e o f  11 * Axl. e l , .  . . ,in Azn. e l ) .  

It should be noted that new notations we have introduced above are not new term constructors. The 

abstract syntax of raw terms remans the same (definition 3.21). Later we will give an alternative 

definition where those new notations are introduced as raw terms constructors. 



5.2.3 The Proof System for Typings 

Since the definition of raw terms and types are instances of the general definitions of ML we gave 

in section 3.5, the definition for the proof system for typings of Machiavelli is the same as that of 

ML (definition 3.22). We repeat the typing derivation system below: 

(CONST) A D c : T if c : r E Consts 

d D e l  : rl -+T? d D e ?  : rl 
(APP) 

A D (el  e2) : T? 

d D el[ez/x] : r d D e? : r' 
(LET) 

A D l e t  x = e? in e l  end : r 

We write MC t- A D e : T if A D e : T is derivable. 

5.3 Alternative Presentation of Raw Terms and Typings 

The  above presentation of raw terms has the technical advantage that  it significantly simplifies 

the presentations of the typing inference system, type inference algorithm and the semantics of 

the language. In particular, many results about the semantics can be directly applied to  hlachi- 

avelli without re-proving them by adding cases for new term constructors. However, programming 

languages are usually defined using raw term constructors, which may yield a more intuitive and 

readable definition. For this reason, we give an alternative presentation for the set of raw terms 

using raw term constructors: 

e ::= c7 1 x I Ax. x I (e e)  ] l e t  x = e in e end I 

[I = e , .  . . , I  = el 1 e.1 I m o d i f y ( e , I , e )  ( 

( I = e )  I ( c a s e e o f l a e ,  . . . ,  I a e )  I 

{e, . . . , e 8 1 u n i o n ( e ,  e )  I p r o d ( e ,  . . . , e ) I m a p ( e ,  e )  I 

j o i n ( e , e )  I p r o j e c t ( e ,  a) I c o n ( e , e )  I e q ( e ,  e )  I (rec v. e(v))  



where cT stands for atomic constants and operations on base types and e ( v )  in (rec v .  e ( v ) )  stands 

for a raw term possibly containing symbol v .  

For the alternative presentation of the set of raw terms using raw term constructors, the equiv- 

alent proof system can be given by the following set of rules: 

(CONST)  A b cT : T if c : T E Consts 

A b e l : ~ l ' r 2  A b e 2 : r l  

A D ( e l  e2 )  : T? 

A D e l [ e 2 / x ]  : r A b e ?  : T' 

(LET)  
A b l e t  x = e 2  in e l  end : T 

A D e : s l  
(DOT)  if TI is a record type containing I : r 2  

A D e.1 : r2 

A p e l : r l  A b e ? : ~ ?  
(MODIFY)  if rl is a record type containing I : T? 

A D m o d i f y ( e l , l , e 2 )  : TI 

A b e : r l  
( V A R I A N T )  if r z  is a variant type containing 1  : TI 

A b < / = e > :  T? 

d b e 1  : a . . .  A b e ,  : a 
( S E T )  

A b { e l ,  . . . ,  e n l  : {aB 



A  el : {al]D . . .  A b e ,  : {a,}} 
(PROD) 

A D prod(e1,. . . , e n )  : {a1 x , . . x a,}} 

A p e  : a 1  
(PROJECT) if a2 < a1 

A D project(el,  a?)  : 6 2  

A Del  : a1 A De:, : a2 
(CON) if a1 U a2 exists 

A D con(el,e2) : bool 

A D e l  : a  A ~ e 2  : a  
(EQ) 

A D eq(el , e 2 )  : bool 

A{v  := a }  D e(v) : a 
(REc) 

A t> (rec v e ( v ) )  : a 

The  reader is encouraged to  check that the set of all derivable typings are indeed isomorphic to  

those in the proof system based on the construct.or constants. In examples that follows we use this 

representation of raw terms, but we continue to  use the previous representation of raw terms and 

iypings in deiiniiions of iormai properiy of Tviachiaveiii. 

5.4 Type Inference Problem 

In our view, terms of M L  are typing schemes representing sets of typings (definition 3.10). As 

we have analyzed in section 3.2, type-checking and type inference depend on the existence of a 

principal typing scheme for any typable raw terms. In order to  preserve this property, it was 

needed for constants t o  have a principal typing scheme (assumption 3.1). As we have seen in 

section 5.1, however, field selection se lect1  does not have a principal typing scheme. The  type 

inference algorithm for M L  is therefore not directly applicable t o  our language. 

T h e  reason that  select1 does not have a principal typing scheme is the condition associated with 

the typing rule. The conventional notion of type-schemes cannot represent the set of all types of 
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the forms T I  -+ 7 2  such that T I  is a record type containing 1 : 1 2  field. The same problem exists for 

the constants variant ' ,  join and proju (and description constructor constants containing them). 

The family of description constructor constants are restricted to description types, which is also a 

form of condition that cannot be represented by conventional type-schemes. We solve this problem 

by extending the notion of typing schemes to allow conditions on substitutions. 

5.4.1 Conditional Typing schemes 

Let T u a r  be a set of type variables (ranged over by 2 ) .  

Definition 5.2 The set of type-schemes, Tscheme  ranged over by p, of Aifachiavelli is  the set of 

regular trees represented by the following syntaz: 

On substitutions of type-schemes, we define the following five forms of conditions 

Definition 5.3 A condition zs one of the following formula: 

1. d type (p ) ,  

2. Lpl 31:  ~ 2 1 ,  

3 ( P I  3 1 :  ~ 2 ) ,  

4. P I  = jointype(p2,  pa), 

5. l e s s than(u ,  p) .  

The first condition states that p should be a description type. The other four conditions represent 

the conditions associated with the constant functions select', var iant1 ,  join and pro ju .  W call 

these four forms of conditions record, variant, join and projection-condiiions respectively. o in a 

projection condition l e s s t h a n ( o , p )  is called a target type of the projection condition. The meanings 

of these conditions are defined by the following satisfiabilzty relation: 

Definition 5.4 A substitution 6 satisfies a condition c.  

1. i f  c dtype(p)  and 6 ( p )  E Dtypew,  

2. i f  c C ~ I  3 1 : p2] and 6 ( p l )  is a record type contatning 1 : 6 ( p 2 ) ,  (i.e. 6 ( p l )  is a regular tree 

such that 6 ( p l ) ( ~ )  = Record, 1 E d o m ( 6 ( p l ) )  and 6 ( p l ) / l  = 6 ( p 2 ) ) ,  



3. i f  c -= ( p i  3 1 : ~ 2 )  and O(p1) is  a variant type containing 1 : O(p2),  

4 .  i f  c ( p i  = jo in type(pz ,p3))  and E Dtypem, O(p2) E DtypeW, O(p3) E DtypeW 

and d i p l )  = B(p l )  U 8(p3) ,  where U is the least upper bound of the ordering on Dtypew we 

have defined in  subsection 4.4.1, 

5. i f  c l e s s than(a ,p )  and O(p) E Dtypem, a < O(p), where < is the ordering on Dtypew we 

have defined in section 4.4.1. 

A substitution 8 satisfies a set of condition C iff 0 satisfies each c E C 

The condition of the form dtype(p)  is similar t o  the condition associated with the equality types 

in Standard ML' and can be implicitly represented by introducing distinct type variables and 

meta-symbols for description types. For this purpose we define the set of description type-schemes, 

a subset of type-schemes that  represents only description types. We divide the set T v a r  of type 

variables into two sets; the set of unconditional type variables (ranged over by u )  and the set of 

description type variables (ranged over by s). iVe continue to  use t for a type variable ranging over 

arbitrary elements in T v a r .  The set of description type-schemes (ranged over by 6 )  is the set of 

regular trees represented by the following syntax: 

6 ::= s I b I [l : 6 , .  . . ,1 : 61 1 ( 1  : 6 , .  . . ,1 : 6 )  1 ( r e c  v .  6 ( v ) ) .  

In what follows, we implicitly regard 6 as a type-scheme associated with the condition dtype(6)  

and write 8 ( 6 )  assuming that  0 is a substitution satisfying the condition O(6) E Dtypem.  This 

is tacitly done in Standard M L  implementation t o  incorporate equality primitive in ML's original 

t,ype inference mechanism. For example, we have the following typing scheme in Standard ILIL: 

where #la is an  equality type variable, which is regarded as a type variable with the condition that 

substitutions are restricted to  those O such that O(l8a) is a type that does not contain function type 

constructor .3 

Definition 5.5 (Conditional Typing scheme) A conditional typtng scheme rs a formula of the 

fonn C, E b e : p such thai for any ground substitution 8 for C ,  S and p, if 8 satisfies C then 

M C  I- O(C) b e : B(p).  A conditional typing scheme C , C  b e : p is princtpal if for any typing 

A b e : T there 1s a substituiton 8 such that 0 satisfies C and A ~ d o m ~ P ) =  O ( E ) ,  T = O(p).  

'This similarity was pointed out to me by Robin Milner 
With the existence of reference types, the precise condition is that B("a) does not contain function type con- 

structor outside the scope of any reference type constructor. 



The following theorem extends theorem 3.2 for ML. 

Theorem 5.1 There is an algofi'thm C7S which, given any raw term e ,  yields either failure or 

( C ,  C ,  p )  such that if CTS = ( C ,  C , p )  then C,  C D e : p is a principal conditional typing scheme 

otherwise e has no typing. 

Proof We assume that the unification algorithm U (section 2.2) on regular trees is extended to 

an algorithm to  unify a finite sequence of regular trees simultaneously. Such an algorithm can be 

easily constructed by the unification algorithm that unifies two regular trees. As before we consider 

C as a tree by using a linear order on variables (as in theorem 3.2).  

We first show that all constants have a principal conditional typing scheme. For constants other 

than description constructor constants, we have the following principal conditional typing schemes 

representing their set of associated types: 

0,fl  D cT : T (for all atomic constants and operations on base types), 

0,0 D recordr1*....'n) . . u1 - . . . un - [ I l  : u l ,  . . . , I n  : u,], 

{ (u l  3 1 : up)) ,  0 D variantr : up --r u1, 

0,0 D setn : s -. . . . s  -+ fIsJ ( n  arguments), 

{[u l  3 1 : u?)),  0 D selectr : ul - up, 

{[ul  3 1 : u?]) ,  0 D modify1 : ul - u ~ ,  - u l ,  

0 ,  0 ,, . . (11  : Ul, .  . . , I n  : u,) - ( u l  U )  -+ . . . - (un - u )  - U .  

0 , s  D union : {,I) - fIs] - { s ] ,  

0 ,0 Dprod" : {s1I )  - . . . - -  f IsnI)-{sl  x . . . x s n ] ,  

0,0 D map : ( s l  - s?) - { s l )  - f(spI), 

{s3 = jointype(sl, s ? ) ) ,  0 b join : sl - s? - s3, 

{s3  = jointype(sl, sp) ) ,  0 D con : sl -- sp - bool, 

{lesst han(u, s ) ) ,  0 D proj" : s - a ,  

0,0 b e q  : s - s -  bool. 

By the definition of these constants and the satisfiability of conditions, all the above are clearly 

principal conditional typing schemes. 

We next show the same property for description constructor constants. We first define the algorithm 

C& to compute a conditional typing scheme of constructor expressions: 



Algorithm CE 

CE(c) = (C, C, 6) where 

(1) Case c x: 

C = 0 

C = {x := s} ( s  fresh) 

6 = s  

(2) Case c ~ e c o r d ( ' ~ ~ . . - l ' ~ ) ( c 1 ,  . . . , ~ n ) :  

let 

(Cl,C1,61) = Cf(c1) 

( C n , s n , 6 n )  = Cf(cn) 

S = dom(S1) U . . . U dom(Cn) 

F! d l  - - '7 -l{x: := s l , .  1 . . , .- .- s:) ( s f ,  15 i 5 t fresh) 

where {I:, . . . , x:} = S \ dom(S1) 

CL = X1 {I; := s ; ,  . . . ,I; := s;) (s:, 1 5 i < 1 fresh) 

where (17,. . . ,171 = S \ dom(Cn) 

e = z ~ ( x ; ,  . . . ,  s ; )  

(3 )  Case c var iant1(c ' ) :  

let 

( c l , s l , h l )  = Cf(c0 

in 

C = C1 U { ( s  3 1 : 61)) ( S  fresh) 

S = S 1  

6 = s 

(4 )  Case e Se tn(c  l , . . . , c n ) :  

let 



(Cn,  CnY6n) = CE(cn) 

X = dom(C1) u . . . U dom(Zn)  

Z\ = Z l { z i  := s i , . .  . , z i  := s:} (s:,  1 5 i 5 k fresh) 

where { z : ,  . . . , x i )  = X \ dom(C1) 

Zk = Z l { z y  := s ? , . .  .,x; := s ; )  ( s f ,  15 i 5 1 fresh) 

where { I ? ,  . . . , z ; )  = X \ dom(Cn) 

6 = u( (C l , , h l ) ,  .. . , ( 2 ; , 6n ) )  

in 

C = 6(Cl U . . . U C n )  

Z = e(c:) 
6 = %6(61)11 

(5) Case c 5 (rec z .  c l ) :  

let 

(C1, Z1,61) = CE(c1) 

in 

if x E dom(C1) then 

let 

0 = U ( C i ( ~ ) , 6 1 )  

in 

C = B(C1) 

r, = e ( ~ ~ f d o m ( " ~ ) \ l z ) )  

6 = 6(b1) 

else 

C = C ,  

C = C1 

6 = 61 

For this algorithm, the following property holds, whose proof is similar to that of lemma 3.4: 

Lemma 5.3 If C&(c) = ( C ,  C ,  6 )  then dom(C) = FV(c) .  1 



The principal conditional typing scheme for a description constructor constant c ( z l ~ . . . ~ z n )  is then 

given as: 

C, 0 p c(rl t . . . q rn )  : z(Xl)  -+ . . . + C(X,) 6 

where (C, C ,  6) = Cf(c). 

We show that the above algorithm computes a principal conditional typingscheme for all description 

constructor constants. By definition of ~ ( ~ l ~ - . ~ ~ n )  and lemma 5.1, 5.3, it suffices to  show that (1) 

if CE I- A b c : a then Cf(c) = (C,C,6) and there is some substitution 6 such that 6 satisfies 

C and O(6) = a ,  6(C) = A [ ~ ~ " ( ~ ) ,  and (2) if CC(c) = (C,  C, 6) then for any substitution 6 ground 

for C and C if B satisfies C, then CE I- B(C) b c : B(6). Since the set of constructor expressions 

are inductively defined terms (not regular trees), we can show the above properties by induction 

on the structure of c. The basis is trivial. The induction step is by cases. In the following proof, 

C, C,,  . . . , S,  X i . .  . , p , p , .  . . , 6  refer to those described in the algorithm CC. 

1. Case c ~ e c o r d ( ' l ~ . . - - ' n ) ( c ~ ,  . . . , c,): Suppose CE t- A p ~ e c o r d ( ' ~ ~ - . - ~ ' ~ ) ( c ~ ,  . . . , c?) : a for 

some A and a .  Then by the typing rules, a must be of the form [I1 : 01,. . . ,I ,  : a,]. By 

the induction hypothesis, for each 1 5 i 5 n,  Cf(c,) = (C,,C,,6,) succeeds and there is 

some q, that satisfies Ci and qi(Ci) = drdorn('*), qi(6,) = a,. Let 9: = 9i r F T V ( ( C t ~ ' 1 ~ 6 * ) )  
where F T V ( X )  is the set of type variables in S. Then qi(Ci) = A[dom(st), 9i(6i) = a,.  By 

the definition of C& the sets FTV((Ci ,  Xi, 6,)) of type variables are all disjoints. Therefore 

3 = 7; U . . . q i  (as graph) is a well defined substitution and sat.isfies the following properties: 

for all 1 5 i 5 n,  q satisfies Ci, q(Ci) = Ardorn('*) and q(6,) = ui. Then by the property of 

unification, N(Ci, . . . , Ck) in the algorithm succeeds and return O such that q 5 6. Let q' be 

a substitution such that q = rl' o 8 .  Then q' satisfies O(C1 U . . . U C n ) ,  qt(6(S;)) = drdorn("), 

q1(6(bi)) = ai (for all 1 5 i 5 n) and therefore q'(6) = a .  

Conversely suppose ~f(~ecord('~~...*'~)(cl, . . . , c,)) = (C, C, 6). Then by the definition of 

CC C&(ci) = (Ci ,  Xi, 6,) for all 1 5 i 5 n and there is a substitution 0 such that C = 

O(Cl u .. . u  C,), ~ r ~ " " ( ' ~ ) =  O(Ci), 6 = [ I ,  : 6(6i), . . . , ln  : 6(6,)]. Let q be any substitution 

ground for C, S that satisfies C .  Then q o O is a substitution ground for all C, ,  Xi ,  1 5 i 5 n 

that satisfies all Ci, 1 5 i 5 n.  Then by the induction hypothesis and by lemma 5.1, CE I- 

q(C) b c, : q(6(bi)). By the rule (RECORD), CE t q(C) b c : q(6). 

2. Case c - variantl(c '):  Suppose CE t A b variant l (c ' )  : a for some A , u .  Then by the 

typing rules, a must be a variant type containing 1 : a1 such that CE t- A b cl : al .  By 

the induction hypothesis, CC(cl) = (C1, Cl  ,b l )  succeeds and there is a substitution q ground 

for C1, C1 that satisfies C1 and q(C1) = and ~ ( 6 1 )  = a l .  Since s introduce in the 



- 
algorithm is fresh, r]' = r]{s := a )  is a substitution satisfies all the above three conditions. 

But since u is a variant type containing 1 : 01, r]' also satisfies C and r]'(C) = Ardornix), 

d ( 6 )  = 0 .  

Conversely, suppose C&(Variantr(c ' ) )  = ( C ,  C ,  5) .  By the definition of CI, C I ( c l )  = ( C 1 ,  S ,  s )  

such that  C = Cl U { ( s  3 1 : 61)) .  Let r ]  be any substitution ground for C ,  C that  satisfies 

C. Then r ]  satisfies C 1  and r](s) is a variant type containing 1 : ~ ( 6 1 ) .  By the induction 

hypothesis, C E  I- r](C) D c' : ~ ( 6 1 ) .  Since r](s) is a variant type containing 1 : ~ ( 6 1 ) ,  by the 

rule ( V A R I A N T ) ,  C E  I- r](C) D Var ian t ' ( c l )  : r](s) .  

3.  Case c S e t n ( c l ,  . . . , c,): Similar t o  the case for e ~ e c o r d ' l , .  . srn(c l ,  . . . , c,) 

4. Case c (rec  x .  c l ) :  Suppose C E  I- A D (rec  x .  c l )  : a .  Then by the typing rules, 

C E  I- A { x  := a )  p cl : u. By the induction hypothesis, CE(c l )  = (C1,S1,Ci l )  succeed and 

there is some r]  ground for C1,Xl  that satisfies C1 such that v(S1) = A { x  := a ) r d o m ( x l ) >  

6 ( b 1 )  = a .  Suppose x E d o m ( C 1 )  then q ( C 1 ( x ) )  = u = ~ ( 6 1 ) .  Therefore the unification in 

the algorithm U ( C l ( x ) ,  61) succeeds and returns 6 such that  r ]  5 0.  Let r]' o 6 = r ] .  Then r]' 

satisfies O(C1) ,  r ] ' (6 (Clrdom(S~) \~ ' ) ) )  = ~ t d o m ~ e ( s ~ d o m ' ~ " ' c . ' ) ) ,  and q1(8(b1) )  = a .  Suppose 

x 4' d o m ( C 1 )  then r](C1) = A { x  := a)tdOm(sl)= A ~ d O m ( c ~ )  and ~ ( 6 1 )  = a .  

Conversely suppose C&((rec x . c l ) )  = ( C ,  X ,6 ) .  By the definition of C I ,  C&(c l )  = ( C l ,  21,61).  

Suppose x E dorn(C1).  Then 8 = U ( C 1 ( ~ ) , 6 1 )  and C = B(C1) ,  S = 6(Cl  r n o m ( S 1 ) \ { r ) ) ,  
6  = 6(b1) .  Let r] be any substitution ground for C ,  C that  satisfies C .  Then r ]  o 6  satisfies 

C 1 .  By the induction hypothesis C E  k r]  o 6 ( C 1 )  D cl : r]  o O(bl) .  But B ( S 1 ( x ) )  = 8(b1)  = 6.  

Thus C E  I- r ] ( S { x  := 6 ) )  D cl : r](6),  i.e. C E  I- r ] (C){x  := ~ ( 6 ) ) )  D cl : ~ ( 6 ) .  Then by the 

rule ( R E C ) ,  C E  F v (S )  D ( rec  x .  c l )  : ~ ( 6 ) .  Suppose z (Z d o m ( S 1 ) .  Then S = S 1 ,  C = C1, 

and 6 = 6,.  Let q be any substitution ground for C , C  that  satisfies C.  By the induction 

hypothesis C E  t- r](S) D cl : ~ ( 6 ) .  By lemma 5.1. C E  I- r ] (C){x  := ~ ( 6 ) )  D c1 : ~ ( 6 ) .  T l ~ e n  

by the rule ( R E C ) ,  C E  I- r](C) D (rec  x .  cl ) : ~ ( 6 ) .  

We now define the algorithm to  compute a conditional principal typing scheme for general raw 

terms: 

Algonthm C 7 S :  

C T S ( e )  = ( C ,  C , p )  where 

(1) Case e c: Given above. 



(2) Case e G x: 

C = 0 ,  

C =  {x := u), 

p =  u. 

(3) Case e G (e e): 

let 

( C l , % ,  P I )  = CTS(e1) 

(C27 C2, ~ 2 )  = CTS(e2) 

'71 .dl - - =i- -l{xl := u l , . .  1 . , xn := u,?,) where 

(21,.  . . .x,) = dom(C?) \ dom(Xl) (u i ,  . . . , u,?, fresh) 

C', = C?{IJ~  := u?, . . . , ym := u k )  where 

{y , , .  . . ym) = dom(Xl) \ dom(C?) ( u i , .  . . , U: fresh) 

0 = U((C:, pl) ,  (C',, p2 - u))  ( U  fresh) 

in 

c = e ( c l )  u e(c,) ,  

s = e(s;), 
p = B ( u ) .  

(4) Case e Ax. e l :  

let 

(CI, XI,  PI = CTS(e1) 

in 

if x E dom(S1) then 

C = C1, 

y = yldomC)\{z) 

else 

C = C l ,  

S = 5. 

p =  u - pl ( u  fresh). 

(5) Case e G let x = el  in ez end: 

let 



(C1, X I ,  P I  ) = CTS(e1)  

(C2, C2, P Z )  = C ~ S ( e 2 [ e l l x l )  

Ci = C 1 { z l  := u: ,  . . . , x, := u,?,} where 

{ X I  , . .  . , 2,) = dom(C2) \ dom(C1)  ( u i ,  . . . , u,?, fresh) 

C i  = C2{y1  := u:, . . . , ym := u $ )  where 

{ y l , .  . . , ym) = dom(C1)  \ dom(C2) (u : ,  . . . , u: fresh) 

e = u(c;, c;) 
in 

c = e(c1) lJ ~ ( C Z ) ,  

c = e(c;), 
P = 6 ' ( ~ ? ) .  

For the correctness of the algorithm, we need to show that (1) if M C  t- A D e : r then C 7 S ( e )  = 

( C , S , p )  and there is a substitution 6' that satisfies C and 6'(Z'), r = B ( p )  and ( 2 )  if 

C 7 S ( e )  = ( C , S , p )  then for any ground substitution 6' for C,S ,p  if 0 satisfies C then M C  l- 

B(C) D e : o ( ~ ) .  This is proved by induction on the structure of e. We have already proved 

for the case for constants. The case of x is identical to the proof for h lL  (theorem 3.2).  Since 

the cases for Ax. el and ( e l  e 2 )  does not create new conditions, these cases are proved similar to 

the corresponding cases in hIL. The necessary new properties are implied by the corresponding 

induction hypothesis. 1 

5.4.2 Satisfiability of Conditions 

We have shown that for any raw term e if e is typable then we can effectively construct a principal 

conditional typing scheme. This result is, however, not enough for complete static type-checking 

since a principal conditional typing scheme C,Z D e : p constructed by the algorithm may not 

have an instance. This may happen because the set of conditions C may not be satisfiable. As 

an example, the algorithm computes the following conditional typing scheme for the raw term 

e X I .  (2.1 + 1,x.l and true):  

{ [ u  3 1 : int] ,  [u 3 1 : bool]),0 b e : u - (int x bool) 

where set of conditions is clearly unsatisfiable and therefore the raw t,erm has no typing. In such a 

case the type system should report a type error. In the above example, it is rather trivial to detect 

the unsatisfiability. For general terms, however, we need to develop an algorithm to simplify a set 

of conditions and to test their satisfiability. 



For a set of conditions C ,  we write S a t ( C )  for the set {Ole satisfies C ) .  

Definition 5.6 A set of conditions C 1  is a refinement of C 2  if there is  a substitution 8 such that 

S a t ( C 2 )  = { r )  o B l r )  E S a t ( C 1 ) ) .  8 is called a refinment substitution for C 2 .  

The following property is an immediate consequence of the definition: 

Proposition 5.4 If C ,  C D e : p is a principal conditional typing scheme and C' is a refinement 

of C with a refinement substitution 0 ,  then C ' ,  8 ( C )  b e  : O(p) is also a principal conditional typing 

scheme. I 

We would like to develop an algorithm which, given a set of conditions C ,  decides whether C is 

satisfiable or not and if it is satisfiable then computes a refinement of C and a refinement substitution 

8. 

If a set of conditions C only contains record conditions or variant conditions then such an 

algorithm exists. 

Definition 5.7 A set of conditions C is in record-vanant normal form zf the followtng propertres 

hold: 

1. i f  [ p  3 1 : p'] E C then p is a type variable, 

2. if ( p  3 1 : p') E C the p is a type variable, 

3. if [p 3 1 : pl] E C ,  [p 3 1 : p2] E C then pl = p?, 

4 .  if  ( p  3 1 : p i )  E C, ( p  3 1 : p?) E C then pl = p?, 

5. i f  [ P I  3 11 P Z ]  E C ,  (p3 3 12 : p4) then pl # p3. 

Lemma 5.4 If C does not contain join conditions or projection condrtions and t n  record-vanant 

nonnal  form then C is satisfiable. 

Proof Consider the substitution t9 satisfying the following properties: d o m ( 8 )  = { t ) 3 p .  [ t  3 1 : 

E C )  U ( t ( 3 p .  ( t  3 1 : p) E C )  and for all t E dom(8)  if there is some [ t  3 1 : p] E C then 

8 ( t )  = [ I 1  : $ ( P I ) ,  . . . , l ,  : B(pn)] where ((11, p l ) ,  . . . , (l, ,p,)) = { ( I ,  p)l[t 3 1 : E C )  otherwise 

there is some ( t  3 1 : p) E C then d ( t )  = ( I I  : 8(p1  ), . . . , 1, : t9(pn)) where ((11, p l ) ,  . . . , I,, p,)) = 

{ ( l , p ) l ( t  3 1 : p) E C ) .  Since the above equations on 8 defines a regular system satisfying Greibach 

condztion [32],  such B always exists. It is clear that 8 satisfies C .  I 



Proposition 5.5 IfC does not contain join conditions o r  projection conditions then C is satisfiable 

ifl  there i s  a ref inement  C' of C that is in  record-variant normal  form.  Moreover, there is an  

algorithm which computes  a refinment C' of C ihai is i n  record-variant normal  f o r m  if one exists 

otherwise reports  the unsatisfiability of C. 

Proof We prove the proposition by defining an algorithm. Define the transformation relation 

on pairs of a set of conditions and a substitution as follows: 

( C  u {[[. . . , I  : p,, . . .] 3 1 : p 2 ] } ,  8 )  =j (B ' (C) ,  8' o 8 )  where 6' = U ( p l ,  p 2 )  (5.3) 

( C  u {((. . . , I  : p i , .  . .) 3 1 : p l ) ) , B )  ( 6 ' ( C ) ,  8' o 8 )  where 6" = U ( p l ,  p?) (5.4) 

( C u  { [ P  3 1 : P I ] ,  [P 3 1 : p ? ] ) ,  8 )  3 (O1(C u { [ p  3 1 : p l ] ) ) ,  8' 0 8 )  where 8' = 14(p l ,  p?)  (5.5)  

( c u { ( ~ 3 l : p i ) , ( p 3 l : p ? ) ) , 8 ) ~  

(O1(C u { ( p  3 1 : p l } } ) ,  8' o 8 )  where 8' = U ( p l ,  p ? )  

Let & be the transitive reflexive closure of *. Define the algorithm R V  as: 

( c ' ,  6 )  if ( C ,  id) & ( C ' ,  8 )  and C' is in record-variant normal form 

X V ( C )  = where id is the identity substitution, 

unsairsjiable otherwise 

(by assuming some ordering on applications of rules). Since the transformation 3 strictly reduces 

the number of conditions in C ,  for any given ( C ,  8 ) ,  R V ( C )  always terminates. 

We show the properties of R V  needed to prove the theorem. By lemma 5.4 ,  proposition 5.4 and by 

the definition of X V .  it suffices to show the following two properties: ( 1 )  if R V ( C )  = (C', 0 )  then 

C' is a refinement of C with 8 a refinement substitution and ( 2 )  if Z V ( C )  = unsattsfiable then C 

is not satisfiable. 

For the first property, by the definition of X V ,  it suffices to show that if ( C 1 , O 1 )  ( C ? , 8 ? )  then 

C2 is a refinement of Cl with a refinement substitution 8' such that 82 = 8' o e l .  \Ve show this 

property for each rule of =>. 

1. The case for the rule (5 .3 ) :  

( C  u {[[. . . , I  : p,, . . .] 3 1 : P? ] ) ,  0 )  a ( O f ( C ) ,  0' o 8 )  where 8' = U ( p l , p 2 ) .  

Suppose r )  satisfies C U {[[. . . , I  : p l ,  . . .] 3 1 : p?] ) .  Then q ( p l )  = ~ ( p ? ) .  Therefore there is 

some 91 such that 9 = q lo8 '  and 91 satisfies ~ ' ( C U { [ [ .  . . , I  : p l ,  . . .] 3 1 : P 2 ] ) )  and therefore it 



also satisfies B1(C). Conversely suppose q  satisfies B1(C).  Since B1(p l )  = B1(p2), q  also satisfies 

8 ' ( C  U {[[. . . , I  : p l ,  . . .] 3 1 : pz ] } ) .  Therefore q  o 8' satisfies C U {[[. . . , I  : p l ,  . . .] 3 1 : p a ] } .  

This implies that B1(C)  is a refinement of C U {[[. . . , 1  : p l ,  . . .] 3 1 : p,]} with a refinement 

substitution 8'. 

2. The case for the rule (5.5): 

(C u { [ p  3 1 : p i ] ,  k 3 1 : p2]) ,  8 )  =$ ( 8 ' ( C  U {[p 3 1  : p l ] ) ) ,  8' o 8 )  where 8' = U ( p l ,  p?). 

Suppose q  satisfies C U {b 3 1 : p l ] ,  [p 3 1 : pz] } .  Then q ( p l )  = q ( p z ) .  Therefore there is 

some q1 such that q  = q l  o 8' and q l  satisfies O1(C U {[p 3 1 : p l ] ,  [ p  3 1 : p 2 ] ) ) .  Then ql 

also satisfies B1(C U { [ p  3 1 : p l ] ) ) .  Conversely suppose s] satisfies B1(C{ [p  3 1 : p l ] ) ) .  Since 

B 1 ( p l )  = O1(p2), q  also satisfies O1(C U { [ p  3 1 : p l ] ,  [ p  3 1 : p ? ] } ) .  Therefore q  o 8' satisfies 

C U { [ p  3 1 : p i ] ,  [ p  3 1  : p ? ] } .  This implies that B1(C U { [ p  3 1  : p l ] ) )  is a refinement of 

C U { [ p  3 1 : p l ] ,  [ p  3 1 : p ? ] )  with a refinement substitution 8' .  

3. The cases for the rule (5 .4 )  and (5 .6 )  are similar to  (5 .3 )  and (5 .5 )  respectively. 

We next show the second property. Suppose R V ( C )  = unsattsfiable. By the definition of R V ,  there 

is some C' that is a refinement of C and C' satisfies one of the following properties: 

1. [[. . . ,1 : p l , .  . .] 3 1 : pZ]  E C' and there is no substitution 6  such that 8 ( p l )  = 8 ( p 2 ) ,  

2 .  ((. . . , I  : p l , .  . .) 3 1 : p l )  E C' and there is no substitution 0 such that 8 ( p l )  = 8 ( p 2 ) ,  

3. { [ P  3 1  : p i ] , [ p  3 1  : p? ] )  C C' and there is no substitution 8  such that 8 ( p l )  = 8 ( p ? ) ,  

4 .  { ( p  3 1 : p l ) ,  ( p  3 1  : p ? ) )  E C' and there is no substit.ution 8  such that 8 ( p l )  = B(p? ) ,  

5 .  ( p  3 1 : p') E C' and p  is either a record type or a set type, 

6.  [ p  3 1  : p'] E C' and p  is either a variant type or a set type. 

- 
I .  [ p  3 11 : P I ]  E C' and ( p  3 12 : p2) E C' for some p. 

The first 4 cases correspond to the cases where one of unifications in R V ( C )  fails. Others correspond 

to the cases where the result of the transformation of C in R V ( C )  is not in record-variant normal 

form. In each case C' is not satisfiable. Since C' is a refinement of C ,  C is not satisfiable. I 

Since join conditions and projection conditions are created only if an expression contains join,  

con or projo ,  the above result establishes the complete type checking and type inference procedure 

for expressions that do not contain these three primitives. This result can be extended to projections 

on finite description types, as shown in the following proposition. 



Proposition 5.6 Let C be a set of conditions that does not contain join condition and the tar& 

type of each projection condition is finite. If C is satisfiable then there is a refinement C' of C 

that contains only record conditions and variant conditions. Moreover, there is an algorithm that 

computes a refinment C' of C if C is satisfiable otherwise reports the vnsatisfiability of C .  

Proof As before we prove the proposition by defining an algorithm by a transformation relation. 

Let be the transformation relation on pairs of a set of conditions and a substitution as follows: 

( C  u {lesst han(b, p ) ) ,  8 )  (B1(C),  8' o 0) where 8' = U(b ,  p) 

( C  U {lessthan([ll  : a l ,  . . . , I ,  : a,] ,p)) ,  8)  * 
( C  U { [ p  3 11  : s l ] ,  . . . , [ p  3 1, : s,],lessthan(al,  s l ) ,  . . . , lessthan(a,, s , ) } ,8 )  

( s l ,  . . . , s, fresh) 

( C  u {lessthan((ll  : a l ,  . . . , in : a , ) , p ) } ,  0)  3 

(O1(C U {lessthan(ul ,  s l ) ,  . . . ,lessthan(a,, s , ) ) ) ,  8' o 8 )  

where 8' = Zl(p, ( I l  : s l ,  . . . , I ,  : s,)),  ( s l ,  . . . , s ,  fresh) 

(c u { l e s s t h a n ( f I a l B , ~ ) } ,  6 )  * 
(B'(C u {lessthan(ul ,  s ) ,  8' o 8) where 8' = I l (p ,  { s t ) ,  ( s  fresh) 

Define the algorithm 3 P  as: 

( c ' ,  6 )  if (C, id) & (C ' ,  8 )  and C' has no projection condition, 
3 P ( C )  = 

unsatisfiable otherwise 

(by assuming some ordering on applications of rules). 

Define the weight of a projection condition lessthan(u,p) as the height of a (i.e. the maximum num- 

ber of the nesting level of type constructors in a ) .  Since a is finite, each projection condition has 

a finite weight. Moreover each transformation step always decreases the following complexity mea- 

sure: the multiset of weights of projection conditions in C under the multiset ordering. Therefore 

the above algorithm always terminates. The  correctness of the algorithm follows from the definition 

of the satisfiability of lessthan(a,p) (see the inductive definition of < in subsection 4.4.1). 1 



We then have: 

T h e o r e m  5.2 If C does not contatn jotn conditions and the target type of each projection condition 

is fintte then C 1s satisfiable iff there is a refinement C' of C that is in  record-vanant normal form. 

Moreover, there ts an algorithm that computes a refinement C' and a refinement substitution B if 

one ezists otherwise reports the unsatisfiability of C .  

P r o o f  By applying proposition 5.6 followed by proposition 5.5. 1 

This  result establishes the  complete type inference for raw terms tha t  d o  not contain joins and all 

projections are those on finite description types. hloreover, there is a compact representation for a 

conditional typing scheme for such a raw term. Since if a set of conditions is in record-variant normal 

form then all conditions are conditions on type variables, conditions can be integrated into type- 

schemes by extending type-schemes to include type variables with conditions. Define condtttonal 

type-schemes (ranged over by T )  as the regular trees represented by the  following syntax: 

[ ( t ) l l  : T I , .  . . , I ,  : T,] is a type variable t associated with the  set of conditions { [ t  3 l1 : T I ] ,  . . . . [t 3 

1, : T,]). Similarly for ( ( t ) l  : T , .  . . , I  : T ) .  ( t  < a )  is a type variable t associated with the  condition 

l e s s than( t ,a ) .  We call those type variables conditional type variables. Conditional typing schemes 

for raw terms that  d o  not contain joins and all projections are those on finite types can then be 

represented by these conditional type-scheme. I leave to  the  reader the mechanical transformation of 

a set of conditions to  conditional type variables. The  following are examples of principal conditional 

typing schemes using the above representation: 

M C  I- 0 D f n ( x )  a x.1 : [ ( 7 1 1 ) 1  : u?] - u?,  

M C  t 0 b f n ( z )  a i n o d i f y ( x ,  I ,  x.1 + 1 )  : [ ( u l ) l  : in t]  - i n t ,  

M C  t- 0 b f n ( x )  a (x.11, (x.l1).1?) : [ ( u ~ ) l l  : [(u2)12 : u3]] - ( [ (u2) l r ,  : u3] x u3)  

T h e  examples we have seen in the beginning of this chapter are conditional typing schemes using 

these compact representations. In examples tha t  follows we use these compact representations for 

conditions whenever appropriate. 

When a set of conditions contains join conditions or projection conditions with infinite target 

types, however, the problem of deciding whether it is satisfiable or not becomes a difficult problem. 

Indeed the following result implies tha t  i t  is an  NP-hard problem. 



Theorem 5.3 It is N P  hard to  decide whether a given raw t e r m  e has a typing or not .  

Proof The proof is by reduction from MONOTONE 3SAT [43]: 

Given a 3CNF Boolean formula whose clauses consist of either all negated literals (called 

negative clauses) or all un-negated literals (called positive clauses), test whether there 

is a truth assignment. 

Let F = { c l , .  . . , c , )  be the given set of clauses and { x l , .  . . , I , )  be the set of all literals that 

appear (either un-negated or negated) in F. We construct a term eF such that F has a truth 

assignment iff eF  has a typing. We use the following constants: f : int  - i n t ,  g : bool -- bool. \.Ve 

use four variables x t r u e ,  X J , ~ ~ ~ ,  x i n t ,  xbool for each literal x ,  one label # x  for each x and one label 

# c  for each c and labels 1, #1, #2, #3, # 4 .  For each x ,  let hf' be the term 

For each clause c ,  if c  consists of un-negated literals { I ,  y ,  :) then let Nc be the term 

otherwise c consists of negated literals {F,&,T) then let NC be the term 

Xow define the desired term e as the following record: 

The translation from F to e is clearly polynomial. 

We next show the desired property of e F .  Suppose eF has a typing A I- e F  : T .  By the typing 

rule, both M' and N C  have a typing under A. By the definition of iCIr, if hi' has a typing under 

A then either A(~true)  is a record type containing the field 1 : int or A ( x J a l s e )  is a record type 

containing the field 1 : bool and not both. Define a truth assignment M such that M ( x )  = t r u e  

iff A(xtrUe)  is a record type containing 1 : int field. By the definition of N C  and the typing rule 

for j o in ,  for a positive clause { I ,  y , : ) ,  if N { ' J ' ~ ~ I  has a typing under A then at least one of 

A ( ~ ~ r u e ) ~ A ( ~ t r u e ) , A ( z t r u e )  has the field 1 : int and for a negative clause {F,y,T}, if hr{'J~'1 has 



a typing under A then a t  least one of A ( ~ ~ a ~ s e ) , A ( ~ / a ~ s e ) , A ( z / a , s e )  has the field 1 : boo/. BY the 

definition of M this implies that  M satisfies F. 

Conversely suppose F is satisfied by an assignment M .  Define a type assignment A as follows: if 

M ( x )  = true then A(xtrue) = [ I  : in t ] ,  A(xlalse) = 0 ,  A(+,",) = 0, A(xbool) = [ I  : boo4 otherwise 

A(xlrue) = 0 ,  A ( x j o l s e )  = [ I  : bool], A(xint)  = [ I  : int] ,  A(xao0l) = 1. It is then easy t o  check that 

e has the  following type under A: 

where ri is [#1 : int ,#2 : bool,#3 : int,#4 : bool] if M ( x i )  = true otherwise [#1 : int ,#2 

bool, # 3  : bool, #4 : int] and r,! = int if cj is positive clause otherwise T; = bool I 

Worse yet, we do not know whether the type inference problem for the entire language is 

decidable or not. There is, however, a practical solution t o  this problem. The  strategy is to  "delay" 

the satisfiability checking of join conditions and projection conditions (of infinite target types) until 

all type variables are instantiated, i.e. we delay the satisfiability checking of conditions associated 

with functions containing join and projO for infinite a until they are applied to actual arguments. If 

a set of conditions does not contain type variables then the satisfiability can be decided by checking 

the ordering relation and computing the least upper bound of description types, which have been 

shown to  be decidable (proposition 4.11). There is, however, one problem in this approach because 

of variants. Like ML's nil,  variants are polymorphic values and therefore their type variables may 

never be instantiated. We solve this problem by imposing the following restriction: 

T h e  programmer must supply the type specifications for variants if they are arguments 

of the functions join or projO with infinite a (directly or indirectly through function 

abstractions/applications). 

Intuitively, this states that  the "actual" arguments to  the functions join and proju (with infinite u )  

must have a ground type. It is interesting to  note that the same problem arises with the combination 

of the reference types and type variables and the above restriction is the same as the one adopted in 

Standard ML implementation [ill. We say that  a conditional typing scheme is a program scheme 

if it is of the form C,8 b e : T such that T does not contain function type constructor. If  a 

conditional typing scheme is a program scheme then join conditions and projection conditions are 

respectively of the forms p = jotntype(al, a?) and lessthan(al, a s ) ,  both of which are reduced to  

true or  false. Therefore only remaining type variables in a program scheme are those created for 

variants. Therefore the above restriction is imposed by treating a program scheme C, S b e : T as 

a type error if C contain (irreducible) type variables. 



We now define the  set of terms Machiavelli as follows: -- 

D e f i n i t i o n  5.8 ( T e r m s  o f  Mach iave l l i  ) A t e r n  of Machiavelli is a conditional typing scheme 

such that the set of conditions is in record-variant normal form and if it is a program-scheme then 

its does not contain join condition or projection condition with infinite target types. 

5.5 Semantics of Machiavelli 

In this section, we define a denotational semantics and an  operational semantics of Machiavelli. For 

this purpose, we need t o  identify the  subset of terrns tha t  represent descriptions we have constructed 

in section 4.4. The  set of description t e rns  (ranged over by d )  is t he  following set of raw terms 

tha t  have a typing: 

d ::= Cb I record(l~ ! . . . * ' n )  ( d )  . . . ( d )  I setn(d)  . - .  ( d )  I variant l (d)  I c ( ~ ~ ~  . . l Z n  ' ( d )  . . . ( d ) .  

A description term denotes a regular tree in Dobj". \Ve write D ( d )  for the  element in Dobj" 

denoted by d. 

5.5.1 Denotational Semantics of Machiavelli 

To give a denotational semantics of Machiavelli, we extend the semantic framework for M L  we have 

developed in chapter 3. Let ~Machiavell i  be the typed lambda calculus TA+ we have defined in 

section 3.5 with the  set Type of types of Machiavelli and the set of constants { c 7 J c  : T E Cons t s )  

where Cons t s  is the set  of constants of Machiavelli. 

D e f i n i t i o n  5.9 ( M o d e l s  o f  ~ M a c h i a v e l l i  ) An eziensional'eztended frame (3,o.C) zs a model 

of zilfachiaz~elli if the following conditions hold: 

1. it satisfies the definition of abstract models (definitions 3.24 and 3.15) of T A + ,  

2. for each description type a, F, _> D,  where Do ts the descrtpizon domatn of a we have 

constructed tn section 4.4, 

3. for each description term d of type a ,  10 D d : a ] ~  E D,, 

4. the following equations are valid (we omit types): 



( 3 )  m o d i f y f .  [ I l  = e l  , . . . ,  1, = e  ;,..., 1, = e n ]  e  = 

[ I l  = e l , .  . . , li = e , .  . . , I n  = en] 

(4) (case ( 1 ,  = e )  of ll e l , .  . . , I ;  e , ,  . . . ,In a e n )  = ( e ;  e )  

(5) union {e : ,  . . . , e f , ]  {e:, . . . , e;] = { e ; ,  . . . , e!,, ef , . . . , e;]  

(7) map e  { e l , .  . . , e n ]  = { ( e  e l ) ,  .. . . ( e  e n ) ]  

(8) join d l  d? = d3 if D ( d s )  = D ( d l )  U D ( d 2 )  

(9) con dl d? = t rue  if D ( d l )  U D ( d n )  exists 

( 1 0 )  con dl dZ = false if D ( d l )  U D ( d a )  does not exist 

( 1 2 )  eq dl d2 = t r u e  if D ( d l )  5 D ( d a )  and D ( d z )  D ( d l )  

(13)  eq dl dr, =false i f  either D ( d l )  g D(d2)  or D(d2) g D(d1)  

where Pro ju  in ( 1 1 )  I S  the function on U Dobjm defined zn subsectzon 4.4.5. 

The relationship between typings of hlachiavelli and terms of shlachiavelli remains the same as 

that between hlL and T A +  and theorem 3.6 holds. This implies that the definition of the semantics 

of typings of hIL (definition 3.18) applies directly to those of hlachiavelli. 

The semantics of Machiavelli terms relative to a model of ~Machiavelli is then defined as 

follows. For a given pair of a type assignment scheme C and a set of conditions C ,  the set 

of admtssible type asszgnments under C and C ,  denoted by T A ( C , C ) ,  is the set { A J d o m ( C )  2 

d o m ( A ) , 3 8 . 8  satisfies C  and AtdOm(C)= 8 ( E ) } .  Under a given type assignment A,  the set 

T P ( A ,  C, C b e  : p) of the types associated with a term C ,  S b e  : p  is the set ( ~ 1 3 8 .  8  satisfies 

C ,  and ( A  f d o m r c ) .  r )  = B ( C , p ) ) .  Then the semantics M[C,  S b e  : p] of a Machiavelli term 

C,  C  b e  : p  relative to a model M is the function taking a type assignment A E T A ( C ,  Z) and 

an environment E f E n v M ( A )  that returns an element in IIr E T P ( A , C , Y  b e  : p ) .  D ,  defined 



as follows: 

.U[C,Z p e : ~ ] A E  = { ( r , M [ d  D e : r ] M L ~ ) J r  E T P ( d , S  D e : p ) ) .  

Note that the definition works also for terms with unsatisfiable conditions. In such a case the 

denotation is the emptyset. 

As an example, the semantics of the constant join: 

M [ { S S  = jointype(sl, s 2 ) ) ,  0 D join : sl -- s:, - s31]d& 

is a set of functions f : F,, - F,, - F,, for all triples of ul ,  u?, (rg such that a3 = ul u us. NOW 

if we restrict its domains F,,, F,,, to D,,, Do, then we get exactly the set of joins we have defined 

in subsection 4.4.4. Similar property holds for projections. This confirms that we have successfully 

integrated the database domain we have developed in chapter 4 into an hlL-style type system. 

5.5.2 Operational Semantics 

This section gives an operational semantics of Machiavelli by an evaluation relation on conditional 

typing schemes. There are several evaluation strategies for operational semantics of functional 

programming languages. Here we only give an operational semantics based on the "call-by-value" 

evaluation strategy that "stops" at function abstraction. An operational semantics based on the 

"call-by-name" strategy is simpler to specify and can he easily defined by cltanging some of the 

rules given below. 

IVe first define the immediate reduction relation - on raw terms. 

(11) ((Ax. e )  d) -- e[d/x] 

e l  --+el 
(15) 

(el (Ax. e l )  - (e2 (Ax. e ) )  



( V I I 2 )  

( V I I I I )  

( V I I I 2 )  

(I?o 

( X )  

(XI  

( X I )  

( X I I )  

ei -- e: 
for any constant c  

c e l . .  . e, . . .en  + c e l . .  . e : .  . . en 

( r e c  x .  e).l - ( e [ ( r e c  x .  e ) / x ] ) . l  

m o d i f y 1  (rec  x .  e l )  ez + m o d i f y r  e l [ ( rec  x .  e l ) / x ]  es 

( c a s e  ( 1 ,  = e )  of 11 3 e l ,  . . . , li 3 ei ,  . . . , in 3 e n )  - ( e i  e )  

( c a s e  ( r e c  x .  e )  of 1 1  3 e l , .  . . , I ,  3 e n )  - 
( c a s e  e[(rec x .  e ) / x ]  of11 3 e l , .  . . , I ,  3 e n )  

1 7  union {{ei ,  . . . , e:}} { e f ,  . . . , e & j  - { e : ,  . . . , e n ,  e i ,  . . . , e:}} 

union (rec  x .  e l )  e? -union e l [ ( rec  x .  e l ) / x ]  ez 

union e l  ( rec  x .  e?)  - union el e2[(rec  x .  e ? ) / x ]  

prod" { e ; ,  . . . , e;, 1.. - {e?,  . . . , e T m j  - 
1 7  

{ ( e l , e i  , . . . , e :  ) , ( e ; , e f , . .  . , e ; ) ,  . .  . ( e i , , e i  ? , . .  . , C : ~ ) B  

prod"el . . - (rec  x .  e , )  . . . en -prod"el . . . e,[(rec x. e , ) / x ] .  . . en 

lnap e  { e l , .  . . , e n ]  + { ( e  e l ) ,  . . . ( e  e n ) )  

m a p  el ( rec  x .  e z )  - m a p  el er,[(rec X .  e ? ) / x ]  

join dl d2 - d3 i f  D(d3)  = D(dl  ) U D(d?)  

con d l  d2 -- true i f  D ( d l )  U D(d2)  exists 

con d l  d2 - fa l se  i f  D ( d l )  U D ( d 7 )  does not exist 

proj* dl -d2 i f  D ( d s )  = P r o j u ( D ( d l ) )  

eq dl d2 * t r u e  i f  D ( d l )  E D ( d 2 )  and D ( d 2 )  E D(d1)  



(XI11 eq dl d2 -CL false if D(d1) D(d2) or D(d2) D(d1) 
- 

The evaluation relation on conditional typing schemes is defined as the reflexive transitive closure 

of this immediate reduction relations. 

5.6 Syntactic Shorthands 

This section defines several useful syntactic shorthands. 

5.6.1 Recursive Function 

In M L  like languages, recursive functions are defined by the special term constructor (fix x. e). 

This is regarded as a shorthand for (Y (fn(x) a e)) where Y is the symbol of the following set of 

constants denoting fixed point operators: 

{ y ( 7 - 7 ) - ( ~ - ~ ) - T - 7  I for all r). 

We did not include these fixed point constants because fixed point combinators are definable, as 

we have seen in section 3.5. Under an operational semantics based on the call-by-name evaluation 

strategy, both Y,,,,, and Ytu,,,, (defined in section 3.5) provide a desired operational behavior. 

However, they do not have the desired property under an operational semantics based on the call- 

by-value evaluation strategy such as the one we have defined for Machiavelli. Indeed it is easily 

checked that for any raw term e, both (YcuvY e) and e)  do not terminate under such an 

operational semantics. 

Under the call-by-value evaluation, the desired operational rules for Y constant for defining 

recursive functions should be: 

(Y1) (()I Ax. e) d )  - (e[()I Ax. e)/x] d), 

0'2) ((I' Ax. e l )  Ay. e l)  -- (el[(YXx. el)/x] Xy. e2). 

In [go] Plotkin gave the following fixed point combinator: 

Yp,otkin = Af. (AX. XY. f (X  x)Y)(Ax. XY. f (l x)Y). 

which realizes the above behavior under the call-by-value evaluation rules for function application 

(rules (11) - (15)). The extra q-redexes are essential to get the desired behavior. Note also that 



Yplotkin has the following principal conditional typing scheme: 

This combinator can also be used under the call-by-name evaluation rules. We therefore define the 

following syntactic shorthand for recursion: 

(fix X. e )  # (Yplotkin (Ax. e ) ) .  

5.6.2 Value Bindings and Function Definitions 

As a practical programming language Machiavelli should provide a form of binding mechanism that 

binds names to  Machiavelli terms. As is done in Standard ML,  we regard the following binding 

v a l i d  = e :  . . .  

as a syntactic shorthand for the following fragment: 

l e t  id = e in . . . e n d .  

For function definition, we further adopt the following shorthand: 

fun f x 1  = e ;  

for 

val  f = (fix f A x l  . . . Ax,. e ) ;  . 

Note tha t  the two occurrences of f in the above definition are different. The  first one is the name 

to  which the body of the expression is bound and the second one is a bound variable. 

5.6.3 Database Operations 

An important part  of database programming is query processing. One of common structures of 

query processing is so called se lec t - jo in-projec t  query [35]. For such query processing, we define the 

following shorthand whose syntax follows from SQL [8] and l is t  comprehens ion  in Miranda [107]: 

se lec t  e 1 

w h e r e  x1 E S1, .... I, E S n  

w i t h  e? 



for 

let 

fun result x = 

l e t  

val X I  = x.# l ;  

val x, = x.#n; 

in 

e 1 

e n d  

fun  pred x = 

l e t  

val 1 1  = +.#I; 

valx, = x.#n 

in  

e 2 

e n d  

in  

filter pred (map(resu1t , prod(S1, ... Sn )))  

e n d  

where filter is a polymorphic selection function which, given a boolean valued function P and a set 

S, selects all those elements e from S such that P(e)  = true. The following is one implementation 

of filter. 

fun filter P S = 

map(Xx. t .Val ,  

join({ [Pred = true]B, 

map(Xx. [Value = x ,  Pred = P(x)], S) 

with the following principal conditional typing scheme: 

MC t- 0 ,0  D filter : ( s  -- 6001) - {s]  - {{s]. 



5.7 Programming Examples 

This section shows examples. We show them by simulating interactive session in Machiavelli. We 

write 

-> expr ; 

-> va l  id = ezpr  ; 

for an expression and a binding entered by the programmer and 

>> val  id = expr : p where {cl ,  . . . , c,} 

for the output (as  a principal conditional typing scheme) computed by Machiavelli. where clause 

describes the unresolved conditions. If the last input is an expression then the system assumes v a l  

it = . In these examples we use the following notations: 

Following Standard ML, we write 'a ,  'b etc for unconditional type variables and "a, "b etc for 

description type variables (which roughly correspond to  equality type variables in Standard ML). 

The  first example shown in figure 5.1 is a simple session in Machiavelli involving records and 

variants. Form this example, we can see that  hlachiavelli extends M L  with records and variants 

preserving its features of static type inference and polymorphism. 

Figure 5.2 shows a simple example involving join and project. Join3 computes the join of 

three (joinable) descriptions. where clause represents the conditions associated with the two jo in  

expressions. If r l  , r2  , r3  are three joinable flat relations, then Join3(rl , r2  , r3)  is exactly the 

natural join of the three. 

Figure 5.3 shows an example of a database containing non-flat records, variants, and nested sets 

assuming that parts ,  suppliers  and supplied-by have been already defined. With the availabil- 

ity of generalized join and projection, we can immediately write programs that  manipulate such 

databases. Figure 5.4 show some simple query processing for the example database in figure 5.3.  

From this example, one can see that join and projection in Machiavelli faithfully extend the natural 

join and projection in the relational model t o  complex objects. 



-> val joe = [Name = "Joe", Age = 211; 
>> vdl joe = [Name = "Joe", Age = 211 : CName:string, Age:intl 
-> val helen = [Name = CFn = "Helen", Ln = "Smith"], Age = 311 ; 
>> v d  helen = [Name = [Fn = "Helen", Ln = "Smith"1, Ag e= 311 

: [Name: [Fn:string, L.n:strind, ~ g e :  intl 

-> fun name(p) = p.Name; 
>> val name = fn : [('a)Name:'bl -> 'b 
-> fun increment-age(x) = modify(x, Age, x.Age + 1) ; 
>> val increment-age = fn : [('a) Age: intl -> [('a) Age: intl 

-> name(joe1; 
>> val it = "Joe" : string 
-> name(he1en) ; 
>> val it = [Fn= "Helen", Ln = "Smith"] : [Fn: string, Ln: string] 
-> increment-age (joe) ; 
>> val it = [Name="JoeU, Age=22] : [Name:string, Age: int] 
-> increment-age (helen) ; 
>> val it = C N - ~  = [Fn = "Helen", Ln = "Smith"], Ag e= 321 

: [Name: [Fn: string. Ln: strind , Age: intl 

-> val john = [Name="John", Age=21. 
Status=<Consultant = [Address="Philadelphia", 

Telephone=22212341 >I ; 
>> val john = [Name="JoeW , Age=21 

Status=<Consultant = [Address="Philadelphia", 
Telephone=2221234] >I 

: [Name: string, Age: int ,Status : <( 'a) Consultant : [Address : string, 
Telephone : int] >I 

-> val mary = [Name="Hary", Age=31, 
Status=<Employee = [Off ice=278, Extension=4895] >] ; 

>> val mary = [Hame="HaryM, Age=31 
Status=<Employee = [Off ice=278, Extension=4895] >] ; 

: [Name:string, Age:int.Status:<('a) Employee:[Office:string, 
Extension: inti>] 

-> fun phone(x) = (case x.Status of <Employee=y> => y.Extension, 
<Consultant=y> => y.Telephone); 

>> val phone = in 
: [('a) Status:<Employee: [( 'b) Extension: 'dl, 

consultant : [( 'c) Telephone: 'dl >] -> 'd 
-> phone (john) ; 
>> 2221234 : int 
-> phone (may) ; 
>> 4895 : int 

Figure 5.1: A Simple Session in Machiavelli 



-> val fun JoinJ(x,y,z) = join(x,join(y,z)); 
>> val Join3 = fn : ("a * "b * "c) -> "d 

where ( "d = "a lub " e ,  "e = "b lub "c 1 
-> Join3([lame="~oe"] , [Age=211 , [Off ice=278] ) ; 
>> val it = [Name="JoeM,Age=21,Office=278] 

: [lame: string,Age: int ,Off ice: intl 
-> project (it, [Name : string] ) ; 
>> val it = [lame="Joe"] : CName:stringl 

Figure 5.2: A Simple Example Involving join and project 

-> parts; 
>> val it = 

< [Pname="bolt" , P#=l ,Pinf o=(BasePart of [Cost=5] )] , 

... 
1 
: ([Pname:str,P#:int, 

Pinf o: <Basepart: [Cost: intl , 
CompositePart : [Subparts : < [P#: int , qty : inti), 

Assemcost : intl >I 1 
-> suppliers; 
>> val it = 

([Sname="Baker" ,S#=l ,City="Parisem] , 

-> supplied-by; 
>> val it = 

( [p#=1, Suppliers=( [S#=l] , [S#=121, . . . .>I , 
. . .  

1 
: ( [P# : int ,Suppliers : -# : int] 11 1 

Figure 5.3: A Part-Supplier Database in Generalized Relational Model 



(* Select all base parts *) 
-> join(parts,([Pinfo=(BasePart of fl )I)) ; 
>> val it = 

( [Pname="boltM , P#=i, Pinf o=(BasePart of [Cost=O. 051 )] , 
. . . 

1 
: ([Pname:str,P#:int, 

Pinf o : <Basepart : [Cost : int] , 
CompositePart : [subparts : ([P#: int,Qty : intl), 

Assemcost : intl >I 1 

(* List part names supplied by "Baker" *)  
-> select x.Pname 

where x <- join(parts,supplied-by) 
with Join3(~.Suppliers,suppliers,([Sname="Baker"l)) <> €1; 

>> ("bolt", . . .) : (str) 

Figure 5.4: Some Simple Queries 

-> fun Closure R = 
let 

fun member (e,S) = f ilter((fn(x) => x=e), S) <> 0 
val r = select [A=X.A,B=~.B] 

where x <- R, y <- R 
with (x . B = y . A) anddlso not (member ( [A=x. A ,  B=y. B1, R) ) 

in 
if r = () then R else closure(union(R,r)) 

end ; 
>> closure = fn : ([~:"a,B:"b]) -> (C~:"a,B:"bl) 

Figure 5.5: A Simple Implementation of Polymorphic Transitive Closure 

The most important feature of Machiavelli is that these data structures and operations are all 

"first-class citizens" in the language. This eliminates the problem of "impedance mismatch" we 

discussed in chapter 1. Data and'operations can be freely mixed with other features of the language 

including recursion, higher-order functions, polymorphism. This allows us t o  write powerful query 

processing programs relatively easily. The type correctness of programs is then automatically 

checked a t  compile time. Moreover, the resulting programs are in general polymorphic and can be 

shared in many applications. Figure 5.5 shows a simple implementation of a polymorphic transitive 

closure function. By using a renaming operation (which is definable in Machiavelli ), this function 

can be used to  compute the transitive closure of any binary relation. Figure 5.6 shows query 

processing on the example database using polymorphic functions. The function cost takes a part 

record as argument and computes the total cost of the part. Without proper integration of the 



(* A function that computes the total cost of a part *) 

-> fun cost(p) = 
(case p.Pinfo of 

BasePart of x=>x. Cost, 
CompositePart of x=> 

x.AssernCost + hom((fn(y)=>y.SubpartCost * y.Qty),+,O, 
select [~ubpartCost=cost (2)  ,Qty=w . Qty] 
where w <- x.SubParts, z <- parts 
with z.P#=w.P#)); 

>> val cost = fn 
: [(la) ~info:<~asePart: [('c) Cost:int] , 

~ornpositePart: [ ( ' d )  SubParts:{C('e) P#:int,Qty:int]), 
AssemCost : int] >I 

-> int 

(* select names of "expensive" parts *) 
-> fun e~~ensive_~arts(partdb,n) = 

select x. Pname 
where x <- partdb 
with cost(x) > n; 

>> val expensive-parts = fn : 
: ({[('a) Pinfo:<BasePart: [( 'c) Cost: int] , 

~ompositePart: [ ( 'd)  ~ubParts: {[( 'e) P#: int ,Qty: int]), 
AssemCost : int] >I ), 

int) -> (str) 

-> expensive-parts(parts,1000); 
>> val it = ("engine", . . . I  : (str) 

Figure 5.6: Query Processing Using Polymorphic Functions 



Chapter 6 

Parametric Classes for 

Object-Oriented Programming 

This chapter extends the type system of Machiavelli t o  include user definable class hierarchies with 

multiple inheritance declarations. This extension achieves the integration of M L  style parametric 

abstract da ta  types and explicitly defined inheritance hierarchy. The  extended type system is sound 

with respect to  the type system of Machiavelli and still has a static type inference algorithm. Some 

of the results of this chapter were presented in [86] 

6.1 Introduction 

T h e  idea that  is fundamental in object-oriented programming is that each data  element (object) 

belongs t o  a class and can only be manipulated by methods defined in classes. Xloreover, classes 

are organized by an explicit inheritance hierarchy defined by the programmer. The methods that  

are applicable to an object are not only the ones defined in its own class but also those defined in 

its all super-classes.  This mechanism elegantly combines data abstraction and method inhenlance .  

In particular, inheritance is controlled by the programmer enabling him to develop a taxonomical 

organization that  reflects the intended semantics. 

T h e  type system of hfachiavelli we have developed in the previous chapter does allow method 

inheritance by ML style polymorphism but lacks both da ta  abstraction and user control of in- 

heritance. T h e  method inheritance of Machiavelli relies on the explicit structure of record and 

variant types; inheritance is derived from the polymorphic nature of operations on records and 



variants. Because of this nature, the type system cannot prevent unintended manipulation of ob- 

jects based on the knowledge of their implementation details nor can it prevent misuses of methods 

through a coincidence of implementations. For example, suppose we implement the class person 

by the type [Name : string,Age : int] and define a method minor with the polymorphic type 

[(u)Age : int] -+ boo1 which determines whether a person's age is less than 21 or not. Machiavelli's 

polymorphism allows minor to  be appIied not only to  objects of the class person but also to  objects 

of, say, the class employee implemented by the type [Name : string, Age : int ,  Salary : int], as we 

expected. However, this method can also be applied to  objects o i  any class whose implementation 

type happens to have an Age : int field. For example, an application might contain the class pet 

implemented by the type [Name : string, Age : int ,  Owner : string]. The method minor is equally 

well applicable to objects of the class pet but we want to prevent such applications. In order to 

represent object-oriented systems, we would like to  add an abstraction mechanism with multiple 

inheritance to  the type system of hlachiavelli so that the programmer can "hide" implementations 

of objects and control method sharing. 

A well known mechanism for data abstraction in ML style type system is abs t rac t  da ta  type 

implemented, for example, in Standard M L  and Miranda. An abstract data  type is a type associated 

with a set of user defined functions. Outside of its declaration, the type system treats an abstract 

data  type and its associated functions as if they were a primitive type with an associated set of 

primitive operations. This mechanism successfully hides the actual implementation of an abstract 

data type. Moreover, in those languages, abstract data types can be parameterized by types, 

allowing "generic" definitions. For example, the following fragment of Standard hlL code defines a 

generic set type: 

abstype 'a set = Set of 'a list with 

val emptyset = Set n i l ;  

fun singleton x = Set [XI ; 

fun union sl s2 = Set ( s lQs2 )  ; 

. . .  

end ; 

Intuitively this definition defines a family of abstract set types r set for all instances r of la. The 

methods singleton, uniqn, etc. are shared by all these instances types. 

A drawback t o  this approach is that it does not combine data abstraction with inheritance in 

the same sense that object-oriented programming languages do this. ML style abstract data types 

do not allow method inheritance even if we extend the underlying type system to the type system 



of Machiavelli. To illustrate the problem, consider the following abstract data type definition as 

an implementation of the class person (assuming the Machiavelli type system in Standard ML 

syntax): 

abstype person = Person of [Name : string, Age : intl with 

fun make-person n a = Person [Name = n, Age = a]; 

fun name (Person p) = p.Bame; 

fun age (Person p) = p.Age; 

fun increment-age (Person p) = Person(modif y (p,Age,p. Age + 1)) ; 

end ; 

Now suppose we are to implement the class employee by the type [Name:string, Age:int, 

Salary: int] . Since the method name, age and increment-age defined in the class person are 

also applicable to  the above type in the type system of Machiavelli, we would like them to be 

shared by the class employee. However, there is no mechanism to allow such sharing in ML style 

abstract data  types. As a result, we are forced to repeat the identical definitions for these methods 

in the declaration of the class employee. For the same reason that we preferred a polymorphic 

type system to  a simple type system, we would like to  extend ML style abstract data types with 

inheritance declarations. 

Galileo [7] integrates inheritance and class hierarchy in a static type system by combining the 

subtype relation (see the analysis of subtypes in section 5.1.1) and abstract data  type declarations. 

However, Galileo does not support polymorphism nor type inference. Jategaonkar and Mitchell 

suggest [63] the possibility of using their type inference method to extend ML's abstract data  types 

to support inheritance. Here we provide a formal system that achieves the integration of hlL style 

abstract data  types and multiple inheritance as an extension of the type system of hfachiavelli 

we have developed in the previous chapter. Moreover, our proposal achieves a proper integration 

of multiple inheritance in object-oriented programming and type parameterization in RIL style 

abstract data  types. As a remark, the class declarations, which can be regarded as a generalization 

of ML's abstract data types, appear to have no immediate connection with the notion of abstract 

types as existential types proposed by Mitchell and Plotkin [80]. 

As an example, the class person can be implemented in our language by the following class 

definition: 

class person = [Name : string, Age : int] with 

fun make-person n a = [Name = n ,  Age = a] : string --. int - person; 



fun name p = p.Name : s u b  + string; 

fun age p = p.Age : s u b  + int;  

fun increment-age p = modify(p, Age,p.Age + 1 )  : s u b  --+ s u b ;  

end 

Outside of the definition, the actual structure of objects of the type person is hidden and can only 

be manipulated through the explicitly defined set of interface functions (methods). 

As in Miranda's abstract data types, we require the programmer to  specify the type (type- 

scheme) of each method. The keyword sub in the type specifications of methods is a special type 

variable representing all possible subclasses of the class being defined. It is to  be regarded as an 

assertion by the programmer (which may later prove to  be inconsistent with a subclass definition) 

that a method can be applied to  values of any subclass. For example, we may define a subclass 

class employee = [Name : string, Age : int ,  Salary : int] isa person 

with 

f u n  make-employee n a = [Name = n ,  Age = a ,  Salary = 01 

: string - int --, employee; 

f u n  add-salary e s = m o d i f y ( e ,  Salary, e.Salary + s )  : s u b  --. int - s u b ;  

f u n  salary(e) = e.Salary : s u b  + int 

end 

which inherits the methods name, age and increment-age, but not make-person from the class 

person because there is no sub in the type specification of make-person. For reasons that will 

emerge later we have given the complete record type required to  implement employee, not just the 

additional fields we need to add t o  the implementation of person. It is possible that for simple 

record extensions such as  these we could invent a syntactic shorthand that is more in line with 

object-oriented languages. Continuing in the same fashion we could define classes 

class student = [Name : string, Age : int,  Grade : string] isa  person 

with 

end 

class  research-student = [Name : string, Age : int,Salary : int;  Grade : string] 

i sa  {employee, student) 



with 

end 

The second of these illustrates the use of multiple inheritance. 

The type system we are presenting can statically check the type correctness of these class 

definitions containing multiple inheritance declarations. Moreover, the type system always infers 

a principal conditional typing scheme for expressions containing methods defined in classes. For 

example, for the following function 

fun r a i s e s a l a r y ( p )  = add-sala y ( p ,  s a l a r y ( p ) / l O )  

which raise the salary of an object approximately by lo%, the type system infers the following 

principal conditional typing scheme: 

0 D raise-salary : ( t  < e m p l o y e e )  + ( t  < e m p l o y e e )  

where ( t  < e m p l o y e e )  is a new form of conditional t y p e  variable representing arbitrary subclasses of 

e m p l o y e e .  By this type inference mechanism, the type system achieves a proper integration of ML 

style polymorphism and inheritance. The above function can be applied t o  objects of any subclass 

of e m p l o y e e .  The type correctness of such applications is statically checked. 

To demonstrate the use of type parameters, consider how a class for lists might be constructed. 

We star t  from a class which defines a "skeletal" structure for lists. 

class p r e l i s t  = ( rec  t . ( E m p t y  : n i l ,  L i s t  : [ T a i l  : t ] ) )  

with 

val nil  = ( E m p t y  = N i l )  : sub ;  

fun t l  1 = (case 1 of 

( E m p t y  = y )  e- . . . e r r o r .  . . , 
( L i s t  = 2 )  * r . T a i l )  

: s u b  - sub ;  

fun null 1 = (case 1 of 

( E m p t y  = y )  t r u e ,  

( L i s t  = r )  j f a l s e )  

: s u b  -. bool; 

end 



By itself, the class pre-list is useless for it provides no method for constructing non-empty lists. 

We may nevertheless derive a useful subclass from it. 

class l is t (u)  = ( rec  t .  (Empty : nil, List : [Head : u,Tai l  : t ] ) )  isa  preJist 

with 

fun cons h t = (List = [Head = h,Tail = 11) : u -+ s u b  + s u b ;  

fun hd 1 = (case 1 of 

(Empty = y)  . . . error.  . . , 

(List = z) z.Head) 

: s u b  -+ u 

end 

which is a class for polymorphic lists much as they appear in ML. Separating the definition into 

two parts may seem pointless here but we may be able to define other useful subclasses of prel is t .  

Moreover, since u may itself be a record type, we may be able to define further useful subclasses 

of l is t .  We will show more examples in section 6.7. The type correctness of these parametric class 

declarations is also statically checked by the type system and the type inference also extends to 

methods of parametric classes. 

In the following sections we provide the syntax and typing rules for classes that extend Machi- 

avelli type system and show that the extended language is correct with respect to the underlying 

Machiavelli type system and provide the necessary results to  show that there is a type inference 

algorithm. 

6.2 Raw Terms, Types, and Type-schemes 

We assume that there are a set of class construcior symbols (ranged over by c)  and a set of method 

names (ranged over by m).  The set of raw terms of the extended language is the set obtained from 

the set of raw terms of Machiavelli (definition 5.1) by extending with the set of method names: 

e ::= m I c ( x I Ax. e 1 (e  e ) .  

We continue to use the syntactic shorthands defined in section 5.2 and, in examples, we use the 

representation of raw terms using term constructors defined in section 5.3. 

The set of types of the extended language is the set of regular trees represented by the following 



syntax: 

r ::= b 1 [l : r , .  . . , l  : T ]  1 ( 1  : 7,. . . ,l : r )  1 T - T 1 c ( r , .  . . , T )  1 ( rec  v . r (v ) ) .  

The set of type-schemes is also extended with classes: 

p::=t  1 b I [I : p  ,..., 1 : p ]  I ( I  : p  ,..., 1 : p )  1 p - + p  I c(p ,..., p )  1 ( r ecv .p (v ) ) .  

We call type-schemes of the form c(p, . . . , p )  class schemes. 

6.3 Syntax of Class Definitions 

We write c(7) and c(7) for c(t1,.  . . , t t )  and c(p l , .  . . , p k )  for some k .  We also write := 7 , .  . .] for 

the substitution [t l  := p l ,  . . . , t k  := p k ,  . . .] where 7 = t l ,  . . . ,ik and p = p l ,  . . . , pk. 

A class definition has the following syntax: 

class c p )  = p isa { c l (p , , ) ,  . . . , c,(pc,)} with 

val ml = e l :  MI; 

val m ,  = en: Mn 

e n d .  

c(T ) is the class scheme being defined by this declaration. 7 in c@) are type parameters of the 

class c. p is the implemeniation type-scheme of the class c p ) .  { c l ( T ) ,  . . . , c , ( K ) )  is the set of 

class schemes of immediate super-classes from which c f i )  directly inherits methods. If this set is 

empty then isa declaration is omitted. If this set is a singleton set then we omit the braces { and 

}. Each m, is the name of method implemented by the code e,. For method definitions, we use the 

syntactic shorthand for recursive function definition (section 5.6). Mi is a method type specifying 

the type of m,, whose syntax is given below: 

sub is a distinguished type variable ranging over all subclasses of the class being defined. Kote 

that we restrict method types to be finite types. This is necessary to ensure the decidability of 

type-checking of class definitions. 

We require a class definition to satisfy the following restrictions: 



1. all type variables in the definition are contained in the type parameters 7 of the class scheme 

being defined, and 

2 .  the implementation type-scheme p is not a type variable. 

These restriction are needed to construct a consistent proof system for parametric classes. 

A class context 2) is a finite sequence of class definitions: 

A class definition containing type variables is a generic definition of a class. Continuing our 

interpretation that a type-scheme is a representation of its all ground instances (section 3 . 2 ) ,  we 

regard a generic class definition as a representation of the set of all its ground instances obtained 

by instantiating i with types. The set of type variables 7 are form of bound variables whose scope 

is the body of the definition for c ( 0 .  Therefore the definition class c ( i )  . . . end is equivalent to 

the one obtained from it by renaming type variables i .  

These declarations are forms of bindings for which we need some mechanism to resolve naming 

conflict such as visibility rules and explicit name qualifications. Here we ignore this complication 

and assume that  method names and class constructor names are unique in a given class context. 

The special type variable s u b  that appears in a method type specifications denotes the set of 

all possible subclasses that the programmer will declare later. This can be regarded as a form 

of bounded quantification proposed by Cardelli and Wegner [27]. The method type M containing 

s u b  corresponds to  Vsub < c e ) .  M where c ( 7 )  is the class being defined. The relation 5 is the 

subsumption relation induced by the isa declarations: 

Definition 6.1 The subsumption relation 'D t- cl (x) 5 c z ( z )  induced by V is the smallest relafzon 

containing: 

1 .  V t- ~ ( 7 )  5 c @ )  if 'D contains a class definition of the fonn class c(7)  = p . . . end. 

2. V t- c l ( t l )  5 c 2 ( z )  if 'D contains a class definition of the form 

class c l ( c )  = p isa  {.. . , c 2 ( Z ) , .  ..) wi th  . . .  end. 

-- 
3. 'D f- c l ( E )  5 ~~(75)  if 'LJ I -  C I ( ~ )  F c z ( Z )  and (iT,E) is an znstance of  ( p i , ~ ; ) .  

4 .  V t- c , ( K )  5 CZ(Z) if 2) t- C I ( K )  L c 3 ( E )  and 2) t- c ~ ( E )  I CZ(E) for some ~3(75). 

The combination of multiple inheritance and type parameterization requires certain restriction 

on isa declarations. 



Definition 6.2 A class contezt V is coherent if V I- c l ( K )  5 c z ( Z )  and V I- c i ( z  ) 5 c z ( z )  
- 

then = pi .  

We require a class context to  be coherent. This condition is necessary to  develop a type inference 

algorithm for the extended language. Even if some other formulation of classes in a statically typed 

polymorphic language is preferable to  the system proposed here, I believe that similar issues will 

arise. 

Lemma 6.1 For a given class contezt D ,  it is decidable whether D is coherent or nor. 

Proof Let c l ,  . . . , c, be any sequence such that V contains a class definition of the form 

c l a s s c ; ( ~ ; - ) . . i s a  { ..., c,+l(P;+1) , . . .  end (1 < i 5 n -  1 )  

- -  - 
Define inductively as follows: = t l ,  pi = := pi-l] ( 2  < i 5 n ) .  Kow define P ( , ~ , ,  
- 

as p i .  B y  the definition of subsumption, V t c(B) 5 ~ ' (7 )  iff there is a sequence c l ,  . . . , c, such 

that 2) contains class c i ( q - . . i s a  {.. . , ~ ;+~(p i+ l )  ,... } - . .  end ( 1  < i < n - I) ,  c = cl,c' = c, 
- 

and p' = n [ T ;  := 71. Therefore V is coherent iff for each pair ( c ,  c ') ,  p( ,,,,..,, n )  are all identical 

for all sequences c l ,  . . . , c,, such that 2, contains class c ~ K )  . . . isa  {. . . , ~,+~(pi+l) ,  . . .) . . . end 

(1 < i < n - I ) ,  and c = cl,cl  = c,. Since 2) is finite, the above condition can be effectively 

checked. I 

CVe say that a subsumption relation 2) I- c l ( K )  < c 2 ( E )  is more general than V I- c l ( z )  5 
- - 

c z ( 2 )  if (p i  , p i )  is an instance of (E,E).  A subsumption relation 2) I- c l ( z )  5 c z ( E )  is prznczpal if 

it is more general than all provable subsumption relations between cl and c 2 .  Under the coherency 

condition, the subsumption relation has the following property: 

L e m m a  6.2 If V is coherent and V I- c l ( E )  5 c z ( E )  then there is a princzpal subsumption relatlon 

r0 I- c l ( F )  < c 2 ( g ) .  Moreover, there is an algonihm which, given a coherent class context V and 

a pair c1 ,czr  miurns either ( 7 , ~ )  or failure such that if it retuns ( 7 , ~ )  then V t cl(T)  < ~ ~ ( 7 )  IS a 

principal subsumption relation between c l ,  c2 otherwise there is no subsumption relation between c,  

and cz. 

Proof The algorithm is defined as follows. Let c,  c' be a given pair of class names. If there 

is no sequence c l , .  . . , c, such that V contains class ci&) . . .  isa {. . . , c,+l(pi+l), . . .} . . . end, 

1 5 i < n - 1 ,  cl = c,  c,, = c', then report failure. Otherwise pick one such sequence c l ,  . . . , c, 

and return (? ,p(c  ,,.,.,, , ,)),  where p(, is defined in the proof of the previous lemma. If the  



algorithm reports failure then there is no sequence c l ,  . . . , c, satisfying the above conditions. By 

the subsumption rules, it implies that there is no subsumption relation between c and c'. Suppose 

the algorithm returns (i,~). Then by the subsumption rules this implies D I- c l ( q  5 c l (p ) .  Let 

2) t c l ( f i )  5 c ' ( E )  be any provable subsumption relation. By the rule 3 of subsumption relation, 

2) t- cl (z) 5 c1(7[T := pl] )  is also provable. Since 2) is coherent, = @ := pl] .  I 

6.4 Proof System for Class Definitions and Typings 

The extended type system has the following forms of judgements: 

M C +  t D D is a well typed class context, 

M C +  t- D, A b e : r the typing 'D, A D e : r is derivable. 

where A stands for type assignments. The proof systems for those two forms of judgements are 

defined simultaneously. 

Let D be a class definition of the form class c(S) = p,. . .end. D induces the tree subst~tution 

q!JD on type-schemes. For finite type-schemes, r#JD(p) is defined by induction on the structure of p 

as follows: 

Since p, is not a type variable, d D  is a non-erasrng second-order substttut~on on trees [33] which 

extend uniquely to regular trees. See [32] for the technical details. Since regular trees are closed 

under second-order substitution [32], r#JD(p) is a well defined type-scheme. 

Definition 6.3 (P roo f  Sys t em for  Class Definitions) The rule for M C +  I- D is defined by 

induction on the length of V: 

1. The empty class contezt is a well typed class contezt, i.e. t- 0. 

2. Suppose t- D. Let D be the following class definition: 

class c(T ) = p isa  {cl(%), . . . , c , ( z ) )  

with 



val ml = e l  : M I ;  

val mn = en : M,,; 

end. 

Then MC+ I- V ;  D if the following conditions hold: 

(a)  it is coherent, 

( b )  if a class name c' appear in some of p, p,, , . . . , p," then V  contains a definition of the 

form class ~'(7). - . e n d ,  

(c) MC+ t- V , 8  D e, : T for any ground instance T of dD(Mi[sub := 

(d) for any method val m = em : Mm defined in some definition of class cl(F) in  V such 

that 2) I- c @ )  5 c l (a ) ,  MC+ k V ,  0 D em : T for any ground i n s i a n c e . ~  of M,F := 
- 
p', sub := p].  

We have already discussed the necessity of the condition (a). The necessity of the condition (b)  is 

obvious. The condition (c) states that each method defined in the definition of the class c(7) is type 

consistent with its own implementation. The condition (d) ensures that all methods of all super 

classes that are already defined in 2) are also applicable t o  the class c(r).  This is done by checking 

the type consistency of each method em defined in a super class against the type-scheme obtained 

from M m  by instantiating its type variables with type-schemes specified in isa  declaration in the 

definition of the class c (q  and replacing the variable s u b  with the implementation type-scheme p 

of the class c@ ). 

Definition 6.4 (P roo f  Sys t em for  Typings)  The proof system for typrngs of the extended lan- 

guage is the one obtalned from the proof system for Machiavelli (sectzon 5.2.3, definition 3.22) b y  

changing typing formula A  D e : r to V , A  D e : T and adding the following rule: 

(METHOD) MC+ I- V ,  A b m : r 

i f  MC+ I- 2) and there is a method val m = e : M of a class c(7) in 2> such that T is an 

instance of MF := p, s u b  := c'(F)] for some V k d(F)  5 ~ ( 7 ) .  

6.5 Soundness of the Type System 

We show the correctness of the type system for the extended language with respect t o  the type 

system of Machiavelli. 



Let 'D be a given class context and T be a type. The ezposure of r under V ,  denoted tiy 

ezposev ( r ) ,  is the type given by the following inductive definition on the length of V :  

1. if 2) = 0 then ezposev(r)  = T ,  

2. if 'D = V'; D then e z p o s e v ( r )  = e z p o s e v ~ ( ~ j ~ ( r ) ) .  

Intuitively, exposev(r)  is the type obtained from T by recursively replacing all its classes by their 

implementation type-schemes. Since exposel, is a composition of second-order-substitutions which 

is also a second-order substitution, the following property follows from their general properties [32]: 

Lemma 6.3 Let V be any class contezt and f be any type constructors other than class names 

appears in 2).  ezposev( f ( T I ,  . . . , r,)) = f ( e z p o s e v ( r l ) ,  . . . , ezposep(r,)) .  1 

We extend ezpose to any syntactic structures that contain types. The above property also extends 

to  such syntactic structures. 

The unfold of a raw term e under a class context I ) ,  denoted by unfol&(e),  is the raw term 

given by the following inductive definition: 

1. if D = 0 then unfol&(e) = e ,  

2. if 'D = ?)';class.. .with 

val m l  = el : M I ;  

val m, = en : M,  

end, 

then unfol&(e) = unfoldvt(e[el/rnl ,  . . . , e,/m,]). 

unfol&(e) is the raw term obtained from e by recursively replacing all method names defined in V 

with their implementations. The following property is an immediate consequence of the definition: 

Lemma 6.4 For any class contezt V ,  



Theorem 6.1 If MC+ t- V , A  D e  : r then M C  I- e x p o s e v ( A )  b unfoldv(e)  : e x p o s e v ( ~ ) .  

Proof Proof is by induction on the length of 2). The  basis hold since if V = 0 then M C +  I- 

reduced t o  M C  t- and e z p o s e v ,  e z p o s e v  are both identity functions. 

The proof for the induction step is by induction on the structure of e .  Let V be the following class 

context: 

V 1 ; c l a s s  c(7) = p . . . with 

val ml = e l  : M I ;  

val m, = en : M n  

end. 

The cases other than m follows directly from the above two lemmas and the induction hypothesis 

(in terms of the structure of e ) .  Suppose MC+ t- V , 0  D m : 7 .  Then by definition of the 

extended proof system for typings (i.e. the rule (METHOD)), there is a method val m = e  : A.I in a 

definition of a class ~ ~ ( 5 ; )  in V such that r is an  instance of M f i  := K, sub := c a ( K ) ]  for some 

V I- c 2 m  5 c l ( Z ) .  We need to  prove that  M C  I- 0 D unfo ldv(m)  : e z p o s e o ( r ) .  We distinguish 

the following cases: 

1. Case cl = c1 = C: m must be one of the mi in the definition of c  and = K, which is a 

renaming of 5. By the definitions of u n f o l h  and e x p o s e n ,  unfo l&(m, )  = unfol&,(e , )  and 

e z p o s e p ( r )  = e z p o s e p l ( d D ( r ) ) .  But since = Z, which is a renaming of 7, and Mi is finite, 

by the inductive definition of d o ,  d D ( r )  is an instance of 4 ~ ( M ~ [ s u b  := p ] ) .  Since M C +  k 

D ,  0 D m : r implies MC+ t- V ,  by the definition of M C +  t- V ,  M C +  t- I?', 0 D e ,  : r' 

for any instance r' of d ~ ( M , [ s u b  := p ] ) .  In particular, M C +  t- V 1 , O  D e ,  : I $ D ( r ) .  By the 

induction hypothesis (of the main induction), MC F- 0 b u n f o l d p , ( e i )  : e ~ p o s e ~ ~ ( 4 ~ ( r ) ) .  

Therefore M C  I- 0 b u n f o l d D ( m )  : e z p o s e v ( r ) .  

2. Case c2 = c and cl # c: By the definitions of unfoldv and e z p o s e o ,  unfo l&(m)  = u n f o l d D t ( m )  

and e x p o s e v ( 7 )  = e z p o s e v l ( d ~ ( r ) ) .  Since T is an instance of h4[S; := E , s u b  := c q ( G ) ] ,  

cp = C, and none of M , j i , E  contain c2, d D ( r )  is an instance of M , f i  := z , s u b  := p ] .  

But since M C +  I- 2 ) , 0  D m : r implies MC+ t- V ,  by the definition of M C +  t- V ,  

M C +  t- V1,0 b m : r' for any instance r' of M[t; := z, s u b  := In particular, M C f  I- 

Vf,O b m : I $ D ( T ) .  Then by the induction hypothesis (of the main induction), MC t 

0 D unfo l&, (m)  : e x p o s e v ~ ( d ~ ( r ) ) .  Therefore M C  t- 0  D u n f o l d D ( m )  : e z p o s e v ( r ) .  



3. Case cl # c and c2 # c: Then unfo ldv(m)  = unfo ldv , (m) ,  e z p o s e V ( 7 )  = e z p o s e v , ( r )  and 

MC I- 0 D unfo l&, (m)  : e z p o s e V , ( r )  implies M C  I- 0 D u n f o l d v ( m )  : e z p o s e v ( r ) .  The 

desired result follows from the induction hypothesis (of the main induction). 

By the definition of subsumption relation, c~ = c and c2 # c contradict the assumption that 

V I- c z @ )  5 c l ( K ) .  Therefore we have exhausted all cases. 1 

This theorem establishes the correctness of the type system with respect to  the type system of the 

core language. In particular, since the type system of the core language prevents all run-time type 

errors, a type correct program in the extended language cannot produce run-time type error. 

The converse of this theorem, of course, does not hold, but we would not expect it to hold, for 

one of the advantages of data  abstraction is that it allows us to distinguish two methods that may 

have the same implementation. As an example, suppose V contains definitions for the classes car 

and person whose implementation type-schemes coincide and person has a method m i n o r  which 

determines whether a person is younger than 21 or not. By the coincidence of the implementations, 

F 8 D e z p o s e ( m i n o r ( c ) )  : bool for any car object c .  But I- V , A  D m i n o r ( c )  : bool is not provable 

unless we declare (by a sequences of isa declarations) that car is a subclass of person.  This prevents 

illegal use of a method via a coincidence of the implementation type-schemes. 

6.6 Type Inference for the Extended Language 

We now solve the type inference problem for the extended language by defining an algorithm to 

compute a principal conditional typing schemes. For this purpose we introduce a new form of 

conditions. 

Definition 6.5 A subsumption condition is a formula of the form i s a ( p , c ( T ) ) .  A substitutiotl 6 

satisfies the subsumption condition under the class context V if V I- 6 ( p )  5 B ( c ( 7 ) ) .  

Note that the satisfiability for subsumption conditions is defined relative to  a class context. 

The notion of conditional typing schemes is now extended to include subsumption conditions. 

Definition 6.6 A conditional typing scheme for the extended language ts a formula of the form 

D, C, I= D e : p such that for any  substitution B that i s  ground for  C ,  C and p and that satisfies C 

under t h e  class contezi  V ,  MC+ I- V , B ( C )  b e : B ( p ) .  

The definition for principal conditional typing schemes is the same a s  before 



Since the typing judgment M C +  I- V , A  D e : r implies the well typedness MCC I- V of the 

class context V ,  in order to  define a type inference algorithm we also need to define a type-checking 

algorithm for class contexts. A subtle complication in defining these algorithm is that  we need to 

develop them simultaneously, since the two forms of judgements are mutually dependent. We solve 

this problem in the following two stages: 

1. to develop an algorithm that computes a principal conditional typing scheme under  a type 

correct class c o n t e d  D (proposition 6 .1) ;  then 

2. to develop an algorithm to decide whether a class context is well typed or not using the above 

result (proposition 6.2). 

P r o p o s i t i o n  6.1 For any raw i e n n  e ,  and any class contezt V if e has a typrng u n d e r  73 then t t  

has  a principal conditional typing scheme.  Moreover, there is a n  algorithm which, given any raw 

term and any wel l  typed class contezt  D, computes  a prtncipal conditional typzng scheme if one  

ez is ts  otherwise reports failure. 

P r o o f  If V is not well typed then by definition there is no typing of e uner V. Suppose 'D is 

well typed. The algorithm to compute a principal conditional typing scheme is obtained from the 

algorithm C T S  (theorem 5.1) for Machiavelli by adding a parameter 'D and the following case for 

methods: 

C T S ( V ,  e )  = ( C ,  C, p) where 

(6) Case e m: 

let 

val rn = e : r\l be the method defined in the class definition for ~ ( i )  in V 

in 

C = { ( i s a ( t z , c ( Q ) )  (t1,b fresh), 

C = 0, 
- 

p = M[i  := t l , s u b  := t 2 ]  

Other cases are the same as before. In particular, they do not depend on V 

Since p returned in the case above is a type-scheme (i.e. it does not contain sub) and a set of 

conditions denotes the conjunction of all its elements, the correctness of the algorithm for the 



above case follows immediately from the definition of the condition isa(p, ~ ( 7 ) ) .  The proof of the 

correctness of the other cases is same as the proof in theorem 5.1. 1 

Proposition 6.2 For any  class context V ,  it is decidable whether  M C +  t V o r  no t .  

Proof The proof is by induction on the length of D. Basis is trivial. For the induction step, let D 

be the following class context: 

Dt;class c@) = p . . . with 

val m l  = e l  : M I ;  

val m, = en : M,  

end. 

In order to decide whether M C +  I- V ,  we need to check the four conditons (a)  - (d) of definition 6.3. 

We have shwon by lemma 6.1  the decidability of condition (a). The decidability of condition (b )  is 

obvious. We show that condition (c) is decidable. Since Mi is finite, dD(M,[sub := p]) is effectively 

computable by the inductive definition of 4D. By induction hypothesis, it is decidable whether 

MC+ I- V or not. Then by proposition 6.1, we can compute a principal conditional typing scheme 

MC+ F V,C,C D ei : p. We can then decide whether MC+ I- V,0,0  D ei : dD(Mi[sub := p ] )  

is a conditional typing scheme or not by checking whether there is a substitution 6 that satisfies 

C and B(C,p) = (O,dD(Mi[sub := p] ) .  This implies the decidability of condition (c). Since the 

subsumption condition is decidable (lemma 6.2), the decidability of condition (d )  is shown similarly 

to  condition (c). 1 

We now have a complete type inference algorithm: 

Theorem 6.2 There i s  an algorithm which, given any  raw t e r m  e and a n y  class context D ,  com- 

putes a principal conditional typing scheme of e under  'D if one exists otherwise reports failure. 

Proof The algorithm is first checks the well typedness of the class context 2) by using propo- 

sition 6.2 and if it is well typed then computes a principal conditional typing shceme by using 

proposition 6.1 otherwise reports failure. The correctness of the algorithm follows from the defini- 

tion of typings. 1 

In subsection 5.4.2 we noted that the existence of a conditional typing scheme is not enough for 

complete type-checking because a set of conditions may not be satisfiable. Subsumption conditions 



we have introduced in this section is another source of unsatisfiability. To see this consider the 

following examples. Suppose V contains the class definitions for person and car (without type 

parameters) with the method 

fun make-person(n ,  a )  = . . . : ( s t r ing  * i n t )  -+person 

for person and the method 

fun f ue l ( c )  = . . . : s u b  -+ string 

for car. Now consider the expression: f ue l (makeqerson("  Joe", 21 ) ) .  This expression has the 

following conditional typing scheme: 

M C +  t- V ,  { isa(person,  c a r ) } ,  0 D f uel(make-person(" J o e 1 ,  2 1 ) )  : s tr ing  

which has no instance because of the unsatisfiable condition i sa(person,car)  (unless person is 

defined to be a subclass of car in V ) .  As we have done for Machiavelli we develop a method to 

detect these inconsistency of subsumption conditions by transforming them into a simpler form. 

Definition 6.7 A set of condifion C is in weak subsumpfion normal form if the following properttes 

hold: 

1. i f  i sa(p1,  c(&)) E C then p is a type variable, 

2. i f  i s a ( t ,  c l ( E ) )  E C and i s a ( t ,  c 2 ( E ) )  E C then cl # c2. 

Proposition 6.3 If a set of conditions C is saiisfiable under a given coherent class context D, ihen 

there is a set C' of conditions which is  a refinement of C and is  i n  weak subsumpiion normal form. 

hloreover, there is  an algorithm which, given a set of conditions C and a coherent class context 

D, compuies either a pair ( C ' , 8 )  or unsatisfiable such that if ii returns (C',  8 )  then C' is in weak 

subsumption normal form and is  a refinmeni of C with 8 a refinement substitution oiherwise, C is 

unsatisfiable under V .  

Proof We first define aset  of transformation rules on pairs of a set of conditions and a substitution: 

(C u ( i s a ( c i ( F i ) ,  c 2 ( E ) ) ) ,  0) =j 

(O1(C) ,  8' o 8 )  where 6' = U((z,z), (z, F ) )  such that V I- cl  (z) 5 c 2 ( ~ )  

is a principal subsumption relation between cr and c2 under V ,  



( C  u cl (TI)), 2 4 2 ,  ~ l ( i G ) ) ) ,  8) 

(el(C u { i s a ( t  , c l  (pi)))), 8' o 8) where 8' = U ( E ,  E) 

We now define the algorithm SUB as: 

( c l ,  0) if (C, id) &- (C', 8) and C' is in weak subsumption normal 

SUB(C) = form 

unsat is jable  otherwise 

(by assuming some brdering on applications of the rules). 

Since the both transformation rules strictly reduce the number of conditions in C ,  the algorithm 

always terminates. The correctness of the algorithm is proved similar to the proof of proposition 3.5 

using lemma 6.2 and the coherent assumption on 2). 1 

We can then extend theorem 5.2 with subsumption conditions: 

Theorem 6.3 Let C be a set of condition that does  not contaln join conditions and all projectton 

condi t ions are those that have a finite target t ype .  IfC is satrsfiable then there is a refinment C' of 

C that is i n  record-vartant normal  form and in  weak subsumptzon normal  form.  Moreover, there is 

an algorithm t o  compute C' and a refinement substitution 8 if they ez i s t .  

Proof Let a be the transformation relation obtained by combining the transformation rules 

defined in the proof of proposition 5.5 and the proof of proposition 6.3.  Now define the algorithm 

R V P S  as follows: 

(C", 8) if C' = 3 P ( C ) ,  (C', i d )  (C", 8) such thatC" is in 

R V P S ( C )  = record-variant normal form and in weak subsumption normal form 

failure otherwise 

Since all the rules defined in the proof of proposition 5.5 and the proof of proposition 6.3 strictly re- 

duce the number of conditions, * also strictly reduces the number of conditions and the algorithm 

always terminates. The correctness of the algorithm follows from theorem 5.2 and proposition 6.3.  

I 

Similar to record and variant conditions, subsumption conditions in weak subsumption normal 

form also have a compact representation. We extend the set of conditional type-schemes defined in 

subsection 5.4.2 to include representations of subsumption conditions: 



where ( t  i s a ( ( c l ( K ) ,  . . . , c , ( r ) ) )  is a type variable associated with the set of subsumption condi- 

tions isa(t,  c i ( z ) ) ,  1 5 i 5 n. Conditional typing schemes for raw terms that do not contain joins 

and projections on infinite target types can be represented by these conditional type-schemes. 

Note however that theorem 6.3 is weaker than theorem 5.2. Unlike the record-variant normal 

form (definition 5.7), the fact that C is in weak subsumption normal form does not implies that all 

subsumption conditions in C are satisfiable. To see this consider the following example. Suppose 

2) consists of the two class definitions student and employee with the method 

fun grade s = . . . : s u b  -. ant 

for student and the method 

fun salary e = . . . : s u b  --, int 

for employee. Now consider the following function definition: 

f u n  saralynnd-grade p = (salary(p), grade(p)). 

This function has the following conditional typing scheme: 

MC+ I- D, 0,0 D saralynnd-grade : ( t  isa(student, employee)) - (int * int) .  

But since there is no class that is a subclsss of both student and employee, the above typing scheme 

has no instance. 

As a formal system it is easy to  fix this problem by adding the following condition to that of 

weak subsumption normal form of a set C of conditions under a class context V: 

if isa(t ,  c l ( E ) )  E C ,  i sa ( t , c z (E) )  E C , .  . . , isa(t,  c , ( z ) )  E C then there is some c(7)  
and a substitution 0 such that 2) t- c(B(7)) ci(O(F)) for all 1 5 i 5 n. 

Since the number of classes defined in 2) is finite, the above condition is shown to be decidable by 

checking against all classes defined in Z) by using lemma 6.2. However, in practice, 2) might become 

very large and such test might be prohibitively expensive. We think that the weak subsumption 

normal form is satisfactory for practical purpose. The only remaining subsumption conditions are 

on function types. This means that the existence of weak subsumption normal form guarantees 

that all applications of methods to  objects are type correct. This solution is similar to  the one 

we have adopted for the satisfiability checking of join conditions and projection conditions with an 



infinite target type (subsection 5.4.2). Also note that this problem does not arise in type-checking 

a class context because of explicit type specifications of methods. 

6.7 Further Examples 

In section 6.1, we defined the classes person and employee. The sequence of the two definitions is 

indeed a type correct class context in our type system. Figure 6.1 shows an example of an interactive 

session involving these class definition in our prototype implementation. ( 'a < person) and ( ' a  

< employee) are bounded type variables. As seen in this example, the system displays the set of 

all inherited method for each type correct class definition. 

Let us look briefly at some further examples of how type parameterization can interact with 

inheritance. At the end of section 6.1 we defined a polymorphic list class list(a). We could i~nrne- 

diately use this by implicit instantiation of a .  For example, the function 

fun sum 1 = if null(1) then 0 else hd(1) + sum(tl(1)) 

will be given the type list(int) - int,  as would happen in ML. However we can instantiate the 

type variable a in other ways. For example, we could construct a class 

class genintlist(b) = (rect. (Empty : nil, List : [Head : [Ival : int ,  Cont : b],Tail : t])) 

isa list([Ival : int,  Cont : b]) 

with 

end 

which could be used, say, as the implementation for a "bag" of values of type b. In this case all the 

methods of pre-list and list are inherited. However, we might also attempt to  create a subclass of 

list with the following declaration in which we directly extend the record type of the List variant 

of the implementation: 

class genintlist(b) = (rec t. (Empty : nil, List : [ ~ k a d  : int,Cont : b, Tai l  : t])) 

isa l ist(int) 

with 

end 



-> class person = [Name : string, ~ g e  : int] 
with 

end ; 

>> class person with 
make-person : (string*int) -> person 
name : ( 'a < person) -> string 
age : ( ' a  < person) -> int 
incrementage : ('a < person) -> ('a < person) 

-> class employee = [Name:string,Age:int,Salary:int] 
with 

end ; 

>> class employee isa person with 
make-employee : (string*int) -> employee 
addsalary : (( 'a < employee)*int) -> (a1 < employee) 
salary : ('a < employee) -> int 

inherited methods : 
name : ('a < person) -> string 
age : ('a < person) -> int 
incrementage : ('a < person) -> ('a < person) 

-> va1 joe = make,person("Joe" ,211 ; 
>> val joe = , : person 

-> val helen = make-employee("Helen",31) 
>> val helen = - : employee 

-> age(joe1; 
>> 21 : int 

-> val helen = incremenLage(he1en); 
>> val helen = - : employee 

-> age (helen) ; 
>> 32 : int 

-> fun wealthy e = salary(e) > 100000; 
>> val wealth = in : ('a < employee) -> boo1 

Figure 6.1: A Simple Interactive Session with Classes 



In this class, all the methods of pre-list could be inherited but the method cons of l is t (a)  cannot b e  

inherited because the implementation type-scheme of geninilist(b) is incompatible with any of the 

possible types of cons. In this case, the type checking for class definition fails and the type system 

reports an error. 

6.8 Limitations and Implementation 

First, we should point out that the language we have proposed differs in some fundamental ways 

from object-oriented languages in the Smalltalk tradition. A static type system does not fit well 

with late binding - a feature of many object-oriented languages. One reason to have late binding 

might be to  implement ovem'ding of methods. I t  is possible that some form of overloading could 

be added to the language t o  support this. 

Another limitation is the restriction we imposed on inheritance declarations in connection to 

type parameters. We required that if a class c ( t 1 , .  . . , t , )  is a subtype of both c'(r1, . . . , r,) and 

c'(T~, . . . , <) then rj = rj' for all 1 < i 5 n. This is needed to preserve the existence of princi- 

pal conditional typing schemes for all typable raw terms. This disallows certain type consistent 

declarations such as: 

class C 1 ( t )  = p wi th  

fun m x = m(x)  : sub -+ t  

end; 

class C2 = p' isa { C l  ( i n t ) ,  Cl (bool ) )  w i t h  

c = e : C 2  

end. 

This definition is type consistent in any implementation type-schemes p,pf but creates a problem 

that terms like m(c) do not have a principal conditional typing scheme. However, we believe that 

the condition is satisfied by virtually all natural declarations. Note that in the above example the 

result type of the method m is the free type variable t  without any dependency of its domain type 

s u b  which reflects the property that the method m does not terminates on any input. I could not 

construct any natural example that is type consistent but does not satisfy this coherent condition. 



Form a practical perspective, checking the type-correctness of a class definition with isa decla- 

ration requires the consistency checking of all methods of all super-types already defined. A naive 

way to do this would involve recursively unfolding definitions of types and method and then type- 

checking the resulting raw term in the type system of the core language, which will be prohibitively 

expensive when the class hierarchy become large. This problem is avoided using the existence of 

a principal conditional typing scheme for any typable raw term in the extended language. At the 

time of a definition of each method, we can save its principal conditional typing scheme. The 

type correctness of the method against a newly defined subclass can then be checked by checking 

whether the required method type is an instance of its principal conditional type-scheme or not. 

This eliminates repeated type-checking of method bodies but still requires checking of type cor- 

rectness against the set of all inherited methods. This can be also avoided. The set of all possible 

implementation type-schemes of subclass of a class can be represented by a single principal condi- 

tional type-scheme. As an example, consider the example of person we defied in the introduction. 

The most general conditional type-scheme of the type variable s u b  in the definition of person can 

be computed as ( ( 1 )  Name : s tr ing,Age : in t ] .  Using this property, the type correctness of a sub- 

class declaration can be checked by checking that the implementation type-scheme is an instance 

of [ ( t )  N a m e  : s tr ing,Age : in t ]  without checking the consistencies of each method. While the 

number of inherited methods might become very large, we expect that the number of super-classes 

is relatively small even in development of a large system and therefore that this strategy yields an 

efficient implementation of a static type-checking of large class hierarchy. 



Chapter 7 

Object-identities and Views for 

Ob ject-oriented Databases 

This chapter extends Machiavelli with reference types to represent database objects with "identi- 

ties" and describes a method to represent object-oriented databases. 

7.1 Introduction 

As we have demonstrated through examples in section 5.7, Machiavelli provides a suitable medium 

to represent the relational and other complex object models in ML style type system. In these 

models, database objects are pure values in the sense that two objects are equal iff they denote a 

same regular tree (remember the definition of eq primitive in Machiavelli in section 5.5). In those 

value-based database systems, real-world objects are represented by sets of their attribute values. 

Moreover, the information about a single real-world object such as a person might be stored in 

various places. Query processing is done by manipulating these values using join, projection and 

other operations. 

In contrast to  those value-based approach, many other data models have been developed based 

on the intuitively appearing idea that a real-world entity should be directly represented by a single 

database object. Perhaps the first well established model based on this idea is the entity-relationship 

model (281. Many recent proposals such as (46, 74, 671 also integrate the features of object-oriented 

programming, forming the increasingly popular area of "semantic" data  models and object-oriented 

databases. See [12, 581 for surveys in this area. 



There have been arguments [103, 121 that object-oriented databases provide better solutions 

to problems of database programming than those provided by value-based systems. It is however 

apparent that there are many applications for which value-based systems provide simpler and more 

elegant solutions. As an example, recent development of a formalism in natural language processing 

called feature s tructures  [97] strongly suggests that the databases for linguistic information are best 

represented in a value-based system. On the other hand many ideas developed in object-oriented 

databases such as object identities and extents of classes have obvious practical benefits. I believe 

that the real problem we should solve is to integrate these two features in a unified type system 

so that the programmer can enjoy both advantages of the two approaches. There have been also 

argued [12, 661 that value-based database systems such as the relational model and its extensions 

do not well fit a type system of a programming language. Through chapter 4 to chapter 5 ,  we 

have just shown the opposite by integrating very general complex objects into a polymorphic type 

system of a programming language. In this chapter we present a method to integrate the features 

of object-oriented database programming into our type system. 

There have been a number of arguments on the properties of object-oriented databases (65, 

17, 121. Here rather than adding to this philosophical discussion, we restrict our attention to 

the notions of object ident i t ies  and ez ten t s .  When combined with the central features of object- 

oriented programming, they provide what we believe to  be the desired features of programming with 

object-oriented databases. We have integrated central features of object-oriented programming in 

Machiavelli in chapter 5 and 6. In this chapter we analyze object identities and extents and propose 

a method to represent them in Machiavelli. 

The notion of object identities is based on the intuitive idea that database objects should model 

real-world entities that change their attributes while maintaining their "identities". The properties 

of objects with identities can be summarized as follows: 

1. two objects are equal if and only if they are identical (i.e. they are created by the same 

instance of the creation operation), 

2.  an object has a set of attribute values that can be changed without affecting its identity, 

3. an object is referred and accessed independently of the values of its attributes. 

The practical importance of these properties is that they nicely represent sharing and mutability, 

which are rather cumbersome to represent in a pure value-based system. Objects with identities are 

usually implemented by maintaining a special value space such as "object identifier" [67] and "key" 

[7]. Objects are referred and accessed by those special values. User are required to create objects 



so that their identifying values are unique. The system enforces the uniqueness requirement. - 

The notion of extent is related to the notion of classes in object-oriented programming we have 

analyzed and integrated in Machiavelli in chapter 6. A class in object-oriented programming can 

be regarded as an association of a (hidden) structure defining the internal representation of objects 

and a set of operations defining their external behavior. Such classes are hierarchically organized 

by inheritance relation supporting method sharing. For example, if we define a class point with a 

method m o u e ( p , z ,  y )  that displaces a point p by co-ordinates z and y ,  we can define a subclass, 

c i rc le ,  of point and expect that the same method, m o v e ,  can be applied t o  instances of the class 

c i rc le .  In object-oriented databases, the notion of classes not only represents these inheritance 

relation but also imposes a relationship on the sets of objects of classes. For example, when we 

say an e m p l o y e e  i s a  person  in a object-oriented database system, as in object-oriented languages 

we expect employee  t o  be a subclass of person in that every method of person  is applicable to 

instances of employee  but we also mean that, in a given database, the set of e m p l o y e e  objects 

is a subset of the set of person  objects. We call a set of objects of a class an ezient  of a class. 

Note that  the notion of extents are relative to  a database for a subset of a database depending on 

the context). Since it is natural and sometimes necessary to  maintain multiple databases having a 

same class structure, it is desirable t o  allow multiple extents for a single class. 

An important implication of this notion is that classes in object-oriented databases cannot be 

directly modeled by types. This contrasts with object-oriented programming whose classes are 

accurately represented in the type system we have constructed in chapter 6. To clarify this issue, 

let us look at a sketch of a database query in which this subset assumption is made. 

1. Obtain the set S of students in the database. 

2.  Perform some complicated restriction of S, e.g. find the subset S' of S whose Age is below 

the average Age of S .  

3. Obtain the subset E of S of employees  in S' 

4. Print out some information about E, e.g. print the names and ages of people in E with a 

given salary range. 

Since each object is a model of a real-world entity, the above query certainly make sense and the 

process (3) might be done by "intersecting" the set of employee  objects and S .  Different from the 

typing relation between values and types, an object o belongs to  a class c does not means that the 

entire structure of o is specified by c but it should mean that c specifies some partial information of 



the structure of o .  A person  object might be an e m p l o y e e .  It also suggests that an object-oriented 

database require some form of heterogeneous collection of objects. 

Programming such queries are certainly possible in a dynamically typed language, and can easily 

be handled in object-oriented database languages based on dynamic type-checking. Of course this 

situation can be also handled in a statically typed system by maintaining disjoint sets of e m p l o y e e s  

and persons  instances, each of which is uniformly typed, and at the same time by maintaining a 

"natural" embedding (injective map) from the set of e m p l o y e e s  to  the set of p e r s o n s  as a typed 

function in the language. This is what is done in the relational model through (seldom implemented) 

foreign key constraints. Implementing the query then involves join a t  line 3 in order to  find the 

employees who have a key that is in the relation containing the selected persons. 

Galileo handles this problem by introducing special types called "classes". For each class-type, 

Galileo maintains a unique extent associated with a class. An object of a class-type is required to 

have a key that is unique not only among the set of all objects of that class but also among the 

set of all objects of all its subclasses. The system then maintain the inclusion relation of extents 

associated with classes. This approach has a disadvantage that we can have only one extent for 

each class. This creats a problem when we want to  define generic methods which are applicable to  

many extentns sharing common structures. For example, if we want to  maintain a separate extent of 

students for each department then we are forced to define a separate class for each department. This 

means that even if the structure and required set of methods are identical for all those departments 

we are forced to repeat class and method definitions for each department. 

In this chapter, we introduce the reference types to  represent objects with identities. \Ye then 

introduce the notion of views to  represent extents and demonstrate that Machiavelli type system 

can represent object-oriented databases. Tlle justification of these notions are, however, intuitive 

and ad hoc. Development of a formal theory for object identities and extents is left to future 

investigation. 

7.2 Reference Types 

We claim that the properties of object identities we have described are accurately captured by 

reference types (or pointer types) that are implemented in many typed programming language 

including Standard ML [47]. 

We extend hlachiavelli type system by adding the type constructor ref,  i.e. if r is a type then 



- 
reflr) is a type. The  set of raw terms are also extended with three constant functions: 

ref : r --+ refir) (reference creation) 

! : reflr) -4 r (de-referencing) 

:= : refir) -+ r -r ni l  (update) 

where nil is a trivial base type containing only one value Nil .  Following the syntax of Standard 

ML, we use the notation el := e:! for :=(el)(e2). 

As has been known and was pointed out in [71], a general use of reference in ML style type 

system can create type inconsistency not detected by static type-checking. The  following example 

is given in [71]: 

l e t  

val x = ref Ax. x 

in 

( x  := Ax. x + 1,!x t r u e )  

e n d .  

If the type system treat the constant ref as an ordinary constant then the type system infer the 

type boo1 for the above expression but cause a runtime type error if the evaluation of pair (x := 

Ax. x + 1, !x t rue)  is left to  right. Here we adopt the solution proposed in [TI] that  the "actual" 

argument t o  the function ref must have a ground type. This condition is the same as the one we 

imposed on the function join and proj' (with infinite a) and therefore can be enforced by the same 

method (subsection 5.4.2). 

Two references are equal iff they are created by the same invocation of ref. For example. 

re f (3 )  = re  f ( 3 )  is false but let val a = re f (3)  in a = a end is t rue .  A reference is created with a 

value which can be arbitrary complex and can be changed without changing the value of reference 

itself. For example, if we create a department object (with identity) as the following reference 

value: 

val d = ref ([Dname = *@Sales", Building = 451); 

and from this we create two employee objects: 

val empl = ref ([Name = "Jones", Department = 4); 
val emp2 = ref ([Name = *'Smithw, Department = 4); 



then these two employees have the object d in the Department field not the value [Dnarne = 

"Sales1', Building = 451. The following change of values of d: 

let 

val d = (!empl).Department 

in 

d := rnodtfy(!d, Building, 67) 

end 

will be reflected in the department as seen from empz and the expression 

is evaluated t o  67. 

7.3 Views for Representing Extents 

T h e  way we capture the notion of view in our language is through coercions or vrews. The  type of 

an object will, in general, be a reference to  a rather complicated type, say PersonObj. A database 

(or a part of i t)  will consist of a set D of such objects, i.e. a value of type {PersonObj).  A view of 

D is a set of relatively simple records in which we "reveal" a part of the structure of each member 

of D so that  we can apply operations on database objects we have already developed. For example, 

{ [Name  : string, I d  : PersonObjlD and {{[Name : string, Age : int ,  Id : PersonObj]) can be the 

types of views of the set D. But notice that within these records we have kept a distinguished I d  

field that  contains the object itself, and this field, being a reference type, can also be treated as 

an "identity" or key when we have a set of objects. Because of the presence of this field, we can 

define generalized set operations on views even though they are of different types. In fact we have 

already seen one such operation, join. \Vhen applied to  views it is an operation that  takes the 

intersection of sets of identities, but produces a result that has a join type and gives us the union 

of the "methods". In fact we shall simply define a class assoctaied wzth ezienis as any record type 

that  contains an Id field, which will be assumed t o  be some reference type. 

As an example. a part of the database could be a collection of "person" objects modeling the 

set of persons in a university. Among persons, some are students and others are employees. Such 

subsets naturally form a taxonomic hierarchy or class structure. Figure 7.1 shows a simple example. 

Note that  the arrows not only represent inheritance of properties but also actual set inclusions. LVe 

use variant types to  represent structures of objects that  share common properties (e.g. being a 



Teaching Fellows R 
Employees 5? 7 
Figure 7.1: A Simple Class Structure 

person) but differ in special properties. The example is then represented by the following types in 

Machiavelli. 

PersonObj = reA[Name : string,Salary : (None : nil, Value : i n t ) ,  

Advisor : (None : nil, Value : PersonObj), 

Class : (None : nil, Value : string)]) 

Person = [Name : string, Id : PersonObj] 

Student = [Name : string, Advisor : PersonObj, I d  : PersonObj] 

Employee = [Name : string,Salary : Integer, Id : PersonObj] 

TeachingFellow = [Name : string, Salary : Integer, Advisor : PersonObj, 

Class : String, I d  : PersonObj] 

The reference type PersonObj is the type of person objects. The type Person, Employee and 

TeachingFellow are types of person objects viewed as persons, employees and teaching fellows 

respectively. For example, a person object is viewed as (or more ~recisely can be coerced to) an 

employee if it has name and salary attributes. A database would presumably contain a set of person 

objects, i.e. a set of type {PersonObj}}, and views of any set of this type can be constructed in 

Machiavelli by the following definitions: 

fun PersonView(S) = 



se lec t  [ N a m e  = ( ! x ) . N a m e ,  Id = x ]  

w h e r e  x E S 

w i t h  t rue ;  

fun EmployeeView(S)  = 

select [ N a m e  = ( ! x ) .Name ,Sa lary  = va lue ( ( ( !x ) .Sa lary ) ,  Id = x ]  

w h e r e  x E S 

with(case  (!x).Saraly of < Value = x >a t rue ,< None = y >* fa lse);  

fun S t u d e n t V i e w ( S )  = 

select  [ N a m e  = ( ! x ) .Name ,  Advisor = zralue((!x).Advisor), Id = x ]  

where x E S 

w i t h  ( c a s e  (!x).Advisor of < Value = x >+ t rue ,  < None  = y >a f a l se ) ;  

fun T F V i e w ( S )  = 

select  j o in (x ,  [Course = value((!x) .Course)])  

w h e r e  z E j o in (S tuden tV iew(S) ,  Employee (S ) )  

w i t h  (case  (!x).Course of < Value = x >* t rue ,  < None = y >+ fa lse);  

where value is the function defined as: 

fun ualue(v)  = (case  v of < Value = x >=. I, < None = y > j  E r r o r ) ;  

The  types inferred for these functions will be quite general, but the following are the instances that 

are important to  us in the context of this example. 

Personv iew : { P e r s o n O b j )  - { P e r s o n ]  

Employeeview : { P e r s o n O b j ]  - {Employee]  

S t u d e n t v i e w  : I(PersonObj] - {{Student]  

T F V i e w  : {PersonObj}} --, {TeachingFellow ] 

In the definition of T F V i e w ,  the join of two views models both the intersection of the two 

classes and the inheritance of methods. If al,a? are types of classes, then a1 < a? implies that 

projectu ' (View, , (S))  2 V i e w , , ( S )  where View,, and View,, denote the corresponding viewing 

functions on classes a1 and a?. This property guarantees that  the join of two views corresponds to 

the intersection of the two. We therefore define: 



fun view-intersection Vl V2 = join(Vl, V2). 

The property of the ordering on types and Machiavelli's polymorphism also supports the inheritance 

of methods. For example, suppose we have a database persons. Then 

always represents the set of objects that are both student and employee. Moreover, the type of 

the intersection is the join of the types of StudentView(persons) and EmployeeView(persons) 

and therefore methods defined on StudentView(persons) and EmployeeView(persons) are auto- 

matically inherited by Machiavelli's type inference mechanism. Here are some examples of query 

processing in a interactive session in Machiavelli: 

(* New view of people who are both Student and Employees *) 

-> val supported-student = 

view-intersection(Student~iea(persons) ,EmployeeView(persons) ) ; 

>> val supported-student = ( . . . . 3 

: <[Name:string, Salary:int, Advisor:PersonObj , Id:PersonObjl3 

(* lames of students who earn more than their advisors *) 

-> select x.Name 

where x <- supported-student, y<-EmployeeView(persons) 

with x.Advisor=y.Id andalso x.Salary > y.Salary; 

>> val it = < . . .  3 : €string3 

Dual to the join which corresponds to the intersection of classes, we can define the "union" of 

extents in Machiavelli. The result type of the union of two views should be the type "common" to 

both of the types. Using our ordering on description types, this can be represented by the following 

typing rule: 

view-union : {a l )  x %b2) - {{bl n 62)) 

The appropriate definition for the view-union can then be given as: 

which is reduced to the standard set-theoretic union when 61 = 62. This operation can be used to 

give a union of classes of different type. For example, 



correspond to  the union of students and employees. On such a set, one can only safely apply methods 

that are defined both on students and employees. As with join, this constraint is automatically 

maintained by Machiavelli's type system simply because the result type is {{Person}}. 

In addition one can easily define the "membership" operation on objects of disparate type.: 

fun view-member(x, S )  = join(fIx], S )  # {) 

view-member(x, S )  = true iff there is some member of s of S such that x and s have a common 

identity. In this fashion it is possible to  extend a large catalog of set-theoretic operations to classes. 

It is interesting to note that this approach, when considered as a data model, has some similari- 

ties with that proposed in the I F 0  model [3]. The database consists of a collection of sets of different 

types of which a set of type PersonObj in our example, would be one. Subclasses ("specializations" 

in IFO) correspond to views. However, unions of these cannot be formed directly, because the Id  

fields will have different types. The correct way to form a union (IFO's "generalizations") would 

be to exploit a variant type. 



Chapter 8 

Conclusion and Topics for Further 

Research 

This thesis has proposed a programming language for databases and objet-oriented programming. 

The language has a static type system with static type inference and hlL style polymorphism. 

The type system uniformly integrates complex database objects, central features of object-oriented 

programming and ML style polymorphism. Various complex models including complex object 

models and object-oriented databases can be directly represented in the type system. This allows 

database programmers to share benefits of hlL style type system and useful features of object- 

oriented programming such as multiple inheritance and data abstraction. 

This thesis has achieved this goal by extending hlL style type system to st.ructures and oper- 

ations for databases and object-oriented programming. I have analyzed the syntax and semantics 

of M L  and constructed a framework for denotational semantics for hJL polymorphism and axiom- 

atized the equational theory that correspond to the semantics. I have also constructed a theory of 

types for database objects and proposed a concrete type system for complex database objects that 

is rich enough to represent virtually all proposed database objects. By combining the analysis of 

ML and the type system for database objects, I have defined the polymorphic core of the proposed 

language and developed a type inference algorithm. The core has then been extended to include 

user definable classes for object-oriented programming. I have also presented a method to represent 

object-oriented databases in the language. 

As in many endeavors, the work presented in this thesis is not complete with respect to its 

ultimate goal. There are many topics that remain to  be investigated before a truly satisfactory 



programming language for data  intensive applications can become a reality. The  rest of this chapter 

lists some of these topics that can be regarded as continuations of this work. 

8.1 Semantics 

One of my belief underlying this study is that construction of a clean mathematical semantics 

is essential t o  understand existing systems, to  extend existing systems and t o  integrate various 

different systems. The following investigations should be useful for a better understanding of the 

type system proposed in this thesis and for further extensions. 

8.1.1 A Concrete Models for Machiavelli 

In section 3.3,  I defined the notion of models and equational theories for hIL like languages and 

proved the soundness and completeness theorem. The  notion of models for hlachiavelli was defined 

based on this result. By the completeness theorem for the simply typed lambda calculus, we know 

that  there is a model. But it is also interesting t o  construct a syntax free model for Machiavelli. 

By the  definition of models of Machiavelli, it is enough to  construct a model for the explicitly 

typed language ~Machiavelli. An appropriate formalism might be the domain theory. In [91] 

Plotkin constructed a domain theoretic model for a variant of the simply typed lambda calculus 

with recursion. In this model, base types are interpreted as flat cpos (complete partial orders) 

and function types are interpreted as continuous function spaces. In this language the only type 

constructor is the function type constructor, which corresponds t o  the continuous function space 

construction on cpos. In xXlachiavelli, types correspond t o  regular trees generated by various type 

constructors. Since a regular tree is specified by an equation, one way to  construct a domain 

theoretic model for xhlachiavelli might therefore be to  translate an equation on regular trees to  an 

equation on cpos and to  interpret a type as  the solution of the corresponding equation over cpos. 

8.1.2 Call-by-Value Semantics for ML Polymorphism 

My analysis of a denotational semantics for ML polymorphism was based on the standard model 

theory and the  standard equational theory for lambda calculus. It assumed &equality both in 

equational theories and in semantic spaces (through a condition on semantic mappings). As I 

pointed out in section 3.1, however, these theories do not agree with the operational semantics based 

on the "call-by-value" evaluation. Although the operational semantics is sound with respect to  the 



denotational semantics in the sense that if a term is evaluated to another term then they have the 

same meaning, the denotational semantics is not cornputatronally adequate [76] for those operational 

semantics and therefore the full abstraction result presented in subsection 3.6 has little help to  them. 

It is therefore desirable to  develop another frameworks for equational theory and denotational 

semantics that correspond to the call-by-value evaluation. Under our view of ML polymorphism, 

we need t o  develop a model theory and equational theory for the simply typed lambda calculus. 

Once we have those theories, I hope it might not be hard to  develop the corresponding theories for 

ML like language using similar strategy I developed in section 3.3. 

8.1.3 Semantics of Class Declarations 

Another interesting question is a semantics of class definitions. A definition of a class determines 

a subset of types that are compatible with the set of methods (i.e. the set of raw lambda terms 

that implement the methods). This suggests that a class definition could be regarded as a form of 

existential type 3sub : I<. (MI x . . . x M,) where Ii denotes the subset of types that are compatible 

with the set of methods and M I , .  . . , 111, are the types of the methods defined in the class definition. 

This is a form of bounded ezisteniial types introduced in [27] but differs from theirs in that the kind 

Ii reflects directly the implementations of methods. Semantics of such types should explain not 

only the functionality of the set of methods (as was done in [80]) but also the structure of a kind 

Ii determined by a set of raw lambda terms. 

8.1.4 Semantics of Object Identities 

In section 7.2 ,  I claimed that the properties of objet identities were accurately captured by ref- 

erence types. However, the justification was intuitive and ad hoc. Although the notion of object 

identities is intuitively clear and appealing, the precise formulat.ion of t.he semantics of objects with 

identities constitutes a challenge. A uniform and elegant integration of objects with indentities into 

a programming language type system may need an analysis analogous to  the one I did for complex 

database values in chapter 4. 

8.2 Extensions of the Language 

1 believe that the structures and operations available in the language proposed in this thesis is a 

good approximation t o  a sufficient set for practical programming. However, there are many features 



that might be useful. 

8.2.1 General Set Operation 

The set of available operations on the set data types in the language are union, map, prod, join 

and proj. I demonstrated that they enables us to define a general selection function, which was 

named filter, and therefore seem sufficient for query processing in the style of relational algebra. 

However, determining whether they are sufficient for general programming with sets or not needs 

more investigation. In particular, some application might want an operation that maps a set to 

a sequence. With the existence of references, such operation is definable. The following is one 

example: 

fun f (S : {{s]) = 

let 

val lre f = (ref ni l )  : refllist(s)) 

fun f e  = Ire f := conse(!lre f )  

val dummy = map f S 

in 

!Ire f 

end; 

The type specifications S : fIs) and (ref nil) : reAlist(s)) are required to  prevent the problem 

associated with the interaction between polymorphism and references (see section 7.2). The type 

l is t ($)  and the function cons are easily defined. 

A better approach would be to introduce a general elimination operator, which we call hom 

here, for sets analogous to the operations on lists such as the "pump" operation in FAD [13] and 

the 'Told" or "reduce" in many functional languages. One possible definition for hom is: 

It seems that virtually all useful operations are definable by using horn, union and join. For 

example, the following are definitions for map and filter: 

fun map f S = hom(Xt.  {{x], union, $8, S), 
fun filter p S = hom(Xz. if p x thenfix) else #] ,un ion ,  S ) .  



In addition to  these examples, horn can be used to  define the cartesian product (prod) of sets, set 

difference, membership in a set,  and the powerset (the set of subsets) of a set. 

A problem of introducing horn as a primitive operation on sets in the definition of the language 

is that the result of this operation will in general depend on the order in which the elements of 

the set are encountered and therefore the above definition of horn does not completely specifies the 

behavior of horn unless the third argument op is an associative commutative operation and the first 

argument f does not cause side-effect. It seems impossible to determine statically these properties 

for each application of horn. If it is the case then we will be forced to leave the effect of horn as 

implementation dependent if op and f do not satisfy the above property. 

8.2.2 Heterogeneous Sets 

As I analyzed in section 7.1, an object-oriented database require some form of heterogeneous col- 

lection of objects. I solved this problem by encoding heterogeneous collection in a (homogeneous) 

set of variants. Combining with views,  it has almost achieved the goal of having static type system 

that deals properly with collections of heterogeneous objects. Using join and proj, queries on views 

looked the way we want them to  look in object-oriented databases. However the construction of 

complicated "catch-all" variant types (like PersonObj in section 7.3) and the definition of views - 

even though they could be automatically generated from a semantic data model schema - is some- 

thing we would prefer to avoid. It would be more natural if the schema were directly represented 

in the type system. 

One radical solution would be to introduce the heterogeneous set type constructor {{a,, . . . , on B.  
In order to  build a type system based on this idea, we need to decide the meaning of the typing 

judgement { e l ,  e s ,  ..., e n )  : { r l ,  rz, ..., T,}. There are a t  least the following three possibilities: 

1. for each e ,  there is some rj such that e ,  : rj, 

2. for each T, there is some e j  such that ej : r,, 

3. the conjunction of the two. 

Unfortunately none of them provide a satisfactory interpretation. Tlie first interpretation implies 

the set expressions have more than one types, yielding the same problem as found in subtype 

based systems (section 5.1). The other two interpretations do not support necessary operations 

on sets including intersection and difference. For example, under either of the two interpretations, 



S1 : {rl ,  ..., T,} and S 2  : {TI, ..T,) does not imply Sl n Sz : (71, ..., 7,). The second interpretation 

is also unsafe when combined with function application. 

A more promising approach would be to introduce some notion of partial type information for 

sets. One way to specify partial type information is to  specify a set of possible types. In the theory 

of types, sets of types are sometimes called kinds [70] and are treated as themselves objects. The 

special set constructor can then be characterized as an operator which takes a kind and returns a 

type. In particular, the following kinds representing various sets of record types seems particularly 

useful in object-oriented databases 

K I < ( T )  I ( /  : K , .  .. , /  : 6 )  

where Ii(r) is the kind correspond to  the singleton set of r and (Il : ~ 1 , .  . . , I ,  : ti,) denote the set 

of all record types containing at least all the fields 11, . . . , I, of types specified by respective kinds. 

This relation can be easily formalized by kinding rule, which also induce a partial order on kinds. 

The set of types can be extended by partial types: 

where T(K) is the type with partial type information represented by the kind K .  Since our objective 

is to  integrate heterogeneous sets, the following introduction rule seems the only necessary intro- 

duction rule for partial types. 

Possible elimination rules are: 

Union and intersection can be generalied to these partially specified set types. 



where K I  U ~2 and K I  fl ~2 denote respectively the least upper bound and greatest lower bound of 

kinds under the set inclusion ordering. 

8.3 Communicating to Existing Databases 

Of course, a good database programming language should not only be able t o  manipulate databases 

that  conform t o  its own type system but others as well. In particular, most current object-oriented 

database languages do not have any static type-checking, but we would still like to deal with them 

in the same way that  we have dealt with uniformly typed classes. This is possible through use of 

dynamic values. A dynamic value [l] is one which carries its type description with it. Functions 

exist for interrogating this type description and for coercing dynamic values back to  ordinary typed 

values. Let us assume that  dynamic values also behave like references in that  two dynamic values 

are equal only if they were created by the same invocation of the function Dynamic, which creates 

values of type dynamic. 

iVe can now view an external database as a single large set of dynamic values, i.e. it has the 

type {dynamic].  In the same fashion that we generated views in chapt,er 7 ,  we can generate views 

(probably by some external procedures) based on dynamic. Thus an employee view of the database 

might be a class of type 

{[Name : string, Salary : in t ,  Id : dynamic]l  

and a department view could be a class of type 

{{[Dname : string, Building : string, Id : dynamic]] 

with the "intersection" of these classes being empty. Once this has been done we can write programs 

to  manipulate these structures in the type-safe way I have advocated throughout this thesis even 

though the underlying database does not have any imposed type constraints. The  implementation 

of views (in addition we would need procedures to  perform updates) must,  of course, respect the 

projection property I described earlier. But I also hope that,  for a given object-oriented database 

system, building these views will be straightforward and could be carried out by generating them 

automatically. 



8.4 Implementation Issues 

There are a number of important ways in which Machiavelli needs to  be augmented to  make it a 

viable programming language for databases and object-oriented programming. The most important 

of these is the implementation of persistence and efficient evaluation algorithm for expressions - 

especially those containing records and sets. I believe that these issues are orthogonal to  Machiavelli 

type system and many existing approaches can be adopted. On the other hand I also feel that we 

do not need to deal in great detail with the efficiency of the whole range of database structures. My 

hope is that Machiavelli can be parasitic on already implemented database management systems 

and will serve as a medium for communication between heterogeneous systems and, in particular, 

that it will allow us to achieve a clean integration of already implemented relational and object- 

oriented systems. 

IVith the future efforts towards efficient implementations, I hope that hlachiavelli (or some 

language like i t )  will become a practical programming language for various databases, object- 

oriented system and other data intensive applications. 



Appendix A 

Abstract Syntax of Machiavelli 

T h e  following is the summary of the abstract syntax of Machiavelli. T h e  syntax  is given as a syntax 

free grammar .  T h e  top level objects are declarations denoted by decl. Key words and lexical tokens 

are  writ ten in typewriter font. Optional constructs are enclosed in square bracket ( [ I ) .  < denote 

the empty  string. We use the  following syntactic classes: 

id the  set of identifiers 

atomics atomic tokens representing values of base types 

const f un builtin functions on  base types such as addition and conditionals. 

decl : : = classdecls I binding I expr 

classdecls : : = E I classdecl I classdecls 

classdecl : : = class = id = type i sa  {ctype , . . . , c type)  

methoddecls 

end 

methoddecls : := c I binding : methodtype ; methoddecls 

binding : := val id = expr I fun id id . . . id = expr 

expr : := integer I boolean I string I real I 

(fn id => e z p r )  I expr expr I let id = expr in expr end I 



[id = e x p r ,  . . . , id  = e x p r l  I e x p r .  id  I 

<id = expr> I 

( c a s e  e x p r  o f  <id = i d  =>expr, .  . ., 

<id = id> =>expr 

[ , o t h e r  =>ezpr] ) I 

{ e x p r ,  . . ., e x p r )  I u n i o n ( e x p r , e x p r )  I h o m ( e x p r ,  e x p r ,  e x p r ,  e x p r )  I 

j o i n ( e x p r ,  e x p r )  I p r o j ( e x p r , t y p e )  I c o n ( e x p r ,  e x p r )  I e q ( e x p r ,  e x p r )  I 

( r e c  i d .  e x p r )  I ( e x p r )  I ( e x p r : t y p e )  

type  : := ' i d  I " id  I i n t  I b o o l  I s t r i n g  I r e a l  I 

[ ( i d )  i d : t y p e ,  . . . ,  i d : t ype ]  I < ( i d ) i d : t y p e ,  . . . ,  id : type> I 

( i d  > d t y p e )  I ( i d  i s a  c t y p e ,  ..., c t y p e )  I 

C id: type ,  ..., i d : t y p e l  I < ( i d )  i d : t y p e ,  ..., i d : t ype>  I 

t ype  -> t ype  I i d ( t ype  , . . . , t y p e )  

m t y p e  : := sub I ) i d  I " id  I in t  I b o o l  1 s t r i n g  I r e a l  I 

C i d : m t y p e ,  . . . , i d : m t y p e ]  I < ( i d )  i d : m t y p e ,  . . ., i d :m type>  I 

m t y p e  -> m t y p e  I i d ( m t y p e ,  . . ., m t y p e )  

ctype : : = id  I " id  I int I boo1  I s t r i n g  I r e a l  I ( i d  i s a  c t ype ,  . . . , c t y p e )  I 

[ i d :  ctype , . . . , i d :  ct ypel I < ( i d )  i d :  ct ype , . . . , i d :  ct ype> I 

ct ype -> ct ype I i d ( c t  ype , . . . . ct ype)  

dtype : :=  int I boo1  l s t r i n g  I r e a l  l 

Cid:d type ,  ..., i d :d t ype l  I <id :d t ype ,  ..., id :d type> I 

( r e c  id d t y p e )  
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