A Study On Semantics, Types, and
Languages For Databases and
Object-Oriented Programming

MS-CIS-89-60
LOGIC & COMPUTATION 15

Atsushi Ohori

Department of Computer and Information Science
School of Engineering and Applied Science
University of Pennsylvania
Philadelphia, PA 19104

October 1989

ACKNOWLEDGMENTS:

This research was supported in part by grants NSF IRI86-10617, ARO
DAA6-29-84-K-0061, ONR N00014-88-K-0634 and OKI Electric
Industry Co., Japan

A STUDY OF SEMANTICS , TYPES AND LANGUAGES

FOR DATABASES AND
OBJECT-ORIENTED PROGRAMMING

ATSUSHI OHORI

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy.

1989
) 4
, Ul B, T
! . \/) Q_/K)L - 0 \.K;\I\A:,_"
Peter Buneman Val Breazu-Tannen
Co-supervisor of Dissertation Co-supervisor of Dissertation

Jean Gallier

e Qullie

Graduate Group Chairpersoy

© COPYRIGHT
ATSUSHI OHORI
1989

ABSTRACT

A STUDY OF SEMANTICS, TYPES AND LANGUAGES FOR DATABASES AND
OBJECT-ORIENTED PROGRAMMING

ATSUSHI OHORI

CO-SUPERVISORS : PETER BUNEMAN AND VAL BREAZU-TANNEN

The purpose of this thesis is to investigate a type system for databases and object-oriented

programming and to design a statically typed programming language for these applications. Such

a language should ideally have a static type system that supports:
e polymorphism and static type inference,

e rich data structures and operations to represent various data models for databases including

the relational model and more recent complex object models,

o central features of object-oriented programming including user definable class hierarchies,

multiple inheritance, and data abstraction,

e the notion of extents and object-identities for object-oriented databases.

Without a proper formalism, it is not obvious that the construction of such a type system is possible.

This thesis attempts to construct one such formalism and proposes a programming language that

uniformly integrate all of the above features.

The spectific contributions of this thesis include:

e A simple semantics for ML polymorphism and axiomatization of the equational theory of ML.

o A uniform generalization of the relational model to arbitrary complex database objects that

are constructed by labeled records, labeled variants, finite sets and recursive definition.

e A framework for semantics of types for complex database objects.

o The notion of conditional typing schemes that extends Milner’s typing scheme for ML to a

wide range of complex structures and operations.
o A formulation of the notion of classes and inheritance in an ML style static type system.

i

e The notion of views that enable us to represent object-oriented databases in an ML style

static type system.

e A proposal of a polymorphic programming language, Machiavelli, for databases and object-

oriented programming with static type inference.

In addition to the above technical contributions, a prototype implementation of Machiavelli that

embodies most of the features presented in this thesis has been done in Standard ML of New Jersey.

v

ACKNOWLEDGEMENTS -

I am indebted to my co-adviser Peter Buneman. He originally introduced me the area of

types and semantics for database programming languages and recommended me to undertake the
doctoral study. Without his enthusiastic encouragement, this dissertation would have never existed.
Special thanks are also to my co-adviser Val Breazu-Tannen for his guiding me the are of syntax
and semantics of types for programming languages and for his encouragements. Moreover, their

constructive criticism and our continuous discussion directly contribute to the work.

I am grateful to my external commitee members Tomasz Imielinski and John Mitchell for very
useful discussion at several opportune moments and many helpful comments. I am as grateful to

the other members of my thesis committee, Jean Gallier, Aravind Joshi, and Dale Miller for their

interest in my work and their invaluable comments.

Many thanks are also to Luca Cardelli, Carl Gunter, Richard Hull, David MacQueen, Mitchell
Wand and Aaron Watters for very helpful discussions and suggestions. Moreover Mitchell Wand

made several constructive criticism on the draft paper on which a part of chapter 5 is based.

I am grateful to OKI Electric Industry Co., Japan. They granted my leave of absence for the
study at University of Pennsylvania and provided financial support. Among them, special thanks

are to Kenji Tateoka, Eiji Nohara, and Toshivuki Matsumoto who gave me assistance and support
at critical moments.

Finally my special gratitude goes to my wife Hiroko. Without her, the endevour of graduate

study would have been arid and trying experience.

Contents

Abstract i1
Acknowledgements iv
1 Introduction 1
1.1 Motivations and Purposes 1

1.2 Organization of Thesiso 4

2 Mathematical Preliminaries 8
2.1 Basic Notions and Notations 8
2.2 Labeled Trees e 10
2.2.1 Definitions and Basic Properties 0L 10

2.2.2 Substitutions and Unificationson Trees 15

223 Regular Trees 16

3 Analysis of ML : its Syntax and Semantics 22
3.1 Introduction e 22
3.1.1 Milner’s original semantics 00000 L 24

3.1.2 Damas-Milner type inference system and Mitchell-Harper’s analysis 25

3.1.3 A simple framework for ML polymorphism 29

3.2 The Language Core-ML 30

vi

3.3

3.4

3.5

3.6

3.2.1 Raw terms, types and type-schemes

3.2.2 Typings, typing schemes and terms of Core-ML

3.2.3 Type Inference Problem

3.2.4 Relation to Damas-Milner System

3.2.5 Equational theories of Core-ML
Semantics of Core-MLo
3.3.1 Explicitly-typed language TA and its semantics

3.3.2 Relationship between TA and Core-ML

3.3.3 Semantics of Core-ML

Soundness and Completeness of Core-ML Theories

Extensions of Core-ML

Full Abstraction of ML

Database Domains

4.1

4.2

4.3

4.4

Introduction

4.1.1 Data Structures for Database Objects

4.1.2 Operations on Complex Objects

4.1.3 A Strategy to Generalize Join and Projection

Analysis of the Relational Model

Database Domains

A Type System for Complex Database Objects

44.1 Set of Description Types

4.4.2 Universe of Descriptions

44.3 Typing Relation

4.4.4 Description Domains

4.4.5 A Model of the Type System

vii

50

52

57

60

60

61

62

63

64

5 A Polymorphic Language for Databases and Object-Oriented Programming 98

5.1 Introduction

... 98
5.1.1 Records and Variants for Object-oriented Programming 100
5.1.2 Integrating Database Objects 107

5.2 Definition of Machiavelli 109
5.2.1 Types and Description Types 109
522 RawTerms o i e 109
5.2.3 The Proof System for Typings 114

5.3 Alternative Presentation of Raw Terms and Typings 114

54 Type Inference Problem L. 116
5.4.1 Conditional Typingschemes 117
5.4.2 Satisfiability of Conditions oL 125

5.5 Semantics of Machiavelli Lo oo 133
5.5.1 Denotational Semantics of Machiavelli 133
5.5.2 Operational Semantics 135

5.6 Syntactic Shorthands 137
5.6.1 Recursive Function 137
5.6.2 Value Bindings and Function Definitions 138
5.6.3 Database Operations 138

5.7 Programming Examples Lo 140

6 Parametric Classes for Object-Oriented Programming 146

6.1 Introduction 146

6.2 Raw Terms, Types, and Type-schemes 151

6.3 Syntax of Class Definitions 152

6.4 Proof System for Class Definitions and Typings 155

6.5 Soundness of the Type System 156

6.6 Type Inference for the Extended Language 159

6.7 Further Examples. e 165
6.8 Limitations and Implementation 167

7 Object-identities and Views for Object-oriented Databases 169
7.1 Introduction e e e 169
7.2 Reference Types o i i i i it e 172
7.3 Views for Representing Extents 174

8 Conclusion and Topics for Further Research 179
8.1 Semantics e e e e 180
8.1.1 A Concrete Models for Machiavelli 180

8.1.2 Call-by-Value Semantics for ML Polymorphism 180

8.1.3 Semantics of Class Declarations 181

8.1.4 Semantics of Object Identities. 181

8.2 Extensionsofthe Language, 181
8.2.1 General Set Operation 182

8.2.2 Heterogeneous Sets 183

8.3 Communicating to Existing Databases 185
8.4 Implementation Issues Lo 186

A Abstract Syntax of Machiavelli 187
Bibliography 189
Index 198

X

List of Figures

2.1

2.2

3.1

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

5.3

54

5.5

5.6

6.1

7.1

An example of a finite labeled tree oo 11
An example of an infinite labeled treeo oL 12
Examples of Type Inference with Recursive Types 55
A Simple Relation and its Representation asa Table 65
Join of Relations Containing Null Values 68
Examples of Description Types L 79
Examples of Ordering on Description Types 80
Examples of Descriptions e 84
Examples of Typing Relation, 86
A Simple Session in Machiavelli Lo oo o000 141
A Simple Example Involving join and project 142
A Part-Supplier Database in Generalized Relational Model 142
Some Simple Queries L. 143
A Simple Implementation of Poiymorphic Transitive Closure 143
Query Processing Using Polymorphic Functions 144
A Simple Interactive Session with Classes 166
A Simple Class Structure 175

Chapter 1

Introduction

1.1 Motivations and Purposes

The term “impedance mismatch” has been coined [75, 13] to describe the phenomenon that the
structures and operations available in a programming language do not usually match those needed

for database systems. This problem is painfully familiar to anyone who has used a high-level

programming language to communicate with a database. This mismatch is particularly unfortunate
when database programming cannot share the benefits of recent developments in the theory of
types in programming languages. Among them most important ones are polymorphism [94, 78]
and static type inference [78, 34], which should have had apparent practical advantages for many
database applications. A similar situation exists in the field of object-oriented programming. In
the development of object-oriented languages [44, 33}, various practical ideas such as classes and
mulliple inheritance have been proposed and implemented. The advantages of these features seem
orthogonal to those of conventional notion of types and the integration of them into a type system
of a programming language is highly desirable. However, a proper formalism that enables us to

integrate these features in a type system with polymorphism and static type inference has not yet
been well established.

The motivation of this thesis is to attempt to solve these mismatch problems and to develop a
programming language that unifies databases and object-oriented programming in a modern type
system. Such a language should provide a programming environment where the programmer can

enjoy both the capability of database management and the desirable features of ob ject-oriented

programming with all the benefits of a modern type system. Recent studies in the area of object-
oriented databases [13, 17] and “semantic” data models [58] suggest that such integration is highly
desirable. Such a language should be also suitable for many other applications whose main interest is
manipulation of highly structured data such as knowledge representation [18] and natural language
processing [97]. It is therefore hoped that the integration should also contribute to solve the “high-

level” impedance mismatches between database systems and other applications.

One desirable feature of a programming language for those data intensive application is static
type-checking. The main objective of static type-checking is to detect inconsistency in applications
of operations to data before program execution. This eliminates certain programming errors at
early stages of programming development. This should be particularly important for data intensive
applications. Data structures such as schemes in database systems and class definitions in object-
oriented programming are large and complex structures. Much of programming errors in these
applications would show up as type errors were those data structures a part of the type structure of
the program. Therefore a type system in which such errors can be anticipated by a static analysis
of the program is, I believe, a prerequisite for a good programming language for data intensive
applications. As argued in [106], static type-checking may also contributes to efficient execution of

programs by eliminating run-time type-checking.

Until recently, statically typed languages were justly criticized for being too cumbersome. First,
they did not allow certain types of generic code; and second the type declarations, while admittedly
useful as documentation, were often tedious and obvious. With the inventions of polymorphism
[94, 78] and static type inference [78, 34], however, I believe that a static type system can overcome
these disadvantages. The ML family of languages - including Standard ML [48] and Miranda [107]
- are successful examples. In those languages, the programmer is not required to specify tyvpes of
programs. The type system tnfers a most general polymorphic type for any type correct programs.
By this mechanism, those languages achieve much of the flexibility of dynamically typed languages
like Lisp without sacrificing the advantages of the static type-checking. Moreover, I believe that an
ML style type system can achieve a proper integration of databases and object-oriented systems in

a statically typed programming language if it is extended with the following features:

1. records and variants to represent various data structures,

2. the structures and operations rich enough to represent various data models for databases
including the relational model [29], nested relations [36, 62, 95] and complex object models
[59, 14, 4],

3. user definable classes, data abstraction and multiple inheritance for object-oriented program:

ming,

4. object-identities and extents for object-oriented data models [13, 17].

The last two years have seen considerable research into the integration of records and variants
in an ML style type system to support an aspect of object-oriented programming [111, 105, 85, 63,
38, 93] - including a contribution of a part of this study ([85]) — which shows that the integration
of the first is now possible. However, there seems no existing approach that integrates the other
three features in an ML style type system. For 2, the problem is seen by simply noting that no
existing polymorphic type system can represent even the relational model — perhaps the simplest
form of a data model for databases. As pointed out in [10], no existing type system can type-check
the polymorphic natural join operation. For 3, there have been some efforts [7] and suggestions [63]
toward the integration of user definable classes, data abstraction and inheritance in a static type
system. However, to my knowledge, there is no formal system that integrates these features in an
ML style type inference system. Moreover, there appears to be no static type system of any kind
that successfully deals with 4. The purpose of this thesis is to develop an ML style type system
that uniformly integrates all the above features and to propose a programming language having

that type system.

It is also desirable for the language to have a clean mathematics semantics. Such a semantics
should provide a better understanding of the interaction of various features of the language and
should be useful for further extensions of the language. This thesis also attempts to construct a

semantic framework for the polymorphic core of the proposed language.

The following example illustrates the flavor of the language proposed in this thesis. Consider a
function which takes a set of records (i.e. a relation) with Name and Salary information and returns
the set of all Name values that correspond to Salary values over 100K. For example, applied to the

relation (set of records)

{[Name = "Joe", Salary = 23456),
[Name = " Fred", Salary = 123456),
[Name = " Helen", Salary = 132000]}

this function should yield the set {"Fred", " Helen"}. Such a function is written in the language as

follows:

fun wealthy(S) =select x.Name

wherez € S
with z.Salary > 100000;

The select...where...with form is simple syntactic sugar for more basic program structure.
Although no data types are mentioned in the code, the type system infers the following type

information
wealthy : {[(s1)Salary : int, Name : 53]} — {s2}

which means that wealthy is a function that takes a homogeneous set of records, each of type
[(s1)Salary : int, Name : s2] and returns a homogeneous set of values of type s, where s is a type
variable ranging over all types on which equality is defined and [(s;)Salary : int, Name : s,) is a
type variable ranging over arbitrary record types that contains Salary : int and Name : s fields.

Consequently, the type svstem will allow wealthy to be applied, for example, to relations of type
{[Name : string, Age : int, Salary : int]}

and also to relations of type
{[Name : [First : string, Last : string], Weight : int, Salary : int]}.

Moreover, the type system statically checks the type correctness of each application and computes

the result type by instantiating the type variables.

1.2 Organization of Thesis

One of the purposes of this thesis is to design a typed programming language that is rich enough
to represent various data structures used in a wide rage of data intensive applications. For such a
language, recursively defined types and objects are essential. In order to treat recursive structures
uniformly, we use regular trees as a mathematical tool to represent them. In order to make this
thesis self-contained, I have gathered in chapter 2 standard results about regular trees as well as
some standard mathematical notations and definitions. Everything there is standard knowledge.
My recommendation to the reader is to go over this chapter quickly to familialize himself notations

and then to use this chapter as references when needed.

The rest of the thesis consists of the following five investigation to achieve the purpose stated

in the previous section:

1. an analysis of ML and a construction of a semantic framework for ML polymorphism,

2. a type system for complex database objects and its semantics,

3. an extension of ML type inference method to records, variants and complex database objects,
4. a formulation of classes for object-oriented programming,

5. a method to represent object-oriented databases in an ML style type system.

All of these five investigations lead to the proposal of Machiavelli — a polymorphic language for
databases and object-oriented programming. The first of them gives a framework to understand
ML’s syntactic properties and to define a denotational semantics. This will serve as a starting point
of the development of Machiavelli. The second investigation formulates the structures of domains
for databases and constructs a type system for complex database objects. Then, by combining the
above two, the third investigation develops the polymorphic core of Machiavelli as an extension of
ML. The rest of the two extend the core language to represent object-oriented systems and object-
oriented databases. I think that this thesis is best read by reading from cover to cover going through
all of the above five topics in that order. However, in order to reconcile diverse interests of the
readers, I organize each of these five investigations as a relatively self-contained chapter (chapter 3
to chapter 7). For this reason, I do not make a independent chapter for backgrounds of this entire
thesis but include an introductory section in each chapter giving enough background for each topic.
In particular the analysis of ML in chapter 3 and the construction of a framework for database
domains in chapter 4 can be read independently. The subsequent developments are of course based
on the above two investigations. However, they can be read using the above two chapters as
references. I will try to provide appropriate reference keys to major results in chapter 3 and 4.
The readers whose main interest is type systems of programming languages and their denotational
semantics would start with chapter 3 and then go to chapter 5 and 6. The readers whose main
interest is data models and database programming may start with chapter 4 continue on chapter
5 and then go to chapter 7. The readers whose main interest is object-oriented programming and
programming language design may go directly to chapter 5 and continue on chapter 6 and 7. In

the rest of this section, I outline these five investigations.

In chapter 3, 1 begin our investigation with ML type system. After analyzing the existing
approachs to ML’s type inference system and its semantics, an alternative proof system for ML type
inference is given. This proof system only requires simple types but is shown to be equivalent (in a
very natural sense) to the proof system given by Damas and Milner [34]. A semantic framework for

ML polymorphism is then proposed and an axiomatization of the equational theory of ML terms

is given. The proposed framework requires no more semantic material than what is needed for
modeling the simple type discipline, yet it provides a better account for ML’s implicit type system.
The axiomatization of the equational theory corresponds exactly to the proposed semantics. The
analogs of the completeness theorems that Friedman proved [37] for the simply typed lambda
calculus are proved with respect to the proposed semantics. The framework is then extended to
languages with various type constructors, constants and recursive types (via regular trees). At the
end of the chapter, it is also shown that certain full abstraction result for typed languages can be

transferred to the corresponding ML like languages.

Chapter 4 investigates type systems for databases and their semantics and proposes a concrete
type system for complex database objects. It starts the investigation with the analysis of the
relational model. The relational model is characterized independently of the underlying tuple
structure. By generalizing this abstract analysis, the notions of database type systems and database
domains are defined as characterizations of the structures of type systems for databases and their
semantics domains. Based on these abstract characterizations, a concrete database type system
for complex database objects and its database domain are constructed. The proposed type system
allows arbitrary complex structures constructed by labeled records, labeled variants, finite sets and
recursive definition. Moreover, it is a proper generalization of the relational model to those complex
structures. In addition to standard operations for records, variants and sets, join and projection

are available as polymorphically typed computable functions on those complex structures (even on

recursively defined structures).

By combining the results of the previous two chapters, chapter 5 defines a programming language
as an extension of ML. This language is the polymorphic core of Machiavelli — the language I
propose in this thesis. In order to develop a type inference algorithm for the core language, a new
paradigm for type inference ~ the notion of conditional typing schemes - 1s proposed. By allowing
typing schemes to include conditions on substitutions of type variables, it extends Miiner’s method
uniformly to a wide range of structures and operations. Using this mechanism, an algorithm to

compute a principal conditional typing scheme is developed. At the end of the chapter, extended

examples of database programming are given.

Chapter 6 extends the core language with parameterized class declarations, which allows the
programmer to build a hierarchy of classes connected by multiple inheritance declarations. This
extension achieves a proper integration of multiple inheritance in object-oriented programming and
ML style abstract data types with type parameterization. A formal system to type-check class
definitions and to infer typings of raw terms containing method names are defined. It is then

shown that the extended language i1s sound with respect to the type system of the core language

by showing the property that if a typing is provable in the extended type system then the typing
obtained by unfolding all class names and method names by their implementations is provable in
the type system of the core language. The type inference algorithm for the core language defined
in the previous chapter is then extended to include classes. It is shown that it still computes a

principal conditional typing scheme for any typable raw terms.

Chapter 7 presents a method to represents object-oriented databases. Major properties of
objects in object-oriented databases can be captured by the combinations of references and variants.
I then introduce the notion of views (sets of structures with “identities”) and show that various
operations in object-oriented databases are naturally represented by the combination of viewing

functions and the operation join and projection generalized in chapter 4.
Chapter 8 concludes the thesis and discuss some possible topics for further investigation.

Appendix contains the abstract syntax of Machiavelli (including classes definitions).

Chapter 2

Mathematical Preliminaries

2.1 Basic Notions and Notations

The domain and the range of a function f are denoted by dom(f) and ran(f) respectively. We
write f : A — B for a function f such that dom(f) = A and ran(f) = B. If f is a function
and A C dom(f) then f(A) is the set {f(a)la € A}. The restriction of a function f to a set
A C dom(f), denoted by fI4, is the function f’ such that dom(f’) = A and f’(a) = f(a) for all
a € A. We write {z) :=vy,...,2, := v, } for the function f such that dom(f) = {z,,...,z.} and
f(zi) = vi (1 <1< n) (assuming that all z; are distinct). For a function f : A — B, f{z:=v}is
the function f’ such that dom(f’) = AuU{z}, f(z) = v and f'(a) = f(a) for all a such that a # z.
If f, g are functions such that ran(g) C dom(f) then f o g is the composition of f and g defined as
dom(f o g) = dom(g) and f o g(z) = f(g(z)) for all z € dom(g).

For a set A, P(A) is the set of all finite subset of A. If A is a finite set then we denote by |A|
the cardinality of A. Let A, B be a sets. The product of A and B, denoted by A x B, is the set

{(z,y)|lz € A,y € B}. If A is the singleton set {z} then we write z x B for {z} x B. Similarly for
B x z.

A relation on a set A is a subset of A x A. If ris a relation on A and z,y € A, we usually write
zry to denote (z,y) € r. Let r be a relation on a set A, z,y, z be any elements in A. r is reflexive
iff zrz. ris symmetric iff z ry implies yr z. r i1s antisymmetric iff z ry and y r z implies z = y.

r is transitive iff zr y and y r z implies zr z.

A preorder on a set A is a reflexive transitive relation on A. A partial order (or oredering) 1s

an antisymmetric preorder. A partial order r on A is a linear order iff for any z,y € A either zry

oryrz.

Definition 2.1 (Preordered Sets and Partially Ordered Sets) A preordered set (P, <) is a
set P endowed with a preorder < on P. A partially ordered set (or poset) (P,C) is a set P endowed
with a partial order C on P.

When the preorder (partial order) < (C) is understood, we sometimes write P for (P, <) ((P,C))
and say a preordered set (a poset) P.

Let (P, <) be a preordered set and A C P. An element p € P is an upper bound of Aiffa <p
for all a € A. An element p is a least upper bound of A iff for any elementof z € P, p<ziff z is
an upper bound of A. An element p € P is a lower bound of A iff p < a for all @ € A. An element
pis a greatest lower bound of A iff for any element of x € P, ¢ < p iff z is a lower bound of A. The

following property is an immediate consequence of the definition:
Proposition 2.1 In a posel, least upper bounds and greatest lower bounds are unique. |

Let (P,C) be a poset and A C P. We write LA for the least upper bound of A and MNA for the
greatest lower bound of A (if they exists). For z,y € P, we write z U y and z M y respectively for
u{z,y} and N{z,y}.

Definition 2.2 (Pairwise Bounded Join Property) A preordered set (P,=<) has the pairwise
bounded join property iff for any p1,p2 € P if {p1,p2} has an upper bound then it has a least upper

bound.

Let (P, <) be a preordered set. For an element p € P, we denote by [p] the equivalence class

containing p defined as [p] = {z|z < p,p < z}.

Definition 2.3 (Quotient Poset) The quotient poset [(P,=<)] of a preordered set (P,<) is the
poset (P/=,= /=) where Pl= = {[pllp € P} and [p] X/=[q] iff p < q.

It is easily verified that the relation </= in the above definition is well defined in the sense that it
does not depend on the representatives of equivalence classes. For [(P, <)], the following results is

an immediately consequence of the definition:

Lemma 2.1 If (P, <) has the pairwise bounded join property then so does [(P, <)]. |

2.2 Labeled Trees

We shall use labeled trees to represent types and data structures. In particular, a class of trees called
regular iree play a central role. The main reference on this subject is a work by Courcelle [32]. In
this section I have gathered from [32] definitions and standard results (with some adaptation of
their presentations) that are useful in the subsequent investigation. I include proofs only for those

results whose presentations differ from those found in [32].

2.2.1 Definitions and Basic Properties

Let X be a set of symbols. A string over A is a finite sequence of symbols in A. We denote by
X" the set of all string over X. The empty string is denoted by €. We identify an element z € X
and the string consisting of the symbol z (the string of length one). The concatenation of a string
a and a string b is denoted by a - b. A string a is a prefiz of a string b if there is another string ¢
such that b = a - c. A prefix a of a string b is proper if a # b. The length of a string a is denoted
by |a|. (Note that the notation |z| is overloaded.) For a natural number n and z € X, we write z"
for the string of n z’s. For convenience, we define z° = ¢. If A C X" and a € \'*, then we denote

by a - A the set {a-b|b € A} and by A/a the set {bla-b € A}.

Throughout this thesis, we assume that there is a given countably infinite set £ of symbols
(ranged over by [, 1y, ...), called labels, equipped with a linear order «. For a technical convenience
we assume that £ is closed under products, i.e. there is an injective function prodcode : (L x L) — L.
We use the injection prodcode implicitly and treat £ as if it satisfies (£ x £) C £. In particular,
(L x L) CL". On (L x L) we define the mappings first™, second” inductively as follows:

first(e) = ¢
first(a- (I, 1)) = first™(a) L
second () = ¢
second (a- (I;,1)) = second (a)- Iy

On {(a,b)la € L*, b€ L",|a] = |b|}, we define pair® as follows:

pair”(e,e) = ¢

pair(a-1l;,b- 1) = pair(e,b)-(I},)
For a € (£ x £)", the following equation always holds:

pair” (first" (a), second (a)) = a

10

Figure 2.1: An example of a finite labeled tree

The following definition of labeled trees is due to Ait-Kaci[6]. Let F be a (not necessarily finite)

set of symbols.

+ Definition 2.4 (Labeled Trees) A labeled F-tree is a function a : A — F such that

1. A is a prefiz-closed subsel of L™, i.e. for anya,b€ L", ifa-bE A thena € A, and

2. A is finitely branching, t.e. if a € A then the set {lla-l € A} is finile.

If dom(a) is finite then a is finite otherwise it is infinite. The set of all labeled F-trees and the set

of all finite labeled F-trees are denoted respectively by T®(F) and T(F).

As an example, let o be the function such that dom(a) = {¢,1;,{s,{, - I-} and

a(e) = f
ally)) = k
a(l) = h
ally -1y = f

Then o« is the tree shown in figure 2.1. As an example of infinite labeled trees, let list'™ be the

following function:

dom(list™) = {(r-th™|n >0} U
{r -t -rlIn>0} U
{(r - th™* - Un > 0} U
{(r)" -7 hd|n > 0}

11

int S

um
/ \
rod
nil .
% .
int
Figure 2.2: An example of an infinite labeled tree

and

list'™((r - th") = sum

list'™((r-th"™ .r) = prod
list'™((r-th™ - 1) = nil
list™((r-th™ - r- hd) = int

Then list™™ is the tree depicted in figure 2.2. This tree can be regarded as a represetation of the

type of integer lists.

If « € T*(F) and a € dom(c) then a/a is the tree a’ such that dom(a’) = dom(a)/a, and for
all b € dom(a’), a’(b) = a(a - b).

Definition 2.5 The set of sublrees of a tree «, denoted by Subtrees(a), s the set {a/ala €
dom(a)}.

For any element f € F, we also denote by f the one node tree such that dom(f) = {¢} and
fle)=f. Letay,...,on € T®(F), l1,....,ln € L and f € F. We write f(I; = ay,...,l, = ap)
to denote the tree a such that dom(a) = {e} U (I; - dom(a;)) U--- U (I, - dom(ay)), a(e) = f,
a(l; - a) = ai(a) for all a € dom(a;) (1 < i < n). For example, an equation that holds for the tree

list'™* in the above example can be written using this notation as follows:

list™ = sum(l = nil,r = prod(hd = int,tl = list"™)).

A labeled tree can be regarded as a notational variant of a tree defined in [32] based on a tree

domain [45]. Let N be the set of natural numbers and Ni be the set of positive ones. A tree

12

domain A is a subset of N} such that (1) for any a,b € NI, ifa-b € A then a € A, (2) for any
a€ N;andne€ N;,ifa-n € Athenforany 1 <i<n,a-i€ A. A ranked alphabet is a set of

symbols F associated with a mapping r : FF — N called a ranking function.

Definition 2.6 Let F be a ranked alphabet with the ranking function r. An F-tree « is a function
a : A — F such that A is a tree domain and for any a € A if r(a(a)) = n thena-i € A iff
1<i<n.

The set of all F-trees is denoted by t*°(F). For a set F of function symbols, F g is the ranked
alphabet F x P(L) with the ranking function r defined as r((f,L)) = |L|. The set of labeled
trees T°°(F) has one-to-one correspondence to the set of trees t°(Fp). Let a € T®(F) with
dom(a) = A. Define a function §, : A — N} by induction on the length |a| of a € A as follows:
Ba.(€) = ¢
6u(a-1) = 8(a)-i where iis the natural number such that [is the i-th smallest label
under < in {lla-1 € A}.

Also define a function o : A — Fp as follows:

ne(a) = (ala),{lla -1 € A}).

Now define a function ¢ : T®(F) — t®(Fp) as dom(¢(a)) = 6,(A) and ¢(a)(a) = na(67%(a)).

a

Proposition 2.2 The function ¢ : T (F) — t®(Ff) is a bijection.

Proof We first show that 8, is injective and therefore ¢ is well defined. By simple induction,
|8a(a)] = |a|. Suppose 8,(a) = 64(b). We need to show that a = b. The proof is by induction on
the length of 8,(a). Suppose 8,(a) = ¢. Then |a| = |b] = |¢| and therefore a = b = ¢. Suppose
fa(a) =c-i. |la| =|b] = |c|+ 1. Let a =a’ -1, and b = &' -1,. Then since 6,(a) = 0,(b) and
by the definition of 8, 8,(a’) - i = 64(b’) - i. This implies 6,(a’) = 6,(#'). Then by the induction
hypothesis, a’ = b’. By the definition of 84, {; = I} and therefore a = b.

By the definition of 8, it is clear that §,(A) is a tree domain. For the arity restriction, suppose
r((¢(a))(a)) = n. Then (¢(a))(a) = (f,{l,...,1n}) such that {{;,...,I,} = {{|(6;%(a)) - ! €
dom(a)}. Then by the definition of 84, a - i € dom(¢(a)) iff i < n. Therefore ¢(a) € t=°(Fp).

For 8 € t*°(F), define a function pg on dom(B) by induction on the length of strings as follows:
us(e) = ¢
pp(a-1) = pp(a) -l wherel is the i-th smallest label under « in L

such that 8(a) = (f,L).

13

and a function vg as vp(a) = f iff B(a) = (f, L) for some L. Now define a function ¥ on t=(Fp)
such that dom(y¥(83)) = pg(dom(B)) and ¢(B)(a) = Uﬁ(ﬂ;l(a)). Similar to the proof that 6, is
injective, it is shown that ug is injective. By the definition of ug it is also clear that pg(dom(p))
is prefix closed. Therefore ¥ is well defined and ¥(8) € T(F).

Let @ : A — F be any element in T°°(F). We show ¥(¢(a)) = o by showing the properties that
(1) for any a, a € dom(a) iff a € dom(¥(¢(«))) and that (2) for any a € A, a(a) = (¥(¢(a)))(a).
Since dom(¥(4(a))) = py(a)(fa(dom(a))), (1) is shown by showing that for all a € dom(a),
Ke(a)(0a(a)) = a. Proof is by induction on the length of a. Basis is trivila. Let a -1 € dom(a) and

i be the natural number such that ! is the i** smallest label in {l]a - | € dom(a)}. Then we have:

He(a)(8ala 1))

/"¢(a)(00(a))

(H4(a)(8ala))) - " where I is the i*® smallest label in L such that

d(a)(ba(a)) = (f, L) for some f.

But by the definition of ¢, ¢(a)(84(a)) = (a(a),{l|a -1 € dom(a)}). Therefore { =1 and hence by
the induction hypothesis, py(q)(fa(a-1)) = a-l. For (2), suppose ¢(é(a))(a) = f. By the definition
of ¥, (,b(a)(u;(la)(a)) = (f,L) for some L. By the definition of ¢, a(();l(p;(la)(a))) = f. But we
have shown that g4(s)(0a(a)) = a. This implies that G;I(y;(lci)(a)) = a. Therefore a(a) = f.

The property ¢(¢(a)) = a is shown by similar reasoning. Therefore ¢=! = v. |

Because of this connection, we can regard labeled trees as trees and vice versa. In particular, all
properties on trees shown in [32] can be applied to labeled trees. In what follows, we will use the

term trees for labeled trees.

Lemma 2.2 Let a,a’ be trees of the formsa = f(l; = ay,...,ln =an), & = fli =af,... . I, =

n
o). They are equal iff f =g, {,..., 1} ={l,....I'} and a/l; = '/Jl; forall1 <i< n.|
The following two lemmas hold only for finite trees:

Lemma 2.3 (Definition by Structural Induction) There exisis one and only one mapping € :

T(F) — A such that

1. &(f) = base(f) for all f € F,
2. &(f(lh = a1,...,ln = an)) = step(f,(11,€(a1)), ..., (In, §(an)))

14

where base and step are given mappings of the following types: —

base : F — A,

step - U Fx(yxA) x-x(,xA) — Al
{h,daYeP(o)

Lemma 2.4 (Proof by Structural Induction) In order to prove a property P on the set T(F),
1t suffices to prove that:

1. for all f € F, P(f),

2 forall f € F, {l;,...,1.} € P(L), and ay,...,an € T(F), tf P(ay),..., Pla,) then
P(fh =ai,...,ln = an)). 1

2.2.2 Substitutions and Unifications on Trees

We first introduce trees containing variables. Let V be a set of variables disjoint from F. We denote
by T(F,V) the set of trees generated by the set of function symbols F UV such that there are
no outgoing edge from variable nodes, i.e. « € T (F,V) iff a € T(F U V) and if a(a) € V then
there is no ! € £ such that a -l € dom(a). T(F,V) is the set of finite trees in T°°(F, V).

Definition 2.7 (Substitutions) A firsi-order substitution (or simply substitution) 6 ts a function
from V to T™(F,V) such that 8(v) # v for only finitely many v € V. Let a € T®(F,V) be any

tree. The result of simullaneous substitution of 8(v) for v € V in a, denoted by 6*(a), is the tree

o' defined as:
dom(a') = dom(a) UU{a -dom(8(v))|a € dom(a),a(a) = v}

and
o'(a)

o'(a)

afa) if a € dom(a) and a(a) € V,
6(a(b))(c) ifa=b-c,a(d) € V.

Since a and 8(v) (for any v) are trees, 8*(a) is a well defined tree.

When restricted to finite trees, the above definiton of application of substitution is equivalent
to the following inductive definition:
0"(v) = B(v)ifveV,
*(f(ly = ay,...,ln = ap)) f(lh =6 (a1),...,1n = 6%(an))

forall fe F,{l;,...,I,} € P(L)

15

which is also characterized by the unique homomorphic extension of ¢ to T(F,V). The function
§* on T°(F,V) can be also defined by a unique extension of the above inductive definition [32].
Since various syntactic structures such as pairs and sequences can be regarded as trees, we apply

6" directly to those syntactic structures containing trees.

If 6 is a substitution, then we denote by dom(#) the set {v|v € V,8(v) # v}. Let V be a set of
variables. A restriction of a substitution § to V, denoted by 6", is the substitution #’ defined as

follows:

#(w) = 6(v) ifveV
v otherwise.

Note that notations dom(#) and 8" are overloaded with the corresponding notions of functions.

Distinction of them should be clear from our usage of meta notations and the context. If dom(f) =

{li,...,1n} and 8(v;) = a; (1 < i < n) then we shall use the notation [v; := aj,...,vn = ap)

and afv; := ay,...,v, := a,] for 6 and 0*(a) respectively. If 8,7 are substitutions then their

composition is the substitution defined as 6* o n. In what follows, we will identify the mapping 6*

with 8. In particular, we write 8 o) for the composition of § and n

A substitution 8 is ground for a tree a if 8(c) € T (F). A tree o’ is a substitulion instance
(or simply instance) of « if there is some substitution 8 such that o' = 8(a). If 6 is gound for «

then o' is a ground instance of a.

Definition 2.8 (Unifier) A substitution 6 1s a unifier of trees o, 3 € T(F,V) if 8(a) = 6(5).

A unifier @ ts more general than 8 if there is another substitution n such that 8’ =noé.
Substitutions induce the following preorder on trees containing variables:

Definition 2.9 Let o, 3 € T®(F,V). a is more general than 3, denoted by 3 =< «, off there 1s
some substitution 6 such that § = 0(a).

2.2.3 Regular Trees

An important class of trees in T°(F') is the set of regular trees. Since “‘all properties’ of regular
trees are decidable”[32], they provide rich vet computationally feasible data structures for databases

and other information systems.
Definition 2.10 (Regular Trees) A tree a € T (F) s regular iff the set Subtrees(a) is finute.

The set of all regular trees in T°°(F') is denoted by R(F).

16

On regular trees, the following properties hold.

Proposition 2.3 1. T(F)C R(F) C T*(F).
2. Any subiree of a regular tree is regular.
3. The set of symbols occurring in a regular tree is finile.

4. R(F) is closed under substitution. We mean by this that §(a) is regular if 6(v) is reqular for
allveVv.l

Intuitive way of understanding the definition is that regular trees are trees that contain only
finite amount of information. This intuition corresponds to the property that a regular tree has a
finite representation. There are several equivalent representations of regular trees. Following [6],

we use Moore machines to represent them.

Definition 2.11 (Moore Machine) A Moore machine is a 5-tuple (Q,s, F,6,0), where Q is a
finite set of stales, s is a distinguished element in Q called the start state, F is the set of output
symbols, 6 is a partial funcilion from Q x L o Q called the state iransition function such that for

any q € Q, {l € L]6(q,1) is defined} is finite and o is the oulput function from Q to F.

In the above definition, the input alphabet is implicitly assumed to be the fixed set £ of labels.
Because of the restriction on é, a Moore machine under the above definition behaves like a Moore
machine under a standard definition (such as in [52]) where the input alphabet L is finite and § is

defined as a total function on Q x L.

As is done in standard finite state automata [52], we extend é to the partial function 6" on

Q x L* as follows:

&(g.6) = ¢
6"(g,!) = ¢’ foralll € L such that §(¢q,l)=¢,
6(q.a-1) = ¢"foralla€ L 1€ L suchthat §*(q,a) =¢",86(q",1) =q".

A state ¢ € @ is reachable if there is some a € £ such that §*(s,a) = q. a is called a path from s to
q. Each state ¢ € @ in a Moore machine M = (Q, s, F, é,0) represents a function form a subset of £*
to F. Define M(q) as the function such that dom(M(q)) = {a € L*|6"(q,a) = ¢’ for some ¢’ € Q}
and M(q){e) = o{é6"(q,a)) for all a € dom(M).

The following theorem establishes the relationship between Moore machines and regular trees,

which corresponds to the equivalence between regular trees and regular systems shown in [32].

17

Theorem 2.1 For any Moore machine M = (Q,s,F,6,0), M(q) € R(F) for any q € Q. Con-

versely, for any regular tree « € R(F) there is @ Moore machine M = (Q,s, F,6,0) such that
a = M(s).

Proof Let M = (Q,s, F,é,0) be a Moore machine. For any a,b € £*,and q € Q, if §*(g,a-b) = ¢
for some ¢', then by the definition of 6%, §*(g,a) = ¢" for some ¢''. Therefore dom(M(q)) is prefix
closed. By the restriction of é, {lla -1 € dom(M(q))} is finite. Therefore M(q) € T*(F). Since

M(q)/a = M(§*(q,a)) for all a € dom(M(q)), |Subtrees(M(q))| < |@| and hence finite. This
establishes M(q) € R(F).

Let ag € R(F) be any regular tree with the set of subtrees Subtrees(apg) = {ao,...,an}. Define
the Moore machine M,, = ({q0,..-,¢n},q0, F,$8,0) as follows:

1. 6 is the function such that 8(p;,!) is defined and equal to g; iff | € dom(a,) and a,/! = aj,
2. o 1s defined as o(q;) = a;(e).
Then for any a € £*, it is shwon by simple induction on |a| that @ € dom(Ma,(g0)) Iff a € dom(ay)
and Moo(g)(a) = f iff ag(e) = f. Therefore My,(q) = a. |

We say that a regular tree a is represented by a Moore machine M if M(s) = a.

The following construction on Moore machines will be often useful to determine various relations

on regular trees via Moore machines.

Definition 2.12 (Product Machine) Let >~ be an equivalence relation on L. Given two Moore
machines M, = (Q,,s,,F1,8;,0,) and My = (Q2,52F2,62,04), a product machine of A, and M,
modulo ~, denoted by (M) x M)/~ | is the Moore machine (Q,s,F,é,0) such that:

1. Q@ = (@1 U {%}) x (Q2U {$}) where § is a new distinguished symbol that does not appear n
Ml or Afg,

2. s = (s1,82),
3. F=(F,U({8}) x (F.U{$})
4. 8((z,y), 1) is defined and equal to (z',y') iff one of the following holds:

(a) 1=(l1,0), L #8,b#8, I, =1y, € Q1,y € Q2, and 6,(z, 1)) = 7', 62(y,12) =¥/,

(b)1=(L,1), L #8, b =8, 2 € Qy, bi(z,1y)=12', ¥ =3 and etther y = 3 or there 15 no
I, such that I} ~ 15 and 62(y,15) s defined,

18

(¢) 1={1,01), Lh =81 #8, y€ Q2, b2(y,12) =y, 2’ =8 and either z = § or there is no
I such that l{ ~ 15 and 6,(z,1}) is defined,

5. o((z1,z2)) = (01,02) such that O; = oi(z;) if z; € Q; otherwise O; =§ (i € {1,2}).
If ~ is the identity relation = on £ then we write M; x M, for (M, x M,)/=. The construction of
a product machine is clearly effective.
For a given equivalence relation ~~, ~ is the equivalence relation on £* defined as follows:
€ ~ ¢

a-ly, ~ b.lifa ~bandl ~I.

For product machines, the following are immediate consequences of the definition:

Lemma 2.5 Let A’{l = (QlaslaFI’élaol)y AJ? = (Q2|821F2v62102) and (stvFvévo) = (Ml X
xwg)/_’!.

1. If8(s,a) = (41, 92), @1 € Q1,92 € Q2 then first"(a) = second (a) and §}(sy, first’(a)) = q1,
85(s2, second” (a)) = q2. Conversely, if there are a,b such that a =~ b, 81(s1,a) = q1 and

63(s2,6) = q2 then &°(s, pair'(a, b)) = (q1,92).

2. If6*(s,a) = (q,2),9 € Q1 then §](s1, first"(a)) = ¢ and first"(o((q,z))) = 01(gq). If6~(s,a) =
(z,9),9 € Q2 then 65(s2, second (a)) = q and second (o(z,q)) = 02(q).
3. If 61(s1,a) = ¢ then there is some b such that first"(b) = a, 6*(s,b) = (q,z) and 01(q) =

first' (o((q,z))). If 65(s2,a) = q then there is some b such that second (b) = a and 6*(s,b) =
(2,q) and oa(g) = second (o((g,2))). I

On Moore machines defined on the same set of output symbols F, we define an equivalence

relation = as My = M3 iff M (s;) = M(s3) where sy, s, are the start states of A, M, respectively.

Theorem 2.2 The relation M, =~ M, is decidable.

Proof The idea of the following proof is due to Hopcroft and Karp [53], who defined an algorithm

to decide whether two finite state automata accept a same regular set or not.

Let My = (Q1,51,F),61,01), My = (Q2,52, F2q,63,07). We will show that M; ~ M, iff for any
reachable state ¢ in M; x M5, q is of the form (q;, ¢2) such that ¢, € @,,¢2 € @2 and o(q) = ([, f)
for some f € F. Suppose M} =~ M,. dom(M,(s,)) = dom(Ma(s2)) and for any a € dom(M;(s1)),

19

01(61(s1,a)) = 02(63(s2,a)). Therefore, for any a € L£*, there is some reachable ¢; € @, such
that 67(s1,a) = q; and 01(q1) = f for some f € F iff there is some reachable g5 € Q5 such that
83(s2,a) = g2 and 02(g2) = f. Then by lemma 2.5, for any reachable state ¢ in M; x M,, g is of
the form (¢, ¢2) and o(q) = (f, f) for some f € F.

Conversely, suppose M, x M, satisfies the condition. Then {pair*(a,a)la € dom(Mi(s;))} =
{pair*(a,a)|la € dom(M,(s;))} and for any a € dom(M,(s;)), o(6"((s1, s2), pair*(a,a)) =
(01(83(s1,a)),02(65(s2,a))) = (f, f) for some f € F. This implies M;(s1) = Ma(s2). 1

By the relationship between Moore machines and regular trees (theorem 2.1) the above theorem

implies:
Corollary 2.1 Fquality on regular trees is decidable.

This property was first shown by Ginali {41]. Alternative proofs can be found in [32].
Another important property on regular trees is the decidability of the unification problem shown

by Huet [55]:

Theorem 2.3 (Huet) There is an algorithm U which, given a pair of regulartrees a, 3 € R(F, V),
returns either a substituiion or failure such that if it returns a substitution then it is a most general

unifier of @ and B otherwise they have no unifier. |

Finally we define term representations of Moore machines (and therefore regular trees). Let e

denote terms given by the following syntax:
ex=v|f|fll=e,....0=¢€)]|(recuv.e)

where v stands for auxiliary variables, f stands for a given set F of output symbols, and { stands

for the set £ of input symbols. A variable occurrence v is bound occurrence if it is in (rec v...)

otherwise it is free. A term e is proper if it does not contain free variables and if e = (rec v.¢')
then e’ is a term of the form f(l, = €,,...,{; = e,). We denote the set of proper terms generated

by F' by the following syntax:
ex=f|fll=e,....,l =€)]| (recv.e(v)).
A proper term e denotes the Moore machine M, = (@, qo, F, 6, 0) defined as follows:

1. Q = {gy| for each occurrence f in e},

20

2. go = ¢ where f is the outmost occurrence of an output symbol in e,

3. o(gs) = f, and

4. 6 is the following function:

6(qs,1) = qqif f,g are occurrences in a subterm of the forms f(...,l=g,...),
L. l=g(...)..), 0ot f(....,l=(recv.g...),...),
6(gs,l) = g4 if f is the occurrence in a subterm of the form f(...,{=wv,...) and

g 1s the occurrence in its innermost surrounding subterm of the form

(recv.g(...).

Conversely, for any Moore machine M = (Q, s, F, 6,0) there is a term ejs that represents M. Define
a partial ordering < on reachable states in @ as follows: ¢ < ¢’ iff the shortest path from s to ¢ is
a prefix of the shortest path form s to ¢’. We define two mappings R, R respectively on @ x Q
and @ as follows:

q ifg<p
Rl(p1Q) = A
Ra(q) otherwise

and

Ra(p) = (recp.o(p)(hh = Ri(p,6(p, 1), .. ln = Ri(p, 6(p,1n))))
where {l1,...,1,} = {{|6(p,!) is defined}.

Since < is a well founded partial ordering, the above definition is well defined. Then the term Ra(s)

represents M.

As an example, let M = ({q1,92,93},91,{f,9,h....}, 6, 0) such that

olqr,) = qo,
6(qr,l2) = gqa,
6(q2,13) = q,
and
olgr) = [,
o(g2) = g,
o(gs) = h.

Then Ro(M) = (recqy.f(ly = (rec g2.9(I3 = q1)),l2 = (rec g3.h))). Note that a term representation
of a Moore machine is not unique. The above machine (modulo renaming of state names) also has

the following simpler term representation: (rec q. f(I, = g(l3 = ¢),{» = h)).

21

Chapter 3

Analysis of ML : its Syntax and

Semantics

This chapter analyzes the syntactic properties of the polymorphic core of the programming language
ML and proposes a framework for denotational semantics for ML polymorphism. These analyses
provide bases for the subsequent development of a type system and a language for databases and

object-oriented programming. Most of the results of this chapter were presented in [84].

3.1 Introduction

ML 1s a strongly typed programming language sharing with other typed languages the property that
the type correctness of a program is completely checked by static analysis of the program - usually
done at compile time. Among other strongly typed languages, one feature that distinguishes ML is
its tmplicit type system. Unlike explicitly-typed languages such as Algol [109], Pasca! [64] and Ada
[60], ML does not require type specifications of bound variables (formal parameters). The type of a
program 1s automatically inferred by ML type system. Through this type inference mechanism, ML
achieves much of the convenience of dynamically tvped languages without sacrificing the desired
feature of complete static type-checking. As an example, consider the following definition of the

factorial function in ML:

fun fact n = if n = 1 then 1

else n * (fact (n - 1));

22

Besides the notational differences, the above definition has the identical structure to the following

definition in Lisp:

(defun fact (n)
(cond ((equal n 1) 1)
(t (mul n (fact (sub n 1))))))

In particular, both of them have no mention of types. However, in ML, the compiler statically
infers the type int -> int of fact. By this mechanism, the type correctness of ML programs is
completely checked at compile time. This contrast with Lisp (and any other dynamically typed
languages), where type errors such as the one in (defun foo ... (fact *("a" "b" "c"))..)

are not caught until something goes wrong at run-time, often with a disastrous consequence.

Another important feature of ML is that it supports polymorphism in a static type system. This
is achieved by inferring a most general (or principal) type-scheme of any type correct program. A
principal type-scheme of a program represents the set of all possible types of the program, capturing
the polymorphic nature of the untyped program code. By this mechanism, ML also achieves much
of the flexibility of dynamically typed languages in a static type system. For example, from the

following definition of identity function:
fun id x = x;

ML type system infers the following type-scheme:
'a -=> ’a

where ’a is a type variable representing arbitrary types. As a consequence, id can be used as an
identity function of any type of the form r — r. The type correctness of each application of id is
statically checked. Moreover, the result type of the application is also statically determined. For

example, id("a") yields an expression of type string and 1d(3) yields an expression of type int.

There are two major existing approaches to denotational semantics for ML polymorphism; the
one by Milner [78] (extended by MacQueen, Plotkin and Sethi [72]) based on an untyped language
and the other by Mitchell and Harper [79] based on an explicitly-typed language using Damas and
Milner’s type inference system [34]. As I shall suggest in this chapter, however, neither of them
properly explains the behavior of ML programs. Because of the implicit type system, ML behaves
differently from both untyped languages and explicitly-typed languages. In order to understand

ML, we need to develop a framework for denotational semantics and equational theories that give

23

precise account for ML’s implicit type system. The goal of this chapter is to propose such a
framework, which will provide a basis to extend safely its type system to include various structures
and operations for databases and object-oriented programming. In the rest of this section, we review

the two existing approaches in subsection 3.1.1, 3.1.2 and outline our approach in subsection 3.1.3.

3.1.1 Milner’s original semantics

In {78], Milner proposed a semantic framework for ML based on a semantics of an untyped language.

He defined the following two classes of types:

T ou= b|lr—r,

tlbip—p

©
]

where b stands for base types and ¢ stands for type variables. Here we call them types and type-
schemes respectively. Type-schemes containing type variables represent all their substitution in-
stances and correspond to polymorphic types. He defined the preorder of generalness on type-
schemes as the preorder on trees induced by substitution (definition 2.9), i.e. p is more general than
p' iff p’ is an substitution instance of p. He then gave the algorithm W that infers most general

type-schemes for the following raw terms:

ex=z|(Ar.e)|(ee)|ifethenecelsee|fix ze|let z=ein e end.

He interpreted an ML typing e : p as the semantion assertion [e] € [p], i.e. the denotation of e
is an element of the denotation of p and showed that the type inference algorithm W is sound under
this interpretation. The denotation of a raw term is defined as an element of a domain satisfyving

the following domain equation:
V=By+ -+ By, +{V—V]+ {wrong}

where B,,..., B, are domains corresponding to base types and wrong represents run-time error.
The denotation of a type is defined as a subset of V not containing wrong. The denotation of a
type-scheme is defined as the intersection of the denotations of all its instance types. This semantics

was extended to recursive types by MacQueen, Plotkin and Sethi [72]. (See also [51, 30] for related

studies.)

This semantics explains the polymorphic nature of ML programs and verifies that ML typing
discipline prevents all run-time type errors. However, this semantics does not completely fit the

operational behavior of ML programs. As an example, consider the following two raw terms e; and

24

e with their principal type-schemes: -

€1

AzZAy. y by =ty — 1g,
e2 = Azdy. (Azdw.w)(zy)y : (ta = ts) =tz — 13

where parentheses are omitted, assuming left association of applications. Under the call-by-name
version of Milner’s semantics, which is also the semantics defined by MacQueen, Plotkin and Sethi,
the above two raw terms have the same meaning. Indeed, if we were to ignore their type-schemes
and regard them as terms in the untyped lambda calculus, then they would be 3-convertible to each
other and would be regarded as equal terms. However, ML is apparently a typed language, and as
terms of ML, these two behave quite differently. For example, under any evaluation strategy, the
term ((e; 1) 2) is evaluated to 2 but ((e2 1) 2) is not even a legal term and ML compiler reports
a type error. This is one of the most noticeable difference between meanings of terms and should
be distinguished by any semantics. From this example, we can also see that the equality on ML

programs is different from the equality on terms in the untyped lambda calculus.

Moreover, this semantics requires a model of the set ofall untyped lambda terms, many of which

do not have typing and therefore do not correspond to ML programs.

3.1.2 Damas-Milner type inference system and Mitchell-Harper’s anal-

ysis

Darnas and Milner presented a proof system for typing judgements of ML [34]. They redefined the

set of types of ML as the following two classes:

p tib|p—p

T

I

p |Vt

p is Milner’s type-scheme. We call = a generic type-scheme. Free type variables and bound type
variables are defined as in the second-order lambda calculus (or the polymorphic lambda calculus)

(94, 42]. We write w[p;/t1,...,pn/ts] for the generic type-scheme obtained from = by simultaneously

substituting each free occurrence t; by p;.

Definition 3.1 A generic type-scheme Vt| ---t,. p is a generic instance of ¥t} ---1,.. p' if each t;
is not free in Vt| --- .. p' and p = p'[t\ := p1,..., 1, := pm] for some type-schemes py,...,pm. A

type ® is more general than «n', denoted by =’ Zpu 7, if © is a generic tnstance of 7.

Note that the relation 7’ <y 7 is decidable. A Damas-Milner type assignment scheme T is a

function from a finite subset of variables to generic type-schemes.

25

Definition 3.2 (Damas-Milner Type Inference System) A Damas-Milner typing scheme 1s

a formula of the form I e : m that 1s dertvable in the following proof system:

(VAR) Tbz:7m fT(z)=~
'be:w _ ,
(GEN) _— ift not free in T
'be:Vin
'be:m)
{1NsT) _— ifn' Zom ™
Fpbe: =

Mz:=pi} pe:p

(ABS)
FCpAz.e:pp—ps
F'ber:pr—p2 [bes:p
(APP)
[>(e; ea): pa
'be, : m Mr:=n}bes:p
(LET)

I'pletz=¢;in ey end : p

We write DM FT be : 7if I be : wis derivable in the proof system. In this formalism. ML

terms are typing schemes. We call them Damas-Milner terms.

Based on this derivation system, Mitchell and Harper proposed another framework to explain
implicit type system of ML {79]. In what follows, we shall only discuss their analysis of the core

of ML. However, it should be mentioned that their approach also provides an elegant treatment of

Standard ML’s modules [47].

They defined an explicitly-typed language, called Core-XML. The set of types of Core-XML is
the same as those in Damas-Milner system. The set of pre-terms of Core-XML is given by the

following abstract syntax:
Mau=z | (MM |(Az:p. M) [(M p) | (At. M) |let z:7 = Al in M end

where (M p) is a type application and (At. M) is a type abstraction.

Definition 3.3 (Terms of Core-XML) Core-XML ierms are formulae of the form I b AM @ =7

that are dertvable in the following proof system:
(VAR) Frez:n iflx)=m7n

26

'bM: =]
(TABS) ift not free in T
F'b(M.M):Vt.x

FpM: :Vvinx
(TAPP)
I & (M p) : xp/i]
I'{z:= bM:
(aBS) { p1} P2
Fb>Az:p. M) pr—p2
Fr'eM, :pr—pa I'>M;:p
(APP)
[> (M) M) : po
re M, :n« T{z=n}bM:p
{LET)

I'bletz:7=M;in My end : p

Wewrite MHFT p M : mif I b M : 7is derivable from the above typing rules.

Define the type erasure of a pre-term M, denoted by erase(M), as follows:

erase{z) = =z
erase((My Ms)) = (erase(M,) erase(Mz))
erase((Az : p. M)) = (Az.erase(M))
erase((At. M)) = erase(M)
erase((M p)) = erase(M)
erase(let z: 7 = M, in M> end) = let z = erase(M,) in erase(M-) end

They showed the following relationships between Core-XML and Damas-Milner system.

Theorem 3.1 (Mitchell-Harper) f MH - T b M : 7 then DM + T t» erase(M) : =.
If DM +T b e : m then there erists a Core-XML pre-term M such that erase(M) = e and

MHVWT b M : 7. Moreover, M can be computed effectively from a proof of T be : =. |
Based on this relationship, they concluded that Core-XML and Damas-Milner system are “equiv-
alent” and regarded ML as a “convenient shorthand” for Core-XML.

If we could indeed regard ML terms as syntactic shorthands for Core-XML terms then equational
theory and model theory could be those of Core-XML. Core-XML is a restricted form of the second-

order lambda calculus whose equational theory and model theory are well investigated (see [20]

27

and references therein). However, the above result does not establish any syntactic mapping from
Damas-Milner terms to Core-XML terms. It only established a correspondence between Core-XML
terms and derivations of Damas-Milner terms, which can be infinitely many for a single Damas-
Milner term. This means that there are, in general, infinitely many distinct Core-XML terms that

correspond to a given Damas-Milner term. For example, consider the Damas-Milner term:

b (zdy.y)(Az.z) 1 t =t

Any Core-XML term of the form

(Az:p— ply:t.y)(Az :p.)
for any type-scheme p corresponds to the above typing.

One way to overcome this difficulty is to choose a particular Core-XML term among possibly
infinitely many choices. Such a choice seems possible if we assume a particular type inference
algorithm, but we would like to avoid such an assumption as a part of a formal characterization
of ML. Another possibility would be to consider a Damas-Milner term as an equivalence class of
Core-XML terms. One plausible equivalence relation is the convertibility (or equality) relation. If
a Damas-Milner term corresponds to a (subset of) convertibility class of Core-XML terms then any
model of Core-XML in which the convertibility relation is valid yields a semantics of Damas-Milner
terms. Unfortunately, however, a Damas-Milner term in general do not correspond to a (subset of)
convertibility class of Core-XML terms. As a counter example, consider the following Damas-Milner
term:

{z:Vt.t—int,y:Vt.t -t} b (z y) : int.

The following two Core-XML terms both correspond to derivations of the above term:
{z:Vt.t —int,y:Vt.1t — 1t} b ((z (bool — bool)) (y bool)) : int,

{z:Vt.t —int,y:Vt.t — t} b ((z (int — int)) (y int)) : int.

But these two terms are both in normal form and are therefore not convertible.

We also think that Damas-Milner system and the corresponding explicitly-typed language Core-
XML are too strong to explain ML’s type system. As argued by Milner in [78], it is ML’s unique
feature and advantage that ML supports polymorphism without introducing explicit type abstrac-
tion and tvpe application. Note that this account of ML only used non-generic type-schemes. As

such a language, ML can be better understood without using generic type-schemes, whose semantics

requires the construction of very large spaces.

28

3.1.3 A simple framework for ML polymorphism -

From the above analyses, it appears that ML is different from both untyped languages and explicitly
typed languages. In order to understand ML properly we will develop a framework for semantics
that accounts for ML’s implicit type system. Such a semantics should be useful to reason about
various properties of ML programs including equality on programs and operational semantics.
A strategy was already suggested in Mitchell-Harper approach. We can use an explicitly typed
language as an “intermediate language” to define a semantics of ML. In this chapter, we use
the simply typed lambda calculus. Usage of the simply typed lambda calculus to explain ML
polymorphism was suggested in Wand’s analysis [110], where ML terms are regarded as shorthands
for terms in the simply typed lambda calculus. Wand’s approach, however, shares the same difficulty
as in Mitchell-Harper’s analysis. It only gives meanings to derivations. Moreover, it does not deal

with polymorphic terms, i.e. those terms whose type-schemes contain type variables.

We first define an inference system and semantics of ML {ypings (typing schemes that do not
contain type variables) and then generalize them to ML terms (i.e. typing schemes). Parallel
to the relationship between Damas-Milner system and Core-XML, derivations of typings in our
system correspond to terms of the simply typed lambda calculus. Here is the crucial point in the
development of our semantic approach: we show that if two typed terms correspond to derivations
of a same ML typing then they are 3-convertible (theorem 3.7). This guarantees that any semantics
of the simply typed lambda calculus, in which the rule (8) is sound, indeed yields a semantics of
ML typings. We regard a general ML term as a representation of a set of typings. The denotation
of an ML term is then defined as the set of denotations of the typings indexed by the set of types
represented by its type-scheme. For example, we regard the denotation [@ B Az.z : t — t] as the

set {(r — r,[Az: 7. z])|r € Type}.

Equational theories are defined not on raw terms but on typing schemes. Two typing schemes are
equal iff their type-schemes are equal and raw terms are convertible to each other. This definition
correctly models the behavior of ML programs. Type-schemes determine the compile-time behavior
of programs and raw terms determine their run-time behavior. We then prove the soundness and
completeness of equational theories. This confirms that our notion of semantics precisely captures

and justifies the informal intuition behind the behavior of ML programs.

Our semantic framework can be extended to languages with constants, type constructors and
recursive types (via infinite regular trees). Our semantic framework can also be related to certain
operational semantics. We show that if a semantics of the typed lambda calculus is fully abstract

with respect to an operational semantics then the corresponding semantics of ML is also fully

29

abstract with respect to an operational semantics that satisfies certain reasonable properties in
connection with the operational semantics of the typed lambda calculus. This results enables us
to transfer various existing results for full abstraction of typed languages to ML-like languages. A
limitation to this program is due to the fact that our interpretation needs the soundness of the rule
(8). Such models, of course, while good for “call-by-name” evaluation, are not computationally
adequate for the usual “call-by-value” evaluation of ML programs. Thus, our full abstraction result
seems helpful only for ML-like languages with “lazy” evaluation strategy such as Miranda [107],
Lazy ML [11] and Haskel [54].

3.2 The Language Core-ML

We first present our framework for the set of pure raw terms, the same set analyzed in [34, 79].
We call the pure language Core-ML. Later in section 3.5 we extend our frameworks to a language

allowing constants, arbitrary set of type constructors and recursive types (via regular trees).

3.2.1 Raw terms, types and type-schemes
We assume that we are given a countably infinite set of variables Var (ranged over by z).

Definition 3.4 (Raw Terms of Core-ML) The set of raw terms of Core-ML (ranged over by
e) 1s defined by the following absiract syntaz:

ex=z|(ee)|Az.e|letz=¢ in e end

The notion of bound variables and free variables in a term are defined as in the lambda calculus

(49, 15] with the additional rule that z in let £ = e, in e; end is a bound variable. We write FV' (e)

for the set of free variables in e. We write e[e; /z;,...,e,/z,] for the raw term obtained from e by
simultaneously replacing free occurrences of zy,...,z, by e;,..., e, with necessary bound variable
renaming.

In order to show various properties of raw terms by induction, we define their complexity
measure. We first define let degree that is to measure nesting of let expressions. A let dgree
asstignmen L is a function form a subset of variables to natural numbers. Define let dgree of e

under L, denoted by ld(L,e€), by induction on the structure of e as follows:

0 if z & dom(L)
L{z) ifz € dom{L)

ld(L,z) =

30

Id(L, (61 ;2))
ld(L, Az. ¢)

ld(L,ey) + Id(L, e3)

Id(erom(L)\{t})

ld(L,)Jet z =€; inex end) = 1+1d(L{z:=1d(L,e,)}, e2)

For this mesurement, we have the following substitution property:

Lemma 3.1 For any raw terms ey, ez,

ld(L{z :=ld(L,e,)},e2) = ld(L,ez[e1/z]).

Proof The proof is by induction on the structure of e3. We only show the case for e; = let z =
e} in €3 end. Other cases can be easily shown by using the induction hypothesis and the definition

of Id(L,e). Suppose e; = let y = €} in 3 end:

1. Subcase z = y:

ld(L{z := Id(L,e;)},let z = ¢} in €3 end)
1+ 1d(L{z := ld(L,e))}{z := ld(L{z := Id(L,e1)},e3)},€3)
(by the definition of Id(L, €))

1+ d(L{z := ld(L{z := Id(L.,e;)},el)},€3)
14 1d(L{z := ld(L,ei[e;/z])}, €3)

(by the induction hypothesis)

But since (let £ = e} in €2 end)[e;/z] = let z = e}[e;/z] in €3 end, by the definition of

ld(L,e),
ld(L,(let z = e} in e? end)[e1/z]) = 1 + {d(L{z := ld(L,e3[e1/z])}, €3).
Therefore id(L{z :=ld(L,e;)},e3) = ld(L,ez[e;/z]).
2. Subcase z # y:

Id(L{z := ld(L,e1)},let y = e} in €3 end)
14 d(L{z :=ld(L,e;)}{y := ld(L{z := ld(L,e1)},e3)},€3)
(by the definition of {d(L, e))

= 1+1d(L{y :=ld(L{z := ld(L,e;)},e3)}{z := ld(L,e,)},€3)

(since z # y)
1+ ld(L{y := ld(L{z := ld(L,e1)},e3})},e3le1/z])

31

(by the induction hypothesis)
= 1+ Id(L{y := ld(L,ei[e;/z])},e3le1/z])

(by the induction hypothesis)

But since (let y = €} in €3 end)[e;/z] = let y = e}[e1/z] in e3[e;/z] end. by the definition

of ld(L,e),
Id(L,(let y = e} in €3 end)[e;/z]) = 1 + 1d(L{y := ld(L, e}[e\ /z])},e3[e1 /z]).

Therefore Id(L{z :=Id(L,ey)},e2) =1d(L,ea[ey/2]).

Definition 3.5 (Complexity Measure of Raw Terms) The complerily of a raw term e 1s the

lezicographical pairing of Id(0.e) and the size of e.
By lemma 3.1, we immediately have the following property of the complexity of raw terms:

Proposition 3.1 1. For any raw term ey, ea, the complezity of let z = e; in e>» end 1s sirictly

greater than that of eafey/z].

2. For any raw term e, the complezity of e is strictly greater than that of any proper subterm of

e. 1

The intended meaning of let z = e; in e» end is to bind = to e; in €2 and to denote operationally
the expression es[e;/z]. For a raw term e, the let ezxpansion of e, lelezpd(e), is the raw term
without let-expression obtained from e by repeatedly replacing the outmost subterm of the form

let £ = e; in e2 end by eafe; /z].
Proposition 3.2 For any raw term e, leterpd(e) exists.

Proof Sinse each expansion step strictly reduces the complexity of the raw term, the expansion

process terminates, yielding a unique raw term. |

We assume that we are given a set 3 of base types (ranged over by b) and a countably infinite

set Tvar of type variables (ranged over by).

Definition 3.6 (Types and Type-schemes of Core-ML) The set of types, Type ranged over
by T, 1s given by the following abstract syntaz:

ro=blT—rT

32

The set of type-schemes, T'scheme ranged over by p, is given by the following abstract syntaz: —
pu=tlb]p—p.

Since T'scheme can be regarded as a set of trees, the notion of substitutions, instances e.t.c. we

defined in section 2.2.2 apply to T'scheme.

3.2.2 Typings, typing schemes and terms of Core-ML
A type assignment A is a function from a finite subset of Var to Type.

Definition 3.7 (Core-ML Typings) A typing is a formula of the form A >e : r that is derivable

in the following proof system:
(VAR) Abz:17 ffAx)="1

Abe 11y — 7 Aber:m

(APP)
AD(e; e m

Az =71} be : m

(ABS)
AbAz.e i1y — 1

Abeler/z] : 7 Aper: 7
(LET)

Apbletz=¢erine;end : 1

In the rule (LET), " may be any type. We write ML+ A pe : 7if A D e : 7is derivable in the
above proof system. A derivation A of A > e : 7is a proof tree for A > e : 7 in the above proof

system.

For this proof system we have the following properties:

Lemma 3.2 If MLF A b e : T then dom(A) D FV{(e).

Proof By induction on the complexity of e. 1

Lemma 3.3 If ML+ Abe : 7then MLE A be : 1 for any A such that A C A’ (as graphs).

Proof By induction on the complexity of e. 1

A type assignment scheme I is a function from a finite subset of Var to Tscheme.

33

Definition 3.8 (Typing schemes) A typing scheme is a formula of the form X be : p such that
for any substitution 6 ground for T and p, MLF 8(Z) b e : 8(p).

In other words, a typing scheme is a formula whose ground instances are typings. We write

MLFEEpPe:pifZ pbe: pisatyping scheme.

In (78, 34], an ordering is defined only on type-schemes (generic type-schemes) and a type
inference algorithm is defined with respect to a given type assignment. Here, we follow [79] and
generalize the ordering on type-schemes (X, definition 2.9) to typing schemes and characterize the

type inference problem based on the ordering.

Definition 3.9 (Preoreder on Typing schemes) A typing scheme £, e : p, is more general
than a typing scheme Lo e : pa, denoted by To b e : po X &1 B e : p1, zf(ﬁgl'd""“sl)‘pg) =

(Elvpl)‘

We also use X, as a relation on the set of pairs of a type assignment scheme and a type-scheme
and write (T, po) e (Z1, p1) if if (So19°™(E1) py) < (X4, p1). Note that more general also means
less entries in a type assignment scheme. A typing scheme £ > e : p is most general (or principal)

X be: p 2w L be:pflorany typing scheme ¥ > e : p'. We then have:

Proposition 3.3 IfS be : p is a principal {yping scheme then {Abe : T|ADbe : 7 Xy S be
p}={Abe:rTIMLFApPBe: 7}

Proof The inclusion
{Abe:rdbe T3 be:p}C{Abe:TIMLFAbBe: 1}

is by definition of typing schemes and by lemma 3.3. The inverse inclusion is an immediate conse-

quence of the facts that typings are also typing schemes and £ > e : p is principal. 1

This means that a principal typing scheme represents the set of all provable typings. In what follows,
we regard typing schemes as representatives of equivalence classes under the preorder <,,,. This
equivalence relation corresponds to the relation induced by renaming of type variables (without

“collapsing™ distinct variables).

Definition 3.10 (Terms of Core-ML) Terms of Core-ML are (not necessartly princ:ﬁal) typing

schemes.

34

According to this definition, it is not clear whether it is decidable or not that a given string of

symbols is a term or not. The answer is positive as a consequence of the decidability of type-

checking problem below.

Non principal typing schemes correspond to programs with (partial) type specifications which
are supported in ML and can be easily added to our definition. A term containing type variables
corresponds to a polymorphic program in Core-ML. A raw term e in a term £ > e : p represents
the computational contents of the term and determines its run-time behavior. The pair (X,p)
represents the typing contexts in which e is meaningful and determines the compile-time behavior

of the term.

3.2.3 Type Inference Problem
Under our characterization, the problem of type-checking in Core-ML is stated as follows:

given a type assignment scheme X, a raw term e and a type-scheme p, determine whether

MLHEFY be: pornot.
The type inference problem is stated as follows:
given a raw term e, determine the set {(Z,p)]MLF X pe : p}.
The following theorem, which is essentially due to Hindley [50], solves both of the problems:

Theorem 3.2 There is an algorithm PTS which, given any raw term e, yields either failure or
(X, p) such that if PTS(e) = (Z.p) then E e : p1s a principal typing scheme otherwise e has no
lyping.

Proof In the following proof. we assume a linear order < on V'ar and treat (X, p) as a tree
({z1:01)s---+(Tn,pn), p) where {z,...,2,} = dom(Z),Z(z;) = p; and z; < --- < z,. Algorithm
PTS is defined by cases. In the following description of the algorithm, if unification U(...) fails

then the algorithm returns fadlure.

PTS(e) = (X, p) where

(1) Case e = z:
Y = {z :=t} (t fresh)
p=t

35

(2) Case e = (e; e3):

let

{z},...
T) = Dof{ef =14,
{z3..... 27}
0 =U((T1,p1), (2,0
in
Z=06(ZY),
p = 6(t)
(3) Case = Az. e
let
(£1,p1) = PTS(ey)
in

(Zy,m) = ’P’TS(el)
(Z2,p2) = PT S(e2)

L= {zl =t

if z € dom(XZ,) then

p=ZXi(z)—p

else

h]

,xl =11} where

2

.ozl =12} where
= dom(Z;) \ dom(,), (t1, ...,
2 — 1)) (¢ fresh)

T, dem(E0M=}

=1t — py (t fresh).

(4) Case e = let £ = e; in €, end:

let

(Elvpl) = ’PTS 61)

(
(

(Ez,pz) =PTS 62[61/1!])

=S {zli=t, ...
{1“} ,,,,, z}

Ty = So{a] := 1],
{=1,

b= U, Ty)

1.4l
,Zy, =t} where

. x3 =12} where

,2n} = dom(Z2) \ dom(Zy), (11,

1
1
} = dom(Z,) \ dom(Zy), (11,
i

36

..., tL fresh)

t2, fresh)

...t} fresh)

2., t2 fresh)

L =6(%)),
p = 0(p2).

Since in each case PTS is called on raw terms with strictly smaller complexity, the algorithm
always terminates.

In order to show the desired property of the algorithm P7 S we use the following results:

Lemma 3.4 If PTS(e) = (L, p) then FV(e) = dom(LT).

Proof By induction on the complexity of e. The basis is trivial. The induction step is by cases in
terms of the structure of e. Cases other than Az.e’ are immediate consequences of the induction
hypothesis. Suppose e = Az.e’. By the induction hypothesis, FV(e') = dom(Z,). If z € FV(¢')
then dom(X) = dom(Z)) \ {z} = FV(€¢') \ {z} = FV(rz. ¢') otherwise dom(X) = dom(ZT;) =
FV(e'y= FV(Az.¢'). |1

We also use the following property of the unification algorithm &/, which follows directly from

theorem 2.3:

Proposition 3.4 Leta,b be terms that do no share common variables. Forany termc,c Xa,cXb

iffU(a,b) = 6 and c X 8(a) for some 6.1

Using these properties, we show the necessary property of the algorithm by showing the property
of principal typing scheme: MLEFApe :7iff Abe : 1<y L De : p(proposition 3.3). Proof
1s by cases in terms of the structure of e. The type assignment schemes (£,Z, etc), type-schemes
(p,p1 etc) and type variables (t,¢; etc) in the following proof refer to those in the corresponding

cases of the description of the algorithm.

1. Casee=z: MLFAb < : 7iff £ € dom(A) and A(z) = 7. Then by the definition of =Xy,
MLFADz: 7iff (A1) 3w ({z:=1}1).

2. Case e = (€1 e3): By the typing rules, MLF A b (e €3) : Tiff
(A) there is some 1 such that MLt A be; : 1y —7and ML Apey: 1.
By the induction hypothesis, (A) iff

(B) there is some 7 such that (4,7, — 7) Zu (1, ,1), (A, 71) Zme (2, p2).

37

By lemma 3.2 and lemma 3.4, dom(A) D FV(e;)U FV(ez) = dom(Z,) Udom(X;). Then by

the constructions of T}, X5, (B) iff

(C) there is some 71 such that (A, 71 — 7) S (£, p1) and (A, 1) S (Z5, p2).

Since t introduced in the algorithm is fresh, (C) iff

(D) there is some 7y such that (4,7 — 7) Zu (7, p1) and (A, 1) — 7) S (E5, 00 — 1).

By definition of PTS, (X}, p1) and (L%, p2 — t) do not share type variables. Therefore by
proposition 3.4, (D) iff there is some 7 such that (A4, 7 — 7) 2y (6(25),8(p2 — 1)) where
U((Z},p1), (Shyp2 — 1) = 0. Therefore ML b A b (e €2) © 7 iff (A,7) Zus (S.9).

3. Case ¢ = Az.e;: By the typing rules, ML F A b Az.e; : 7 iff there are some 7,7
such that r = 1y — 7 and ML + A{z := 71} b e; : 7. By the induction hypothesis,
MLFA{z =7} be : niff (A{z := 71}, m2) Zu (Z1,p01). Suppose z € dom(Z;). Then
(A{z := 1}, 1) Sw (E1,0) iff (A1 — 1) S (S119™EME) By (2) — py). Suppose
z & dom(Z;). Then since t is fresh (A{z = 71}, 7)) Zwm (S1,01) f (A1 — 1) Zw
(£1,t — p1). Therefore MLF A b Az.e; : 7iff (A, 7) Zu (T, p).

4. Case e=let z = ¢, in e; end. By the typing rules, MLF A plet z =€, ines end : 7 iff
(A) there is some 7 such that ML+ A e : 7y and MLE A besfey/z] @ T

By the induction hypothesis, (A) iff there is some 7, such that (A, 1) Zue (Z1.01), (A, 7) S
(X2, p2). Similar to the case for e = (e) €a), (A, 71) S (Z1,p.1), and (A, 7) Zp (2, p2)

iff (A, 7)) Zue (0(Z1),0(p1)), (A, 7) Zue (8(Z5),0(p2)) where U(X],T5) = 0. Therefore
MLFApbletz=¢;inerend : 7iff (A, 7) 2w (T,).

(End of the proof of theorem 3.2) |

The decidability of the type-checking problem follows from the decidability of the relation £, be :
p1 Zmu T2 be : pa. Theset {(E,p)JMLF £ b e : p}is determined by the principal typing

scheme using proposition 3.3.

3.2.4 Relation to Damas-Milner System

The typing derivation system for Core-ML is significantly simpler than that of Damas-Milner system
and has a particularly simpler proof for the existence of a complete type inference algorithm as

demonstrated above. Nevertheless, for closed terms, they are essentially equivalent in the sense of

38

the following two theorems (theorem 3.3 and 3.4). For any generic type-scheme 7 = Vi, ...t,. po,

define the type scheme p, as pr = po[ty :=1],...,tn :=t,,] where {1, ..., 1, are fresh type variables.

Theorem 3.3 For a closed rawterme, if DM FQ e : 7 then MLE 0 pe : py.
Proof The proof uses the following lemmas:

Lemma 3.5 For anye,I',7, DM FT pe : 7 iff DM FTIFV() pe : 7.

Proof By induction on the height of a derivation of T e : #. |

Lemma 3.6 Foranye,I',n, DMFT pe: 7 iff DMFT e : py.

Proof Suppose DM + T e : 7. Then by the rule (INsT), DM + T B e : pr. Suppose
DM VT pe: py Sincet],...,t, are fresh, by repeated applications of the rule (GEN), DM +
T >e:Vti...t,. pr. Butsince # Zpy Vt}...1,. px, by the rule (INsT), DM T pe : 7. |

Lemma 3.7 If DM +T b e : 7 then il has a derivation such that all applications of the rule

(INST) are immediately preceded by an instance of the axtom scheme (VAR).
Proof We first show the following property on typing derivations:

if a derivation A of I' > e : p contains a sub-derivation A’ of I' e : p’ then pis a

substitution instance of p’.

By the typing rules, only rules applied between the root of A’ and the root of A are either (GEN)
or (INST). The property is then shown by a simple induction on the number of the rules applied

between the two roots.
The lemma is proved by induction on the structure of e using the above property.
1. Case of e = r: Any derivation of I' bz : 7 must have the node T' bz : I'(z) at its leaf and
can only contain applications of the rules (GEN) and (INST). It is then shown by induction

that I' must satisfies either # <y ['(z) or # = I'(z). If I'(z) = 7 then the one node typing

derivation tree

(VAR)
I'bz:=x

39

satisfies the condition. Otherwise © <y I'(z) then the following derivation tree satisfies the

condition:

_— (VAR)

'z I(2)
EEE— (INST)
O A
. Case of e = (e; €2): By the typing rules, lemma 3.6 and the property shown in the beginning
of the proof, there are derivations A, As respectively of I' p>ey : py — prand T bea : py
for some p,. Then by the induction hypothesis, there are derivations A}, A} of ' e

p1 — pr and T’ > es : p; satisfying the condition. Then we have the following derivation of

I' b (e1 e2) : px satisfies the condition:

Al A

(aPP)
r (e, €2) : px

Since the type variables introduced in p, are fresh, by repeated applications of the rule (GEN),

we have a derivation of I' > (e} e2) : = satisfying the condition.

. Case of e = Az.e: By the typing rules and the property shown in the beginning of the proof,
there is a derivation A of I'{z := p;} > e : py such that p = p; — p». By the induction
hypothesis, there is also a derivation A’ of I'{z := p;} b e : p, satisfying the condition. Then

we have the following derivation of ' > Az.e : p; — p- satisfies the condition:

AI

(ABS)
F'bAz.e: py — po

Similar to the case for e = (e; e2), there is a derivation of ' > Az. e : = satisfving the

condition.

. Case of € = let £ = €; in e end: By the typing rules and the property shown in the
beginning of the proof, DM +T'{z := 7'} be2 : pr and DM T be; : ' for some 7’. By
the induction hypothesis, there are derivations A;. A, respectively of I'{z := 7'} bes : pand
[ey : = satisfying the condition. Then we have the following derivation of T & let = =

e; in e» end : p, satisfies the condition:

Al A,

(LET)
F'blet z=e;in e end : p,

Similar to the case for e = (e; €3), there is a derivation of I' b let z =€) in e5 end : =

satisfying the condition.

40

Lemma 3.8 There is some m such that DM tT ey : m and DMFT{z =7} bes: 7 iff
there is some 7, such that DM FT ey : mp and DM T b egfer /2] @ 7.

Proof In order to prove this lemma, we need the follopwing theorem proved by Damas and Milner

(34]):

Proposition 3.5 (Damas-Milner) LetT be any type assignment scheme. If e has a typing under
[then there is a generic type scheme 7 such that for any typing scheme DM F T pe : =,

T <om 7. 1

This is a direct corollaries of a stronger theorem shown in [34]. If e has a typing scheme under T,
then we call a generic type scheme satisfying the above property as principal typing scheme under

I'. Using this proposition, we proved the lemma by showing the following stronger property:

Let 7, be a principal type scheme of e; under I DM + I'{z := m} D ey : 7 iff
DMGET b eafey/z) : miff

Since it is easily verified that the provability of typing schemes is preserved by renaming of bound
variables, we assume without any loss of generality that z is distinct from all bound variables in e.

By lemma 3.5 we can also assume that z € dom(T).

Let A be a derivation for DM + I'{z := m;} b ea : 7. Let A’ be a tree obtained form A by
replacing each occurrence of z in A by e; and deleting all the entry z := 7. Only typing rules
in DM F that depend on the structure of terms are the rules (VAR) and (ABs). All other typing
rules depend only on types of subterms. Therefore the applications of the typing rules in A’ other
than (ABS) and (VAR) remain valid inference steps. Since z is distinct from any bound variables
and the rule (ABS) does not depend on the structure of the body e of the lambda term Ay. e, the
applications of the rule (aBs) in A’ are also valid inference steps. A’ is therefore a valid derivation

tree except for the subtrees of the form:

(VAR)
I bese/z] - m

Now let A’ be the tree obtained from A’ by replacing all subtrees of the above form by a derivation
for

FDC}Z‘/T]

41

Since m; is a principal typing scheme under T such a tree always exists. Then A" is a valid derivation
tree for DM + T pegfey/z] : = Hl

We now prove the theorem. Suppose DM + T b e

: w. By lemma 3.5 and lemma 3.6, DM +
0 >e

. px. We need to show MLF @ e : py. Proof is by induction on 1d(8, e).

Basts: By lemma 3.7 and the fact that e does not contain let-expression, @ i>e : p, has a derivation
A such that it does not contain applications of (GEN) or (INST). This means that any ground
instance of A is a derivation in ML t. Therefore MLt @ > e

: 1 for any ground instance (A, 7)
of (¥,pr). Hence MLFQ e : p,.

Induction Step: Proof 1s by cases in terms of the structure of e. Cases other than that of e
let z = e; in e» end are immediate consequences of the corresponding induction hypothesis.

Suppose DM + 0 t>let z = ¢y in e» end : p,. Then by typing rules and the property shown

in the proof of lemma 3.7, DM F {z := m;} be; : pr and DM + 0 b e; : m for some 7.

By lemma 3.8 and 3.6, this is equivalent to DM + 0 b eafe1/z] : pr and DM F 0 p ey : p' for
some p’. Since Id(0, ea[e; /z]) and Id(D, e,) are strictly less than ld(@,let z = e; in e2 end), by the
induction hypothesis, ML i @ p ealey/z] : pr and ML+ 0 p>e; : p’ for some p'. Then by the

rule (LET) in ML+, ML+ Q b let £ =€, in e; end : 7 for any instance 7 of p,. This implies
MLFDbletz=¢e inesend : p, |

Theorem 3.4 For a closed rawterme, f MLFQ pbe : pthen DMEQ e : p.
Proof By induction on Id(®,e) using lemma 3.8. If ld(@,e) = 0 then any derivation in ML
1s also a derivation in DM . Induction step is by cases in terms of the structure of e. Cases

other than let £ = e; in e2 end are immediate consequences of the induction hypothesis. Suppose

ML + 0 blet z = e; in e; end : p. By typing rulesin ML +, ML + 0 b eafey/z]

L p
and ML+ @ t>e; : p' for some p’. By the induction hypothesis, DM + 0 > eafe,/z]

. p and
DM*‘E 0@ ey : p'. Then by lemma 3.8, there is some # such that DM + {z := 7} b e2 : p and
DM+ @ B e

: m. Then by the rule (LET) in DM+, DM FQ bletz=¢;inerend : p. |
As we have demonstrated through theorem 3.2, 3.3, and 3.4, ML’s syntactic properties are
understood without using generic type-schemes. This corresponds to our semantics which only
requires the semantic space of the simply typed lambda calculus. However, our typing derivation
system suggests a potentially inefficient type inference algorithm. The algorithm P7S we defined
in theorem 3.2 is indeed potentially inefficient compared to algorithm W defined in [78]. P7 S infers

a typing scheme of let z = €; in e2 end by inferring a typing scheme of ez{e1 /z]. This may involves

42

repeated inferences of a typing scheme of e; because of multiple occurrences of z in e5, which is
clearly redundant. The extra typing rules for generic type-schemes in Damas-Milner system and the
corresponding control structures of the algorithm W can be regarded as a mechanism to eliminate

the redundancy and could be considered as implementation aspects of ML type inference.

3.2.5 Equational theories of Core-ML
An equation of an equational theory of Core-ML is a formula of the form £ >e; = ea : p.

Definition 3.11 (ML-theory) An ML-theory consists of a given sel of equations E\, satisfying
the properties:

T e =€y p€ E iff for any ground instance (A, 7) of (L,p), ADe =€ :T7€FE

and the following set of rules: the aziom schemes (a),(8), (1), the inference rule scheme (£) obtained
from respective rule schemes in the untyped lambda calculu [15] by tagging T and p, the set of rule
schemes for usual equational reasoning (i.e. reflezivily, symmelry, transitivity and congruence), the

following aziom scheme:
(let) L b(let z =€ in e2 end) = (e2[e1/z]) : p,
and the following inference rule scheme:

L Tbe =
(thinning)

es : p _
if E C Y (as graphs).

S be=e:p

We call a set of equations E\, satisfving the above property as a set of ML-equations. We write

Eur Fme T ey =€y pif T bey = er : pis derivable from the axioms and E,, using the

inference rules. A set of ML-equations E\, determines the ML-theory Thy (E\u.). Ve sometimes

regard Thy,(EwL) as the set of all equations that are provable by the theory.

ML-theory is intended to model euality among terms of Core-ML. For this purpose, we are

usually interested in only those eugations that correspond to pairs of Core-ML terms.

Definition 3.12 (Well typed ML-equation) An equation £ b e, = e2 : p is well typed if
MLEY pbey :pand MLFEE b ey : p.

We also say that a set of ML equations is well typed if all its elements are well typed. It is easily

checked that if E,,, is well typed and axioms are restricted to well type equations then Thy (EwmL)

43

is also well typed. In what follows, we restrict a set of ML-equations F,,, and axioms to be well
typed ones. For example, £ B> ((Az.e1) ea) = ej[ez/z] : p is an instance of the axiom shceme (3)

only if MLFX b ((Az.e1) e3) : pand MLF Z peyfea/z] : p.

The theory Thy. () corresponds to the equality on Core-ML terms. We write £ [>e) =y, €2 : p

for Brye T b ep=es : p.

If we exclude the rule of symmetry from the set of rules, then we have the notion of reductions.
We write Eyy Far T D ep— e @ pif Z ey : pis reducible to £ ey : p using Ey, and
the set of rules. In particular, the empty set determines the Sn-reducibility, for which we write

APDep—geo T

3.3 Semantics of Core-ML

In this section, we first define the explicitly-tvped language TA that corresponds to derivations of

Core-ML typings. We then define the semantics of Core-ML relative to a semantics of TA.

3.3.1 Explicitly-typed language TA and its semantics

The set of tvpes of TA is exactly the set Type of types of Core-ML. The set of pre-terms is given
by the following abstract syntax:

M=z |(MM)|Xx: 1. M.

Definition 3.13 (Terms of TA) The sel of terms of TA is the set of formulae of the form A b
M : 7 that are derivable 1n the following proof system:

(VAR) Abz:r flz)=r1
Alz=n} b M :m
(aBS)
A D(/\l‘lT].A!) T — T
AbBbM :1m—n ADbM :n
(APP)

A [>(‘7\41 A{g) T

Note that in this system, a formula has at most one derivation. We write TA F A b M : 7 if
A b M : 7 is derivable from the above typing rules. TA is clearly a representation of the simply

typed lambda calculus [49], whose equational theory and model theory are well understood.

44

An equation of an equational theory of TA is a formula of the form A b M; = My : 1. —

Definition 3.14 (T'A-theory) A TA-theory consists of a given set Er, of equations and the fol-
lowing set of rules: the aziom schemes (o), (8),(n) and the inference rule scheme (€) of the simply
typed lambda calculus [{9], the set of rule schemes for usual equational reasoning and the following
inference rule scheme:

Apb M =M, : 1

(thinning) if AC A" (as graphs)
ApM =M, : 71

We write Ex, bra A D My =M, : 7if A b My = M, : 7 is derivable from the axioms and E,,
using the inference rules. A set of TA equations E;, determines the TA-theory Thy,(Er,). We

sometimes regard Th,,(E;,) as the set of all equations that are provable by the theory.

Parallel to ML-theory, we deifine well typed TA equations.

Definition 3.15 (Well typed TA equation) An equation & b M) = M. : p is well typed if
TAFXE DM :pand TAFZ b M, : p.

We also say that a set of TA equations is well typed if all its elements are well typed. It is easily
checked that if £, is well typed and axioms are restricted to well type equations then Th,.,(Er,)
1s also well typed. In what follows, we restrict a set of TA equations E£;, and axioms to be well

typed ones.

The following notations and notions are defined parallel to those in Core-ML: A p M; =g,

M, : 7, the notion of reductions, Exy Fra A DMy — Ms : 7r,and A b M, — 1, My . T.

Following Friedman, [37] we define a model of TA as follows:

Definition 3.16 (Frames and Extensional Frames) A frame is a pair (F,e) where F 1s a sel
{F:|t € Type} such that each F, ts non-emply and e is a family of binary operations e, ., :

Frieqy X Fyy — F3,. A frame 1s extensional if

V1,7 € Type,Vf,g € Fy v, (VdE F;,.fod=ged) = f=yg

We usually write F for (F,e). Given a frame F, a map ¢ : F;, — F;, is representable if there is
some f € Fr _,, such that Yd € F; .¢(d) = fed (f is a representative of ¢). In an extensional
frame, representatives are unique. For a frame F and a type assignment A, an F.A-environment ¢
is a mapping from dom(A) to |JF such that £(z) € Fq(;). We write Env” (A) for the set of all

F A-environments.

45

Definition 3.17 (Models of TA) An eztensional frame F is a model of TA if there is a semantic
mapping [] on terms of TA satisfying the following equations: for any ¢ € EnvM(A),

[Abz:T]e £(z)

[ApXz:n. M : 7 —me = the representative of ¢ such that

I

(Vd € Fr,)(6(d) = [A{z :=n} b M : n]e{z :=d})

[Ap(MN): 1] [AbM:m—rtlcefAp N :n]e

1

Note that for a given extensional frame, such a semantic mapping does not necessarily exist, but if

one exists then it is unique. If M is a model, then we write M[[] for the unique semantic mapping.

An equation A b M = N : 7is valid in a model M, write M Er, Apb M =N : 7 if
M[AB M : 7]= M[A > M : r]. Let Valid™ (M) be the set of all TA equations that are
valid in M. Write M |=1, F for F C Valid™*(M). For TA we have the following soundness and

completeness of equational theories [37]:

Theorem 3.5 (Friedman) For any model M and any TA-theory Thr,(Er,), if M f=rs Era then

Thra(Era) C Valid™(M). For any TA-theory T, there erists a model T such that Valid™*(T) =
T.1

3.3.2 Relationship between TA and Core-ML

Parallel to the relationship between Damas-Milner system and Core-XML, derivations of Core-ML

typings correspond to terms of TA. Define a mapping typedterm on derivations of Core-ML typings

as follows:

(1) If A is the one node derivation tree

(VAR)

then typedterm(A) = z.

(2) If A is a tree of the form

Ay
AbAr.ey i1 — T2

(ABS)

then typedterm(A) = Az : my. typedterm(A;).

46

(3) If A is a tree of the form

Al A,

{AaPP)
Ab(egeq): 1

then typedterm(A) = (typedterm(A,) typedierm(Ay)).

(5) If A is a tree of the form

Ay A,

(LET)
Abletz=e ineyend : 7

then typedterm(A) = typedterm(A,).

The type erasure of a pre-term A, denoted by erase(M), is the raw term defined as follows:

erase(r) = =z
erase((My Mjy)) = (erase(M;) erase(M,))
erase({Az : p. M)) = (Az.erase(M))

The following theorem corresponds to theorem 3.1:

Theorem 3.6 If TAF A b M : 7 then there is a dertvation A of A b erase(M) : 7 in Core-
ML such that typedterm(A) = M. If A is a typing dertvation of A b e : 7 then letezpd(e) =
erase(typedterm(A)) and TAF A b typedterm(A) : r.

Proof The first statement is easily proved by induction on the structure M.

The second statement is shown by induction on the hight of A. We only show the case for let
expression. Suppose A is a typing derivation of A > let £ = ¢, in e; end : 7 then A must be of

the form:

Al Ao

(LET)
Abletz=¢;ineyend : 7

By the definition of typedterm, typedterm(A) = typedterm(A;). By the typing rules, A, is
a derivation of the typing A b esle;/z] : 7. By the induction hypothesis, letexpd(es(e;/z])

erase(typedterm(A)) and TA + A b typedterm(A) : 7. But by the definition of leterpd,
letezpd(eafe, /z)) = letezpd(let z = ¢; in e end). |

47

Unlike the relationship between Core-XML and Damas-Milner system, we also have the following
desired property:

Theorem 3.7 If Ay, A, are typing dertvailions of a same ityping A b e : 7 then the following

equation holds:

A D typedterm(A,) =1, typedterm(A,y) : 1.
Proof The proof uses the following lemmas:

Lemma 3.9 Let ADM : rand A b e

that erase(M) = e. If A b M — ,M' : 7 then there is ¢ such that erase(M’) = ¢’ and

A b e— e 1 7. Conversely, if A b e — g e

: 7 be respectively TA term and Core-ML lerm such

: 7 then there is M’ such that erase(M') = ¢’
and Apb M — M : 1.

Proof This is proved by observing the following facts: (1) there is a one-one correspondence

between the set of 3n-redexes in M and the set of n-redexes in e, (2) if erase((Az : 7. M) M,)

((Az.ey) e2) then erase(M,{z := M,]) = e[z := e2], and (3) if erase(Az : 7. Mz) = (Az.ez) then
erase(M)=e. 1

Note that this result, combined with the property of the reduction rule (let) and the connection
between TA terms and typing derivations of ML implies that if TA has the strong normalization
property then so does Core-ML, which was suggested in [49, remark 15.32]. Technical difficulty of

treating bound variables mentioned in [49, remark 15.32] was overcome by our presentation of TA.

Lemma 3.10 If two terms A > M, : 7 and A b M,

: T are in J-normal form and erase(M,) =
erase(M2) then My = M,.

Proof The proof is by induction on the structure of M. The basis is trivial. The induction step
is by cases.

1. Case of M, = Az : ;. M{: By the typing rules, TA+ A{z := r} b M| : 7 for some m

and 7 = 7, — 75. Since erase(M,) = erase(M3), M> must be of the form Az : 7{. M3 such

that erase(M]) = erase(M}). By the typing rules, TA + A{x := 7{} b M, : 7} for some

75 and 7 = 7{ — 7j. Therefore m = 7{, 7 = ;. By definition, A{z := n,} b M

: 75 and
A{z .= 1} b M,

: 7, must be also in B-normal form. Then by the induction hypothesis,
M{ = Mj. This implies M; = M,.

48

2. Case of My = (---(z M})--- MP): By the typing rules, TA + A &> M} : 7| for some 7;
1 < i < n. It is shown by simple induction that A(z) = 7} — 78 — ... — 7} — 7. Since
erase(M;) = erase(M,), M, must be of the form (---(z M21)... M%) and erase(M}) =
erase(M3),1 < i < n. Then similarly we have TAF A > M} : 74 for some 75, 1 < i < n and
A(z) =7} - — --- - % — 7. This implies 7} = 7§,1 < i < n. Then by the induction

hypothesis, M{ = M-:;,l < i< n. Hence we have M, = M,.
Since M; is in B-normal form, we have exhausted all cases. |

We now prove the theorem. Let M, = typedterm(A,), M, = typedterm(A,). Alsolet A p M| : 7,
A b M} : 1 be normal form terms such that A > M, —,M{ : Tand A b M;— M3 : 7 (such
M{, M} always exist). By lemma 3.9, there are normal form terms A be; : 7 and A pes : 7
such that erase(M|) = e,erase(M;) = e; and A b e —» €1 : Tand A P> e — ye2 : 7. By
the uniqueness of normal form, e; = e;. Thus erase(A]) = erase(M;). Then by lemma 3.10,

M{ = MJ. (End of the proof of theorem 3.7) |

3.3.3 Semantics of Core-ML

We define the semantics of Core-ML relative to a model of TA. We first define the semantics of

Core-ML typings and then “lift” them to general Core-ML terms.
Definition 3.18 (Semantics of Core-ML Typings) The semantics of Core-ML typings rela-
tive to a model M of TA 1s defined as

M[A b e : 7]"e = M[A b typedterm(A) : r]e
for some derivation A for A pbe : T
By theorem 3.7 and the soundness of TA theories (theorem 3.5), this definition does not depend
on the choice of A.

For a given type assignment scheme I, the set of admissible type assignments under T denoted
by TA(T) is the set {A|dom(E) C dom(.A),36. Al%°™Z)= §(L)}. Under a given type assignment
A, theset TP(A,Z e : p)of the types associated with a term T be : pis the set {7|36. (Ar4o™®)
,7)=6(X,p)}. For a model M = ({F,|r € Type},e) and a set of types S, we write [Ir € S. F, for
the direct product (i.e. the space of functions f such that dom(f) =S5, f(r) € F;).

Definition 3.19 (Semantics of Core-ML Terms) The semantics M[X e : p]™" of a Core-

ML term T be : p relative o a model M 1s the function which takes a type assignment A € TA(Z)

49

and an environment € € Env™(A) and returns an element in It € TP(A,Z e : p). F,, defined

as follows:

MIE e : p]"Ac = {(r,M[A b e : T[Me)|re TP(AE be: p)}

For example,
MPprz.z: t—>tMAe={(r =T M[A DAz : 7.2 : T — 7]e)|T € Type}

Now if each element of F,,_.,, is a function from F,, to F,, then by the extensionality property of

M, we have
MO > Az.z - t =] A = {(t — 7,idF,)|T € Type}

where idx is the identity function on X.

3.4 Soundness and Completeness of Core-ML Theories

Let M be a given model of TA. M also determines the semantics of ML. We say that an equation
Abei=ep: pisvalidin M, write My Ebe;=er: p,iff M[EDe; : pfM = M[E ey :
pJ™* (as mappings). Let Valid™“ (M) be the set of all equations in Core-ML that are valid in M.
Write M &, F for F C Valid“*(M).

Theorem 3.8 (Soundness of Core-ML Theories) Let E,, be any set of ML-equations and M
be any model. If M =y Epy, then Thy (Eu) C Valid“ (M).

Proof Define mappings ®.¥ between sets of ML-equations and sets of TA-equations as:

P(Ey) = {APM=N_:7]3(ADbe =€ : 7)€ E\ such that
erase(M) = letexpd(e,), erase(N) = letezpd(ea)}
Y(Ery) = {Ebei=es: pVAT)If(AT)Z(E,p) then A DM, =M, : T)EEL,

such that erase(M;) = letezpd(e;), erase(M) = letezpd(e,)}

The proof uses the following lemmas.
Lemma 3.11 For any set of ML-equations Eyy, W(Thra(P(Em))) = Thu{Ewm)-

Proof By our assumptions on E\y, and the properties of the rules of ML-theories, T b e; =

ea : p € Thyu(Ewm) iff for all ground instance (A, 7) of (E,p), A bey = €2 : 7 € Thu(Ew)-

50

By definition of ¥, W(Thr,(®(E\wL))) also has this property. It is therefore enough to show that
Abe =€ : TE€Thu(Bw)ifTAbe =€y : 7 € W(Thpa(P(Ew))), which is proved by the
relationship between sets of rules of TA and those of Core-ML and the definition of ¥. 1

Lemma 3.12 For any model M, Valid“*(M) = ¥(Valid™(M)).

Proof Suppose £ D e; = ey : p € Valid"*(M). For any ground instance (A,7) of (I, p),
M[Apbe :]M = M[[A bey : T]ME. Let A}, A, be derivationsof A e; : 7and A Dey : 7
respectively. Then erase(typedterm(A;)) = letezpd(e), erase(typedterm(A3)) = letezpd(es), and
M[A p typedterm(A,) : 7] = M[A b typedterm(A,) : 7]. Therefore by definition & p>e; =
ez : p € ¥(Valid™(M)). Conversely, suppose T ey =€ : p € ¥(Valid™*(M)). Let (A,7)
be any instance of (X, p). By the definition of ¥, there are My, M> such that, A b M, = M, :
r € Valid™ (M), erase(M,) = letezpd(e,), erase(M») = letezpd(ea). Let A, A, be derivations
of A be; : 7and A ez : 7 respectively. Then it is shown by using lemmas 3.9 and 3.10 that
A b typedterm(A,y) =r, My : 7 and A D typedterm(A;) =7, Mo : 7. Then by theorem 3.5,
M[A >ey @ 7M™ = M[A > e2 : 7JM. Since (A, 7) is arbitrary instance of (L,p), we have
L pbe=ey:pe Valid"(M). |

We now conclude the proof of the theorem. Suppose M [y, Eu.. By the definitions of ¥ and
M[], M Era ®(Em). By theorem 3.5, Thry(®(En)) C Valid™(M). Since ¥ is monotone
with respect to C, by lemma 3.11 and 3.12, Thy (Ew.) C Valid™*(M). (End of the proof of
theorem 3.8) 1

Theorem 3.9 (Relative Completeness of Core-ML Theories) For any set of ML-equations
Eu and any model M, if Valid™* (M) = Thrp(®(Ew)) then Valid““ (M) = Thy(Ew)

Proof By lemma 3.11 and 3.12. 1
Then by theorem 3.5, we have:

Corollary 3.1 (Completeness of Core-ML Theories) For eny ML-theory G, there erists a
model G such that Valid"“(G) =G. 1

As a special case of theorem 3.9, for any model M, we have Valid"“(M) = Thy(0) if
Valid™* (M) = Thr,(@). Now let S be a full type siructure, that is, let F, be a countably infinite
set, F; _r, be the set of all functions from F;, to F;, and e is the function application. Friedman

showed that [37] Valid™*(S) = Thr,(8). Then we have:

51

Corollary 3.2 Valid“*(S) = Thy.(9). 1

This means that =,,, is sound and complete for the full type structure generated by countably
infinite base sets. Since =, is decidable (see remark on lemma 3.9), this implies that the set of all

true ML equations in. the full type structure is decidable.

3.5 Extensions of Core-ML

As a programming language, Core-ML should be extended to support recursion and various data
types including recursive types. This is done by adding constants and extending the set of types

and type-schemes as (possibly infinite) trees generated by various type constructor symbols. We

call the extended language ML.

We assume that we are given a set of type constructor symbols Tycon (always containing the
function type constructor : —). As observed in [31, 110], an appropriate class of infinite trees to

support recursive types is the set of regular trees.

Definition 3.20 (Types and Type-schemes of ML) The set Type of types of ML is the set
R(Tycon) of reqular trees. The sel Tscheme of type-schemes is the set R(Tycon,V) of regular

trees.
As an example of a recursive types, the following infinite type-scheme in a term representation we
have defined in section 2.2 represents a polymorphic list type:

(rec v.nil 4+ (t x v))

where + and x are binary type constructors representing sum and product and nil is a trivial type
which has only one element representing the empty list. The following recursive type corresponds

to the type of the set of all pure lambda terms:

(rec v.v —v).

We also extend the language with a set of constant symbols. In order to preserve ML’s implicit
type system, we assume that we are given a set Const of pairs of a constant symbol and a type.

We write ¢ : 7 for an element of Const.

Definition 3.21 (Raw Terms of ML) The set of raw terms of ML is given by the following

synlaz:

ex=z|c|Az.e|(ee)]|let z=¢in e end

52

where ¢ stands for the set of constant symbols that appear in Const.

For example, products can be introduced by assuming the following set of constants

pair : 1 — T, — (7 X T3) for each 7y, 7y,
first : (7 x 1) — 7 for each 7y, Ty,
second : (m x 13) — 7 for each 7, 7.

Definition 3.22 (Typings of ML) The typing derivation system for ML is the one obtained from
that of Core-ML by adding the following aziom:

(CONST) Apbe:7 ifc: 7€ Const

On the types of constants, we need the following assumption to preserve the existence of principal

typing scheme and decidability of type inference problem:

Assumption 3.1 For each constant symbol c appears in Const, there is a lype-scheme p such that

the set of all ground instances of p coincides with the set {r|c: 7 € Const}.

We write ¢ : p for such a type-scheme p. This condition is satisfied by many standard data

structures. For example. the sets of types of pair, first, second are represented by the following
type-schemes:
pair : tl — ty — (tl X lg),
ﬁrsi . (tl X tg) - tlv
second : (t; x t3) — to.
As we will see in chapter 5, however, there are data structures and operations essential to databases
and object-oriented programming that do not satisfy the assumption.

Under this assumption, the type inference problem of ML is still decidable.

Theorem 3.10 There is an algorithm PTS*t which, given any raw term e satisfying assump-

tion 3.1, yields either failure or (X, p) such that if PTS*(e) = (Z,p) then T e : p is a principal

typing scheme otherwise e has no typing.

Proof Algorithm P7S*? is obtained from algorithm P7 S defined in the proof of theorem 3.2 by

adding the case:

53

(5) Case e = ¢:
=0,
p is the type-scheme such that ¢ : p

Clearly this addition does not change the termination property of the algorithm.

The proof that P7 St has the desired property is obtained by adding the case for e = ¢ to the
inductive proof of lemma 3.4 and the inductive proof of the property that ML+ A be : 7iff

APbe:7=u I be : pinthe proof of theoremg 3.2. Both of them are immediate consequences

of the definitions.

All other parts of the proof remain valid without any change. In particular, the extension of the set

of types to regular trees does not change the proof since the proof of theorem 3.2 uses an unification

on regular trees. 1

With those extensions, ML uniformly support both recursive types and recursion. For recursion,
the special term constructor fix z.e (which is built in fun declaration in Standard ML) is no longer
necessary. As observed in [72], if recursive types are allowed then fixed point combinators are

typable. For example, the following well known fixed point combinators:

Ycurry = Af. ()‘I f(IJ:))(AI f(z'r))*

and
Yiuring = (AzAz. z(zzr))(AzAz. z(z22))

have the following principal typing schemes:
MLEO D Yourry - (t—1t)—1t,

and

MLF O b Yigring © (1 —1) — 1.

Moreover, the algorithm P7 S can infer these principal typing schemes. Later in section 5.6 we will
consider another fixed point combinator given by Plotkin [90] that represents recursive function

definition under the call-by-value evaluation strategy.

The extended language also infers recursive types for recursively defined functions. This elim-
inates the mandatory requirement of recursive type declarations in Standard ML. As an example

suppose we have the following primitives for sum types:
ist @ (&) +1t2) — bool,

54

- fun self x = x x;
> val self : (rec v.v—t)

- fun loop x = self self x;
> val loop : t; — 1t

~ fun isnil 1 = if isl 1 then true else false;
> val isnil : (; +1t3) — bool

- fun car 1 = if isnil 1 then loop Null else first (outr 1);
> val car : (t;+ (t2 x t3)) — 2

- fun cdr 1 = if isnil 1 then loop Null else second (outr 1);
> val cdr : (tl + (tg x ta)) — i3

- fun length 1 = if isnil 1 then O else 1 + (length (cdr 1));
> val length : (rec v.(t; +(t2 x v)) — int

Figure 3.1: Examples of Type Inference with Recursive Types

isl : (t; +t2) — bool,
inl © t) — (t1+t2),
intr . t; —(ta+1),
outl : (t; +1t,) — 1y,
outr : (t; +1t2) — ta
together with the primitive constants pair,firstand second for products we have defined earlier. Fig-

ure 3.1 shows type inference for recursive types by simulating an interactive session using Standard

ML conventions.

In order to define a semantics of the extended language, we need to extend the simply typed

lambda calculus TA and its semantics. We call the extended language TA*.

Definition 3.23 (Syntax of TAY) The set of pre-terms of TA*Y is the set of pre-terms of TA
eztended with the set of typed constants {c"|c : 7 € Const}. The proof system for typings of TA*
is the one oblained from that of TA by adding the following rule:

(coNsT) Abc™ T,
The notion of models is also extended with constants.

" Definition 3.24 (Models of TA*) An eztended frame is a frame with a function C on constants

55

such that C(c") € F,. An eztensional eztended frame is a model of TA" if there is a semantic
mapping [] on terms of TA™Y satisfying the conditions of the model of TA (definition 3.17) and the

following equation:

[A > : r)e =C(c).

Breazu-Tannen and Meyer extended (19] Friedman’s soundness and completeness of equational
theories to languages with constants and a set of types satisfying arbitrary constraints. Since the
set of types of TAt satisfies their definition of type algebra, the soundness and completeness of

equational theories (theorem 3.5) still holds for TA*.

The relationship between TA% terms and derivations of ML typings is essentially unchanged
and theorem 3.6 still holds (by adding the case for constants). However, theorem 3.7 no longer
holds for TA*. There are non convertible TA* terms that correspond to a same ML typing. For

example, consider the ML typing:
@ b (second((pair Az. z)1)) : int.
The following two TA* terms both correspond to derivations of the above typing:
0 b (second(int—int)xint)—int ((pairdint—int)mint—((int—int)xint) \o 0y £)1)) : int,
0 1> (second (bocimboohxint)—int (g (bool—bool)—int—((bool—boo)xint))z . pool. £)1)) : int.

But they are not convertible to each other (in =;,). An obvious implication of this fact is that we
cannot interpret constants arbitrarily. In order to define a semantics of ML terms via a semantics

of TA*, we need the following restriction:

Definition 3.25 A model M of TAt is abstract if erase(M) = erase(N) implies M[A b M :
Tfl=M[AB N : 7]

Abstract models are models in which the following equations are valid:

(erasure) AbM = N:17 if erase(M) = erase(N).

By the completeness theorem for equational theories, TA* always has an abstract model. We
further think that the class of abstract models covers a wide range of standard models of languages
with standard set of constants. For example, ordinary interpretation of pair and second certainly
satisfy the above condition and suggests an abstract model. Any abstract model of TA* yields
a semantics of ML. The definition of a semantics of ML relative to an abstract model of TAY is

the same as before (definition 3.18). The well definedness of the definition follow directly from the

56

property of abstract model instead of theorem 3.7. The soundness and completeness of equationat-
theories of ML (theorem 3.8 and 3.9) hold with respect to the class of abstract models. Proofs are
the same as before except that we use the condition of abstract models in place of theorem 3.7.
The condition of abstract models can be regarded as a necessary condition for fully abstract models

we will exploit in the next section.

3.6 Full Abstraction of ML

One desired property of a denotational semantics of a programming language is full abstraction
[77, 92, 81, 76], which roughly says that the denotational semantics coincides with the operational
semantics. In this section, we will show that if a model of TAY is fully abstract for an operational

semantics of TA' then it is also fully abstract for the corresponding operational semantics of ML.

Following [92, 76], we define an operational semantics as a partial function on closed terms of
base types. Let £7*, £ML be respectively the evaluation functions of TA+ and ML determining their
operational semantics. We write £(X’) § y to means that £(X) is defined and equal to y. On the
operational semantics of TA* we assume that it depend only on structure of terms. Formally, we

assume £T* to satisfy the following property:

Assumption 3.2 For two termsO b M : band Q b N : b iferase(M) = erase(N) then E7*(0 >
M :b)y0bct:biff EAOBN:b)J0 >t b

We believe that this condition is satisfied by most operational semantics of explicitly-typed pro-
gramming languages. On the operational semantics of £M“ we assume the following property on

evaluation of let-expressions:
Assumption 3.3 EM@ be : D)0 >c: b iff EMY(D b letezpd(e) : b) Y0 b c : b.

This condition correspond to the equality axiom (let). Note that the rule (let) corresponds to
the rule (#) and does not agree with the call-by-value evaluation strategy. Finally we assume the

following relationship between the operational semantics of TA* and that of ML:

Assumption 3.4 For terms O b M : b of TAY and @ b e : b of ML, if erase(M) = e then
ETMODM HUBD bifEMDbDe b)Y bc: b

We believe that in most cases it is routine to construct £M“ from given £7* that satisfies the

condition and vice versa.

57

A context C[]in TA* is a TA' pre-term with one “hole” in it. We omit a formal definition.
A context C[] is a closing b-contezt for A > M : r if there is a derivation of TAF § > C[M] : b
such that its sub-derivation of (the occurrence in C[M] of) M is a derivation of A > M : 7.

Definition 3.26 (Operational Equivalence in TA) Two TAY terms AbM : rand ABN : 7
are operationally equivalent, denoted by A b M ~ N : 7, iff for any closing b-context C[] for
these two terms, E™(0 > C[M] : b) Y0 b : b if ET*B B C[N] :)40 b cb @ b.

In ML, under our assumption on let-expressions, it is enough to consider raw terms and contexts
that do not contain let-expression. Therefore we define a context ¢[] in ML as a context of the
untyped lambda calculus. A context ¢[] is a closing b-context for £ e : p if there is a derivation

of @ i cfe] : b such that its subderivation of e is a derivation of an instance of £ b e : p.

Definition 3.27 (Operational Equivalence in ML) Two ML termsE pe; : pand T pey @ p
are operationally equivaleni, denoted by X b e b ea : p, iff for any closing b-contezt ¢[] for these

two terms, EM*(D D cler] () IO Dc: biFEM(D b clea] : D) YD b : b

Definition 3.28 (Full Abstraction) A model M is fully abstract for £E™ if M Ers AD M =
N :rtif Ap M XN :1. A mode M is fully abstract for EM" if M ey S bey =€ @ p iff

ML
Epexer:p.

Note that a model M is fully abstract for £7* then it is an abstract model (definition 3.25). This

means that any fully abstract model for £7* yields a semantics of ML. Moreover, we have:

Theorem 3.11 If ¢ model M is fully abstract for £7* then M is also fully abstract for EM".

Proof Let M be any fully abstract model for £74. By our assumption on £M" and the definition
of M[]™®, it is sufficient to show the condition of full abstraction for £“* for terms that do not
contain let-construct. Suppose T b e, x ea : p, where e;, 2 do not contain let-construct. By the
definition of =, A be; = ey : 7 for any ground instance (A, 7) of (£,p). Let ABDM 7, ABN : 7
be TA* terms that correspond to derivations of A b>e; : 7 and A b ea : 7 respectively. Let C[]
be any closing b-context for A b M : rand A b N : 7. Let ¢[] be the context obtained by
erasing all type sppecification. Then erae(C[M]) = c[e1], erase(N) = c[ez] and ¢[] is a closing b
contex for A b e; : 7 and A B ey : 7. By assumption 3.4, ET4A B C[M] : &) 4 0 b ¢ : biff
EM (Abcler] 1 b)40bc:band ETMABC[N]: b)) U0t : biff EM(ADcler] 1) YO be : b
Since A be; x es T, AbM XN T By the full abstraction of M for £7* and by the definition

58

of MM, M |Eme £ b e; = €2 : p. Conversely, suppose M |y, T D €1 = €2 : p, where eg, €5
do not contain let-construct. Let ¢[] be any closing b-context for £ ey : pand T ey : p. Let
A; be a derivation of @ D c[e;] : b such that it contains a subderivation A, of A > e; : 7 where
(A,) is an instance of (£, p). Since ¢[] is a closing b-context for T p>e; : p, such A; always exists.
Since ¥ > ey : pis a term, there is a derivation Az of A > ey : 7. Then by typing rules and the
definition of contexts, the derivation A4 obtained from A; by replacing the subtree A, by Az isa
derivation of @ t>cles] : b. Let My = typedterm(A,), My = typedterm(A3), M3 = typedter.m(A;;),
M, = typedterm(A,). Then erase(M3) = ey, erase(Ms) = e3. Clearly M1, M4 respectively contain
M, M3 as subterms. Moreover, the TA* contexts obtained from M;, M, by replacing respectively
M, M3 with the ‘hole’ are identical. Call this context C[]. Then erase(C[M,]) = c[e;] and
erase(C{M3]) = clea]. Since M=y, E b ey =e2 : p, M sy A B My, = Mz : 7. By the full
abstraction of M for £, £ (0 B C[M2] : 1) Y0 b c® : bif ET* (O B C[M3] : 7) 4B b b : b
By assumption 3.4, E"“ (0 b cle] : D) UYD D c: bif EV (D D cfea] : 0) 4O > c: b |

The importance of this result is that we can immediately apply results already developed for
explicitly typed languages to implicitly typed language with ML polymorphism. As an example,
Plotkin constructed [92] a fully abstract model of his language PCF with parallel conditionals.
It is not hard to define the “ML version” of PCF (with parallel conditionals) by deleting type
specifications of bound variables and adding let expressions. Its operational semantics can be also
defined in such a way that it satisfies our assumptions. We then immediately have a fully abstract

mode] for the ML-version of PCF.

59

Chapter 4

Database Domains

This chapter constructs a theory of database domains and proposes a type system for complex
database objects. They will not only provide a unform framework for various data models for
databases including the relational model, nested relations, and complex object models but they
also enable us to integrate those data models into an ML style polymorphic type system we have
investigated in the previous chapter. This integration will be carried out in the next chapter. Most

of the results in this chapter were presented in [83).

4.1 Introduction

There have been a number of attempts to develop data models to represent complex database ob-
Jects beyond the first-normal-form relational model. Examples include nested relations 36, 2, 89, 96]
and complex object models [59, 14, 4]. (See also [57] for a survey.) As we have argued in sec-
tion 1.1, however, these complex data structures and associated database operations have not been
well integrated in a type system of a programming language, creating the problem of “impedance
mismatch”. I believe that the major source of this mismatch problem is poor understanding of the
properties of types for databases and the structures of domains for database objects. Traditionally,
the theory of types of programming languages has been focussed on function types and domains of
functions. Neither the properties of database type systems nor their relationship to type systems

of programming languages have been well investigated.

The goal of this chapter is to construct a theory of database type systems that will serve as

a “bridge” between complex data models and type systems of programming languages and to

60

propose a concrete database type system that is rich enough to represent a wide range of complex
database objects. Later in chapter 5, by integrating the type system we develop in this chapter
and ML type system we have analyzed in the previous chapter, we will develop a strongly typed
polymorphic programming language for databases and other data intensive applications. In the rest
of this section, we overview the data structures and operations needed for databases and outline

our strategy.

4.1.1 Data Structures for Database Objects

As suggested by Cardelli [24], one way to represent complex objects in a programming language is
to use labeled records and labeled disjoint unions (or labeled variants) found in many programming
languages such as Pascal, Standard ML [47], Amber [23] and Galileo [7]. The following is an

example of a labeled record expression:
[Name = [Firstname = " Joe*, Lasiname = * Doe"], Dept = “Sales", Office = 278].

Types for expressions can be easily defined. For example, the above record is given the following
type:

[Name : [Firstname : string, Lastname : string], Dept : string, Office : int].

Assuming computable equality on each atomic type, equality on expressions that do not contain
functions is computable and it is not hard to introduce (finite) set expressions on those complex
expressions. These three data constructors — record, variant and set — are basic building blocks for
complex object models. In database literature, they are respectively called aggregation, generaliza-
tion and grouping. Tuples in the relational model [29] are represented by records that only contain
atomic values and relations are simply sets of those records. Data structures in various forms of
non-first-normal-form relations [36, 2, 89, 96] are represented by the combination of record and
set constructors. Data structures in complex object models [4, 59, 14] correspond to unrestricted
nested structures generated by the above three constructors. When combined with recursive defini-
ton (or cyclic data constructor), unrestricted nesting of these three constructors seem rich enough

to represent virtually all complex data models.

It is not hard to integrate these data structures into a type system of a programming language.
Many languages allow unrestricted nesting of records and variants. Some languages such as Miranda
[107] also allow recursively defined types and expressions. As we have mentioned, finite sets can also
be introduced in those type systems. Moreover, recent studies on type inference [111, 85, 63, 93] -

including a contribution of a part of this study ([85]) which will be presented in the next chapter

61

~ show that these data structures can be integrated in a polymorphic type system with static type
inference. Therefore, as far as data structures are concerned, type systems of several programming

languages seem to have sufficient expressive power to represent databases.

4.1.2 Operations on Complex Objects

In a programming language, in addition to the operations that construct these structures, the

following standard operations are available (or can be easily added):

o field selection from a record,
¢ field modification (update) of a record,
e cases analysis for a variant,

e standard set theoretic operations and a primitive for mapping a function over a set.

It is therefore tempting to represent a database of complex objects as a set of complex expressions

which is manipulated by functions defined using the above primitive operations.

An obvious problem of this approach is that, in practice, both expressions and sets become very
large and contain a great deal of redundancy. This problem is elegantly solved in the relational
model by the introduction of the two database operations — (netural) join and projection. Instead
of representing a database as one large set (relation) of complex tuples, we can first project it
onto various small relations and then represent a database as a collections of those small relations.
Larger relations are obtained by joining these small relations when needed. In order to integrate
complex database objects in a programming language, it is therefore essential to generalize join
and projection so that they work uniformly on complex expressions and to introduce them in a
programming language. I further believe that properly generalized join and projection together with
standard operations on complex expressions form a sufficiently rich set of operations for complex
database objects. It will be also shown in chapter 7 that join and projection play essential roles in

manipulating object-oriented databases.

There have been some arguments on expressive power of sets of operations on data structures
for databases. A well known example is that the relational algebra cannot compute the transitive
closure of a given relation [5]. However, the lack of such computational power does not imply
incompleteness of the set of operations on database objects. It simply suggests the desideratum

that data models should be integrated into a standard computational paradigm such as function

62

abstraction and recursion, which are readily available in programming languages. For example, it
is unnatural to try to compute a transitive closure by a set of primitive operations for records and
sets. It is even more unnatural to require such computational power for those primitive operations.
The computation of a transitive closure naturally suggests iteration or recursion and is of course
computable if the relational algebra is integrated in a programming language where recursion or

iteration are available.

4.1.3 A Strategy to Generalize Join and Projection

There are several eflforts to generalize join and projection beyond the first normal form relations
[96, 88, 36, 62). However, their definitions still depend on the underlying tuple structures using
some forms of unnesting or flattening operations. For example, in [96] the notion of pariition
normal form relations was introduced, which is essentially those that can be transformed into first
normal form relations by unnesting. By imposing further restrictions on partition normal form
relations they extended join to non first normal form relations. However, the justifications for these
ad hoc restrictions are not clear besides the fact that the relational algebra including join can be
extended to those restricted non first normal form relations. Here we would like to extend join
and projection uniformly to arbitrary complex database objects including recursively defined ones
in such a way that they can be integrated in an ML style type system as polymorphically typed
computable functions. It should be worth noting that join and projection in the relational model

are polymorphic operations in the sense that are defined uniformly over relations of various types.

Join and projection in the relational model are based on the underlying operations that compute
a join of tuples and a projection of a tuple. By regarding tuples as partial descriptions of real-world
entities, we can characterize these operations as special cases of very general operations on partial
descriptions; the one that combines two consistent descriptions and the one that throws away part

of a given description. For example, if we consider the following non-flat tuples
ty = [Name = [Fn = " Joe"]]

and

t; = [Name = [Ln = " Doe"]]

as partial descriptions, then the combination of the two should be
t = [Neme = [Fn = "Joe", Ln = * Doe"]].
Conversely, the tuple t; is considered as the result of the projection of the partial description ¢t on

63

the structure specified by the type

[Name : string,[Fn : string]].

Operations that combine partial information also arise in other areas of applications. Examples
include the meet operation on Ait-Kaci's -terms [6] and the “unification” operation on feature

structures representing linguistic information (see [102] for a survey).

Based on this general intuition, in this chapter, we propose a framework for type systems for
database objects and their denotational semantics. We then construct a concrete database type
system and its semantic domain. The type system contains arbitrarily complex expressions definable
by labeled records, labeled variants, finite sets and recursive definition. On its semantic domain,
Join and projection are defined as polymorphically typed computable functions. Furthermore, we
carry out these constructions in a completely effective way. In our framework, we require types
and objects to be finitely representable and the properties needed to define database operations to
be decidable. This means that, once we have constructed a type system and its semantic domain
based on our framework, it not only provides an uniform and elegant explanation of the properties
of the type system and the structures of domain of complex database objects, but it also provides

representations and algorithms to integrate them into a programming language.

We start with our investigation by analyzing the relational model. This analysis will also serve
as an introduction to the subsequent abstract characterizations of database type systems and their
semantic domains. Based on the analysis of the relational model, in section 4.3, we characterize
the structures of type systems in which polymorphic join and polymorphic projection are definable
and propose a framework for their denotational semantic. In section 4.4, we define a concrete type
system for complex database objects and construct its semantic domain. A part of the construction
of the semantic domain (subsection 4.4.4) is based on the idea we have developed in [22] that a
certain ordering on powerdomains can be used to generalize the relational join uniformly to complex
objects and the idea due to Ait-Kaci [6] that a rich yet computationally feasible domain of values
is nicely represented by labeled regular irees. I have also noticed that Rounds’ recent work [97]

achieves a result similar to one presented in subsection 4.4.4.

4.2 Analysis of the Relational Model

We first give a standard definition of the relational model. Since our purpose is to extract the
essence of the type structure of the model, we define the model as a typed data structure. We also

integrate null values in the model. The importance of null values has been widely recognized and

64

{[Name = "Joe Doe", Age = 21, Salary = 21000]
[Name = " John Smith", Age = null;n;, Salary = 34000] }
: {[Name : string, Age : int,Salary : int]}

Name:string | Age:int | Salary:int
* Joe Doe" 21 21000
v John Smith" | nullip; 34000

Figure 4.1: A Simple Relation and its Representation as a Table

several approaches have been proposed [16, 100, 68, 112]. Among them, we adopt the approach
that null values represent non-tnformative values [112]. This approach fits well in our paradigm
that database objects are partial descriptions and plays a crucial role in our theory of semantic

domains of database type systems, which will be developed in the next section.

We continue to assume that £ and B are respectively a given set of labels and a given set of base
types. We also assume that we are given a set {Dy|b € B} of pairwise disjoint sets of atomic values.
It should be noted that D, does not necessarily coincide with the set F} for the type b in a model
of a programming language we have defined in section 3.3. It is required that D, C F} (or there is
some injective mapping from D to F3) but we do not assume the inverse inclusion. For example,
when recursive functions are definable, Fz should contain a value that corresponds to expressions
that diverge, which is not an element of Dy. For each base type b, we introduce a special symbol

nully for the null value of the type b. We say that ¢ has the type b if ¢ € Dy or ¢ = null,.

Definition 4.1 (Tuples and Relations) A tuple type T has the following syntaz [I; : by, ... I :
bn] where ly,..., 1, are pairwise distinct elements of L and b, ...,b, € B. A tuple t of the tuple
type [I} : b1,....1n : ba) is a term of the form [l} = c1,...,ln = cn] such that ¢; has the type
b; (1 < i< n). A relation type (or relation scheme in the database literature) R is a term of the
form {T} for some tuple type T. A relation instance r of the relation type {T} is a term of the
form {{t1,...,tn]} such that each t; (1 < i< n) is a tuple of the type T.

Regarding a tuple t as a function from a finite subset L C L to [J,¢g Db U {nulls|b € B}, we write
dom(t) for the set of labels in t and #(!) for the value corresponding to the label /. Similar notations
are used for tuple types. Figure 4.1 shows a simple example of relation instance and its standard

representation as a table.

Relation instances are terms representing sets, for which the following equations hold:

£t ..t} =4fti,,.... ;. }ifiy,..., 1, is a permutation of 1,...,n

65

and
ftit,ta, .. 3 = ftants, .. Jif ty =ta.
We consider relation instances as equivalence classes of the above equality. Under this equality,
relation instances behave exactly like sets of tuples, on which ordinary set-theoretic operations are
defined. Based on this fact, we treat relation instances as sets of tuples and apply ordinary set-
theoretic notions directly to them. Readers might think that this strictly syntactic treatment only
introduces (trivial but annoying) complication to the model that were simpler and more intuitive
if we treated them just as sets. This had been true if we were only interested in sets of finite tuples
such as flat relations in the relational model. However, it is no longer possible to maintain such
intuitive treatment when we allow infinite structures through recursive definition. Our syntactic
treatment provides a uniform way to deal with complex structures involving recursively defined
data.
Among the operations in the relational algebra, we only define join and projection. As we have
argued, these two operations make the model a successful data model for databases. They also

distinguish the model from standard type systems of programming languages. As we will see in

section 5.7, other operations are definable using standard operations on records and sets.

Two tuple types T1,T> are consistent if for all I € dom(T1) N dom(T3), T1(I) = T»(l). Let
T1,T2 be two consistent tuple types. Define jointype(T;,T2) as the type T such that dom(T) =
dom(Ty)Udom(T3) and T(l) = Ty (1) if | € dom(T) otherwise T(!) = T>(). The two tuples t;,1; are
consistent if for all { € dom(ty)Ndom(t2) one of the following hold: (1) ¢1(1) = t2(1), (2) t1({) = null,

~and to(l) € Dy or (3) t1(1) € Dy and t2(!) = nully,. Two relation types {71}, {72]} are consistent
if Ty, T, are consistent. For two consistent relation types {T1 }, {72}, define jointype({T1 }, {T-})

as the relation type {jointype(T1,T2)}.

Definition 4.2 (Relational Join) Ift;,, are consistent tuples then the join of {1,152, denoted by
join(ly,t2), is the following tuple t:

dom(t) = dom(t,)U dom(ts),

1) ty(1) ifl € dom(t,) and either | € dom(ty) or to(l) = null,

t2(l) otherwise

If ry,ro are relation tnstances having consistent relation types then the (natural) join of ry, 7o,

denoted by join(ry,), is the relation instance {join(t),t2)[t; € ry,t2 € ro,1;,t, are consisient}.

For join(ty,t2) and join(r;,r2) the following properties hold:

66

Proposition 4.1 Let t;,t; be tuples of the type T1, T respectively. If join(ty,t2) is defined then
il has the type jointype(T),T2).

Let ry,r9 be relation instances of the type Ry, Ry respectively. If join(ry,ry) is defined then it
has the type jointype(R,, R2).

Proof By definition, dom(t) = dom(jointype(T,T2)). Let | be any label in dom(t). Then either
join(ty,t2)(!) = t1(I) with the type T(l) or join(t;,t2)(I) = t2(!) with the type T5(I). But by
definition, T} () = jointype(Ty,T3)(l) for all | € dom(Ty). Similarly for 75. Thus ¢ has the type
Jointype(Ty, T>).

Ry, R, must respectively be of the forms {71}, {72 }. Let ¢t be any tuple in join(r;,r2). By
definition, there are some t; € r; and t3 € rp such that t = join(t;,t3). By the previous result,
t has the type jointype(T),T2). Then by definition, r has the type {jointype(T7,T2)}, which is
equal to jointype(R;, R3). 1

Definition 4.3 (Relational Projection) Ift is a tuple of the form [l = ¢y,...,ln = cn,..] such
that each c¢; has the type b; (i < n) then the projection of t onto the type T = [l : by, ... 1, : b,],
denoted by projectT(t), is the tuple [l = ¢1,...,ln = ¢n).

If r is the relation instance such that for allt € r, project(t) is defined then the projection of
r onto the type {T}}, denoted by projectiTY(r), is the relation instance { project ()|t € r}.

For project” (1) and project!T¥(r), the following properties are immediate consequence of the defi-

nitions:

Proposition 4.2 If project? (t) is defined then it has the type T. If projectlT B(r) is defined then
il has the type {T].1

When restricted to tuples without null values, the above definitions are straightforward trans-
lations of the corresponding definitions in the relational model found for example in [108, 35, 73].
The operation join is extended to relations containing null values. Figure 4.2 shows an example of

a join of relations containing null values.

Note that the definition of join reflects the intended semantics of null values. Projection is
specified by a type not just a set of labels. This will allow us to generalize the relational projection

to complex structures.

Remark: The combination of non-informative null values and join operation may sometimes

67

Name | Age | Office

Name | Age | Salary

"Joe Doew | 21 | 21000 "Joe Doe” | nulln, | 103
" John Smith* | nully, | 34000 "John Smith" | nullin, | 278
nt "Mary Jones" 41 556
1
T2
Name | Age | Salary | Office
" Joe Doe" 21 21000 103
" John Smith" | null,, | 34000 278
join(ry,r2)
Figure 4.2: Join of Relations Containing Null Values
yield counter-intuitive results.! For example, the join of the two relations
Course I Instructor Course l Student
*Math110" | " K. Jones" " CIS310" “Joe Doe"
nullyiring "S. Broun" nullyyring | " John Smith®
is the relation
Course Instructor Student

"Math110" | “K. Jones" | "John Smith"
wCIS310" | “S. Brouwn" " Joe Doe"

nullytring “S. Broum" | "John Smith"

which suggests that instructor "S. Brown" is related to students "Joe Doe", *John Smith", al-
though no such relationship is implied by the two original relations. Based on this observation, it
has been argued [61] that join (as well as other relational operations) could not be extended “se-
mantically correctly” to this form of null values. This is, however, not the problem of interpretation
of null values but the problem of join operation. Without null values, join still yields same kind of

counter-intuitive results. For example, the join of

Name l Age
“Joe Doe" 21
“John Smith» | 21

is the relation

1This was pointed out to me by Tomasz Imielinski

68

Name Age | Salary
"Joe Doe" 21 | 21000
" Joe Doe" 21 | 34000

"John Smith | 21 | 21000
“John Smith* | 21 | 34000

which suggests that "Joe Doe" is related to both the salaries of 21000 and 34000. Intuitively,
the situation is stated that natural join as defined in the relational model does not necessarily
“preserve semantics of relations”. In order to investigate the problem, we need to construct a
model of our “real world” and to define semantics of relations with respect to the model. This is
out of the scope of this thesis and I refer the interested readers to [82] where this problem was fully
investigated in the context of flat relations with null values and it was shown that join can be given
a satisfactory semantics which is completely compatible to non informative null values. This study

can be extended to complex database objects we are investigating in this chapter.

Returning to our problem of extending join and projection, the above definitions apparently
depend on the underlying structure of flat tuples. Here, we would like to characterize join and
projection independently of the underlying data structures so that we can generalize them uniformly
to a wide range of complex data structures and introduce them into a type system of a programming
language. Our guiding intuition is the idea we have exploited in [22] that database objects are partial
descriptions of real-world entities and are ordered in terms of their “goodness of descriptions”. The
idea of partial description was originally suggested by Lipski [69]. The corresponding order structure
was studied by Biskup [16] and Zaniolo [112] in connection to null values and is closely related to

the orderings on ¥-terms [6] and directed graphs [97].

For generality and simplicity, we treat tuples and relations uniformly. We call both tuple types
and relation types flat description types (ranged over by o) and tuples and relation instances
flat descriptions (ranged over by d). For each flat description type o, we write D, for the set
of descriptions of the type o. A flat description type represents a structure of descriptions. Such
structures are naturally ordered to represent the intuition that one contains the other. For example,
if oy = [Name : string, Age : inl] and o, = [Name : string, Age : int, Office : in{], then the structure
represented by o, contains the structure represented by ;. This intuitive idea is formalized by the

following ordering:

Definition 4.4 (Ordering on Flat Description Types) The information ordering < on flat

description types is the smallest relation containing:

(y:by, oo dniba]l < [iby, . lniba,. .,

69

lor} < {ou} for1 <o

This relation is clearly a partial order. Moreover, since it is based on the inclusion of fields of

records, this ordering has the following properties:

1. < on the set of description types has the pairwise bounded join property, and

2. the ordering relation < is decidable and least upper bounds (if they exist) are effectively

computable.

The importance of this ordering is that it provides the following characterization of the types

of the relational join and the relational projection:

Theorem 4.1 (Types of Relational Join and Projection) Let d,,d>» be flat descriptions of
the types 01,02 respectively.

1. If join(dy,d7) is defined then oy U 0y exists and join(dy,d;) has the type o1 Uoa.

2. If project’(d;) is defined then o < o1 and projeci®(d,) has the type 0.
Proof The property of join follows from proposition 4.1 and the fact that jointype(o,, o) is defined
iff o1 U o5 is defined and, when they are defined then their values are equal. (In what follows, we
usually write F = G to mean that F is defined iff G is defined and when they are defined then
their values are equal). The property of project follows from proposition 4.2 and its definition. 1

We can then give the following type schemes (polymorphic types) to join and projection:

jomm : (o x03)—o1U0s for all ¢y, 03 such that oy U oo exists,

projecl* . o2 — 0y for all oy, 07 such that o < o5.

Since the ordering relation is decidable and least upper bounds are effectively computable, these

types allow us to type-check expressions containing joins and projections.

We next characterize these operations themselves using orderings on descriptions. As observed

in {16, 112], the introduction of null values induces the following ordering on tuples:
h=z1,....ln =2,] Clli = y1,...,ln = yn] iff either z; = nully or z; = y; (1 < i < n).

This ordering is interpreted as the ordering of “goodness of descriptions”. The following is an

example of this ordering:

[Name = "Joe Doe", Age = nulli,] C [Name = * Joe Doe", Age = 21].

70

It is clear that for any tuple type T this ordering is a partial order on Dy with the pairwise bounded
join property. Join on tuples of a same type is characterized as the least upper bound operation
under this ordering, which formalizes our intuition that join is an operation that combines partial

descriptions:
Proposition 4.3 (Join of Flat Tuples) Ift;,t2 € Dr then join(t;,23) =t Uts.
Proof By definitions. |

For a relation type R, an appropriate ordering on Dg to characterize join on Dg turns out to be
the ordering known as Smyth powerdomain ordering [104]. To define the ordering, we first define

the preorder <:

ftr, ..t} 2L R BV € {t],. .t} T e {tr, . ta) G T

The relation =< is not antisymmetric. However, we can take the quotient poset (definition 2.3)

induced by the preorder:

Proposition 4.4 For any relation type R, [(Dgr,=<)] is a poset with the pairwise bounded join

property.

Proof < is clearly transitive and reflexive and therefore (Dg, <) is a preordered set. Let r; and
be any elements in Dy under <. Let r = {join(t;,t2)|t; € r1,t2 € ry,t1,12 are consistent}. Since
t; Uty = join(t;,tz), as a special case of the result shown in [104], r is a least upper bound of r

and r,. Then the proposition follows from lemma 2.1. 1

We regard a relation instance as a representative of the corresponding equivalence class induced by
the above preorder and write d; U dy for the least upper bound of the corresponding equivalence
classes. We also write (Dg,C) for [(Dg,<)]. Readers are referred to [22, 82] for the intuition
and relevance of this ordering in various aspects of databases. For the purpose of formalizing the

relational model, this ordering provides the following characterization of join on relations we have

shown in [22}:
Proposition 4.5 (Join of Flat Relations) If r;,r; € Dg then join(r),m)=r Ur; =r.1

In order to characterize projections and joins of descriptions of different types, we interpret the

partially ordered space of flat description types by a space of domains connected by coercions.

71

Definition 4.5 (Coercions between Relational Domains) The sel of up-coercions is the set

of mappings {¢s,~q,)01 < 02} defined as

Lifor=[l:by,...dn:bp), 00 =l : b1, dn s bnylngr S bngrs oo dngm 2 bpgm) (n,m > 0)
then

¢o,-—~ag([11 =C1y..- vln = Cﬂ]) =

lh=ci...iln=cnlppr=nully, ... lnom = nully,],
2. ifoy = o1}, 02 = {o3}} and 0] < 75 then
¢01—°03(r) = ﬁd’v;—oo’,(t)lt € TB'

The set of down-coercions is the set of mappings {o,—~q,|02 € 01} defined as
Loifoy=[l1:b1,...)n i bn,..] and oo =[ly : by, ... 1n : 3] (n > 0) then
Yo,—o(i=c1,....ln=cn,..])=[lh =c1,...,ln = cn],
2. ifoy = {01}, 02 = {4} and o4 < o} then
Yorear(r) = (o1~ s D)l € 7.

Intuitively, an up-coercion coerces a description to a description of larger structure by “padding”
extra part of structure with null values. A down-coercion on the other hand coerces a description

to a description of a smaller structure by “throwing away” part of its structure. For example, if

oy = [Name: string, Age : int],

02 = [Name: string, Office : i},

o3 = [Name: siring, Age : int, Office : nf],
ty = [Name="Joe", Age = 21],

ta = [Name="Joe", Office = 278],

ts = [Name="Joe", Age = 21, Office = 278]

then
bo,—0s(t1) = [Name="Joe", Age = 21, Office = null,,],
Go,—0s(l2) = [Name="Joe", Age = nulli,,, Office = 278},
Yos—a,(ta) = t1,

¢03—003(t3) = t2‘

72

We then have the following equations:

join(ty,ta) = ¢o,—0,(t1) Up,, $os—0s(t2),
project, (t3) = Yoy—0, (t3),
project, (t3) = Yoy—o,(t3)-

This example suggests that computing a join of descriptions of types o, 02 corresponds to coercing
them to descriptions of the type o) U o2 followed by computing their least upper bound. The

projections correspond to down-coercions. Indeed we have:

Theorem 4.2 (Relational Join and Projection) Letd; and d; be any flat descriptions of types

01,02 respectively and o be any type such that o < 0.

jOin(dlvd2) = ¢al—o(o|U03)(dl) UDgl....,2 ¢o;—»(o,uo;)(d2)’
project’(d,) VYo, —o(d1).

Proof By the definitions of ¢ and join, join(dy,d2) = join(és,—(0,ue;)(d1), Poy—(01u02)(d2)).
Then the property of join follows from propositions 4.3 and 4.5. The property of projection is by

definitions. 1

The semantic space of the relational model is therefore characterized by the set
{(Dsy,C)|e is a flat description type}
connected by the set of pairs of up- and down-coercions
{(80,=021 Yo,—0,)01 < 02}
associated with the set of join operations {joiny, 4,1~ (0,u0,)|01 U 02 exists} defined as
105, x03)=(01002)(d1, 82) = b5, —(0,u02)(d1) U, 4., 0s—(0yu04)(d2)

and the set of projection operations {project;! ., |01 < 02} defined as

P"Of“ig;—.o,(d) = wa?"‘”l(d)‘
The importance of this characterization is that it applies to any set of domains on which we
can define information orderings and appropriate sets of coercions. Based on this analysis, in the

next section, we formally define the structures of type systems for databases and their semantic

domains.

73

4.3 Database Domains

As a generalization of the set of flat description types in the relational model, we define the notion

of database type systems:
Definition 4.6 (Database Type Systems) A database type system is a poset of types such that

1. it has the pairwise bounded join property, and

2. the ordering relation is decidable and least upper bounds (if they ezist) are effectively com-

putable.

We call each type in a database type system a description type. A description type represents
a structure of descriptions and the ordering on types represents the containment ordering of the
structures they represent. The pairwise bounded join condition is necessary for the types of joins

to be well defined. The decidability conditions is necessary for effective type-checking.

Each description type should denote a domain of descriptions. As a generalization of domains

of flat descriptions in the relational model, we define the notion of description domains:
Definition 4.7 (Description Domains) A description domain is a poset (D,C) satisfying:

1. D has the bottom element nullp, i.e. for anyd € D,nullp C d,
2. D has the pairwise bounded join property,

3. the ordering relation C is decidable and least upper bounds (if they exist) are effectively com-

putable.

Condition 1 allows us to represent a non-informative value which is essential for partial descriptions.
Condition 2 states that if we have two consistent descriptions then the combination of the two is
also representable as a description. This is necessary for join to be well defined. Condition 3 is

needed for effective computation of joins and other operations.

It should be noted that description domains are models of types of database objects and not
models of general types in programming languages such as function types. In particular, they
should not be confused with Scott domains [101] which is used to give semantics to untyped lambda
calculus and programming languages with recursively defined functions [98]. Both notions share
similar order structures and are based on a similar intuition that values are ordered in terms of

“goodness of approximation”. However, the properties of the two orderings are fundamentally

74

different. The ordering on a description domain is just a computable predicate, which is introduced
to generalize join and projection as computable polymorphic functions on complex database objects.
On the other hand Scott ordering can be regarded as a predicate on the computability itself and
in principle not computable. As an example of the difference, the bottom element in a description
domain is simply an atomic value and does not corresponds to non terminating computation (or
“divergent value”) denoting the bottom element in a Scott domain. We also do not assume the
directed completeness. As we will see in the next section, recursive (cyclic) types and objects are
restricted to those that have a finite representation and are modeled by regular values not by limit

points of ascending chains of the ordering.

By abstracting underlying tuple structures in the definition of up-coercions and down-coercions
between relational domains, we interpret an ordering on description types as a relation induced
by a special class of mappings between description domains. A function f : D; — D, between

description domains D,, D, is monotone iff for any z,y € D;, z C y implies f(z) C f(y).

Definition 4.8 (Embeddings and Projections) A monotone function ¢ : D; — D, is an
embedding if there ezxists a function ¥ : Dy — D such that (1) for any z € D, ¢(¢(2)) C = and
(2} for any z € D, ¥(#(z)) = z. The function ¢ is called a projection.

A pair of embedding and projection is a special case of Galots connections (or adjunctions), for

which the following result is well known [40]:

Lemma 4.1 Given an embedding ¢ : D, — D,, the corresponding projection is uniquely deter-

mined by ¢. 1

If ¢ is an embedding, we sometimes denote by ¢® the corresponding projection.

If a pair of description domains (D, D) has an embedding-projection pair (¢ : Dy — Da, ¥ :
Dy, — D) then D, contains an isomorphic copy D] = ¢(D;) of D) and for any element d in D-
there is a unique maximal element d' € D{ such that ' C d. We regard this property as the
semantics of the ordering of description types. ¢ maps an elemert d € D, to the least element
d’ € D, such that d’ contains all information in d. ¥ maps an element d € D5 to a unique maximal
element d' € D; that contains only information in d and is regarded as a database projection
from D5, to D;. The set of up-coercions we have defined on relational domains are indeed a set of
embeddings between relational domains. The corresponding set of projections is exactly the set of

down-coercions.

75

Our characterization of the ordering on types can be regarded as a refinement of one of the
characterizations of subtypes proposed by Bruce and Wegner [21], where the notion of subtypes is
characterized in three ways; one of them being that the larger set contains an isomorphic copy of
the smaller. It is also related to the notion of information capacity of data structures studied in
[56] where an ordering on various data structures was defined by using mappings between sets of

objects.

Finally we define a semantic space of a database type system as a space of description domains

partially ordered by a set of embedding-projection pairs.

Definition 4.9 (Database Domains) A database domain is a pair (Dom, Emb) of a set of de-
scription domains Dom and a set of embeddings Emb among Dom satisfying the following condi-

tions:

1. For any two domains Dy, Do € Dom, there is at most one ¢ € Emb such that ¢ : Dy — D-.

We write ¢p,_.p, for an embedding from D, to D,.
2. For any domain D € Dom, ¢p_.p € Emb.
3. Emb is closed under composition.

4. For any two domains D;, Dy € Dom, if there ts some D € Dom such that ¢p,_.p € Emb
and ¢p,_.p € Emb then there is a unique D' € Dom depending only on D,, D, such that
ép,—~p' € Emb, ¢p,_.p- € Emb and for any D" € Dom if ¢p,_.p» € Emb and ép,—p" €
Emb then ¢p—.p» € Emb.

5. For any ¢ € Emb, both ¢ and ¢® are computable, i.e. there is an algorithm to compute o(d)
and ¢R(d") for any given d € dom(s) and d’' € dom(s7).

Emb defines the relation on Dom such that D, and D, are related iff there is ¢p,.p, € Emb.
This is intended to model an ordering on description types. Condition 1 means that there is only

one way to interpret the ordering between two description domains. Moreover,

Proposition 4.6 The relation defined by Emb is a partial order with the pairwise bounded join
property.

Proof From condition 2 and 3, the relation is reflexive and transitive. For anti-symmetricity,
suppose dx_y € Emb and ¢y_x € Emb for some X,Y € Dom. Apply condition 4 to X (as D)
and Y (as Dj). Since ¢x_x € Emb and ¢y_y € Emb, both X and Y satisfy the property of D’

76

in condition 4. Then the uniqueness of D’ in condition 4 implies X = Y. The pairwise bounded

join property is an immediate consequence of condition 4. 1

Definition 4.10 (Models of Database Type Systems) Let (T, <) be a database type system.
A database domain (Dom, Emb) is a model of (T,<) if there is a mapping p : T — Dom such
that for any oy,0: €T, 0y < 02 iﬁ¢u(o,)-p(03) € Emb.

Remember that on description domains we imposed the conditions that the ordering is decidable
and least upper bounds are computable. Combined with the computability condition on embeddings

and projections, they guarantee that join and projection defined as

jOin(o,xa;)—o(a,Ua;)(dl?dl’) = ¢al—-(01U03)(d1) UD(oluoz) ¢0:—»(0xU0;)(d2) (41)
proje(“tz;—-o, (d) = wdy—ﬂ’:(d) (42)

are always computable functions. This means that if a database type system has a model, then

Join and projection are available as computable functions with the following polymorphic tvpes:

join : (o1 x03)— oy Uoo for all ¢y, 02 such that o, U o5 exists (4.3)

project’t . oy — 09 for all ¢y, 0, such that o} € o9 (4.4)

The relational join and the relational projection are special cases of the above functions on flat

tuple structures. Moreover, from the previous results, we have:

Theorem 4.3 The set of flat description types with the information ordering < is a database type

system. The pair of the set of relational domains and the set of up-coercions

({(Dg,C)|o is a flat description type},{ds,—o, |01 € 02})

is a database domain and a model of the posel of flat description types. |

We therefore claim that the notions of database type systems and database domains are a proper
generalization of the relational model. The advantage of our characterization is that it is indepen-
dent of the actual structures of types and objects. This allows us to generalize the relational model
to a wide range of complex data structures, even those that include recursively defined types and
objects. In the next section we construct a database type system and its database domain, which
I believe to be rich enough to cover virtually all proposed representations of complex database

objects.

77

4.4 A Type System for Complex Database Objects

In addition to finite structures representable by finite terms, we would like to allow recursively
defined structures, which naturally appear in descriptions of real-word entities. As demonstrated
by Ait-Kaci [6], an appropriate formalism are regular trees, which provides a sufficiently rich yet
computationally feasible representation for recursive data structures. We therefore develop our
type system and its domain using regular trees. However, this generality creates a slight technical
complication that we cannot use induction to define structures and to prove properties. This
may yield less intuitive definitions and might decrease the readability of the rest of the paper. In
order to prevent this situation, for major definitions and properties, we give equivalent inductive
characterizations on finite trees. They will not be used in the subsequent development and we shall
omit the proofs of their equivalence to the original definitions restricted to finite trees. They can

be proved by usual structural induction.

4.4.1 Set of Description Types

We begin with types. Using regular trees (definition 2.10), the set of types for complex database

objects is defined as follows:

Definition 4.11 (Set of Description Types) The set of description type constructors is the set
F, = {Record, Variant,Set} U B. A description type is a regular tree 0 € R(F,) salisfying the

following conditions:

1. ifo(a) = Set then {l € L|a -1 € dom(eo)} = {elm,},
2. ifa-elm; € dom(o) for some a € L™ then o(a) = Set,
3. ifo(a) € B, then the set {l € L]|a -1 € dom(o)} 1s emply.
A description type o is finite if it is finite as a tree. The set of all description types and the set of all

finite description types are denoted by Dtype®™ and Dtype respectively. Record, Variant and Se!

represent the record, the variant and the set type constructors respectively. Condition 1 restricts

set types to be homogeneous sets. Let oy, ...,0, € Dtype™. We use the following notations:
[lh:o1,....dqg s 0n] for Record(ly =0o1,....1n =0p),
{(h:0o1,...,n0on) for Vartant(l, = o1,.... 1 = 04),

{e} for Set(elm =o0)

78

unil =]

point = [X-cord : int, Y-cord : ini]

intlist = (rec v. (Cons : [Head : int, Tail : v], Nil : unit))
object = [Name : string, Age : ini

person = (rec p.[Name : string, Age : int, Parents: {p}])
employee = (rec e. [Name : string, Age : int, Parents: {person}},

Salary : int, Boss : €])
student = [Name : string, Age: int, Parents : {person}, Courses : {string}]

working-student = [Name : string, Age : int, Parents : {person}},
Courses : {{string}, Salary : int, Boss : employee]

flights = {[Flight : [F-id : int, Date : string], Plane : string]}
flown-by = {[Plane : string, Pilots : {{Name : string, Emp-id : int]}]}
schedule-data = {[Flight: [F-id : int, Date : string], Plane : string,

Pilots : {{[Name : string, Emp-id : in{]}]}

Figure 4.3: Examples of Description Types

Similar shorthands are adopted in term representations of regular trees. Figure 4.3 shows examples
of description types in term representation. In this example, as well as in all other examples we will
show later, identifiers such as unit are used purely as syntactic shorthands to avoid repetitions and

have no significance themselves. As seen in these examples, infinite trees correspond to recursively

defined types.

The set of finite description types Dtype coincides with the following inductively defined set
Dtype’:

—

. b € Dtype® for any b € B,
2. [h:o1,...,ln:0,)] € Dtype’ if oy,...,0, € Dtype® and Iy, ...,1, € L{n>0),

3. (h:01,...,1ln s 0,) € Dtype® if oy,...,0, € Dtype® and I1,... 1, € L(n>0),

N

. {¢} € Dtype’® if 0 € Dtype’

where [; is not a label of the form elm,.

On the set Dtype™, we define the following ordering to capture the ordering of the containment

of the structures:

Definition 4.12 (Information Ordering on Dtype®™) Let 01,0, € Dtype™. The informa-

tion ordering < on Ditype™ is the relation defined as: oy < o7 iff dom(o,) C dom(o») and for any

79

unit < point
unil < object
object < person
person < employee
person < student
employee < working-student
student < working-student
flights < schedule-data
floun-by < schedule-data

Figure 4.4: Examples of Ordering on Description Types

a € domn(ay), o1(a) = o9(a) and if o1(a) = Variant then {{ € L|a -1 € dom(o))} = {l € Lla -1 €
dom(c,)}.

This ordering can be regarded as a special case of the subsumption ordering on Ait-Kaci’s ¢-terms
(6]. The condition on variant nodes means that in order for two variant types to be ordered, they
must have the same set of variants. The intuition behind this condition is that if a variant type o,
has a component ! : ¢{ and o2 has no I-component, then for a value v of the type oy corresponding
to the component [: o] there is no value v’ of the type o2 that is related in structure to v and
therefore oy and o, are not related. Figure 4.4 shows examples of the information ordering on

Dtype™ among the description types defined in figure 4.3.

The ordering <, when restricted to the set of finite description types Dtype, coincides with the

following inductively defined relation <°:

b <° bforallbeB
oy, .. lpion] <° [hiol,...)lh:o,..]ifo; <0l (i <n)
fo} <° {'}ife<®o
{y co1,.. L nion) £° (hiol,...) dn:on)ifoi <%0l (i< n)

From the inductive characterization of <, it is easy to check that (Dtype, <) is a poset with
pairwise bounded join property, < is decidable and least upper bounds (if they exist) are effectively
computable. The following two propositions show that these properties still hold for general de-
scription types. Their proof can be constructed from the proof of the similar properties shown in
[6). Since the proofs involve general techniques we will repeatedly use in proofs of various properties

of the type system, we include their detailed proofs.

80

Proposition 4.7 (Dtype™,<) is a poset with the pairwise bounded join property.

Proof For any ¢ € Dtype™, clearly 0 < 0. Let 01,02, 03 be any elements in Dtype™. Suppose
oy € 02 and 03 € o0y. Then dom(o,) = dom(oq) and for all @ € dom(e,), o1(a) = oa(a).
Therefore 0, = o3. Suppose 6y £ o2 and o2 < 03. Then dom(oy) C dom(oz) C dom(o3).
Let a be any element in dom(e;). o1(a) = o2(a) = o3(a). Suppose o1(a) = Variant. Then
{le Lla-1€ dom(o1)} ={l € L|a-l € dom(o3)} = {l € L|a-1 € dom(c})}. Therefore oy < o3 and

hence < is a partial order on Dtype™.

For the pairwise bounded join property, suppose ;1,02 have an upper bound. Let ¢’ be the tree

defined as dom(o’) = dom(e,) U dom(o3) and for a € dom(o),

o'(a) = { oi(a) if a € dom(oy)
o2(a) otherwise.
Then for any a € dom(o,), o1(a) = ¢'(a) and if oy(a) = Variant then {l € L]|a -1l € dom(c,)} =
{l € L]a-1 € dom(c')}. Therefore oy € o'. For any a € dom(o2) \ dom(o,), by the definition of o’,
o2(a) = o’(a) and {l € L]a-l € dom(o;)} = {l € L|a-l € dom(c')}. Suppose a € dom(o;)Ndom(c-).
Since o, 0, have an upper bound, oi(a) = o2(a) = ¢'(a) and {I{ € Lla -1 € dom(o,)} = {l €
Lla -1 € dom(o,)} = {l € L]a -1 € dom(¢')}. Therefore o2 < ¢’. Since dom(o,) C dom(c) and
dom(o,) C dom(co), dom(o') C dom(o). Let a € dom(e¢’). If a € dom(ey) then o’'(a) = oy(a) =
o(a) otherwise a € dom(co,) then ¢'(a) = o4(a) = o(a). Suppose ¢'(a) = Variant. Then we have
{{ € L|a-l € dom(c’')} = {l € L|a-1 € dom(o;)} = {{ € L]a-l € dom(c)} where i = | if a € dom(0o})

otherwise i = 2. Therefore ¢’ € o and hence ¢’ is the least upper bound of o1, 0,. 1

The proof of the following proposition defines an algorithm to compute the least upper bound

of consistent description types.

Proposition 4.8 The ordering < on Dtype®™ 1is decidable and for any description types 0y, 0-, it
ts dectdable whether o1, 0 have an upper bound or not and if they have an upper bound then their

least upper bound is effectively computable.

Proof Let M, = (Q1,51,F:,81,01), Mo, = (Q2,52,F,82,02) be Moore machines representing
oy and o3 respectively. Let M =(Q,s, F,6,0) = M,, x M,,, the product machine (definition 2.12)
of M,, and M,,.

We show that o; < o7 iff M has the following properties: for any reachable state g in M,

1. q is either ¢ = (¢1,¢2) for some ¢q; € Q1,92 € Q2 or ¢ = ($,¢2) for some g2 € Q»,

81

2. lfq = (41,42),41 € Ql,(h eQ? then O(q) = (f?f) fOl' some f eFT:

3.1 ¢ =1(q1,92), 01 € Q1,92 € Qa, o(q) = (Variant, Variant) and 6(¢q,l) = ¢’ for some I then
¢ = (41, ¢3) for some qf € Q1,92 € Q2.

By lemma 2.5, the condition 1 is equivalent to dom(¢,) C dom(oz) and the condition 2, 3 are

respectively equivalent to the two conditions of the definition of the ordering <.

Next we show that if 01,02 have an upper bound then M has the following properties: for any

reachable state ¢ in M,

1. o(q) is one of the forms: (f, f),(f,$),(8, f) for some f € F,,

2. if ¢ = (q1,92), 01 € Q1,92 € Q2, o(q) = (Variant, Variant) and é6(q,!) = ¢’ then ¢’ = (q},¢5)
for some q; € @1,q5 € Q2.

Suppose 01,02 has an upper bound. Then for any a € dom(e;) Ndom(o2), o1(a) = e2(a) = f for
some f € F,. By the property of product machine, this implies 6 (s, pair®(a,a)) = (f, f), which
establishes the property 1. Suppose oy(a) = 02(a) = Variant then by the definition of £, for all
le L,a-1l€ dom(g,) iff a-l € dom(oz). By the property of product machines, this implies the

second condition.

Finally we show that if M satisfies the above condition then we can construct a Moore machine
representing the least upper bound of ¢, 02. Suppose M satisfies the above two conditions. Define

Mg, 10, as the Moore machine (Q,s, F,é',0’) where

1. @, s, F are same as those of M,
2. §' is defined as 8'(q,1) = ¢’ iff (g, (1,1)) = ¢’ or (g, (1,8)) = ¢’ or &(g,(8,1)) = ',

3. o is defined as 0'(q) = f if o(q) is one of the forms (f, f),(f,$),(S, f).

Since by the definition of product machine, at most one of §(q, (I,!)),é(q,(1,$)) or 6(q,(8,1)) is
defined, ¢’ is well defined. By lemma 2.5 and the definition of M, yo,, dom(M,y,uq,(s)) =
dom(M;(s1)) U dom(Ma2(s2)). By the definition of M and M,,ue,, for all a € dom(M,(s;)),
81(s1,8) = q,01(q) = f iff 6"*(s,e) = (q,2),0'((¢,z)) = f for some z, and if 01(g) = Variant then
61(q,1) is defined iff 8((q,z),!) is defined. Therefore M,,0,(s) satisfies the other two conditions
of the definition of < and hence M;(s;) < M’(s). Similarly M,(s;) < M’(s). Let ¢ be any up-
per bound of ¢1,02. Since for a € dom(M'(s)) either a € My(s,) and M'(s)(a) = M;(s1)(a) or
a € dom(Ma(s2)) and M'(s)(a) = M2(s2)(a), M’'(s) < o follows from M;(s;) € o and M,(s2) € 0.

82

Since the product machine and the machine M,,,, are effectively constructed, we have proved the

proposition. |
Combining proposition 4.7 and 4.8, we have:
Theorem 4.4 (Dtype™,<) is a database type system. |

The following are examples of least upper bounds of description types defined in figure 4.3:

employee U student = working-student,

flights U flown-by = schedule-data.

From examples shown in figure 4.4 and the above examples, we can see that € is a generalization of
the information ordering on types in the relational models to complex structures including recursive

structures represented by infinite trees.

4.4.2 Universe of Descriptions
In order to construct a model of (Dtype™, <), we first define a set of possible descriptions.

Definition 4.13 (Universe of Descriptions) The set of description constructors is the set Fy =

{Record, Inj, Set}U(Uyep Ds)U{nully|b € B}. A description is a regular tree d € R(F4) satisfying
the following conditions: for all a € dom(d),

1. ifd(a) = Set then {l € L|a -1 € dom(d)} = {elm,, ..., elm,} for some n >0,
2. ifa.elm; € dom(d) for some a € L* then d(a) = Set,
3. #f d(a) = Inj then the set {l € L|a -1 € dom(d)} is either a singleton set or the empty set,
4. ifd(a) € Dy or d(a) = null, then the set {l € Lla -l € dom(d)} is the empty set.
A description d is finite if it is finite as a tree. The set of all descriptions and the set of all finite

descriptions are denoted by Dobj* and Dobj respectively. Injis a variant constructor (injection

to a variant type). Inj node with no outgoing edge represents null values of variant types.

Let di,...,d, € Dobj®™. We use the following notations:

[h=di,...,ln=ds] for Record(ly=d,...,l, =d,),

{di,...,dn} for Set(elm; =d,,..., elm, =d,).

83

Unity
Point23
Onelist

Null-person

=

= [X-cord = 2, Y-cord = 3]

= Inj(Cons = [Head = 1, Tail = Inj(Nil = Unity)))

= (rec p. [Name = nullyiring, Age = nullin;, Parents = {p}])

Null-employee = (rec e. [Name = nullyying, Age = null;n,y, Parents = { Null-person},

John

Maryl

Mary2

Mary3

Flights

Flown-by

Salary = null;ny, Boss = €])

= [Name = "John Smith", Age = 34, Parent = { Null-person},
Salary = 23000, Boss = Null-employee]

= [Name = "Mary Blake", Age = 21, Parent= { Null-person},
Courses = {{"math120","phil340", "logic110"}]

= [Neme = "Mary Blake", Age = 21, Parent = { Null-person},
Selary = 9000, Boss = John]

= [Name = “Mary Blake", Age = 21, Parent= { Null-person},
Courses = {{"math120", " phil340", " logic110"},
Salary = 9000, Boss = John]

= {{ [Flight = [F-id = 001, Date = "8 Aug"], Plane= "Concord"],
[Flight = [F-id = 83, Date = "9 Aug"), Plane="707"],
(Flight = [F-id = 116, Date = 10 Aug"], Plane="7/7"]}

= { [Plane = " Concord", Pilots = { [Name="Jones", Emp-id = 5566]}],
(Plane =" 707", Pilots = { [Name = " Clark", Emp-id = 1122],
[Name = “ Copely", Emp-1d = 2233],
[Name = " Chin", Emp-id = 3344]}],
[Plane =" 747", Pilots = { [Name = " Clark", Emp-id = 1122],
[Name = " Jones", Emp-id = 5566]}]}

Schedule-data = { [Plane = "Concord", Pilots = {{Name = " Jones", Emp-i1d = 5566]},

Flight = [F-id = 001, Date = "8 Aug"]],
([Plane ="707", Pilots = {[Name = " Clark", Emp-id = 1122],
[Name = " Copely", Emp-1d = 2233],
[Name = “Chin", Emp-id = 3344]},
Flight = [F-id = 83, Date = "9 Aug"]),
[Plane = "747", Pilots = {[Name = " Clark", Emp-id = 1122},
[Name = " Jones", Emp-1d = 55661},
Flight = [F-id = 116, Date = " 10 Aug"]]}

Figure 4.5: Examples of Descriptions

84

Figure 4.5 shows examples of descriptions.

The set of finite descriptions Dobj coincides with the following inductively defined set Dobj°:

1. ¢ € Dobj° for any c € By, b€ B,

2. nully € Dobj° for any b € B,

3. i =di,...,lIn = dn) € Dobj® if dy,...,dn € Dobj® and Iy,...,1, € L (n > 0),
4. Inje Dobj°,

5. Infl =d) € Dobj° if d € Dobj° and |l € L,

6. {d;,....d.} € Dob3° if d,...,d, € Dobj° (n > 0).

where [; is not a label of the form elm;.

4.4.3 Typing Relation

Description types represent structures of descriptions. A description d has a description type o if

d has the structure represented by ¢. This relationship is formalized by the typing relation:

Definition 4.14 (Typing Relation) Let =~ be the equivalence relation on L defined as || =~ l» iff

ly =1y or ly = elm;,ly = elm; for some i,j. Define the consistency relation :* between Fy and F,

as follows: f :* g iff one of the following holds:

1. f=g,
2. f = Inj and g = Variant,
3. feD, and g€ B,
4. f=null.
The typing relation d : o between Dobj™ and Dtype™ is defined as: d : o iff for all a € dom(d),
1. there is some a’ such that a =~ a', d(a) * o(a’),

2. ifd(a) = Record then {l € L|a -l € dom(d)} = {l € L|a’ - | € dom(0)}.

85

Unity : unit
Point23 : point
Onelist : intlisi
Null-person : person
Null-employee : employee
John : employee
Maryl . student
Mary2 . employee
Mary3 : working-student
Flights : flights
Flown-by : flown-by
Schedule-data : schedule-data

Figure 4.6: Examples of Typing Relation

The equivalence relation = “ignores” the difference due to the positions elm,, ..., elm, of occur-

rences of subtrees in the set constructor Set(elm; = d,,...,elm, = d,). = Iis the extension of =
on L defined in 2.2.3. Figure 4.6 shows examples of typing relations between descriptions defined

in figure 4.5 and description types defined in figure 4.3.

When restricted to the set of finite descriptions Dobj, the above typing relation coincides with

the following relation :° on Dobj x Dtype™ defined by induction on Dobj:

1. ¢ :° bfor all c € By,

2. nully ° b,

.h=dy,.. o dp=dy] oy, dniog]ifdy ooy, dy 0y,
4. Inj :° o for any variant type o,

5. Injl=4d) ° (...,1:0,..)ifd :° o,

6. {di,...,da}} ° {ofifd ° o,....dn ° 0.

Note however that d € Dobj and d :° o does not implies that ¢ € Dtype because of variant

types, i.e. rules 4 and 5 in the above definition.

From the above inductive characterization of the typing relation, it is easy to check that for any
finite description d and any description type o it is decidable whether d : o or not. This property
is essential to develop a type-checking algorithm. Fortunately, this property still holds for general

descriptions:

86

Proposition 4.9 For any d € Dobj*, o € Dtype®™, the property d : o is decidable. -

Proof Let My = (Qu, sd, F4,64,04) and M, = (Qo, S0, Fr,65,0,) be Moore machines representing
d and o respectively. Let M = (Q, s, F',6,0) be the product machine (Mg x M,)/~ where x is the
equivalence relation on £ defined in definition 4.14. We show that d : o iff M satisfies the following

conditions: for any reachable state ¢,

1. if g =(q1,2),q1 € Q, then z € Q, and o(q) = (f,g) such that f :* g,

2. ifg=1(q1,92), 01 € Q1,92 € Q2, o(q) = (Record, Record) and 6(q,!) = ¢’ then I = (I',I'),l' # 8.
By lemma 2.5, M satisfies the condition 1 iff for any a € dom(M;(s1)), there is some @’ such
that a =~ a’, 63(sa,8) = q1, 65(s4,a") = g2, and o4(q1) ' 0,(g2). Since My, M, represent d, o
respectively, this condition is equivalent to the condition 1 of the definition of the typing relation.

The equivalences of the condition 2 of the propositions and the condition 2 of the definition of the

typing relation are immediate consequences of their definitions.

Since M is effectively constructed and the above property is clearly decidable, the proposition is

proved. 1

4.4.4 Description Domains

For each description type, the typing relation defines the set of descriptions of that type. By

defining a proper ordering, we turn this set into a description domain.

Courcelle described [32] the notion of a coherent and simplifiable relation on Subtrees(d;) x

Subtrees(ds:) as a relation ~ satisfying the condition that if
fy=dy,... s =dy)~g(ly =d,... .1, =d))

then f = g and d; ~ d; (1 < i < n). By generalizing this and combining it with Smyth powerdomain

preorder, we can generalize the information ordering on flat descriptions to Dobj®:

Definition 4.15 (Information Preorder on Dobj®) The information ordering on the set Fy

of description constructors is the following partial ordering C°:
fCtqg if f=g or f=nully and g € D,

The information preorder < on Dobj3™ 1is the relation defined as: dy < d» iff there is a relation ~,

called a substructure relation, on Subtrees(d,) x Subtrees(d;) satisfying the following properties:

87

1. dy ~ dy,
2. ifd ~ d then d(e) C° d'(¢),
3. ifd ~ d', d(e) € {Record, Inj} and | € dom(d) then | € dom(d') and d/I ~ d'/l,

4. ifd~d', d(e) = Set then for alll € {l € L|l € dom(d')} there is some I € {l € L|I € dom(d)}
such that d/l' ~ d' /L.

The relation <, when restricted to the set of finite descriptions Dobj, coincides with the

following inductively defined relation <°:

¢ =X° cforall c€ By,
null, =<° cfor all c € By,
nully, =<° nully,
lhi=di,...\ln=dy] <° [Lh=dy,....ln=d,,..]1fd; x°d; (1 <i<n),
Ing x° Inj,
Inj =<° Inj(l=d) for all d,
Injl=d) =<° Injl=d)ifd=<°d,
fdi,....d.} =<° {d\,....d B}ifvd €{d),...,d,,}.3d€ {d,...,d,}.d<°d

On a substructure relation ~, the following property hold:

Lemma 4.2 Let ~ be e substructure relation on Subtrees(d;) x Subtrees(d-).

For d| € Subtrees(d,),d, € Subtrees(d,), if d| ~ d, then d] < d5.

Proof Immediate consequence of the fact that the restriction of a substructure relation ~ to

Subtrees(d)) x Subtrees(d,) is also a substructure relation. 1

We next show that < is a preorder having the desired properties. Rounds’ recent work [97] also

independently shows a similar result for a certain class of labeled directed graphs.

Proposition 4.10 The relation < is a preorder on Dob3™ with the pairwise bounded join properiy.

Proof The strategy of the following rather long proof is the combination of the technique suggested
in [6] to construct a least upper bound of two regular trees by tracing the moves of two Moore

machines representing them in “parallel” and the property of Smyth powerdomain preorder shown

88

in [104] that if s; and s, are finite subset of a a poset then {{d, Udz|d; € s1,d2 € s and d; U d»

exists} is a least upper bound of s, and s; under the Smyth preorder.

For any description d, the identity relation on Subtrees(d) is a substructure relation and d < d.
Suppose d; < d; and d; < d3. Let ~; and ~2 be substructure relations on Subtrees(d;) x
Subtrees(d,) and Subtrees(d;) x Subtrees(ds) respectively. Then the composition of the two
relations ry, r, also satisfies the conditions of substructure relation. Therefore d; < d; and < is a

preorder.

We next show that < has the pairwise bounded join property by showing the following stronger
property: there is an algorithm taking any two descriptions d;,d; that determines whether d;, ds
have an upper bound or not and that if d;, d2 have an upper bound then computes (one of) their
least upper bound. Let M4, = (Q1, 51, F4,61,01) and My, = (Q2, 52, Fa,62,02) be Moore machine
representing dj, dz respectively. Let M = (Q,s, F4,6,0) be the product machine (A; x M»y)/=.
We say that a state ¢ in M is consistent iff it satisfies the condition that if ¢ = (g1, q2) for some
@1 € Q1,92 € Q2 then o(q) = (f,g) for some f,g € F4 such that f, g has an upper bound under
C? and if o(q) € {(Record, Record),(Inj, Inj)} and 6(q, (I, 1)) = ¢’ for some !’ then ¢’ is consistent.
.We first show that if di,d> has an upper bound then the start state s is consistent. Suppose s is
not consistent. Then there is some a € L* satisfying the following conditions: (1) for any proper
prefix b of a, o(s,b) € {(Record, Record),(Inj, Inj)}, and (2) 6*(s,a) = (¢1,92),q1 € Q1,92 € Q2,
and o((q1,92)) = (f, g) such that {f, g} has no upper bound. Now suppose to the contrary that
there is some d such that dy < d and d> < d. By the definition of < and lemma 4.2, d,/a < d/a

and da/a < d/a, which contradicts the fact that o((q1,¢2)) = (f, g) such that {f,g} has no upper
bound.

Next we show that if s is consistent then d;,d; has a least upper bound by constructing one.

Suppose s is consistent. Define M’ = (Q,s, F4,6',0') from M as follows:

1. @Q, s are same as M,
2. §'(q,1) is defined and equal to ¢’ iff one of the following hold:

(a) o(q) € {(Record, Record),(Inj, Inj)} and one of the following hold: (i) é(q,({,1)) = ¢, (ii)
6(q, (1,8)) = ¢ or (iii) 8(q,(3,1)) = ¢,

(b) o(g) = (Set,Set), | = elm; and é(q, (elm;, elm)) = ¢' where (elm;, elmy) is the i*?
smallest symbol under the total order < on L in the set {(elm,, elm,,)|é(q, (elm;, eim,))

is defined and consistent},

(c) ¢g=1(q1,%) and I = (I,8) or ¢ = ($,¢2) and I = (8,0),

89

3. 0 is defined as

zUy ifo(q) =(z,y),z,y € Fq and z U y exists
z ifo(g) = (z,9)
y if o(g) = (8,9)

$ otherwise.

We show that M'(s) is a least upper bound of dy,d;. Let S; = {Mi(q)lq € Q1, ¢ reachable}, S; =
{M2(q)|g € Q2,q reachable}, and S = {M’(q)|q € Q, g reachable}. Then S; = Subtrees(d,), S, =
Subtrees(d;) and S = Subtrees(M’'(s)). Define the relation ~; between Sy and S as M;(q) ~,
M'(¢') iff ¢ = (q,z) for some z. Then it is easily checked that this relation satisfies the con-
ditions of substructure relation and therefore d; < M’(s). Similarly dy < M’(s). Let d be any
upper bound of d;,d;. Let ~},~%5 be substructure relations on Subtrees(d,) x Subtrees(d)
and Subtrees(ds) x Subtrees(d) respectively. Define the relation ~ on S x Subtrees(d) as
M'(q) ~ d' iff one of the following hold: (1) ¢ = (¢1,%), Mi1(q1) ~1 &', (2) ¢ = (8, q2), M2(q2) ~4 d',
or (3) ¢ = (q1,92), Mi(q1) ~} d', M2(g2) ~5 d'. Then ~ satisfies conditions 1,2,3 of the definition
of a substructure relation (definition 4.15). For condition 4, suppose M'(q) ~ d’ and AM'(q) = Set.
If ¢ = (q1,8) or ¢ = (8, g2) then condition 4 follows from the fact that ~},~5 are substructure
relations. Suppose ¢ = (q1,92). Then M;(q;) ~} d' and Ma(gy) ~4 d'. 1f | € dom(d’) for some
l € L, then there is some [;,l; € £ such that §;(q1,1) = q1,62(q2,12) = 95, M1(q}) ~} d'/l and
My(g5) ~5 d'/l. By lemma 4.2, M,(q]) < d'/1 and M2(g5) < d'/l. Let M{, M5, M" be respec-
tively Moore machines obtained from M;, M3, M’ by respectively replacing their start states with
41,5, (45, 43)- Clearly My(¢}) = Mi(g}), Ma(gy) = M(g5) and M" = (M] x M3)/. Since M!(g))
and M>(q3) has an upper bound, (¢}, ¢3) is consistent. By definition, l; = elm; and I, = elm; for
some i, j. Then by the definition of M’ there is some I’ such that 6'(q,!’) = (¢}, 45) and therefore
M' ()l ~d'/l

Since M’ is effectively constructed, the proposition was proved. 1

The above proof also establishes that least upper bounds are effectively computable. For the
Moore machine M’ defined in the above proof, it can be also easily shown that dy < ds iff M’
satisfies the following conditions: for all reachable state ¢ in M’, (1) second (q) € Q», (2) if
7 = (q1,92), 01 € Q1,92 € @2 then 01(q;) C* 02(g2) and if o(qg) = Set then for all i> such that
84(ga,12) 1s defined there is some I, such that é'(q,({;,(2)) is defined. Therefore we have:

Proposition 4.11 The relation < on Dobj™ is decidable and least upper bounds (if they ezist)

are effectively computable. |

90

The next proposition show that the typing is preserved by least upper bound.

Proposition 4.12 Ifd; : o, dy : 0 and d is a least upper bound of d,,d> thend : o.

Proof Let d;,ds be any descriptions and M’ be the Moore machine representing a least upper
bound of d; and ds constructed in the proof of proposition 4.10. By the construction of M’, for
any a € dom(M’(s)) either there is some b € dom(d,) such that a ~ b and d;(b) C° M'(s)(a) or
there is some ¢ € dom(d,) such that @ & ¢ and da(c) C® M’(s)(a). Since for some z,y € Fy, if
tCyand z :* f for some f € F, then y :* f, in either case a satisfies the conditions of the

definition of the typing relation d : o. |

Definition 4.16 For any description type 0 € Diype™, the domain D, associated with o 1s the
poset [({d|d : o}, =)].

Theorem 4.5 For any o, D, is a description domain.

Proof We show that D, has a bottom element. By definition of D,, it is suffices to show

the existence of a description d such that d < d’ for all & € {d|d : o¢}. Define a mapping
nullval : F, — Fy as
null, f febB
nullval(f) = ¢ Inj if f = Varinat
f otherwise.

For any o, define the description Null(c) as follows:

1. a € dom(Null(c)) iff a € dom(o) and there is no proper prefix b of a such that o(b) = Vartnat,

and

2. for all @ € dom(Null(o)), Null{c)(a) = nullvako(a)).

From this definition, it is easy to check that Null(¢) : ¢ and Null(c) < d for any description

d : ¢. Then the theorem follows from propositions 4.10, 4.11, 4.12 and lemma 2.1. |

4.4.5 A Model of the Type System

We now define the set of embedding-projection pairs to connect the set of description domains and

turn them into a database domain.

91

For defining functions and properties on D,, the following definitions and results are useful. Let
(P1,<1), (P2, <2) be a preordered sets. A function f : P, — P, is monotone iff for any p,,p; € P,
if p; <1 p2 then f(py) <2 f(p2). For a monotone function f : P — P,, define [f] : P/= — Py/=
as [f]([z]) = [f(z)]. Since f is monotone, [f] is well defined in the sense that it does not depend on
representatives of equivalence classes. It is also clear that [f] is monotone. The following lemma is

an immediate consequence of the definition.

Lemma 4.3 Let (P, <;),(P2,<2) be preordered sets and f : Py — P, g : P, — P, be monotone

functions. If for all p € P1, g(f(p)) = p and for all p € P2, f(g(p)) <2 p then ([f],[g]) 15 an
embedding-projection pair between [(Py, <;)] and [(Pa, <2)]. 1

Definition 4.17 Let 0y,02 € Diype™ such that oy < 02. ¢9,—0, 15 a function from {d|d: o,} to
{d|d : 02} defined as follows: a € dom(dy,—q,(d)) iff either (1) a € dom(d) or (2)-there are some

ai,aq, by such that a = a; - a; and a, ~ by satisfying:

1. a; € dom(d), d(a,) = Record and for any non emply prefir as of ap there 1s no a4 such that
aj - az ~ a4, a4 € dom(d),

2. by - a2 € dom(o) and for any proper prefiz asz of a2, o(by - az) # Varant,

and for any a € dom(d,,—q,(d)),

d(a) if a € dom(d)

b0, —s5(d)(a) = { , .
nullval(o2(b)) if a &€ dom(d) where b = a,b € dom(o)

where nullval is the function from F, to F4 defined in the proof of theorem 4.5.

Yoy—o, 15 a mapping from {d|d : 02} to {d|d : 01} defined as follows: 1,5, (d) 1s the restriction
of d such that a € dom(vy,,—,,)(d) iff a € dom(d) and there is some b € dom(o2) such that a ~ b.

Define
Emb™® = {é5,~0,|01,02 € Dtype™ o) < 02},
Emb = {¢5,~0,|01,02 € Diype, o1 < 02},
Proj® = {¥o,~0,l01,02 € Dtype™, o2 < 01},
Proj = {vo,—q,l01,02 € Dtype, o2 < 0,}.

Since for any a,b in dom(c), if a = b then a = b, the above definition of ¢,, o, is well defined.

Proposition 4.13 For any 0,,02,0; < 02, ([¢0,—0,), [Yo,—0,]) is an embedding-projection pair

between D,, and D,,.

92

Proof For any element d such that d : o0y, let d' = ¢5,-0,(d) and d’ = ¥g,-,,(d"). By the
definitions of ¢4,—0, and d : o1, a € dom(d) iff a € dom(d’) and there is some b € dom(o,) such
that @ ~ b, and for any a € dom(d),d'(a) = d(a). By the definition of ¥5,_.,,, a € dom(d") iff
a € dom(d') and there is some b such that a ~ b, b € dom(o,). Also for any a € dom(d"),d"(a) =
d'(a). Therefore d = d"" and hence ¥5,—0,(¢0,~0,)(d) =d.

For any element d such that d : 05, let d' = ¥,,—.,,(d) and d” = é,,_.,,(d"). Define a relation ~ on
Subtrees(d’) x Subtrees(d) as follows: for d; € Subtrees(d”’),d; € Subtrees(d), d, ~ da iff
either there is some a € dom(d') such that d; = d”/a and d; = d/a, or there is some a,b such that
a & dom(d'), a ~ b, d, = d"/b and dy = d/a. Since € € dom(d'), d"’ ~ d. Suppose d, = d"'/a,ds =
d/a for some a € domn(d'). By the definitions of ¢4, _,, and ¥,,—.,,, d’(a) = d'(a) = d(a). Suppose
dy =d"/b,ds = d/a for some a & dom(d'), a ~ b. Then by the definition of ¢4, ,,, there is some ¢
such that ¢ ~ b,c € dom(c») and d”(b) = nullval(o,(c)). By the property of nullval, d"(b) C* d(a).
Therefore in both case d;(¢) T da(¢€). The other conditions of substructure relation (condition 3-4)
can be easily checked by distinguishing cases whether a € dom(d’) or not and using the property

of the typing relation and the definition of ¢,,_.,, in the latter case.

For the monotonicity of ¢4, —0s,, let di,d2 € {d|d : 61} and d] = ¢4, —~0,(d1), dy = ¢6,—a,(d2).
Suppose there is a substructure relation ~ on Subtrees(d;) x Subtrees(d,). Define a relation ~'
on Subtrees(d|) x Subtrees(d,) as follows: d ~' d' iff either (1) there are a,b such that d;/a ~
d2/band d = d}/a,d’ = dy/b or (2) there are a, b,c such that dy /a ~ d2/b,d = d|/a-c,d =d2/b-c,
and for any nonempty prefixd of c a-d € dom(d,), b-d & dom(d,). It can then be checked that ~' isa
substructure relation. For the monotonicity of ¥,,—,, let di,ds € {d|d : 02} and d| = ¥,,—,,(d}),

% = Yo,—0,(d2). Suppose there is a substructure relation ~ on Subtrees(d,) x Subtrees(d.).

!

Define a relation ~’ on Subtrees(d) x Subtrees(d,) as: d ~' d’' ifl there are a,b such that

di/a ~ d>/b and d = d|/a,d’ = d,/b. Then it is easily verify that ~' is a substructure relation.

Then the proposition follows from lemma 4.3. |

For Emb and Proj, there are inductive definitions. We first define functors (function con-

structors) for records, variants and sets.

1. Records.
Let f; : 011 — af, RO - 0,1, — 0';': be any functions and ¢q4;,...,Ch4+m be any constants
(n,m>0). [h=fi,....ln = fa,lnt1 = Cns1s-- -, lntm = €ntm) is the function on records of

type {l1 : 0},...,ln : 0}] defined as
[Il =fla-~-»1n = fn,ln-b-l =Cn+l‘~--,1n+m =Cn+m]([11 = dlw--»ln :dn]) =

93

[ll = fl(dl), ---yln = fn(dn)11n+1 =Cn4l,-- -,In+m = cn+m]

and [l; = f1,...,le = fe, le41 = Okg1,-- o ln = 00] (0< k < n) is the function on records of

type [l1 : o},...,lk = 0}, lk41 = Ok41, .. -,In = 0] defined as

[11 =fi,.. -k =fln1k+1 =6k+1;---aln =0’n]([11 =dy,...,l,= n])=

(b = fi(dy), ..., Ik = fi(dy)).

2. Variants.

Let f; : o} — a?,..., fo : 0L — o2 be any functions. (I; = f1,...,l, = fn) is the function
on variants of type (I} : of,...,l, : 0}) defined as

(11 = flv"'sln = fn)(]n])
(h=fi,... o = fa)(Ing(l; = d))

Inj,

Inj(l; = fi(d))(1 < i < n).

3. Sets.

Let f : o7 — 02 be any function. {f}} is the function on sets of type {1} defined as
{{f}}(ﬂdla ceey dn]}) = {{f(dl)v LR f(dn)}}

Then Emb coincides with the following inductively defined set Emb®:

1. idy € Emb° for any b € B where id; is the identity function on By,

2. [11 = ¢a}—-af!"'lﬂ = ¢a"l—o¢7§vln+l = NUII(O’n+1),...,In+m = NU11(6n+m)] € Emb° if
¢"|‘—"’f’ b1 o2 € Emb® and o441,...,004m € Dtype where Null(o;) is the mapping
defined in theorem 4.5,

3. (L = ¢al'—oa;'" cody = ¢°}.—'°3.) € Emb° if(ba}_,a?,.. -v¢a},—oa,’_ € Emb°,
4. {60,~0,8 € Emb° if ¢,,.,, € Emb°.

The Proj coincides with the following inductively defined set Proz°:

1. idy € Proj° where id; is the identity function on By,

2. [ll = wa}—-af“"lk = d}d}(—'dz’lk"'l = 0’k+‘,...,ln = U',] € Proj° if d)a;—-afv-”rd)a“l—-az €

Proj° and 0k41,...,0n € Diype
3. (11 = 1/)0:_,03, codn = ‘d)a}__.a'z‘) € Projo if ¢a}—.af»---7¢a}.—a," € Projo,

4. {Yo,—~0,8 € Proj° if ¥5,—,, € Proj°.

94

From the inductive characterization of Emb and Proj it is easy to see that all embeddings
and projections between finite types are computable functions. This necessary property still hold

for general embeddings and projections.
Proposition 4.14 Elements of Emb™ and Proj™ are all computable functions.

Proof We first show for the embeddings in Emb™. Let 0 € 04 and d : o;. Let My =
(Qd, 54, Fa,84,0q4) and My, = (Qo,, Fr, b4,,00,) be Moore machines representing d, o5 respectively.
Let M =(Q,s,F,6,0) = (Mg x M,,)/~ be the product machines modulo the equivalence relation
= defined in definition 4.14. Define M’ = (Q,s, F4, 6, 0') from M as follows:

1. Q,s are same as M,

2. 8'(q,1) is defined and equal to ¢’ iff either §(q,({,I')) = gand ! # $, or &(q,(%,1)) = ¢’ and
o(q) & {(Inj, Variant), (8, Variant),(Set. Set)},

3. o' is defined as

f ifo(q) =(f.g),f#¥§
0'(q9) =< nulival(g) ifo(q) =($,9),9# %
$ otherwise.

It can then be checked that M'(s) = ¢4,—0,(d).

For the projections in Proj®, let 0o < 0y and d : ;. Let My = (Qq,54, Fa,64,04) and M,, =

(Qo,: F+,84,,0,,) be Moore machines representing d. o, respectively. Let M = (Q,s.F,6,0)
(M4 x M,,)/~. Define M' = (Q,s,Fy4,6, 0) from M as follows:

1. Q,s are same as M,
2. 8'(q,1) is defined and equal to ¢ iff 8(q,(!,!')) = qgand I’ # 8.
3. o is defined as

o(q) = _
& otherwise.

{ f ifo(g)=1(fg9),9#%

Then by lemma 2.5, M'(s) = ¥5,—0,(d). 1
We now have the following theorem:

Theorem 4.6 ({D,|c € Dtype™}, {[¢]l¢ € Emb™}) 1s a database domain and a model of
(Dtype™.<).

95

Proof By proposition 4.13, for all ¢ € Emb™, [4] is an embedding. Since Dtype™ is a poset
with the pairwise bounded join property, conditions 1 - 4 of a database domain (definition 4.9)
are satisfied by the set {[¢]|¢ € Emb™}. Condition 5 is shown by proposition 4.14. The mapping
p: Dtype®™ — {D,|o € Dtype™} is given as pu(c) = D,. |

This theorem says that we have successfully completed the constructions of a type system for
complex database objects and its semantic domain. The type system allows arbitrarily complex
objects constructed by records, variants, finite sets and recursive definition. This demonstrates
that our mathematical characterizations of database type systems and their semantic spaces are
general enough to provide a semantic formulation of a database domain that is rich enough to cover

virtually all existing representations of complex database objects.

Another important implication of the above theorem is its computational contents. It guarantees
that for arbitrarily complex types, various properties needed to compute joins and projections and
to type-check expressions are always effectively computable. As we will show in the next chapter,
these properties enable us to develop a practical programming language that integrates the database

type system we have constructed and an ML-style polymorphic type system.

Joins and projections are given by equations (4.1) and (4.2), which are always computable
functions. An actual algorithm to compute them can be easily extracted from the proof of the

theorem. Moreover, there are generic ways to compute joins and projections. For joins, we have:

Proposition 4.15 Ifd, : o1, dy : oo are descriplions such that ¢ = o) U 02 then

d’a,—a(dl) u d’ag—a(d'.!) = dl u dz-

Proof By the definitions of ¢ and Null, ¢,, ~.o{d;) = diUNull(g) and ¢,,—,(d2) = dsUNull(o).
Then we have : ¢4, —,(d1) U ¢o,—o(d2) is defined iff (d; U d2) U Null(o) is defined iff dy U d> is
defined. The equation follows from the fact that Null(s) is the bottom element of the set D,. 1

Since we have shown that least upper bounds are effectively computable, the above result gives
a generic way to compute joins. For projections, the definitions of %,,—,, is already generic in
the sense that it does not depend on o;. Define the partial function Proj? as follows: for any
description d, Proj?(d) is the restriction of d such that a € dom(d’) iff a € dom(d) and there is

some b € dom(c) such that @ = b. Since the definition of Proj” and %,,_, is identical except

their domains, we have:

96

Proposition 4.16 Ifd is a description of iype o such that o’ < o then

Proj? (d) = tg—(d).

For static type-checking, since join and projection have polymorphic type schemes (4.3) and
(4.4), the result types of joins and projections are always determined from the types of their
arguments. Moreover, theorem 4.6 guarantees that they are effectively computed. The following

are examples of joins of descriptions in figure 4.5:
Join(Maryl, Mary2) = Mary3,

Join(Flights. Flown-by) = Schedule-daia.

The types of the above two joins are working-siudent and schedule-data respectively, which are
computed from the types of their arguments. This property allows us to develop a static type

system.

97

Chapter 5

A Polymorphic Language for
Databases and Object-Oriented

Programming

This chapter combines ML type system we have anal‘yzed in chapter 3 and the type system for
complex database objects we have constructed in chapter 4 and defines a programming language
that achieves the integration of records, variants and database objects. We call the language
Machiavelli maintaining the name we gave to the language in [87). Later in chapters 6 and 7, the
language is extended to integrate the other desirable features we discussed in the introduction of

the thesis. Some of the results in this chapter were presented in [85].

5.1 Introduction

Machiavelli extends the polymorphic programming language ML with

¢ labeled record and labeled variants with associated operations field selection, field modifica-

tion, and case statement, and

e complex database objects and the associated database operations join and projection.

We work out this extension preserving the ML’s central feature of static type-checking, polymor-

phism and static type inference.

98

Let us first illustrate how ML type system is extended by simple examples. In section 1.1, we

have defined the function wealthy:

fun weealthy(X) = select z.Name
wherezr €¢ X
with z.Salary > 100000;

for which Machiavelli infers the following type information
wealthy : {[(s1)Name : s3, Salary : int]} — {s2}.

As we have explained, the above type expression means that wealthy is a function that takes a
homogeneous set of records, each of the type [(s;)Name : s2, Salary : int], and returns a homo-
geneous set of values of the type so. so is a descriplion lype variables representing an arbitrary
description type we have constructed in section 4.4 and [(s;)Name : sp, Salary : int] is a condi-
tional type variable which intuitively represents an arbitrary record type that contains Name : s,

and Salary : int fields.

The function wealthy is polymorphic with respect to the description type variable s; of the
values in the Name field (as representable in ML) but is also polymorphic with respect to the
conditional type variable [(s;)Name : s, Salary : int]. In this second form of polymorphism,
wealthy can be thought of as a “method” in the sense of object-oriented programming languages
where methods associated with a class may be inherited by a subclass, and thus applied to objects of
that subclass. This second form of polymorphism is illustrated by the following example. Suppose

we implement person objects by expressions of the type
[Name : string, Age : int]

and want to define a function increment_age which takes a person object and returns a new person

object whose Age is incremented by one. The function is written in Machiavelli as follows:
fun increment.age p = modify(p, Age,p.Age + 1)

where modify is the primitive that modifies (or updates) a record at a specified field with a specified

value. Machiavelli finds the following type for this function:
increment._age : [(s)Age : int] — [(s)Age : int).

99

This says that increment_age is a function which takes a record of any type containing Age : int
field and retuns a record of the same type. By this mechanism, Machiavelli achieves the similar goal
to the system for muliiple inheritance originally proposed by Cardelli [24]. For example, suppose

we implement employee objects by expressions of the type:
[Name : string, Age : int, Salary : int).

Since the type [Name : string, Age : int, Salary : int] is an instance of [(s)Age : int], the following

type is an instance of the type of increment_age:
[Name : string, Age : int,Salary : int] — [Name : string, Age : int, Salary : ini]

and therefore increment_age can also be applied to an employee object returning an employee

object.

In the rest of this section, we review existing approaches to integrate records, variants and

complex database objects in a static type system and outline our strategy.

5.1.1 Records and Variants for Object-oriented Programming

There are numerous arguments on the features of object-oriented programming. Here we will not

go into the argument on the “essence” of object-oriented programming but instead we concentrate

on the following features:

e method inheritance,

e user definable class hierarchies based on an inheritance relation,

e data abstraction,

which I believe to be the major contributions of object-oriented programming. Among these fea-
tures, the method inheritance mechanism is a form of polymorphism in the sense that it allow
methods to be applied to various structures sharing certain common properties. In this chapter
we only consider this feature. I believe that this mechanism is a basic feature of a type system
that should be integrated in the polymorphic core of the language. The other two features will be

treated in the next chapter by extending Machiavelli with a new construction for classes.

100

Method Inheritance by Subtyping

Perhaps the first serious attempt to integrate method inheritance in a static type system was [24]
by Cardelli. He argued that the essential feature of “objects” can be captured by labeled records
and labeled variants. Of course records and variants alone do not achieve the features of object-
oriented programming such as classes and data abstraction. However, we can agree with this view
under the interpretation that these data structures enable us to implement the essential features of
object-oriented programming. Indeed in object-oriented programming languages such as Smalltalk
[44), objects are implemented by a set of “instance variables” associated with “states” which can

be naturally regarded as labeled record structures.

It is straightforward to add labeled records and labeled variants to a simple type system. Indeed
many programming languages such as Pascal satisfactorily integrate them into a static type system.
In such a type system objects can be implemented using record types and variant types. For

example, the following types can be regarded as types for classes person and employee:

person = [Name : string, Age : int],

mployee = [Name : str, Age : int, Salary : int].
Methods can be implemented by functions on those types. For example, the following function
fun name(z : person) = z.Name

extracts the value of Name from a person object and can be regarded as a method of the class
person, where r.l denotes the selection of the [field from the record r. Note that in a simply typed
language, it is mandatory to specify the type of a formal parameter as in the above example. An
obvious drawback to these simple type systems is that they do not support method inheritance.
Since the body of the function name is also meaningful to objects of the type employee, we would
also like to use this method for objects of the type employee. However, a simple type discipline
does not allow such application. As a result, we are forced to define the same function for the type

employee.

Cardelli observed that the method inheritance such as those in the above example is related to
the structures of record types and variant types and proposed a type system that supports method
inheritance [24]. He defined the subtype relation, which is based on the following relation on record

types and variant types:

lerm, o dpim,)<, i <7 (1 <1< n),

hom,enim)<hor, ooy er,)i <1 (1<i<n).

The complete subtype relation is obtained by “lifing” these relation to function types by the fol-

lowing rule:

fri<mand s <rythenm—-m<n -

He then defined a type system where the following rule is derivable:

e. T

e: 7

(TRANS) ifr <.

Because of this rule, a function defined on a type can be applied to values of all its subtypes. For
example, the function name defined above can be applied not only to objects of the type person
but also to objects of the type employee because employee < person and any object o that has
the typing o : employee also has the typing o : person. Cardelli and Wegner extended this type

system to integrate polymorphism using explicit type abstraction [27] (where the rule (TRANS) is

an inference rule).

However, the type system of this kind that have been so far proposed suffer from the problem
called “loss of type information”. The problem was first pointed out in [27] in the context of
Cardelli’s original type system. To see the problem, consider the method that extracts Name field.
In the following examples, we use A notation to represent functions. If the type of Name field is

string, then the method is implemented by the following function in [24]:
namel = Az :[Name : string]. z.Name.

Any types that are subtype of the type [Name : string] inherit this method. Moreover, the result
type is string as we expect. Now consider the case where the type of Name field is itself a record

type such as [Fn : string, Ln : string]. The method is implemented by the following function:

name2 = Ar:[Name :[Fn: string, Ln : string]]. z.Name.

Again any types that are subtype of the type [Name : [Fn : string, Ln : string]] inherit this
method. However, the result type is not always the one we expect. For example, consider the

following application:
name2([Name = [Fn = "Joe", Mi = "M",Ln = " Doe"]).

Since the type of [Name = [Fn = “Joe", Mi = "M" Ln = “Doe"] is [Name : [Fn : string, Mi :
string, Ln : string]] which is a subtype of the type [Name : [Fn : string, Ln : string]], the above

application is well typed. Since nema?2 is a function that extracts Name field form a record, we

102

expect this application to yield the value [Fn = “Joe", Mi = "M",Ln = " Doe"]. We therefore
expect the type of this application to be [Fn : string, Mi : string, Ln : string]. However, in his
system, the actual result type is [Fn : string, Ln : string]. This example shows that an application
of an inherited method from a super type sometimes “loses” type information. Since the language
is strongly typed, this also means the serious problem of loss of information of object itself. In the
above example, the Mi filed of the object returned by the inherited method name2 can never be

accessed.

In [27] a new construction, bounded quantification, is introduced, which is a generalized form
of type abstraction [94]. The introduction of type abstraction obviously enhances the expressive
power of the language. However, the introduction of bounded quantification does not eliminate the
problem of loss of type information. In the first place, the terms we have just examined are still
terms of the language. Secondly, although the introduction of type parameters allows us to apply
a term to an appropriate type, it does not guarantee that the term will not be prone to loss of
type information. For example, in the new type system, the function that extract Name field is

implemented by the following polymorphic term:
pname = Ata.At; < [Name : to]. Az : ty.z.Name

where At is type abstraction and At < 7 is bounded type abstraction. By instantiating the type

variable ¢ with [Ln : string, Fn : string], we have the term:
pnamel = Aty < [Name : [Ln : string, Fn : string]]Az : t;.z.Name
with the type
Vt, < [Name : [Ln: string, Fn : string]].t; — [Ln : string, F'n : string).

t, can be instantiated with any type that is a subtype of [Name : [Ln : string, Fn : string]]. Take

[Name : [Ln : string, Mi : sting, Ln : string]] and we have the term
Az : [Name : [Ln : string, M1 : sting, Ln : string]].z.Name
whose type is
[Name : [Ln : string, Mi : sting, Ln : string]] — [Ln : string, Ln : string].

Then by applying it to the object [Name = [Ln = "Joe", Mi = "M" Ln = "Doe"]], we have an
object of the type [Ln : string, Ln : string]. But since pname is a function that extracts Name
field, we expect the result of the above application to yield [Ln = “Joe" , Mi = "M", Ln = "Doe").

We apparently lost the type information of Mi: string.

103

A precise analysis of the loss of type information phenomenon is certainly desirable. Meanwhile,
the following analysis may contribute towards understanding part of the problem. Using the rule
(TRANS) to type-check the terms containing field selection e.l seems to fail to reflect the precise

operational behavior of this program construction, which is
[...d=e,..]Jd=>e
A typing rule that would fit this is:

(dot) _n where 71 is a record type containing [: 5.
e-l:7
The associated condition coincides with the subtype relation 71 < {I : 73] only if 7o has no proper
subtype. However, if 75 is a type that has proper subtypes such as record types, then the condition
associated with the typing rule (dot) is strictly stronger than the subtype relation-. In the original
type system [24], this may help explaining why, for example, name2 exhibits loss of type informa-
tion, but namel does not. An appropriate relation to type-check terms containing field selection

seems not the subtype relation but the filed inclusion relation among record types.

The same mismatch between the operational behavior of e.l and the rule (TRANS) remains in the
new type system [27]. As we have seen in the example of pnema, the bounded quantification does
not correct the mismatch. Moreover, the bounded quantification does not provide an alternative
to the rule (TRANS) to type-check terms containing filed selection. In [27] it is suggested that “now
that we have bounded quantifiers, we could remove the other mechanism [of inheritance], requiring
exact matching of types on parameter passing...”. This should mean that the rule (TRANS) could
be removed, since this is the only rule to achieve non-exact matching of types on parameter passing

in the type system of [27]. If we do this, however, we will lose much of the power of representing

inheritance, as shown below:

Proposition 5.1 Let M be a term in FUN [27] that contain z.l where z 1s a free variable ine. If
Az : 7. M has a typing derwvation in the lype system of FUN then either T is not a type variable

or the derivation contains the application of the rule (TRANS).

Proof A typing judgement in FUN is a formula of the form C,A b M : 7 where A is a type
assignment and C is a subtype assumption. For the complete definition of the type system of FUN,

readers are referred to [27].

The proposition is proved by the following property of the type system. Let A be a type assignment

such that A(z) =t for some type variable t. Then any derivation for C, A b z.l : 7 must contains

104

the application of the rule (TRANS). |

This implies that without the rule (TRANS), functions containing field selection e.l cannot be
polymorphic even with the existence of bounded quantification and therefore if the rule{TRANS) is

removed then we lose most of the power to represent inheritance.

The presence of the rule (TRANS) also raises some problems with primitive operations that are
important for database programming such as join and equality. Here we consider the treatment
of equality. There are at least two forms of equality that are commonly used in programming
languages. One is the identity between run-time objects in store. Examples include Amber’s
equality primitive [23] and eq predicate in Lisp. In this view [Name = "Joe"] = [Name = " Joe"]
is presumably false, and the best we could say about equality is that it is a function of type
71 X T2 — bool. Another form is the “structural” equality which tests whether two expressions
denote the same value or not. Examples of this equality include the equality primitive = in Standard
ML and equal in Lisp. For this form of equality, we would expect a type error if it is applied to
values of different types. This is the type checking rule adopted in Standard ML. However, with
the existence of the rule (TRANS), this desirable type discipline cannot be enforced. For example,
consider the untyped term Az.z = [Name = "“Joe"]. In ML the type [Name : string] — bool
is inferred for this term, but with the addition of (TRANS), it is legitimate to apply this function
to [Name = "Joe", Age = 21] - something that in the untyped case we would expect to raise a

run-time type error!

Method Inheritance by Type Inference

Wand observed [111] that the method inheritance is a mechanism to capture the polymorphic nature
of operations associated with records and variants and can be achieved by ML style polymorphism
through type inference. If a type system can infer the most general type for operations on record
such as field selection, then those operations can be applied to any records to which the application
is type correct. The major problem in accomplishing this idea is that basic operations on records
and variants do not have a principal type-scheme and therefore the conventional type inference
algorithm (theorem 3.2) cannot be directly applicable to these operations. The problem is seen
in Standard ML!, which integrates labeled records but cannot find a type for functions whose

arguments are partial matches for records such as

fun name [Name = x,..] = x

1In Standard ML, the syntax for records is {I = e,...,{ = e}. Here we use the syntax [= e,..., I = ¢].

105

»

where “..” in [Name = z,...] is the patter in Standard ML that matches any sequence of fields that

do not contain Name field. Although Standard ML compiler reports a type error for the above
definition, this function is well typed in the sense that it has a typing. For example, if we specify

a type of the argument as in:
fun name ([Name = x,...] : [Name : str, Age : int]) = x

then Standard ML compiler find the following correct type for the function:
[Name : string, Age : int] — string.

The problem is that there is no principal typing scheme because of the condition associated with

the field selection.

Wand [111] tried to solve this problem by decomposing type expressions into two languages,
TFE and RE, respectively called type expressions and row expressions. (His language also contains
labeled variants. Here we restrict attention to labeled records. Labeled variants can be understood

similarly.) TE and RE are defined as follows:

TE == t|.|TE—TE|[RE],
RE = +~|e|RE(l:TFE)

where t, v are variables ranging over TE, RE respectively and ¢ is a constant symbol denoting the

empty row. RE satisfies the following equality rules:

I

RU: T : To) R(:Ty) (5.1)
R T)(:T2) = R(l:To)(:Th) (5.2)

His type system contains the following typing rules for records.

(with) At e [p] Abey:r
Ab ey withl:=es:[p(l: 1)
(4ot At e:fp(l:7)

AFed: T

where 7 and p ranges over arbitrary types and rows respectively. The rule for e.l is now represented
without any condition. The necessary condition is correctly captured by the equality rule (5.1).
Therefore the primitive operators ... with{ := ... and! do have principal type schemes [y] xt —

[y(1 : t)] and [y(I : t)] — t respectively in TE and RE. Since RE equipped with the equality rule

106

(5.1), any ground instances of these type schemes are types of these operators. However, RE s
no longer freely generated. Because of this fact, equations between TE and RE in general do not
have most general solution. This reflects the fact that in his language there is a typable term that
has no principal typing scheme. For example, the following term has a typing under his set of type

inference rules but has no principal typing scheme:

(Az. Ay. 2 (y(z with 1 := 1)) (y [= 1])) | = true].

His type inference algorithm produces the following equations on RE to infer the type of y:
[y(1 : int)] = [8(! : int)]

which does have a solution but has no most general one. Because of this fact, his unification-based

type inference algorithm cannot find a solution and reports a type error.

We overcome this problem by extending the notion of typing schemes to allow conditions on type

variables. In our system, the term Az. z.l has the following principal conditional typing scheme:
0> Az z.d : [(8)] :ta] — 1o

where [(t1)! : 2] is a type variable t; associated with the condition that substitutions of t; are
restricted to those 6 such that 6(¢;) is a record type containing { : 8(¢2) field. By this mechanism
we solve the type inference problem for records and variants. Several other solutions have been
also proposed [38, 105, 25, 63, 26, 93]. An advantage of our method is that it allows us to extend
ML type system uniformly to a wide range of data structures and operations including complex

database objects and associated operations join and projection.

5.1.2 Integrating Database Objects

We turn our attention to the problem of integrating complex database objects and associated
operations into programming languages. Since our objective of this subsection is to identify the
problems, we will not attempt to give a comprehensive survey. Readers are referred to [10] for an

excellent survey in this area.

Historically database systems are developed relatively independently of programming languages.
Many database systems were built as stand alone systems with a special data manipulation lan-
guages often called database query languages. A typical example is SQL [8] for System R [9].
Obvious problem of these languages is that they are extremely limited in expressive power because
of the lack of general programming capability, which also makes it difficult to integrate databases

with other applications.

107

In order to overcome this disadvantages, several embedded languages — the languages that embed
a database query language as subroutine calls in a general purpose programming language — have
been developed. The problem of this ad hoc solution is that the interface between a database and a
host language is usually limited to primitive types such as integers and strings. The database struc-
tures such as records and relations are not recognized by the host language. As a result, database

programming cannot make full use of the expressive power and the type-checking capability of the

host language.

The designers of certain database programming languages, notably Pascal-R [99] and Galileo
{7] have recognized this mismatch problem and have implemented languages in which a database
can be directly represented in there type systems. Type checking in both of the languages is static
and the database types are relatively simple and elegant extensions to the existing type systems
of the programming languages on which they are based. Galileo also allows complex database
objects and incorporates a form of inheritance based on the subtype rule we have just analyzed.
However, these languages do not support database operations such as join and projection. Database
programming is done by using special iteration primitives (for each...in...do in Pascal-R and
for...in...with...do in Galileo). Such iteration primitives are of course useful and necessary.
But we would also have database operations on “bulk” of data such as join and projection. As we
have argued in section 4.1, these operations are extremely useful in many database programming. As
we will see in chapter 7 they are also useful to represent object-oriented databases. These language
also do not integrate polymorphism and static type inference - the other essential features of
good programming languages. To my knowledge, no attempt has been made to integrate database

structures into a type system with polymorphism and static type inference.

In the previous chapter, we have solved the problem of constructing a type system for compiex
database objects with generalized join and projection. In this chapter we solve the problem of
integrating them into an ML style type system. In order to achieve this goal we first extend the
type system of ML to include the database type system we have developed in the previous chapter.
We then define a set of constants for constructing and manipulating complex database objects and
extend the proof system for typings to include these new constants. For the extended language, we
develop a type inference algorithm. It turns out that our proposal of conditional typing schemes we

have explained in the previous subsection is general enough to include structures and operations

for databases.

108

5.2 Definition of Machiavelli

5.2.1 Types and Description Types

The set of Type (ranged over by 7) of Machiavelli is the set of regular trees denoted by the following

term representations (subsection 2.2.3):
rosblr—r |l o) J{lir. by | {7B | (rec v. T(v))

where b stands for base types. By the interpretation defined in subsection 2.2.3, each expression
denotes a regular tree. The set of regular trees denoted by the following language is exactly the set

Dtype™ of description types we have constructed in section 4.4:
cu=b|[l:o,... .00l |{l:0,....0:0) | {o} | (rec v. o(v)).

We apply directly the ordering we have defined on Dtype™ to those type expressions. For conve-

nience, we assume a set of special labels #1,...,#14,... and use the following shorthand:

5] x...xrn<:>[#1:7'1,...,#17,:7',,].

5.2.2 Raw Terms
We first define the set Consts of constants of Machiavelli to represent records, variants and complex
database objects and associated operations.

For labeled records, labeled variants and sets, the necessary constants are the following:

1. Record constructor constants:
recordvtn) L L g — By i, dn o1l
for all finite sequence of (distinct) labels {{,,...,1,) and for all types 7;,...,7y,.

2. Variant constructor constants:
variant' : 7y — 7
for all labels { and all pair of types 7, 72 such that 7 is a variant type containing ! : 7y, i.e.
T2 Is a regular tree such that m(¢) = Variant, | € dom(m) and 7/l = 7.

3. Set constructor constants:

set" :¢g — ... — g — fo} (n argument curried function)
N’

n

for all description type o and integer n.

109

In order to represent cyclic (recursive) database descriptions, we define the set of description
constructor constants. This requires several steps. The set of constructor ezpressions (ranged over

by ¢) is given by the following syntax:
¢ :=z | Record1")(cy, .- ¢,) | Variant'(c) |Set™(c1,---,¢n) | (rec z.c).

z in (rec z.c) is a bound variable. As for lambda terms, we write F'V(c) for the set of free
variables in ¢ and cfe; /z] for the constructor expression obtained from ¢ by replacing z by ¢; with
necessary bound variable renaming. A constructor expression ¢ has a description type ¢ under a

type assignment A, denoted by A b ¢ : o, if it is derived by the following typing rules:

(VAR) Apbz:0 ifAlz)=¢
Abec 0y --- Aben @ 0n
{(RECORD) -
A b Record!vln)(cy, - - cn) [l :01,....0n : 04]
Apbc:o))) o
(VARIANT) if 05 is a variant type containing ! : o
A b Variant!(c) : o9
Abc:0 - Abec, i 0
(SET)
A b Set™(c1,---,¢q) - {o}
A{lz: =0} bc: 0o
(REC)

Apb(recz.c) : o

We write CEF A b c : oif A b c: ois derivable in the above proof system. For this typing

system the following properties are proved as in lemma 3.5 and lemma 3.8:

Lemma 5.1 IfCEF Abc: othen CEF AFV(O) pe: o, FCEF Apc: o and z & dom(A)
then CEF A{z =0’} bc: o foranyo'. |

Lemma 5.2 [fCEF A{z =0} bc: 0oy and CEF A : 0y then CEF A bc[c'/z] : 0.1
By this lemma and the rule (REC), we have:
Proposition 5.2 If CE+- A b (rec z.¢) : 0 then CE+ A b c[(rec z.¢)/z] : o.1

A constructor expression ¢ is proper if it is not a variable and if ¢ = (rec z. ¢’) then ¢’ is one

of the form Record(!t I")(cl,---,c,,), Varinat‘(cl) or Set"(cy,---,cn). The set of description

110

constructor constants is now defined as the set: —

{C(:x.....zn) 1Oy = — O, — O

FV(c)={z1,...,zn}, cis proper and CE}F {z, :=01,...,2p := 0p} B : 0}

For cyclic description constructor constants, the following property hold.

Proposition 5.3 If (rec z.c){#1+%=) : ¢ is a description constructor constant then so is

cl(rec z.¢)/z]Ern) 1 g,
Proof By FV((rec z.c)) = FV(c[(rec z.z)/z]) and proposition 5.2. 1

This property corresponds to unfolding of a recursive definition.

Cyclic description constructors should not be confused with fixed point constructors such as
(fiz = e) in ML [78]. Cyclic descriptions denote regular trees of descriptions we have developed in

chapter 4. As an example, consider the cyclic description:
((rec z. Record®¢24:13i)(p 2))®) 1) : (rec v. [Head : int, Tail : v)).

This denotes a regular tree represented by a finite graph and therefore the evaluation of this

expression always terminates under any evaluation strategy. On the other hand
fizr z.[Head = 1,Tail = 1]

should denotes a fixed point of the function Az. [Head = 1,Tail = z] (which is also definable
in Machiavelli using a fixed point combinator). If the interpretation of the function abstraction
1s “strict” then the latter denotes “bottom”. Operationally this corresponds to the fact that the
evaluation of the latter expression diverges under the “call-by-value” evaluation. As we have pointed
out in section 3.3, fixed point combinators are definable in our language and therefore we do not
need to include fixed point constructors (or equivalently special constants ¥ : (1 — 7) — 7). We
will comment more on this topic when we will discuss recursive function definitions in Machiavelli

(subsection 5.6.1).

Finally we define constants for operations on these data structures:

1. Field selectors:

select! 11, — 1

for all { and pair of types 7,, 12 such that 7, is a record type containing [: .

111

10.

. Field modification:

modify’ =Ty - T

for all ! and pair of types 71,72 such that 7y is a record type containing ! : 7.

. Case analysis for variants:
caselitoin) . (7, ..

for all finite sequences of (distinct) {y,...,I, and all types 7;,.

Set unions:

union : {o} — {o} — {<}

for all description types o.

. Cartesian product of sets:

prod” : Hgl}] _— . — {{UHB — {{0-1 X .-
for all n and description types oy, ..

. Mapping a function over a set:

map : (01 — 02) — fo1} — {o2}

for all description types oy, 02.

. Join of descriptions:

On.

join: oy — 02 — O3

for all description types o1, 02,03 such that 03 = oy U o2.

. Consistency check for two descriptions:

con : 0y — 09 — bool

for all description types o1, 02 such that ¢, U o2 exists.

. Projection of descriptions:

proj° :0y — 0o

for all description types ¢, such that ¢ < 0;.

Equality on descriptions:

eq:0 — o — bool.

112

n)= (m—oT1)— -

—(th—T)—>T

ey T, T

X on}

We define the set Consts of constants of Machiavelli to be the set of all the above typed

constants (i.e. pairs of a constant symbol and a type) and the set of typed atomic values and

standard primitives on atomic types (such as addition on integers and conditional on boolean).

Definition 5.1 (Set of Raw Terms of Machiavelli) The set of raw terms of Machiavelli

(ranged over by e) is the set given by the following syniaz:

ex=c|z|Az.e|(ee)|let z=ein e end

where ¢ stands for the set of symbols {c|37.c: T € Consts}.

Note that this definition is an instance of the definition of the set of raw terms of ML (defini-

tion 3.21).

For the raw terms, we use the following syntactic shorthands:

lhh=e1,.... 0 =en]
(e1,..- €n)

el

(I =e)

(case e of I} = €),...,{; = ¢;)

(rec z.¢€)

=4

-

recordvln)(ey, ... ey),
record#1-#)(e; ... e.),
select!(e),

variant'(e),

casell10)(e) e1) - - (en),

In examples we also use the following syntactic sugar for case statements:

(case e of (I, = z1) = ey, ..

(case e of I} = Az).€ey,..

“<1n=2n):>en)¢>

adn = Aza. €1).

1t should be noted that new notations we have introduced above are not new term constructors. The

abstract syntax of raw terms remans the same (definition 3.21). Later we will give an alternative

definition where those new notations are introduced as raw terms constructors.

113

5.2.3 The Proof System for Typings

Since the definition of raw terms and types are instances of the general definitions of ML we gave
in section 3.5, the definition for the proof system for typings of Machiavelli is the same as that of

ML (definition 3.22). We repeat the typing derivation system below:

(consT) Abc:1 ifc:7€Consts
(VAR) Abz:r fA@)="7

Abe i1 — 7 Abey:mn
(aPP)

Ab(erer) i m

Az =7} be:m

(ABS)
AbAz.e .1 — 1

Abefefz] : 7 Aber: 7

(LET)
Abletz=eyine end : 7

Wewrite MCH A pe:7Tif Abe : 7isderivable.

5.3 Alternative Presentation of Raw Terms and Typings

The above presentation of raw terms has the technical advantage that it significantly simplifies
the presentations of the typing inference system, type inference algorithm and the semantics of
the language. In particular, many results about the semantics can be directly applied to Machi-
avelli without re-proving them by adding cases for new term constructors. However, programming
languages are usually defined using raw term constructors, which may yield a more intuitive and
readable definition. For this reason, we give an alternative presentation for the set of raw terms

using raw term constructors:

e == ¢ |z|Az.z|(ee)|letz=cin e end|
l=e,....0 =¢€]| el | modify(e,l ¢e) |
{(l=¢€)|(caseeofi=e,....I=>¢€)|
{le,....e} | union(e,e) | prod(e,...,e) | map(e,e) |

join(e,e) | project(e,o) | con(e,e) | eq(e,e) | (rec v.e(v))

114

where ¢” stands for atomic constants and operations on base types and e{v) in (rec v.e(v)) stands

for a raw term possibly containing symbol v.

For the alternative presentation of the set of raw terms using raw term constructors, the equiv-

alent proof system can be given by the following set of rules:

(CoNsT) Abce” : 17 ifc:7 €Consts
(vAR) Abz:r HAQz)=r

Abe i1 —mn Abey:m
(apP)

Ab (e e2): 7

Az =n}be:mn

(ABS)

AbAre: 1 —m

Abeleajz}: T Abes: 7
(LET)

Apletz=esine end : 7
Abe i1, ..., Abes : T

(RECORD)

A D[ll =€1,...,1,,=e,,] : [11 ZT1,...,1nZTn]

ADCZTl . i L
(poT) ————————— if 7, is a record type containing [: 75

Abeld:

Abe 1 Aber:m e . ..
{(MODIFY) if 7, is a record type containing ! : 72
A b modify(e;,l,e1) : 7y

Abe:mn . : .
(VARIANT) if 79 is a variant type containing [: 7
Ab<l=e>: 1

Abe:{ly:m,....0h 1) Abe 11 —7 - Abeg:Th—T

(CASE)
Ab(caseeofli = ey,....I,=2e,): T

Abe 0 --- Abe, 0
(SET)

Ab fer,....en} : {o}

Abe : {o} Abes: {o}
(UNION)

A b union(e;,ez) : {o}

115

Aber: {1} - Abeq: {ou}

(PROD)
A b prod(ey,...,eq) : o x ---x o, }}
Abe : 0y — 0o Apes: {0}
(MAP)
A b map(e;,ez2) : o2}
Abe o Aber: o2 .
(JOIN) if 63 =0y Uoy
A b join(ey, e2) : 03
Apbe: o]
(PROJECT) ifor € 0y
A b project(e;,02) : 09
Abe o Abey: o . .
(coN) if o1 U 0 exists
A b con(e,eq) : bool
Abe -0 Aber:o
(EQ)
A b eq(e,eq) : bool
A{v:=c} be(v) : o
(REC)

Ap(recve(v)) : o

The reader is encouraged to check that the set of all derivable typings are indeed isomorphic to
those in the proof system based on the constructor constants. In examples that follows we use this
representation of raw terms, but we continue to use the previous representation of raw terms and

s . : LRSI cr 1 . Y S n:
Lypings In dennitions Ol 1ormal property oI iviacniavelll.

5.4 Type Inference Problem

In our view, terms of ML are typing schemes representing sets of typings (definition 3.10). As
we have analyzed in section 3.2, type-checking and type inference depend on the existence of a
principal typing scheme for any typable raw terms. In order to preserve this property, it was
needed for constants to have a principal typing scheme (assumption 3.1). As we have seen in
section 5.1, however, field selection select’ does not have a principal typing scheme. The type

inference algorithm for ML is therefore not directly applicable to our language.

The reason that select’ does not have a principal typing scheme is the condition associated with

the typing rule. The conventional notion of type-schemes cannot represent the set of all types of

116

the forms 7; — 75 such that 7, is a record type containing [: 7 field. The same problem exists for
the constants variant', join and proj° (and description constructor constants containing them).
The family of description constructor constants are restricted to description types, which is also a
form of condition that cannot be represented by conventional type-schemes. We solve this problem

by extending the notion of typing schemes to allow conditions on substitutions.

5.4.1 Conditional Typing schemes
Let Tvar be a set of type variables (ranged over by t).

Definition 5.2 The sel of type-schemes, Tscheme ranged over by p, of Machiavelli is the set of

regular trees represented by the following syntaz:
pu=t|blp—=plll:ip,....l:p) | {:p,....01:p) | (rec v.p(v)).
On substitutions of type-schemes, we define the following five forms of conditions.

Definition 5.3 A condition is one of the following formula:

[

. dtype(p),

. [P1513P2],

[

[

- {p131:pa),

4. p1 = jointype(p2, p3),

[N

. lessthan(o, p).

The first condition states that p should be a description type. The other four conditions represent
the conditions associated with the constant functions select!, variant!, join and proj’. We call
these four forms of conditions record, variant, join and projection-conditions respectively. ¢ in a
projection condition lessthan(o,p) is called a target type of the projection condition. The meanings

of these conditions are defined by the following satisfiability relation:
Definition 5.4 A substitution @ satisfies a condition c:

1. if ¢ = dtype(p) and 6(p) € Diype™,

2. ifc=[p1 31: p2) and 6(p1) 1s a record type containing | : 0(ps3), (i.e. 8(p1) is a regular tree
such that 6(p,)(€) = Record, | € dom(6(p,)) and 8(p1)/1 = 6(p2)),

117

3. ife=(p131:p2) and 8(p1) is a variant type containing ! : 6(p2),

4. if ¢ = (p1 = jointype(pa, p3)) and 6(p1) € Dtype™, 6(p2) € Dtype™, 6(p3) € Diype™
and 8(py) = 6(p1) U 8(p3), where U is the least upper bound of the ordering on Dtype™ we
have defined in subsection 4.4.1,

5. if c = lessthan(o,p) and 8(p) € Dtype™, o < 0(p), where < is the ordering on Dtype™ we
have defined in section 4.4.1.

A substitution 6 satisfies a set of condition C iff 8 satisfies each c € C.

The condition of the form diype(p) is similar to the condition associated with the equality types
in Standard ML? and can be implicitly represented by introducing distinct type variables and
meta-symbols for description types. For this purpose we define the set of description type-schemes,
a subset of type-schemes that represents only description types. We divide the set Tvar of type
variables into two sets; the set of unconditional type variables (ranged over by u) and the set of
description type variables (ranged over by s). We continue to use ¢ for a type variable ranging over
arbitrary elements in Tvar. The set of description type-schemes (ranged over by 8) is the set of

regular trees represented by the following syntax:
Su=s|b|[l:6, ..., L8] | (1:8,...,1:8) | (rec v.b(v)).

In what follows, we implicitly regard é as a type-scheme associated with the condition dtype($)
and write 6(6) assuming that 8 is a substitution satisfying the condition 6(6§) € Dtype™. This
is tacitly done in Standard ML implementation to incorporate equality primitive in ML’s original

type inference mechanism. For example, we have the following typing scheme in Standard ML:

fnz=>fmy=>z=y:"a— "a— bool

where "a is an equalily type variable, which is regarded as a type variable with the condition that
substitutions are restricted to those 8 such that 6(*a) is a type that does not contain function type

constructor.3

Definition 5.5 (Conditional Typing scheme) A conditional typing scheme s a formula of the
form C,X b e : p such that for any ground substitution 8 for C,T and p, if 8 satisfies C then
MCFO(Z) be : 0(p). A conditional typing scheme C,X b e : p 1s principal if for any typing
A b e : 7 there is a substitution 8 such that 6 satisfies C and A4°™S)=9(T), 7 = 4(p).

2This similarity was pointed out to me by Robin Milner
3With the existence of reference types, the precise condition is that (*a) does not contain function type con-
structor outside the scope of any reference type constructor.

118

The following theorem extends theorem 3.2 for ML. -

Theorem 5.1 There is an algorithm CTS which, given any raw term e, yields either failure or
(C,Z,p) such that if CTS = (C,Z,p) then C,Z b e : p is a principal conditional typing scheme

otherwise e has no typing.

Proof We assume that the unification algorithm U/ (section 2.2) on regular trees is extended to
an algorithm to unify a finite sequence of regular trees simultaneously. Such an algorithm can be
easily constructed by the unification algorithm that unifies two regular trees. As before we consider

¥ as a tree by using a linear order on variables (as in theorem 3.2).

We first show that all constants have a principal conditional typing scheme. For constants other
than description constructor constants, we have the following principal conditional typing schemes

representing their set of associated types:

MCF 0,0 bc” : 7 (for all atomic constants and operations on base types),
MCHF 0,0 brecord!tdn) s yp — ooiupy — [l uy, .l U],

MCt {{u131:u)},0 b variant' : us — uy,

MCtF 0,0pbset" : s—-.-s— {s} (narguments),

MCF {[u; 31:us]},0 b select’ : u; — us,

MCtF {[u; 31:ua]},0 b modify' = u; — ug — uy,

MC*r 0,0 B caselltin) (hiuy, ooy tup) = (v — u) — - — (up — u) — u,
MC+F 0,0 bunion : {s} — {s} — {s},

MCF 0,0 pbprod® : {si}— - — {sn} —fs1 x--- xsa},

MCF 0,0 bmap : (s1 — s2) — {s1} — {{s2]},

MCt {s3 = jointype(sy,s2)},0 b join : sy — so — s3,

MCt {s3 = jointype(s;,s2)},8 b con : s; — 52 — bool,

MC+ {lessthan(o,s)},0 b proj° : s — o,

MCtF 0,0beqg:s— s— bool

By the definition of these constants and the satisfiability of conditions, all the above are clearly

principal conditional typing schemes.

We next show the same property for description constructor constants. We first define the algorithm

CE to compute a conditional typing scheme of constructor éxpressions:

119

Algorithm CE
C&(c) = (C,X,8) where

(1) Case c = z:
Cc=0
= {z := s} (s fresh)
b=s

(2) Case ¢ = Recordt!n)(¢y, -+, ¢cq):
let
(C1,E4,6,) = C&(er)

(Cn,Zn,bn) =CE(cn)

X =dom(Z,)U---Udom(Z,)

T =S {zl:=s},... zf :=sl} (s}, 1 < i<k fresh)
where {z],..., 71} = X \dom ()

T =S {zt =T, ... 2P =57} (sP,1 < i <! fresh)

where {z7,....z}'} = X \ dom(Z,)
6=U(xy,.. . =

C=606(Ciu---UCy)

S =6(5))

§=1[l1 : 0(8),.... 1, : 0(6,)]
(3) Case ¢ = Variant'(c'):
let
(C1,Z1,6,) = CE(C)

C=CiU{{s31:6,)} (s fresh)
w

v
-

1

O

=S5

(4) Case e = Set"(c1, - .¢cn):
let

120

(C1,21,8,) =CE(cy)

(Cﬂ,En,én)=C£(Cn)

X =dom(Z,)U---Udom(Z,)

T =T {z} =5, 2} =51} (s},1 < i <k fresh)
where {zl,...,z1} = X \ dom(Z;)

=5 {z} :=sP,...,20 ;= 5P} (s},1 < i <1 fresh)
where {z7,...,2}} = X \ dom(Z,)
6= U((T),8), ., (Sh,8n))
in
C=6(Ciu---UCy)

£ =6(%)

“~1

6= §6(61)}

(5) Case c = (rec z.cy):
let
(C1, %4, 68,) = C&(cr)
in
if z € dom(X;) then
let
0 =U(Zs(z),61)
in
C =6(Cy)
T = g(gl[dom(sx)\{r})
&= 0(6)

else

1 Q
I
A9

t4

o
I
o

S

For this algorithm, the following property holds, whose proof is similar to that of lemma 3.4:
Lemma 5.3 If C&(c) = (C,Z,6) then dom(Z) = FV(c). 1

121

The principal conditional typing scheme for a description constructor constant c{*1:+#») is then
given as:

C,0 b cF1®n) ¢ B(zy) — - — E(z,) — 6
where (C, XL, 6) = C&(c).

We show that the above algorithm computes a principal conditional typing scheme for all description
constructor constants. By definition of ¢(*1++%») and lemma 5.1, 5.3, it suffices to show that (1)
if CEF A b c: othen C&(c) = (C,L,8) and there is some substitution @ such that 6 satisfies
C and 0(8) = o, () = A9°™®), and (2) if C&(c) = (C, T,) then for any substitution 6 ground
for C and X if 6 satisfies C, then CE I 6(X) b ¢ : 6(8). Since the set of constructor expressions
are inductively defined terms (not regular trees), we can show the above properties by induction
on the structure of c. The basis is trivial. The induction step is by cases. In the following proof,

C.Ci,....,,%;...,p,pi...,0 refer to those described in the algorithm CE.

1. Case c = Record(""”"")(cl,-‘-,c,.): Suppose CE + A p Record"v!»)(¢y, ... ¢a) : o for
some A and . Then by the typing rules, ¢ must be of the form [{; : 01,...,1n : 6,]. By
the induction hypothesis, for each 1 < i < n, C&(¢;) = (Ci, i, 6) succeeds and there is
some n; that satisfies C; and 7;(Z;) = AM°™E)) 1i(8;) = 0;. Let nf = ;[FTVUCLT4))
where FTV(X) is the set of type variables in X. Then n{(Z;) = A[M°™(=) | nl(§;) = o;. By
the definition of CE the sets FTV((Ci, L, é;)) of type variables are all disjoints. Therefore
n=1n1U-.-n, (as graph) is a well defined substitution and satisfies the following properties:
for all 1 < i < n, n satisfies C;, n(X;) = AM9°™=) and n(6;) = o;. Then by the property of
unification, (X}, ..., X!) in the algorithm succeeds and return 6 such that n < 6. Let n’ be
a substitution such that 7 = n’ 0 6. Then 7’ satisfies 6(C, U --- U Cy), 7'(8(Z})) = Atdem(E),
n'(6(8:)) = oi (for all 1 < i < n) and therefore n'(é) = 0.

Conversely suppose CE(Record(!t-1a)(¢), ... ¢,)) = (C,T,6). Then by the definition of
CE C&(c;) = (Ci,5;,6) for all 1 < i < n and there is a substitution 6 such that C =
B(C1 U ---UCy), Hem™E)= 9(;), 6 = [{, : 8(&:),...,1n : 6(6,)]. Let n be any substitution
ground for C, T that satisfies C. Then no 6 is a substitution ground for all C;,E;,1< i< n
that satisfies all C;,1 < i < n. Then by the induction hypothesis and by lemma 5.1, CE F
n(X) b ¢; : n(6(5)). By the rule (RECORD), CE - (E) b c : n(é).

2. Case ¢ = Variant'(c’): Suppose CE + A b Variant'(c') : o for some A,o. Then by the
typing rules, ¢ must be a variant type containing ! : oy such that CE F 4 b c¢; : o;. By
the induction hypothesis, C€(c") = (C1, L, 61) succeeds and there is a substitution n ground
for Cy, L, that satisfies C; and (L) = Atdem(E1) and 5(6,) = o,. Since s introduce in the

122

algorithm is fresh, 7’ = n{s := o} is a substitution satisfies all the above three conditions.
But since o is a variant type containing { : o;, ' also satisfies C and 7/(L) = A}4o™(E),

n'(6)=o.

Conversely, suppose C€(Variant!(c')) = (C, T, 6). By the definition of C&, C&E(c') = (C1, %, 5)
such that C = Cy U {{s 3 1 : 6;}}. Let n be any substitution ground for C, T that satisfies
C. Then n satisfies Cy and 7(s) is a variant type containing { : n(é;). By the induction
hypothesis, CE + n(Z) b ¢’ : n(6;). Since n(s) is a variant type containing { : n(é,), by the
rule (VARIANT), CE + n(Z) b Variant'(c') : n(s).

3. Case ¢ = Set™(cy, -+, ¢n): Similar to the case for e = Record' In(ey, - “yCn).

4. Case ¢ = (rec z.c;): Suppose CE + A b (rec z.¢;) : o. Then by the typing rules,
CE + A{z := ¢} pc; : 0. By the induction hypothesis, C€(¢c;) = (C1, L1, 6,) succeed and
there is some 7 ground for C;, T, that satisfies C) such that n(X,) = A{z := o}[9™E),
6(6,) = o. Suppose z € dom(E,) then n(Z;(z)) = ¢ = n(é;). Therefore the unification in
the algorithm U(X,(z), ;) succeeds and returns 6 such that n < 6. Let ' 0§ = 5. Then 7/
satisfies 8(Cy), n/(8(S,19om(E\=})) = gpdom(8(ST™ENED) ong n/(6(6,)) = o. Suppose
z & dom(Z,) then n(T,) = A{z := o }J49om™(E1)= gr4om(E1) and 5(6,) = 0.

Conversely suppose CE((rec z.¢1)) = (C, X, 8). By the definition of C€, CE(cy) = (C1, Ey, 61).
Suppose z € dom(E;). Then 6 = U(Ey(z),6) and C = 6(C;), T = 6(T, [PomEIM=,
8 = 0(6,). Let n be any substitution ground for T, C that satisfies C. Then 1 o @ satisfies
C). By the induction hypothesis CE F no 6(Z;) b ec; : no8(8). But 8(I,(z)) = 8(6,) = 6.
Thus CE & n(Z{z := é}) bcy : n(é),1.e. CEF n(E){z := n(8)}) > ey : n(é). Then by the
rule (REC), CE - 9(Z) b (rec z.¢y) : n(6). Suppose z € dom(Z;). Then ¥ = X;, C = Cy,
and § = é,. Let 5 be any substitution ground for X,C that satisfies C. By the induction
hypothesis CE F n(Z) b c; : n(8). By lemma 5.1, CE + p(Z){z := n(8)} B¢y : n(6). Then
by the rule (REC), CE F n(X) b (rec z.¢,) : n(é).

We now define the algorithm to compute a conditional principal typing scheme for general raw

terms:

Algorithm CT S
CTS(e)

(C.Z, p) where

(1) Case e = ¢: Given above.

123

(2) Case e = z:

C =0,
E={z:=u},
p=u.

(3) Case e = (e ¢):
let
(C1,Z1,p1) = CT S(e1)
(C2,Za, p2) = CT S(e2)

S =S{z; :=ul, ..., 2, ;= ul} where

{z1,....2,} = dom(Zs) \ dom(Z,) (ul,...

2)
2, =%o{y ;= ui,...,¥Ym = u;, } where

{¥1,-- - Ym} = dom(Z)) \ dom(Z») (ui,...

6 =U((Z], p1),(Z5, p2 — u)) (u fresh)

in

(4) Case e = Az.e;:
let
(C1,%1,p1) =CT S(e1)
in
if £ € dom(XZ,) then
=0y,

T = :rdom(‘_‘,)\{z} ,

=Zi{z)—p
else
C - Cla
£T=I

p = u— p; (u fresh).

(5) Case e =let z = ¢, in e> end:

let

124

,ul fresh)

,u, fresh)

(C1,Z1,p1) = CT S(e1) -
(C2,E2, p2) = CT S(eale1/z])
Tl =X {z1:=u},...,z, ;= ul} where
{z1,...,2,} = dom(X;) \ dom(Z;) (u},..., u} fresh)
Ty =Zo{y = ui,...,ym := ul,} where
{¥1,-- -, ym} = dom(Z,) \ dom(Ey) (u?,..., uZ fresh)
0 = (s}, 5h)

n
C =0(C1)Ub(Cy),
E=46(%y),
p = 8(p2).

For the correctness of the algorithm, we need to show that (1) if MCF A pe : r £hen CTS(e) =
(C,Z,p) and there is a substitution # that satisfies C and A[4°™()= §(T), r = 8(p) and (2) if
CTS(e) = (C,T,p) then for any ground substitution § for C,X,p if 8 satisfies C then MC F
6(X) b e : 8(p). This is proved by induction on the structure of e. We have already proved
for the case for constants. The case of z is identical to the proof for ML (theorem 3.2). Since
the cases for Az.e; and (e; e;) does not create new conditions, these cases are proved similar to
the corresponding cases in ML. The necessary new properties are implied by the corresponding

induction hypothesis. 1

5.4.2 Satisfiability of Conditions

We have shown that for any raw term e if € is typable then we can effectively construct a principal
conditional typing scheme. This result is, however, not enough for complete static type-checking
since a principal conditional typing scheme C,T > e : p constructed by the algorithm may not
have an instance. This may happen because the set of conditions C may not be satisfiable. As

an example, the algorithm computes the following conditional typing scheme for the raw term

e= Az.{(z.l + 1,z.0 and true):
{[us!:int],[u>d!:bool]},8 be : u— (int x bool)

where set of conditions is clearly unsatisfiable and therefore the raw term has no typing. In such a
case the type system should report a type error. In the above example, it is rather trivial to detect
the unsatisfiability. For general terms, however, we need to develop an algorithm to simplify a set

of conditions and to test their satisfiability.

125

For a set of conditions C, we write Sat(C) for the set {#|6 satisfies C'}.

Definition 5.6 A set of conditions C, is a refinement of Cy if there ts a substitution 6 such that

Sat(Cy) = {nob|n € Sat(C1)}. @ is called a refinment substitution for C,.
The following property is an immediate consequence of the definition:

Proposition 5.4 IfC,X be : p is a principal conditional typing scheme and C' is a refinement
of C with a refinement substitution 8, then C’',6(X) be : 6(p) ts also a principal conditional typing

scheme. |

We would like to develop an algorithm which, given a set of conditions C, decides whether C is

satisfiable or not and if it is satisfiable then computes a refinement of C and a refinement substitution

8.

If a set of conditions C only contains record conditions or variant conditions then such an

algorithm exists.

Definition 5.7 A set of conditions C is in record-variant normal form if the following properties

hold:

1. if[p>31:p'] € C then p 1s a type variable,

o

if (p31:p') €C the p is a type variable,

3 iflp3l:p]€C,[p31:p] €C then py = p,
4 f{p3l:p1) €C.(p31:p2) € C then p, = pa,
5. if[p1 211 : p2] € C.(p3 D2 : ps) then py # ps.

Lemma 5.4 If C does not contain join conditions or projection conditions and in record-variant

normal form then C is satisfiable.

Proof Consider the substitution 6 satisfying the following properties: dom(8) = {t|3p.[t 5 1 :
pl € CYU{t|3p.{t 51 : p) € C} and for all t € dom(8) if there is some [t 5 | : p] € C then
8(t) = [l : 6(p1),...,1n : O(pn)] where {(I1,p1),...(In,pn)} = {(I,p)|[t 21 : p] € C} otherwise
there is some {t 3 : p) € C then 6(t) = {I; : 68(p1),..-,1n : 8(pn)) where {(I1,p1),... . ln,pn)} =
{U,p)|{t 2 L: p) € C}. Since the above equations on @ defines a regular system satisfying Gretbach

condition [32], such 6 always exists. It is clear that 6 satisfies C. 1

126

Proposition 5.5 If C does not contain join conditions or projection conditions then C is satisfiable
iff there is a refinement C' of C thatl is in record-variant normal form. Moreover, there is an
algorithm which computes a refinment C’' of C that is in record-variant normal form if one erists

otherwise reports the unsatisfiability of C.

Proof We prove the proposition by defining an algorithm. Define the transformation relation —

on pairs of a set of conditions and a substitution as follows:
(CU{[l...,1:p1,...]21:ps)},0) = (8'(C),0' 0 8) where 8’ = U(py, p2) (5.3)

(CU{{{....1:p1,.. YD 1:p1}},80) = (6'(C),0 o 6) where 8 = U(py, p2) (5.4)

(CUllpal:pllpal:p2]},0) = (8'(CU{lpD1:p1]}), 0 00) where & =U(p1,p2) (5.5)

(Cu{lpal:p1),{p21:p2)}.0) =

(0'(CU{{p31:p1)}), 0 06) where 8 = U(py, p2) (5.6)

Let = be the transitive reflexive closure of =. Define the algorithm RV as:

(C',8) if (C,id) = (C’,8) and C’ is in record-variant normal form
RY(C) = where id is the identity substitution,

unsalisfiable otherwise

(by assuming some ordering on applications of rules). Since the transformation = strictly reduces

the number of conditions in C, for any given (C,8), RV(C) always terminates.

We show the properties of RV needed to prove the theorem. By lemma 5.4, proposition 5.4 and by
the definition of RV, it suffices to show the following two properties: (1) if RV(C) = (C’,) then
C’ is a refinement of C with 6 a refinement substitution and (2) if RV(C) = unsatisfiable then C

is not satisfiable.

For the first property, by the definition of RV, it suffices to show that if (C;,6,) = (Ca, 02) then
C, is a refinement of C; with a refinement substitution ' such that #» = 6’ 0 8,. We show this

property for each rule of = .

1. The case for the rule (5.3):
(CU{[[.-- t:p1,--]31:pa]},8) = (6(C),0' 0) where 8’ =U(py,p2)-

Suppose 7 satisfies C U {[[...,1 : p1,...] 31 : p2]}. Then n(py) = n(p2). Therefore there is
some 7 such that n = 7,06’ and n, satisfies 8'(CU{[[...,{: p1,...] 31 : p2]}) and therefore it

127

3.

also satisfies 8/(C). Conversely suppose 7 satisfies §'(C). Since 8'(p1) = 6'(p2), 1 also satisfies
O(CU{[[---,1:p1,---] D 1: ps]}). Therefore no 8 satisfies CU{[[...,{ : p1,...] D1 : p2j}.
This implies that 6’(C) is a refinement of CU{[[...,!: p1,...] ! : po]} with a refinement

substitution 6’.
The case for the rule (5.5):
(CU{lpai:pmllp31:p2)},0) = (8'(CU{[p31:p]}), 0" 00) where 6" =U(py, p2).

Suppose 1 satisfies CU {[p 31 : p1),[p 3 { : p2]}. Then n(p;) = n(p2). Therefore there is
some 1, such that n = 7n; 0 8’ and n, satisfies 8'(CU{[p 3! : p],[p 3 | : p2]}). Then g,
also satisfies 9/(C U {[p 3 ! : p1]}). Conversely suppose n satisfies '(C{[p 3 { : p1]}). Since
0'(p1) = 0'(p2), n also satisfies 6'(C U {[p 3! : p1],[p 3 1 : p2]}). Therefore no 6’ satisfies
CU{lp31:p)p>!: p2]}. This implies that '(CU{[p 3 ! : p;]}} is a refinement of
CU{[p>3!:p1].[p>!: p2]} with a refinement substitution 6'.

The cases for the rule (5.4) and (5.6) are similar to (5.3) and (5.5) respectively.

We next show the second property. Suppose RV(C) = unsatisfieble. By the definition of RV, there

is some C’ that is a refinement of C and C’ satisfies one of the following properties:

~1

.- 1:p1,..] 31: p2] € C' and there is no substitution 8 such that 6(p;) = 6(p2),

(.-l p1,...) 31 :py) € C’ and there is no substitution ¢ such that 8(p;) = 6(p2),
Alp3!:pl[p31:p2]} C C and there is no substitution & such that 8(p;) = 6(p-),
. {{p31:p1).{p>1:p2)} CC' and there is no substitution 8 such that 6(p;) = 8(pa),

. {p31:p') €’ and pis either a record type or a set type,

[p>1:p] €C’ and p is erther a variant type or a set type,

.[p3lLi:p1)€C and {p 315 : p2) € C’ for some p.

The first 4 cases correspond to the cases where one of unifications in RV(C) fails. Others correspond

to the cases where the result of the transformation of C in RV(C) is not in record-variant normal

form. In each case C’ is not satisfiable. Since C’ is a refinement of C, C is not satisfiable. |

Since join conditions and projection conditions are created only if an expression contains join,

con or proj?, the above result establishes the complete type checking and type inference procedure

for expressions that do not contain these three primitives. This result can be extended to projections

on finite description types, as shown in the following proposition.

128

Proposition 5.6 Let C be a set of conditions that does not contain join condition and the target
type of each projection condition is finite. If C is satisfiable then there is a refinement C' of C
that contains only record conditions and variant conditions. Moreover, there is an algorithm that

computes a refinment C' of C if C is satisfiable otherwise reports the unsatisfiability of C.

Proof As before we prove the proposition by defining an algorithm by a transformation relation.

Let = be the transformation relation on pairs of a set of conditions and a substitution as follows:

(C U {lessthan(b, p)},8) = (6’(C),0' 0 §) where 8’ =U(b, p)

(C U {lessthan([l, : 61,...,1, : 0n],p)},0) =
(CU{lp3t:s1),....[p 31l : sn],lessthan(ay, s1), ..., lessthan(o,,sn)},6)

(s1,...,8n fresh)

(CU {lessthan({ly : 01,...,1n : o), p)},0) =
(¢'(C U {lessthan(o,,s1),...,lessthan(o,,s,)}), 8 0 8)

where &' = U(p,{l; :s1,...,1n : 54)), (51,---,5n fresh)

(C U {lessthan({ao1}},p)},0) =
(8'(C U {lessthan(ay,s),8' o 8) where 6’ =U(p, {s}). (s fresh)

Define the algorithm F7P as:

(C',9) if (C,id) = (C’,8) and C’ has no projection condition,

unsatisfiable otherwise

FP(C) =

(by assuming some ordering on applications of rules).

Define the weight of a projection condition lessthan(e, p) as the height of & (i.e. the maximum num-
ber of the nesting level of type constructors in ¢). Since o is finite, each projection condition has
a finite weight. Moreover each transformation step always decreases the following complexity mea-
sure: the multiset of weights of projection conditions in C under the multiset ordering. Therefore
the above algorithm always terminates. The correctness of the algorithm follows from the definition

of the satisfiability of lessthan(a, p) (see the inductive definition of < in subsection 4.4.1). 1

129

We then have:

Theorem 5.2 If C does not contain join conditions and the target type of each projection condilion
is fintte then C is satisfiable iff there is a refinement C’ of C that is in record-variant normal form.
Moreover, there is an algorithm that computes a refinement C' and a refinement substitution 6 if

one ezists otherwise reports the unsatisfiability of C.
Proof By applying proposition 5.6 followed by proposition 5.5. 1

This result establishes the complete type inference for raw terms that do not contain joins and all
projections are those on finite description types. Moreover, there is a compact representation for a
conditional typing scheme for such a raw term. Since if a set of conditions is in record-variant normal
form then all conditions are conditions on type variables, conditions can be integrated into type-
schemes by extending type-schemes to include type variables with conditions. Define conditional

type-schemes (ranged over by T') as the regular trees represented by the following syntax:

T o= t|[W:T,....0:T|@<e) | {(:T,....1:T) | b|
T—T|[{0:T,...;0:T)|{I:T,...,1:T) |(rec v. T(v)).

() : Th,...,ln : To] is a type variable t associated with the set of conditions {[t 3 /; : T1],....[t 3
ln : Tn]}. Similarly for ((¢)! :T,...,1:T). (t < o) is a type variable ¢ associated with the condition
lessthan(t,o). We call those type variables conditional type variables. Conditional typing schemes
for raw terms that do not contain joins and all projections are those on finite types can then be
represented by these conditional type-scheme. I leave to the reader the mechanical transformation of
a set of conditions to conditional type variables. The following are examples of principal conditional

typing schemes using the above representation:
MCtH+ 0 bfn(z) = zd : [(w)l:us] — uo,
MCt 0 > fn(z) = modify(z,!,z.l + 1) : [(u)! : int] — int,
MC}H 0 & fo(z) = (z.dy, (z.01)d2) = [(ur)h : [(u2)l2 = us]) — ([(u2)la : uz] x u3).
The examples we have seen in the beginning of this chapter are conditional typing schemes using

these compact representations. In examples that follows we use these compact representations for

conditions whenever appropriate.

When a set of conditions contains join conditions or projection conditions with infinite target
types, however, the problem of deciding whether it is satisfiable or not becomes a difficult problem.

Indeed the following result implies that it is an NP-hard problem.

130

Theorem 5.3 It is NP hard to decide whether a given raw term e has a typing or not.
Proof The proof is by reduction from MONOTONE 3SAT [43]:

Given a 3CNF Boolean formula whose clauses consist of either all negated literals (called
negative clauses) or all un-negated literals (called positive clauses), test whether there

is a truth assignment.

Let F = {c1,...,em} be the given set of clauses and {z,...,z,} be the set of all literals that
appear (either un-negated or negated) in F. We construct a term ef such that F has a truth
assignment iff ef has a typing. We use the following constants: f : int — int, g : bool — bool. We
use four variables z,,y¢, Zaise, Tint, Zooor fOr each literal z, one label #z for each z and one label

#c for each c and labels [, #1,#2, #3, #4. For each z, let M be the term

M*=[#1 = f(join(zirye, Zint)d),
#2 = g(join(z aise, Thoot)-1),
#3 = join(Ztrue, Tyaise).l.
#4 = join(Zine, Tooot)]

For each clause c, if ¢ consists of un-negated literals {z,y, z} then let N¢ be the term

N¢= f(join(join(Zirue, Yirue)s Ztrue)ol)

otherwise ¢ consists of negated literals {F,7,T} then let N¢ be the term
N¢ = g(join{join(Zsatse, Yraise)s Zratse)-l).
Now define the desired term e as the following record:
ef = (g, =M™, ..., #zo= M #c, = N .. #em = N
The translation from F to e is clearly polynomial.

We next show the desired property of ef. Suppose e has a typing A F ef : 7. By the typing
rule, both M* and N°€ have a typing under .4. By the definition of M*, if M* has a typing under
A then either A(zyry.) is a record type containing the field { : int or A(z a1,.) is a record type
containing the field ! : boo! and not both. Define a truth assignment M such that M(z) = true
iff A(zry.) 15 a record type containing ! : int field. By the definition of N¢ and the typing rule
for join, for a positive clause {z,y, =}, if N{z¥2} has a typing under A then at least one of

A(ztrue)s AYtrue), A(zirue) has the field [: int and for a negative clause {Z,¥,Z}, if N{TY7} has

131

a typing under A then at least one of A(zja1se), A(Ysaise), A(2fatse) has the field I : bool. By the
definition of M this implies that M satisfies F. ‘

Conversely suppose F is satisfied by an assignment M. Define a type assignment A as follows: if
M(z) = true then A(zirue) = [2 int], A(zsaise) = [, A(Zint) = [, A(Zsooi) = [I : bool] otherwise
A(Ztrue) = [, A(zsaise) = [I : bool], A(Zine) = [l : int], A(zpoor) = . It is then easy to check that
e has the following type under A:

[#zy i1, HEn Ta #CL T HCm T

where 7; is [#1 : int, #2 : bool, #3 : int,#4 : bool] if M(z;) = true otherwise [#1 : int,#2 :

bool, #3 : bool, #4 : int] and 7] = int if ¢; is positive clause otherwise 7j = bool |

Worse yet, we do not know whether the type inference problem for the entire language is
decidable or not. There is, however, a practical solution to this problem. The strategy is to “delay”
the satisfiability checking of join conditions and projection conditions {of infinite target types) until
all type variables are instantiated, i.e. we delay the satisfiability checking of conditions associated
with functions containing join and proj? for infinite ¢ until they are applied to actual arguments. If
a set of conditions does not contain type variables then the satisfiability can be decided by checking
the ordering relation and computing the least upper bound of description types, which have been
shown to be decidable (proposition 4.11). There is, however, one problem in this approach because
of variants. Like ML’s nil, variants are polymorphic values and therefore their type variables may

never be instantiated. We solve this problem by imposing the following restriction:

The programmer must supply the type specifications for variants if they are arguments
of the functions join or proj° with infinite o (directly or indirectly through function

abstractions/applications).

Intuitively, this states that the “actual” arguments to the functions join and proj? (with infinite o)
must have a ground type. It isinteresting to note that the same problem arises with the combination
of the reference types and type variables and the above restriction is the same as the one adopted in
Standard ML implementation [T1]. We say that a conditional typing scheme is a program scheme
if it is of the form C,0 t e : T such that T does not contain function type constructor. If a
conditional typing scheme is a program scheme then join conditions and projection conditions are
respectively of the forms p = jointype(o,,02) and lessthan(oy,02), both of which are reduced to
true or false. Therefore only remaining type variables in a program scheme are those created for
variants. Therefore the above restriction is imposed by treating a program scheme C,L te : T as

a type error if C contain (irreducible) type variables.

132

We now define the set of terms Machiavelli as follows: -

Definition 5.8 (Terms of Machiavelli) A term of Machiavelli is a conditional typing scheme
such that the sel of conditions is in record-variant normal form and if il is @ program-scheme then

its does not contain join condition or projection condition with infinite target types.

5.5 Semantics of Machiavelli

In this section, we define a denotational semantics and an operational semantics of Machiavelli. For
this purpose, we need to identify the subset of terms that represent descriptions we have constructed

in section 4.4. The set of description terms (ranged over by d) is the following set of raw terms

that have a typing:
d == c® | record"™")(d) ... (d) | set™(d)---(d) | variant'(d) | ¢'**F")(d) - - (d).

A description term denotes a regular tree in Dobj™. We write D(d) for the element in Dobj™

denoted by d.

5.5.1 Denotational Semantics of Machiavelli

To give a denotational semantics of Machiavelli, we extend the semantic framework for ML we have
developed in chapter 3. Let xMachiavelli be the typed lambda calculus TA* we have defined in
section 3.5 with the set Type of types of Machiavelli and the set of constants {¢"|c : T € Consts}

where Consts 1s the set of constants of Machiavelli.

Definition 5.9 (Models of xMachiavelli) An ertensional eztended frame (F,e.C) is a model
of zMachiavelli if the following conditions hold:

~

. it salisfies the definition of abstract models (definitions 3.2{ and 3.25) of TA,

te

. for each description type o, F, O D, where D, is the description domain of o we have

constructed in section {.4,
3. for each description term d of type o, [0 & d : o]e € D,,

4. the following equations are valid (we omit types):
(1) dy = d; if D(dy) = D(d>)

133

(2) [11=el,...,1,-=e.~,...,1,,=e,.].l=e,-

(3) modify'" (L =ey,....Li=€;,....ln=€,) e=
lhh=en....i=e ...l = en]

(4) (case (l; =€) of Iy 2 e1,...,.li = ei,... .1 2> en) = (& €)

(5) union {e},...,er} e, ... e2 = fel,... el €3, .., e2 }

(6) prod™ {{e{,...,e}“}}~~~{{e'1‘,...,e2‘}}=
{{(e{,ef,...,e'l‘),(e{,e"l’,...,6’2‘),...(e}“,e:’;},...,e;‘n)}}

(7 mape fer,....en} = (e €e1),....(e€ea)}

(8) joindy dy =d3 if D(d3) = D(d,) U D(d>)

(9) con dy dy = true if D(d;) U D(ds) ertsts

(10) con dy dy = false if D(d,) U D(d2) does not ezist

(11) proj°(di) =d> 1f D(d2) = Proj°(D(dy))

(12) eq dy d2 =true if D(d) E D(d2) and D(d2) C D(dy)

(13) eq dy da = false if either D(d,) & D(d2) or D(d2) & D(d;)

where Proj? in (11) is the function on |J Dobj™ defined in subsection 4.4.5.

The relationship between typings of Machiavelli and terms of xMachiavelli remains the same as
that between ML and TA* and theorem 3.6 holds. This implies that the definition of the semantics
of typings of ML (definition 3.18) applies directly to those of Machiavelli.

The semantics of Machiavelli terms relative to a model of xMachiavelli is then defined as
follows. For a given pair of a type assignment scheme ¥ and a set of conditions C, the set
of admissible type assignments under C and T, denoted by TA(C,T), is the set {A|dom(T) C
dom(.A),36. 6 satisfies C and A%°™F)= g(L)}. Under a given type assignment A, the set
TP(A,C,Z e : p) of the types associated with a term C,X b e : p is the set {r]|36. 6 satisfies
C, and (Al9°™Z) 1) = 6(L,p)}. Then the semantics M[C,E b e : p] of a Machiavelli term
C,T b e : prelative to a model M is the function taking a type assignment 4 € TA(C,Z) and
an environment ¢ € Env™ (A) that returns an element in II7 € TP(A,C,E b e : p). D, defined

134

as follows:
MI[C.Epe: plAe={(rM[ADe: r]Me)|r € TP(A S e : p)}.

Note that the definition works also for terms with unsatisfiable conditions. In such a case the

denotation is the emptyset.

As an example, the semantics of the constant join:
M[{s3 = jointype(s1,s2)},0 b join : s; — 50 — s3] Ae

is a set of functions f : F,, — F,, — F,, for all triples of ¢, 02,03 such that o3 = ¢y Uo3. Now
if we restrict its domains F,, F,, to D,,,D,, then we get exactly the set of joins we have defined
in subsection 4.4.4. Similar property holds for projections. This confirms that we have successfully

integrated the database domain we have developed in chapter 4 into an ML-style tvpe system.

5.5.2 Operational Semantics

This section gives an operational semantics of Machiavelli by an evaluation relation on conditional
typing schemes. There are several evaluation strategies for operational semantics of functional
programming languages. Here we only give an operational semantics based on the “call-by-value”
evaluation strategy that “stops” at function abstraction. An operational semantics based on the
“call-by-name” strategy is simpler to specify and can be easily defined by changing some of the

rules given below.

We first define the immediate reduction relation — on raw terms.

(11) ((Az.e) d) — e[d/z]
(12) ((Az.ey) (Ay. e2)) —e1[(Ay. e2)/z]
(13) R

(e e1) — (e e2)

(14) €1 — e
(e1 d) — (e2 d)
(15) e1 —ea

(e1 (Az.e)) — (e2 (Az.¢€))

135

(1)

(I111)

(1112)

(IV1)

(1V2)

(V1)

(V2)

(VI1)

(VI2)

(VI3)

(VII1)

(VII2)

(VIII)

(VIII2)

(IX)

(X)

(X)

(XI)

(X11)

e; — €]

for any constant ¢

cel...ei...en—»cel...e:....en

[11 =€1.---qu =€.',...,1,-. :e,-.].l——»e;
(rec z.e).l — (e[(rec z.¢€)/z]).l

modify' [lh =e1,....Li=¢€i,...,ln =€x] e—

[ll:Cl,...,1i=€,...,1n—_—'€n]

modify' (rec z.e1) e — modify' ei[(rec z.€e1)/z) €2

(case ([=€) of Iy, D> ey,....Li = €;,.... 1, > e,) —(e; €)
(case (rec z.e)of I} = ey,...,ln = €,) —
(case e[(rec z.€)/z]) of Iy = €1,...,ln = €n)
union {e},.... el fe2,.... 2} — fel,....en.ei ... e}

union (rec z.e;) e; — union e;[(rec z.e1)/z] ez
union e, (rec z.e,) —— union e, es[(rec z. e2)/z]

prod® {ei,....ex B -fet,.... e} F—

{{(e}.e'f,...,e'l‘),(e},ef,...,ef_,‘),...(e,lh,e",::,....ez'_)}}

prodte; --- (rec z.e;)--- e, —> prod™ey --- ei[(rec z.e;)/z] -

mape fer,....en} — f(ee1),....(eeq)}

map e, (rec z.e,) — map e ea[(rec z. e2)/z]

joindy do—ds if D(d3) = D(d;) U D(ds)

con d; do —true if D(d;)U D(d;) exists

con dy dy — false if D(d;) U D(d2) does not exist
proj° dy —da if D(d2) = Proj’(D(d,))

eq dy dy —true if D(dy)C D(d;) and D(d2) C D(d,)

136

€n

(XID) eq dy dy — false if D(d1) € D(dz) or D(dy) Z D(dy) -

The evaluation relation on conditional typing schemes is defined as the reflexive transitive closure

of this immediate reduction relations.

5.6 Syntactic Shorthands

This section defines several useful syntactic shorthands.

5.6.1 Recursive Function

In ML like languages, recursive functions are defined by the special term constructor (fix z. e).
This is regarded as a shorthand for (Y (fn(z) = e)) where Y is the symbol of the following set of

constants denoting fixed point operators:
{(YU=n)=0=n=7=7 for all 7}.

We did not include these fixed point constants because fixed point combinators are definable, as
we have seen in section 3.5. Under an operational semantics based on the call-by-name evaluation
strategy, both Yeurry and Yiyring (defined in section 3.5) provide a desired operational behavior.
However, they do not have the desired property under an operational semantics based on the call-
by-value evaluation strategy such as the one we have defined for Machiavelli. Indeed it is easily
checked that for any raw term e, both (Yeurry €) and (Yiuring €) do not terminate under such an

operational semantics.

Under the call-by-value evaluation, the desired operational rules for Y constant for defining

recursive functions should be:

(Y1) (Y Az.e) d) — (e[(Y Az.e)/z] d),

(Y2) ((Y Az.e1) Ay. e2) — (e1[(YAz. €1)/z] Ay. e2).
In [90] Plotkin gave the following fixed point combinator:

Yptotkin = Af. (Az. Ay. f(z 2))(Az. My. f(z 2)y).

which realizes the above behavior under the call-by-value evaluation rules for function application

(rules (I1) - (I5)). The extra 7-redexes are essential to get the desired behavior. Note also that

137

Ypiotkin has the following principal conditional typing scheme:
F 0,0 b Ypiotkin : (u—u) = (u—u)—u—u

This combinator can also be used under the call-by-name evaluation rules. We therefore define the

following syntactic shorthand for recursion:

(fix z. e) © (Ypiotkin (Az.€)).

5.6.2 Value Bindings and Function Definitions

As a practical programming language Machiavelli should provide a form of binding mechanism that

binds names to Machiavelli terms. As is done in Standard ML, we regard the following binding
valid=¢e; ---
as a syntactic shorthand for the following fragment:

let id =ein --- end.

For function definition, we further adopt the following shorthand:
fun fz,---z, = ¢;

for

val f = (fix f Az;... Az, €);.

Note that the two occurrences of f in the above definition are different. The first one is the name

to which the body of the expression is bound and the second one is a bound variable.

5.6.3 Database Operations

An important part of database programming is query processing. One of common structures of
query processing is so called select-join-project query [35]. For such query processing, we define the

following shorthand whose syntax follows from SQL [8] and list comprehension in Miranda [107]:

select el
where z; € S1,....z, € Sn

with €2

138

for

let

fun result r =

let
val z, = z.#1;
val z,, = z.#n;
in
er
end

fun pred z =

let

val |, = z.#1;

valzr,, = z.#n
in
€a

end
in

filter pred (map(result, prod(S,...S,)))

end

where filter is a polymorphic selection function which, given a boolean valued function P and a set

S, selects all those elements e from S such that P(e) = true. The following is one implementation
of filter:

fun filter P S =
map(Az.z.Val,
join({{[Pred = true}},
map(Az. [Value = z, Pred = P(z)],S)

with the following principal conditional typing scheme:
MCHtE 0,0 p filter : (s — bool) — {s} — {s}.

139

5.7 Programming Examples

This section shows examples. We show them by simulating interactive session in Machiavelli. We

write

-> expr ;

-> val id = expr ;
for an expression and a binding entered by the programmer and
>> val id = ezpr : p where {c1,...,cn}

for the output (as a principal conditional typing scheme) computed by Machiavelli. where clause
describes the unresolved conditions. If the last input is an expression then the system assumes val

it = . In these examples we use the following notations:

fn(x) => e <& Az.e,

{et,...} < {el,..],

x <- s & T ES.

Following Standard ML, we write *a, ’b etc for unconditional type variables and "a, "b etc for

description type variables (which roughly correspond to equality type variables in Standard ML).

The first example shown in figure 5.1 is a simple session in Machiavelli involving records and
variants. Form this example, we can see that Machiavelli extends ML with records and variants

preserving its features of static tvpe inference and polymorphism.

Figure 5.2 shows a simple example involving join and project. Join3 computes the join of
three (joinable) descriptions. where clause represents the conditions associated with the two join

expressions. If r1,r2,r3 are three joinable flat relations, then Join3(r1,r2,r3) is exactly the

natural join of the three.

Figure 5.3 shows an example of a database containing non-flat records, variants, and nested sets
assuming that parts, suppliers and supplied_by have been already defined. With the availabil-
ity of generalized join and projection, we can immediately write programs that manipulate such
databases. Figure 5.4 show some simple query processing for the example database in figure 5.3.
From this example, one can see that join and projection in Machiavelli faithfully extend the natural

join and projection in the relational model to complex objects.

140

->
>>
->
>>

->
>>
->
>>

>>

->

>>

->

>>

->
>>
->
>>

val joe = [Name = '"Joe", Age = 21];

val joe = [Name = "Joe", Age = 21] : [Name:string, Age:int]

val helen = [Name = [Fn = "Helen", Ln = "Smith"], Age = 31];

val helen = [Name = [Fn = "Helen", Ln = "Smith"], Ag e= 31]
[Name: [Fn:string, Ln:string], Age:int]

fun name(p) = p.Name;

val name = fn : [(’a)Name:’b] -> 'b

fun increment_age(x) = modify(x, Age, x.Age + 1);

val increment_age = fn : [(’a) Age:int] -> [(’a) Age:int]

name(joe);

val it = "Joe" : string
name(helen);
val it = [Fn= "Helen", Ln = "Smith"] : [Fn:string, Ln:string]

increment_age(joe);

val it = [Name="Joe", Age=22] : [Name:string, Age:int]

increment_age(helen);

val it = [Name = [Fn = "Helen", Ln = "Smith"], Ag e= 32]
[Name: [Fn:string, Ln:stringl], Age:int]

val john = [Name="John", Age=21,
Status=<Consultant = [Address="Philadelphia',
Telephone=2221234]>];
val john = [Name="Joe", Age=21
Status=<Consultant = [Address="Philadelphia",
Telephone=2221234]1>]
[Name:string, Age:int,Status:<(’a) Consultant:[Address:string,
Telephone:int]>]
val mary = [Name="Mary", Age=31,
Status=<Employee = [0ffice=278, Extension=4895]>];
val mary = [Name="Mary", Age=31
Status=<Employee = [0ffice=278, Extension=4895]>];
[Name:string, Age:int,Status:<(’a) Employee:[Office:string,
Extension:int]>]

fun phone(x) = (case x.Status of <Employee=y> => y.Extension,
<Consultant=y> => y.Telephone);
val phone = fn
[(’a) Status:<Employee:[{’b) Extension:’d],
Consultant:[(’c) Telephone:’d]}>] -> ’d
phone(john);
2221234 : int
phone(mary);
4895 : int

Figure 5.1: A Simple Session in Machiavelli

141

-> val fun Join3(x,y,z) = join(x,join(y,2z));

>> val Join3 = fn : ("a * "b * "¢c) -> "d
where { "d = "a lub "e, "e = "b lub "c }

-> Join3([Name="Joe"], [Age=21], [0ffice=278]);

>> val it = [Name="Joe", Age=21,0ffice=278]

[Name:string,Age:int,0ffice:int]
-> project(it,[Name:stringl);
>> val it = [Name="Joe"] : [Name:string]

Figure 5.2: A Simple Example Involving join and project

-> parts;
>> val it =
{[Pname="bolt" ,P#=1,Pinfo=(BasePart of [Cost=5])}],

[Pname="engine",P#=2189,
Pinfo=(CompositePart of [SubParts={[P#=1,Qty=189],...},
AssemCost=1000])],

}
: {(Pname:str,P#:int,
Pinfo:<BasePart:[Cost:int],
CompositePart: [SubParts:{[P#:int,Qty:int]},
AssemCost:int]>]}
-> suppliers;
>> val it =
{[Sname="Baker",S#=1,City="Paris"],

}

: {[Sname:string,S#:int, City:stringl}
-> supplied_by;
>> val it =
{[P#=1,Suppliers={[S#=1], [S#=12],....}],
}
: {[P#:int,Suppliers:{[S#:int]}]}

Figure 5.3: A Part-Supplier Database in Generalized Relational Model

142

(* Select all base parts *)
-> join(parts,{[Pinfo=(BasePart of [1)1});
>> val it =

{[Pname="bolt" ,P#=1,Pinfo=(BasePart of [Cost=0.05])],

}
: {[Pname:str,P#:int,
Pinfo:<BasePart:[Cost:int],
CompositePart: [SubParts:{[P#:int,Qty:int]},
AssemCost:int]>]}

(* List part names supplied by "Baker" *)
-> select x.Pname

where x <- join(parts,supplied_by)

with Join3(x.Suppliers,suppliers,{[Sname="Baker"]}) <> {};
>> {"bolt",...} : {str}

Figure 5.4: Some Simple Queries

-> fun Closure R =
let
fun member (e,S) = filter((fn(x) => x=e), S) < {}
val r = select [A=x.A,B=y.B]
where x <- R, y <- R
with (x.B = y.A) andalso not(member([A=x.A,B=y.B],R))
in
it r = {} then R else Closure(union(R,r))
end;
>> Closure = fn : {[A:"a,B:"b]} -> {[A:"a,B:"b]}

Figure 5.5: A Simple Implementation of Polymorphic Transitive Closure

The most important feature of Machiavelli is that these data structures and operations are all
“first-class citizens” in the language. This eliminates the problem of “impedance mismatch” we
discussed in chapter 1. Data and operations can be freely mixed with other features of the language
including recursion, higher-order functions, polymorphism. This allows us to write powerful query
processing programs relatively easily. The type correctness of programs is then automatically
checked at compile time. Moreover, the resulting programs are in g=neral polymorphic and can be
shared in many applications. Figure 5.5 shows a simple implementation of a polymorphic transitive
closure function. By using a renaming operation (which is definable in Machiavelli), this function
can be used to compute the transitive closure of any binary relation. Figure 5.6 shows query
processing on the example database using polymorphic functions. The function cost takes a part

record as argument and computes the total cost of the part. Without proper integration of the

143

>>

(*

>>

->
>>

A function that computes the total cost of a part *)
fun cost(p) =
(case p.Pinfo of
BasePart of x=>x.Cost,
CompositePart of x=>
x.AssemCost + hom((fn(y)=>y.SubpartCost * y.Qty),+,0,
select [SubpartCost=cost(z),Qty=w.Qty]
where w <- x.SubParts, z <- parts
with z.P#=w.P#));
val cost = fn
[(’a) Pinfo:<BasePart:[(’c) Cost:int],
CompositePart:[(’d) SubParts:{[(’e) P#:int,Qty:intl},
AssemCost:int]>]
-> int

select names of "expensive" parts *)
fun expensive_parts(partdb,n) =

select x.Pname

where x <- partdb

with cost(x) > n;
val expensive_parts = In :

({[(’a) Pinfo:<BasePart:[(’c) Cost:int],

CompositePart:[(’d) SubParts:{[(’e) P#:int,Qty:intl},
AssemCost:int]>]},
int) -> {str}

expensive_parts(parts,1000);
val it = {"engine",...} : {str}

Figure 5.6: Query Processing Using Polymorphic Functions

144

Chapter 6

Parametric Classes for

Object-Oriented Programming

This chapter extends the type system of Machiavelli to include user definable class hierarchies with
multiple inheritance declarations. This extension achieves the integration of ML style parametric
abstract data types and explicitly defined inheritance hierarchy. The extended type system is sound
with respect to the type system of Machiavelli and still has a static type inference algorithm. Some

of the results of this chapter were presented in [86]

6.1 Introduction

The idea that is fundamental in object-oriented programming is that each data element (object)
belongs to a class and can only be manipulated by methods defined in classes. Moreover, classes
are organized by an explicit inheritance hierarchy defined by the programmer. The methods that
are applicable to an object are not only the ones defined in its own class but also those defined in
its all super-classes. This mechanism elegantly combines data abstraction and method inheritance.
In particular, inheritance is controlled by the programmer enabling him to develop a taxonomical

organization that reflects the intended semantics.

The type system of Machiavelli we have developed in the previous chapter does allow method
inheritance by ML style polymorphism but lacks both data abstraction and user control of in-
heritance. The method inheritance of Machiavelli relies on the explicit structure of record and

variant types; inheritance is derived from the polymorphic nature of operations on records and

146

variants. Because of this nature, the type system cannot prevent unintended manipulation of ob-
jects based on the knowledge of their implementation details nor can it prevent misuses of methods
through a coincidence of implementations. For example, suppose we implement the class person
by the type [Name : string, Age : int] and define a method minor with the polymorphic type
[(u)Age : int] — bool which determines whether a person’s age is less than 21 or not. Machiavelli’s
polymorphism allows minor to be applied not only to objects of the class person but also to objects
of, say, the class employee implemented by the type [Name : string, Age : int, Salary : int], as we
expected. However, this method can also be applied to objects of any class whose implementation
type happens to have an Age : int field. For example, an application might contain the class pet
implemented by the type [Name : string, Age : int, Qwner : string]. The method minor is equally
well applicable to objects of the class pet but we want to prevent such applications. In order to
represent object-oriented systems, we would like to add an abstraction mechanism with multiple
inheritance to the type system of Machiavelli so that the programmer can “hide” implementations

of objects and control method sharing.

A well known mechanism for data abstraction in ML style type system is abstract data type
implemented, for example, in Standard ML and Miranda. An abstract data type is a type associated
with a set of user defined functions. Outside of its declaration, the type system treats an abstract
data type and its associated functions as if they were a primitive type with an associated set of
primitive operations. This mechanism successfully hides the actual implementation of an abstract
data type. Moreover, in those languages, abstract data types can be parameterized by types,
allowing “generic” definitions. For example, the following fragment of Standard ML code defines a

generic set type:

abstype ’a set = Set of ’a list with

val emptyset = Set nil;

fun singleton x = Set [x] ;

fun union si s2

Set (s1@s2) ;

end;
Intuitively this definition defines a family of abstract set types 7 set for all instances 7 of *a. The
methods singleton, union, etc. are shared by all these instances types.

A drawback to this approach is that it does not combine data abstraction with inheritance in
the same sense that object-oriented programming languages do this. ML style abstract data types

do not allow method inheritance even if we extend the underlying type system to the type system

147

of Machiavelli. To illustrate the problem, consider the following abstract data type definition as

an implementation of the class person (assuming the Machiavelli type system in Standard ML

syntax):

abstype person = Person of [Name : string, Age : int] with

fun make_person n a = Person [Name = n, Age = al;

fun name (Person p) = p.Kame;
fun age (Person p) = p.Age;
fun increment_age (Person p) = Person(modify(p,Age,p.Age + 1));

end;

Now suppose we are to implement the class employee by the type [Name:string, Age:int,
Salary:int]. Since the method name, age and increment_age defined in the class person are
also applicable to the above type in the type system of Machiavelli, we would like them to be
shared by the class employee. However, there is no mechanism to allow such sharing in ML style
abstract data types. As a result, we are forced to repeat the identical definitions for these methods
in the declaration of the class employee. For the same reason that we preferred a polymorphic

type system to a simple type system, we would like to extend ML style abstract data types with

inheritance declarations.

Galileo [7] integrates inheritance and class hierarchy in a static type system by combining the
subtype relation (see the analysis of subtypes in section 5.1.1) and abstract data type declarations.
However, Galileo does not support polymorphism nor type inference. Jategaonkar and Mitchell
suggest [63] the possibility of using their type inference method to extend ML’s abstract data types
to support inheritance. Here we provide a formal system that achieves the integration of ML style
abstract data types and multiple inheritance as an extension of the type system of Machiavelli
we have developed in the previous chapter. Moreover, our proposal achieves a proper integration
of multiple inheritance in object-oriented programming and type parameterization in ML style
abstract data types. As a remark, the class declarations, which can be regarded as a generalization
of ML’s abstract data types, appear to have no immediate connection with the notion of abstract

types as existential types proposed by Mitchell and Plotkin [80).

As an example, the class person can be implemented in our language by the following class

definition:

class person = [Name : string, Age : int] with

fun make_person n @ = [Name = n, Age = a] : string — int — person;

148

fun name p = p.Name : sub — string; -
fun age p = p.Age : sub — int;
fun increment_age p = modify(p, Age,p.Age + 1) : sub — sub;

end

Outside of the definition, the actual structure of objects of the type person is hidden and can only

be manipulated through the explicitly defined set of interface functions (methods).

As in Miranda’s abstract data types, we require the programmer to specify the type (type-
scheme) of each method. The keyword sub in the type specifications of methods is a special type
variable representing all possible subclasses of the class being defined. It is to be regarded as an
assertion by the programmer (which may later prove to be inconsistent with a subclass definition)

that a method can be applied to values of any subclass. For example, we may define a subclass

class employee = [Name : string, Age : int, Salary : int] isa person
with
fun make_employee n a = [Name = n, Age = a,Salary = (]
: string — int — employee;
fun add_salary e s = modify(e, Salary,e.Salary + s) : sub — int — sub;
fun salary(e) = e.Salary : sub — int

end

which inherits the methods name, age and increment_age, but not make_person from the class
person because there is no sub in the type specification of make_person. For reasons that will
emerge later we have given the complete record type required to implement employee, not just the
additional fields we need to add to the implementation of person. It is possible that for simple
record extensions such as these we could invent a syntactic shorthand that is more in line with

object-oriented languages. Continuing in the same fashion we could define classes

class student = [Name : string, Age : int,Grade : string) isa person

with
end

class research_student = [Name : string, Age : int,Salary : int; Grade : string]

isa {employee, student}

149

with

end

The second of these illustrates the use of multiple inheritance.

The type system we are presenting can statically check the type correctness of these class
definitions containing multiple inheritance declarations. Moreover, the type system always infers

a principal conditional typing scheme for expressions containing methods defined in classes. For

example, for the following function

fun raise_salary(p) = add_salary(p, salary(p)/10)

which raise the salary of an object approximately by 10%, the type system infers the following

principal conditional typing scheme:

0 © raise.salary : (t < employee) — (t < employee)

where (¢ < employee) is a new form of conditional type variable representing arbitrary subclasses of
employee. By this type inference mechanism, the type system achieves a proper integration of ML

style polymorphism and inheritance. The above function can be applied to objects of any subclass

of employee. The type correctness of such applications is statically checked.
To demonstrate the use of type parameters, consider how a class for lists might be constructed

We start from a class which defines a “skeletal” structure for lists.

class pre_list = (rec t.(Empty : nil, List : [Tail : t]))
with
val nil = (Empty = Nil) : sub;
fun tl | = (case [of
(Empty =y) = ...error...,
(List = z) = z.Tail)
: sub — sub;
fun null | = (case | of
(Empty = y) = true,
(List = z) = false)

: sub — bool;

end

150

By itself, the class pre_list is useless for it provides no method for constructing non-empty lists.

We may nevertheless derive a useful subclass from it.

class list(u) = (rec t. (Empty : nil, List : [Head : u,Tail : t])) isa prelist
with
fun cons h t = (List = [Head = h,Tail = t]) : u — sub — sub;
fun hd ! = (case [of
(Empty = y) = ...error...,
(List = z) = z.Head)

:sub —u

end

which is a class for polymorphic lists much as they appear in ML. Separating the definition into
two parts may seem pointless here but we may be able to define other useful subclasses of pre {ist.
Moreover, since u may itself be a record type, we may be able to define further useful subclasses
of list. We will show more examples in section 6.7. The type correctness of these parametric class
declarations is also statically checked by the type system and the type inference also extends to

methods of parametric classes.

In the following sections we provide the syntax and typing rules for classes that extend Machi-
avelli type system and show that the extended language is correct with respect to the underlying
Machiavelli type system and provide the necessary results to show that there is a type inference

algorithm.

6.2 Raw Terms, Types, and Type-schemes

We assume that there are a set of class constructor symbols (ranged over by ¢) and a set of method
names (ranged over by m). The set of raw terms of the extended language is the set obtained from

the set of raw terms of Machiavelli {definition 5.1) by extending with the set of method names:
ex=m|c|z|Az.e|(ee).

We continue to use the syntactic shorthands defined in section 5.2 and, in examples, we use the

representation of raw terms using term constructors defined in section 5.3.

The set of types of the extended language is the set of regular trees represented by the following

151

syntax:

rasb |l it {Lir i) =71 | e(r,...,7) | (rec v.r(v)).

The set of type-schemes is also extended with classes:

pu=tlb{l:p,...slipl|Uipy..slipylp—p]|elp,-..,p)]| (rec v.p(v)).

We call type-schemes of the form c¢(p, ..., p) class schemes.

6.3 Syntax of Class Definitions

We write c() and ¢(p) for c(ty,...,1x) and ¢(p1,.. ., pi) for some k. We also write [f :=5,...] for

the substitution [t; := p;,...,tx := pi,...| where T =1¢,,...,{y and 5 =py,..., p.

A class definition has the following syntax:

class c¢(1) = pisa {c1(Pe}),-- -, cn(Pes)} with

val m; = e: My;

val m, = e, M,

end.

c(1) is the class scheme being defined by this declaration. 7 in c¢(f) are type parameters of the
class c. p is the implementation type-scheme of the class ¢(f). {c1(P5;), ..., cn(Pes)} is the set of
class schemes of immediate super-classes from which ¢(7) directly inherits methods. If this set is
empty then isa declaration is omitted. If this set is a singleton set then we omit the braces { and
}. Each m; is the name of method implemented by the code e;. For method definitions, we use the
syntactic shorthand for recursive function definition (section 5.6). M; is a method type specifying

the type of m;, whose syntax is given below:
M = subjt|b|[l - M, ..M}V M...,l:M)|M—-M|cM, . . M.

sub is a distinguished type variable ranging over all subclasses of the class being defined. Note
that we restrict method types to be finite types. This is necessary to ensure the decidability of

type-checking of class definitions.

We require a class definition to satisfy the following restrictions:

152

1. all type variables in the definition are contained in the type parameters t of the class scheme

being defined, and

2. the implementation type-scheme p is not a type variable.

These restriction are needed to construct a consistent proof system for parametric classes.

A class context D is a finite sequence of class definitions:

D:=0|D;D.

A class definition containing type variables is a generic definition of a class. Continuing our
interpretation that a type-scheme is a representation of its all ground instances (section 3.2), we
regard a generic class definition as a representation of the set of all its ground instances obtained
by instantiating with types. The set of type variables are form of bound variables whose scope
is the body of the definition for c(Z). Therefore the definition class c(f)... end is equivalent to

the one obtained from it by renaming type variables ¥.

These declarations are forms of bindings for which we need some mechanism to resolve naming
conflict such as visibility rules and explicit name qualifications. Here we ignore this complication

and assume that method names and class constructor names are unique in a given class context.

The special type variable sub that appears in a method type specifications denotes the set of
all possible subclasses that the programmer will declare later. This can be regarded as a form
of bounded quantification proposed by Cardelli and Wegner [27]. The method type M containing
sub corresponds to Vsub < c(t). M where c(Z) is the class being defined. The relation < is the

subsumption relation induced by the isa declarations:

Definition 6.1 The subsumption relation D t ¢y (P7) < c2(p3) induced by D is the smallest relation
contatning:
1. DV c(f) < c(t) if D contains a class definition of the form class c(f)=p --- end.

2. Dt ci(t)) < c2(P3) if D contains a class definition of the form

class ¢,(;) = pisa {...,c2(P2),...} with --- end.
3 Drei(pr)<cop2) ifDF+ cl(Z) < cz(p—’2) and (Pp1,Pz) is an instance of (_pT,;";)

4. DFar(pr) < o P2) if D+ c1(P1) < ca(P3) and D+ e3(P3) < c2(Pz) for some ca(p3).

The combination of multiple inheritance and type parameterization requires certain restriction

on isa declarations.

153

Definition 6.2 A class contert D is coherent if D ¢1(P7) < ¢2(7z) and D+ ¢,(p7) < calph)

then 3 = p5.

We require a class context to be coherent. This condition is necessary to develop a type inference
algorithm for the extended language. Even if some other formulation of classes in a statically typed
polymorphic language is preferable to the system proposed here, I believe that similar issues will

arise.
Lemma 6.1 For a given class contezt D, it is decidable whether D s coherent or nor.

Proof Let cy,...,c, be any sequence such that D contains a class definition of the form
class c;(;)---isa {...,cis1(Piz1),---} - end (1 <i<n-1).

Define ;{ inductively as follows: p_’1 =1, ;(=piltic == F_:] (2 £ i< n). Now define 5o, o)
as p,. By the definition of subsumption, P F ¢(5) < c'(p’) iff there is a sequence cy,....c, such
that D contains class c¢;(t;)---isa {...,ci+1(Fiz1),---}---end (1 <i<n-1), c=¢,d =c,
and p’ = Broenlt1 := P]. Therefore D is coherent iff for each pair (c, '), Ber. o) are all identical
for all sequences cy,...,cn such that D contains class ¢;(%;)---isa {...,ci+1(Fiz1),---} -~ end

(1<i<n-1) and ¢ = ¢;,¢' = ¢,. Since D is finite, the above condition can be effectively

checked. 1

We say that a subsumption relation D F ¢,(77) < ¢o(p3) is more general than D + cl(;)-’;) <
ca(p}) if (9}, ph) is an instance of (7, 73). A subsumption relation D + ¢,(77) < co2(72) is principal if
it is more general than all provable subsumption relations between ¢; and ¢;. Under the coherency

condition, the subsumption relation has the following property:

Lemma 6.2 [fD is coherent and D+ ¢1(p1) < c2(Pz) then there is a principal subsumption relation
DFe(t) < c2(p—§). Moreover, there is an algorithm which, given a coherent class context D and
a pair c;,c2, returns either (1,5) or failure such that if it retuns (1,5) then D F ¢1(1) < c2(p) is a
principal subsumption relalion between ¢y, cy otherwise there 1s no subsumption relation between c,

and co.

Proof The algorithm is defined as follows. Let ¢,¢’ be a given pair of class names. If there

is no sequence cy,...,c, such that D contains class ¢;(t;)---isa {...,¢;+1(Fiz1),---}... end,
1<i<n-1,¢c =c¢, cn =, then report failure. Otherwise pick one such sequence c;,...,c,

and return (Z, Pc1,..cn)), Where pic 7 is defined in the proof of the previous lemma. If the

154

algorithm reports failure then there is no sequence ¢,,..., ¢, satisfying the above conditions. By
the subsumption rules, it implies that there is no subsumption relation between ¢ and ¢/. Suppose
the algorithm returns (Z,7). Then by the subsumption rules this implies D + ¢;(?) < ¢/(7). Let
Dt ¢1(p1) < ¢/(P2) be any provable subsumption relation. By the rule 3 of subsumption relation,

D+ c1(pr) < (Pt := p1]) is also provable. Since D is coherent, 5z = B[t := p1]. 1

6.4 Proof System for Class Definitions and Typings

The extended type system has the following forms of judgements:

MC*FD D is a well typed class context,

MCY*+FD Ape: 1 the typing D, A e : 7 is derivable.

where A stands for type assignments. The proof systems for those two forms of judgements are

defined simultaneously.

Let D be a class definition of the form class c(f) = p.---end. D induces the tree substitution

¢p on type-schemes. For finite type-schemes, ¢p(p) is defined by induction on the structure of p

as follows:
ép(b) = b,
¢D(t) = tu
ép(f(p1,---.pn)) = f(ép(p1),...,9D(pn)) for any type constructor f s.t. f #c.

op(c(P)) pelt := ¢p(P)]-

]

Since p. is not a type variable, ¢p is a non-erasing second-order substitution on trees [32] which
extend uniquely to regular trees. See [32] for the technical details. Since regular trees are closed

under second-order substitution [32], ¢p(p) is a well defined type-scheme.

Definition 6.3 (Proof System for Class Definitions) The rule for MC* + D is defined by
induction on the length of D:

1. The empty class context is a well typed class contert, 1.e. - 0.

2. Supposet D. Let D be the following class definstion:

class c(f) = p isa {¢1(75,), ... n(Pen)}
with

155

val my = e; : My;

val m, = e, : M,;

end.

Then M C* v D; D if the following conditions hold:

(a) it is coherent,

(b) if a class name ¢’ eppear in some of p,p.,,...,pc, then D contains a definition of the

form class ¢(¥') - --end,
(c) MC*+D,0 be; : 7 for any ground instance T of ¢p(M;[sub := p]),
(d) for any method val m = e, : M,, defined in some definition of class ¢'(¥’) in D such

that D+ c(t) < c'(p/), MCt+D,0 b ey : T for any ground instance T of My, [t :=
7, sub := p].

We have already discussed the necessity of the condition {(a). The necessity of the condition (b) is
obvious. The condition (c) states that each method defined in the definition of the class c(%) is type
consistent with its own implementation. The condition (d) ensures that all methods of all super
classes that are already defined in D are also applicable to the class c(f). This is done by checking
the type consistency of each method e, defined in a super class against the type-scheme obtained
from M., by instantiating its type variables with type-schemes specified in isa declaration in the
definition of the class c(f) and replacing the variable sub with the implementation type-scheme p

of the class ¢(7).

Definition 6.4 (Proof System for Typings) The proof system for typings of the eztended lan-
guage is the one obtained from the proof system for Machiavelli (section 5.2.3, definition 3.22) by
changing typing formula A e : 7 to D, A b e : 7 and adding the following rule:

(METHOD) MC*+D Abm: 1
if MC* + D and there is a method val m = e : M of a class ¢(t) in D such that 7 is an
instance of M[t := B,sub := ¢/(t')] for some D+ (¥') < ().

6.5 Soundness of the Type System

We show the correctness of the type system for the extended language with respect to the type

system of Machiavelli.

156

Let D be a given class context and 7 be a type. The ezrposure of T under D, denoted by
ezxposep(T), is the type given by the following inductive definition on the length of D:

1. if D = O then ezposep(r) = 7,

2. if D = D’; D then ezposep(r) = exposep:(¢p(T)).
Intuitively, ezposep(7) is the type obtained from 7 by recursively replacing all its classes by their

implementation type-schemes. Since ezposep is a composition of second-order-substitutions which

is also a second-order substitution, the following property follows from their general properties {32]:

Lemma 6.3 Let D be any class conlext and f be any type constructors other than class names

appears in D. exposep(f(r1,...,m)) = f(ezposep(r1),...,exposep(rs)). 1
We extend ezpose to any syntactic structures that contain types. The above property also extends
to such syntactic structures.

The unfold of a raw term e under a class context D, denoted by unfoldp(e), is the raw term
given by the following inductive definition:

1. if D = @ then unfoldp(e) = e,

2. if D = D’';class... with

val m; = ey : My;

val m, = ¢, : M,

end,

then unfoldp(e) = unfoldp/(ele1/my, ..., en/my]).

unfoldp(e) is the raw term obtained from e by recursively replacing all method names defined in D

with their implementations. The following property is an immediate consequence of the definition:

Lemma 6.4 For any class contezt D,
unfoldp(c) = ¢,
unfoldp(z) = =z,

unfoldp((e; e3)) = (unfoldp(e;) unfoldp(ey)),
unfoldp(Az.e) = Az.unfoldp(e).d

157

Theorem 6.1 [f MC*+D, A pe : 7 then MC | exposep(A) b unfoldp(e) : exposep(r).

Proof Proof is by induction on the length of D. The basis hold since if D = @ then MC* +

reduced to M C }F and exposep,exrposep are both identity functions.

The proof for the induction step is by induction on the structure of e. Let D be the following class

context:

D’;class c(f) = p... with

val m; = ¢; : My;

val m, = e, : M,,

end.

The cases other than m follows directly from the above two lemmas and the induction hypothesis
(in terms of the structure of ¢). Suppose MC* + D0 > m : 7. Then by definition of the
extended proof system for typings (i.e. the rule (METHOD)), there is a method val m = ¢ : M in a
definition of a class ¢;(Z;) in D such that 7 is an instance of M[{; := Py, sub := ¢a(73)] for some
Dt co(tz) < c1(pr). We need to prove that MC + @ b unfoldp(m) : exposep(r). We distinguish

the following cases:

1. Case ¢; = c2 = c¢: m must be one of the m; in the definition of ¢ and 7; = 77, which is a
renaming of . By the definitions of unfoldp and ezposep, unfoldp(m;) = unfoldp.(e;) and
exposep(t) = exposep (¢p(7)). But since T, = By, which is a renaming of 7, and M; is finite,
by the inductive definition of ép, ¢p(7) is an instance of ¢p(M;[sub := p]). Since MC*
D,0 >m : T implies MC* + D, by the definition of MC* F D, MC+* D' 0 be : 7
for any instance 7’ of ¢p(M;[sub := p]). In particular, MC* F D', 0 b e; : ¢p(r). By the
induction hypothesis (of the main induction), MC + @ b unfoldp.(e;) : ezposep:(dp(T)).
Therefore MC + 0 b unfoldp(m) : exposep(r).

2. Case ¢; = cand ¢; # c: By the definitions of unfoldp and exposep, unfoldp(m) = unfoldp (m)
and ezposep(r) = ezxposep(¢p(7)). Since T is an instance of M[{; := p7,sub = ca(i2)],
c2 = ¢, and none of M,5,p1 contain ¢z, ¢p(7) is an instance of M;[f; := py,sub := p].
But since MC* + D,0 bm : 1 implies MC?* + D, by the definition of MC* F D,
MC*+D',0 bm : ' for any instance 7 of M[t; := py,sub := p]. In particular, MC*
D',8 bm : ¢p(7). Then by the induction hypothesis (of the main induction), MC +
8 b unfoldp.(m) : exposep:(dp(7)). Therefore MC + 8 b unfoldp(m) : ezposep(r).

158

3. Case ¢; # c and ¢z # ¢: Then unfoldp(m) = unfoldp.(m), ezposep(r) = exposep:(r) and
MC + 0 b unfoldp,(m) : ezposep:(r) implies MC + @ b unfoldp(m) : ezposep(r). The

desired result follows from the induction hypothesis (of the main induction}.

By the definition of subsumption relation, ¢; = ¢ and ¢2 # ¢ contradict the assumption that

Dt c2(fs) < €1(P7). Therefore we have exhausted all cases. 1

This theorem establishes the correctness of the type system with respect to the type system of the
core language. In particular, since the type system of the core language prevents all run-time type

errors, a type correct program in the extended language cannot produce run-time type error.

The converse of this theorem, of course, does not hold, but we would not expect it to hold, for
one of the advantages of data abstraction is that it allows us to distinguish two methods that may
have the same implementation. As an example, suppose D contains definitions for the classes car
and person whose implementation type-schemes coincide and person has a method minor which
determines whether a person is younger than 21 or not. By the coincidence of the implementations,
F @ b ezpose(minor(c)) : bool for any car object c. But F D, A > minor(c) : bool is not provable
unless we declare (by a sequences of isa declarations) that car is a subclass of person. This prevents

illegal use of a method via a coincidence of the implementation type-schemes.

6.6 Type Inference for the Extended Language

We now solve the type inference problem for the extended language by defining an algorithm to

compute a principal conditional typing schemes. For this purpose we introduce a new form of

conditions.

Definition 6.5 A subsumption condition is a formula of the form isa(p,c(p)). A substitution 6
satisfies the subsumption condition under the class context D if D+ 6(p) < 8(c(P)).

Note that the satisfiability for subsumption conditions is defined relative to a class context.

The notion of conditional typing schemes is now extended to include subsumption conditions.

Definition 6.6 A conditional typing scheme for the ezxtended language is a formula of the form
D,C,T b e : p such that for any substitution 6 that is ground for £,C and p and that satisfies C
under the class context D, MC* +D,0(Z) be : 6(p).

The definition for principal conditional typing schemes is the same as before.

159

Since the typing judgment MC* + D, A be : 7 implies the well typedness M C+ F D of the
class context D, in order to define a type inference algorithm we also need to define a type-checking
algorithm for class contexts. A subtle complication in defining these algorithm is that we need to
develop them simultaneously, since the two forms of judgements are mutually dependent. We solve

this problem in the following two stages:

1. to develop an algorithm that computes a principal conditional typing scheme under a iype

correct class contert D (proposition 6.1); then

2. to develop an algorithm to decide whether a class context is well typed or not using the above

result (proposition 6.2).

Proposition 6.1 For any raw term e, and any class contezt D if ¢ has a lyping under D then it
has a principal conditional typing scheme. Moreover, there is an algorithm which, given any raw
term and any well typed class conlext D, compules a principal conditional typing scheme if one

ezisls otherwise reports failure.

Proof If D is not well typed then by definition there is no typing of e uner D. Suppose D is
well typed. The algorithm to compute a principal conditional typing scheme is obtained from the
algorithm CT S (theorem 5.1) for Machiavelli by adding a parameter D and the following case for

methods:

CTS(D,e) = (C, X, p) where

(6) Case e = m:
let
val m = e : M be the method defined in the class definition for ¢(t) in D
in
C = {(isa(t2, c(11))} (T1,t2 fresh),
=40,
p= M[:=1;,sub :=t,)

Other cases are the same as before. In particular, they do not depend on D.

Since p returned in the case above i1s a type-scheme (i.e. it does not contain sub) and a set of

conditions denotes the conjunction of all its elements, the correctness of the algorithm for the

160

above case follows immediately from the definition of the condition isa(p, c(7)). The proof of the

correctness of the other cases is same as the proof in theorem 5.1. 1
Proposition 6.2 For any class contezt D, il is decidable whether MC* D or not.

Proof The proof is by induction on the length of D. Basis is trivial. For the induction step, let D

be the following class context:

D’;class c(f) = p... with

val m; = e; : My;

val m, = e, : M,

end.

In order to decide whether M C* I~ D, we need to check the four conditons (a) - (d) of definition 6.3.
We have shwon by lemma 6.1 the decidability of condition (a). The decidability of condition (b) is
obvious. We show that condition (c) is decidable. Since M; is finite, ¢ p(M;[sub := p}) is eflectively
computable by the inductive definition of ¢p. By induction hypothesis, 1t is decidable whether
MC* + D or not. Then by proposition 6.1, we can compute a principal conditional typing scheme
MC*+D,C,Z be; : p. We can then decide whether MC* + D, 0,0 b e; : ¢p(M;[sub := p])
is a conditional typing scheme or not by checking whether there is a substitution § that satisfies
C and 6(Z, p) = (0,¢6p(M;[sub := p]). This implies the decidability of condition (c). Since the

subsumption condition is decidable (lemma 6.2), the decidability of condition (d) is shown similarly

to condition (c). 1

We now have a complete type inference algorithm:

Theorem 6.2 There s an algorithm which, given any raw term e and any class context D, com-

pules a principel conditional typing scheme of e under D if one ezrtsts otherwise reports failure.

Proof The algorithm is first checks the well typedness of the class context D by using propo-
sition 6.2 and if it is well typed then computes a principal conditional typing shceme by using

proposition 6.1 otherwise reports failure. The correctness of the algorithm follows from the defini-
tion of typings. 1

In subsection 5.4.2 we noted that the existence of a conditional typing scheme is not enough for

complete type-checking because a set of conditions may not be satisfiable. Subsumption conditions

161

we have introduced in this section is another source of unsatisfiability. To see this consider the
following examples. Suppose D contains the class definitions for person and car (without type

parameters) with the method

fun make_person(n,a) = ...: (string * int) — person
for person and the method

fun fuel(c) = ...:sub — string

for car. Now consider the expression: fuel{make_person("Joe",21)). This expression has the

following conditional typing scheme:
MC* D, {isa(person,car)},® > fuel(make_person("Joe",21)) : string

which has no instance because of the unsatisfiable condition isa(person,car) (unless person is
defined to be a subclass of car in D). As we have done for Machiavelli we develop a method to

detect these inconsistency of subsumption conditions by transforming them into a simpler form.

Definition 6.7 A set of condition C is in weak subsumpiion normal form if the following properties

hold:

1. ifisa(py,c(p32)) € C then p is a type variable,

2. ifisa(t,c1(p7)) € C and isa(t, c2(P3)) € C then ¢; # co.

Proposition 6.3 If a set of conditions C 1s satisfiable under a given coherent class coniezt D, then
there is a set C' of conditions which is a refinement of C and ts in weak subsumption normal form.
Moreover, there is an algorithm which, given a set of conditions C and a coherent class contex!
D, compules either a pair (C',0) or unsalisfiable such that if it returns (C’,8) then C’ is in weak
subsumption normal form and is a refinment of C with 6 a refinement substitution otherwise, C is

unsatisfiable under D.

Proof We first define a set of transformation rules on pairs of a set of conditions and a substitution:

(C U {isa(c1(p1), c2(P2))},6) =
(6'(C),6’ o 8) where 8’ = U((P1,Pz), (P3,Pa)) such that D+ ¢,(p3) < c2(p3)

is a principal subsumption relation between ¢; and ¢; under D,

162

(C U {isa(t, ¢y (P1)), isa(t, c1(Pz))},0) = =

(0(C U {isa(t, c1(P1))}), 0’ o 6) where 8' = U(p1,7z)
We now define the algorithm SUB as:

(C,6) if (C,id) = (C',6) and C’ is in weak subsumption normal
SUB(C) = form

unsatisfiable otherwise

(by assuming some ordering on applications of the rules).

Since the both transformation rules strictly reduce the number of conditions in C, the algorithm

always terminates. The correctness of the algorithm is proved similar to the proof of proposition 5.5

using lemma 6.2 and the coherent assumption on D. |
We can then extend theorem 5.2 with subsumption conditions:

Theorem 6.3 Let C be a set of condition that does not contain join conditions and all projection
conditions are those that have a finile targel type. If C is satisfiable then there is a refinment C’ of
C that 1s in record-variant normal form and in weak subsumption normal form. Moreover, there is

an algorithm to compute C’' and a refinement substitution 0 if they ezist.

Proof Let — be the transformation relation obtained by combining the transformation rules

defined in the proof of proposition 5.5 and the proof of proposition 6.3. Now define the algorithm
RVPS as follows:

(C".0) if C' = FP(C),(C’,id) == (C",6) such thatC" is in
RVPS(C) =

record-variant normal form and in weak subsumption normal form

failure otherwise

Since all the rules defined in the proof of proposition 5.5 and the proof of proposition 6.3 strictly re-
duce the number of conditions, = also strictly reduces the number of conditions and the algorithm

always terminates. The correctness of the algorithm follows from theorem 5.2 and proposition 6.3.

Similar to record and variant conditions, subsumption conditions in weak subsumption normal
form also have a compact representation. We extend the set of conditional type-schemes defined in

subsection 5.4.2 to include representations of subsumption conditions:

T o= (T, ., Ty | [():T,....0 T} | (t € 0) | (t isa(c1(T1), . .-, enl(Th))) |
b|T—-T|{:T,...,0:TV | {{:T,...,1:T) |(rec v. T(v))

163

where (t isa((c,(T1),...,cn(Tw))) is a type variable associated with the set of subsumption condi-
tions isa(t,c;(T7)),1 < i < n. Conditional typing schemes for raw terms that do not contain joins

and projections on infinite target types can be represented by these conditional type-schemes.

Note however that theorem 6.3 is weaker than theorem 5.2. Unlike the record-variant normal
form (definition 5.7), the fact that C is in weak subsumption normal form does not implies that all
subsumption conditions in C are satisfiable. To see this consider the following example. Suppose

D consists of the two class definitions student and employee with the method
fun grade s = ... :sub — int
for student and the method
fun salarye=...:sub — int
for employee. Now consider the following function definition:
fun saraly.and_grade p = (salary(p), grade(p)).
This function has the following conditional typing scheme:
MC* +D,0,0 b saraly_and_grade : (t isa(student,employee)) — (int * int).

But since there is no class that is a subclsss of both student and employee, the above typing scheme

has no instance.

As a formal system it is easy to fix this problem by adding the following condition to that of

weak subsumption normal form of a set C of conditions under a class context D:

if isa(t, c1(P7)) € C, isa(t,c2(pz)) € C,. .., isa(t,ca(Pn)) € C then there is some ¢(p)
and a substitution @ such that D F ¢(8(%)) < ¢;(8(7;)) for all 1 <i < n.

Since the number of classes defined in D is finite, the above condition is shown to be decidable by
checking against all classes defined in D by using lemma 6.2. However, in practice, D might become
very large and such test might be prohibitively expensive. We think that the weak subsumption
normal form is satisfactory for practical purpose. The only remaining subsumption conditions are
on function types. This means that the existence of weak subsumption normal form guarantees
that all applications of methods to objects are type correct. This solution is similar to the one

we have adopted for the satisfiability checking of join conditions and projection conditions with an

164

infinite target type (subsection 5.4.2). Also note that this problem does not arise in type-checking

a class context because of explicit type specifications of methods.

6.7 Further Examples

In section 6.1, we defined the classes person and employee. The sequence of the two definitions is
indeed a type correct class context in our type system. Figure 6.1 shows an example of an interactive
session involving these class definition in our prototype implementation. (’a < person) and (’a

< employee) are bounded type variables. As seen in this example, the system displays the set of

all inherited method for each type correct class definition.

Let us look briefly at some further examples of how type parameterization can interact with
inheritance. At the end of section 6.1 we defined a polymorphic list class list(a). We could imme-

diately use this by implicit instantiation of a. For example, the function
fun sum ! = if null(l) then 0 else hd(!) + sum(ti(l))

will be given the type list(int) — int, as would happen in ML. However we can instantiate the

type variable a in other ways. For example, we could construct a class

class genintlist(b) = (rect. (Empty : nil, List : [Head : [Ival : int,Cont : b}, Tail : t]))
isa list([Ival : int,Cont : b))
with

end

which could be used, say, as the implementation for a “bag” of values of type 6. In this case all the
methods of pre_list and list are inherited. However, we might also attempt to create a subclass of

list with the following declaration in which we directly extend the record type of the List variant
of the implementation:

class genintlist(b) = (rec t. (Empty : nil, List : [Héad zint,Cont : b, Tail : t]})
isa list(int)

with

end

165

->

>>

->

>>

>>

->

>>

>>

->
>>

->
>>

>>

class person = [Name:string,Age:int]
with
end;
class person with
make_person : (string*int) -> person
name : (’a < person) -> string
age : (’a < person) -> int
increment_age : (’a < person) -> (’a < person)

class employee = [Name:string,Age:int,Salary:int]
with

end;

class employee isa person with
make_employee : (string*int) -> employee
add_salary : ((’a < employee)*int) -> (a’ < employee)
salary : (’a < employee) -> int
inherited methods:
name : (’a < person) -> string
age : (’a < person) -> int
increment_age : (’a < person) -> (’a < person)

val joe = make_person("“Joe",21);
val joe = _ : person

val helen make_employee(‘''Helen",31)
val helen = _ : employee

age(joe);
21 : int

L]

val helen = increment_age(helen);
val helen = . : employee

age(helen);
32 : int

fun wealthy e = salary(e) > 100000;

val wealth = fn : (’a < employee) =-> bool

Figure 6.1: A Simple Interactive Session with Classes

166

In this class, all the methods of pre_list could be inherited but the method cons of list(a) cannot be
inherited because the implementation type-scheme of genintlist(b) is incompatible with any of the

possible types of cons. In this case, the type checking for class definition fails and the type system
reports an error.

6.8 Limitations and Implementation

First, we should point out that the language we have proposed differs in some fundamental ways
from object-oriented languages in the Smalltalk tradition. A static type system does not fit well
with late binding ~ a feature of many object-oriented languages. One reason to have late binding

might be to implement overriding of methods. It is possible that some form of overloading could

be added to the language to support this.

Another limitation is the restriction we imposed on inheritance declarations in connection to
type parameters. We required that if a class ¢(t;,

...,ts) 1s a subtype of both ¢/(7y,..., ;) and
c(r,...,7,) then 7; =

7j for all 1 < i < n. This is needed to preserve the existence of princi-

pal conditional typing schemes for all typable raw terms. This disallows certain type consistent

declarations such as:

class Cy(t) = p with
fun m z = m(z) :sub — ¢

end;

class C;, = p’ isa {C(int), C(bool)} with

c=e:C,
end.

This definition is type consistent in any implementation type-schemes p, p’ but creates a problem
that terms like m(c) do not have a principal conditional typing scheme. However, we believe that
the condition is satisfied by virtually all natural declarations. Note that in the above example the
result type of the method m is the free type variable t without any dependency of its domain type
sub which reflects the property that the method m does not terminates on any input. I could not

construct any natural example that is type consistent but does not satisfy this coherent condition.

167

Form a practical perspective, checking the type-correctness of a class definition with isa decla-
ration requires the consistency checking of all methods of all super-types already defined. A naive
way to do this would involve recursively unfolding definitions of types and method and then type-
checking the resulting raw term in the type system of the core language, which will be prohibitively
expensive when the class hierarchy become large. This problem is avoided using the existence of
a principal conditional typing scheme for any typable raw term in the extended language. At the
time of a definition of each method, we can save its principal conditional typing scheme. The
type correctness of the method against a newly defined subclass can then be checked by checking
whether the required method type is an instance of its principal conditional type-scheme or not.
This eliminates repeated type-checking of method bodies but still requires checking of type cor-
rectness against the set of all inherited methods. This can be also avoided. The set of all possible
implementation type-schemes of subclass of a class can be represented by a single principal condi-
tional type-scheme. As an example, consider the example of person we defied in the introduction.
The most general conditional type-scheme of the type variable sub in the definition of person can
be computed as [(t) Name : string, Age : int]. Using this property, the type correctness of a sub-
class declaration can be checked by checking that the implementation type-scheme is an instance
of {(t) Name : string, Age : int] without checking the consistencies of each method. While the
number of inherited methods might become very large, we expect that the number of super-classes
is relatively small even in development of a large system and therefore that this strategy yields an

efficient implementation of a static type-checking of large class hierarchy.

168

Chapter 7

Object-identities and Views for
Object-oriented Databases

This chapter extends Machiavelli with reference types to represent database objects with “identi-

ties” and describes a method to represent object-oriented databases.

7.1 Introduction

As we have demonstrated through examples in section 5.7, Machiavelli provides a suitable medium
to represent the relational and other complex object models in ML style type system. In these
models, database objects are pure values in the sense that two objects are equal iff they denote a
same regular tree (remember the definition of eq primitive in Machiavelli in section 5.5). In those
value-based database systems, real-world objects are represented by sets of their attribute values.
Moreover, the information about a single real-world object such as a person might be stored in

various places. Query processing is done by manipulating these values using join, projection and

other operations.

In contrast to those value-based approach, many other data models have been developed based
on the intuitively appearing idea that a real-world entity should be directly represented by a single
database object. Perhaps the first well established model based on this idea is the entity-relationship
model [28]. Many recent proposals such as [46, 74, 67] also integrate the features of object-oriented

programming, forming the increasingly popular area of “semantic” data models and object-oriented

databases. See [12, 58] for surveys in this area.

169

There have been arguments [103, 12] that object-oriented databases provide better solutions
to problems of database programming than those provided by value-based systems. It is however
apparent that there are many applications for which value-based systems provide simpler and more
elegant solutions. As an example, recent development of a formalism in natural language processing
called feature structures [97] strongly suggests that the databases for linguistic information are best
represented in a value-based system. On the other hand many ideas developed in object-oriented
databases such as object identities and extents of classes have obvious practical benefits. I believe
that the real problem we should solve is to integrate these two features in a unified type system
so that the programmer can enjoy both advantages of the two approaches. There have been also
argued [12, 66] that value-based database systems such as the relational model and its extensions
do not well fit a type system of a programming language. Through chapter 4 to chapter 5, we
have just shown the opposite by integrating very general complex objects into a polymorphic type
system of a programming language. In this chapter we present a method to integrate the features

of object-oriented database programming into our type system.

There have been a number of arguments on the properties of object-oriented databases [65,
17, 12). Here rather than adding to this philosophical discussion, we restrict our attention to
the notions of object identities and ertents. When combined with the central features of object-
oriented programming, they provide what we believe to be the desired features of programming with
object-oriented databases. We have integrated central features of object-oriented programming in
Machiavelli in chapter 5 and 6. In this chapter we analyze object identities and extents and propose

a method to represent them in Machiavelli.

The notion of object identities is based on the intuitive idea that database objects should model
real-world entities that change their attributes while maintaining their “identities”. The properties

of objects with identities can be summarized as follows:

1. two objects are equal if and only if they are identical (i.e. they are created by the same

instance of the creation operation),
2. an object has a set of attribute values that can be changed without affecting its identity,

3. an object is referred and accessed independently of the values of its attributes.

The practical importance of these properties is that they nicely represent sharing and mutability,
which are rather cumbersome to represent in a pure value-based system. Objects with identities are
usually implemented by maintaining a special value space such as “object identifier” [67] and “key”

[7). Objects are referred and accessed by those special values. User are required to create objects

170

so that their identifying values are unique. The system enforces the uniqueness requirement. —

The notion of ertent is related to the notion of classes in object-oriented programming we have
analyzed and integrated in Machiavelli in chapter 6. A class in object-oriented programming can
be regarded as an association of a (hidden) structure defining the internal representation of objects
and a set of operations defining their external behavior. Such classes are hierarchically organized
by inheritance relation supporting method sharing. For example, if we define a class point with a
method move(p, z,y) that displaces a point p by co-ordinates z and y, we can define a subclass,
circle, of point and expect that the same method, move, can be applied to instances of the class
circle. In object-oriented databases, the notion of classes not only represents these inheritance
relation but also imposes a relationship on the sets of objects of classes. For example, when we
say an employee isa person in a object-oriented database system, as in object-oriented languages
we expect employee to be a subclass of person in that every method of person is applicable to
instances of employee but we also mean that, in a given database, the set of employee objects
is a subset of the set of person objects. We call a set of objects of a class an eztent of a class.
Note that the notion of extents are relative to a database (or a subset of a database depending on
the context). Since it is natural and sometimes necessary to maintain multiple databases having a

same class structure, it is desirable to allow multiple extents for a single class.

An important implication of this notion is that classes in object-oriented databases cannot be
directly modeled by types. This contrasts with object-oriented programming whose classes are
accurately represented in the type system we have constructed in chapter 6. To clarify this issue,

let us look at a sketch of a database query in which this subset assumption is made.

1. Obtain the set S of students in the database.

2. Perform some complicated restriction of S, e.g. find the subset S’ of S whose Age is below

the average Age of S.
3. Obtain the subset E of S of employees in S’.

4. Print out some information about £, e.g. print the names and ages of people in E with a

given salary range.

Since each object is a model of a real-world entity, the above query certainly make sense and the
process (3) might be done by “intersecting” the set of employee objects and S. Different from the
typing relation between values and types, an object o belongs to a class ¢ does not means that the

entire structure of o is specified by ¢ but it should mean that c specifies some partial information of

171

the structure of 0. A person object might be an employee. It also suggests that an object-oriented

database require some form of heterogeneous collection of objects.

Programming such queries are certainly possible in a dynamically typed language, and can easily
be handled in object-oriented database languages based on dynamic type-checking. Of course this
situation can be also handled in a statically typed system by maintaining disjoint sets of employees
and persons instances, each of which is uniformly typed, and at the same time by maintaining a
“natural” embedding (injective map) from the set of employees to the set of persons as a typed
function in the language. This is what is done in the relational model through (seldom implemented)
foreign key constraints. Implementing the query then involves join at line 3 in order to find the

employees who have a key that is in the relation containing the selected persons.

Galileo handles this problem by introducing special types called “classes”. For each class-type,
Galileo maintains a unique extent associated with a class. An object of a class-type is required to
have a key that is unique not only among the set of all objects of that class but also among the
set of all objects of all its subclasses. The system then maintain the inclusion relation of extents
associated with classes. This approach has a disadvantage that we can have only one extent for
each class. This creats a problem when we want to define generic methods which are applicable to
many extentns sharing common structures. For example, if we want to maintain a separate extent of
students for each department then we are forced to define a separate class for each department. This
means that even if the structure and required set of methods are identical for all those departments

we are forced to repeat class and method definitions for each department.

In this chapter, we introduce the reference types to represent objects with identities. We then
introduce the notion of views to represent extents and demonstrate that Machiavelli type system
can represent object-oriented databases. The justification of these notions are, however, intuitive
and ad hoc. Development of a formal theory for object identities and extents is left to future

investigation.

7.2 Reference Types

We claim that the properties of object identities we have described are accurately captured by

reference types (or pointer types) that are implemented in many typed programming language

including Standard ML [47].

We extend Machiavelli type system by adding the type constructor ref, i.e. if 7 is a type then

172

refir) is a type. The set of raw terms are also extended with three constant functions:

ref : v — ref(r) (reference creation)
' ¢ reflt) — 7 (de-referencing)

= : ref{r) = 7 — nil (update)

where nil is a trivial base type containing only one value Ni#l. Following the syntax of Standard

ML, we use the notation e; := e, for :=(e;)(e2).

As has been known and was pointed out in [71], a general use of reference in ML style type
system can create type inconsistency not detected by static type-checking. The following example

is given in [T1]:

let
val z = ref Az. z
in
(z := Az.z + 1,z true)

end.

If the type system treat the constant ref as an ordinary constant then the type system infer the
type bool for the above expression but cause a runtime type error if the evaluation of pair (z :=
Az.z 4+ 1,!z true) is left to right. Here we adopt the solution proposed in [71] that the “actual”
argument to the function ref must have a ground type. This condition is the same as the one we
imposed on the function join and proj° (with infinite &) and therefore can be enforced by the same

method (subsection 5.4.2).

Two references are equal iff they are created by the same invocation of ref. For example,
ref(3) = ref(3) is false but let val a = ref(3) in @ = a end is true. A reference is created with a
value which can be arbitrary complex and can be changed without changing the value of reference
itself. For example, if we create a department object (with identity) as the following reference

value:
val d = ref([Dname = "Sales", Building = 45));
and from this we create two employee objects:

val emp; = ref([Name = "Jones", Department = d);

val emp2 = ref([Name = "Smith", Department = d]);

173

then these two employees have the object d in the Department field not the value [Dname =

"Sales", Building = 45]. The following change of values of d:

let

val d = (lemp,).Department
in

d := modify(!d, Building, 67)

end

will be reflected in the department as seen from emp, and the expression
(!{(lempo). Department)). Building

is evaluated to 67.

7.3 Views for Representing Extents

The way we capture the notion of view in our language is through coercions or views. The type of
an object will, in general, be a reference to a rather complicated type, say PersonObj. A database
{or a part of it) will consist of a set D of such objects, i.e. a value of type { PersonObj}}. A view of
D is a set of relatively simple records in which we “reveal” a part of the structure of each member
of D so that we can apply operations on database objects we have already developed. For example,
{[Name : string, Id : PersonObjl} and {[Name : string, Age : int,Id : PersonObj]} can be the
types of views of the set D. But notice that within these records we have kept a distinguished Id
field that contains the object itself, and this field, being a reference type, can also be treated as
an “identity” or key when we have a set of objects. Because of the presence of this field, we can
define generalized set operations on views even though they are of different types. In fact we have
already seen one such operation, join. When applied to views it is an operation that takes the
intersection of sets of identities, but produces a result that has a join type and gives us the union
of the “methods”. In fact we shall simply define a class associated with extents as any record type

that contains an Id field, which will be assumed to be some reference type.

As an example. a part of the database could be a collection of “person” objects modeling the
set of persons in a university. Among persons, some are students and others are employees. Such
subsets naturally form a taxonomic hierarchy or class structure. Figure 7.1 shows a simple example.
Note that the arrows not only represent inheritance of properties but also actual set inclusions. We

use variant types to represent structures of objects that share common properties (e.g. being a

174

[Teaching FellowsJ

Students

Employees

Figure 7.1: A Simple Class Structure

person) but differ in special properties. The example is then represented by the following types in

Machiavelli.

PersonObj = ref{[Name : string, Salary : (None : nil, Value : int),
Advisor : (None : nil, Value : PersonObj),

Class : {None : nil, Value : string)])

Person = [Name : string, Id : PersonObj]

Student = [Name : string, Advisor : PersonObj, Id : PersonObj]

Employee = [Name : string, Salary : Integer,Id : PersonObj]

TeachingFellow = [Name : string, Salary : Integer, Advisor : PersonObj,
Class : String, Id : PersonObj]

The reference type PersonObj is the type of person objects. The type Person, Employee and
TeachingFellow are types of person objects viewed as persons, employees and teaching fellows
respectively. For example, a person object is viewed as (or more precisely can be coerced to) an
employee if it has name and salary attributes. A database would presumably contain a set of person

objects, i.e. a set of type {{ PersonObj}}, and views of any set of this type can be constructed in

Machiavelli by the following definitions:

fun PersonView(S) =

175

select [Name = (1z).Name, Id = z]
wherez € S

with true;

fun EmployeeView(S) =
select [Name = (1z).Name, Salary = value(((!z).Salary), Id = z]
wherez € S§

with(case (!z).Saraly of < Value = z >= true,< None = y >=> false);

fun StudentView(S) =
select [Name = (!z).Name, Advisor = value((!z).Advisor), Id = z]
wherez € S

with (case (!z).Advisor of < Value = >= true, < None = y >=> false);

fun TFView(S) =
select join(z,[Course = value((!z).Course))])
where ¢ € join(StudentView(S), Employee(S))

with (case (!z).Course of < Value = r >=> true,< None = y >=> false);

where value is the function defined as:
fun value(v) = (case v of < Value =z >=> z, < None = y >=> Error);

The types inferred for these functions will be quite general, but the following are the instances that

are important to us in the context of this example.

PersonView : { PersonObj} — { Person}
EmployeeView : { PersonObj} — { Employee}}
StudentView : { PersonObj}} — {Student}
TFView: { PersonObj}} — {Teaching Fellow}}

In the definition of TFView, the join of two views models both the intersection of the two
classes and the inheritance of methods. If ¢;,02 are types of classes, then o; < oo implies that
project?t(View,,(S)) C View, (S) where View,, and View,, denote the corresponding viewing
functions on classes ¢1 and o2. This property guarantees that the join of two views corresponds to

the intersection of the two. We therefore define:

176

fun view_intersection V| Vo = join(Vy, Va2).

The property of the ordering on types and Machiavelli’s polymorphism also supports the inheritance

of methods. For example, suppose we have a database persons. Then
viewintersect(StudentView(persons), EmployeeV iew(persons))

always represents the set of objects that are both student and employee. Moreover, the type of
the intersection is the join of the types of StudentView(persons) and EmployeeView(persons)
and therefore methods defined on StudentView(persons) and EmployeeView(persons) are auto-
matically inherited by Machiavelli’s type inference mechanism. Here are some examples of query

processing in a interactive session in Machiavelli:

(* New view of people who are both Student and Employees *)
=-> val supported_student =

view_intersection(StudentView(persons),EmployeeView(persons));
>> val supported_student = { }

: {[Name:string, Salary:int, Advisor:PersonObj, Id:PersonObj]l}

(* Names of students who earn more than their advisors *)
-> select x.Name
where x <- supported_student, y<-EmployeeView(persons)
with x.Advisor=y.Id andalso x.Salary > y.Salary;

>> val it = { ... } : {string}

Dual to the join which corresponds to the intersection of classes, we can define the “union” of
extents in Machiavelli. The result type of the union of two views should be the type “common” to

both of the types. Using our ordering on description types, this can be represented by the following
typing rule:
view-union : {6} x {625} — {61 N &)}

The appropriate definition for the view_union can then be given as:
view.union(s,, s3) = union(proj® " (s,), projt ™% (s,))

which 1s reduced to the standard set-theoretic union when é; = 5. This operation can be used to

give a union of classes of different type. For example,

view.union{StudentView(person), EmployeeView(person))

177

correspond to the union of students and employees. On such a set, one can only safely apply methods
that are defined both on students and employees. As with join, this constraint is automatically

maintained by Machiavelli’s type system simply because the result type is { Person}.

In addition one can easily define the “membership” operation on objects of disparate type.:
fun view_member(z,S) = join({z},S) # {}

view_member(z, S) = true iff there is some member of s of S such that £ and s have a common

identity. In this fashion it is possible to extend a large catalog of set-theoretic operations to classes.

It is interesting to note that this approach, when considered as a data model, has some similari-
ties with that proposed in the IFO model [3]. The database consists of a collection of sets of different
types of which a set of type PersonQObj in our example, would be one. Subclasses (“specializations”
in IFO) correspond to views. However, unions of these cannot be formed directly, because the Id

fields will have different types. The correct way to form a union (IFO’s “generalizations”) would

be to exploit a variant type.

178

Chapter 8

Conclusion and Topics for Further

Research

This thesis has proposed a programming language for databases and objet-oriented programming.
The language has a static type system with static type inference and ML style polymorphism.
The type system uniformly integrates complex database objects, central features of object-oriented
programming and ML style polymorphism. Various complex models including complex object
models and object-oriented databases can be directly represented in the type system. This allows
database programmers to share benefits of ML style type system and useful features of object-

oriented programming such as multiple inheritance and data abstraction.

This thesis has achieved this goal by extending ML style type system to structures and oper-
ations for databases and object-oriented programming. I have analyzed the syntax and semantics
of ML and constructed a framework for denotational semantics for ML polymorphism and axiom-
atized the equational theory that correspond to the semantics. I have also constructed a theory of
types for database objects and proposed a concrete type system for complex database objects that
is rich enough to represent virtually all proposed database objects. By combining the analysis of
ML and the type system for database objects, I have defined the polymorphic core of the proposed
language and developed a type inference algorithm. The core has then been extended to include

user definable classes for object-oriented programming. I have also presented a method to represent

object-oriented databases in the language.

As in many endeavors, the work presented in this thesis is not complete with respect to its

ultimate goal. There are many topics that remain to be investigated before a truly satisfactory

179

programming language for data intensive applications can become a reality. The rest of this chapter

lists some of these topics that can be regarded as continuations of this work.

8.1 Semantics

One of my belief underlying this study is that construction of a clean mathematical semantics
is essential to understand existing systems, to extend existing systems and to integrate various
different systems. The following investigations should be useful for a better understanding of the

type system proposed in this thesis and for further extensions.

8.1.1 A Concrete Models for Machiavelli

In section 3.3, I defined the notion of models and equational theories for ML like languages and
proved the soundness and completeness theorem. The notion of models for Machiavelli was defined
based on this result. By the completeness theorem for the simply typed lambda calculus, we know
that there is a model. But it is also interesting to construct a syntax free model for Machiavelli.
By the definition of models of Machiavelli, it is enough to construct a model for the explicitly
typed language xMachiavelli. An appropriate formalism might be the domain theory. In [91]
Plotkin constructed a domain theoretic model for a variant of the simply typed lambda calculus
with recursion. In this model, base types are interpreted as flat cpos (complete partial orders)
and function types are interpreted as continuous function spaces. In this language the only type
constructor is the function type constructor, which corresponds to the continuous function space
construction on cpos. In xMachiavelli, types correspond to regular trees generated by various type
constructors. Since a regular tree is specified by an equation, one way to construct a domain
theoretic model for xMachiavelli might therefore be to translate an equation on regular trees to an

equation on cpos and to interpret a type as the solution of the corresponding equation over cpos.

8.1.2 Call-by-Value Semantics for ML Polymorphism

My analysis of a denotational semantics for ML polymorphism was based on the standard model
theory and the standard equational theory for lambda calculus. It assumed B-equality both in
equational theories and in semantic spaces (through a condition on semantic mappings). As |
pointed out in section 3.1, however, these theories do not agree with the operational semantics based

on the “call-by-value” evaluation. Although the operational semantics is sound with respect to the

180

denotational semantics in the sense that if a term is evaluated to another term then they have the
same meaning, the denotational semantics is not computationally adequate [76] for those operational
semantics and therefore the full abstraction result presented in subsection 3.6 has little help to them.
It is therefore desirable to develop another frameworks for equational theory and denotational
semantics that correspond to the call-by-value evaluation. Under our view of ML polymorphism,
we need to develop a model theory and equational theory for the simply typed lambda calculus.
Once we have those theories, I hope it might not be hard to develop the corresponding theories for

ML like language using similar strategy I developed in section 3.3.

8.1.3 Semantics of Class Declarations

Another interesting question is a semantics of class definitions. A definition of a class determines
a subset of types that are compatible with the set of methods (i.e. the set of raw lambda terms
that implement the methods). This suggests that a class definition could be regarded as a form of
existential type 3sub : K.(M; x ... x M,) where K denotes the subset of types that are compatible
with the set of methods and M, ..., M, are the types of the methods defined in the class definition.
This is a form of bounded ezistential types introduced in [27] but differs from theirs in that the kind
K reflects directly the implementations of methods. Semantics of such types should explain not
only the functionality of the set of methods (as was done in [80]) but also the structure of a kind

K determined by a set of raw lambda terms.

8.1.4 Semantics of Object Identities

In section 7.2, I claimed that the properties of objet identities were accurately captured by ref-
erence types. However, the justification was intuitive and ad hoc. Although the notion of object
identities is intuitively clear and appealing, the precise formulation of the semantics of objects with
identities constitutes a challenge. A uniform and elegant integration of objects with indentities into

a programming language type system may need an analysis analogous to the one I did for complex

database values in chapter 4.

8.2 Extensions of the Language

I believe that the structures and operations available in the language proposed in this thesis is a

good approximation to a sufficient set for practical programming. However, there are many features

181

that might be useful.

8.2.1 General Set Operation

The set of available operations on the set data types in the language are union, map, prod, join
and proj. 1 demonstrated that they enables us to define a general selection function, which was
named filter, and therefore seem sufficient for query processing in the style of relational algebra.
However, determining whether they are sufficient for general programming with sets or not needs
more investigation. In particular, some application might want an operation that maps a set to

a sequence. With the existence of references, such operation is definable. The following is one

example:

fun f (S: {s}) =
let
val Iref = (ref nil) : ref{list(s))
fun f e = lref := conse(llref)
val dummy=map f S
in
lref

end;

The type specifications S : {s} and (ref nil) : ref{list(s)) are required to prevent the problem
associated with the interaction between polymorphism and references (see section 7.2). The type

list(s) and the function cons are easily defined.

A better approach would be to introduce a general elimination operator, which we call hom
here, for sets analogous to the operations on lists such as the “pump” operation in FAD [13] and

the “fold” or “reduce” in many functional languages. One possible definition for hom is:

hom(f,op,z,{}) = -,
hom(f,Op,:,{{el,eg,...,en}}) = op(f(el),OP(f(e;:)....‘op(f(e,,),z)...)).

It seems that virtually all useful operations are definable by using hom, union and join. For

example, the following are definitions for map and filter:

fun map f S = hom(Az. {z}, union, {},5),
fun filter p S = hom(Az.if p z then{{z} else {},union,S).

182

In addition to these examples, hom can be used to define the cartesian product (prod) of sets, set

difference, membership in a set, and the powerset (the set of subsets) of a set.

A problem of introducing hom as a primitive operation on sets in the definition of the language
is that the result of this operation will in general depend on the order in which the elements of
the set are encountered and therefore the above definition of hom does not completely specifies the
behavior of hom unless the third argument op is an associative commutative operation and the first
argument f does not cause side-effect. It seems impossible to determine statically these properties
for each application of hom. If it is the case then we will be forced to leave the effect of hom as

implementation dependent if op and f do not satisfy the above property. :

8.2.2 Heterogeneous Sets

As I analyzed in section 7.1, an object-oriented database require some form of heterogeneous col-
lection of objects. I solved this problem by encoding heterogeneous collection in a (homogeneous)
set of variants. Combining with views, it has almost achieved the goal of having static type system
that deals properly with collections of heterogeneous objects. Using join and proj, queries on views
looked the way we want them to look in object-oriented databases. However the construction of
complicated “catch-all” variant types (like PersonObj in section 7.3) and the definition of views -
even though they could be automatically generated from a semantic data model schema - is some-

thing we would prefer to avoid. It would be more natural if the schema were directly represented

in the type system.

One radical solution would be to introduce the heterogeneous set type constructor {oy,...,0,}.
In order to build a type system based on this idea, we need to decide the meaning of the typing

judgement {e,€ea,....€n} : {71, T2, ..., Tm}. There are at least the following three possibilities:

1. for each e; there is some 7; such that ¢; : 7,
2. for each 7; there is some ¢; such that e; : 7,

3. the conjunction of the two.

Unfortunately none of them provide a satisfactory interpretation. The first interpretation implies
the set expressions have more than one types, yielding the same problem as found in subtype
based systems (section 5.1). The other two interpretations do not support necessary operations

on sets including intersection and difference. For example, under either of the two interpretations,

183

S1:{71,---,Ta} and Sz : {71, ..7z} does not imply S1 NS> : {r1,..., n}. The second interpretation

is also unsafe when combined with function application.

A more promising approach would be to introduce some notion of partial type information for
sets. One way to specify partial type information is to specify a set of possible types. In the theory
of types, sets of types are sometimes called kinds [70] and are treated as themselves objects. The
special set constructor can then be characterized as an operator which takes a kind and returns a

type. In particular, the following kinds representing various sets of record types seems particularly

useful in object-oriented databases
ke=K(r)|({:x,...,01: k)

where K'(7) is the kind correspond to the singleton set of = and ({; : k1, ...,!, : K,) denote the set
of all record types containing at least all the fields {;,...,1, of types specified by respective kinds.

This relation can be easily formalized by kinding rule, which also induce a partial order on kinds.
The set of types can be extended by partial types:
ra=T(x)] ...

where T'(k) is the type with partial type information represented by the kind k. Since our objective
is to integrate heterogeneous sets, the following introduction rule seems the only necessary intro-

duction rule for partial types.

e. o

fle} - {T(K(o))}

{HSET)

Possible elimination rules are:

(COERCE) M
€. 0
(poT) e:T((....01:k,...))

ed : T(x)
Union and intersection can be generalied to these partially specified set types.

e1:f{x1 } ez : {k2}

union(ey,ez) : {r; Uk}

(HUNION)

e1:{x1} e2: {x2}

intersection(e;, es) : k1 Nk2}

(HINTERSECT)

184

where &1 U k2 and k; M ko denote respectively the least upper bound and greatest lower bound of

kinds under the set inclusion ordering.

8.3 Communicating to Existing Databases

Of course, a good database programming language should not only be able to manipulate databases
that conform to its own type system but others as well. In particular, most current object-oriented
database languages do not have any static type-checking, but we would still like to deal with them
in the same way that we have dealt with uniformly typed classes. This is possible through use of
dynamic values. A dynamic value [1] is one which carries its type description with it. Functions
exist for interrogating this type description and for coercing dynamic values back to ordinary typed
values. Let us assume that dynamic values also behave like references in that two dynamic values

are equal only if they were created by the same invocation of the function Dynamic, which creates

values of type dynamic.

We can now view an external database as a single large set of dynamic values, i.e. it has the
type f{dynamic}. In the same fashion that we generated views in chapter 7, we can generate views

(probably by some external procedures) based on dynamic. Thus an employee view of the database

might be a class of type

{[Name : string, Salary : int, Id : dynamic]}}

and a department view could be a class of type
{[Dname : string, Building : string, Id : dynamic]}

with the “intersection” of these classes being empty. Once this has been done we can write programs
to manipulate these structures in the type-safe way I have advocated throughout this thesis even
though the underlying database does not have any imposed type constraints. The implementation
of views (in addition we would need procedures to perform updates) must, of course, respect the
projection property I described earlier. But I also hope that, for a given object-oriented database
system, building these views will be straightforward and could be carried out by generating them

automatically.

185

8.4 Implementation Issues

There are a number of important ways in which Machiavelli needs to be augmented to make it a
viable programming language for databases and object-oriented programming. The most important
of these is the implementation of persistence and efficient evaluation algorithm for expressions -
especially those containing records and sets. I believe that these issues are orthogonal to Machiavelli
type system and many existing approaches can be adopted. On the other hand I also feel that we
do not need to deal in great detail with the efficiency of the whole range of database structures. My
hope is that Machiavelli can be parasitic on already implemented database management systems
and will serve as a medium for communication between heterogeneous systems and, in particular,
that it will allow us to achieve a clean integration of already implemented relational and object-

oriented systems.

With the future efforts towards efficient implementations, I hope that Machiavelli (or some
language like it) will become a practical programming language for various databases, object-

oriented system and other data intensive applications.

186

Appendix A

Abstract Syntax of Machiavelli

The following is the summary of the abstract syntax of Machiavelli. The syntax is given as a syntax
free grammar. The top level objects are declarations denoted by decl. Key words and lexical tokens
are written in typewriter font. Optional constructs are enclosed in square bracket ([]). ¢ denote

the empty string. We use the following syntactic classes:

id the set of identifiers
atomics atomic tokens representing values of base types
const fun builtin functions on base types such as addition and conditionals.
decl ::= classdecls | binding | ezxpr
classdecls ::= ¢ | classdecl | classdecls
classdecl ::= class = id = type isa {ctype,...,ctype}
methoddecls
end
methoddecls ::= € | binding : methodtype ; methoddecls
binding ::= val id = expr | fun id id --- id = ezxpr
expr ::= integer | boolean | string | real |

(fn id => expr) | expr ezpr | let id = expr in expr end |

187

[id
<id

expr, ..., id = expr] | ezpr.id |

expr> |
(case erpr of <id = id =dezp