
A Study On Semantics, Types, and
Languages For Databases and
Object-Oriented Programming

MS-CIS-89-60
LOGIC & COMPUTATION 15

At sushi 0 hori

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

October 1989

ACKNOWLEDGMENTS:
This research was supported in part by grants NSF IRI86-10617, ARO

DAA6-29-84-K-0061, ONR N0001488-K-0634 and OK1 Electric
Industry Co., Japan

A STUDY O F SEMANTICS , TYPES AND LANGUAGES

FOR DATABASES AND

OB JECT-ORIENTED PROGRAMMING

ATSUSHI OHORI

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy.

1969

Peter Buneman Val Breazu-Tannen

Co-supervisor of Dissertation Co-supervisor of Dissertation

Jean Gallier . .- .,., .

Graduate Group Chairpers~q . -
r *

. v s
I

@ COPYRIGHT

ATSUSHI OHORI

1989

A STUDY OF SEMANTICS, TYPES AND LANGUAGES FOR DATABASES AND

OBJECT-ORIENTED PROGRAMMING

ATSUSHI OHORI

CO-SUPERVISORS : PETER BUNEMAN AND VAL BREAZU-TANNEN

The purpose of this thesis is to investigate a type system for databases and object-oriented

programming and to design a statically typed programming language for these applications. Such

a language should ideally have a static type system that supports:

polymorphism and static type inference,

rich data structures and operations to represent various data models for databases including

the relational model and more recent complex object models,

central features of object-oriented programming including user definable class hierarchies,

multiple inheritance, and data abstraction,

the notion of extents and object-identities for object-oriented databases.

Without a proper formalism, it is not obvious that the construction of such a type system is possible.

This thesis attempts to construct one such formalism and proposes a programming language that

uniformly integrate all of the above features.

The specific contributions of this thesis include:

A simple semantics for hlL polymorphism and axiomatization of the equational theory of ML.

A uniform generalization of the relational model to arbitrary complex database objects that

are constructed by labeled records, labeled variants, finite sets and recursive definition.

A framework for semantics of types for complex database objects.

The notion of conditional typing schemes that extends Milner's typing scheme for h lL to a

wide range of complex structures and operations.

A formulation of the notion of classes and inheritance in an ML style static type system.

The notion of views that enable us to represent object-oriented databases in an ML style

static type system.

A proposal of a polymorphic programming language, Machiavelli, for databases and object-

oriented programming with static type inference.

In addition to the above technical contributions, a prototype implementation of Machiavelli that

embodies most of the features presented in this thesis has been done in Standard M L of New Jersey.

ACKNOWLEDGEMENTS -

I am indebted t o my co-adviser Peter Buneman. He originally introduced me the area of

types and semantics for database programming languages and recommended me to undertake the

doctoral study. Without his enthusiastic encouragement, this dissertation would have never existed.

Special thanks are also to my co-adviser Val Breazu-Tannen for his guiding me the are of syntax

and semantics of types for programming languages and for his encouragements. Moreover, their

constructive criticism and our continuous discussion directly contribute to the work.

I am grateful to my external commitee members Tomasz Imielinski and John Mitchell for very

useful discussion at several opportune moments and many helpful comments. I am as grateful to

the other members of my thesis committee. Jean Callier, Aravind Joshi, and Dale Miller for their

interest in my work and their invaluable comments.

Many thanks are also to Luca Cardelli, Carl Gunter, Richard Hull. David MacQueen, hiitchell

Wand and Aaron Watters for very helpful discussions and suggestions. Moreover Mitchell \.%'and

made several constructive criticism on the draft paper on which a part of chapter 5 is based.

I am grateful to OK1 Electric Industry Co., Japan. They granted my leave of absence for the

study at University of Pennsylvania and provided financial support. Among them, special thanks

are t o Kenji Tateoka, Eiji Nohara, and Toshiyuki Matsumoto who gave me assistance and support

a t critical moments.

Finally my special gratitude goes to my wife Hiroko. Without her, the endevour of graduate

study would have been arid and trying experience.

Contents

...
Abstract 111

Acknowledgements iv

1 Introduction 1

. 1 .1 Motivations and Purposes 1

. 1.2 Organization of Thesis 4

2 Mathematical Preliminaries 8

. 2.1 Basic Notions and Notations 8

. 2.2 Labeled Trees 10

2.2.1 Definitions and Basic Properties . 10

2.2.2 Substitutions and Unifications on Trees . 15

. 2.2.3 Regular Trees 16

3 Analysis of ML : its Syntax and Semantics 22

. 3.1 Introduction 22

. 3.1.1 Milner's original semantics 24

3.1.2 Damas-Milner type inference system and Mitchell-Harper's analysis 25

. 3.1.3 A simple framework for ML polymorphism 29

. 3.2 The Language Core-ML 30

3.2.1 Raw terms. types and type-schemes . 30

3.2.2 Typings. typing schemes and terms of Core-ML 33

3.2.3 Type Inference Problem . 35

3.2.4 Relation to Darnas-Milner System . 38

3.2.5 Equational theoriesofCore.ML . 43

. 3.3 Semantics of Core-ML 44

3.3.1 Explicitly-typed language T A and its semantics 44

3.3.2 Relationship between TA and Core-ML . 46

3.3.3 Semantics of Core-ML . 49

3.4 Soundness and Completeness of Core-ML Theories 50

3.5 Extensions of Core-ML . 52

3.6 Full Abstraction of ML . 57

4 D a t a b a s e Domains 6 0

4.1 Introduction . 60

4.1.1 Data Structures for Database Objects . 61

4.1.2 Operations on Complex Objects . 62

4.1.3 A Strategy to Generalize Join and Projection G3

4.2 Analysis of the Relational Model . 64

. 4.3 Database Domains 74

4.4 A Type System for Complex Database Objects . 78

4.4.1 Set of Description Types . 78

4.4.2 Universe of Descriptions . 83

. 4.4.3 Typing Relation 85

4.4.4 Description Domains . $7

4.4.5 A Model of the Type System . 91

5 A Polymorphic Language fo r Da tabase s and Objec t -Or ien ted P r o g r a m m i n g 98

. 5.1 Introduction 98

. 5.1.1 Records and Variants for Object-oriented Programming 100

. 5.1.2 Integrating Database Objects 107

. 5.2 Definition of Machiavelli 109

. 5.2.1 Types and Description Types 109

. 5.2.2 Raw Terms 109

. 5.2.3 The Proof System for Typings 114

. 5.3 Alternative Presentation of Raw Terms and Typings 114

. 5.4 Type Inference Problem 116

. 5.4.1 Conditional Typing schemes 117

. 5.4.2 Satisfiability of Conditions 125

. 5.5 Semantics of Machiavelli 133

. 5.5.1 Denotational Semantics of Machiavelli 133

. 5.5.2 Operational Semantics 135

. 5.6 Syntactic Shorthands 137

. 5.6.1 Recursive Function 137

. 5.6.2 Value Bindings and Function Definitions 138

. 5.6.3 Database Operations 138

. 5.7 Programming Examples 140

6 P a r a m e t r i c Classes f o r Objec t -Or ien ted P r o g r a m m i n g 146

. 6.1 Introduction 146

. 6.2 Raw Terms. Types. and Type-schemes 151

. 6.3 Syntax of Class Definitions 152

. 6.4 Proof System for Class Definitions and Typings 155

. 6.5 Soundness of the Type System 156

. 6.6 Type Inference for the Extended Language 159

. 6.7 Further Examples 165

. 6.8 Limitations and Implementation 167

7 Object-identities and Views for Object-oriented Databases 169

. 7.1 Introduction 169

. 7.2 Reference Types 172

. 7.3 Views for Representing Extents 174

8 Conclusion a n d Topics for Fur ther Research 179

. 8.1 Semantics 180

. 8.1.1 A Concrete Models for Machiavelli 180

. 8.1.2 Call-by-Value Semantics for ML Polymorphism 180

. 8.1.3 Semantics of Class Declarations 181

. 8.1.4 Semantics of Object Identities 181

. 8.2 Extensions of the Language 181

. 8.2.1 General Set Operation 182

. 8.2.2 Heterogeneous Sets 183

. 8.3 Communicating to Existing Databases 185

. 8.4 Implementation Issues 186

A Abstract Syntax of Machiavelli 187

Bibliography 189

Index

List of Figures

. 2.1 An example of a finite labeled tree 11

. 2.2 An example of an infinite labeled tree 12

. 3.1 Examples of Type Inference with Recursive Types 55

. 4.1 A Simple Relation and its Representation as a Table 65

. 4.2 Join of Relations Containing Null Values 68

. 4.3 Examples of Description Types 79

4.4 Examples of Ordering on Description Types . 80

. 4.5 Examples of Descriptions 84

. 4.6 Examples of Typing Relation 86

. 5.1 A Simple Session in Machiavelli 141

. 5.2 A Simple Example Involving join and projed 142

. 5.3 A Part-Supplier Database in Generalized Relational Model 142

. 5.4 Some Simple Queries 143

5.5 A Simple Implementation of Polymorphic Transitive Closure 143

. 5.6 Query Processing Using Polymorphic Functions 144

. 6.1 A Simple Interactive Session with Classes 166

. 7.1 A Simple Class Structure 175

Chapter 1

Introduction

1.1 Motivations and Purposes

The term "impedance mismatch" has been coined [75, 131 t o describe the phenomenon that the

structures and operations available in a programming language do not usually match those needed

for database systems. This problem is painfully familiar to anyone who has used a high-level

programming language to communicate with a database. This mismatch is particularly unfortunate

when database programming cannot share the benefits of recent developments in the theory of

types in programming languages. Among them most important ones are polymorphism [94, 781

and stat ic t ype inference [78, 341, which should have had apparent practical advantages for many

database applications. A similar situation exists in the field of object-oriented programming. In

the development of object-oriented languages [44, 331, various practical ideas such as classes and

multiple inheritance have been proposed and implemented. The advantages of these features seem

orthogonal to those of conventional notion of types and the integration of them into a type system

of a programming language is highly desirable. However, a proper formalism that enables us to

integrate these features in a type system with polymorphism and static type inference has not yet

been well established.

The motivation of this thesis is to attempt to solve these mismatch problems and to develop a

programming language that unifies databases and object-oriented programming in a modern type

system. Such a language should provide a programming environment where the programmer can

enjoy both the capability of database management and the desirable features of ob ject-oriented

programming with all the benefits of a modern type system. Recent studies in the area of object-

oriented databases [13, 171 and "semantic" data models [58] suggest that such integration is highly

desirable. Such a language should be also suitable for many other applications whose main interest is

manipulation of highly structured data such as knowledge representation [18] and natural language

processing [97]. It is therefore hoped that the integration should also contribute t o solve the "high-

level" impedance mismatches between database systems and other applications.

One desirable feature of a programming language for those data intensive application is s t a t i c

type-checking. The main objective of static type-checking is to detect inconsistency in applications

of operations to data before program execution. This eliminates certain programming errors at

early stages of programming development. This should be particularly important for data intensive

applications. Data structures such as schemes in database systems and class definitions in object-

oriented programming are large and complex structures. Much of programming errors in these

applications would show up as type errors were those data structures a part of the type structure of

the program. Therefore a type system in which such errors can be anticipated by a static analysis

of the program is, I believe, a prerequisite for a good programming language for data intensive

applications. As argued in [106], static type-checking may also contributes to efficient execution of

programs by eliminating run-time type-checking.

Until recently, statically typed languages were justly criticized for being too cumbersome. First,

they did not allow certain types of generic code; and second the type declarations, while admittedly

useful as documentation, were often tedious and obvious. With the inventions of polymorphism

[94, 781 and static type inference [78,34], however, I believe that a static type system can overcome

these disadvantages. The M L family of languages - including Standard hlL [48] and hiiranda [lo71

- are successful examples. In those languages, the programmer is not required to specify types of

programs. The type system tnfers a most general polymorphic type for any type correct programs.

By this mechanism, those languages achieve much of the flexibility of dynamically typed languages

like Lisp without sacrificing the advantages of the static type-checking. hloreover, I believe that an

hiL style type system can achieve a proper integration of databases and object-oriented systems in

a statically typed programming language if it is extended with the following features:

1. records and variants to represent various data structures,

2. the structures and operations rich enough to represent various data models for databases

including the relational model [29], nested relations (36, 62, 951 and complex object models

[59, 14, 41,

3. user definable classes, data abstraction and multiple inheritance for object-oriented program-

ming,

4. object-identities and extents for object-oriented data models [13, 171.

The last two years have seen considerable research into the integration of records and variants

in an ML style type system to support an aspect of object-oriented programming [I l l , 105, 85, 63,

38, 931 - including a contribution of a part of this study ([85]) - which shows that the integration

of the first is now possible. However, there seems no existing approach that integrates the other

three features in an ML style type system. For 2, the problem is seen by simply noting that no

existing polymorphic type system can represent even the relational model - perhaps the simplest

form of a data model for databases. As pointed out in (101, no existing type system can type-check

the polymorphic natural join operation. For 3, there have been some efforts [7] and suggestions [63]

toward the integration of user definable classes, data abstraction and inheritance in a static type

system. However, to my knowledge, there is no formal system that integrates these features in an

M L style type inference system. hloreover, there appears to be no static type system of any kind

that successfully deals with 4. The purpose of this thesis is to develop an ML style type system

that uniformly integrates all the above features and to propose a programming language having

that type system.

It is also desirable for the language to have a clean mathematics semantics. Such a semantics

should provide a better understanding of the interaction of various features of the language and

should be useful for further extensions of the language. This thesis also attempts to construct a

semantic framework for the polymorphic core of the proposed language.

The following example illustrates the flavor of the language proposed in this thesis. Consider a

function which takes a set of records (i.e. a relation) with Name and Salary information arid returns

the set of all Name values that correspond to Salary values over 100K. For example, applied to the

relation (set of records)

{ [N a m e = "Joe" , S a l a r y = 234561,

[N a m e = " Fredme, S a l a r y = 1234561,

[N a m e = "Helen", S a l a r y = 1320001)

this function should yield the set {"Fred", " H e l e n l l) . Such a function is written in the language as

follows:

fun w e a l t h y (S) =select z . N a m e

where z E S

with z.Salary > 100000;

T h e select. . . where.. .with form is simple syntactic sugar for more basic program structure.

Although n o da ta types are mentioned in the code, the type system infers the following type

information

wealthy : { [(s l) Sa la ry : i n t , Name : s z] } - i s z)

which means that wealthy is a function that takes a homogeneous set of records, each of type

[(s l)Sa lary : i n t , Name : sz] and returns a homogeneous set of values of type sz , where s:! is a type

variable ranging over all types on which equality is defined and [(s l) Sa la ry : in t , Name : sz] is a

type variable ranging over arbitrary record types that contains Salary : int and Name : s? fields.

Consequently, the type system will allow wealthy t o be applied, for example, t o relations of type

{ [N a m e : string, Age : i n t , Salary : i n t])

and also t o relations of type

{ [N a m e : [First : string, Last : str ing], Weight : int ,Salary : i n t]) .

Moreover, the type system statically checks the type correctness of each application and computes

the result type by instantiating the type variables.

1.2 Organization of Thesis

One of the purposes of this thesis is t o design a typed programming language that is rich enough

to represent various da ta structures used in a wide rage of da ta intensive applications. For such a

language, recursively defined types and objects are essential. In order t o treat recursive structures

uniformly, we use regular trees as a mathematical tool to represent them. In order to make this

thesis self-contained, I have gathered in chapter 2 standard results about regular trees as well as

some standard mathematical notations and definitions. Everything there is standard knowledge.

My recommendation to the reader is to go over this chapter quickly to familialize himself notations

and then t o use this chapter as references when needed.

T h e rest of the thesis consists of the following five investigation t o achieve the purpose stated

in the previous section:

-
1. an analysis of ML and a construction of a semantic framework for ML polymorphism,

2. a type system for complex database objects and its semantics,

3. an extension of ML type inference method to records, variants and complex database objects,

4. a formulation of classes for object-oriented programming,

5. a method to represent object-oriented databases in an ML style type system.

All of these five investigations lead to the proposal of Machiavelli - a polymorphic language for

databases and object-oriented programming. The first of them gives a framework to understand

ML's syntactic properties and t o define a denotational semantics. This will serve as a starting point

of the development of Machiavelli. The second investigation formulates the structures of domains

for databases and constructs a type system for complex database objects. Then, by combining the

above two, the third investigation develops the polymorphic core of Machiavelli as an extension of

hlL. The rest of the two extend the core language to represent object-oriented systems and object-

oriented databases. I think that this thesis is best read by reading from cover to cover going through

all of the above five topics in that order. However, in order to reconcile diverse interests of the

readers, I organize each of these five investigations as a relatively self-contained chapter (chapter 3

to chapter 7). For this reason, I do not make a independent chapter for backgrounds of this entire

thesis but include an introductory section in each chapter giving enough background for each topic.

In particular the analysis of ML in chapter 3 and the construction of a framework for database

domains in chapter 4 can be read independently. The subsequent developments are of course based

on the above two investigations. However, they can be read using the above two cl~apters as

references. I will try to provide appropriate reference keys to major results in chapter 3 and 4 .

The readers whose main interest is type systems of programming languages and their denotational

semantics would start with chapter 3 and then go to chapter 5 and 6. The readers whose main

interest is data models and database programming may start with chapter 4 continue on chapter

5 and then go to chapter 7. The readers whose main interest is object-oriented programming and

programming language design may go directly to chapter 5 and continue on chapter 6 and 7 . In

the rest of this section, I outline these five investigations.

In chapter 3, I begin our investigation with ML type system. After analyzing the existing

approachs t o ML's type inference system and its semantics, an alternative proof system for hlL type

inference is given. This proof system only requires simple types but is shown to be equivalent (in a

very natural sense) to the proof system given by Damas and Milner [34]. A semantic framework for

ML polymorphism is then proposed and an axiomatization of the equational theory of h lL terms

is given. The proposed framework requires no more semantic material than what is needed for

modeling the simple type discipline, yet it provides a better account for ML's implicit type system.

The axiomatization of the equational theory corresponds exactly to the proposed semantics. The

analogs of the completeness theorems that Friedman proved [37] for the simply typed lambda

calculus are proved with respect to the proposed semantics. The framework is then extended to

languages with various type constructors, constants and recursive types (via regular trees). At the

end of the chapter, it is also shown that certain full abstraction result for typed languages can be

transferred t o the corresponding ML like languages.

Chapter 4 investigates type systems for databases and their semantics and proposes a concrete

type system for complex database objects. I t starts the investigation with the analysis of the

relational model. The relational model is characterized independently of the underlying tuple

structure. By generalizing this abstract analysis, the notions of dafabase type s y s t e m s and database

d o m a i n s are defined as characterizations of the structures of type systems for databases and their

semantics domains. Based on these abstract characterizations, a concrete database type system

for complex database objects and its database domain are constructed. The proposed type system

allows arbitrary complex structures constructed by labeled records, labeled variants, finite sets and

recursive definition. Moreover, it is a proper generalization of the relational model to those complex

structures. In addition to standard operations for records, variants and sets, jo in and pro jec f ton

are available as polymorphically typed computable functions on those complex structures (even on

recursively defined structures).

By combining the results of the previous two chapters, chapter 5 defines a programming language

as an extension of ML. This language is the polymorphic core of Machiavelli - the language I

propose in this thesis. In order to develop a type inference algorithm for the core language, a new

paradigm for type inference - the notion of condi t ional typing s c h e m e s - is proposed. By allowing

typing schemes to include conditions on substitutions of type variables, it extends hlilner's method

uniformly t o a wide range of structures and operations. Using this mechanism, an algorithm to

compute a principal conditional typing scheme is developed. At the end of the chapter, extended

examples of database programming are given.

Chapter 6 extends the core language with parameterized class declarations, which allows the

programmer t o build a hierarchy of classes connect.ed by multiple inheritance declarations. This

extension achieves a proper integration of multiple inheritance in object-oriented programming and

ML style abstract data types with type parameterization. A formal system to type-check class

definitions and to infer typings of raw terms containing method names are defined. It is then

shown that the extended language is sound with respect to the type system of the core language

by showing the property that if a typing is provable in the extended type system then the typirrg

obtained by unfolding all class names and method names by their implementations is provable in

the type system of the core language. The type inference algorithm for the core language defined

in the previous chapter is then extended to include classes. It is shown that it still computes a

principal conditional typing scheme for any typable raw terms.

Chapter 7 presents a method to represents object-oriented databases. Major properties of

objects in object-oriented databases can. be captured by the combinations of references and variants.

I then introduce the notion of views (sets of structures with "identities") and show that various

operations in object-oriented databases are naturally represented by the combination of viewing

functions and the operation join and projection generalized in chapter 4.

Chapter 8 concludes the thesis and discuss some possible topics for further investigation.

Appendix contains the abstract syntax of Machiavelli (including classes definitions).

Chapter 2

Mat hemat ical Preliminaries

2.1 Basic Notions and Notations

T h e domain and the range of a function f are denoted by dom(f) and ran(f) respectively. We

write f : A - B for a function f such that dom(f) = A and ran(f) = B. I f f is a function

and A & d o m (f) then f (A) is the set { f (a) \ a E A) . T h e restrict~on of a function f t o a set

A C d o m (f) , denoted by f rA , is the function f' such that d o m (f f) = A and f f (a) = f (a) for all

a E A. We write { x l := v l , . . . , x, := v,) for the function f such that dom(f) = { x l , . . . ,x,) and

f (x ;) = v; (1 < i 5 n) (assuming that all xi are distinct). For a function f : A -- B , f {x := v) is

the function f' such that d o m (f ') = A U { I) , f (x) = v and f l (a) = f (a) for all a such that a # x .

I f f , g are functions such tha t ran(g) 5 dom(f) then f o g is the composltzon of f and g defined as

dom(f o g) = dom(g) and f 0 g (x) = f (g (z)) for all z E dom(g).

For a set A , P (A) is the set of all finite subset of A. If A is a finite set then we denote by \A1

the cardinality of A. Let A. B be a sets. The product of A and B, denoted by A x B, is the set

((x , y)lx E A , y E 5). If A is the singleton set { x) then we write x x B for { z) x B. Similarly for

B x x .

A relation on a set A is a subset of A x A . If r is a relation on A and z , y E A, we usually write

x r y t o denote (z , y) E r . Let r be a relation on a set A , x , y, z be any elements in A. r is reftezzve

i f f x r x . r is symmetnc iff x r y implies y r z. r is antzsymmetric iff x r y and y r z implies x = y.

r is transttive i f f x r y and y r z implies x r z .

A preorder on a set A is a reflexive transitive relation on A. A partial order (or oredertng) is

an antisymmetric preorder. A partial order r on A is a linear order iff for any x , y E A either x r y

or y r x.

Definition 2.1 (Preordered Sets and Partially Ordered Sets) A preordered set (PI 5) is a

set P endowed with a preorder 5 on P. A partially ordered set (o r poset) (P, C) is a set P endowed

with a pariial order on P.

When the preorder (partial order) 5 (_C) is understood, we sometimes write P for (P, 5) ((P, g))

and say a preordered set (a poset) P.

Let (PI 5) be a preordered set and A P. An element p E P is an upper bound of A i f f a 5 p

for all a E A. An element p is a least upper bound of A iff for any element of x E P, p 5 x iff x is

an upper bound of A. An element p f P is a lower bound of A iff p 5 a for all a E A. An element

p is a greatest lower bound of A i f f for any element of x E P, x 5 p iff x is a lower bound of A. The

following property is an immediate consequence of the definition:

Proposition 2.1 In a poset, least upper bounds and greatest lower bounds are untque. I

Let (P,E) be a poset and A C_ P. We write U A for the least upper bound of A and flA for the

greatest lower bound of A (if they exists). For x, y E P, we write x U y and x fl y respectively for

U{",Y) and ~{x,Y).

Definition 2.2 (Pairwise Bounded Join Property) A preordered set (P, 5) has the pairwzse

bounded join property i f f for any p11p2 E P if {pl,p2) has an upper bound then it has a least upper

bound.

Let (P, 5) be a preordered set. For an element p E P, we denote by [p] the equtvaletice class

containing p defined as [p] = { X ~ X 5 p,p 5 I).

Definition 2.3 (Quotient Poset) The quotient poset [(P,z)] of a preordered set (P, <) 2s the

poset (PIS, 5 where PIS = {blip E P) and [p] 5 / ~ [q] iff p 5 q.

It is easily verified that the relation i/e in the above definition is well defined in the sense that it

does not depend on the representatives of equivalence classes. For [(P, s)], the following results is

an immediately consequence of the definition:

Lemma 2.1 If (P, 5) has the pairwise bounded join property then so does [(P, s)]. 1

2.2 Labeled Trees

We shall use labeled trees to represent types and data structures. In particular, a class of trees called

regular tree play a central role. The main reference on this subject is a work by Courcelle [32]. In

this section I have gathered from [32] definitions and standard results (with some adaptation of

their presentations) that are useful in the subsequent investigation. I include proofs only for those

results whose presentations differ from those found in [32].

2.2.1 Definitions and Basic Properties

Let X be a set of symbols. A string over A is a finite sequence of symbols in A. \Ve denote by

S* the set of all string over X . The empty string is denoted by c . We identify an element x E .I'

and the string consisting of the symbol x (the string of length one). The concaienatlon of a string

a and a string b is denoted by a . b . A string a is a prefix of a string b if there is another string c

such that b = a . c . A prefix a of a string b is proper if a # b . The length of a string a is denoted

by la(. (Note that the notation 1x1 is overloaded.) For a natural number n and x E S, we write xn

for the string of n x's. For convenience, we define x0 = 6 . If A E S* and a E S', then we denote

by a . A the set { a . b l b E A) and by A / a the set { b) a . b E A) .

Throughout this thesis, we assume that t.here is a given countably infinite set L of symbols

(ranged over by 1 , 11 , . . .), called labels, equipped with a linear order <. For a technical convenience

we assume that L is closed under products, i.e. there is an injective function prodcode : (L x L) - C.
We use the injection prodcode implicitly and treat L as if it satisfies (L x L) c L . In particular,

(L x L)* L* . On (L x L)* we define the mappings first*, seconh inductively as follows:

On { (a , b)la E L' , b E L o , (a (= (bl) , we define air' as follows:

For a E (L x L)', the following equation always holds:

pair* (f i r s T (a) , s e c o n b (a)) = a

Figure 2.1: An example of a finite labeled tree

The following definition of labeled trees is due to Ai't-Kaci[G]. Let F be a (not necessarily finite)

set of symbols.

I Definition 2.4 (Labeled Trees) A labeled F-tree I S a functton a : A - F such that

I . A is a prefix-closed subset of L*, 1.e. for any a , b E C*, if a . b E A then a E -4, and

2. A is finitely branching, i.e. if a E .-I then the set { / la . 1 E A } is finrte.

If d o m (a) is finite then a is finite otherwise it is infinite. The set of all labeled F-trees and the set

of all finite labeled F-trees are denoted respectively by T m (F) and T(F).

As an example, let a be the function such that d o m (a) = { c , 1 1 , I ? , i1 . I ? } and

Then a is the tree shown in figure 2.1. As an example of infinite labeled trees, let list'"' be the

following function:

dom(l is t in ') = { (r . tl)"ln 2 0) U

{ (r . ti)" . r (n 2 0} U

{ (r . ti)" . lln 2 0) u

{ (r . ti)" . r . hdln 2 0)

Figure 2.2: An example of an infinite labeled tree

and

listint((r . ti)") = sum

listi"'((r . tl)" . r) = prod

listint((r . ti)" . 1) = nil

listint((r . tl)" . r . hd) = int

Then list'"' is the tree depicted in figure 2.2. This tree can be regarded as a represetation of the

type of integer lists.

If a E T M (F) and a E dom(a) then a/a is the tree a' such that dom(crl) = dom(a)/a, and for

all b E dom(al), al(b) = a(a - b) .

Definition 2.5 The set of sublrees of a tree a , denoted b y Sub trees (a) , 1s the set {a/ala E

dom(a)).

For any element f E F , we also denote by f the one node tree such that dom(f) = (€1 and

f (~) = f . Let a, , . . . , an E T m (F) , 11 , . . . , 1, E C and f E F . \Ve write f(l l = a1 , . . . , 1, = a n)

to denote the tree a such that dom(a) = (€1 u (I 1 . dom(al)) u .. - U (I , . dom(an)), a (€) = f ,

a(li . a) = ai(a) for all a E dom(ai) (1 5 i 5 n) . For example, an equation that holds for the tree

list'"' in the above example can be written using this notation as follows:

/istint - - sum(1 = nil, r = prod(hd = int , ti = list'"')).

A labeled tree can be regarded as a notational variant of a tree defined in [32] based on a tree

domain [45]. Let N be the set of natural numbers and N+ be the set of positive ones. A tree

-
domain A is a subset of N; such that (1) for any a , b E N ; , if a . b E A then a E A, (2) for any

a E N; and n E N + , if a .n E A then for any 15 i 5 n, a . i E A . A ranked alphabet is a set of

symbols F associated with a mapping r : F - N called a ranking function.

Definition 2.6 Let F be a ranked alphabet with the ranking function r . A n F-tree a is a function

a : A -+ F such that A is a tree domain and for any a E A if r (a (a)) = n then a . i E A iff

l s i s n .

The set of all F-trees is denoted by t m (F) . For a set F of function symbols, FF is the ranked

alphabet F x P (L) with the ranking function r defined as r ((f , L)) = JLI. The set of labeled

trees T m (F) has one-to-one correspondence to the set of trees t m (F F) Let a E T m (F) with

d o m (a) = A . Define a function 8, : A -. N; by induction on the length la1 of a E A as follows:

g o (€) = f t

0 , (a . 1) = B (a) . i where i is the natural number such t,hat 1 is the i-th smallest label

under << in { / la . I E A) .

Also define a function qa : A - FF as follows:

~ a (a) = (a (a) , { / la ' 1 E A)) .

Now define a function 4 : T m (F) - t m (F F) as d o m (d (a)) = Ba(A) and 4 (a) (a) = t 7 a (0 i 1 (a))

Proposition 2.2 The function t$: T m (F) -+ t m (F F) is a btjectton.

Proof We first show that 8, is injective and therefore 4 is well defined. By simple induction,

IOa(a)l = lal. Suppose Ba(a) = Ba(b). We need to show that a = b. The proof is by induction on

the length of Ba(a). Suppose Ba(a) = c. Then la1 = 161 = and therefore a = b = c. Suppose

Ba(a) = c . i. (a1 = (61 = Icl + 1. Let a = a ' . I , and b = b' . l b . Then since Ba(a) = 0,(b) and

by the definition of 0 , Ba(al) . i = Ba(b l) . i. This implies Ba(al) = Oa(bl). Then by the induction

hypothesis, a' = b'. By the definition of B a , 1, = l b and therefore a = b.

By the definition of 0 , it is clear that Ba(A) is a tree domain. For the arity restriction, suppose

r ((t $ (a)) (a)) = n. Then (4 (a)) (a) = (f , (11, .. . , l ,)) such that (1 1 , . . . , i n) = {lI(B, ' (a)) . 1 E

d o m (a) } . Then by the definition of B a , a . i E d o m (d (a)) iff i 5 n. Therefore @(Q) E t C o (F F) .

For ,O E t m (F F) , define a function pp on dom(,O) by induction on the length of strings as follows:

~ 4 (€) = 0

p p (a . i) = pp(a) - 1 where 1 is the i-th smallest label under << in L

such that @ (a) = (f , L) .

and a function up as u p (a) = f iff P (a) = (f , L) for some L. Now define a function II, on t m (F F)

such that d o m ($ (P)) = p p (d o m (P)) and $ @) (a) = ~ ~ (~ p ' (a)) . Similar to the proof that 8, is

injective, it is shown that pp is injective. By the definition of pp it is also clear that p p (d o m (P))

is prefix closed. Therefore II, is well defined and $ (P) E T m (F) .

Let a : A -. F be any element in T m (F) . We show $($(a)) = a by showing the properties that

(1) for any a , a E d o m (a) iff a E d o m ($ ($ (a))) and that (2) for any a E A, @ (a) = ($ (d (a))) (a) .

Since d o m ($ (d (a))) = pd(,) (Ba(dorn(a))) , (1) is shown by showing that for all a E dom(cr),

~ + (~) (8 , , (a)) = a . Proof is by induction on the length of a . Basis is trivila. Let a . 1 E d o m (a) and

i be the natural number such that 1 is the i t h smallest label in { I J a . 1 E d o m (a)) . Then we have:

~ o (a) (B a (a ' 1))

= ~ , a) (e a (a) . i)

= (p + (a) (6 a (a))) . I' where 1' is the i th smallest label in L such that

d (a) (O a (a)) = (f , L) for some f .

But by the definition of 4 , 4 (a) (B a (a)) = (a (a) , { l l a . I E d o r n (a))) . Therefore 1 = 1' and hence by

the induction hypothesis, pd(,)(O,(a . I)) = a.1. For (2) , suppose $ (d (a)) (a) = f . By the definition

of $, d (a) (p y k) (a)) = (f , L) for some L. By the definition of 4, a (~ ; ' (p ; / ~ , (a))) = f . But we

have shown that p+(a)(O,(a)) = a . This implies that 8,'(p;:a,(a)) = a. Therefore & (a) = f .

The property 4(II,(a)) = a is shown by similar reasoning. Therefore 4-' = $.

Because of this connection, we can regard labeled trees as trees and vice versa. In particular, all

properties on trees shown in [32] can be applied to labeled trees. In what follows, we will use the

term trees for labeled trees.

Lemma 2.2 Let &.a' be trees of the forms a = f (l l = a l , . . . , I n = a,), a' = f (l ; = a; , . . . ,I: =

a :) . T h e y are equal i f f f = g , { I l , . . . , I ,) = (1'1,. . . , I ;) and a l l i = a l / l i for all 1 5 i < n. 1

The following two lemmas hold only for finite trees:

Lemma 2.3 (Definition by Structural Induction) There ezists one and only one mapping (:

T (F) -- A such that

1. ((f) = b a s e (f) for all f E F ,

where base and step are given mappings of the following types:

base : F - A ,

step : U F x (l l x A) x . . . x (l n x A) - A . 1

{ I , ,..., i m l € P (f)

L e m m a 2.4 (P roo f b y S t r u c t u r a l Induc t ion) In order to prove a property P on the set T (F) ,

it suffices to prove that:

1. for all f E F , P (f),

2. for all f E F , (11,. . . , i n } E P (C) , and a l , . . . ,an E T (F) , i f P (a l) , . . . , P(a,) then

P (f (1 1 = a l , . . . , 1, = a,)) . I

2.2.2 Substitutions and Unifications on Trees

We first introduce trees containing variables. Let V be a set of vartables disjoint from F . We denote

by T m (F , V) the set of trees generated by the set of function symbols F U V such that there are

no outgoing edge from variable nodes, i.e. a E T m (F , V) i f f a E T m (F U I.') and if a (a) E V then

there is no 1 E C such that a - 1 E dom(a) . T (F , V) is the set of finite trees in T m (F , V) .

Definition 2.7 (Subs t i tu t ions) A first-order substitution (or simply substttution) 0 is a function

from V to T m (F , V) such that B(v) # v for only finitely many v E V . Let a E T m (F , V) be any

tree. The result of simultaneous substitution of B(v) for v E V in a , denoted by 8*(a) , is the tree

a' defined as:

d o m (o l) = d o m (o) u U { a . dom(O(v))la E d o m (o) . a (o) = v }

and

a f (a) = a (a) i f a E d o m (a) and a (a) @ V ,

.'(a) = e (a (b)) (c) i f a = b . c, o (b) E C'.

Since a and B(v) (for any v) are trees, @ * (a) is a well defined tree.

When restricted to finite trees, the above definiton of application of substitution is equivalent

t o the following inductive definition:

8 ' (~) = B(v) if u E V ,

e * i l = , . . . 1 = ,) = f (i , = B * (Q ~) , . . . ,I,, = e * (~ ,))
for all f E F , (11,. . . , 1,) E P (C)

which is also characterized by the unique homomorphic extension of 8 to T (F , V) . T h e function

8' on T m (F , V) can be also defined by a unique extension of the above inductive definition [32].

Since various syntactic structures such as pairs and sequences can be regarded as trees, we apply

8' directly t o those syntactic structures containing trees.

If 0 is a substitution, then we denote by dom(8) the set {vlv E V,O(v) # v) . Let V be a set of

variables. A restr ic t ion of a substitution 8 to V , denoted by O r V , is the substitution 8' defined as

follows:

=
otherwise.

Note that notations dom(8) and 8tV are overloaded with the corresponding notions of functions.

Distinction of them should be clear from our usage of meta notations and the context. If dom(0) =

(1 1 , . . . , i n } and 8(v ,) = ai (1 < i < n) then we shall use the notation [vl := a l , . . . , v , := a,]

and a[v l := a l , v, := a,] for 8 and Bg(a) respectively. If 8 ,9 are substitutions then their

cornpositton is the substitution defined as 8' o 9. In what follows, we will identify the mapping 0'

with 8. In particular, we write 8 o 7 for the composition of 8 and 7

A substitution 8 is ground for a tree a if 8(a) E T m (F) . A tree a' is a subsiitutaon instance

(or simply ins tance) of a if there is some substitution 8 such that a' = 8(a) . If 8 is gound for a

then a' is a ground instance of a .

Def in i t ion 2.8 (Unif ier) A substitution 8 i s a unifier of trees a , P f T m (F , V) if O(a) = 8 (P) .

.4 unif ier 8 as more general than 8' if there is another substztutron 9 such that 8' = 9 o 8.

Substitutions induce the following preorder on trees containing variables:

Def in i t ion 2.0 Lel 0.0 E TW(F, V) . a as more general than 0, denoted by 3 5 a , 1s there 1s

s o m e subslztution 0 such that p = f?(a).

2.2.3 Regular Trees

An important class of trees in T m (F) is the set of regular trees. Since "'all properties' of regular

trees are decidablen[32], they provide rich yet computationally feasible datastructures for databases

and other information systems.

Def in i t ion 2.10 (R e g u l a r T r e e s) A tree a E T m (F) zs rrgular iff the set Sub t rees (a) is finzte.

T h e set of all regular trees in T m (F) is denoted by R (F) .

On regular trees, the following properties hold.

P r o p o s i t i o n 2.3 1 . T (F) C R (F) C T w (F)

2. A n y subtree o f a regular tree is regular.

3. The set of symbols occurring in a regular tree is finile.

4. R (F) is closed under substitution. W e mean by this that 6 (a) is regular if 6 (v) is regular for

a l l v E V . I

Intuitive way of understanding the definition is that regular trees are trees that contain only

finite amount of information. This intuition corresponds to the property that a regular tree has a

finite representation. There are several equivalent representations of regular trees. Following [6] ,

we use Moore machines to represent them.

D e f i n i t i o n 2.11 (M o o r e M a c h i n e) A Moore machine is a 5-tuple (Q , s , F , 6 , o) , where Q is a

finrte set of states, s is a distinguished element in Q called the start state, F is the set of output

symbols, 6 is a partial function from Q x L t o Q called the state transition function such that for

any q E Q , (1 E L1E(q,l) is defined) is finite and o is the output function from Q to F .

In the above definition, the input alphabet is implicitly assumed to be the fixed set L of labels.

Because of the restriction on 6 , a Moore machine under the above definition behaves like a Moore

machine under a standard definition (such as in [52]) where the input alphabet L is finite and 6 is

defined as a total function on Q x L.

As is done in standard finite state automata (521, we extend 6 to the partial function E' on

Q x L* as follows:

6 ' (q , e) = q 1

(1) = q' for all I E C such that 6(q , I) = q',

6'(q, a . I) = q" for all a E L*, 1 E L such that 6'(q, a) = q', 6 (q1 , I) = q".

A state q E Q is reachable i f there is some a E L* such that 6 ' (s , a) = q. a is called a path from s to

q . Each state q E Q in a Moore machine M = (Q, s , F , 6 , o) represents a function form a subset of L'

to F. Define Ai(q) as the function such that d o m (M (q)) = {a E L016*(q ,a) = q' for some q' E Q)

and h!(q) (a) = o(6' (q , a)) for all a E dom(M) .

The following theorem establishes the relationship between Moore machines and rkgular trees,

which corresponds to the equivalence between regular trees and regular systems shown in [32].

Theorem 2.1 For any Moore machine M = (Q , s , F , 6 , o) , M (q) E R (F) for any q E Q . Con-

versely, for any regular tree a € R (F) there is a Moore machine M = (Q , s , F , 6 , o) such that

a = M (s) .

Proof Let M = (Q , s , F , 6 , o) be a Moore machine. For any a , b E L*, and q E Q , if 6*(q ,a .b) = q'

for some q', then by the definition of 6', 6*(q ,a) = q" for some q". Therefore d o m (M (q)) is prefix

closed. By the restriction of 6, {lla . 1 E dorn(M(q))) is finite. Therefore M (q) E Tw (F) . Since

M (q) / a = M (~ 5 * (~ , a)) for all a E d ~ m (M (~)) , I S u b t r e e s (M (q))) 5 IQI and hence finite. This

establishes M (q) E R (F) .

Let a0 E R (F) be any regular tree with the set of subtrees S u b t r e e s (c r o) = { a o , a,) . Define

the Moore machine Ma, = ({go, . . . , q,), qo, F , 6, o) as follows:

1. 6 is the function such that S(p , , l) is defined and equal to qj iff 1 E d o m (a i) and ai l1 = a j ,

2 . o is defined as ~ (q i) = Q ~ (c) .

Then for any a E C', it is shwon by simple induction on la1 that a E dom(h,L,(qo)) iff a E dom(ao)

and M,,(q)(a) = f iff a o (a) = f. Therefore i\f,,(q) = a. I

We say tha t a regular tree a is represented b y a Moore machine 121 if M (s) = a .

The following construction on Moore machines will be often useful to determine various relations

on regular trees via hloore machines.

Definition 2.12 (Product Machine) Let z be an equtvalence relatton on C . Cruen two hloore

machtnes A i l = (Q l , s l , F 1 , b l , o l) and M? = (Q 2 , s 2 F 2 , 6?, 0 2) , a product machrne of All and hi2

modulo E, denoted by (A l l x M ?) / z , ts the hloore machtne (Q , s , F , 6 , o) such that:

I . Q = (Q 1 U ($1) x (Q 2 U {%)) where $ is a new dtsftnguished symbol that does not appear tn

M , or hl?,

4. 6 ((x , y) , l) I S defined and equal to (x ' , y') iff one of the following holds:

(a) 1 = (I I , ~ ?) , 11 # $, / I , # S, 11 - 1 2 , x E Q l , y E Q z , and 61(x ,11) = x1,62(yr12) = y',

(b) 1 = (1 1 , 1 2) , 11 # $,I? = 3, x E Q 1 , 6 1 (x , 1 1) = x ' , y' = E and either y = % or there is no

1; such ihat l l - 1; and b2(yr 1;) is defined,

(c) 1 = (/ I , / ,) , 11 = $, 12 # $, y E Q2, b2(y, 1 2) = y', x' = $ and either x = $ or there is m

1; such that 1; 12 and h l (x , 1;) is defined,

5. o ((x i , x2)) = (0 1 ~ 0 2) such thai 0; = o i (x i) if xi E Qi otherwise 0; = $ (i f {1,2}) .

If 21 is the identity relation = on C then we write M1 x M2 for (M 1 x M2)/=. The construction of

a product machine is clearly effective.

For a given equivalence relation 21, & is the equivalence relation on C* defined as follows:

a.11 2 b .12 if a 2. b and 11 2 12.

For product machines, the following are immediate consequences of the definition:

Lemma 2.5 Let hill = (Q l , s l , F 1 , 6 l , o l) , M2 = (Q2 ,~2 ,F2 ,62 ,02) and (Q , s , F , 6 , o) = (M I x

M2)I=.

1. If 6* (s , a) = (91, q2), 91 E Ql,q2 E Q2 then firsl'(a) & seconb(a) and 6;(s l , f irs t ' (a)) = ql ,

6 ; (~ 2 , seconb(n)) = 92. Conversely, if there are a , b such that a & b, 6 ; (s l , a) = ql and

6 5 (~ 2 , b) = 92 then b*(s,pair*(a, b)) = (q l , q2).

2. If 6*(s , a) = (q , x) , q E Q1 then 6; (s l , f i rs tm(a)) = q and first'(o((q, I))) = o l (q) . If 6 ' (s , a) =

(x , q) , q E Q2 then 6; (~ 2 , seconb(a)) = q and seconb(o(x, q)) = 02(q) .

3. If 6 ; (S l , a) = q then there is some b such that first'(b) = a , 6*(s , b) = (q , x) and o l (q) =

firsf (o ((q , x))) . If 6;(s2, a) = q then there ts some b such that seconb(b) = a and 6 ' (s ,b) =

(I ,(?) and 02(q) = ~ e ~ ~ n ~ q , I))) . 1

On Moore machines defined on the same set of output symbols F , we define an equivalence

relation w as M I zz h!f2 i f f M l (s l) = h f 2 (s 2) where s l , s2 are the start states of A l l , 12.12 respectively.

Theorem 2.2 The relation M1 zz M2 is dectdable.

Proof The idea of the following proof is due to Hopcroft and Karp [53], who defined an algorithm

to decide whether two finite state automata accept a same regular set or not.

Let M1 = (Q1, s l , F 1 , 61, o l) , M2 = (Q 2 , s2, F 2 , 6 2 , 02) . We will show that M1 = M2 iff for any

reachable state q in M1 x M2 , q is of the form (q l , q2) such that q1 E Q l , q2 E Q2 and o(q) = (f , f)

for some f E F. Suppose 1141 M2 . d o m (M l (s l)) = dom(M2(s2)) and for any a f d o m (M l (s l)) ,

o l (6 ; (s l , a)) = 02(S; (s2 ,a)) . Therefore, for any a E L*, there is some reachable ql E Q 1 such

that S ; (s l , a) = ql and o l (q l) = f for some f E F i f f there is some reachable q2 E Q 2 such that

6; (s2 ,a) = q2 and 02(q2) = f . Then by lemma 2.5, for any reachable state q in M 1 x M 2 , q is of

the form (q l , 92) and o(q) = (f , f) for some f f F.

Conversely, suppose M 1 x M 2 satisfies the condition. Then {pair*(a , a)la E d o m (M l (s l))) =

{pair*(a , a)la E d o m (M 2 (s 2))) and for any a E d o m (M l (s l)) , 0 (6*((s l , s z) , pair* (a , a)) =

(O ~ (~ ; (S ~ , ~)) , O ~ (~ ; (S ~ , O))) = (f , f) f o ~ s o m e f E F. This implies M l (s 1) = M 2 (~ 2) . I

By the relationship between Moore machines and regular trees (theorem 2.1) the above theorem

implies:

Corollary 2.1 Equality on regular trees is dectdable.

This property was first shown by Ginali 1411. Alternative proofs can be found in [32]

Another important property on regular trees is the decidability of the unification problem shown

by Huet 155):

Theorem 2.3 (Huet) There is an algorithmU which, given a pair of regulartrees a, /3 E R (F , V) ,

returns either a substitution or failure such that if it returns a substitution then it is a most general

unifier of cr and D otherwise they have no unifier. I

Finally we define term representations of Moore machines (and therefore regular trees). Let e

denote terms given by the following syntax:

where v stands for auxiliary variables, f stands for a given set F of output symbols, and 1 stands

for the set L: of input symbols. A variable occurrence v is bound occurrence if it is in (rec v . . .)

otherwise it is free. A term e is proper if it does not contain free variables and if e G (r e c v . e')

then e' is a term of the form f (11 = e l , . . . , in = en) . We denote the set of proper terms generated

by F by the following syntax:

e ::= f I f (1 = e , . . . , l = e) I (rec v . e (v)) .

A proper term e denotes the Moore machine Me = (Q , go, F , 6, o) defined as follows:

1 . Q = { q f 1 for each occurrence f in e) ,

2. qo = 4, where f is the outmost occurrence of an output symbol in e ,

3. o(q,) = f , and

4. 6 is the following function:

6(qf, 1) = qg if f , g are occurrences in a subterm of the forms f (. . . , I = g , . . .),

f(. . . , l = g (. . .) , . . .), or f (. . . , 1 = (r e c v .g . . .) , . . .),

6(qf,l) = qg if f is the occurrence in a subterm of the form f (. . . , I = v , . . .) and

g is the occurrence in its innermost surrounding subterm of the form

(rec v . g(. . .)).

Conversely, for any hloore machine M = (Q, s, F, 5, o) there is a term enr that represents iM. Define

a partial ordering 5 on reachable states in Q as follows: q 5 q' iff the shortest path from s to q is

a prefix of the shortest path form s to q'. We define two mappings X l , X2 respectively on Q x Q

and Q as follows:

i f q < p
R ~ (P > 9) =

X2(q) otherwise

and

X ~ P) = (rec p . o(p)(ll = X l (p , 6(p, h)) , . . . , I n = X I (P , 6(p, 1,))))

where (11,. . . ,1,} = {116(p, 1) is defined).

Since 5 is a well founded partial ordering, the above definition is well defined. Then the term X ~ (S)

represents M .

As an example, let M = ({ql, q?, q3), q l , { f , g , h , . . .), 6 , o) such that

h(91,l l) = qs,

6(91,/2) = 93,

6(q?r 13) = 91,

and

491) = fr

o (~ 1) = g,

493) = h .

Then TL2(M) = (r e c ql. f (l l = (rec qz.g(13 = ql)) , l2 = (rec q3.h))). Note that a term representation

of a Moore machine is not unique. The above machine (modulo renaming of state names) also has

the following simpler term representation: (rec q. f (l l = g(13 = q) , l2 = h)) .

Chapter 3

Analysis of ML : its Syntax and

Semantics

This chapter analyzes the syntactic properties of the polymorphic core of the programming language

ML and proposes a framework for denotational semantics for M L polymorphism. These analyses

provide bases for the subsequent development of a type system and a language for databases and

object-oriented programming. Most of the results of this chapter were presented in [84].

3.1 Introduction

XIL is a strongly typed programming language sharing with other typed languages the property that

the type correctness of a program is completely checked by static analysis of the program - usually

done a t compile time. Among other strongly typed languages, one feature that distinguishes h1L is

its lmplicit type system. Unlike explicitly-typed languages such as Algol [log], Pascal [64] and Ada

[60], ML does not require type specifications of bound variables (formal parameters). T h e type of a

program is automatically injerred by ML type system. Through this type inference mechanism, M L

achieves much of the convenience of dynamically typed languages without sacrificing the desired

feature of complete static type-checking. As an example, consider the following definition of the

factorial function in ML:

fun fact n = if n = 1 then 1

else n * (fact (n - 1));

Besides the notational differences, the above definition has the identical structure to the following

definition in Lisp:

(def un fac t (n)

(cond ((equal n 1) 1)

(t (mu1 n (fact (sub n 1))))))

In particular, both of them have no mention of types. However, in ML, the compiler statically

in f e r s the type int -> int of fac t . By this mechanism, the type correctness of hiL programs is

completely checked at compile time. This contrast with Lisp (and any other dynamically typed

languages), where type errors such as the one in (defun foo . . . (fact '("a" "b" " c M)) . .)

are not caught until something goes wrong at run-time, often with a disastrous consequence.

Another important feature of ML is that it supports polymorphzsm in a static type system. This

is achieved by inferring a m o s t general (or prrncipaf) t ype - scheme of any type correct program. A

principal type-scheme of a program represents the set of all possible types of the program. capturing

the polymorphic nature of the untyped program code. By this mechanism, hlL also achieves much

of the flexibility of dynamically typed languages in a static type system. For example, from the

following definition of identity function:

fun id x = x ;

ML type system infers the following type-scheme:

where 'a is a t y p e variable representing arbitrary types. As a consequence, id can be used as an

identity function of any type of the form T - r. The type correctness of each application of id is

statically checked. hloreover, the result type of the application is also statically determined. For

example, id("aU) yields an expression of type string and id(3) yields an expression of type i n t .

There are two major existing approaches to denotational semantics for ML polymorphism; the

one by Milner [78] (extended by MacQueen, Plotkin and Sethi [72]) based on an untyped language

and the other by Mitchell and Harper [79] based on an explicitly-typed language using Darnas and

Milner's type inference system (341. As I shall suggest in this chapter, however, neither of them

properly explains the behavior of ML programs. Because of the implicit type system, ML behaves

differently from both untyped languages and explicitly-typed languages. In order to understand

ML, we need to develop a framework for denotational semantics and equational theories that give

precise account for ML's implicit type system. The goal of this chapter is t o propose such a

framework, which will provide a basis t o extend safely its type system t o include various structures

and operations for databases and object-oriented programming. In the rest of this section, we review

the two existing approaches in subsection 3.1.1, 3.1.2 and outline our approach in subsection 3.1.3.

3.1.1 Milner's original semantics

In [78], Milner proposed a semantic framework for ML based on a semantics of an untyped language.

He defined the following two classes of types:

where b stands for base types and t stands for type variables. Here we call them types and type-

schemes respectively. Type-schemes containing type variables represent all their substitution in-

stances and correspond t o polymorphic types. He defined the preorder of generalness on type-

schemes as the preorder on trees induced by substitution (definition 2.9), i.e. p is more general than

p' iff p' is an substitution instance of p. He then gave the algorithm W that infers most general

type-schemes for the following raw terms:

e ::= x 1 (Ax. e) I (e e)] if e then e else e I fix x e (let x = e in e end.

He interpreted an lllL typing e : p as the semantion assertion [el E [1P], i.e. the denotation of e

is an element of the denotation of p and sllowed that the type inference algorithm W is sound under

this interpretation. The denotation of a raw term is defined as an element of a domain satisfying

the following domain equation:

= B1 + . . . + B, + [I/ - V] + { w r o n g }

where B 1 , . . . , B, are domains corresponding t o base types and wrong represents run-time error.

T h e denotation of a type is defined as a subset of V not containing wrong. The denotation of a

type-scheme is defined as the intersection of the denotations of all its instance types. This semantics

was extended t o recursive types by MacQueen, Plotkin and Sethi [72]. (See also [51, 30) for related

studies.)

This semantics explains the polymorphic nature of M L programs and verifies that hIL typing

discipline prevents all run-time type errors. However, this semantics does not completely fit the

operational behavior of ML programs. As an example, consider the following two raw terms e l and

e2 with their principal type-schemes:

where parentheses are omitted, assuming left association of applications. Under the call-by-name

version of Milner's semantics, which is also the semantics defined by MacQueen, Plotkin and Sethi,

the above two raw terms have the same meaning. Indeed, if we were t o ignore their type-schemes

and regard them as terms in the untyped lambda calculus, then they would be P-convertible t o each

other and would be regarded a s equal terms. However, ML is apparently a typed language, and as

terms of ML, these two behave quite differently. For example, under any evaluation strategy, the

term ((e l 1) 2) is evaluated to 2 but ((e a 1) 2) is not even a legal term and AIL compiler reports

a type error. This is one of the most noticeable difference between meanings of terms and should

be distinguished by any semantics. From this example, we can also see that the equality on hlL

programs is different from the equality on terms in the untyped lambda calculus.

Moreover, this semantics requires a model of the set ofall untyped lambda terms, many of which

do not have typing and therefore d o not correspond t o ML programs.

3.1.2 Damas-Milner type inference system and Mitchell-Harper's anal-

ysis

Damas and hlilner presented a proof system for typing judgements of ML [34]. They redefined the

set of types of h lL as the following two classes:

p is hlilner's type-scheme. We call n a genenc type-scheme. Free type variables and bound type

variables are defined as in the second-order lambda calculus (or the polymorphic lambda calculus)

(94,421. We write n [p l / t l , . . . , p n / t n] for the generic type-schemeobtained from n by simultaneously

substituting each free occurrence t i by pi.

Definition 3.1 A generic type-scheme Vt l . . . t , . p is a generic znstance of V t ; . . . t & . p' if each t j

zs not free in Vt; . . . t A . p' and p = p1[t', := p l , . . . , t & := p,] for some type-schemes p l , . . . , p,. A

type n is more general than A', denoied by n' z,, n , if x' is a genenc tnstance of a .

Note that the relation a' z,, a is decidable. A Damas-hlilner type asstgnmend scheme is a

function from a finite subset of variables to generic type-schemes.

Definition 3.2 (Damas-Milner Type Inference System) A Damas-Mi lner typing scheme is

a formula of the f o m I? t> e : x that is derivable in the following proof sys tem:

r D e : n
(GEN) if t not free in r

I' D e : V2.n

r D e l : i r r { x : = x } b e ? : p
(LET)

I' plet x = e l ine2 end : p

We write DM I- I' D e : x if r D e : x is derivable in the proof system. In this formalism, hlL

terms are typing schemes. We call them Damas-Milner terms.

Based on this derivation system, Mitcl~ell and Harper proposed another framework to explain

implicit type system of M L [i g] . In what follows, we shall only discuss their analysis of the core

of hIL. However, it should be mentioned that their approach also provides an elegant treatment of

Standard AIL'S modules [47].

They defined an explicitly-typed language, called Core-ShfL. The set of types of Core-SAIL is

the same as those in Damas-hlilner system. The set of pw- terms of Core-SAIL is given by the

following abstract syntax:

hf ::= x I (i l l hf) I (Xx:p.i'll) I (A 1 p) I (A t . i l 1) I let x : n = 121 in XI end

where (h i p) is a type application and (A t . 111) is a type abstraction.

Definition 3.3 (Terms of Core-XML) Core-SAIL t e r m s are formulae of the f o r m I' b ill : n

that are derivable zn the following proof sys iem:

T D M : x
(TABS) if t not free in r

r D (A t . M) : V t . a

r b M 1 : pi-pa r D M 2 : pl
(APP)

r b (MI Mz) : P2

We write MH t- r D A4 : T if r I> 11f : a is derivable from the above typing rules.

Define the type erasurt of a pre-term M, denoted by e rase (h f) , as follows:

erase(x) = x

erase((Ad1 M 2)) = (erase(ill1) erase(M2))

erase((Ax : p. hf)) = (Ax . erase(M))

erase((At. i l l)) = e rase (M)

erase((ll1 p)) = e rase (M)

erase(1et x : n = M 1 in M2 e n d) = l e t x = era~e(A.1~) in erase(M2) end

They showed the following relationships between Core-XhlL and Damashlilner system.

T h e o r e m 3.1 (Mi tche l l -Harper) If M H t- r b Ad : n then DM t- r b erase(h1) : a.

If DM t- r b e : a then there ez~s t s a Core-XML pre-term M such that e ra se (h l) e and

M H t- r b M : n . hforeover, A1 can be computed effectively from a proof of r b e : a . 1

Based on this relationship, they concluded that Core-XML and Damas-Milner system are "equiv-

alent" and regarded ML as a "convenient shorthand" for Core-XhlL.

If we could indeed regard ML terms as syntactic shorthands for Core-XML terms then equational

theory and model theory could be those of Core-XML. Core-XML is a restricted form of the second-

order lambda calculus whose equational theory and model theory are well investigated (see [20]

and references therein). However, the above result does not establish any syntactic mapping from

DamasMilner terms to Core-XML terms. It only established a correspondence between Core-XhIL

terms and derivat ions of Damas-Milner terms, which can be infinitely many for a single D a m a s

Milner term. This means that there are, in general, infinitely many distinct Core-XML terms that

correspond to a given DamasMilner term. For example, consider the Damas-Milner term:

Any Core-XML term of the form

for any type-scheme p corresponds t o the above typing.

One way t o overcome this difficulty is t o choose a particular Core-XhlL term among possibly

infinitely many choices. Such a choice seems possible if we assume a particular type inference

algorithm, but we would like t o avoid such an assumption as a part of a formal characterization

of hfL. Another possibility would be to consider a Damas-hiilner term as an equivalence class of

Core-XML terms. One plausible equivalence relation is the convertibility (or equality) relation. If

a Damas-Milner term corresponds t o a (subset of) convertibility class of Core-XML terms then any

model of Core-XML in which the convertibility relation is valid yields a semantics of Damas-Milner

terms. Unfortunately, however, a Damas-Milner term in general do not correspond t o a (subset of)

convertibility class of Core-XML terms. As a counter example, consider the following Damas-hlilner

term:

{ x : V t . t - i n t , y : V t . t - t) p (x y) : in t .

T h e following two Core-XhIL terms both correspond to derivations of the above term:

{x : V t . t -- in t , y : V t . t - t) b ((r (boo1 -+ 6001)) (y 6001)) : in t ,

{ x : Vt . t - in t , y : Vt . t -- t) b ((x (in t - i n t)) (y i n t)) : in t .

But these two terms are both in normal form and are therefore not convertible.

iVe also think that Damas-Milner system and the corresponding explicitly-typed language Core-

XML are too strong t o explain ML's type system. As argued by hlilner in [78], i t is hlL's unique

feature and advantage that ML supports polymorphism without int.roducing explicit t.ype abstrac-

tion and type application. Note that this account of ML only used non-generic type-schemes. As

such a language, M L can be better understood without using generic type-schemes, whose semantics

requires the construction of very large spaces.

3.1.3 A simple framework for ML polymorphism -

From the above analyses, it appears that ML is different from both untyped languages and explicitly

typed languages. In order to understand ML properly we will develop a framework for semantics

that accounts for ML's implicit type system. Such a semantics should be useful to reason about

various properties of ML programs including equality on programs and operational semantics.

A strategy was already suggested in Mitchell-Harper approach. We can use an explicitly typed

language as an "intermediate language" to define a semantics of ML. In this chapter, we use

the simply typed lambda calculus. Usage of the simply typed lambda calculus to explain ML

polymorphism was suggested in Wand's analysis [110], where ML terms are regarded as shorthands

for terms in the simply typed lambda calculus. Wand's approach, however, shares the same difficulty

as in Mitchell-Harper's analysis. It only gives meanings to derivations. Moreover, it does not deal

with polymorphic terms, i.e. those terms whose type-schemes contain type variables.

We first define an inference system and semantics of ML iyptngs (typing schemes that do not

contain type variables) and then generalize them to ML terms (i.e. typing schemes). Parallel

to the relationship between Damas-hlilner system and Core-XML, derivations of typings in our

system correspond to terms of the simply typed lambda calculus. Here is the crucial point in the

development of our semantic approach: we show that if two typed terms correspond to derivations

of a same ML typing then they are &convertible (theorem 3.7). This guarantees that any semantics

of the simply typed lambda calculus, in which the rule (P) is sound, indeed yields a semantics of

hlL typings. We regard a general ML term as a representation of a set of typings. The denotation

of an ML term is then defined as the set of denotations of the typings indexed by the set of types

represented by its t,ype-scheme. For example, we regard the denotation [0 D Ax. x : t - t] as the

set {(r - r, ~ X X : T. X]) I T E Type).

Equational theories are defined not on raw terms but on typingschemes. Two typing schemes are

equal iff their type-schemes are equal and ram terms are convertible to each other. This definition

correctly models the behavior of ML programs. Type-schemes determine the compile-time behavior

of programs and raw terms determine their run-time behavior. iVe then prove the soundness and

completeness of equational theories. This confirms that our notion of semantics precisely captures

and justifies the informal intuition behind the behavior of M L programs.

Our semantic framework can be extended to languages with constants, type constructors and

recursive types (via infinite regular trees). Our semantic framework can also be related to certain

operational semantics. tVe show that if a semantics of the typed lambda calculus is fully abstract

with respect to an operational semantics then the corresponding semantics of M L is also fully

abstract with respect to an operational semantics that satisfies certain reasonable properties in

connection with the operational semantics of the typed lambda calculus. This results enables us

to transfer various existing results for full abstraction of typed languages to ML-like languages. A

limitation to this program is due t o the fact that our interpretation needs the soundness of the rule

(, B) Such models, of course, while good for "call-by-name" evaluation, are not computationally

adequate for the usual "call-by-value" evaluation of ML programs. Thus, our full abstraction result

seems helpful only for ML-like languages with "lazy" evaluation strategy such as Miranda [lOi],

Lazy ML [l l] and Haskel [54].

3.2 The Language Core-ML

IVe first present our framework for the set of pure raw terms, the same set analyzed in [34, 791.

LVe call the pure language Core-hIL. Later in section 3.5 we extend our framewoiks to a language

allowing constants, arbitrary set of type constructors and recursive types (via regular trees).

3.2.1 Raw terms, types and type-schemes

LYe assume that we are given a countably infinite set of variables V a r (ranged over by x).

Definition 3.4 (Raw Terms of Core-ML) The set of raw t e rms of Core-ML (ranged over b y

e) 1s defined b y the followzng abstract syntax:

e ::= x 1 (e e) I Ax. e I let x = e in e end

The notion of bound variables and free variables in a term are defined as in the lambda calculus

[49, 151 with the additional rule that x in let x = el in ez end is a bound variable. We write F l ' (e)

for the set of free variables in e . IVe write e [e l / x l , . . . , e n / x n] for the raw term obtained from e by

simultaneously replacing free occurrences of 2 1 , . . . , x, by e l , . . . , en with necessarv bound variable

renaming.

In order to show various properties of raw terms by induction, we define their complexity

measure. We first define let degree that is to measure nesting of let expressions. A let dgree

asslgnmen L is a function form a subset of variables to natural numbers. Define let dgree of e

under L , denoted by l d (L , e) , by induction on the structure of e as follows:

-
(el ez)) = Id(L,e1) + ld(L,e2)

ld(L, Ax. e) = l d (~ t ~ ~ ~ (~) \ ~ ~) , e)

ld(L, let x = el in e2 e n d) = 1 + ld(L{x := ld(L, el)}, ez)

For this mesurement, we have the following substitution property:

Lemma 3.1 For any raw terms el,e2,

Proof T h e proof is by induction on the structure of e l . We only show the case for e? l e t x =

e i in e5 e n d . Other cases can be easily shown by using the induction hypothesis and the definition

of ld(L,e). Suppose e2 le t y = e$ in e: end :

1. Subcase x = y:

ld(L{x := ld(L, e l)) , l e t x = e i i n e i e n d)

= 1 + ld(L{x := ld(L,el)){x := ld(L{x := l d (~ , e l)) , e i)) , e q)

(by the definition of ld(L, e))

= I + ld(L{x := ld(L{x := l d (~ , e l)) , e i)) , e i)

= 1 + ld(L{x := l d (~ , et[el/x])}, e i)

(by the induction hypothesis)

But since (le t x = e i in ez end)[el/x] let x = ei[el/x] i n e: e n d , by the definition of

ld(L, e) ,

ld(L, (let x = e i in e i end)[el/x]) = 1 + ld(L{x := l d (~ , e i [e l /x])) , e;).

Therefore ld(L{x := Id(L,el)) ,ez) = ld(L,ez[el/x]).

2. Subcase x # y:

ld(L{r := ld (L ,e l)) , l e t y = e i i n e; e n d)

= 1 + ld(L{x := ld(L, el)}{y := ld(L{x := l d (~ , el)),e:)),e$)

(by the definition of ld(L, e))

= 1 + ld(L{y := ld(L{x := l d (~ , e l) } , e i)) { x := l d (~ , e l) } , e i)

(since z # y)

= 1 + ld(L{y := ld(L{x := ld(l,el)),e~)),e~[el/+])

(by the induction hypothesis)

= 1 + l d (L { y := l d (~ , e : [e l / x])) , e ~ [e l / x])

(by the induction hypothesis)

But since (l e t y = ea in e$ e n d) [e l / x] = l e t y = e a [e l / x] in e : [e l / x] e n d , by the definition

of l d (L , e) ,

I d (L , (l e t y = e: in e: e n d) [e l / x]) = 1 + l d (L { y := l d (~ , e i [e l / x])) , e ; [e ~ / x]) .

Therefore l d (L { z := l d (L , e l)) , e:!) = l d (L , e ? [e l / x])

Def in i t ion 3.5 (C o m p l e x i t y M e a s u r e of R a w T e r m s) The compleztty of a raw t e r m e 2s the

lexzcographzcal patrtng of l d (0 . e) and the sl:e of e .

By lemma 3.1, we immediately have the following property of the complexity of raw terms:

P r o p o s i t i o n 3.1 1. For any raw term e l , e 2 , the compleztty of let x = el in e? e n d 1s strtctly

greater than that o f e 2 [e l / x] .

2. For a n y raw t e r m e , the compleztty of e zs strzctly greater t h a n that of any proper subterm of

e . I

The intended meaning of l e t x = el in e? e n d is to bind x to el in e:! and to denote operationally

the expression e : ! [e l / x] . For a raw term e , the let expanszon of e , l e texpd(e) , is the raw term

without let-expression obtained from e by repeatedly replacing the outmost suhterm of the form

l e t x = e l in e:! e n d by e 2 [e l / x] .

Proposition 3.2 For a n y rntu term e , le iezpd(e) exzsts.

P r o o f Sinse each expansion step strictly reduces the complexity of the raw term, the expansion

process terminates, yielding a unique raw term. I

We assume that we are given a set Li of base types (ranged over by b) and a countably infinite

set T v a r of type variables (ranged over by t) .

Def in i t ion 3.6 (T y p e s and Type-scl lemes o f C o r e - M L) T h e set of types, T y p e ranged over

by r , I S gtven by the followtng abstract syntax:

The set of type-schemes, T s c h e m e ranged over by p, is given by the following abstract syntax: -

Since T s c h e m e can be regarded as a set of trees, the notion of substitutions, instances e.t.c. we

defined in section 2.2.2 apply to T s c h e m e .

3.2.2 Typings, typing schemes and terms of Core-ML

A type assignment A is a function from a finite subset of V a r to T y p e .

Definition 3.7 (Core-ML Typings) A typlng is a formula of the form A De : T that 1s derivable

in the following proof sysiem:

d D e l [e z / x] : r d D e ? : r l
(LET)

A let I= e? i n e l end : T

In the rule (LET), r' may be any type. IVe write M L I- A D e : T if A D e : r is derivable in the

above proof system. A dertuatton A of A D e : T is a proof tree for A D e : T in the above proof

system.

For this proof system we have the following properties:

L e m m a 3.2 I f M L t A b e : T then d o m (A) _> FL'(e).

Proof By induction on the complexity of e . I

L e m m a 3.3 I f ML I- A b e : r then M L I- A' b e : T for any A' such that A A' (as graphs).

Proof By induction on the complexity of e. I

A type assignment scheme C is a function from a finite subset of Var to Tscheme .

Def in i t ion 3.8 (T y p i n g s c h e m e s) A typing scheme is a formula of the form C D e : p such that

f o r a n y s u b s t i t u t ~ o n 9 ground for C and p , M L I- B(C) D e : B(p) .

In other words, a typing scheme is a formula whose ground instances are typings. JYe write

M L I- C b e : p if C b e : p i s a typingscheme.

In [78, 341, an ordering is defined only on type-schemes (generic type-schemes) and a type

inference algorithm is defined with respect t o a given type assignment. Here, we follow [79] and

generalize the ordering on type-schemes (5 , definition 2.9) to typing schemes and characterize the

type inference problem based on the ordering.

Def ini t ion 3.9 (P r e o r e d e r on T y p i n g s c h e m e s) A typing scheme C1 D e : pl is more general

than a typing scheme C 2 D e : p2, denoted by C2 D e : p? Z,, S1 [> e : P I , if (C 2 l d o r n (") , P 7) 5

(E l ? P I) .

We also use Z,, as a relation on the set of pairs of a type assignment scheme and a type-scheme

and write (S ? , p?) ZML (E l , p1) if if (C 2 r d 0 m (C l) , p ?) 5 (S 1 , p1) . Note that more general also means

less entries in a type assignment scheme. A typing scheme X D e : p is most general (or pnnczpal)

if 2' D e : p' z,, C D e : p for any typing scheme C' D e : p'. We then have:

Proposition 3.3 IfS P e : p is a principal typing scheme then { A b e : T J A D e : T z,, S D e

p) = { A D e : T ~ M L I- A D e : T) .

P r o o f T h e inclusion

is by definition of typing schemes and by lemma 3.3. The inverse i~iclusion is an immediate conse-

quence of the facts that typings are also typing schemes and 2 b e : p is principal. 1

This means that a principal typing scheme represents the set of all provable typings. In what follows.

we regard typing schemes as representatives of equivalence classes under the preorder z,,. This

equivalence relation corresponds t o the relation induced by renaming of type variables (without

"collapsing" distinct variables).

Def in i t ion 3.10 (T e r m s o f C o r e - M L) T e r m s of Core-h lL am (not necessarzly pnnczpal) typzng

schemes.

According t o this definition, it is not clear whether it is decidable or not that a given string of

symbols is a term or not. The answer is positive as a consequence of the decidability of type-

checking problem below.

Non principal typing schemes correspond to programs with (partial) type specifications which

are supported in ML and can be easily added to our definition. A term containing type variables

corresponds t o a polymorphic program in Core-ML. A raw term e in a term C [> e : p represents

the computational contents of the term and determines its run-time behavior. The pair (S , p)

represents the typing contexts in which e is meaningful and determines the compile-time behavior

of the term.

3.2.3 Type Inference Problem

Under our characterization, the problem of type-checking in Core-hIL is stated as follows:

given a type assignment scheme C , a raw term e and a type-scheme p, determine whether

M L F S D e : p or not.

The type inference problem is stated as follows:

given a raw term e , determine the set { (S , p) J M L I- S D e : PI.

The following theorem, which is essentially due to Hindley [SO], solves both of the problems:

Theorem 3.2 There rs a n a l g o n t h m P 7 S whach, g tven any r a w t e r m e , y te lds e t ther fazlure o r

(S , p) s u c h that tf P 7 S (e) = (X,p) then S D e : p 1s a pnnc tpa l typzng s c h e m e otherwtse e h a s n o

typ"'9.

Proof In the following proof, we assume a linear order < on I 'ar and treat (S , p) as a tree

((I , : pl) , . . . , (z,, p,), p) where (11 , . . . , I,) = dom(E). S(zi) = pi and 11 < . . . < I,. Algorithm

P 7 S is defined by cases. In the following description of the algorithm, if unification U(. . .) fails

then the algorithm returns fazlure.

? 7 S (e) = (C,p) where

(1) Case e G I:

E = {I := t) (t fresh)

p = t

(2) Case e (e l en) :

let

(E l , P l) = P T S (e 1)

(C Z , ~ 2) = P T S (e 2)
1 2; = C ~ { X : := t l , ..., x: :=tA) where

{ x : , . . . , x :) = dom(C2) \ d o m (C ~) , (t i , . . . , tk fresh)

S ; = S 2 { x : := t : , . . . , x$:= t ;} where

{x: , . . . , x:} = dom(C1) \ dom(C?), (t : , . . . , t; fresh)

0 = U ((C { , pl 1, (X I ? , p2 -+ t)) (t fresh)

in

s = e(s',),
p = 9(t) .

(3) Case G Ax. e 1 :

let

(2 1 , P I) = P T S (e i)

in

if x E dom(S1) then

S = ~ , r d o m (~ l) \ { " l ,

P = S i (1) - P i

else

T - T
- - - I ,

p = t - pl (2 fresh).

(4) Case e let x = el in e? end:

let

(S 1 , p l) = P T S (e l)

(E 2 , ~ 2) = P 7 S (e ? [e l l r l)

2: = S 1 { x ~ : = t i , . . . , x i : = t i) where

{zi,. . . , x k) = dom(C2) \ d o m (E l) , (t i , . . . , I,!, fresh)

PI ,, = P -2{x: := t: , . . . ,2b := t :) where

{x: , . . . , x,?,,) = dom(C1) \ dom(C2) , (t : , . . . , t$ fresh)

s = U (S ; , S',)

Since in each case P T S is called on raw terms with strictly smaller complexity, the algorithm

always terminates.

In order to show the desired property of the algorithm P T S we use the following results:

Lemma 3.4 If P T S (e) = (C , p) then F V (e) = dom(C) .

Proof By induction on the complexity of e. The basis is trivial. The induction step is by cases in

terms of the structure of e. Cases other than Ax. e' are immediate consequences of the induction

hypothesis. Suppose e - Ax. e'. By the induction hypothesis, F V (e l) = dom(C1) . I f x E F V (e J)

then d o m (C) = d o m (C 1) \ { x) = F V (e t) \ { I) = F V (A x . e l) otherwise d o m (C) = d o m (S 1) =

F V (e f) = F V (A x . e l) . I

We also use the following property of the unification algorithm U , which follows directly from

theorem 2.3:

Proposition 3.4 Let a , b be t e n s that do no share common vanables. For any term c , c 5 a, c 5 b

i f l U (a , b) = 8 and c 5 f?(a) for some 0. I

Using these properties, we show the necessary property of the algorithm by showing the property

of principal typing scheme: M L I- A D e : T iff A D e : r zML E D e : p (proposition 3.3). Proof

is by cases in terms of the structure of e. The type assignment schemes (S , S 1 etc), type-schemes

(p I p l etc) and type variables (1, t 1 etc) in the following proof refer to those in the corresponding

cases of the description of the algorithm.

1. Case e z x : M L I- A b x : T iff x f d o m (A) and A (x) = r. Then by the definition of ZML,

M L t- A [> x : r i f f (A , T) z,, ({x := t) , t) .

2 . Case e - (e l e n) : By the typing rules, M L I- A b (e l e z) : r iff

(A) there is some rl such that M L F A b el : r1 - r and M L I- A D e:, : r l .

By the induction hypothesis, (A) iff

(B) there is some TI such that (A , TI - T) ZML (C I , P I) , (A , T I) 5ML (& , P Z) .

By lemma 3.2 and lemma 3.4, dom(A) _> FV(e1) U F V (e 2) = dom(C1) U dom(C2) . Then by

the constructions of C:, Ci, (B) iff

(C) there is some r1 such that (A , rl -, r) ZML (C i , p l) and (A , r l) ZML (Z',, p,).

Since t introduced in the algorithm is fresh, (C) iff

(D) there is some rl such that (A , 7 1 -, T) ZML (Xi , P I) and (A , 7 1 + T) ZML (xi, ~2 - 1) .

By definition of P 7 S , (C ; , p l) and (C i l p 2 + 1) do not share type variables. Therefore by

proposition 3.4, (D) iff there is some r1 such that (A , TI - T) Z,, (e(C;) , B (p 2 - 1)) where

U((C\, p l) , (C!,, p2 --, t)) = 8. Therefore M L t- A D (el e?) : r iff (A , r) ZML (C , p).

3. Case e Ax. e l : By the typing rules, M L t- A P Ax. el : r iff there are some r l , r?

such that T = r1 + T? and M L t- A { x := T I) D el : 9 . By the induction hypothesis,

M L t- A { x := r l } D el : T? i f f (A { x := r l } , ~ ?) zML (C1 ,p l) . Suppose x E dom(C1). Then

(A { z := r l) , r 2) ZML (C 1 , p l) iff (A , r l - 7 3) ZML - PI) . Suppose

x dom(C1) . Then since t is fresh (A { x := r1) , r2) ZML (X I , P I) iff (d.71 - 7 2) ZML

(S l , t -- p1). Therefore M L F A D Ax. el : T iff (A , T) zML (S , p) .

4. Case e E let x = el in e2 end. By the typing rules, M L t- A b let x = el in e? end : r iff

(A) there is some T I such that M L t- A D el : rl and M L t- A P e2[e l / x] : T

By the induction hypothesis, (A) iff there is some rl such that (A , T I) Z,, (E l , p i) , (A , r) ZML

(C2,p2) . Similar to the case for e z (el e?) , (A , T I) ZML (S i r P I), and (A , r) ZML (X 2 , p-2)

iff (A, r l) ZML (O(S',), B (p l)) , (A , r) ZML (6 (Z i) , B(p2)) here U (C ; , C(?) = 6. Therefore

M L t- A D let x = el in e? end : r iff (A. r) zML (E , p) .

(End of the proof of theorem 3.2) 1

The decidability of the type-checking problem follows from the decidability of the relation Z1 b e :

p1 zML Z? b e : p2. The set { (S , p) l M L t- S b e : p} is determined by the principal typing

scheme using proposition 3.3.

3.2.4 Relation to Damas-Milner System

The typing derivationsystem for Core-AIL is significantly simpler than that of Damas-Milner system

and has a particularly simpler proof for the existence of a complete type inference algorithm as

demonstrated above. Nevertheless, for closed terms, they are essentially equivalent in the sense of

the following two theorems (theorem 3 . 3 and 3 . 4) . For any generic type-scheme x = V t l . . . t,. pol

define the type scheme p, as p, = po[tl := t i , . . . , t , := t k] where t ; , . . . , t i are fresh type variables.

T h e o r e m 3.3 For a closed r a w t e r m e , if DM t- 0 D e : x t h e n M L t- 8 D e : p,.

Proo f The proof uses the following lemmas:

L e m m a 3.5 For a n y e , r , x , DM I- r D e : ir i f l DM I- r r F v (e) De : x .

Proo f By induction on the height of a derivation of r D e : x. I

L e m m a 3 . 6 F o r a n y e , r , i r , DMI-r D e : x i f f D M t - I ' D e : p,.

P r o o f Suppose DM t- r D e : ir. Then by the rule (I N S T) , D M I- r D e : p,. Suppose

DM t- r b e : p,. Since t i , . . . , t i are fresh, by repeated applications of the rule (G E N) , DM t-

r D e : V t i . . . t k . p,. But since ir z,, V t ; . . . t k . p,, by the rule (I N S T) , DM I- r D e : x . I

L e m m a 3.7 I f DM I- r D e : x t h e n it has a derivat ion s u c h ihat all appl icat ions of the rule

(INST) are ammediate ly preceded by a n ins tance of t h e a t t o m s c h e m e (V A R) .

Proo f We first show the following property on typing derivations:

if a derivation A of r t> e : p contains a sub-derivation A' of r D e : p' then p is a

substitution instance of p' .

By the typing rules, only rules applied between the root of A' and the root of A are either (G E N)

or (I N S T) . The property is then shown by a simple induction on the number of the rules applied

between the two roots.

The lemma is proved by induction on the structure of e using the above property.

1. Case of e x : Any derivation of r b x : x must have the node r b x : r(x) a t its leaf and

can only contain applications of the rules (G E N) and (I N S T) . It is then shown by induction

that r must satisfies either x z,, r(x) or x = r (x) . If r(x) = x then the one node typing

derivation tree

satisfies the condition. Otherwise x z,, r (x) then the following derivation tree satisfies the

condition:

2. Case of e (el e 2) : By the typing rules, lemma 3.6 and the property shown in the beginning

of the proof, there are derivations A l , A? respectively of r D e l : pl -- p, and r P e? : pl

for some p l . Then by the induction hypothesis, there are derivations A;, A; of r t> e l :

p1 - Pr and r P e? : pl satisfying the condition. Then we have the following derivation of

J? D (e l ez) : pn satisfies the condition:

Since the type variables introduced in p, are fresh, by repeated applications of the rule (G E N) ,

we have a derivation of r D (e l e ?) : n satisfying the condition.

3. Case of e G Ax.e: By the typing rules and the pr0pert.y shown in the beginning of the proof,

there is a derivation A of r { z := p l) D e : p? such that p, = p l - p?. B y the induction

hypothesis. there is also a derivation A' of r { x := p l) b e : p2 satisfying the condition. Then

we have the following derivation of J? D A x . e : pl - pr, satisfies the condition:

Similar to the case for e G (e l e l) , there is a derivation of D A x . e : n satisfying the

condition.

4. Case of e l e t x = e l in e? e n d : By the typing rules and the property shown in the

beginning of the proof, DM F T { x := n l) b e? : p, and DM I- r b e l : n' for some n'. By

the induction hypothesis, there are derivat.ions A1. +I2 respectively of T { x := n ' } b e ? : p and

r b e l : n1 satisfying the condition. Then we have the following derivation of r b l e t x =

e l in e? e n d : p, satisfies the condition:

A1 A?
(LET)

I? b l e t x = e l i n e2 end : p ,

Similar to the case for e (e l e ?) , there is a derivation of J? b l e t x = e l in e2 e n d : x

satisfying the condition.

Lemma 3.8 There i s some sl such that D M t r D e l : sl and D M t I'{x := s l } D e? : s i f f

there is s o m e s:! such that DM t- r D e l : s 2 and DM I- r D e 2 [e l / x] : s.

Proof In order t o prove this lemma, we need the follopwing theorem proved by Damas and hlilner

[34] :

Proposition 3.5 (Damas-Milner) Let r be any type assignment scheme. If e has a typing under

r then there is a generic type scheme n such that for any typing scheme D M I- r D e : n',

x' ZDM s . I

This is a direct corollaries of a stronger theorem shown in [34] . If e has a typing scheme under T ,

then we call a generic type scheme satisfying the above property as pnnczpal typzng scheme under

r. Using this proposition, we proved the lemma by showing the following stronger property:

Let xl be a principal type scheme of e l under r. DM I- r{x := n l) D e? : a iff

DM t- r D e ? [e l / x] : s iff

Since it is easily verified that the provability of typing schemes is preserved by renaming of bound

variables. we assume without any loss of generality that x is distinct from all bound variables in e .

By lemma 3 .5 we can also assume that x dom(r).

Let A be a derivat.ion for DM t- r{x := s l) D e? : x . Let A' be a tree obtained form A by

replacing each occurrence of x in A by el and deleting all the entry x := x l . Only typing rules

in DM t- that depend on the structure of terms are the rules (V A R) and (A B S) . All other typing

rules depend only on types of subterms. Therefore the applications of the typing rules in A' other

than (ABS) and (V A R) remain valid inference steps. Since x is distinct from any bound variables

and the rule (A B S) does not depend on the st.ructure of the body e of the lambda term Xy. e , the

applications of the rule (A B S) in A' are also valid inference steps. A' is therefore a valid derivation

tree except for the subtrees of the form:

Now let A" be the tree obtained from A' by replacing all subtrees of the above form by a derivation

for

r D e l : xl

Since .xl is a principal typing scheme under r such a tree always exists. Then A" is a valid derivation

tree for D M t- r D e 2 [e l / x] : T. 11

We now prove the theorem. Suppose D M t- I' p e : n. By lemma 3.5 and lemma 3.6, D M t-

0 D e : p,. We need to show M L I- 8 D e : p,. Proof is by induction on l d (0 , e) .

Basis: By lemma 3.7 and the fact that e does not contain let-expression, 0 D e : p , has a derivation

A such that it does not contain applications of (GEN) or (INST). This means that any ground

instance of A is a derivation in M L t-. Therefore M L I- 0 D e : r for any ground instance (A, r)

of (C , p ,) . Hence M L t- 0 b e : p,.

Induct ion Step: Proof is by cases in terms of the structure of e . Cases other than that of e

l e t x = el in e? end are immediate consequences of the corresponding induction hypothesis.

Suppose D M t- 0 D l e t x = el in e? end : p, . Then by typing rules and the property shown

in the proof of lemma 3.7, D M k {x := x l) p e2 : p, and D M I- 0 D e l : n l for some T I .

By lemma 3.8 and 3.6, this is equivalent t o D M I- 0 D e 2 [e l / x] : p, and D M I- 0 b e l : p' for

some pi . Since l d (0 , e ? [e l / x]) and l d (O , e l) are strictly less than ld(0,let x = e l in e? e n d) , by the

induction hypothesis, M L I- 0 D e 2 [e l / x] : p, and M L I- 0 p e l : p' for some p i . Then by the

rule (LET) in M L t-, M L t- 0 D l e t x = e l in e2 end : T for any instance r of p,. This implies

M L t- 0 let x = el in e2 end : p, I

Theorem 3.4 For a closed raw t e r m e , if M L t- 0 D e : p then DM t- 0 b e : p .

Proof By induction on l d (0 , e) using lemma 3.8. If 1 4 0 , e) = 0 then any derivation in M L I-

is also a derivation in D M F. Induction step is by cases in terms of the structure of e . Cases

other than l e t x = e l in e:! end are immediate consequences of the induction hypothesis. Suppose

M L t- 8 D let x = e l i n e2 end : p . By typing rules in M L I-, M L I- 0 t> e ? [e l / x] : p

and M L t- 0 D e l : p' for some p'. By the induction hypothesis. D M I- 0 D e 2 [e l / x] : p and

D M t- 0 b e l : p'. Then by lemma 3.8, there is some n such that D M I- { x := x) b e? : p and

D M t- 0 D el : x . Then by the rule (LET) in D M t-, D M I- 0 b l e t x = el in e? end : p. I

As we have demonstrated through theorem 3.2, 3.3, and 3.4, hIL's syntactic properties are

understood without using generic type-schemes. This corresponds to our semantics which only

requires the semantic space of the simply typed lambda calculus. However, our typing derivation

system suggests a potentially inefficient type inference algorithm. The algorithm P'TS we defined

in theorem 3.2 is indeed potentially inefficient compared to algorithm W defined in [78]. P7S infers

a typing scheme of l e t x = el i n e? end by inferring a typingscheme of e ? [e l / x] . This may involves

-
repeated inferences of a typing scheme of el because of multiple occurrences of x in e z , which is

clearly redundant. The extra typing rules for generic type-schemes in DamasMilner system and the

corresponding control structures of the algorithm W can be regarded as a mechanism to eliminate

the redundancy and could be considered as implementation aspects of ML type inference.

3.2.5 Equational theories of Core-ML

An equation of an equational theory of Core-ML is a formula of the form C D el = e? : p.

Definition 3.11 (ML-theory) A n ML-theory consists of a gtven set of equatzons E M , satisfying

the properties:

S D el = e? : p E E i f l for any ground instance (d,~) of (S , p) , A D el = e? : r E E

and the following set of rules: the axiom schemes (a) , (P) , (v), the Inference rule scheme (0 obtatned

from respective rule schemes tn the untyped lambda calculu [I51 by tagging S and p, the set of rule

schemes for usual equational reasoning (i.e. reflexivity, symmetry, transtttvzty and congruence), the

following axiom scheme:

(l e t) S D (let x = el in e? end) = (e z [e l / x]) : p,

and the following inference rule scheme:

S D e l = e ? : p
(t h i n n i n g) zf C c 2' (as graphs).

S' D el = e? : p

We call a set of equations E M , satisfying the above property a5 a set of JlL-equattons. \Ye write

E M , I-,, E D el = e? : p if S D e l = e? : p is derivable from the axioms and E M , using the

inference rules. X set of hlL-equations E M , determines the ML-theory ThML(E , , ,) . \Ve sometimes

regard Th , , (EML) as the set of all equations that are provable by the theory.

hlL-theory is intended to model euality among terms of Core-hlL. For this purpose, we are

usually interested in only those euqations that correspond to pairs of Core-hIL terms.

Definition 3.12 (Well typed ML-equation) A n equation C b el = e? : p 1s well typed i f

M L I - S b e l : p a n d M L I - S b e ? : p.

\Ve also say that a set of hlL equations is well typed if all its elements are well typed. It is easily

checked that if E M , is well typed and axioms are restricted t o well type equations then T h M L (E M L)

is also well typed. In what follows, we restrict a set of ML-equations E M , and axioms to be well

typed ones. For example, C D ((Ax. e l) e 2) = e l [e 2 / x] : p is an instance of the axiom shceme (P)
only if M L i- C D ((A x . e l) e z) : p and M L t- C D e l [e 2 / x] : p.

The theory Th,,(8) corresponds to the equality on Core-ML terms. We write C D el =,, e2 : p

for @I-,, C D e l = e:! : p.

If we exclude the rule of symmetry from the set of rules, then we have the notion of reductions.

\Ve write EM, I-,, C D e l -+ e2 : p if C D e l : p is reducible to C D e2 : p using EM, and

the set of rules. In particular, the empty set determines the pr]-reducibility, for which we write

A P e l - ,,e2 : T.

3.3 Semantics of Core-ML

In this section, we first define the explicitly-typed language T A that corresponds to derivations of

Core-ML typings. We then define the semantics of Core-hlL relative to a semantics of TA.

3.3.1 Explicitly-typed language T A and its semantics

The set of types of T A is exactly the set T y p e of types of Core-ML. The set of pre-terms is given

by the following abstract syntax:

Definition 3.13 (Te rms of T , I) The set of t e n s of T;Z t s the set of formulae of the form A b

A1 : T that are derzvable 111 the followtng proof sys tem:

Note that in this system, a formula has at most one derivation. IVe write T A I- A D M : r if

A D M : T is derivable from the above typing rules. T A is clearly a representation of the simply

typed lambda calculus [49], whose equational theory and model theory are well understood.

An equation of an equational theory of T A is a formula of the form A D MI = M2 : T . -

Definition 3.14 (TA-theory) A T A - t h e o y consists of a given set ETA of equattons and the fol-

lowing set of rules: the aziom schemes (a) , (P) , (7) and the inference rule scheme (<) of the simply

typed lambda calculus [49], the set of rule schemes for usual equational reasoning and the following

inference rule scheme:

A b M 1 = M 2 : T
(thinning) if A C A' (as graphs)

A' D M1 = M:, : T

We write ETA I - , , A D M I = Af? : T if A p A l l = M? : r is derivable from the axioms and ETA

using the inference rules. A set of TA equations ETA determines the TA-theory ThTA(ETA). JVe

sometimes regard ThTA(ETA) as the set of all equations that are provable by the theory.

Parallel to ML-theory, we deifine well typed T A equations.

Definition 3.15 (Well typed T A equation) An equatton C D M1 = Ma : p zs well typed zf

T A t- S D M 1 : p and T A t- Z b : p .

We also say that a set of T A equations is well typed if all its elements are well typed. It is easily

checked that if ETA is well typed and axioms are restricted to well type equations then ThTA(ETA)

is also well typed. In what follows, we restrict a set of T A equations ETA and axioms to be well

typed ones.

The following notations and notions are defined parallel to those in Core-ML: A P MI =,,
h.iz : T, the notion of reductions, ETA F T A A D iCll -.-. ~bf? : T , and A D Aill - ,,Ail2 : r .

Following Friedman, (371 we define a model of T A as follows:

Definition 3.16 (E'rames and Extensional Frames) A frame ts a pnzr (F, e) where F 2s a set

{ F , ~ T E T y p e) such that each F, ts non-empty and . ts a farntly of b ~ n a y operatzons .,,,,, :

F, ,,,, x F,, --. F,,. A frame ts ettensronal tf

We usually write 3 for (3, e). Given a frame 3, a map 4 : F,, - F,, is representable if there is

some f E F,,,,, such that V d E F,, .$(d) = f d (f is a representattve of 4) . In an extensional

frame, representatives are unique. For a frame 3 and a type assignment A, an FA-environment E

is a mapping from dom(A) to U 3 such that ~ (z) E Fa(,) We write ~ n v ~ (d) for the set of all

3A-environments.

Definition 3.17 (Models of T A) A n eztensional frame 3 is a model of T A lf there ts a semantic

mapping [I on ternas of T A satisfying the following equations: for any E E ~ n v ~ (A) ,

[A D x : T I E = &(I)

[A D AX : 71. hif : T I -+ ~ 2 1 ~ = the representative o f & such that

(Vd E F, ,) (4(d) = [A{x := r l) b M : T ~] E { X := d })

[A D (M N) : T I E = [A P M : r l - - + r] ~ o [A D N : T ~] E

Note that for a given extensional frame, such a semantic mapping does not necessarily exist, but if

one exists then it is unique. If M is a model, then we write Mu] for the unique semantic mapping.

An equation A D M = N : r is valid in a model M , write M /=,, A I> M = N : r , if

,M[A D M : 70 = M[iA D M : TI. Let V a l i d r A (M) be the set of all T.4 equations that are

valid in M . Write M k,, F for F C V a l i d r A (M) . For T A we have the following soundness and

completeness of equational theories [37]:

Theorem 3.5 (Friedman) Forany m o d e l M and any Th- theory Th,,(E,,), i f M kT,, ETA then

T h T A (E T A) C_ V a l i d r A (M) . For any TA-theory T , there ezists a model? such that V a l i d r A (?) =

T . 1

3.3.2 Relationship between TA and Core-ML

Parallel to the relationship between Damas-Milner system and Core-XhIL, derivations of Core-ICIL

typings correspond to terms of T A . Define a mapping typedterm on derivations of Core-h,IL typings

as follows:

(1) If A is the one node derivation tree

then t y p e d t e r m (A) = x.

(2) If A is a tree of the form

A1
(A B S)

A D Ax. e l : r1 + r2

then t y p e d t e r m (A) = Ax : T I . t y p e d t e r m (A l) .

(3) If A is a tree of the form

A 1 A 2
(APP)

A b (el e2) : T

then typedterm(A) = (typedterm(A1) typedterm(A2))

(5) If A is a tree of the form

A1 A2
(LET)

A b le t x = el i n e2 e n d : T

then typedterm(A) = typedterm(Al).

The type erasure of a pre-term A1, denoted by erase(M), is the raw term defined as follows:

erase(x) = x

erase((hfl A t 2)) = (erase(hfl) erose(Al?))

erase((Ax : p. h l)) = (Ax. erase(M))

The following theorem corresponds to theorem 3.1:

T h e o r e m 3.6 If T A I- A b M : T then there i s a derivation A of A b erase(h1) : T in Core-

ML such that typedterm(A) --= 121. If A is a typing derivation of A D e : T then letexpd(e) z

erase(typedterm(A)) and T A I- A typedterm(A) : T.

P r o o f The first statement is easily proved by induction on the structure iLl

The second statement is shown by induction on the hight of A. JVe only show the case for let

expression. Suppose 4 is a typing derivation of A b let x = e l in el, e n d : T then A must be of

the form:

A 1 A2
(LET)

A b l e t z = e l i ne2 e n d : T

By the definition of typedterm, typedterm(A) = typedterm(A1). By the typing rules, A1 is

a derivation of the typing A b e2[el/x] : r. By the induction hypothesis, letexpd(e2[el/x]) -
erase(typedterm(A)) and T A i- A b typedterm(A) : T. But by the definition of letezpd,

letezpd(e?[el/x]) = letexpd(1et x = el i n e? e n d) . I

Unlike the relationship between Core-XML and Damas-Milner system, we also have the following

desired property:

Theorem 3.7 If AI ,A2 are iyping derivadions of a same typing A D e : r then the following

equation holds:

A D t yped term(A1) =,, t y p e d t e r m (A 2) : r .

Proof The proof uses the following lemmas:

Lemma 3.9 Lei A D M : r and A D e : T be respectively TA term and Core-ML term such

that e r a s e (M) E e . If A p M -- ,,All : r then there I S e' such that e r a s e (M 1) e' and

A D e -. ,,el : r . Conversely, if A D e - ,,el : r then there 2s M' such that e r a s e (M 1) r e'

and A D M - ,,M1 : r .

Proof This is proved by observing the following facts: (1) there is a one-one correspondence

between the set of pr]-redexes in M and the set of Brj-redexes in e , (2) if erase((Xx : T. M I) hl?)

((A x . e l) e z) then erase(h.ll[x := M 2]) G e l [x := e?] , and (3) if erase(Ax : T . M x) 3 (Ax .ex) then

e r a s e (M) z e. I

Note that this result, combined with the property of the reduction rule (l e t) and the connection

between T A terms and typing derivations of M L implies that if T A has the strong normalization

property then so does Core-ML, which was suggested in [49, remark 15.321. Technical difficulty of

treating bound variables mentioned in [49. remark 15.321 was overcome by our presentation of TA.

Lemma 3.10 If two ierms A D : r and A b All : T are In d-normal form and e r a s e (h f l) E

erase(M2) then M 1 M?.

Proof The proof is by induction on the structure of A f l . The basis is trivial. The induction step

is by cases.

1. Case of M I E Ax : T I . M i : By the typing rules, T A t A { x := T I) D Mi : r? for some r?

and r = rl T?. Since erase(h11) E erase (M2) , M? must be of the form Ax : T I . M; such

that erase(l21;) E erase(h1;). By the typing rules, T A k A{r := r ;) b Af2 : ri for some

6 and r = T;. Therefore rl = T I , r? = rT:. By definition, A{x := r l) b M i : r2 and

A { x := 71) b 111; : T? must be also in &normal form. Then by the induction hypothesis,

MI M; . This implies M1 r M?.

2. Case of M I r (. . . (3: M t) . . - M r) : By the typing rules, T A I- A D M: : rf' for some rk

1 < i < n. It is shown by simple induction that A (z) = T: - r: -. - - . -- 71" -+ r. Since

erase(M1) erase(M2), M2 must be of the form (- . . (z M;). . . M;) and e r a s e (~ f) E

erase(Mi) , 1 < i 5 n. Then similarly we have T A t- A D M; : r; for some r;, 1 5 i 5 n and

A (z) = ri -+ r; -. . - . -+ r; - T . This implies r; = r;, 1 < i 5 n. Then by the induction

hypothesis, ~f M;, 1 5 i 5 n. Hence we have M1 5 M2.

Since M I is in /3-normal form, we have exhausted all cases. I

We now prove the theorem. Let M I E typedterm(Al) , M2 E typedterm(A2). Also let A D Mi : r ,

A D M; : T be normal form terms such that A D M I -..,,Mi : r and A D M2 Mi : T (such

M;, M; always exist). By lemma 3.9, there are normal form terms d D el : T and A b e n : T

such that erase(M;) E e l , erase(M4) e2 and A D e -, ,,el : T and A D e --. ,,e? : T . By

the uniqueness of normal form, el e?. Thus erase(Mi) erase(M4). Then by lemma 3.10,

M ; E Mi . (End of the proof of theorem 3.7) I

3.3.3 Semantics of Core-ML

We define the semantics of Core-ML relative to a model of T A . We first define the semantics of

Core-ML typings and then "lift" them to general Core-hlL terms.

Defini t ion 3.18 (Semantics of Core-ML Typings) The semantics of Core-hlL t yptngs rela-

tive to a model M of T A is defined as

for some denvatton A for A D e : T .

By theorem 3.7 and the soundness of T A theories (theorem 3.5), this definition does not depend

on the choice of A .

For a given type assignment scheme C, the set of admissible type assignments under S denoted

b y T A (C) is the set { A J d o m (C) C dom(A) , 38. ~ l ~ ~ ~ (~) = O(C)) . Under a given type assignment

A , the set T P (A , C De : p) of the types associated with a term C De : p is the set (~ 1 3 8 . (dtdom(')

, r) = O(C,p)) . For a model M = ({ F , (T E T y p e) , e) and a set of types S, we write IIT E S. F, for

the direct product (i.e. the space of functions f such that dom(f) = S , f (T) E F,).

Defini t ion 3.19 (Semantics of Core-ML Te rms) The semantics MiC b e : p I M L of a Core-

AIL term C De : p relatitfe to a modelM is the functton which takes a t y p e assignmeni A € T A (C)

and an environment E E EnvM(A) and returns an element in I I r E T P (A , C D e : p). F,, defined

as follows:

M [C D e : pjMLAc = { (r , M [A D e : r I M L ~) l r E T P (A , C D e : p))

For example,

M 10 D Ax. x : t 4 tJMLA& = {(r + T, MIA D Ax : r . z : T -* r] ~) (r E Type)

Now if each element of F,,,,, is a function from F,, t o F,, then by the extensionality property of

M, we have

MI0 D Ax. x : t --+ tJMLAc = { (r -* T , i d ~ ~) l r f Type)

where i dx is the identity function on X.

3.4 Soundness and Completeness of Core-ML Theories

Let M be a given model of TA. M also determines the semantics of hIL. We say that an equation

A D el = ez : p is valid in M , write M kML S D el = ez : p, iff .M[C D el : pnML = M[IC D e:, :

pjML (as mappings). Let V a l i d M L (M) be the set of all equations in Core-ML that are valid in M .

Write M bML F for F E V a l i d M L (M) .

Theorem 3.8 (S o u n d n e s s o f C o r e - M L T h e o r i e s) Let EM, be any set of AIL-equations and M

be any model. If M k,, EM,, then ThM,(EML) 5 V a l a d M L (M) .

P r o o f Define mappings @. Q between sets of AIL-equations and sets of TA-equations as:

@(EM,) = {A D hl = hr : r13(A D el = e:, : r) E E,,L such that

erase(h1) r letezpd(el), erase(N) E letezpd(e?))

E T A = (2 b el = e:, : plV(A, T) if (A, T) 5 (C , p) then 3 (A b M I = hf:, : r) f ETA

such that erase(llf l) E leterpd(el), erase(M2) E Ieiezpd(e2)}

T h e proof uses the following lemmas

L e m m a 3.11 For any set of ML-equaltons E,,,, \k(Th,,(@(EML))) = ThML(EM,).

P r o o f By our assumptions on EM, and the properties of the rules of ML-theories, S b el =

e:, : p E ThML(EML) iff for all ground instance (A , r) of (C ,p) , A b el = es : r E ThML(EML).

-
By definition of 9 , Q(Th,A(O(EML))) also has this property. It is therefore enough to show that

A t> el = e2 : T E ThML(EML) iff A D e l = e2 : r E 4(ThTA(O(EML))) , which is proved by the

relationship between sets of rules of T A and those of Core-ML and the definition of O. I

L e m m a 3.12 For any model M , V a l i d M L (M) = Q(Va l id rA(M)) .

Proo f Suppose C I> e l = e2 : p E V a l i d M L (M) . For any ground instance (A , r) of (C,p) ,

M I A D el : r jML = M I A t> e2 : r jML. Let A l l A2 be derivations of A b e l : T and A D e? : T

respectively. Then erase(typedterm(Al)) letezpd(el), erase(typedterm(A2)) - letezpd(e?), and

M [A D typedterm(Al) : T] = M [[A D typedterm(A2) : r] . Therefore by definition C D e l =

e;! : p E Q(Val idTA(M)) . Conversely, suppose 5 t> e l = e2 : p E O(Va l id rA(M)) . Let (A , T)

be any instance of (C, p) . By the definition of O, there are M I , M? such that, A b fill = M z :

r E V a l i d T A (M) , erase(Ml) letezpd(el), erase(M2) E le texpd(e2) . Let A l , A2 be derivations

of A D e l : r and A D er, : r respectively. Then it is shown by using lemmas 3.9 and 3.10 that

A b typedterm(A1) =,, M1 : T and A b typedterm(A2) =,, hf? : T. Then by theorem 3.5,

Mud b e l : rBML = Mud t> e? : r J M L Since (A , T) is arbitrary instance of (C , p) , we have

C D e l = e? : p E V a l i d M L (M) . I

We now conclude the proof of the theorem. Suppose M bML EML. By the definitions of 9 and

M [] , M ETA @(EM,). By theorem 3.5, Th,,(@(EML)) v a l i d T A (M) . Since O is monotone

with respect to c, by lemma 3.11 and 3.12, T h M L (E M L) E V a l i d M L (M) . (E n d of the proof of

theorem 3.8) 1

T h e o r e m 3.9 (Rela t ive Completeness of Core-ML Theories) For any set of AIL-equations

EM, and any model JM, tf V a l i d T A (~) = ThTA(@(EML)) then ValidML(..2.i) = Thh+L(EhfL)

P r o o f By lernrna3.11 and 3.12. 1

Then by theorem 3.5, we have:

Coro l la ry 3.1 (Comple teness of Core-ML Theor ies) For a n y hfL-theory G , there erzsts a

model 1; such that Va l idML((j) = G . I

As a special case of theorem 3.9, for any model M , we have V a l i d M L (M) = ThML(0) i f

V a l i d r A (M) = ThTA(0) . Now let S be a full t y p e structure, that is, let Fb be a countably infinite

set, F,,,,, be the set of all functions from F,, to F,, and is the function application. Friedman

showed that (371 Val id rA(S) = ThTA(0) . Then we have:

C o r o l l a r y 3.2 v a l i d M L (S) = ThML(0) . I

This means that =,, is sound and complete for the full type structure generated by countably

infinite base sets. Since =,, is decidable (see remark on lemma 3.9), this implies that the set of all

true ML equations in- the full type structure is decidable.

3.5 Extensions of Core-ML

As a programming language, Core-ML should be extended t o support recursion and various da ta

types including recursive types. This is done by adding constants and extending the set of types

and type-schemes as (possibly infinite) trees generated by various type constructor symbols. \Ye

call the extended language ML.

We assume that we are given a set of type constructor symbols Tycon (always containing the

function type constructor : -). As observed in [31, 1101, an appropriate class of infinite trees t o

support recursive types is the set of regular trees.

Def in i t ion 3.20 (T y p e s and T y p e - s c h e m e s of ML) The set Type of types of 1l1L is the set

R (T y c o n) of regular trees. The set Tscheme of type-schemes is the set R (T y c o n , V) of regular

trees.

As an example of a recursive types, the following infinite type-scheme in a term representation we

have defined in section 2.2 represents a polymorphic list type:

(rec v . nil + (t x v))

where + and x are binary type constructors representing sum and product and nil is a trivial type

which has only one element representing the empt.y list. The following recursive type corresponds

t o the type of the set of all pure lambda terms:

(rec v . v -- v) .

We also extend the language with a set of constant symbols. In order to preserve ML's implicit

type system, we assume that we are given a set Const of pairs of a constant symbol and a type.

We write c : T for an element of Cons t .

Def in i t ion 3.21 (Raw Terms of ML) The set of raw terms of h f L is given by the followtng

syntax:

e ::= x 1 c 1 Ax. e I (e e) I l e t x = e i n e end

where c stands for the set of constant symbols that appear in Const.

For example, products can be introduced by assuming the following set of constants

pair : TI + ~2 - (r l x r2) for each TI, 72,

first : (r1 x 72) -+ TI for each TI, 1 2 ,

second : (r l x 12) -4 TZ for each TI, ~ 2 .

Definition 3.22 (Typings of ML) The typing derivation system for ML is the one obtained from

that of Core-ML by adding the following axiom:

On the types of constants, we need the following assumption to preserve the existence of principal

typing scheme and decidability of type inference problem:

Assumpt ion 3.1 For each constant symbol c appears in Cons t , there is a type-scheme p such that

the set of all ground instances of p coincides with the set { T I C : T E C o n s t) .

We write c : p for such a type-scheme p. This condition is satisfied by many standard data

structures. For example. the sets of types of pair, f i r s t , second are represented by the following

type-schemes:

pair : t1 - t 2 -L (t l x t ?) ,

first : (i x t 2) + t l ,

second : (t l x t 2) - t ? .

As we will see in chapter 5, however, there are data structures and operations essential to databases

and object-oriented programming that do not satisfy the assumption.

Under this assumption, the type inference problem of M L is still decidable.

T h e o r e m 3.10 There is an algorithm T ~ S + which, given any law ierm e satisfying assump-

iion 3.1, yields either failure or (C , p) such that if T7S+(e) = (C , p) then C b e : p is a principal

typing scheme otherwise e has no typtng.

P r o o f Algorithm ~ 7 s ' is obtained from algorithm P 7 S defined in the proof of theorem 3.2 by

adding the case:

(5) Case e r c:

C = 0,

p is the type-scheme such that c : p

Clearly this addition does not change the termination property of the algorithm.

T h e proof that p'TSf has the desired property is obtained by adding the case for e r c to the

inductive proof of lemma 3.4 and the inductive proof of the property that M L I- A D e : T iff

A D e : T zML C h e : p in the proof of theoremg 3.2. Both of them are immediate consequences

of the definitions.

All other parts of the proof remain valid without any change. In particular, the extension of the set

of types t o regular trees does not change the proof since the proof of theorem 3.2 uses an unification

on regular trees. I

With those extensions, hIL uniformly support both recursive types and recursion. For recursion.

the special term constructor fix x. e (which is built in fun declaration in Standard ML) is no longer

necessary. As observed in [72], if recursive types are allowed then fixed point combinators are

typable. For example, the following well known fixed point combinators:

and

y,,,,,, = (XzAx. x(:zx))(X:Xx. x(:rx))

have the following principal typing schemes:

and

M L 0 b Yturing : (t t) t -

Moreover, the algorithm PTS can infer these principal typing schemes. Later in section 5.6 we will

consider another fixed point combinator given by Plotkin [go] that represents recursive function

definition under the call-by-value evaluation strategy.

T h e extended language also infers recursive types for recursively defined functions. This elim-

inates the mandatory requirement of recursive type declarations in Standard hIL. As an example

suppose we have the following primitives for sum types:

- fun s e l f x = x x;
> val s e l f : (rec v . v --, t)

- fun loop x = se l f se l f x;
> val loop : t l --. t2

- fun i s n i l 1 = i f i s 1 1 then t rue e l se f a l s e ;
> val i s n i l : (t 1 + t 2) -* boo1

- fun ca r 1 = i f i s n i l 1 then loop Null e l se f i r s t (outr 1) ;
> val car : (I l + (t 2 x t 3)) --. t2

- fun cdr 1 = i f i s n i l 1 then loop Null e l s e second (outr 1) ;
> val cdr : (t l + (t 2 X t 3)) ' t 3

- fun length 1 = i f i s n i l 1 then 0 e l se 1 + (length (cdr 1));
> val length : (r e c u . (t l + (t 2 x u)) - int

Figure 3.1: Examples of Type Inference with Recursive Types

is1 : (t1+t2)--.booll

in1 : t l - (t l + t 2) ,

inr : 2 1 -+ (t? + t l) ,

out1 : (1 , + t 2) - t l l

outr : (t l + t 2) -L t2

together with the primitive constants pair,firsi and second for products we have defined earlier. Fig-

ure 3.1 shows type inference for recursive types by simulating an interactive session using Standard

ML conventions.

In order to define a semantics of the extended language, we need to extend the simply typed

lambda calculus T A and its semantics. We call the extended language T A + .

Definition 3.23 (Syntax of T A +) The set of pre-terms of T A + is the set of pre-terms of T A

eztended with the set of typed constants { c T l c : r E C o n s t) . The proof system for typings of T A +

is the one obtained from that o f T A b y adding the following rule:

The notion of models is also extended with constants.

Definition 3.24 (Models of T A +) A n ettended frame is a frame mith a function C on constants

such that C (c T) E F,. An eztensional eztended frame is a model of T A + if there is a semantic

mapping I] on terms o f T A + satisfying the conditions of the model o f T A (definition 3.17) and the

following equation:

[A D c* : rje = C (c T) .

Breazu-Tannen and Meyer extended [19] Friedman's soundness and completeness of equational

theories t o languages with constants and a set of types satisfying arbitrary constraints. Since the

set of types of T A + satisfies their definition of type algebm, the soundness and completeness of

equational theories (theorem 3.5) still holds for T A + .

T h e relationship between T A f terms and derivations of ML typings is essentially unchanged

and theorem 3.6 still holds (by adding the case for constants). However, theorem 3.7 no longer

holds for T A + . There are non convertible T A + terms that correspond t o a same ML typing. For

example, consider the ML typing:

0 b (second((patr Ax. x) 1)) : in t .

T h e following two T A + t,erms both correspond to derivations of the above typing:

0 (secon&(int-int)xint)-int ((p at .$in'-in')-int-((int-+int)xint) x : i n t . x) l)) : i n t ,

fj t> (second((bool-bool)xint)--int ((pai~bool-bool)-int-((bool-bool)xint) x : bool. 1) l)) : in t .

But they are not convertible to each other (in =,,). An obvious implication of this fact is that we

cannot interpret constants arbitrarily. In order to define a semantics of ML terrns via a semantics

of T A + , we need the following restriction:

Definition 3.25 A model M of T A + is abstract if e r a s e (h l) e r a s e (N) implies MIA D A1 :

T I] = Mud r> N : T I .

Abstract models are models in which the following equations are valid:

(e rasure) A b A.1 = N : T if e r a s e (h l) = e r a s e (N) .

By the completeness theorem for equational theories, T A + alwzys has an abstract model. We

further think that the class of abstract models covers a wide range of standard models of languages

with standard set of constants. For example, ordinary interpretation of pair and second certainly

satisfy the above condition and suggests an abstract model. Any abstract model of T A + yields

a semantics of ML. The definition of a semantics of ML relative to an abstract model of T A f is

the same as before (definition 3.18). The well definedness of the definition follow directly from the

property of abstract model instead of theorem 3.7. The soundness and completeness of equationd-

theories of ML (theorem 3.8 and 3.9) hold with respect to the class of abstract models. Proofs are

the same as before except that we use the condition of abstract models in place of theorem 3.7.

The condition of abstract models can be regarded as a necessary condition for fully abstract models

we will exploit in the next section.

3.6 Full Abstraction of ML

One desired property of a denotational semantics of a programming language is full abstraction

[77, 92, 81, 761, which roughly says that the denotational semantics coincides with the operational

semantics. In this section, we will show that if a model of TA+ is fully abstract for an operational

semantics of TA+ then it is also fully abstract for the corresponding operational semantics of ML.

Following [92, 761, we define an operational semantics as a partial function on closed terms of

base types. Let ETA, EML be respectively the evaluation functions of TA+ and ML determining their

operational semantics. We write &(X) 4 y to means that L (S) is defined and equal to y. On the

operational semantics of TA+ we assume that it depend only on structure of terms. Formally, we

assume ITA t o satisfy the following property:

Assumpt ion 3.2 For two terms 0 b M : b and 0 b N : b i f e r a s e (A f) e r a s e (N) then ETA(O t>

M : b) U 0 b c b : b iflETA(O D N : b) y 0 b c b : 6.

We believe that this condition is satisfied by most operational semantics of explicitly-typed pro-

gramming languages. On the operational semantics of EML we assume the following property on

evaluation of let-expressions:

Assumpt ion 3.3 EML($ D e : b) 0 b c : b iflEML(O D letezpd(e) : 6) U 0 D c : 6.

This condition correspond to the equality axiom (l e t) . Note that the rule (l e t) corresponds to

the rule (p) and does not agree with the call-by-value evaluation strategy. Finally we assume the

following relationship between the operational semantics of TA+ and that of hfL:

Assumpt ion 3.4 For terms 0 D M : b of TA+ and 0 b e : b of AIL, zf e r a s e (M) z e then

ETA(O b M : b) U. 0 D cb : b iflEML(O D e : 6) 4 0 D c : b.

We believe that in most cases it is routine to construct EML from given ETA that satisfies the

condition and vice versa.

A context C [] in TA+ is a TA+ pre-term with one "hole" in it. We omit a formal definition.

A context C [] is a closing b-context for A D M : T if there is a derivation of T A t- 0 D C [M] : b

such that its sub-derivation of (the occurrence in C[A4] of) M is a derivation of A D A4 : r.

Defini t ion 3.26 (O p e r a t i o n a l Equ iva lence in T A) Two TA+ terms A D M : r and A D N : T

T A
are operationally equivalent, denoted by A D M x N : T , iff for any closing b-context C[] for

these two t e r n s , ETA(O D C [M] : b) JJ 0 D cb : b i f f ETA(O D C [N] : b) JJ 0 D cb : b.

In ML, under our assumption on let-expressions, it is enough t o consider raw terms and contexts

that do not contain let-expression. Therefore we define a context c[] in ML as a context of the

untyped lambda calculus. A context c [] is a closing b-context for C 1> e : p if there is a derivation

of 0 t> c[e] : b such that its subderivation of e is a derivation of an instance of C D e : p.

Def in i t ion 3.27 (O p e r a t i o n a l Equ iva lence in ML) Two lZlL terms C Del : p and 2 De:! : p
M L

are operationally equivalent, denoted by C D el x e2 : p, iff for any closing b-context c [] for these

two terms, EML(O t> c[e l] : b) &0 D c : b iff EML(O D c[e:!] : b) U 0 D c : b.

Defini t ion 3.28 (Ful l A b s t r a c t i o n) A model M is fully abstract for ETA i f M bTA A D M =

N : r i f f A D M 2 N : T . A mode M is fully abstract for EML i f M bML S b el = e 2 : P i 8
M L

C p e l x e:! : p.

Note that a model M is fully abstract for ETA then it is an abstract model (definition 3.25). This

means that any fully abstract model for ETA yields a semantics of AIL. Moreover, we have:

Theorem 3.11 If a model M is fully abstract for ETA then M ts nlso fully abstract for EML.

P r o o f Let M be any fully abstract model for ETA. By our assumption on EML and the definition

of M[DML, it is sufficient to show the condition of full abstraction for EML for terms that do not
M L

contain let-construct. Suppose C b el x e2 : p, where e l , e2 d o not contain let-construct. By the
M L M L

definition of FZ , A b el x e2 : r for any ground instance (A, r) of (C, p) . Let A b M : r , A b N : T

be TA+ terms that correspond t o derivations of A D el : T and A b e2 : r respectively. Let C []

be any closing b-context for A b M : T and A b N : r. Let c [] be the context obtained by

erasing all type sppecification. Then e r a e (C [M]) c [e l] , e r a s e (N) = c[e2] and c [] is a closing b

contex for A b el : r and A D e:, : T . By assumption 3.4, ETA(A b C [M] : b) JJ 0 b cb : b iff

EML(d b c [e l] : b) 0 b c : b and ETA(d b C [N] : b) U 0 b c b : b iff EML(d bc[e:!] : b) U 0 Dc : b.
M L T A

Since d b e l x e2 : T , A b M x N : T. By the full abstraction of M for ETA and by the definition

-.

of M [[IML, M E M L C D el = e:! : p. Conversely, suppose M kM, C 'D el = e:! : p, where e l , ez

do not contain let-construct. Let c [] be any closing bcontext for C D el : p and C D el : p. Let

A 1 be a derivation of 0 D c [e l] : b such that it contains a subderivation A 2 of A D e l : r where

(A, r) is an instance of (C, p). Since c [] is a closing bcontext for C D el : p, such A l always exists.

Since C D e2 : p is a term, there is a derivation A3 of A D ez : r. Then by typing rules and the

definition of contexts, the derivation A4 obtained from A 1 by replacing the subtree A? by A3 is a

derivation of 0 b c [e z] : b . Let M I s t y p e d t e r m (A l) , M2 z t yped te rm(A2) , M3 G t yped te rm(A3) ,

M4 3 t yped te rm(A4) . Then erase (M2) e l , erase(M3) r ez . Clearly M I , M4 respectively contain

M 2 , M3 as subterms. Moreover, the TA+ contexts obtained from M I , hI4 by replacing respectively

M 2 , M3 with the 'hole' are identical. Call this context C [1. Then e r a s e (C [M 2]) c [e l] and

e r a s e (C [M 3]) 5 c[e?] . Since M b M L C D el = el : p, M bT, A D 1142 = M3 : r. By the full

abstraction of M for ETA, ETA(@ D C [M 2] : r) U 0 b cb : b iff ETA(O b C[hl3] : r) U 0 b cb : b .

B y assumption 3.4, EML(O D c [e l] : b) IJ 0 D c : b iff EML(O D ~ [e ?] : b) lJ 0 p c : b . 1

The importance of this result is that we can immediately apply results already developed for

explicitly typed languages to implicitly typed language with hlL polymorphism. As an example,

Plotkin constructed [92] a fully abstract model of his language PCF with parallel conditionals.

It is not hard to define the "ML version" of PCF (with parallel conditionals) by deleting type

specifications of bound variables and adding let expressions. i ts operational semantics can be also

defined in such a way that it satisfies our assumptions. We then immediately have a fully abstract

model for the ML-version of PCF.

Chapter 4

Database Domains

This chapter constructs a theory of database domains and proposes a type system for complex

database objects. They will not only provide a unform framework for various data models for

databases including the relational model, nested relations, and complex object models but they

also enable us t o integrate those da ta models into an hlL style polymorphic type system we have

investigated in the previous chapter. This integration will be carried out in the next chapter. hlost

of the results in this chapter were presented in ($31.

4.1 Introduction

There have been a number of attempts to develop da ta models to represent complex database ob-

jects beyond the first-normal-form relational model. Examples include nested relations [36, 2, 89,961

and complex object models [59, 14, 41. (See also [57] for a survey.) As we have argued in sec-

tion 1.1, however. these complex da ta structures and associated database operations have not been

well integrated in a type system of a programming language, creating the problem of "impedance

mismatch". I believe that the major source of this nusmatch problem is poor understanding of the

properties of types for databases and the structures of domains for database objects. Traditionally,

the theory of types of programming languages has been focussed on function types and domains of

functions. Neither the properties of database type systems nor their relationship to type systems

of programming languages have been well investigated.

T h e goal of this chapter is to construct a theory of database type systems that will serve as

a "bridge" between complex da ta models and type systems of programming languages and t o

propose a concrete database type system that is rich enough to represent a wide range of complex

database objects. Later in chapter 5, by integrating the type system we develop in this chapter

and ML type system we have analyzed in the previous chapter, we will develop a strongly typed

polymorphic programming language for databases and other data intensive applications. In the rest

of this section, we overview the data structures and operations needed for databases and outline

our strategy.

4.1.1 Data Structures for Database Objects

As suggested by Cardelli (241, one way to represent complex objects in a programming language is

to use labeled records and labeled disjoint unions (or labeled variants) found in many programming

languages such as Pascal, Standard ML [47], Amber [23] and Galileo (71. The following is an

example of a labeled record expression:

[Name = [Firstname = "Joe", Lastname = "Doe"], Dept = *@SalesM, Ofice = 2781.

Types for expressions can be easily defined. For example, the above record is given the following

type:

[Name : [Firstname : s tr ing, Lastname : s tr ing] , Dept : s tr ing, Ofice : i n t] .

Assuming computable equality on each atomic type, equality on expressions that do not contain

functions is computable and it is not hard t o introduce (finite) set expressions on those complex

expressions. These three data constructors - record, variant and set - are basic building blocks for

complex object models. In database literature, they are respectively called aggregation, generahza-

tion and grouprng. Tuples in the relational model [29] are represented by records that only contain

atomic values and relations are simply sets of those records. Data structures in various forms of

non-first-normal-form relations [36, 2, 89, 961 are represented by the combination of record and

set constructors. Data structures in complex object models [4, 59, 141 correspond to unrestricted

nested structures generated by the above three constructors. When combined with recursive defini-

ton (or cyclic data constructor), unrestricted nesting of these three constructors seem rich enough

to represent virtually all complex data models.

It is not hard t o integrate these data structures into a type system of a programming language.

Many languages allow unrestricted nesting of records and variants. Some languages such as hliranda

[I071 also allow recursively defined types and expressions. As we have mentioned, finite sets can also

be introduced in those type systems. Moreover, recent studies on type inference [I l l , 85, 63, 931 -

including a contribution of a part of this study ([85]) which will be presented in the next chapter

- show that these data structures can be integrated in a polymorphic type system with static type

inference. Therefore, as far as data structures are concerned, type systems of several programming

languages seem to have sufficient expressive power to represent databases.

4.1.2 Operations on Complex Objects

In a programming language, in addition to the operations that construct these structures, the

following standard operations are available (or can be easily added):

field selection from a record,

field modification (update) of a record,

cases analysis for a variant,

standard set theoretic operations and a primitive for mapping a function over a set.

I t is therefore tempting to represent a database of complex objects as a set of complex expressions

which is manipulated by functions defined using the above primitive operations.

An obvious problem of this approach is that, in practice, both expressions and sets become very

large and contain a great deal of redundancy. This problem is elegantly solved in the relational

model by the introduction of the two database operations - (natural) join and projection. Instead

of representing a database as one large set (relation) of complex tuples, we can first project it

onto various small relations and then represent a database as a collections of those small relations.

Larger relations are obtained by joining these small relations when needed. In order to integrate

complex database objects in a programming language, it is therefore essential to generalize join

and projection so that they work uniformly on complex expressions and to introduce them in a

programming language. I further believe that properly generalized join and projection together with

standard operations on complex expressions form a sufficiently rich set of operations for complex

database objects. It will be also shown in chapter 7 that join and projection play essential roles in

manipulating object-oriented databases.

There have been some arguments on expressive power of sets of operations on data structures

for databases. A well known example is that the relational algebra cannot compute the transitive

closure of a given relation [5] . However, the lack of such computational power does not imply

incompleteness of the set of operations on database objects. It simply suggests the desideratum

that data models should be integrated into a standard computational paradigm such as function

-
abstraction and recursion, which are readily available in programming languages. For example, it

is unnatural to try to compute a transitive closure by a set of primitive operations for records and

sets. I t is even more unnatural to require such computational power for those primitive operations.

The computation of a transitive closure naturally suggests iteration or recursion and is of course

computable if the relational algebra is integrated in a programming language where recursion or

iteration are available.

4.1.3 A Strategy to Generalize Join and Projection

There are several efforts to generalize join and projection beyond the first normal form relations

[96 , 88, 3 6 , 621. However, their definitions still depend on the underlying tuple structures using

some forms of unnesting or flattening operations. For example, in [96] the notion of partition

normal form relations was introduced, which is essentially those that can be transformed into first

normal form relations by unnesting. By imposing further restrictions on partition normal form

relations they extended join to non first normal form relations. However, the justifications for these

ad hoc restrictions are not clear besides the fact that the relational algebra including join can be

extended to those restricted non first normal form relations. Here we would like to extend join

and projection uniformly to arbitrary complex database objects including recursively defined ones

in such a way that they can be integrated in an ML style type system as polymorphically typed

computable functions. It should be worth noting that join and projection in the relational model

are polymorphic operations in the sense that are defined uniformly over relations of various types.

Join and projection in the relational model are based on the underlying operations that compute

a join of tuples and a projection of a tuple. By regarding tuples as partial descriptions of real-world

entities, we can characterize these operations as special cases of very general operations on partial

descriptions; the one that combines two consistent descriptions and the one that throws away part

of a given description. For example, if we consider the following non-flat tuples

t 1 = [Name = [Fn = @'Joeu]]

and

t Z = [Name = [L n = @'Doeb']]

as partial descriptions, then the combination of the two should be

1 = [Name = [Fn = "Joe", Ln = * * D o e "]] .

Conversely, the tuple t 1 is considered as the result of the projection of the partial description t on

the structure specified by the type

[Name : string, [Fn : string]].

Operations that combine partial information also arise in other areas of applications. Examples

include the meet operation on Ait-Kaci's Qterrns [6] and the "unification" operation on feature

slructures representing linguistic information (see [lo21 for a survey).

Based on this general intuition, in this chapter, we propcse a framework for type systems for

database objects and their denotational semantics. We then construct a concrete database type

system and its semantic domain. The type system contains arbitrarily complex expressions definable

by labeled records, labeled variants, finite sets and recursive definition. On its semantic domain,

join and projection are defined as polymorphically typed computable functions. Furthermore, we

carry out these constructions in a completely effective way. In our framework, we require types

and objects to be finitely representable and the properties needed to define database operations to

be decidable. This means that, once we have constructed a type system and its semantic domain

based on our framework, it not only provides an uniform and elegant explanation of the properties

of the type system and the structures of domain of complex database objects, but it also provides

representations and algorithms to integrate them into a programming language.

We start with our investigation by analyzing the relational model. This analysis will also serve

as an introduction to the subsequent abstract characterizations of database type systems and their

semantic domains. Based on the analysis of the relational model, in section 4.3, we characterize

the structures of type systems in which polymorphic join and polymorphic projection are definable

and propose a framework for their denotational semantic. In section 4.4, we define a concrete type

system for complex database objects and construct its semantic domain. A part of the construction

of the semantic domain (subsection 4.4.4) is based on the idea we have developed in [22] that a

certain ordering on powerdomains can be used to generalize the relational join uniformly t o complex

objects and the idea due t o Ait-Kaci [6] that a rich yet computationally feasible domain of values

is nicely represented by labeled regular trees. I have also noticed that Rounds' recent work 1971

achieves a result similar to one presented in subsection 4.4.4.

4.2 Analysis of the Relational Model

We first give a standard definition of the relational model. Since our purpose is to extract the

essence of the type structure of the model, we define the model as a typed data structure. We also

integrate null values in the model. The importance of null values has been widely recognized and

% [N a m e = "Joe Doe", Age = 21, Salary = 210001
[N a m e = "John Smith", Age = nullint ,Salary = 340001 1
: { [N a m e : s tr ing, Age : in t ,Salary : i n t]]

" John Smith" I nulLinr 1 34000

Figure 4.1: A Simple Relation and its Representation as a Table

several approaches have been proposed [16, 100, 68, 1121. Among them, we adopt the approach

that null values represent non-informative values [112]. This approach fits well in our paradigm

that database objects are partial descriptions and plays a crucial role in our theory of semantic

domains of database type systems, which will be developed in the next section.

We continue to assume that L and B are respectively a given set of labels and a given set of base

types. We also assume that we are given a set (D b J b E 8) of pairwise disjoint sets of atomic values.

It should be noted that Db does not necessarily coincide with the set Fb for the type b in a model

of a programming language we have defined in section 3.3. It is required that Db E Fb (or there is

some injective mapping from Db to Fb) but we do not assume the inverse inclusion. For example,

when recursive functions are definable, Fd should contain a value that corresponds to expressions

that diverge, which is not an element of Db.' For each base type b, we introduce a special symbol

nullb for the null value of the type b. We say that c has the type b if c E Db or c = nullb.

Definition 4.1 (Tuples and Relations) A tuple type T has the followtng syntax [I l : b l , . . . , I n :

b,] where I l l . . . , I , are painuise distinct elements of L and bl . . . , b, E 5. A tuple t of the tuple

type [I l : b l , . . . ,In : b,] is a term of the form [I 1 = c l , . . . ,ln = c,] such that c, has ihe type

b; (1 5 i 5 n) . A relation type (o r relation scheme in the database literature) R is a t e r n of the

form { T l for some tuple type T . A relation instance r of the relation type { T) is a term of the

form g t l , . . . , t n J such thai each t i (1 < i 5 n) is a tuple of the type T .

Regarding a tuple t as a function from a finite subset L C to U b E B Db U {nullblb E B), we write

dom(t) for the set of labels in t and t(1) for the value corresponding t.o the label I . Similar notations

are used for tuple types. Figure 4.1 shows a simple example of relation instance and its standard

representation as a table.

Relation instances are terms representing sets, for which the following equations hold:

{ t l , . . . ,t,) = { t i , , . . . , t,,l if i l , . . . ,in is a permutation of 1,. . . , n

and

{ t l , t 2 , t 3 , . . .] = g t z I t,, . . .] if t , = 1,.

We consider relation instances as equivalence classes of the above equality. Under this equality,

relation instances behave exactly like sets of tuples, on which ordinary set-theoretic operations are

defined. Based on this fact, we treat relation instances as sets of tuples and apply ordinary set-

theoretic notions directly to them. Readers might think that this strictly syntactic treatment only

introduces (trivial but annoying) complication to the model that were simpler and more intuitive

if we treated them just as sets. This had been true if we were only interested in sets of finite tuples

such as flat relations in the relational model. However, it is no longer possible to maintain such

intuitive treatment when we allow infinite structures through recursive definition. Our syntactic

treatment provides a uniform way to deal with complex structures involving recursively defined

data.

Among the operations in the relational algebra, we only define join and projection. As we have

argued, these two operations make the model a successful data model for databases. They also

distinguish the model from standard type systems of programming languages. As we will see in

section 5.7, other operations are definable using standard operations on records and sets.

Two tuple types T11T2 are consistent if for all 1 E dom(Tl) n dom(Tz) , T I (/) = Tz(1). Let

T 1 , T 2 be two consistent tuple types. Define jointype(Tl,T2) as the type T such that d o m (T) =

d o m (T l) ~ d o m (T 2) and T(1) = T I (/) if 1 E d o m (T l) otherwise T(1) = T2(l) . The two tuples t l , t2 are

consistent if for all 1 E dom(t n d o m (t 2) one of the following hold: (1) t l (1) = t2(1), (2) t l (1) = nullb

and t2(1) E Da or (3) t l (l) E Da and t2(1) = nullb. Two relation types {Tl]D,f(T2T) are cons~stent

if T l , T2 are consistent. For two consistent relation types {TI 1, { T z) , define jointype(%Tl}}, {T?))

as the relation type f(jointype(T1, Tz)).

Definition 4.2 (Relational Join) If t i l t 2 are consisfent tuples then the join of t 1 , t 2 , denoted by

join(t 1 , t 2) , is the following tuple t :

d o m (t) = dom(t1) U dom(t2) ,

t l (l) if 1 E d o m (t l) and either 1 $l dorn(t2) or t 2 (l) = null(
t(1) =

t2(1) oihemzse

If r l , r2 are relation instances having consistent relation types then the (natural) join of r l , rz,

denoted by join(rll r 2) , is the relation instance { join(t l , t 2) (t l E rl , t 2 E r2, t l r t2 are consistent^.

For jo in(t l , t 2) and join(rl , r z) the following properties hold:

Proposition 4.1 Let t l , t 2 be tuples of the type Tl,T2 respectively. If join(t1, t2) is defined then

it has the type jointype(Tl,T2).

Let r l , r2 be relation instances of the type R1, R2 respectively. I f join(r1, r2) is defined then it

has the type jointype(R1, R2).

Proof By definition, d o m (t) = dom(jo in type(T l ,T2)) . Let 1 be any label in dom(t) . Then either

j o i n (t l , t 2) (l) = t l (l) with the type T(1) or jo in (t l , ta) (l) = t2 (l) with the type Tz(1). But by

definition, T I (/) = jo in type(T l ,Tz) (l) for all I E dom(T1). Similarly for T2. Thus t has the type

jointype(T1, Tz).

R 1 , R2 must respectively be of the forms {T1) , ((T2) . Let t be any tuple in j o i n (r l , r 2) . By

definition, there are some t l E rl and t 2 E r2 such that t = jo in(t1 , tz) . By the previous result,

t has the type jo intype(Tl lT2) . Then by definition, r has the type { j o i n t y p e (T l , T ?)] , which is

equal to jo intype(R1, R2). I

Definition 4.3 (Relational Projection) If t is a tuple of the form [I 1 = c l , . . . , I , = c,, . . .] such

that each ci has the type b, (i 5 n) then the projection o f t onto the type T = [I 1 : b l , l,, : h,],

denoted b y projectT(t), is the tuple [11 = c l , . . . , I , = c,].

If r is the relation instance such that for all t E r , projectT(t) is defined then the projectton of

r onto the type { T I , denoted by p r ~ j e c t f (~ B (r) , is the relation instance {projecF(t) l t E r] .

For projecF(t) and projectuTB(r), the following properties are immediate consequence of the defi-

nitions:

Proposition 4.2 f f projecP(t) is defined then it has the type T . ~f pro3ectgT1B(r) 2s defined then

it has the type { T I . I

When restricted to tuples without null values, the above definitions are straightforward trans-

lations of the corresponding definitions in the relational model found for example in [log, 35, 731.

The operation join is extended to relations containing null values. Figure 4.2 shows an example of

a join of relations containing null values.

Note that the definition of join reflects the intended semantics of null values. Projection is

specified by a type not just a set of labels. This will allow us to generalize the relational projection

to complex structures.

Remark: The combination of non-informative null values and join operation may sometimes

"Joe Doe"

"Mary Jones"

join(r1, ra)

Figure 4.2: Join of Relations Containing Null Values

Name
"Joe Doew

"John Smith"

yield counter-intuitive results.' For example, the join of the two relations

Instructor course Course Student

"MathllO" " K . Jones" " CIS31 0 " #'Joe Doe"

nullstring I IS . Brown1' nullstring John Smith8@

Age
21

nulknt

is the relation

Course I Instructor I Student

Salary
21000
34000

Office
103
278

which suggests that instructor " S . Brown1* is related to students "Joe Doe", "John Srnzihl*, al-

though no such relationship is implied by the two original relations. Based on this observation, it

has been argued [61] that join (as well as other relational operations) could not be extended "se-

mantically correctly" to this form of null values. This is, however, not the problem of interpretation

of null values but the problem of join operation. Without null values, join still yields same kind of

counter-intuitive results. For example, the join of

"MathllO"

"CIS310"

nullatring

Name '.- 1 ;;;;
"Joe Doe"

"John Smithe* 1 21 21 1 34000

" K . Jones8

"S . Brown"

'IS. Brownw

is the relation

"JohnSmithlB

"Joe Doe"

"John Smith"

'This was pointed out to me by Tomasz knielinski

Name

"Joe Doe"

" J o e Doe"

"John Smith"

"John Smith"

Salary

which suggests that "Joe Doell is related to both the salaries of 21000 and 34000. Intuitively,

the situation is stated that natural join as defined in the relational model does not necessarily

"preserve semantics of relations". In order to investigate the problem, we need t o construct a

model of our "real world" and to define semantics of relations with respect to the model. This is

out of the scope of this thesis and I refer the interested readers to [82] where this problem was fully

investigated in the context of flat relations with null values and it was shown that join can be given

a satisfactory semantics which is completely compatible to non informative null values. This study

can be extended to complex database objects we are investigating in this chapter.

Returning to our problem of extending join and projection, the above definitions apparently

depend on the underlying structure of flat tuples. Here, we would like to characterize join and

projection independently of the underlying data structures so that we can generalize them uniformly

to a wide range of complex data structures and introduce them into a type system of a programming

language. Our guiding intuition is the idea we have exploited in [22] that database objects are partla1

descript ions of real-world entities and are ordered in terms of their "goodness of descriptions". The

idea of partial description was originally suggested by Lipski [69] . The corresponding order structure

was studied by Biskup [16] and Zaniolo [I121 in connection to null values and is closely related to

the orderings on $-terms [6] and directed graphs [9 7] .

For generality and simplicity, we treat tuples and relations uniformly. We call both tuple types

and relation types f lat description types (ranged over by a) and tuples and relation instances

flat descript ions (ranged over by d). For each flat description type a, we write Do for the set

of descriptions of the type a. A flat description type represents a structure of descriptions. Such

structures are naturally ordered to represent the intuition that one contains the other. For example,

if al = [N a m e : s t r ing ,Age : int] and a* = [N a m e : s tr ing,Age : in i , O f i c e : ant], then the structure

represented by a? contains the structure represented by al. This intuitive idea is formalized by the

following ordering:

Definition 4.4 (Ordering on Flat Description Types) T h e information ordering < on flat

descript ion types is the smallest relation containing:

[ll : b , , . . . , ln : bn] < [11 : b l , . . . , l n : b", . . .I,

This relation is clearly a partial order. Moreover, since it is based on the inclusion of fields of

records, this ordering has the following properties:

1. < on the set of description types has the pairwise bounded join property, and

2. the ordering relation < is decidable and least upper bounds (if they exist) are effectively

computable.

The importance of this ordering is that it provides the following characterization of the types

of the relational join and the relational projection:

Theorem 4.1 (Types of Relational Join and Projection) Let d l , d? be flat descnpitons of

the iypes 0 1 , an respectively.

1. If join(dl, d 2) is defined then a1 U a2 ezisls and join(dl, d 2) has the type a l a?

2. I fpro jecT(d l) is defined then a < a1 and projecT(dl) has the type a .

Proof The property of join follows from proposition 4.1 and the fact that jotntype(ul, u2) is defined

iff a1 U 02 is defined and, when they are defined then their values are equal. (In what follows, we

usually write F = G to mean that F is defined iff G is defined and when they are defined then

their values are equal). The property of project follows from proposition 4.2 and its definition. 1

CVe can then give the following type schemes (polymorphic types) to join and projection:

jorn : (a l x a*) - 01 Ua2 for all a l , a2 such that ol tJ a? exists,

profecf : 6 2 -C a1 for all al,u:! such that a1 < a?.

Since the ordering relation is decidable and least upper bounds are effectively computable, these

types allow us to type-check expressions containing joins and projections.

We next characterize these operations themselves using orderings on descriptions. As observed

in [16, 1121, the introduction of null values induces the following ordering on tuples:

[I 1 = X I , . . .,In = I,] E [I l = y1,. . . , I , = y,] iff either x , = nullb or zi = yi (1 5 i < n).
This ordering is interpreted as the ordering of "goodness of descriptions". The following is an

example of this ordering:

[Name = Joe Doe1*, Age = n ~ l & , ~] t [Name = "Joe Doe", Age = 211.

.- .

It is clear that for any tuple type T this ordering is a partial order on DT with the pairwise bounded

join property. Join on tuples of a same type is characterized as the least upper bound operation

under this ordering, which formalizes our intuition that join is an operation that combines partial

descriptions:

Propos i t ion 4.3 (Jo in of Flat Tuples) If t l , t 2 E DT then j o i n (t l , t 2) = t l U t 2

Proo f By definitions. 1

For a relation type R, an appropriate ordering on DR to characterize join on DR turns out to be

the ordering known as Smyth powerdomain ordering [104]. To define the ordering, we first define

the preorder 5 :

{ t l , . . . , t n] 5 { { t i , . . . , t A l if V t i E { t i , . . . , t &) 3 t i E (2 1 , . . . , i n) . t i C t ; .

The relation 5 is not antisymmetric. However, we can take the quotient poset (definition 2.3)

induced by the preorder:

Proposition 4.4 For any relation type R, [(DR, <)I i s a poset wi th the pairwise bounded join

property.

P r o o f 5 is clearly transitive and reflexive and therefore (D R , 5) is a preordered set. Let rl and 73

be any elements in DR under 5 . Let r = f (j o i n (t l , t 2) l t l E r l , t 2 E r 2 , t l , t 2 are consistent]. Since

t l U t2 = j o i n (t l , t ?) , as a special case of the result shown in [104], r is a least upper bound of 1.1

and r z . Then the proposition follows from lemma 2.1. 1

We regard a relation instance as a representative of the corresponding equivalence class induced by

the above preorder and write d l U d 2 for the least upper bound of the corresponding equivalence

classes. We also write (D R , g) for [(D R , <)I. Readers are referred to [22, 821 for the intuition

and relevance of this ordering in various aspects of databases. For the purpose of formalizing the

relational model, this ordering provides the following characterization of join on relations we have

shown in [22]:

Propos i t ion 4.5 (Jo in of F l a t Relat ions) If r l , r2 E D R then j o t n (r l , r 2) = r1 U 7-2 = r . I

In order to characterize projections and joins of descriptions of different types, we interpret the

partially ordered space of flat description types by a space of domains connected by coercions.

Definition 4.5 (Coercions between Relational Domains) The set of up-coercions is the set

of mappings {4,,,,, la1 Q u z) defined as

1. i f 6 1 = [I1 : bl , . . ., In : b,], = [I 1 : 61,. . . , I n : bn, ln+l : bn+l,. . . , I n + , : b,+,] (n , m 2 0)

then

2. i f ul = #4] , 6 2 = {4B and at 6 ah then

401-oz(r) = {dJu;-u;(t)lt E r%.

The set of down-coercions is the set of mappings {t,lJol-u,la2 < a l) dejned as

I . if u l = [I l : b l , . . . , I n : b,, . . .] and UL, = [I l : 61,. . . , ln : b,] (n 2 0) then

t,lJu14u2([ll = C 1 , . . . In = Cn, . . . I) = [I 1 = C1,. . - , I n = ~ n] ,

2. i f u1 = #dl%, a2 = Q41 and a ; 6 a; then

IIo,-u,(r) = #IIo;-o;(t)lt E .J.

Intuitively, an up-coercion coerces a description to a description of larger structure by '.paddingn

extra part of structure with null values. A down-coercion on the other hand coerces a description

to a description of a smaller structure by "throwing away" part of its structure. For example, i f

a1 = [Name : stnng, Age : int],

a? = [Name : string, Ofice : int],

a3 = [Name : string, Age : ini, Ofice : tnt],

t 1 = [Name = "Joe", Age = 211,

12 = [Name = elJoelt , Ofice = 2781,

t3 = [Name = "Joe", Age = 21, Ofice = 2781

then

q ! ~ ~ ~ - ~ ~ (t ~) = [Name = "Joe", Age = 21, Ofice = nullint],

q5u2-u3(t2) = [Name = "Joe", Age = nulli,t, OBce = 2781,

1Cius-a1(t3) = t l ,

u - 3 = t2.

-
We then have the following equations:

This example suggests that computing a join of descriptions of types al , a2 corresponds to coercing

them to descriptions of the type a1 U a2 followed by computing their least upper bound. The

projections correspond to down-coercions. Indeed we have:

Theorem 4.2 (Relational Join and Projection) Let d l and d2 be any flat descriptions of types

a1 , a2 respectively and a be any type such that a < 1 7 1 .

Proof By the definitions of 6 and join, j o i n (d 1 , d l) = join(601~(o,uo2~(d~),6u2-~uluO~)(d~)).

Then the property of join follows from propositions 4.3 and 4.5. The property of projection is by

definitions. I

The semantic space of the relational model is therefore characterized by the set

{ (D o , C)la is a flat description type)

connected by the set of pairs of u p and down-coercions

associated with the set of join operations { j o i n ~ , l x o 2) , ~ 0 1 u 0 2 ~ ~ a ~ U a? exists) defined as

and the set of projection operations { p r ~ j e c ~ : , , ~ la1 < a 2) defined as

The importance of this characterization is that it applies to any set of domains on which we

can define information orderings and appropriate sets of coercions. Based on this analysis, in the

next section, we formally define the structures of type systems for databases and their semantic

domains.

4.3 Database Domains

As a generalization of the set of flat description types in the relational model, we define the notion

of database t y p e s y s t e m s :

Definition 4.6 (Da tabase T y p e Sys tems) A database t y p e s y s t e m i s a poset o f t y p e s s u c h t h a t

1. it h a s t h e pairwise bounded jo in proper ty , a n d

2. t h e o rder ing re la t ion i s decidable a n d least u p p e r bounds (i f t h e y e z i s t) are e f fec t ive ly c o m -

putable.

We call each type in a database type system a descr ip t ion t ype . A description type represents

a structure of descriptions and the ordering on types represents the containment ordering of the

structures they represent. The pairwise bounded join condition is necessary for the types of joins

to be well defined. The decidability conditions is necessary for effective type-checking.

Each description type should denote a domain of descriptions. As a generalization of domains

of flat descriptions in the relational model, we define the notion of descr ip t ion d o m a i n s :

Definition 4.7 (Descript ion Domains) A descr ip t ion d o m a i n i s a poset (D , C) sat is fy ing:

1. D h a s t h e b o t t o m e l e m e n t n u l l D , i.e. f o r a n y d E D, n u l l D & d ,

2. D h a s t h e patnuise bounded jo in proper ty ,

3. t h e order ing re la t ion E i s decidable and least u p p e r bounds (i f t h e y e z i s t) a re e f fec tzve ly c o m -

putable.

Condition 1 allows us to represent a non-informative value which is essential for partial descriptions.

Condition 2 states that if we have two consistent descriptions then the combination of the two is

also representable as a description. This is necessary for join t o be well defined. Condition 3 is

needed for effective computation of joins and other operations.

It should be noted that description domains are models of types of database objects and not

models of general types in programming languages such as function types. In particular, they

should not be confused with S c o t t d o m a i n s [lo l l which is used to give semantics to untyped lambda

calculus and programming languages with recursively defined functions [98]. Both notions share

similar order structures and are based on a similar intuition that values are ordered in terms of

"goodness of approximation". However, the properties of the two orderings are fundamentally

different. The ordering on a description domain is just a computable predicate, which is introduced

to generalize join and projection as computable polymorphic functions on complex database objects.

On the other hand Scoit ordering can be regarded as a predicate on the computability itself and

in principle not computable. As an example of the difference, the bottom element in a description

domain is simply an atomic value and does not corresponds to non terminating computation (or

"divergent value") denoting the bottom element in a Scott domain. We also do not assume the

directed completeness. As we will see in the next section, recursive (cyclic) types and objects are

restricted to those that have a finite representation and are modeled by regular values not by limit

points of ascending chains of the ordering.

By abstracting underlying tuple structures in the definition of up-coercions and down-coercions

between relational domains, we interpret an ordering on description types as a relation induced

by a special class of mappings between description domains. A function f : Dl + D? between

description domains D l , D2 is monotone iff for any I, y E D l , x 5 y implies f (x) C f(y).

Definition 4.8 (Embeddings and Projec t ions) A monotone function d : Dl - D2 is an

embedding if ihere ez is ts a function 11 : D2 - Dl such that (I) for any z E D2, $ ($ (x)) C x and

(2) for any x E D l , +(+(I)) = x. The function + i s called a projeciton.

A pair of embedding and projection is a special case of Galois connections (or adjunc t ions) , for

which the following result is well known [40]:

L e m m a 4.1 Given an embedding 4 : Dl - D z , the corresponding projection I S uniquely deter-

mined b y 4. I

If qh is an embedding, we sometimes denote by q5R the corresponding projection

If a pair of description domains (D l , D2) has an embedding-projection pair (Q : Dl - D2, t~ :

D2 - D l) then D2 contains an isomorphic copy D; = 4(D1) of Dl and for any element d in D2

there is a unique maximal element d' E D', such that d' C d. We regard this property as the

semantics of the ordering of description types. 4 maps an e l e m e ~ t d E Dl to the least element

d' E D2 such that d' contains all information in d. + maps an element d f D2 to a unique maximal

element d' E Dl that contains only information in d and is regarded as a database projection

from D2 to D l . The set of up-coercions we have defined on relational domains are indeed a set of

embeddings between relational domains. The corresponding set of projections is exactly the set of

down-coercions.

Our characterization of the ordering on types can be regarded as a refinement of one of the

characterizations of subtypes proposed by Bruce and Wegner [21], where the notion of subtypes is

characterized in three ways; one of them being that the larger set contains an isomorphic copy of

the smaller. It is also related to the notion of information capacity of data structures studied in

[56] where an ordering on various data structures was defined by using mappings between sets of

objects.

Finally we define a semantic space of a database type system as a space of description domains

partially ordered by a set of embedding-projection pairs.

Definition 4.9 (Database Domains) A database domatn rs a patr (D o m , E m b) of a set of de-

scription domains Dorn and a set of embeddings Ernb among Dorn sattsfying the followtng condi-

tions:

1. For any two domains D l , D2 E Dom, there as at most one 4 E Ernb such that 4 : Dl - D?.

We wnte for an embedding from Dl to D2.

2. For any domatn D E Dom, 4o-o E Emb.

3. Ernb as closed under composition.

4- For any two domains D1,D2 E Dom, if there is some D E Dorn such that d D , , ~ E Ernb

and ~ D , + D E Ernb then there is a unique D' E Dorn depending only on D l , D2 such that

~ D , - D I E Emb, ~ D , - D J E E m b and for any D" E Dorn rf 9D,,D11 E Ernb and E

Ernb then 4D,,D,, E Emb.

5. For any 4 E Emb, both d and d R are computable, r.e. there I S an algortthm to compute ~ (d)

and d R (d ') for any grven d E d o m (9) and d' E d o m (d R) .

Ernb defines the relation on Dorn such that D l and D:! are related iff there is E Emb.

This is intended to model an ordering on description types. Condition 1 means that there is only

one way to interpret the ordering between two description domains. hloreover,

Proposition 4.6 The relairon defined by Ernb 1s a pariral order wrth the parrwzse bounded join

property.

Proof From condition 2 and 3, the relation is reflexive and transitive. For anti-symmetricity,

suppose 4 x - y E Ernb and dY,x E Ernb for some X , Y E Dom. Apply condition 4 to X (a s D l)

and Y (as D 2) . Since 4 ~ - x E Ernb and d y - y E Emb, both X and Y satisfy the property of D'

-
in condition 4. Then the uniqueness of D' in condition 4 implies X = Y. The pairwise bounded

join property is an immediate consequence of condition 4. 1

Definition 4.10 (Models of Database Type Systems) Let (T, 6) be a database type s y s t e m .

A database domain (Dom, Emb) i s a model of (T , 6) if there is a mapping p : T -- Dorn such

that for any al, a 2 E T , a1 < a 2 ifl~,(,,),,(,,) E Emb.

Remember that on description domains we imposed the conditions that the ordering is decidable

and least upper bounds are computable. Combined with the computability condition on embeddings

and projections, they guarantee that join and projection defined as

are always computable functions. This means that if a database type system has a model. then

join and projection are available as computable functions with the following polymorphic types:

join : (al x a 2) - a1 u a 2 for all al, a 2 such that a1 LI a? exists (4.3)

projecf : a1 - a 2 for all u l , a 2 such that ul < a 2 (4.4)

The relational join and the relational projection are special cases of the above functions on flat

tuple structures. Moreover, from the previous results, we have:

Theorem 4.3 The set of Pat description types wi th the informatton ordenng < is a database type

s y s t e m . T h e pair o f the set of relational domains and the set of up-coercions

as a database domatn and a model of the poset of flat descnpt ion t ypes . 1

We therefore claim that the notions of database type systems and database domains are a proper

generalization of the relational model. The advantage of our characterization is that it is indepen-

dent of the actual structures of types and objects. This allows us to generalize the relational model

to a wide range of complex data structures, even those that include recursively defined types and

objects. In the next section we construct a database type system and its database domain, which

I believe t o be rich enough to cover virtually all proposed representations of complex database

objects.

4.4 A Type System for Complex Database Objects

In addition to finite structures representable by finite terms, we would like to allow recursively

defined structures, which naturally appear in descriptions of real-word entities. As demonstrated

by Ait-Kaci [6], an appropriate formalism are regular trees, which provides a sufficiently rich yet

computationally feasible representation for recursive data structures. We therefore develop our

type system and its domain using regular trees. However, this generality creates a slight technical

complication that we cannot use induction to define structures and to prove properties. This

may yield less intuitive definitions and might decrease the readability of the rest of the paper. In

order to prevent this situation, for major definitions and properties, we give equivalent inductive

characterizations on finite trees. They will not be used in the subsequent development and we shall

omit the proofs of their equivalence to the original definitions restricted to finite trees. They can

be proved by usual structural induction.

4.4.1 Set of Description Types

We begin with types. Using regular trees (definition 2.10), the set of types for complex database

objects is defined as follows:

Definition 4.11 (Se t of Descript ion Types) The set of descrtption type constructors 2s the set

F , = {Record, Varian2,Set) U B. A description type 1s a regular tree a E R (F ,) sattsfying the

following conditions:

1. i f a (a) = Set then { I E Lla . I E d o m (a) } = { e l m l) ,

2. if a . el- E d o m (u) for some a E C* then a (a) = Set,

3. i f u (a) E 5, then the set { l E Lla .I E d o m (a) } is empty.

A description type a is finite if it is finite as a tree. The set of all description types and the set of all

finite description types are denoted by Dtypew and D t y p e respectively. Record, Variant and Set

represent the record, the variant and the set type constructors respectively. Condition 1 restricts

set types to be homogeneous sets. Let a l , . . . ,an E Dtype". We use the following notations:

[11 : 6 1 , . . . , I n : on] for Record(ll = u l , . . . ,In = a,),

(1 : a , . . . 1 :) for Variant(ll = ul , . . . , I n = a,),

{ a) for Set(elm1 = a)

unit = [I
point = [X-cord : int, Y-cord : int]

intlist = (rec v . (Cons : [Head : int, Tail: u] , Nil : uni t))

object = [Name : string, Age : int]

person = (rec p. [Name : string, Age : int, Parents : { p]])

employee = (rec e. [Name : string, Age : int, Parents : {person] ,
Sala y : int, Boss : el)

student = [Name : string, Age : int, Parents : {{person), Courses : {s tr ing]]

working-student = [Name : string, Age : int , Parents : {person}},
Courses : {s t r ing] ,Sa lay : int, Boss : employee]

flights = {[Flight : [F-id : int, Date : string], Plane : string])

flown-by = {[Plane : string, Pilots : {[Name : strrng, Emp-id : i n t]]]]

schedule-data = {[Flight : [F-id : int, Date : string], Plane : string,
Pilots : {{[Name : stnng, Emp-id : i n t]]]]

Figure 4.3: Examples of Description Types

Similar shorthands are adopted in term representations of regular trees. Figure 4.3 shows examples

of description types in term representation. In this example, as well as in all other examples we will

show later, identifiers such as unit are used purely as syntactic shorthands t o avoid repetitions and

have no significance themselves. As seen in these examples, infinite trees correspond to recursively

defined types.

The set of finite description types D t y p e coincides with the following inductively defined set

DtypeO :

1 . b E DtypeO for any b E B,

2- [I 1 : u l , . . . ,In : an] E DtypeO if 01 , . . . , an E DtypeO and i l , . . . , in E l (n o) ,

3. (1 1 : u l , . . . , I , : a n) E DtypeO if U , , . . . , a n E DtypeO and 1 1 , . . . ,In E l (n 01,

where li is not a label of the form elm,.

On the set D t y p e m , we define the following ordering t o capture the ordering of the contairiment

of the structures:

Definition 4.12 (Information Ordering on D t y p e m) Let u l , uz E D t y p e m . The lnfonna-

tron ordering 6 on D t y p e m is the relation defined as: ul < u:, t f f d o m (u l) C dorn(a2) and for any

unit

unit

object

person

person

employee

student

flights

flown-by

point

object

person

employee

student

working-student

working-student

schedule-data

schedule-data

Figure 4.4: Examples of Ordering on Description Types

a E dom(ul), u l (a) = uz(a) and if ul(a) = Variant then {I E Cia . 1 E dom(u1)) = { I E L I u . 1 E

dom(u2)).

This ordering can be regarded as a special case of the subsumption ordering on A'it-Kaci's $-terms

(61. The condition on variant nodes means that in order for two variant types to be ordered, they

must have the same set of variants. The intuition behind this condition is that if a variant type ul

has a component 1 : ui and a2 has no I-component, then for a value v of the type a1 corresponding

to the component 1 : a; there is no value v' of the type a 2 that is related in structure to v and

therefore al and a? are not related. Figure 4.4 shows examples of the information ordering on

Dtypem among the description types defined in figure 4.3.

The ordering 6 , when restricted to the set of finite description types Dtype , coincides with the

following inductively defined relation Go:

b Go b for all b E B

[Il :61 , ... , i n : u n] <O [Il : ~ / ~ , . . . , l n :u; ,...] i fu , (Ou:(i< n)

u {u'J if u G o u'

(1 : 1 , . . . 1 : u <" (11 : u;, . . . , ln : 0;) if u, ui (i 5 n)

From the inductive characterization of <, it is easy to check that (D type , <) is a poset with

pairwise bounded join property, < is decidable and least upper bounds (if they exist) are effectively

computable. The following two propositions show that these properties still hold for general de-

scription types. Their proof can be constructed from the proof of the similar properties shown in

[6]. Since the proofs involve general techniques we will repeatedly use in proofs of various properties

of the type system, we include their detailed proofs.

Proposition 4.7 (DtypecO, <) is a poset with the pairwise bounded join property.

Proof For any a E D t y p e m , clearly a < a . Let a l , a2,a3 be any elements in D t y p e m . Suppose

a1 < a:! and a2 < a l . Then dom(al) = dom(a2) and for all a E dom(a l) , a l (a) = o?(a) .

Therefore a1 = a:!. Suppose a1 < a:! and a:! < as. Then dom(a1) dom(a2) dom(a3).

Let a be any element in dom(al) . a l (a) = az (a) = as(a) . Suppose a l (a) = Variant. Then

{ I E Cla . I E dom(a l)) = { I E L (a . 1 E dom(az)) = { I E C (a . 1 E dom(a1)). Therefore a1 < a3 and

hence < is a partial order on D t y p e m .

For the pairwise bounded join property, suppose a l , a2 have an upper bound. Let a' be the tree

defined as dom(al) = dom(a l) U dom(a2) and for a E dom(a) ,

al (a) if a E dom(o1)
u l (a) =

a z (a) otherwise.

Then for any a E dom(a l) , a l (a) = a l (a) and if a l (a) = Variant then { I E Lla .I E dom(u l) } =

{ I E Cla .I E dom(ol)) . Therefore a1 < a'. For any a E dom(a2) \ dom(a l) , by the definition of u' ,

02(a) = a t (a) and { I E Lla-1 E dom(a2)) = { I E Lla.1 E dom(al)) . Suppose a E dom(a l)ndom(a2) .

Since ul,u:! have an upper bound, a l (a) = a2(a) = al (a) and { I E Cla . 1 E dom(u2)) = { I E

LJa . 1 E d o m (a l) } = { I E Lla . 1 E dom(ai)) . Therefore a:! < a ' . Since dom(a1) dom(o) and

dom(a2) c dom(a) , dom(ai) c dom(u). Let a E dom(al) . If a E dom(a l) then a i (a) = a l (a) =

a (a) otherwise a E dom(a2) then oi (a) = u z (a) = u (a) . Suppose a l (a) = Vanant. Then we have

{ I E Cla.1 E dom(ai)) = { I E Cla.1 E dom(ai)) = { I E Lla.1 E dom(a)) where i = 1 if a E dom(a1)

otherwise i = 2. Therefore a' < a and hence a' is the least upper bound of a l , a?. I

The proof of the following proposition defines an algorithm to compute the least upper bound

of consistent description types.

Proposition 4.8 The ordeflng < on D t y p e m is decidable and for any descrzption types a l , a?, 1 1

is decrdable whether al,a:! have an upper bound or not and if they have an upper bound then thezr

least upper bound is effectively computable.

Proof Let Mu, = (91, s l , F , , 61, o l) , Mu, = (Q2, s2, F , , 62,02) be hloore machines representing

a1 and a2 respectively. Let M = (Q, s , F, 6,o) = Mu, x M,, , the product machine (definition 2.12)

of Mu, and Mu, .

We show that a1 < a2 iff M has the following properties: for any reachable state q in h l ,

1 . q is either q = (ql ,qz) for some ql E Q I , 92 E Q 2 or q = ($, q z) for some q? E Q?,

3. if q = (q i , q z) , q ~ E Qi,qz E Qz, ~ (q) = (Variant, Variant) and 6(q, l) = q1 for some 1 then

ql=(q: ,q ;) for some q: E Q 1 , q ; ~ Q 2 .

By lemma 2.5, the condition 1 is equivalent to dom(a l) C dom(a2) and the condition 2, 3 are

respectively equivalent to the two conditions of the definition of the ordering <.

Next we show that if 0 1 , a2 have an upper bound then M has the following properties: for any

reachable state q in M ,

1 . ~ (q) is one o f the forms: (f , f) , (f , %) , ($, f) for some f E F T ,

2. if q = (p i , qz), ql E 91, qz E Qz, o(q) = (Variant, Variant) and 6(q, I) = q' then q' = (q ; , 9 ;)

for some q; EQl ,qa EQ2.

Suppose a l , a? has an upper bound. Then for any a E dom(a l) n dom(a?) , u l (a) = a?(a) = f for

some f E F,. By the property of product machine, this implies 6*(s , paiT(a, a)) = (f , f) , which

establishes the property 1. Suppose a l (a) = a2 (a) = Variant then by the definition of 6 , for all

1 E C, a . I E dom(a1) iff a . 1 E dom(a2). By the property of product machines, this implies the

second condition.

Finally we show that if M satisfies the above condition then we can construct a Moore machine

representing the least upper bound of a l , an. Suppose M satisfies the above two conditions. Define

MuIUu3 as the Moore machine (Q , s , F , 6', 0') where

1. Q , s , F are same as those of M ,

2 . 6' is defined as bl(q, l) = q' iff 6 (q , (l , l)) = q' or 6(q, (1 , $)) = q1 or 6 (q , ($, I)) = q' ,

3. o1 is defined as ol(q) = f if o(q) is one of the forms (f , f) , (f , $), (S , f).

Since by the definition of product machine, at most one of 6(q, (I , I)) , 6(q, (1 , S)) or 6(q, (%, 1)) is

defined, 6' is well defined. By lemma 2.5 and the definition of hdulUu2, dom(hdUlUu2(s)) =

d o m (M l (s l)) U dom(M2(s2)) . By the definition of M and M,,uu2, for all a E d o m (~ b l ~ (s ~)) ,

6 ; (s l r a) = q, o l (q) = f iff 6"(s, a) = (q , x) , ol((q, x)) = f for some x , and if o l (q) = Variant then

bl (q , I) is defined iff 6 ((q , x) , 1) is defined. Therefore M,,~, , (s) satisfies the other two conditions

of the definition of < and hence M l (s l) 6 M1(s) . Similarly M 2 (~ 2) < M ' (s) . Let a be any up-

per bound of 0 1 , ~ ~ . Since for a f dom(M1(s)) either a € Ml(s1) and M 1 (s) (a) = M l (s l) (a) or

a E dom(M2(s2)) and M1(s) (a) = M2(s2) (a) , M 1 (s) d a follows from Ml(s1) < a and Mz(sz) < a .

Since the product machine and the machine Mo,ua, are effectively constructed, we have proved the

proposition. I

Combining proposition 4.7 and 4.8, we have:

Theorem 4.4 (Dtypew , Q) is a database type system. I

The following are examples of least upper bounds of description types defined in figure 4.3:

employee U student = working-student,

flights i-! flown-by = schedule-data.

From examples shown in figure 4.4 and the above examples, we can see that Q is a generalization of

the information ordering on types in the relational models to complex structures including recursive

structures represented by infinite trees.

4.4.2 Universe of Descriptions

In order to construct a model of (D typew, Q) , we first define a set of possible descriptions.

Definition 4.13 (Universe of Descriptions) The set of description constructors is the set F d =

{Record, In j , S e t) u(UbEB Db) u {nu l l b (b E B) . A description is a regular tree d E R (F d) sattsfytng

the following conditions: for all a E d o m (d) ,

I . i f d (a) = Set then { I E Lla . I E d o m (d)) = { e l m l , . . . , elm,) for some n > 0 ,

2. if a . e l q E d o m (d) for some a E t' then d (a) = Set ,

3. i f d (a) = I n j then the set {I E Lla . I E d o m (d)) is either a singleton set or the empty set,

4. if d (a) E Db or d (a) = nul la then the set {I E t l a . 1 E d o m (d)) is the empty set.

A description d is finite if it is finite as a tree. The set of all descriptions and the set of all finite

descriptions are denoted by D o b j m and D o b j respectively. I n j is a variant constructor (injection

to a variant type). I n j node with no outgoing edge represents null values of variant types.

Let d l , . . . , d , E D o b j m . We use the following notations:

[I I = d l , . . . , I , = d,] for Record(l1 = d l , . . . , I , = d,),

{ { d l . . . , d for Set(elml = d l , . . . , e l m , = d,).

Unity = [I
Point23 = [X-cord = 2, Y-cord = 31

Onelist = Inj(Cons = [Head = 1, Tail = Inj(Ni1 = Unity)])

Null-person = (rec p. [Name = n~ l l s t r ing , Age = nullint, Parents = { p J])

Null-employee = (rec e. [Name = nullstring, Age = null int , Parents = fI Null-person],
Salary = null int , Boss = e l)

John = [Name = "John Smitho1, Age = 34, Parent = { Null-person],
Salary = 23000, Boss = Null-employee]

Mary1 = [Name = " M a y Blake", Age = 21, Parent = {Null-person],
Courses = {"rnath120", "phi134OU, ulogicl lO"J]

Mary2 = [Name = " M a y Blakeee, Age = 21, Parent = {Null-person],
Salary = 9000, Boss = John]

Mary3 = [Name = "Mary Blake", Age = 21, Parent = Null-person],
Courses = Q"math12OW, "phi1340m, "logicl lO"J,
Salary = 9000, Boss = John]

Flights = 8 [Flight = IF-id = 001, Date = " 8 Aug"], Plane = "Concord"],
[Flight = [F-id = 83, Daie = " 9 Aug"], Plane = "707"] ,
[Flight = [F-id = 116, Date = "10 Aug"], Plane = "74 7"]}}

Flown-by = 1([Plane = "Concorde', Pilots = f([Name="JonesW, Emp-td = 5566111,
[Plane = "707" , Pilots = fI [Name = "Clark1@, Emp-id = 11221,

[Name = " Copely", Emp-td = 22331,
[Name = "Ch in" , Emp-id = 33441 J] ,

[Plane = " 747", Pilots = { [Name = "Clarke*, Emp-id = 11221,
[Name = "Jones" , Emp-id = 5566]}}]]

Schedule-data = { [Plane = "Concord1@, Pilots = { [N a m e = "Jones" , Emp-id = 5566])},
Flight = [F-id = 001, Date = " 8 Auge*]] ,

[Plane = " 707", Pilots = { [N a m e = "Clarkm, Emp-id = 11221,
[Name = "Copely", Emp-td = 22331,
[Name = "Ch in" , Emp-ad = 3 3 4 4] J ,

Flight = [F-id = 83, Date = " 9 Aug"]] ,
[Plane = " 747", Pilots = { [N a m e = luClark ta , Emp-id = 11221,

[Name = IaJones", Emp-td = 5566]}},
Flight = [F-id = 116, Date = 1'10 A U ~ ~ ~]])

Figure 4.5: Examples of Descriptions

-
Figure 4.5 shows examples of descriptions.

The set of finite descriptions Dobj coincides with the following inductively defined set Dob j O :

1 . c E DobjO for any c E B b , b E B,

2. nullb E DobjO for any b E B,

3. [I1 = d l , . . . , I n = d,] E DobjO if d l , . . . , dn E DobjO and 1 1 , . . . , I n E L: (n 2 O) ,

4. I n j E Dobjo,

5. Inj(1 = d) E DobjO if d E DobjO and I E C,

6. { d l , . . . , d n] E DobjO if d l , . . . , dn E DobjO (n 2 0) .

where li is not a label of the form e l m .

4.4.3 Typing Relation

Description types represent structures of descriptions. A description d has a description type a if

d has the structure represented by a . This relationship is formalized by the typing relation:

Definition 4.14 (Typing Relation) Let w be the equivalence relation on L defined as I1 z I 2 iff

l1 = l2 or l l = elm,, l2 = elmj for some i , j . Define the consistency relat~on : b between Fd arid F ,

as follows: f g i f lone of the following holds:

1 . f = 9 ,

2. f = Inj and g = Variant,

3. f E Dg and g E B,

4. f = nullg.

The typing relation d : a between Dobjm and Dtypem is defined as: d : a ifl for all a E d o m (d) ,

I . there is some a' such that a & a', d (a) a (a l) ,

2. if d (a) = Record then (1 E L (a .I E dom(d)} = { I E Cla' .I E d o m (a) }

Unity

Po in t23

Onelisl

Null-person

Null-employee

John

Mary1

Mary2

Mary3
F l i g h t

Flown-by

Schedule-data

: unit

: point

: intlist

: person

: employee

: employee

: student

: employee

: working-student

: flights

: flown-by

: schedule-data

Figure 4.6: Examples of Typing Relation

The equivalence relation z "ignores" the difference due to the positions e l m l , . . . , elm, of occur-

rences of subtrees in the set constructor S e t (e l m l = d l , . . . , elm, = d,). = is the extension of %

on C defined in 2.2.3. Figure 4.6 shows examples of typing relations between descriptions defined

in figure 4.5 and description types defined in figure 4.3.

When restricted to the set of finite descriptions Dobj, the above typing relation coincides with

the following relation :" on Dobj x Dtypem defined by induction on Dobj:

1. c :" b for all c E Ba,

3. [l , = d l , .. . , I , = d,] :" [I l : al,. . . , l , : a,] if dl :O ul,. . . ,d, :" a,,

4. Inj :" a for any variant type a,

5. Inj(1 = d) :O (. . . , I : a,. . .) if d :" a,

Note however that d E Dobj and d :" u does not implies that a E Dtype because of variant

types, i.e. rules 4 and 5 in the above definition.

From the above inductive characterization of the typing relation, it is easy to check that for any

finite description d and any description type a it is decidable whether d : a or not. This property

is essential to develop a type-checking algorithm. Fortunately, this property still holds for general

descriptions:

Proposition 4.9 For any d E D o b j m , a E D t y p e W , the property d : a is decidable. -

Proof Let M d = (Q d , sd, F d r 6d, o d) and M u = (Q,, s,, F , , 6,, 0,) be Moore machines representing

d and a respectively. Let M = (Q , s , F , 15, o) be the product machine (Md x Mu)/= where zz is the

equivalence relation on C defined in definition 4.14. We show that d : a iff M satisfies the following

conditions: for any reachable state q ,

1. if q = (q i , ~) , q l E Q1 then x E Q2 and o(q) = (f , g) such that f : b g ,

2. if q = (91,921, 91 E Q i , 92 E Q 2 , o(q) = (Record, Record) and 6(q , I) = q' then 1 = (l ' , / I) , 1' # $.

By lemma 2.5, M satisfies the condition 1 iff for any a E dom(M1 (s l)) , there is some a' such

that a & a', 6; (sd , a) = q l , 6 i (s u , a ') = 42, and od(q l) : b oU(q2). Since Md, M , represent d , a

respectively, this condition is equivalent to the condition 1 of the definition of the typing relation.

The equivalences of the condition 2 of the propositions and the condition 2 of the definition of the

typing relation are immediate consequences of their definitions.

Since M is effectively constructed and the above property is clearly decidable, the proposition is

proved. I

4.4.4 Description Domains

For each description type, the typing relation defines the set of descriptions of that type. By

defining a proper ordering, we turn this set into a description domain.

Courcelle described [32] the notion of a coherent and stmpltfiable relation on S u b t r e e s (d l) x

S u b t t e e s (d ?) as a relation - satisfying the condition that if

then f = g and d, - d: (1 5 i 5 n). By generalizing this and combining it with Smyth powerdomain

preorder, we can generalize the information ordering on flat descriptions to D o b j m :

Definition 4.15 (Information Preorder on D o b j m) The i n f o m a t t o n ordertng on the set F d

of description constructors is the following partial ordering c ~ :

f c~~ i f f f = g o r f =nul lb a n d g E D b

The information preorder 5 on D o b j m is the relation defined as: d l 5 ds iff there ts a relation -,

called a substructure relation, on S u b t r e e s (d 1) x S u b t r e e s (d 2) satisfytng ihe following properiies:

1. d l - d 2 ,

2. i f d - dl then d (c) L~ d l (c) ,

3. i f d - dl , d (c) E {Record, I n j) and 1 E d o m (d) ihen 1 E dom(d1) and d l1 - d l / l ,

4. if d - dl , d (c) = Set then for all 1 E {I E LIl E d o m (d l)) there is some 1' E {I E Cjl E d o m (d) }

such that d / l l - d l / l .

The relation 5, when restricted to the set of finite descriptions D o b j , coincides with the

following inductively defined relation 5 " :

c 5 " c f o r a l l c E B b ,

nullb so c for all c E B b ,

nullb d o nu l lb ,

[I 1 = d l , . . . , I , = d,] 5 " [I l = d:, . . . , I , = d:, . . .] if di 5" d: (1 5 i 5 n),

Inj 5 " Inj ,

Inj so Inj(1 = d) for all d ,

Inj(1 = d) 5" Inj(1 = d') if d 5 " dl ,

{ d l , . . . , d ,] 5 " {4 , . . . , d L 8 if Vd' E i d ; , . . . , d k) . 3d E { d l , . . . , d,}. d 5 " d'

On a substructure relation -, the following property hold:

Lemma 4.2 Lei - be a substructure relation on S u b t r e e s (d l) x S u b t r e e s (d s) .

F o r d ; E S u b t r e e s (d l) , d a E S u b t r e e s (d 2) , i f d ; - d: then d\ 5 d;.

Proof Immediate consequence of the fact that the restriction of a substructure relation to

S u b t r e e s (d ;) x S u b t r e e s (d ;) is also a substructure relation. I

We next show that 5 is a preorder having the desired properties. Rounds' recent work [97] also

independently shows a similar result for a certain class of labeled directed graphs.

Proposition 4.10 The relation 5 is a preorder on D o b j m with the pairwise bounded join property.

Proof The strategy of the following rather long proof is the combination of the technique suggested

in [6] t o construct a least upper bound of two regular trees by tracing the moves of two Moore

machines representing them in "parallel" and the property of Smyth powerdomain preorder shown

in [104] that if s l and s2 are finite subset of a a poset then { d l U d21dl E s l , d 2 E s2 and d l LI d 2

exists] is a least upper bound of s l and s2 under the Smyth preorder.

For any description d , the identity relation on S u b t r e e s (d) is a substructure relation and d 5 d.

Suppose d l 5 d 2 and d 2 5 d s Let -1 and -2 be substructure relations on S u b t r e e s (d 1) x

S u b t r e e s (d 2) and S u b t r e e s (d 2) x Subtr e e s (d s) respectively. Then the composition of the two

relations r l , r2 also satisfies the conditions of substructure relation. Therefore d l 5 d3 and 5 is a

preorder .

We next show that 5 has the pairwise bounded join property by showing the following stronger

property: there is an algorithm taking any two descriptions d l , d 2 that determines whether d l , d 2

have an upper bound or not and that if d l , d2 have an upper bound then computes (one of) their

least upper bound. Let Md, = (Q l , s l , Fd, 6 1 , o l) and Md, = (Q 2 , 5 2 , Fd, 6 ? , 0 2) be Moore machine

representing d l , d g respectively. Let M = (Q , s , F d , 6 , o) be the product machine (Ad l x A l s) / z .

We say that a state q in M is consis tent iff it satisfies the condition that if q = (q , , q?) for some

q1 E Q l , 92 E Q z then o (q) = (f , g) for some f , g E Fd such that f , g has an upper bound under

C~ and if o (q) E { (R e c o r d , R e c o r d) , (I n j , I n j)) and 6 (q , (I 1 , 1 ')) = q' for some I' then q' is consistent.

.We first show that if d l , d 2 has an upper bound then the start state s is consistent. Suppose s is

not consistent. Then there is some a E L* satisfying the following conditions: (1) for any proper

prefix b of a , o (s , b) E { (R e c o d , R e c o d) , (I n j , I n j)) , and (2) 6 * (s , a) = (q l , q z) , ql E Q I , q? E Q 2 ,

and o ((g 1 , q z)) = (f , g) such that { f , g) has no upper bound. Now suppose to the contrary that

there is some d such that d l 5 d and d 2 5 d . By the definition of 5 and lemma 4.2, d l / a 5 d / a

and d 2 / a 5 d / a , which contradicts the fact that o ((q l , 412)) = (f , g) such that { f , g} has no upper

bound.

Next we show that if s is consistent then d l , d 2 has a least upper bound by const.ructing one.

Suppose s is consistent. Define M ' = (Q , s , F d , b', 0 ') from M as follows:

1. Q , s are same as M ,

2. 6 ' (q , I) is defined and equal to q' iff one of the following hold:

(a) ~ (q) E { (R e c o r d , Record) , (I n j , Inj)) and one of the following hold: (i) S (q , (I , 1)) = q', (ii)

6(91(1, $)I = 9' or (iii) 6 (q , ($ 7 1)) = q',

(b) o (q) = (S e t , S e t) , I = elmi and 6 (q , (e l m j , e l m k)) = q' where (e l m j , e l m k) is the i f h

smallest symbol under the total order << on L in the set { (e l m , , e lm ,)JS (q , (e l m , , e lm,))

is defined and consistent},

(c) 9 = (9 1 , $1 and 1 = (1 , $) or q = ($, q z) and I = ($, I) ,

3. o' is defined as

(x U y if o(q) = (x , y) , x , y E Fd and x u y exists

if o(q) = (x, $)
o'(n> =

if 4 9) = ($, Y)

I $ otherwise.

We show that M 1 (s) is a least upper bound of d l , d2. Let S1 = {Ml(q) lq E Q l , q reachable), S 2 =

{ M 2 (q) J q f Q 2 , q reachable), and S = {M1(q) lq E Q, q reachable). Then S1 = S u b t r e e s (d l) , S? =

S u b t r e e s (d 2) and S = S u b t r e e s (M 1 (s)) . Define the relation -1 between S1 and S as M l (q)

M1(q') iff q' = (q , x) for some x . Then it is easily checked that this relation satisfies the con-

ditions of substructure relation and therefore dl 5 M 1 (s) . Similarly d2 5 iCil(s). Let d be any

upper bound of d l , d s . Let -',,-; be substructure relations on S u b t r e e s (d 1) x S u b t r e e s (d)

and S u b t r e e s (d 2) x S u b t r e e s (d) respectively. Define the relation -- on S x S u b t r e e s (d) as

M 1 (q) d' iff one of the following hold: (1) q = (9 1 , %), hf l (q1) N; d' , (2) q = (8, q2), Mz(q2) --; d l ,

or (3) q = (q1,q2) , M l (q l) --', d', M2(q2) --h d'. Then satisfies conditions 1,2,3 of the definition

of a substructure relation (definition 4.15). For condition 4 , suppose M 1 (q) -- d' and Al l (q) = Set.

If q = (q l , $) or q = ($, q2) then condition 4 follows from the fact that -;, -5 are substructure

relations. Suppose q = (91, 92). Then M l (q l) --; d and M2(q2) --I2 dl. If I E dorn(dl) for some

1 E L, then there is some 1 1 , l2 E L such that hl (q l , 1 1) = q:, 62(q2,l2) = q; , M l (q ;) --; dl / l and

hd2(q;) -5 d l / l . By lemma 4.2, M l (q ;) 5 d'll and M2(q;) 5 d' l l . Let M i , M:, M" be respec-

tively Moore machines obtained from M I , M2, M' by respectively replacing their start states with

qi q;, (q; , 9;). Clearly M l (q i) = M i (q $) , M2(q;) = M:(q;) and M" = (M i x M$)/=. Since Mi (9 ;)

and M z (q i) has an upper bound, (q',,q;) is consistent. By definition, 11 = elm, and 13 = elmj for

some i, j. Then by the definition of M' there is some 1' such that 6'(q, 1') = (q ; , q i) and therefore

hl1(q)/1' - d1/1.

Since M' is effectively constructed, the proposition was proved. I

The above proof also establishes that least upper bounds are effectively computable. For the

Moore machine M' defined in the above proof, it can be also easily shown that dl 5 d? i f f ,\I1

satisfies the following conditions: for all reachable state q in M', (1) seconb(q) E Q?, (2) i f

q = (q l , q 2) , ~ 1 E Qlrq2 E Q2 then ol(q1) C~ 02(q2) and if o(q) = Set then for all I? such that

5?(q2, 1 2) is defined there is some l1 such that 6'(q, (I 1 , 1 2)) is defined. Therefore we have:

Proposition 4.11 The relation 5 on D o b j m is decidable and least upper bounds (~f they e x ~ s t)

are effectively computable. 1

The next proposition show that the typing is preserved by least upper bound.

Proposition 4.12 If d l : a , d2 : a and d is a least upper bound of d i ,d2 then d : a .

Proof Let dl ,d2 be any descriptions and M' be the Moore machine representing a least upper

bound of dl and d2 constructed in the proof of propaition 4.10. By the construction of M I , for

any a E d o m (M 1 (s)) either there is some b E dom(d l) such that a & b and d l (b) gb M t (s) (a) or

there is some c E dom(d2) such that a c and d?(c) cb M 1 (s) (a) . Since for some x , y E F d , if

x L~ y and x : b f for some f E F, then y :' f , in either case a satisfies the conditions of the

definition of the typing relation d : a . I

Definition 4.16 For any descnption type a E Dtypem, the domatn D, associated with a t s the

pose2 [({did : a) , 3 1 .

Theorem 4.5 For any a , Do is a descnption domarn.

Proof We show that D, has a bottom element. By definition of D,, it is suffices to show

the existence of a description d such that d 5 dt for all d' E {dld : a) . Define a mapping

nullval : F , - Fd as

null, if f E B

otherwise.

For any a , define the description N u l l (u) as follows:

1 . a E d o m (N u l l (u)) iff a E d o m (u) and there is no proper prefix b of a such that a (b) = Chnnai,

and

2. for all a E d o m (N u l l (u)) , N u l l (a) (a) = nullaal(u(a)).

From this definition, it is easy to check that N u l l (a) : a and N u l l (u) 5 d for any description

d : a . Then the theorem follows from propositions 4.10, 4.1 1, 4.12 and lemma 2.1. 1

4.4.5 A Model of the Type System

We now define the set of embedding-projection pairs to connect the set of description domains and

turn them into a database domain.

For defining functions and properties on D,, the following definitions and results are useful. Let

(P I , < I) , (P 2 , I?) be a preordered sets. A function f : PI -. P2 is monotone iff for any pl, pz f P I ,

if p1 I l pz then f (p l) 52 f (p2) . For a monotone function f : Pl - P?, define [f : P& - P&

as [f] ([x]) = [f (x)] . Since f is monotone, [f] is well defined in the sense that it does not depend on

representatives of equivalence classes. It is also clear that [f] is monotone. The following lemma is

an immediate consequence of the definition.

L e m m a 4.3 Let (P I , 11), (P2 , I z) be preordered sets and f : Pl + P2, g : P2 -. Pl be monotone

functions. If for all p E P I , g (f (p)) = p and for all P E Pz, f (g (p)) 1 2 P then (I f] , (91) 2s an

embedding-projection pair between [(P I , < I)] and [(P?, I?)]. I

Definition 4.17 Let u l , a? f D t y p e m such that ul < a?. q5,,-,, zs a functzon from {dld : a l } to

{did : u 2) defined as follows: a E dom(~,,,,,(d)) ifl either (1) a E dom(d) or (2)- there are some

a l , a?, bl such that a = al . a? and a] z bl satisfying:

I . al E dom(d), d (a l) = Record and for any non empty prefix a3 of a* there ts no a4 such that

al . a3 & a4, a4 E dom(d),

2. bl - a? f dom(u) and for any proper prefiz a3 of a?, a(bl . a3) # Vanant,

and for any a E dom(~,,,,,(d)),

if a E dom(d)
dul-na(d)(a) =

nullual(az(b)) t f a dom(d) where b & a, b E dom(a)

where nullual is the function from F, to Fd defined in the proof of theortm 4.5'.

tl~u,,o, 1s a mapprngfrom {d(d : a?} to {dld : u l } defined as follows: p,,-,,(d) I S the restrtctton

of d such that a E dom(ll,,,,,)(d) t f la f dom(d) and there 8s some b E dom(o?) such that a & b.

Define

Embm = { d ~ ~ - ~ ~ l ~ l , U? f DtypeCo, a l < a ?) ,

E m b = { d u , - u , l ~ ~ , a? E D t y p e , a l < a ?) ,

P r 0 j W = { ~ 0 , - ~ ~ 1 6 1 , a ? E D t y p e w , u 2 < a l) ,

P f o j = { $ o l - a 2 J a ~ r a2 E D t y p e , a z < u l } .

Since for any a,b in dom(u) , if a & b then a = b, the above definition of ~,,,,, is well defined.

Propos i t ion 4.13 For any 0 1 , 0 2 , a1 < a?, ([d ,,,,, 1, [$,,,,, 1) zs an embeddzng-projection patr

beiween D,, and Do,.

-
Proof For any element d such that d : a l , let dl = q5,,,,,(d) and dl1 = $,,,,,(dl). By the

definitions of q5,,,,, and d : a l , a E d o m (d) iff a E d o m (d l) and there is some b E d o m (a l) such

that a & b, and for any a E d o m (d) , d l (a) = d (a) . By the definition of $,,,,, , a E dom(dl1) iff

a E d o m (d l) and there is some b such that a & b, b E d o m (a l) . Also for any a E dom(dl1) , dI1(a) =

d l (a) . Therefore d = dl1 and hence $,,,,, (q501-a,)(d) = d .

For any element d such that d : a?, let d' = $,,,,,(d) and dl1 = d,,,,,(dl). Define a relation - on

S u b t t e e s (d l 1) x S u b t r e e s (d) as follows: for dl E S u b t r e e s (d V) , d2 E S u b t t e e s (d) , d l - d? iff

either there is some a E d o m (d l) such that dl = d1I/a and d? = d l a , or there is some a , b such that

a tif d o m (d l) , a & b, dl = dl1/b and d2 = d l a . Since 6 E d o m (d l) , dl' - d . Suppose d l = d1I/a, d? =

d / a for some a E d o m (d l) . By the definitions of 4,, ,,, and $,,,,, , dI1(a) = d l (a) = d (a) . Suppose

dl = dl1/b, d n = d / a for some a tif d o m (d l) , a & b. Then by the definition of ~,,,,,, there is some c

such that c & b, c E d o m (a 2) and d"(b) = nullval(a2(c)) . By the property of nullval, dl1(b) E~ d (a) .

Therefore in both case d l (€) C~ d3(c) . The other conditions of substructure relation (condition 3-4)

can be easily checked by distinguishing cases whether a E d o m (d l) or not and using the property

of the typing relation and the definition of 4,,,,, in the latter case.

For the monotonicity of 4,,,,,, let d l , d? E {dld : 01) and d', = 4,,,,,(dl), d; = @,,,,,(d~).

Suppose there is a substructure relation - on S u b t r e e s (d 1) x S u b t r e e s (d ?) . Define a relation -I

on S u b t r e e s (d i) x S u b t r e e s (d ;) as follows: d -I dl iff either (1) there are a , b such that dl / a -
d z / b and d = d ' , /a ,d l = d i / b or (2) there are a , b , c such that d l / a - d2 /b , d = d i / a . c , dl = d z / b . c ,

and for any nonempty prefix d of c a.d @ d o m (d l) , b.d # d o m (d 2) . I t can then be checked that -' is a

substructure relation. For the monotonicity of $,,,,, , let d l , dg E {dld : a ?) and d; = ~,, , , , (dl) ,

d; = +,,,,,(dz). Suppose there is a substructure relation - on S u b t r e e s (d 1) x S u b t r e e s (d ?) .

Define a relation -I on S u b t r e e s (d ;) x S u b t r e e s (d 6) as: d - I dl iff there are a , b such that

d l / a - dglb and d = d i / a , d l = dh/b. Then it is easily verify that -I is a substructure relation.

Then the proposition follows from lemma 4.3. 1

For Emb and P r o j , there are inductive definitions. We first define functors (function con-

structors) for records, variants and sets.

1. Records.

Let f l : a: -+ a:, . . . , fn : a: - a: be any functions and cn+l , . . . , cn+, be any constants

(n, m > 0) . [/ I = f l , I n = f n , ln+l = cn+l , . . . , ln+, = cn+,] is the function on records of

type [I 1 : a:, . . . ,In : a:] defined as

and [I 1 = f l , . . . , I k = f k , 1k+1 = ak+l, . . . , I n = a,] (0 5 k 5 n) is the function on records of

type [I 1 : u: , . . . , I k = a:,lk+l = ak+l,. . .,In = a,] defined as

2. Variants.

Let f l : a: - a:, . . . , f n : a,!, - a: be any functions. (I l = f l , . . . , I n = f n) is the function

on variants of type (I l : a: , . . . , In : a,!,) defined as

(1 1 = f l , ..., In = fn) (ln j) = Inj,

(I l = f l , I n = fn)(Inj(li = d)) = Inj(li = f i (d)) (l 5 i 5 n).

3. Sets.

Let f : a1 - a? be any function. 4 f] is the function on sets of type {{a l] defined as

Then Emb coincides with the following inductively defined set Embo:

1. idb E EmbO for any b E B where idb is the identity function on Bb,

2. [I 1 = do;,,; , . . . In = dat-a:,ln+l = N ~ l l (u ~ + ~) , ..., In+, = Null(an+,)] E EmbO if

~ o ; d o ; , 4,:-,: E EmbO and un+l,. . . ,an+, E D t y p e where Null(ai) is the mapping

defined in theorem 4.5,

The P r o j coincides with the following inductively defined set Projo:

1. idb E ProjO where idb is the identity function on Bb,

2. [11 = $,;,,,;, . . .lk = $,:-,:, 1k+1 = at+l , In = an] E ProjO if $,;-,;, . . . ,$,:-,: E

Pro jO and ak+l,. . . ,an E D t y p e

From the inductive characterization of E m b and Proj it is easy to see that all embeddings

and projections between finite types are computable functions. This necessary property still hold

for general embeddings and projections.

Proposition 4.14 Elements of E m b w and Projm are all computable functions.

Proof We first show for the embeddings in E m b m . Let a1 Q a? and d : 0 1 . Let !Md =

(Qd, sd, Fd , 6d, od) and Mu, = (Q,, , F,, 6,,, o,,) be Moore machines representing d , a 2 respectively.

Let Ad = (Q, s , F , 6 , o) = (Md x Mu,)/= be the product machines modulo the equivalence relation

= defined in definition 4.14. Define M' = (Q , s , F d , 6', 0') from M as follows:

1. Q , s are same as M .

2. 6 ' (g , l) is defined and equal to qt iff either 6 (q , (l , l r)) = q and 1 # $, or 6(q, ($, I)) = and

~ (q) $! {(Inj, E'ariant), ($, Variant), (Set , S e t) } ,

3. o' is defined as

if 4 9) = (f , g) , f #
if o(q) = (%, g) , g # $

otherwise.

It can then be checked that M 1 (s) = Q , , - ~ , (d) .

For the projections in Projm, let u2 Q a1 and d : a , . Let Afd = (Qd , sd , F d , b d , o d) and Al,, =

(Q o z , F,, bU2, oo2) be hloore machines representing d, a? respectively. Let ,id = (Q , s . F , 6 , o) =

(Md x Mu,) /= . Define M' = (Q , s, Fd, 6 ' , o t) from Af as follows:

1. Q , s are same as M,

2. 6 ' (q , l) is defined and equal t o q' iff S(q,(I , 1 ')) = q and I' # S

3. o' is defined as

f i f o (q) = (f , g) , g # S
o'(9) =

otherwise.

Then by lemma 2.5, M 1 (s) = tLu,-u,(d). I

We now have the following theorem:

Theorem 4.6 ({ D U l a E D t y p e m } , { [d] (d E E m b W }) t s a database domatn and a model of

(D t y p e w . Q) .

Proo f By proposition 4.13, for all 4 E Emb", [4] is an embedding. Since Dtypem is a poset

with the pairwise bounded join property, conditions 1 - 4 of a database domain (definition 4.9)

are satisfied by the set {[t#~]I4 E E m b m } . Condition 5 is shown by proposition 4.14. The mapping

p : Dtypem - {Dola E Dtype") is given as p(u) = Do. 1

This theorem says that we have successfuIly completed the constructions of a type system for

complex database objects and its semantic domain. The type system allows arbitrarily complex

objects constructed by records, variants, finite sets and recursive definition. This demonstrates

that our mathematical characterizations of database type systems and their semantic spaces are

general enough to provide a semantic formulation of a database domain that is rich enough to cover

virtually all existing representations of complex database objects.

Another important implication of the above theorem is its computational contents. It guarantees

that for arbitrarily complex types, various properties needed to compute joins and projections and

to type-check expressions are always effectively computable. As we will show in the next chapter,

these properties enable us to develop a practical programming language that integrates the database

type system we have constructed and an hlL-style polymorphic type system.

Joins and projections are given by equations (4.1) and (4.2), which are always computable

functions. An actual algorithm to compute them can be easily extracted from the proof of the

theorem. hloreover, there are generic ways t o compute joins and projections. For joins, we have:

Propos i t ion 4.15 If dl : ul , dn : u2 are descripttons such that u = a1 U a? t h e n

P r o o f By the definitions of 4 and Null, ~ , , , , (d l) = dl u Null(u) and 4,,, ,(d2) = d , ~ hrull(u).

Then we have : $, , , , (d l) LI 4,,,,(d2) is defined iff (d l U dz) U Null(a) is defined iff dl U dz is

defined. The equation follows from the fact that Null(u) is the bottom element of the set Do. 1

Since we have shown that least upper bounds are effectively computable, the above result gives

a generic way to compute joins. For projections, the definitions of $,,,,, is already generic in

the sense that it does not depend on ul . Define the partial function Proju as follows: for any

description d, Proju(d) is the restriction of d such that a E dom(dl) iff a E dom(d) and there is

some b E dom(u) such that a & b . Since the definition of Proju and $,,,, is identical except

their domains, we have:

Proposition 4.16 If d is a description of type a such that a' < a then

p r o j o ' (d) = $,,,~(d).

For static type-checking, since join and projection have polymorphic type schemes (4.3) and

(4 .4) , the result types of joins and projections are always determined from the types of their

arguments. hloreover, theorem 4.6 guarantees that they are effectively computed. The following

are examples of joins of descriptions in figure 4.5:

The types of the above two joins are working-student and schedule-data respectively, which are

computed from the types of their arguments. This property allows us to develop a static type

system.

Chapter 5

A Polymorphic Language for

Databases and Ob ject-Oriented

Programming

This chapter combines ML type system we have analyzed in chapter 3 and the type system for

complex database objects we have constructed in chapter 4 and defines a programming language

that achieves the integration of records, variants and database objects. We call the language

Machiavelli maintaining the name we gave to the language in [87]. Later in chapters 6 and 7, the

language is extended to integrate the other desirable features we discussed in the introduction of

the thesis. Some of the results in this chapter were presented in [85].

5.1 Introduction

Machiavelli extends the polymorphic programming language ML with

labeled record and labeled variants with associated operations field selection, field modifica-

tion, and case statement, and

complex database objects and the associated database operations lozn and projection.

We work out this extension preserving the ML's central feature of static type-checking, polymor-

phism and static type inference.

Let us first illustrate how ML type system is extended by simple examples. In section 1.1, we

have defined the function wealthy:

fun w e a l t h y (X) = select x .Name

where z E X

with x.Salary > 100000;

for which Machiavelli infers the following type information

wealthy : fI [(s l)Name : s z , S a l a r y : i n t]] --c { s *] .

As we have explained, the above type expression means that wealthy is a function that takes a

homogeneous set of records, each of the type [(s l) N a m e : s2 ,Salary : i n t] , and returns a homo-

geneous set of values of the type s? . s? is a description type variables representing an arbitrary

description type we have constructed in section 4.4 and [(s l) N a m e : sz, Salary : in t] is a condi-

tional type vanable which intuitively represents an arbitrary record type that contains Name : sa

and Salary : int fields.

The function wealthy is polymorphic with respect to the description type variable s? of the

values in the Name field (as representable in hfL) but is also polymorphic with respect to the

conditional type variable [(s l) N a m e : s l , Salary : in t] . In this second form of polymorphism,

wealthy can be thought of as a "method" in the sense of object-oriented programming languages

where methods associated with a class may be inherited by a subclass, and thus applied to objects of

that subclass. This second form of polymorphism is illustrated by the following example. Suppose

we implement person objects by expressions of the type

[N a m e : s tr ing, Age : int]

and want to define a function increment-age which takes a person object and returns a new person

object whose Age is incremented by one. The function is written in Machiavelli as follows:

fun increment-age p = modify(p, Age,p.Age + 1)

where modify is the primitive that modifies (or updates) a record a t a specified field with a specified

value. Machiavelli finds the following type for this function:

increment-age : [(s)Age : int] --, [(s)Age : in t] .

This says that incrementnge is a function which takes a record of any type containing Age : int

field and retuns a record of the same type. By this mechanism, Machiavelli achieves the similar goal

to the system for multiple inheritance originally proposed by Cardelli [24]. For example, suppose

we implement employee objects by expressions of the type:

[Name : string, Age : int , Salary : int] .

Since the type [Name : string, Age : in t , Salary : int] is an instance of [(s)Age : in t] , the following

type is an instance of the type of increment-age:

[Name : string, .4ge : int,Salary : int] + [Name : string,Age : int ,Salary : int]

and therefore incrementage can also be applied to an employee object returning an employee

object.

In the rest of this section, we review existing approaches to integrate records, variants and

complex database objects in a static type system and outline our strategy.

5.1.1 Records and Variants for Object-oriented Progran~ming

There are numerous arguments on the features of object-oriented programming. Here we will not

go into the argument on the "essence" of object-oriented programming but instead we concentrate

on the following features:

method inheritance,

user definable class hierarchies based on an inheritance relation

data abstraction,

which I believe to be the major contributions of object-oriented programming. Among these fea-

tures, the method inheritance mechanism is a form of polymorphism in the sense that it allow

methods to be applied to various structures sharing certain common properties. In this chapter

we only consider this feature. I believe that this mechanism is a basic feature of a type system

that should be integrated in the polymorphic core of the language. The other two features will be

treated in the next chapter by extending lllachiavelli with a new construction for classes.

-
Method Inheritance by Subtyping

Perhaps the first serious attempt to integrate method inheritance in a static type system was [24]

by Cardelli. He argued that the essential feature of "objects" can be captured by labeled records

and labeled variants. Of course records and variants alone do not achieve the features of object-

oriented programming such as classes and data abstraction. However, we can agree with this view

under the interpretation that these data structures enable us to implement the essential features of

object-oriented programming. Indeed in object-oriented programming languages such as Smalltalk

1441, objects are implemented by a set of "instance variables" associated with "states" which can

be naturally regarded as labeled record structures.

It is straightforward to add labeled records and labeled variants to a simple type system. Indeed

many programming languages such as Pascal satisfactorily integrate them into a static type system.

In such a type system objects can be implemented using record types and variant types. For

example, the following types can be regarded as types for classes person and employee:

person = [N a m e : s tr ing,Age : i n t] ,

mployee = [Name : s t r , Age : i n t , Salary : in t] .

Methods can be implemented by functions on those types. For example, the following function

fun n a m e (z : person) = z. Name

extracts the value of Name from a person object and can be regarded as a method of the class

person, where r.1 denotes the selection of the 1 field from the record r . Note that in a simply typed

language, it is mandatory to specify the type of a formal parameter as in the above example. An

obvious drawback to these simple type systems is that they do not support method inheritance.

Since the body of the function name is also meaningful to objects of the type employee, we would

also like to use this method for objects of the type employee. However, a simple type discipline

does not allow such application. As a result, we are forced to define the same function for the type

employee.

Cardelli observed that the method inheritance such as those in the above example is related to

the structures of record types and variant types and proposed a type system that supports method

inheritance [24]. He defined the subtype relation, which is based on the following relation on record

types and variant types:

[I , : T I ,.... l,, : T,, , . . .] 5 [11 :ri , . . . , In : r:] if ri 5 T: (1 5 is n),

(I l : T ~ , ..., In : T ~) 5 (I l : ri , . . . , In :T: ,...) if T~ 5 T,! (1 5 i 5 n) .

The complete subtype relation is obtained by "lifing" these relation t o function types by the fol-

lowing rule:

if T I 5 TZ and ~3 5 ~4 then + ~3 5 T I - r4.

He then defined a type system where the following rule is derivable:

Because of this rule, a function defined on a type can be applied to values of all its subtypes. For

example, the function name defined above can be applied not only t.o objects of the type person

but also t o objects of the type employee because employee 5 person and any object o that has

the typing o : employee also has the typing o : person. Cardelli and Wegner extended this type

system t o integrate polymorphism using explicit type abstraction [27] (where the rule (TRANS) is

an inference rule).

However, the type system of this kind that have been so far proposed suffer from the problem

called "loss of type information". The problem was first pointed out in [27] in the context of

Cardelli's original type system. To see the problem, consider the method that extracts N a m e field.

In the following examples, we use X notation to represent functions. If the type of N a m e field is

s tr ing, then the method is implemented by the following function in (241:

name1 Ax : [N a m e : string]. x .Name.

Any types that are subtype of the type [N a m e : string] inherit this method. Moreover, the result

type is string as we expect. Now consider the case where the type of N a m e field is itself a record

type such as [F n : s tr ing, L n : string]. The method is implemented by the following function:

name2 Ax : [N a m e : [F n : string, L n : s tr ing]] . x.Name

Again any types that are subtype of the type [N a m e : [F n : s tr ing, L n : s tr ing]] inherit this

method. However, the result type is not always the one we expect. For example, consider the

following application:

name2([Name = [F n = @'Joe1', h4i = "hf", L n = "Doe"]) .

Since the type of [N a m e = [F n = *'Joe1*, hli = * ' h i w , L n = d do el'] is [N a m e : [F n : s tr ing, h l i :

s tr ing, L n : string]] which is a subtype of the type [Name : [F n : string, L n : s t r i n g]] , the above

application is well typed. Since nema2 is a function that extracts N a m e field form a record, we

expect this application to yield the value [F n = "Joe", M i = I 'M", L n = "Doe"]. We therefore

expect the type of this application to be [F n : string, M i : string, L n : s tr ing] . However, in his

system, the actual result type is [F n : string, L n : string]. This example shows that an application

of an inherited method from a super type sometimes "loses" type information. Since the language

is strongly typed, this also means the serious problem of Ices of information of object itself. In the

above example, the Mi filed of the object returned by the inherited method name2 can never be

accessed.

In [27] a new construction, bounded quantification, is introduced, which is a generalized form

of type abstraction [94]. The introduction of type abstraction obviously enhances the expressive

power of the language. However, the introduction of bounded quantification does not eliminate the

problem of loss of type information. In the first place, the terms we have just examined are still

terms of the language. Secondly, although the int,roduction of type parameters allows us t o apply

a term to an appropriate type, it does not guarantee that the term will not be prone to loss of

type information. For example, in the new type system, the function that extract Name field is

implemented by the following polymorphic term:

pname = Atl.Atl 5 [N a m e : t2].Xx : t l .x .Name

where At is type abstraction and At 5 r is bounded type abstraction. By instantiating the type

variable t 2 with [Ln : s tr ing, F n : s tr ing] , we have the term:

pnamel Atl 5 [N a m e : [L n : s tr ing, F n : s tr ing]]Xz : t l . x .Name

with the type

V t l 5 [N a m e : [Ln : string, F n : string]].t l - [Ln : string, F n : string].

t 1 can be instantiated with any type that is a subtype of [N a m e : [L n : s tr ing, F n : s t r ing]] . Take

[N a m e : [L n : s tr ing, M i : sting, L n : s tr ing]] and we have the term

Ax : [N a m e : [L n : string, Ali : sting, L n : string]].x.Name

whose type is

[N a m e : [L n : s tr ing, A.li : sting, Ln : s tr ing]] -- [L n : string, L n : s t r ing] .

Then by applying it to the object [N a m e = [L n = **JoeB', M i = ".iCI1*, Ln = "Doe"]] , we have an

object of the type [L n : string, Ln : string]. But since pname is a function that extracts N a m e

field, we expect the result of the above application to yield [L n = "Joeo4 , Adi = " d l " , L n = *'Doe"].

We apparently lost the type information of Mi : string.

A precise analysis of the loss of type information phenomenon is certainly desirable. Meanwhile,

the following analysis may contribute towards understanding part of the problem. Using the rule

(TRANS) to type-check the terms containing field selection e.1 seems to fail t o reflect the precise

operational behavior of this program construction, which is

A typing rule that would fit this is:

e : rl
(dot) where rl is a record type containing 1 : 72.

e . l : ~ z

The associated condition coincides with the subtype relation rl 5 [I : only i f r? has no proper

subtype. However, if r? is a type that has proper subtypes such as record types, then the condition

associated with the typing rule (dot) is strictly stronger than the subtype relation. In the original

type system [24], this may help explaining why, for example, n a m e 2 exhibits loss of type informa-

tion, but n a m e 1 does not. An appropriate relation to type-check terms containing field selection

seems not the subtype relation but the filed inclusion relation among record types.

The same mismatch between the operational behavior of e.1 and the rule (TRANS) remains in the

new type system [27]. As we have seen in the example of p n e m a , the bounded quantification does

not correct the mismatch. Moreover, the bounded quantification does not provide an alternative

to the rule (TRANS) to type-check terms containing filed selection. In [27] it is suggested that "now

that we have bounded quantifiers, we could remove the other mechanism [of inheritance], requiring

exact matching of types on parameter passing...". This should mean that the rule (T R A N S) could

be removed, since this is the only rule to achieve non-exact matching of types on parameter passing

in the type system of [27]. If we do this, however, we will lose much of the power of representing

inheritance, as shown below:

Proposition 5.1 Let N be a t e r m in F U N [27] that contarn 2.1 where x is a free vanable zn e . If

Ax : rl. M has a typing derivation In the iype sys tem of F U N then ei ther r is not a type variable

o r the derivat ion contains the application of the rule (TRANS).

Proof A typing judgement in FUN is a formula of the form C, A D M : r where A is a type

assignment and C is a subtype assumption. For the complete definition of the type system of FUN,

readers are referred to [27].

The proposition is proved by the following property of the type system. Let A be a type assignment

such that A (z) = t for some type variable t . Then any derivation for C, A b 1.1 : T must contains

the application of the rule (T R A N S) . I

This implies that without the rule (T R A N S) , functions containing field selection e.1 cannot be

polymorphic even with the existence of bounded quantification and therefore if the TRAN TRANS) is

removed then we lose most of the power to represent inheritance.

The presence of the rule (T R A N S) also raises some problems with primitive operations that are

important for database programming such as join and equality. Here we consider the treatment

of equality. There are at least two forms of equality that are commonly used in programming

languages. One is the identity between run-time objects in store. Examples include Amber's

equality primitive [23] and eq predicate in Lisp. In this view [N a m e = "Joe"] = [Name = ~'Joell]

is presumably false, and the best we could say about equality is that it is a function of type

TI x TZ - bool. Another form is the "structural" equality which tests whether two expressions

denote the same value or not. Examples of this equality include the equality primitive = in Standard

ML and equal in Lisp. For this form of equality, we would expect a type error if it is applied to

values of different types. This is the type checking rule adopted in Standard ML. However, with

the existence of the rule (T R A N S) , this desirable type discipline cannot be enforced. For example,

consider the untyped term A t . x = [N a m e = "Joe"]. In ML the type [Name : string] - bool

is inferred for this term, but with the addition of (T R A N S) , it is legitimate to apply this function

to [N a m e = "Joe", Age = 211 - something that in the untyped case we would expect to raise a

run-time type error!

Method Inheritance by Type Inference

Wand observed [I l l] tliat the method inheritance is a mechanism to capture tlie polymorphic nature

of operations associated with records and variants and can be achieved by hiL style polymorphism

through type inference. If a type system can infer the most general type for operations on record

such as field selection, then those operations can be applied to any records to which the application

is type correct. The major problem in accomplishing this idea is that basic operations on records

and variants do not have a principal type-scheme and therefore the conventional type inference

algorithm (theorem 3 . 2) cannot be directly applicable to these operations. The problem is seen

in Standard hlL1, which integrates labeled records but cannot find a type for functions whose

arguments are partial matches for records such as

fun name [Name = x, ...I = x

'In Standard ML, the syntax for records is {I = e , . . . , I = e) . Here we use the syntax [l = e , . . . , I = el.

where "..." in [Name = I , ...I is the patter in Standard ML that matches any sequence of fields that

do not contain Name field. Although Standard ML compiler reports a type error for the above

definition, this function is well typed in the sense that it has a typing. For example, if we specify

a type of the argument as in:

fun name ([Name = x , ...I : [Name : s t r , Age : int]) = x

then Standard ML compiler find the following correct type for the function:

[Name : s t r ing, Age : int] --, string.

The problem is that there is no principal typing scheme because of the condition associated with

the field selection.

\%'and [I l l] tried to solve this problem by decomposing type expressions into two languages,

TE and R E , respectively called type expressions and row expressions. (His language also contains

labeled variants. Here we restrict attention to labeled records. Labeled variants can be understood

similarly.) TE and R E are defined as follows:

TE ::= t I L I TE -- TE I [RE],

R E := y 1 6 1 RE(1: T E)

where t , y are variables ranging over TE, R E respectively and 0 is a constant symbol denoting the

empty row. R E satisfies the following equality rules:

His type system contains the following typing rules for records.

A t el :b] ate?:^
(with)

A k e l with 1 := e? : Ip(1 : r)]

where T and p ranges over arbitrary types and rows respectively. The rule for e.1 is now represented

without any condition. The necessary condition is correctly captured by the equality rule (5.1).

Therefore the primitive operators . . . with 1 := . . . andI do have principal type schemes [y] x t -
[y(1 : t)] and [y(l : t)] -+ t respectively in TE and R E . Since R E equipped with the equality rule

(5.1), any ground instances of these type schemes are types of these operators. However, RE is

no longer freely generated. Because of this fact, equations between TE and RE in general do not

have most general solution. This reflects the fact that in his language there is a typable term that

has no principal typing scheme. For example, the following term has a typing under his set of type

inference rules but has no principal typing scheme:

(Ax. Xy. r (y(x with 1 := 1)) (y [I = 11)) [1= true].

His type inference algorithm produces the following equations on RE to infer the type of y:

[y(l : int)] = [a(/ : int)]

which does have a solution but has no most general one. Because of this fact, his unification-based

type inference algorithm cannot find a solution and reports a type error.

We overcome this problem by extending the notion of typing schemes to allow conditions on type

variables. In our system, the term Ax. 1.1 has the following principal conditional typing scheme:

where [(tl)l : t?] is a type variable t l associated with the condition that substitutions of t i are

restricted to those 0 such that B(tl) is a record type containing 1 : 8(t2) field. By this mechanism

we solve the type inference problem for records and variants. Several other solutions have been

also proposed [38, 105, 25, 63, 26, 931. An advantage of our method is that it allows us to extend

M L type system uniformly to a wide range of data structures and operations including complex

database objects and associated operations join and projection.

5.1.2 Integrating Database Objects

Nre turn our attention to the problem of integrating complex database objects and associated

operations into programming languages. Since our objective of this subsection is to identify the

problems, we will not attempt to give a comprehensive survey. Readers are referred t o [lo] for an

excellent survey in this area.

Historically database systems are developed relatively independently of programming languages.

Many database systems were built as stand alone systems with a special data manipulation lan-

guages often called database query languages. A typical example is SQL [8] for System R [9].

Obvious problem of these languages is that they are extremely limited in expressive power because

of the lack of general programming capability, which also makes it difficult to integrate databases

with other applications.

In order to overcome this disadvantages, several embedded l anguages - the languages that embed

a database query language as subroutine calls in a general purpose programming language - have

been developed. The problem of this ad hoc solution is that the interface between a database and a

host language is usually limited t o primitive types such as integers and strings. The database struc-

tures such as records and relations are not recognized by the host language. As a result, database

programming cannot make full use of the expressive power and the type-checking capability of the

host language.

The designers of certain database programming languages, notably Pascal-R [9D] and Galileo

[7] have recognized this mismatch problem and have implemented languages in which a database

can be directly represented in there type systems. Type checking in both of the languages is static

and the database types are relatively simple and elegant extensions to the existing type systems

of the programming languages on which they are based. Galileo also allows complex database

objects and incorporates a form of inheritance based on the subtype rule we have just analyzed.

However, these languages do not support database operations such as join and projection. Database

programming is done by using special iteration primitives (for each.. .in.. . d o in Pascal-R and

for.. .in.. .with.. .do in Galileo). Such iteration primitives are of course useful and necessary.

But we would also have database operations on "bulk" of data such as join and projection. As we

have argued in section 4.1, these operations are extremely useful in many database programming. As

we will see in chapter 7 they are also useful t o represent object-oriented databases. These language

also do not integrate polymorphism and static type inference - the other essential features of

good programming languages. To my knowledge, no attempt has been made to integrate database

structures into a type system with polymorphism and static type inference.

In the previous chapter, we have solved the problem of constructing a type system for complex

database objects with generalized join and projection. In this chapter we solve the problem of

integrating them into an ML style type system. In order to achieve this goal we first extend the

type system of 1 l L to include the database type system we have developed in the previous chapter.

We then define a set of constants for constructing and manipulating complex database objects and

extend the proof system for typings to include these new constants. For the extended language, we

develop a type inference algorithm. It turns out that our proposal of condrironal typrng schemes we

have explained in the previous subsection is general enough to include structures and operations

for databases.

5.2 Definition of Machiavelli

5.2.1 Types and Description Types

The set of Type (ranged over by r) of Machiavelli is the set of regular trees denoted by the following

term representations (subsection 2.2.3):

T ::= b 17 -7 1 [l : r ,... , l : r] l (1 : r ,... , l : T) 1 { T I 1 (r e c v . r (v))

where b stands for base types. By the interpretation defined in subsection 2.2.3, each expression

denotes a regular tree. The set of regular trees denoted by the following language is exactly the set

Dtypeco of description types we have constructed in section 4.4:

a ::= b I [I : a , . . . , I : a] 1(1 : a , . . . ,I : a) I {a}} I (r ec v . a(v)) .

We apply directly the ordering we have defined on Dtypew to those type expressions. For conve-

nience, we assume a set of special labels # l , . . . , #i, . . . and use the following shorthand:

5.2.2 Raw Terms

We first define the set Cons t s of constants of Machiavelli to represent records, variants and complex

database objects and associated operations.

For labeled records, labeled variants and sets, the necessary constants are the following:

1. Record constructor constants:

for all finite sequence of (distinct) labels (I 1 , . . . , i n) and for all types T I , rn

2. Variant constructor constants:

variant' : rl -+ r?

for all labels 1 and all pair of types rl,r2 such that r 2 is a variant type containing 1 : 7 1 , i.e.

T? is a regular tree such that ~ ~ (6) = V a r i a n t , 1 E dom(r2) and r? / l = T I .

3. Set constructor constants:

setn : a - . . . - a - {a] (n argument curried function) -
n

for all description type a and integer n.

In order to represent cyclic (recursive) database descriptions, we define the set of description

constructor constants. This requires several steps. The set of constructor ezpressions (ranged over

by c) is given by the following syntax:

c ::= x I ~ e c o r d (' ~ " ") (c ~ , . . . , cn) I var ian t l (c) ISetn(cl , . . . , c,) I (rec x. c) .

x in (rec x . c) is a bound variable. As for lambda terms, we write F V (c) for the set of free

variables in c and c[c l / x] for the constructor expression obtained from c by replacing x by cl with

necessary bound variable renaming. A constructor expression c has a description type a under a

type assignment A, denoted by A b c : a , if it is derived by the following typing rules:

A D c l : a1 . . . A P C , : a ,
(R E C O R D)

A t> ~ e c o r d (l ~ ~ ~ - . ~ ' ~) (c ~ , . . . , c,) : [I l : a l , I n : a,]

d D c : a l
(V A R I A N T) if a? is a variant type containing 1 : a ,

A D v a r i a n t l (c) : a?

d Dcl : u . . . A D C , : u
(SET)

A D S e t n (c l , . . . , c,) : { a n

A { x : = a) D C : a
(R E C)

A D (rec x . c) : a

We write C E I- A D c : a i f A D c : a is derivable in the above proof system. For this typing

system the following properties are proved as in lemma 3.5 and lemma 3.8:

Lemma 5.1 If C E I- A D c : a then C E I- AtFV(') DC : a . If C E t- A D c : a and x @ d o m (A)

then C E I- A { x := a ') b c : a for any a ' . I

Lemma 5.2 If C E I- A { x := u l) b c : a* and C E I- A b c' : a1 then C E I- A D c[c ' /x] : a?. I

By this lemma and the rule (R E C) , we have:

P r o p o s i t i o n 5.2 If C E I- A b (rec x . c) : a then C E t- A b c[(rec x . c) / x] : a . 1

A constructor expression c is proper if it is not a variable and if c (rec x . c') then c' is one

of the form ~ e c o r d (' ~ ~ . . . , ' ~) (c ~ , . . . , c,), Irarinat '(cl) or S e t n (c l , . . . , c,). The set of description

constructor constants is now defined as the set:

{ c (z l , z m) : g1 d . . . - 6, - a(
F V (c) = { X I , . . . , x,), c is proper and CE I- {xl := al, . . . , x, := a,) t> c : a)

For cyclic description constructor constants, the following property hold.

Proposition 5.3 IJ (rec x. : a i s a description constructor constant then so i s

~ [(r e c x. C) / X] (~ ~ , . . . ~ ' *) : a.

Proof By F V ((r e c x . c)) = FV(c[(rec I. x) / x]) and proposition 5 . 2 . 1

This property corresponds to unfolding of a recursive definition.

Cyclic description constructors should not be confused with fixed point constructors such as

(f i x x e) in M L [T8]. Cyclic descriptions denote regular trees of descriptions we have developed in

chapter 4. As an example, consider the cyclic description:

((r e c z. ~ e c o r d (~ ~ ~ ~ ~ ' ~ ~ ') (h , x)) (~) 1) : (rec v . [H e a d : in t ,Tai l : v]) .

This denotes a regular tree represented by a finite graph and therefore the evaluation of .this

expression always terminates under any evaluation strategy. On the other hand

j x x. [Head = 1 , T a i l = x]

should denotes a fixed point of the function Ax. [Head = 1,Tail = x] (which is also definable

in Machiavelli using a fixed point combinator). If the interpretation of the function abstraction

is "strict" then the latter denotes "bottom". Operationally this corresponds to the fact that the

evaluation of the latter expression diverges under the "call-by-value" evaluation. As we have pointed

out in section 3.5, fixed point combinators are definable in our language and therefore we do not

need t o include fixed point constructors (or equivalently special constants I' : (r - r) - r) . We

will comment more on this topic when we will discuss recursive function definitions in Machiavelli

(subsection 5.6.1).

Finally we define constants for operations on these data structures:

1. Field selectors:

select' : T I + r?

for all 1 and pair of types T I , T? such that rl is a record type containing 1 : 7 2 .

2. Field modification:

modify1 : TI - 7 2 - rl

for all 1 and pair of types r l , T? such that TI is a record type containing 1 : T?.

3. Case analysis for variants:

for all finite sequences of (distinct) 1 1 , . . . , I n and all types TI,. . . , rn, T.

4. Set unions:

union : { a] - {{a] - {{a]

for all description types a.

5. Cartesian product of sets:

for all n and description types a l , . . . ,a,.

6. Mapping a function over a set:

m a p : (a1 - a?) - ga l] - {{a?]

for all description types a l , a?.

7. Join of descriptions:

join : a1 -a? -03

for all description types al ,az , as such that a3 = a1 u a?.

8. Consistency check for two descriptions:

con : a1 - a:! - bool

for all description types a l , a? such that a] U a2 exists

9. Projection of descriptions:

proju : al - a

for all description types a,al such that a < a1

10. Equality on descriptions:

eq : a - a - bool.

-
We define the set Cons t s of constants of Machiavelli to be the set of all the above typed

constants (i.e. pairs of a constant symbol and a type) and the set of typed atomic values and

standard primitives on atomic types (such as addition on integers and conditional on boolean).

Definition 5.1 (Set of Raw T e r m s of Machiavelli) The set of raw terms of Machiavelli

(ranged over b y e) is the set given by the following syntaz:

e ::= c I x I Ax. e ((e e) (let x = e in e end

where c stands for ihe set of symbols (c13r. c : r E C o n s t s) .

Note that this definition is an instance of the definition of the set of raw terms of hIL (defini-

tion 3.21).

For the raw terms, we use the following syntactic shorthands:

(r ec z. e) (r ec 1.. ~ (~ ~ ~ . - - ~ ~ ~)) (e ~) . . . (e n)

where e c("l,.. - Z n) [e l / x l , . . . , e n / x n] .

In examples we also use the following syntactic sugar for case statements:

(case e of (1 1 = x l) * e l , . . . , (1 , = I,) * en) o

(case e o f 11 * Axl. e l , . . . ,in Azn. e l) .

It should be noted that new notations we have introduced above are not new term constructors. The

abstract syntax of raw terms remans the same (definition 3.21). Later we will give an alternative

definition where those new notations are introduced as raw terms constructors.

5.2.3 The Proof System for Typings

Since the definition of raw terms and types are instances of the general definitions of ML we gave

in section 3.5, the definition for the proof system for typings of Machiavelli is the same as that of

ML (definition 3.22). We repeat the typing derivation system below:

(CONST) A D c : T if c : r E Consts

d D e l : rl -+T? d D e ? : rl
(APP)

A D (el e2) : T?

d D el[ez/x] : r d D e? : r'
(LET)

A D l e t x = e? in e l end : r

We write MC t- A D e : T if A D e : T is derivable.

5.3 Alternative Presentation of Raw Terms and Typings

The above presentation of raw terms has the technical advantage that it significantly simplifies

the presentations of the typing inference system, type inference algorithm and the semantics of

the language. In particular, many results about the semantics can be directly applied to hlachi-

avelli without re-proving them by adding cases for new term constructors. However, programming

languages are usually defined using raw term constructors, which may yield a more intuitive and

readable definition. For this reason, we give an alternative presentation for the set of raw terms

using raw term constructors:

e ::= c7 1 x I Ax. x I (e e)] l e t x = e in e end I

[I = e , . . . , I = el 1 e.1 I m o d i f y (e , I , e) (

(I = e) I (c a s e e o f l a e , . . . , I a e) I

{e, . . . , e 8 1 u n i o n (e , e) I p r o d (e , . . . , e) I m a p (e , e) I

j o i n (e , e) I p r o j e c t (e , a) I c o n (e , e) I e q (e , e) I (rec v. e(v))

where cT stands for atomic constants and operations on base types and e (v) in (rec v . e (v)) stands

for a raw term possibly containing symbol v .

For the alternative presentation of the set of raw terms using raw term constructors, the equiv-

alent proof system can be given by the following set of rules:

(CONST) A b cT : T if c : T E Consts

A b e l : ~ l ' r 2 A b e 2 : r l

A D (e l e2) : T?

A D e l [e 2 / x] : r A b e ? : T'

(LET)
A b l e t x = e 2 in e l end : T

A D e : s l
(DOT) if TI is a record type containing I : r 2

A D e.1 : r2

A p e l : r l A b e ? : ~ ?
(MODIFY) if rl is a record type containing I : T?

A D m o d i f y (e l , l , e 2) : TI

A b e : r l
(V A R I A N T) if r z is a variant type containing 1 : TI

A b < / = e > : T?

d b e 1 : a . . . A b e , : a
(S E T)

A b { e l , . . . , e n l : {aB

A el : {al]D . . . A b e , : {a,}}
(PROD)

A D prod(e1,. . . , e n) : {a1 x , . . x a,}}

A p e : a 1
(PROJECT) if a2 < a1

A D project(el, a?) : 6 2

A Del : a1 A De:, : a2
(CON) if a1 U a2 exists

A D con(el,e2) : bool

A D e l : a A ~ e 2 : a
(EQ)

A D eq(el , e 2) : bool

A{v := a } D e(v) : a
(REc)

A t> (rec v e (v)) : a

The reader is encouraged to check that the set of all derivable typings are indeed isomorphic to

those in the proof system based on the construct.or constants. In examples that follows we use this

representation of raw terms, but we continue to use the previous representation of raw terms and

iypings in deiiniiions of iormai properiy of Tviachiaveiii.

5.4 Type Inference Problem

In our view, terms of M L are typing schemes representing sets of typings (definition 3.10). As

we have analyzed in section 3.2, type-checking and type inference depend on the existence of a

principal typing scheme for any typable raw terms. In order to preserve this property, it was

needed for constants t o have a principal typing scheme (assumption 3.1). As we have seen in

section 5.1, however, field selection se lect1 does not have a principal typing scheme. The type

inference algorithm for M L is therefore not directly applicable t o our language.

T h e reason that select1 does not have a principal typing scheme is the condition associated with

the typing rule. The conventional notion of type-schemes cannot represent the set of all types of

-
the forms T I -+ 7 2 such that T I is a record type containing 1 : 1 2 field. The same problem exists for

the constants variant ' , join and proju (and description constructor constants containing them).

The family of description constructor constants are restricted to description types, which is also a

form of condition that cannot be represented by conventional type-schemes. We solve this problem

by extending the notion of typing schemes to allow conditions on substitutions.

5.4.1 Conditional Typing schemes

Let T u a r be a set of type variables (ranged over by 2) .

Definition 5.2 The set of type-schemes, Tscheme ranged over by p, of Aifachiavelli is the set of

regular trees represented by the following syntaz:

On substitutions of type-schemes, we define the following five forms of conditions

Definition 5.3 A condition zs one of the following formula:

1. d type (p) ,

2. Lpl 31: ~ 2 1 ,

3 (P I 3 1 : ~ 2) ,

4. P I = jointype(p2, pa),

5. l e s s than(u , p) .

The first condition states that p should be a description type. The other four conditions represent

the conditions associated with the constant functions select', var iant1 , join and pro ju . W call

these four forms of conditions record, variant, join and projection-condiiions respectively. o in a

projection condition l e s s t h a n (o , p) is called a target type of the projection condition. The meanings

of these conditions are defined by the following satisfiabilzty relation:

Definition 5.4 A substitution 6 satisfies a condition c.

1. i f c dtype(p) and 6 (p) E Dtypew,

2. i f c C ~ I 3 1 : p2] and 6 (p l) is a record type contatning 1 : 6 (p 2) , (i.e. 6 (p l) is a regular tree

such that 6 (p l) (~) = Record, 1 E d o m (6 (p l)) and 6 (p l) / l = 6 (p 2)) ,

3. i f c -= (p i 3 1 : ~ 2) and O(p1) is a variant type containing 1 : O(p2),

4 . i f c (p i = jo in type(pz ,p3)) and E Dtypem, O(p2) E DtypeW, O(p3) E DtypeW

and d i p l) = B(p l) U 8(p3) , where U is the least upper bound of the ordering on Dtypew we

have defined in subsection 4.4.1,

5. i f c l e s s than(a ,p) and O(p) E Dtypem, a < O(p), where < is the ordering on Dtypew we

have defined in section 4.4.1.

A substitution 8 satisfies a set of condition C iff 0 satisfies each c E C

The condition of the form dtype(p) is similar t o the condition associated with the equality types

in Standard ML' and can be implicitly represented by introducing distinct type variables and

meta-symbols for description types. For this purpose we define the set of description type-schemes,

a subset of type-schemes that represents only description types. We divide the set T v a r of type

variables into two sets; the set of unconditional type variables (ranged over by u) and the set of

description type variables (ranged over by s). iVe continue to use t for a type variable ranging over

arbitrary elements in T v a r . The set of description type-schemes (ranged over by 6) is the set of

regular trees represented by the following syntax:

6 ::= s I b I [l : 6 , . . . ,1 : 61 1 (1 : 6 , . . . ,1 : 6) 1 (r e c v . 6 (v)) .

In what follows, we implicitly regard 6 as a type-scheme associated with the condition dtype(6)

and write 8 (6) assuming that 0 is a substitution satisfying the condition O(6) E Dtypem. This

is tacitly done in Standard M L implementation t o incorporate equality primitive in ML's original

t,ype inference mechanism. For example, we have the following typing scheme in Standard ILIL:

where #la is an equality type variable, which is regarded as a type variable with the condition that

substitutions are restricted to those O such that O(l8a) is a type that does not contain function type

constructor .3

Definition 5.5 (Conditional Typing scheme) A conditional typtng scheme rs a formula of the

fonn C, E b e : p such thai for any ground substitution 8 for C , S and p, if 8 satisfies C then

M C I- O(C) b e : B(p). A conditional typing scheme C , C b e : p is princtpal if for any typing

A b e : T there 1s a substituiton 8 such that 0 satisfies C and A ~ d o m ~ P) = O (E) , T = O(p).

'This similarity was pointed out to me by Robin Milner
With the existence of reference types, the precise condition is that B("a) does not contain function type con-

structor outside the scope of any reference type constructor.

The following theorem extends theorem 3.2 for ML.

Theorem 5.1 There is an algofi'thm C7S which, given any raw term e , yields either failure or

(C , C , p) such that if CTS = (C , C , p) then C, C D e : p is a principal conditional typing scheme

otherwise e has no typing.

Proof We assume that the unification algorithm U (section 2.2) on regular trees is extended to

an algorithm to unify a finite sequence of regular trees simultaneously. Such an algorithm can be

easily constructed by the unification algorithm that unifies two regular trees. As before we consider

C as a tree by using a linear order on variables (as in theorem 3.2).

We first show that all constants have a principal conditional typing scheme. For constants other

than description constructor constants, we have the following principal conditional typing schemes

representing their set of associated types:

0,fl D cT : T (for all atomic constants and operations on base types),

0,0 D recordr1*....'n) . . u1 - . . . un - [I l : u l , . . . , I n : u,],

{ (u l 3 1 : up)) , 0 D variantr : up --r u1,

0,0 D setn : s -. . . . s -+ fIsJ (n arguments),

{[u l 3 1 : u?)), 0 D selectr : ul - up,

{[ul 3 1 : u?]) , 0 D modify1 : ul - u ~ , - u l ,

0 , 0 ,, . . (11 : Ul, . . . , I n : u,) - (u l U) -+ . . . - (un - u) - U .

0 , s D union : {,I) - fIs] - { s] ,

0 ,0 Dprod" : {s1I) - . . . - - f IsnI)-{sl x . . . x s n] ,

0,0 D map : (s l - s?) - { s l) - f(spI),

{s3 = jointype(sl, s ?)) , 0 b join : sl - s? - s3,

{s3 = jointype(sl, sp)) , 0 D con : sl -- sp - bool,

{lesst han(u, s)) , 0 D proj" : s - a ,

0,0 b e q : s - s - bool.

By the definition of these constants and the satisfiability of conditions, all the above are clearly

principal conditional typing schemes.

We next show the same property for description constructor constants. We first define the algorithm

C& to compute a conditional typing scheme of constructor expressions:

Algorithm CE

CE(c) = (C, C, 6) where

(1) Case c x:

C = 0

C = {x := s} (s fresh)

6 = s

(2) Case c ~ e c o r d (' ~ ~ . . - l ' ~) (c 1 , . . . , ~ n) :

let

(Cl,C1,61) = Cf(c1)

(C n , s n , 6 n) = Cf(cn)

S = dom(S1) U . . . U dom(Cn)

F! d l - - '7 -l{x: := s l , . 1 . . , .- .- s:) (s f , 15 i 5 t fresh)

where {I:, . . . , x:} = S \ dom(S1)

CL = X1 {I; := s ; , . . . ,I; := s;) (s:, 1 5 i < 1 fresh)

where (17,. . . ,171 = S \ dom(Cn)

e = z ~ (x ; , . . . , s ;)

(3) Case c var iant1(c ') :

let

(c l , s l , h l) = Cf(c0

in

C = C1 U { (s 3 1 : 61)) (S fresh)

S = S 1

6 = s

(4) Case e Se tn(c l , . . . , c n) :

let

(Cn, CnY6n) = CE(cn)

X = dom(C1) u . . . U dom(Zn)

Z\ = Z l { z i := s i , . . . , z i := s:} (s:, 1 5 i 5 k fresh)

where { z : , . . . , x i) = X \ dom(C1)

Zk = Z l { z y := s ? , . . .,x; := s ;) (s f , 15 i 5 1 fresh)

where { I ? , . . . , z ;) = X \ dom(Cn)

6 = u((C l , , h l) , .. . , (2 ; , 6n))

in

C = 6(Cl U . . . U C n)

Z = e(c:)
6 = %6(61)11

(5) Case c 5 (rec z . c l) :

let

(C1, Z1,61) = CE(c1)

in

if x E dom(C1) then

let

0 = U (C i (~) , 6 1)

in

C = B(C1)

r, = e (~ ~ f d o m (" ~) \ l z))

6 = 6(b1)

else

C = C ,

C = C1

6 = 61

For this algorithm, the following property holds, whose proof is similar to that of lemma 3.4:

Lemma 5.3 If C&(c) = (C , C , 6) then dom(C) = FV(c) . 1

The principal conditional typing scheme for a description constructor constant c (z l ~ . . . ~ z n) is then

given as:

C, 0 p c(rl t . . . q rn) : z(Xl) -+ . . . + C(X,) 6

where (C, C , 6) = Cf(c).

We show that the above algorithm computes a principal conditional typingscheme for all description

constructor constants. By definition of ~ (~ l ~ - . ~ ~ n) and lemma 5.1, 5.3, it suffices to show that (1)

if CE I- A b c : a then Cf(c) = (C,C,6) and there is some substitution 6 such that 6 satisfies

C and O(6) = a , 6(C) = A [~ ~ " (~) , and (2) if CC(c) = (C, C, 6) then for any substitution 6 ground

for C and C if B satisfies C, then CE I- B(C) b c : B(6). Since the set of constructor expressions

are inductively defined terms (not regular trees), we can show the above properties by induction

on the structure of c. The basis is trivial. The induction step is by cases. In the following proof,

C, C,, . . . , S, X i . . . , p , p , . . . , 6 refer to those described in the algorithm CC.

1. Case c ~ e c o r d (' l ~ . . - - ' n) (c ~ , . . . , c,): Suppose CE t- A p ~ e c o r d (' ~ ~ - . - ~ ' ~) (c ~ , . . . , c?) : a for

some A and a . Then by the typing rules, a must be of the form [I1 : 01,. . . ,I , : a,]. By

the induction hypothesis, for each 1 5 i 5 n, Cf(c,) = (C,,C,,6,) succeeds and there is

some q, that satisfies Ci and qi(Ci) = drdorn('*), qi(6,) = a,. Let 9: = 9i r F T V ((C t ~ ' 1 ~ 6 *))
where F T V (X) is the set of type variables in S. Then qi(Ci) = A[dom(st), 9i(6i) = a,. By

the definition of C& the sets FTV((Ci , Xi, 6,)) of type variables are all disjoints. Therefore

3 = 7; U . . . q i (as graph) is a well defined substitution and sat.isfies the following properties:

for all 1 5 i 5 n, q satisfies Ci, q(Ci) = Ardorn('*) and q(6,) = ui. Then by the property of

unification, N(Ci, . . . , Ck) in the algorithm succeeds and return O such that q 5 6. Let q' be

a substitution such that q = rl' o 8 . Then q' satisfies O(C1 U . . . U C n) , qt(6(S;)) = drdorn("),

q1(6(bi)) = ai (for all 1 5 i 5 n) and therefore q'(6) = a .

Conversely suppose ~f(~ecord('~~...*'~)(cl, . . . , c,)) = (C, C, 6). Then by the definition of

CC C&(ci) = (Ci , Xi, 6,) for all 1 5 i 5 n and there is a substitution 0 such that C =

O(Cl u .. . u C,), ~ r ~ " " (' ~) = O(Ci), 6 = [I , : 6(6i), . . . , ln : 6(6,)]. Let q be any substitution

ground for C, S that satisfies C . Then q o O is a substitution ground for all C, , Xi , 1 5 i 5 n

that satisfies all Ci, 1 5 i 5 n. Then by the induction hypothesis and by lemma 5.1, CE I-

q(C) b c, : q(6(bi)). By the rule (RECORD), CE t q(C) b c : q(6).

2. Case c - variantl(c '): Suppose CE t A b variant l (c ') : a for some A , u . Then by the

typing rules, a must be a variant type containing 1 : a1 such that CE t- A b cl : al . By

the induction hypothesis, CC(cl) = (C1, Cl ,b l) succeeds and there is a substitution q ground

for C1, C1 that satisfies C1 and q(C1) = and ~ (6 1) = a l . Since s introduce in the

-
algorithm is fresh, r]' = r]{s := a) is a substitution satisfies all the above three conditions.

But since u is a variant type containing 1 : 01, r]' also satisfies C and r]'(C) = Ardornix),

d (6) = 0 .

Conversely, suppose C&(Variantr(c ')) = (C , C , 5) . By the definition of CI, C I (c l) = (C 1 , S , s)

such that C = Cl U { (s 3 1 : 61)) . Let r] be any substitution ground for C , C that satisfies

C. Then r] satisfies C 1 and r](s) is a variant type containing 1 : ~ (6 1) . By the induction

hypothesis, C E I- r](C) D c' : ~ (6 1) . Since r](s) is a variant type containing 1 : ~ (6 1) , by the

rule (V A R I A N T) , C E I- r](C) D Var ian t ' (c l) : r](s) .

3. Case c S e t n (c l , . . . , c,): Similar t o the case for e ~ e c o r d ' l , . . srn(c l , . . . , c,)

4. Case c (rec x . c l) : Suppose C E I- A D (rec x . c l) : a . Then by the typing rules,

C E I- A { x := a) p cl : u. By the induction hypothesis, CE(c l) = (C1,S1,Ci l) succeed and

there is some r] ground for C1,Xl that satisfies C1 such that v(S1) = A { x := a) r d o m (x l) >

6 (b 1) = a . Suppose x E d o m (C 1) then q (C 1 (x)) = u = ~ (6 1) . Therefore the unification in

the algorithm U (C l (x) , 61) succeeds and returns 6 such that r] 5 0. Let r]' o 6 = r] . Then r]'

satisfies O(C1) , r] ' (6 (Clrdom(S~) \~ '))) = ~ t d o m ~ e (s ~ d o m ' ~ " ' c . ')) , and q1(8(b1)) = a . Suppose

x 4' d o m (C 1) then r](C1) = A { x := a)tdOm(sl)= A ~ d O m (c ~) and ~ (6 1) = a .

Conversely suppose C&((rec x . c l)) = (C , X ,6) . By the definition of C I , C&(c l) = (C l , 21,61).

Suppose x E dorn(C1). Then 8 = U (C 1 (~) , 6 1) and C = B(C1) , S = 6(Cl r n o m (S 1) \ { r)) ,
6 = 6(b1) . Let r] be any substitution ground for C , C that satisfies C . Then r] o 6 satisfies

C 1 . By the induction hypothesis C E k r] o 6 (C 1) D cl : r] o O(bl) . But B (S 1 (x)) = 8(b1) = 6.

Thus C E I- r] (S { x := 6)) D cl : r](6), i.e. C E I- r] (C){x := ~ (6))) D cl : ~ (6) . Then by the

rule (R E C) , C E F v (S) D (rec x . c l) : ~ (6) . Suppose z (Z d o m (S 1) . Then S = S 1 , C = C1,

and 6 = 6,. Let q be any substitution ground for C , C that satisfies C. By the induction

hypothesis C E t- r](S) D cl : ~ (6) . By lemma 5.1. C E I- r] (C){x := ~ (6)) D c1 : ~ (6) . T l ~ e n

by the rule (R E C) , C E I- r](C) D (rec x . cl) : ~ (6) .

We now define the algorithm to compute a conditional principal typing scheme for general raw

terms:

Algonthm C 7 S :

C T S (e) = (C , C , p) where

(1) Case e c: Given above.

(2) Case e G x:

C = 0 ,

C = {x := u),

p = u.

(3) Case e G (e e):

let

(C l , % , P I) = CTS(e1)

(C27 C2, ~ 2) = CTS(e2)

'71 .dl - - =i- -l{xl := u l , . . 1 . , xn := u,?,) where

(21,. . . .x,) = dom(C?) \ dom(Xl) (u i , . . . , u,?, fresh)

C', = C?{IJ~ := u?, . . . , ym := u k) where

{y , , . . . ym) = dom(Xl) \ dom(C?) (u i , . . . , U: fresh)

0 = U((C:, pl) , (C',, p2 - u)) (U fresh)

in

c = e (c l) u e(c,) ,

s = e(s;),
p = B (u) .

(4) Case e Ax. e l :

let

(CI, XI, PI = CTS(e1)

in

if x E dom(S1) then

C = C1,

y = yldomC)\{z)

else

C = C l ,

S = 5.

p = u - pl (u fresh).

(5) Case e G let x = el in ez end:

let

(C1, X I , P I) = CTS(e1)

(C2, C2, P Z) = C ~ S (e 2 [e l l x l)

Ci = C 1 { z l := u: , . . . , x, := u,?,} where

{ X I , . . . , 2,) = dom(C2) \ dom(C1) (u i , . . . , u,?, fresh)

C i = C2{y1 := u:, . . . , ym := u $) where

{ y l , . . . , ym) = dom(C1) \ dom(C2) (u : , . . . , u: fresh)

e = u(c;, c;)
in

c = e(c1) lJ ~ (C Z) ,

c = e(c;),
P = 6 ' (~ ?) .

For the correctness of the algorithm, we need to show that (1) if M C t- A D e : r then C 7 S (e) =

(C , S , p) and there is a substitution 6' that satisfies C and 6'(Z'), r = B (p) and (2) if

C 7 S (e) = (C , S , p) then for any ground substitution 6' for C,S ,p if 0 satisfies C then M C l-

B(C) D e : o (~) . This is proved by induction on the structure of e. We have already proved

for the case for constants. The case of x is identical to the proof for h lL (theorem 3.2). Since

the cases for Ax. el and (e l e 2) does not create new conditions, these cases are proved similar to

the corresponding cases in hIL. The necessary new properties are implied by the corresponding

induction hypothesis. 1

5.4.2 Satisfiability of Conditions

We have shown that for any raw term e if e is typable then we can effectively construct a principal

conditional typing scheme. This result is, however, not enough for complete static type-checking

since a principal conditional typing scheme C,Z D e : p constructed by the algorithm may not

have an instance. This may happen because the set of conditions C may not be satisfiable. As

an example, the algorithm computes the following conditional typing scheme for the raw term

e X I . (2.1 + 1,x.l and true):

{ [u 3 1 : int] , [u 3 1 : bool]),0 b e : u - (int x bool)

where set of conditions is clearly unsatisfiable and therefore the raw t,erm has no typing. In such a

case the type system should report a type error. In the above example, it is rather trivial to detect

the unsatisfiability. For general terms, however, we need to develop an algorithm to simplify a set

of conditions and to test their satisfiability.

For a set of conditions C , we write S a t (C) for the set {Ole satisfies C) .

Definition 5.6 A set of conditions C 1 is a refinement of C 2 if there is a substitution 8 such that

S a t (C 2) = { r) o B l r) E S a t (C 1)) . 8 is called a refinment substitution for C 2 .

The following property is an immediate consequence of the definition:

Proposition 5.4 If C , C D e : p is a principal conditional typing scheme and C' is a refinement

of C with a refinement substitution 0 , then C ' , 8 (C) b e : O(p) is also a principal conditional typing

scheme. I

We would like to develop an algorithm which, given a set of conditions C , decides whether C is

satisfiable or not and if it is satisfiable then computes a refinement of C and a refinement substitution

8.

If a set of conditions C only contains record conditions or variant conditions then such an

algorithm exists.

Definition 5.7 A set of conditions C is in record-vanant normal form zf the followtng propertres

hold:

1. i f [p 3 1 : p'] E C then p is a type variable,

2. if (p 3 1 : p') E C the p is a type variable,

3. if [p 3 1 : pl] E C , [p 3 1 : p2] E C then pl = p?,

4 . if (p 3 1 : p i) E C, (p 3 1 : p?) E C then pl = p?,

5. i f [P I 3 11 P Z] E C , (p3 3 12 : p4) then pl # p3.

Lemma 5.4 If C does not contain join conditions or projection condrtions and t n record-vanant

nonnal form then C is satisfiable.

Proof Consider the substitution t9 satisfying the following properties: d o m (8) = { t) 3 p . [t 3 1 :

E C) U (t (3 p . (t 3 1 : p) E C) and for all t E dom(8) if there is some [t 3 1 : p] E C then

8 (t) = [I 1 : $ (P I) , . . . , l , : B(pn)] where ((11, p l) , . . . , (l, ,p,)) = { (I , p)l[t 3 1 : E C) otherwise

there is some (t 3 1 : p) E C then d (t) = (I I : 8(p1), . . . , 1, : t9(pn)) where ((11, p l) , . . . , I,, p,)) =

{ (l , p) l (t 3 1 : p) E C) . Since the above equations on 8 defines a regular system satisfying Greibach

condztion [32], such B always exists. It is clear that 8 satisfies C . I

Proposition 5.5 IfC does not contain join conditions o r projection conditions then C is satisfiable

ifl there i s a ref inement C' of C that is in record-variant normal form. Moreover, there is an

algorithm which computes a refinment C' of C ihai is i n record-variant normal f o r m if one exists

otherwise reports the unsatisfiability of C.

Proof We prove the proposition by defining an algorithm. Define the transformation relation

on pairs of a set of conditions and a substitution as follows:

(C u {[[. . . , I : p,, . . .] 3 1 : p 2] } , 8) =j (B ' (C) , 8' o 8) where 6' = U (p l , p 2) (5.3)

(C u {((. . . , I : p i , . . .) 3 1 : p l)) , B) (6 ' (C) , 8' o 8) where 6" = U (p l , p?) (5.4)

(C u { [P 3 1 : P I] , [P 3 1 : p ?]) , 8) 3 (O1(C u { [p 3 1 : p l])) , 8' 0 8) where 8' = 14(p l , p?) (5.5)

(c u { (~ 3 l : p i) , (p 3 l : p ?)) , 8) ~

(O1(C u { (p 3 1 : p l } }) , 8' o 8) where 8' = U (p l , p ?)

Let & be the transitive reflexive closure of *. Define the algorithm R V as:

(c ' , 6) if (C , id) & (C ' , 8) and C' is in record-variant normal form

X V (C) = where id is the identity substitution,

unsairsjiable otherwise

(by assuming some ordering on applications of rules). Since the transformation 3 strictly reduces

the number of conditions in C , for any given (C , 8) , R V (C) always terminates.

We show the properties of R V needed to prove the theorem. By lemma 5.4 , proposition 5.4 and by

the definition of X V . it suffices to show the following two properties: (1) if R V (C) = (C', 0) then

C' is a refinement of C with 8 a refinement substitution and (2) if Z V (C) = unsattsfiable then C

is not satisfiable.

For the first property, by the definition of X V , it suffices to show that if (C 1 , O 1) (C ? , 8 ?) then

C2 is a refinement of Cl with a refinement substitution 8' such that 82 = 8' o e l . \Ve show this

property for each rule of =>.

1. The case for the rule (5 .3) :

(C u {[[. . . , I : p,, . . .] 3 1 : P?]) , 0) a (O f (C) , 0' o 8) where 8' = U (p l , p 2) .

Suppose r) satisfies C U {[[. . . , I : p l , . . .] 3 1 : p?]) . Then q (p l) = ~ (p ?) . Therefore there is

some 91 such that 9 = q lo8 ' and 91 satisfies ~ ' (C U { [[. . . , I : p l , . . .] 3 1 : P 2])) and therefore it

also satisfies B1(C). Conversely suppose q satisfies B1(C). Since B1(p l) = B1(p2), q also satisfies

8 ' (C U {[[. . . , I : p l , . . .] 3 1 : pz] }) . Therefore q o 8' satisfies C U {[[. . . , I : p l , . . .] 3 1 : p a] } .

This implies that B1(C) is a refinement of C U {[[. . . , 1 : p l , . . .] 3 1 : p,]} with a refinement

substitution 8'.

2. The case for the rule (5.5):

(C u { [p 3 1 : p i] , k 3 1 : p2]) , 8) =$ (8 ' (C U {[p 3 1 : p l])) , 8' o 8) where 8' = U (p l , p?).

Suppose q satisfies C U {b 3 1 : p l] , [p 3 1 : pz] } . Then q (p l) = q (p z) . Therefore there is

some q1 such that q = q l o 8' and q l satisfies O1(C U {[p 3 1 : p l] , [p 3 1 : p 2])) . Then ql

also satisfies B1(C U { [p 3 1 : p l])) . Conversely suppose s] satisfies B1(C{ [p 3 1 : p l])) . Since

B 1 (p l) = O1(p2), q also satisfies O1(C U { [p 3 1 : p l] , [p 3 1 : p ?] }) . Therefore q o 8' satisfies

C U { [p 3 1 : p i] , [p 3 1 : p ?] } . This implies that B1(C U { [p 3 1 : p l])) is a refinement of

C U { [p 3 1 : p l] , [p 3 1 : p ?]) with a refinement substitution 8' .

3. The cases for the rule (5 .4) and (5 .6) are similar to (5 .3) and (5 .5) respectively.

We next show the second property. Suppose R V (C) = unsattsfiable. By the definition of R V , there

is some C' that is a refinement of C and C' satisfies one of the following properties:

1. [[. . . ,1 : p l , . . .] 3 1 : pZ] E C' and there is no substitution 6 such that 8 (p l) = 8 (p 2) ,

2 . ((. . . , I : p l , . . .) 3 1 : p l) E C' and there is no substitution 0 such that 8 (p l) = 8 (p 2) ,

3. { [P 3 1 : p i] , [p 3 1 : p?]) C C' and there is no substitution 8 such that 8 (p l) = 8 (p ?) ,

4 . { (p 3 1 : p l) , (p 3 1 : p ?)) E C' and there is no substit.ution 8 such that 8 (p l) = B(p?) ,

5 . (p 3 1 : p') E C' and p is either a record type or a set type,

6. [p 3 1 : p'] E C' and p is either a variant type or a set type.

-
I . [p 3 11 : P I] E C' and (p 3 12 : p2) E C' for some p.

The first 4 cases correspond to the cases where one of unifications in R V (C) fails. Others correspond

to the cases where the result of the transformation of C in R V (C) is not in record-variant normal

form. In each case C' is not satisfiable. Since C' is a refinement of C , C is not satisfiable. I

Since join conditions and projection conditions are created only if an expression contains join,

con or projo , the above result establishes the complete type checking and type inference procedure

for expressions that do not contain these three primitives. This result can be extended to projections

on finite description types, as shown in the following proposition.

Proposition 5.6 Let C be a set of conditions that does not contain join condition and the tar&

type of each projection condition is finite. If C is satisfiable then there is a refinement C' of C

that contains only record conditions and variant conditions. Moreover, there is an algorithm that

computes a refinment C' of C if C is satisfiable otherwise reports the vnsatisfiability of C .

Proof As before we prove the proposition by defining an algorithm by a transformation relation.

Let be the transformation relation on pairs of a set of conditions and a substitution as follows:

(C u {lesst han(b, p)) , 8) (B1(C), 8' o 0) where 8' = U(b , p)

(C U {lessthan([ll : a l , . . . , I , : a,] ,p)) , 8) *
(C U { [p 3 11 : s l] , . . . , [p 3 1, : s,],lessthan(al, s l) , . . . , lessthan(a,, s ,) } ,8)

(s l , . . . , s, fresh)

(C u {lessthan((ll : a l , . . . , in : a ,) , p) } , 0) 3

(O1(C U {lessthan(ul , s l) , . . . ,lessthan(a,, s ,))) , 8' o 8)

where 8' = Zl(p, (I l : s l , . . . , I , : s,)), (s l , . . . , s , fresh)

(c u { l e s s t h a n (f I a l B , ~) } , 6) *
(B'(C u {lessthan(ul , s) , 8' o 8) where 8' = I l (p , { s t) , (s fresh)

Define the algorithm 3 P as:

(c ' , 6) if (C, id) & (C ' , 8) and C' has no projection condition,
3 P (C) =

unsatisfiable otherwise

(by assuming some ordering on applications of rules).

Define the weight of a projection condition lessthan(u,p) as the height of a (i.e. the maximum num-

ber of the nesting level of type constructors in a) . Since a is finite, each projection condition has

a finite weight. Moreover each transformation step always decreases the following complexity mea-

sure: the multiset of weights of projection conditions in C under the multiset ordering. Therefore

the above algorithm always terminates. The correctness of the algorithm follows from the definition

of the satisfiability of lessthan(a,p) (see the inductive definition of < in subsection 4.4.1). 1

We then have:

T h e o r e m 5.2 If C does not contatn jotn conditions and the target type of each projection condition

is fintte then C 1s satisfiable iff there is a refinement C' of C that is in record-vanant normal form.

Moreover, there ts an algorithm that computes a refinement C' and a refinement substitution B if

one ezists otherwise reports the unsatisfiability of C .

P r o o f By applying proposition 5.6 followed by proposition 5.5. 1

This result establishes the complete type inference for raw terms tha t d o not contain joins and all

projections are those on finite description types. hloreover, there is a compact representation for a

conditional typing scheme for such a raw term. Since if a set of conditions is in record-variant normal

form then all conditions are conditions on type variables, conditions can be integrated into type-

schemes by extending type-schemes to include type variables with conditions. Define condtttonal

type-schemes (ranged over by T) as the regular trees represented by the following syntax:

[(t) l l : T I , . . . , I , : T,] is a type variable t associated with the set of conditions { [t 3 l1 : T I] , [t 3

1, : T,]). Similarly for ((t) l : T , . . . , I : T) . (t < a) is a type variable t associated with the condition

l e s s than(t ,a) . We call those type variables conditional type variables. Conditional typing schemes

for raw terms that d o not contain joins and all projections are those on finite types can then be

represented by these conditional type-scheme. I leave to the reader the mechanical transformation of

a set of conditions to conditional type variables. The following are examples of principal conditional

typing schemes using the above representation:

M C I- 0 D f n (x) a x.1 : [(7 1 1) 1 : u?] - u?,

M C t 0 b f n (z) a i n o d i f y (x , I , x.1 + 1) : [(u l) l : in t] - i n t ,

M C t- 0 b f n (x) a (x.11, (x.l1).1?) : [(u ~) l l : [(u2)12 : u3]] - ([(u2) l r , : u3] x u3)

T h e examples we have seen in the beginning of this chapter are conditional typing schemes using

these compact representations. In examples tha t follows we use these compact representations for

conditions whenever appropriate.

When a set of conditions contains join conditions or projection conditions with infinite target

types, however, the problem of deciding whether it is satisfiable or not becomes a difficult problem.

Indeed the following result implies tha t i t is an NP-hard problem.

Theorem 5.3 It is N P hard to decide whether a given raw t e r m e has a typing or not .

Proof The proof is by reduction from MONOTONE 3SAT [43]:

Given a 3CNF Boolean formula whose clauses consist of either all negated literals (called

negative clauses) or all un-negated literals (called positive clauses), test whether there

is a truth assignment.

Let F = { c l , . . . , c ,) be the given set of clauses and { x l , . . . , I ,) be the set of all literals that

appear (either un-negated or negated) in F. We construct a term eF such that F has a truth

assignment iff eF has a typing. We use the following constants: f : int - i n t , g : bool -- bool. \.Ve

use four variables x t r u e , X J , ~ ~ ~ , x i n t , xbool for each literal x , one label # x for each x and one label

c for each c and labels 1, #1, #2, #3, # 4 . For each x , let hf' be the term

For each clause c , if c consists of un-negated literals { I , y , :) then let Nc be the term

otherwise c consists of negated literals {F,&,T) then let NC be the term

Xow define the desired term e as the following record:

The translation from F to e is clearly polynomial.

We next show the desired property of e F . Suppose eF has a typing A I- e F : T . By the typing

rule, both M' and N C have a typing under A. By the definition of iCIr, if hi' has a typing under

A then either A(~true) is a record type containing the field 1 : int or A (x J a l s e) is a record type

containing the field 1 : bool and not both. Define a truth assignment M such that M (x) = t r u e

iff A(xtrUe) is a record type containing 1 : int field. By the definition of N C and the typing rule

for j o in , for a positive clause { I , y , :) , if N { ' J ' ~ ~ I has a typing under A then at least one of

A (~ ~ r u e) ~ A (~ t r u e) , A (z t r u e) has the field 1 : int and for a negative clause {F,y,T}, if hr{'J~'1 has

a typing under A then a t least one of A (~ ~ a ~ s e) , A (~ / a ~ s e) , A (z / a , s e) has the field 1 : boo/. BY the

definition of M this implies that M satisfies F.

Conversely suppose F is satisfied by an assignment M . Define a type assignment A as follows: if

M (x) = true then A(xtrue) = [I : in t] , A(xlalse) = 0 , A(+,",) = 0, A(xbool) = [I : boo4 otherwise

A(xlrue) = 0 , A (x j o l s e) = [I : bool], A(xint) = [I : int] , A(xao0l) = 1. It is then easy t o check that

e has the following type under A:

where ri is [#1 : int ,#2 : bool,#3 : int,#4 : bool] if M (x i) = true otherwise [#1 : int ,#2

bool, # 3 : bool, #4 : int] and r,! = int if cj is positive clause otherwise T; = bool I

Worse yet, we do not know whether the type inference problem for the entire language is

decidable or not. There is, however, a practical solution t o this problem. The strategy is to "delay"

the satisfiability checking of join conditions and projection conditions (of infinite target types) until

all type variables are instantiated, i.e. we delay the satisfiability checking of conditions associated

with functions containing join and projO for infinite a until they are applied to actual arguments. If

a set of conditions does not contain type variables then the satisfiability can be decided by checking

the ordering relation and computing the least upper bound of description types, which have been

shown to be decidable (proposition 4.11). There is, however, one problem in this approach because

of variants. Like ML's nil, variants are polymorphic values and therefore their type variables may

never be instantiated. We solve this problem by imposing the following restriction:

T h e programmer must supply the type specifications for variants if they are arguments

of the functions join or projO with infinite a (directly or indirectly through function

abstractions/applications).

Intuitively, this states that the "actual" arguments to the functions join and proju (with infinite u)

must have a ground type. It is interesting to note that the same problem arises with the combination

of the reference types and type variables and the above restriction is the same as the one adopted in

Standard ML implementation [ill. We say that a conditional typing scheme is a program scheme

if it is of the form C,8 b e : T such that T does not contain function type constructor. If a

conditional typing scheme is a program scheme then join conditions and projection conditions are

respectively of the forms p = jotntype(al, a?) and lessthan(al, a s) , both of which are reduced to

true or false. Therefore only remaining type variables in a program scheme are those created for

variants. Therefore the above restriction is imposed by treating a program scheme C, S b e : T as

a type error if C contain (irreducible) type variables.

We now define the set of terms Machiavelli as follows: --

D e f i n i t i o n 5.8 (T e r m s o f Mach iave l l i) A t e r n of Machiavelli is a conditional typing scheme

such that the set of conditions is in record-variant normal form and if it is a program-scheme then

its does not contain join condition or projection condition with infinite target types.

5.5 Semantics of Machiavelli

In this section, we define a denotational semantics and an operational semantics of Machiavelli. For

this purpose, we need t o identify the subset of terrns tha t represent descriptions we have constructed

in section 4.4. The set of description t e rns (ranged over by d) is t he following set of raw terms

tha t have a typing:

d ::= Cb I record(l~ ! . . . * ' n) (d) . . . (d) I setn(d) . - . (d) I variant l (d) I c (~ ~ ~ . . l Z n ' (d) . . . (d) .

A description term denotes a regular tree in Dobj". \Ve write D (d) for the element in Dobj"

denoted by d.

5.5.1 Denotational Semantics of Machiavelli

To give a denotational semantics of Machiavelli, we extend the semantic framework for M L we have

developed in chapter 3. Let ~Machiavell i be the typed lambda calculus TA+ we have defined in

section 3.5 with the set Type of types of Machiavelli and the set of constants { c 7 J c : T E Cons t s)

where Cons t s is the set of constants of Machiavelli.

D e f i n i t i o n 5.9 (M o d e l s o f ~ M a c h i a v e l l i) An eziensional'eztended frame (3,o.C) zs a model

of zilfachiaz~elli if the following conditions hold:

1. it satisfies the definition of abstract models (definitions 3.24 and 3.15) of T A + ,

2. for each description type a, F, _> D, where Do ts the descrtpizon domatn of a we have

constructed tn section 4.4,

3. for each description term d of type a , 10 D d : a] ~ E D,,

4. the following equations are valid (we omit types):

(3) m o d i f y f . [I l = e l , . . . , 1, = e ;,..., 1, = e n] e =

[I l = e l , . . . , li = e , . . . , I n = en]

(4) (case (1 , = e) of ll e l , . . . , I ; e , , . . . ,In a e n) = (e ; e)

(5) union {e : , . . . , e f ,] {e:, . . . , e;] = { e ; , . . . , e!,, ef , . . . , e;]

(7) map e { e l , . . . , e n] = { (e e l) , (e e n)]

(8) join d l d? = d3 if D (d s) = D (d l) U D (d 2)

(9) con dl d? = t rue if D (d l) U D (d n) exists

(1 0) con dl dZ = false if D (d l) U D (d a) does not exist

(1 2) eq dl d2 = t r u e if D (d l) 5 D (d a) and D (d z) D (d l)

(13) eq dl dr, =false i f either D (d l) g D(d2) or D(d2) g D(d1)

where Pro ju in (1 1) I S the function on U Dobjm defined zn subsectzon 4.4.5.

The relationship between typings of hlachiavelli and terms of shlachiavelli remains the same as

that between hlL and T A + and theorem 3.6 holds. This implies that the definition of the semantics

of typings of hIL (definition 3.18) applies directly to those of hlachiavelli.

The semantics of Machiavelli terms relative to a model of ~Machiavelli is then defined as

follows. For a given pair of a type assignment scheme C and a set of conditions C , the set

of admtssible type asszgnments under C and C , denoted by T A (C , C) , is the set { A J d o m (C) 2

d o m (A) , 3 8 . 8 satisfies C and AtdOm(C)= 8 (E) } . Under a given type assignment A, the set

T P (A , C, C b e : p) of the types associated with a term C , S b e : p is the set (~ 1 3 8 . 8 satisfies

C , and (A f d o m r c) . r) = B (C , p)) . Then the semantics M[C, S b e : p] of a Machiavelli term

C, C b e : p relative to a model M is the function taking a type assignment A E T A (C , Z) and

an environment E f E n v M (A) that returns an element in IIr E T P (A , C , Y b e : p) . D , defined

as follows:

.U[C,Z p e : ~] A E = { (r , M [d D e : r] M L ~) J r E T P (d , S D e : p)) .

Note that the definition works also for terms with unsatisfiable conditions. In such a case the

denotation is the emptyset.

As an example, the semantics of the constant join:

M [{ S S = jointype(sl, s 2)) , 0 D join : sl -- s:, - s31]d&

is a set of functions f : F,, - F,, - F,, for all triples of ul , u?, (rg such that a3 = ul u us. NOW

if we restrict its domains F,,, F,,, to D,,, Do, then we get exactly the set of joins we have defined

in subsection 4.4.4. Similar property holds for projections. This confirms that we have successfully

integrated the database domain we have developed in chapter 4 into an hlL-style type system.

5.5.2 Operational Semantics

This section gives an operational semantics of Machiavelli by an evaluation relation on conditional

typing schemes. There are several evaluation strategies for operational semantics of functional

programming languages. Here we only give an operational semantics based on the "call-by-value"

evaluation strategy that "stops" at function abstraction. An operational semantics based on the

"call-by-name" strategy is simpler to specify and can he easily defined by cltanging some of the

rules given below.

IVe first define the immediate reduction relation - on raw terms.

(11) ((Ax. e) d) -- e[d/x]

e l --+el
(15)

(el (Ax. e l) - (e2 (Ax. e))

(V I I 2)

(V I I I I)

(V I I I 2)

(I?o

(X)

(XI

(X I)

(X I I)

ei -- e:
for any constant c

c e l . . . e, . . .en + c e l . . . e : . . . en

(r e c x . e).l - (e [(r e c x . e) / x]) . l

m o d i f y 1 (rec x . e l) ez + m o d i f y r e l [(rec x . e l) / x] es

(c a s e (1 , = e) of 11 3 e l , . . . , li 3 ei , . . . , in 3 e n) - (e i e)

(c a s e (r e c x . e) of 1 1 3 e l , . . . , I , 3 e n) -
(c a s e e[(rec x . e) / x] of11 3 e l , . . . , I , 3 e n)

1 7 union {{ei , . . . , e:}} { e f , . . . , e & j - { e : , . . . , e n , e i , . . . , e:}}

union (rec x . e l) e? -union e l [(rec x . e l) / x] ez

union e l (rec x . e?) - union el e2[(rec x . e ?) / x]

prod" { e ; , . . . , e;, 1.. - {e?, . . . , e T m j -
1 7

{ (e l , e i , . . . , e :) , (e ; , e f , . . . , e ;) , . . . (e i , , e i ? , . . . , C : ~) B

prod"el . . - (rec x . e ,) . . . en -prod"el . . . e,[(rec x. e ,) / x] . . . en

lnap e { e l , . . . , e n] + { (e e l) , . . . (e e n))

m a p el (rec x . e z) - m a p el er,[(rec X . e ?) / x]

join dl d2 - d3 i f D(d3) = D(dl) U D(d?)

con d l d2 -- true i f D (d l) U D(d2) exists

con d l d2 - fa l se i f D (d l) U D (d 7) does not exist

proj* dl -d2 i f D (d s) = P r o j u (D (d l))

eq dl d2 * t r u e i f D (d l) E D (d 2) and D (d 2) E D(d1)

(XI11 eq dl d2 -CL false if D(d1) D(d2) or D(d2) D(d1)
-

The evaluation relation on conditional typing schemes is defined as the reflexive transitive closure

of this immediate reduction relations.

5.6 Syntactic Shorthands

This section defines several useful syntactic shorthands.

5.6.1 Recursive Function

In M L like languages, recursive functions are defined by the special term constructor (fix x. e).

This is regarded as a shorthand for (Y (fn(x) a e)) where Y is the symbol of the following set of

constants denoting fixed point operators:

{ y (7 - 7) - (~ - ~) - T - 7 I for all r).

We did not include these fixed point constants because fixed point combinators are definable, as

we have seen in section 3.5. Under an operational semantics based on the call-by-name evaluation

strategy, both Y,,,,, and Ytu,,,, (defined in section 3.5) provide a desired operational behavior.

However, they do not have the desired property under an operational semantics based on the call-

by-value evaluation strategy such as the one we have defined for Machiavelli. Indeed it is easily

checked that for any raw term e, both (YcuvY e) and e) do not terminate under such an

operational semantics.

Under the call-by-value evaluation, the desired operational rules for Y constant for defining

recursive functions should be:

(Y1) (()I Ax. e) d) - (e[()I Ax. e)/x] d),

0'2) ((I' Ax. e l) Ay. e l) -- (el[(YXx. el)/x] Xy. e2).

In [go] Plotkin gave the following fixed point combinator:

Yp,otkin = Af. (AX. XY. f (X x)Y)(Ax. XY. f (l x)Y).

which realizes the above behavior under the call-by-value evaluation rules for function application

(rules (11) - (15)). The extra q-redexes are essential to get the desired behavior. Note also that

Yplotkin has the following principal conditional typing scheme:

This combinator can also be used under the call-by-name evaluation rules. We therefore define the

following syntactic shorthand for recursion:

(fix X. e) # (Yplotkin (Ax. e)) .

5.6.2 Value Bindings and Function Definitions

As a practical programming language Machiavelli should provide a form of binding mechanism that

binds names to Machiavelli terms. As is done in Standard ML, we regard the following binding

v a l i d = e : . . .

as a syntactic shorthand for the following fragment:

l e t id = e in . . . e n d .

For function definition, we further adopt the following shorthand:

fun f x 1 = e ;

for

val f = (fix f A x l . . . Ax,. e) ; .

Note tha t the two occurrences of f in the above definition are different. The first one is the name

to which the body of the expression is bound and the second one is a bound variable.

5.6.3 Database Operations

An important part of database programming is query processing. One of common structures of

query processing is so called se lec t - jo in-projec t query [35]. For such query processing, we define the

following shorthand whose syntax follows from SQL [8] and l is t comprehens ion in Miranda [107]:

se lec t e 1

w h e r e x1 E S1, I, E S n

w i t h e?

for

let

fun result x =

l e t

val X I = x.# l ;

val x, = x.#n;

in

e 1

e n d

fun pred x =

l e t

val 1 1 = +.#I;

valx, = x.#n

in

e 2

e n d

in

filter pred (map(resu1t , prod(S1, ... Sn)))

e n d

where filter is a polymorphic selection function which, given a boolean valued function P and a set

S, selects all those elements e from S such that P(e) = true. The following is one implementation

of filter.

fun filter P S =

map(Xx. t .Val ,

join({ [Pred = true]B,

map(Xx. [Value = x , Pred = P(x)], S)

with the following principal conditional typing scheme:

MC t- 0 ,0 D filter : (s -- 6001) - {s] - {{s].

5.7 Programming Examples

This section shows examples. We show them by simulating interactive session in Machiavelli. We

write

-> expr ;

-> va l id = ezpr ;

for an expression and a binding entered by the programmer and

>> val id = expr : p where {cl , . . . , c,}

for the output (as a principal conditional typing scheme) computed by Machiavelli. where clause

describes the unresolved conditions. If the last input is an expression then the system assumes v a l

it = . In these examples we use the following notations:

Following Standard ML, we write 'a , 'b etc for unconditional type variables and "a, "b etc for

description type variables (which roughly correspond to equality type variables in Standard ML).

The first example shown in figure 5.1 is a simple session in Machiavelli involving records and

variants. Form this example, we can see that hlachiavelli extends M L with records and variants

preserving its features of static type inference and polymorphism.

Figure 5.2 shows a simple example involving join and project. Join3 computes the join of

three (joinable) descriptions. where clause represents the conditions associated with the two jo in

expressions. If r l , r2 , r3 are three joinable flat relations, then Join3(rl , r2 , r3) is exactly the

natural join of the three.

Figure 5.3 shows an example of a database containing non-flat records, variants, and nested sets

assuming that parts , suppliers and supplied-by have been already defined. With the availabil-

ity of generalized join and projection, we can immediately write programs that manipulate such

databases. Figure 5.4 show some simple query processing for the example database in figure 5.3.

From this example, one can see that join and projection in Machiavelli faithfully extend the natural

join and projection in the relational model t o complex objects.

-> val joe = [Name = "Joe", Age = 211;
>> vdl joe = [Name = "Joe", Age = 211 : CName:string, Age:intl
-> val helen = [Name = CFn = "Helen", Ln = "Smith"], Age = 311 ;
>> v d helen = [Name = [Fn = "Helen", Ln = "Smith"1, Ag e= 311

: [Name: [Fn:string, L.n:strind, ~ g e : intl

-> fun name(p) = p.Name;
>> val name = fn : [('a)Name:'bl -> 'b
-> fun increment-age(x) = modify(x, Age, x.Age + 1) ;
>> val increment-age = fn : [('a) Age: intl -> [('a) Age: intl

-> name(joe1;
>> val it = "Joe" : string
-> name(he1en) ;
>> val it = [Fn= "Helen", Ln = "Smith"] : [Fn: string, Ln: string]
-> increment-age (joe) ;
>> val it = [Name="JoeU, Age=22] : [Name:string, Age: int]
-> increment-age (helen) ;
>> val it = C N - ~ = [Fn = "Helen", Ln = "Smith"], Ag e= 321

: [Name: [Fn: string. Ln: strind , Age: intl

-> val john = [Name="John", Age=21.
Status=<Consultant = [Address="Philadelphia",

Telephone=22212341 >I ;
>> val john = [Name="JoeW , Age=21

Status=<Consultant = [Address="Philadelphia",
Telephone=2221234] >I

: [Name: string, Age: int ,Status : <('a) Consultant : [Address : string,
Telephone : int] >I

-> val mary = [Name="Hary", Age=31,
Status=<Employee = [Off ice=278, Extension=4895] >] ;

>> val mary = [Hame="HaryM, Age=31
Status=<Employee = [Off ice=278, Extension=4895] >] ;

: [Name:string, Age:int.Status:<('a) Employee:[Office:string,
Extension: inti>]

-> fun phone(x) = (case x.Status of <Employee=y> => y.Extension,
<Consultant=y> => y.Telephone);

>> val phone = in
: [('a) Status:<Employee: [('b) Extension: 'dl,

consultant : [('c) Telephone: 'dl >] -> 'd
-> phone (john) ;
>> 2221234 : int
-> phone (may) ;
>> 4895 : int

Figure 5.1: A Simple Session in Machiavelli

-> val fun JoinJ(x,y,z) = join(x,join(y,z));
>> val Join3 = fn : ("a * "b * "c) -> "d

where ("d = "a lub " e , "e = "b lub "c 1
-> Join3([lame="~oe"] , [Age=211 , [Off ice=278]) ;
>> val it = [Name="JoeM,Age=21,Office=278]

: [lame: string,Age: int ,Off ice: intl
-> project (it, [Name : string]) ;
>> val it = [lame="Joe"] : CName:stringl

Figure 5.2: A Simple Example Involving join and project

-> parts;
>> val it =

< [Pname="bolt" , P#=l ,Pinf o=(BasePart of [Cost=5])] ,

...
1
: ([Pname:str,P#:int,

Pinf o: <Basepart: [Cost: intl ,
CompositePart : [Subparts : < [P#: int , qty : inti),

Assemcost : intl >I 1
-> suppliers;
>> val it =

([Sname="Baker" ,S#=l ,City="Parisem] ,

-> supplied-by;
>> val it =

([p#=1, Suppliers=([S#=l] , [S#=121,>I ,
. . .

1
: ([P# : int ,Suppliers : -# : int] 11 1

Figure 5.3: A Part-Supplier Database in Generalized Relational Model

(* Select all base parts *)
-> join(parts,([Pinfo=(BasePart of fl)I)) ;
>> val it =

([Pname="boltM , P#=i, Pinf o=(BasePart of [Cost=O. 051)] ,
. . .

1
: ([Pname:str,P#:int,

Pinf o : <Basepart : [Cost : int] ,
CompositePart : [subparts : ([P#: int,Qty : intl),

Assemcost : intl >I 1

(* List part names supplied by "Baker" *)
-> select x.Pname

where x <- join(parts,supplied-by)
with Join3(~.Suppliers,suppliers,([Sname="Baker"l)) <> €1;

>> ("bolt", . . .) : (str)

Figure 5.4: Some Simple Queries

-> fun Closure R =
let

fun member (e,S) = f ilter((fn(x) => x=e), S) <> 0
val r = select [A=X.A,B=~.B]

where x <- R, y <- R
with (x . B = y . A) anddlso not (member ([A=x. A , B=y. B1, R))

in
if r = () then R else closure(union(R,r))

end ;
>> closure = fn : ([~:"a,B:"b]) -> (C~:"a,B:"bl)

Figure 5.5: A Simple Implementation of Polymorphic Transitive Closure

The most important feature of Machiavelli is that these data structures and operations are all

"first-class citizens" in the language. This eliminates the problem of "impedance mismatch" we

discussed in chapter 1. Data and'operations can be freely mixed with other features of the language

including recursion, higher-order functions, polymorphism. This allows us t o write powerful query

processing programs relatively easily. The type correctness of programs is then automatically

checked a t compile time. Moreover, the resulting programs are in general polymorphic and can be

shared in many applications. Figure 5.5 shows a simple implementation of a polymorphic transitive

closure function. By using a renaming operation (which is definable in Machiavelli), this function

can be used to compute the transitive closure of any binary relation. Figure 5.6 shows query

processing on the example database using polymorphic functions. The function cost takes a part

record as argument and computes the total cost of the part. Without proper integration of the

(* A function that computes the total cost of a part *)

-> fun cost(p) =
(case p.Pinfo of

BasePart of x=>x. Cost,
CompositePart of x=>

x.AssernCost + hom((fn(y)=>y.SubpartCost * y.Qty),+,O,
select [~ubpartCost=cost (2) ,Qty=w . Qty]
where w <- x.SubParts, z <- parts
with z.P#=w.P#));

>> val cost = fn
: [(la) ~info:<~asePart: [('c) Cost:int] ,

~ornpositePart: [(' d) SubParts:{C('e) P#:int,Qty:int]),
AssemCost : int] >I

-> int

(* select names of "expensive" parts *)
-> fun e~~ensive_~arts(partdb,n) =

select x. Pname
where x <- partdb
with cost(x) > n;

>> val expensive-parts = fn :
: ({[('a) Pinfo:<BasePart: [('c) Cost: int] ,

~ompositePart: [('d) ~ubParts: {[('e) P#: int ,Qty: int]),
AssemCost : int] >I),

int) -> (str)

-> expensive-parts(parts,1000);
>> val it = ("engine", . . . I : (str)

Figure 5.6: Query Processing Using Polymorphic Functions

Chapter 6

Parametric Classes for

Object-Oriented Programming

This chapter extends the type system of Machiavelli t o include user definable class hierarchies with

multiple inheritance declarations. This extension achieves the integration of M L style parametric

abstract da ta types and explicitly defined inheritance hierarchy. The extended type system is sound

with respect to the type system of Machiavelli and still has a static type inference algorithm. Some

of the results of this chapter were presented in [86]

6.1 Introduction

T h e idea that is fundamental in object-oriented programming is that each data element (object)

belongs t o a class and can only be manipulated by methods defined in classes. Xloreover, classes

are organized by an explicit inheritance hierarchy defined by the programmer. The methods that

are applicable to an object are not only the ones defined in its own class but also those defined in

its all super-classes. This mechanism elegantly combines data abstraction and method inhenlance .

In particular, inheritance is controlled by the programmer enabling him to develop a taxonomical

organization that reflects the intended semantics.

T h e type system of hfachiavelli we have developed in the previous chapter does allow method

inheritance by ML style polymorphism but lacks both da ta abstraction and user control of in-

heritance. T h e method inheritance of Machiavelli relies on the explicit structure of record and

variant types; inheritance is derived from the polymorphic nature of operations on records and

variants. Because of this nature, the type system cannot prevent unintended manipulation of ob-

jects based on the knowledge of their implementation details nor can it prevent misuses of methods

through a coincidence of implementations. For example, suppose we implement the class person

by the type [Name : string,Age : int] and define a method minor with the polymorphic type

[(u)Age : int] -+ boo1 which determines whether a person's age is less than 21 or not. Machiavelli's

polymorphism allows minor to be appIied not only to objects of the class person but also to objects

of, say, the class employee implemented by the type [Name : string, Age : int , Salary : int], as we

expected. However, this method can also be applied to objects o i any class whose implementation

type happens to have an Age : int field. For example, an application might contain the class pet

implemented by the type [Name : string, Age : int , Owner : string]. The method minor is equally

well applicable to objects of the class pet but we want to prevent such applications. In order to

represent object-oriented systems, we would like to add an abstraction mechanism with multiple

inheritance to the type system of hlachiavelli so that the programmer can "hide" implementations

of objects and control method sharing.

A well known mechanism for data abstraction in ML style type system is abs t rac t da ta type

implemented, for example, in Standard M L and Miranda. An abstract data type is a type associated

with a set of user defined functions. Outside of its declaration, the type system treats an abstract

data type and its associated functions as if they were a primitive type with an associated set of

primitive operations. This mechanism successfully hides the actual implementation of an abstract

data type. Moreover, in those languages, abstract data types can be parameterized by types,

allowing "generic" definitions. For example, the following fragment of Standard hlL code defines a

generic set type:

abstype 'a set = Set of 'a list with

val emptyset = Set n i l ;

fun singleton x = Set [XI ;

fun union sl s2 = Set (s lQs2) ;

. . .

end ;

Intuitively this definition defines a family of abstract set types r set for all instances r of la. The

methods singleton, uniqn, etc. are shared by all these instances types.

A drawback t o this approach is that it does not combine data abstraction with inheritance in

the same sense that object-oriented programming languages do this. ML style abstract data types

do not allow method inheritance even if we extend the underlying type system to the type system

of Machiavelli. To illustrate the problem, consider the following abstract data type definition as

an implementation of the class person (assuming the Machiavelli type system in Standard ML

syntax):

abstype person = Person of [Name : string, Age : intl with

fun make-person n a = Person [Name = n, Age = a];

fun name (Person p) = p.Bame;

fun age (Person p) = p.Age;

fun increment-age (Person p) = Person(modif y (p,Age,p. Age + 1)) ;

end ;

Now suppose we are to implement the class employee by the type [Name:string, Age:int,

Salary: int] . Since the method name, age and increment-age defined in the class person are

also applicable to the above type in the type system of Machiavelli, we would like them to be

shared by the class employee. However, there is no mechanism to allow such sharing in ML style

abstract data types. As a result, we are forced to repeat the identical definitions for these methods

in the declaration of the class employee. For the same reason that we preferred a polymorphic

type system to a simple type system, we would like to extend ML style abstract data types with

inheritance declarations.

Galileo [7] integrates inheritance and class hierarchy in a static type system by combining the

subtype relation (see the analysis of subtypes in section 5.1.1) and abstract data type declarations.

However, Galileo does not support polymorphism nor type inference. Jategaonkar and Mitchell

suggest [63] the possibility of using their type inference method to extend ML's abstract data types

to support inheritance. Here we provide a formal system that achieves the integration of hlL style

abstract data types and multiple inheritance as an extension of the type system of hfachiavelli

we have developed in the previous chapter. Moreover, our proposal achieves a proper integration

of multiple inheritance in object-oriented programming and type parameterization in RIL style

abstract data types. As a remark, the class declarations, which can be regarded as a generalization

of ML's abstract data types, appear to have no immediate connection with the notion of abstract

types as existential types proposed by Mitchell and Plotkin [80].

As an example, the class person can be implemented in our language by the following class

definition:

class person = [Name : string, Age : int] with

fun make-person n a = [Name = n , Age = a] : string --. int - person;

fun name p = p.Name : s u b + string;

fun age p = p.Age : s u b + int;

fun increment-age p = modify(p, Age,p.Age + 1) : s u b --+ s u b ;

end

Outside of the definition, the actual structure of objects of the type person is hidden and can only

be manipulated through the explicitly defined set of interface functions (methods).

As in Miranda's abstract data types, we require the programmer to specify the type (type-

scheme) of each method. The keyword sub in the type specifications of methods is a special type

variable representing all possible subclasses of the class being defined. It is to be regarded as an

assertion by the programmer (which may later prove to be inconsistent with a subclass definition)

that a method can be applied to values of any subclass. For example, we may define a subclass

class employee = [Name : string, Age : int , Salary : int] isa person

with

f u n make-employee n a = [Name = n , Age = a , Salary = 01

: string - int --, employee;

f u n add-salary e s = m o d i f y (e , Salary, e.Salary + s) : s u b --. int - s u b ;

f u n salary(e) = e.Salary : s u b + int

end

which inherits the methods name, age and increment-age, but not make-person from the class

person because there is no sub in the type specification of make-person. For reasons that will

emerge later we have given the complete record type required to implement employee, not just the

additional fields we need to add t o the implementation of person. It is possible that for simple

record extensions such as these we could invent a syntactic shorthand that is more in line with

object-oriented languages. Continuing in the same fashion we could define classes

class student = [Name : string, Age : int, Grade : string] isa person

with

end

class research-student = [Name : string, Age : int,Salary : int; Grade : string]

i sa {employee, student)

with

end

The second of these illustrates the use of multiple inheritance.

The type system we are presenting can statically check the type correctness of these class

definitions containing multiple inheritance declarations. Moreover, the type system always infers

a principal conditional typing scheme for expressions containing methods defined in classes. For

example, for the following function

fun r a i s e s a l a r y (p) = add-sala y (p , s a l a r y (p) / l O)

which raise the salary of an object approximately by lo%, the type system infers the following

principal conditional typing scheme:

0 D raise-salary : (t < e m p l o y e e) + (t < e m p l o y e e)

where (t < e m p l o y e e) is a new form of conditional t y p e variable representing arbitrary subclasses of

e m p l o y e e . By this type inference mechanism, the type system achieves a proper integration of ML

style polymorphism and inheritance. The above function can be applied t o objects of any subclass

of e m p l o y e e . The type correctness of such applications is statically checked.

To demonstrate the use of type parameters, consider how a class for lists might be constructed.

We star t from a class which defines a "skeletal" structure for lists.

class p r e l i s t = (rec t . (E m p t y : n i l , L i s t : [T a i l : t]))

with

val nil = (E m p t y = N i l) : sub ;

fun t l 1 = (case 1 of

(E m p t y = y) e- . . . e r r o r . . . ,
(L i s t = 2) * r . T a i l)

: s u b - sub ;

fun null 1 = (case 1 of

(E m p t y = y) t r u e ,

(L i s t = r) j f a l s e)

: s u b -. bool;

end

By itself, the class pre-list is useless for it provides no method for constructing non-empty lists.

We may nevertheless derive a useful subclass from it.

class l is t (u) = (rec t . (Empty : nil, List : [Head : u,Tai l : t])) isa preJist

with

fun cons h t = (List = [Head = h,Tail = 11) : u -+ s u b + s u b ;

fun hd 1 = (case 1 of

(Empty = y) . . . error. . . ,

(List = z) z.Head)

: s u b -+ u

end

which is a class for polymorphic lists much as they appear in ML. Separating the definition into

two parts may seem pointless here but we may be able to define other useful subclasses of prel is t .

Moreover, since u may itself be a record type, we may be able to define further useful subclasses

of l is t . We will show more examples in section 6.7. The type correctness of these parametric class

declarations is also statically checked by the type system and the type inference also extends to

methods of parametric classes.

In the following sections we provide the syntax and typing rules for classes that extend Machi-

avelli type system and show that the extended language is correct with respect to the underlying

Machiavelli type system and provide the necessary results to show that there is a type inference

algorithm.

6.2 Raw Terms, Types, and Type-schemes

We assume that there are a set of class construcior symbols (ranged over by c) and a set of method

names (ranged over by m). The set of raw terms of the extended language is the set obtained from

the set of raw terms of Machiavelli (definition 5.1) by extending with the set of method names:

e ::= m I c (x I Ax. e 1 (e e) .

We continue to use the syntactic shorthands defined in section 5.2 and, in examples, we use the

representation of raw terms using term constructors defined in section 5.3.

The set of types of the extended language is the set of regular trees represented by the following

syntax:

r ::= b 1 [l : r , . . . , l : T] 1 (1 : 7,. . . ,l : r) 1 T - T 1 c (r , . . . , T) 1 (rec v . r (v)) .

The set of type-schemes is also extended with classes:

p::=t 1 b I [I : p ,..., 1 : p] I (I : p ,..., 1 : p) 1 p - + p I c(p ,..., p) 1 (r ecv .p (v)) .

We call type-schemes of the form c(p, . . . , p) class schemes.

6.3 Syntax of Class Definitions

We write c(7) and c(7) for c(t1,. . . , t t) and c(p l , . . . , p k) for some k . We also write := 7 , . . .] for

the substitution [t l := p l , . . . , t k := p k , . . .] where 7 = t l , . . . ,ik and p = p l , . . . , pk.

A class definition has the following syntax:

class c p) = p isa { c l (p , ,) , . . . , c,(pc,)} with

val ml = e l : MI;

val m , = en: Mn

e n d .

c(T) is the class scheme being defined by this declaration. 7 in c@) are type parameters of the

class c. p is the implemeniation type-scheme of the class c p) . { c l (T) , . . . , c , (K)) is the set of

class schemes of immediate super-classes from which c f i) directly inherits methods. If this set is

empty then isa declaration is omitted. If this set is a singleton set then we omit the braces { and

}. Each m, is the name of method implemented by the code e,. For method definitions, we use the

syntactic shorthand for recursive function definition (section 5.6). Mi is a method type specifying

the type of m,, whose syntax is given below:

sub is a distinguished type variable ranging over all subclasses of the class being defined. Kote

that we restrict method types to be finite types. This is necessary to ensure the decidability of

type-checking of class definitions.

We require a class definition to satisfy the following restrictions:

1. all type variables in the definition are contained in the type parameters 7 of the class scheme

being defined, and

2 . the implementation type-scheme p is not a type variable.

These restriction are needed to construct a consistent proof system for parametric classes.

A class context 2) is a finite sequence of class definitions:

A class definition containing type variables is a generic definition of a class. Continuing our

interpretation that a type-scheme is a representation of its all ground instances (section 3 . 2) , we

regard a generic class definition as a representation of the set of all its ground instances obtained

by instantiating i with types. The set of type variables 7 are form of bound variables whose scope

is the body of the definition for c (0 . Therefore the definition class c (i) . . . end is equivalent to

the one obtained from it by renaming type variables i .

These declarations are forms of bindings for which we need some mechanism to resolve naming

conflict such as visibility rules and explicit name qualifications. Here we ignore this complication

and assume that method names and class constructor names are unique in a given class context.

The special type variable s u b that appears in a method type specifications denotes the set of

all possible subclasses that the programmer will declare later. This can be regarded as a form

of bounded quantification proposed by Cardelli and Wegner [27]. The method type M containing

s u b corresponds to Vsub < c e) . M where c (7) is the class being defined. The relation 5 is the

subsumption relation induced by the isa declarations:

Definition 6.1 The subsumption relation 'D t- cl (x) 5 c z (z) induced by V is the smallest relafzon

containing:

1 . V t- ~ (7) 5 c @) if 'D contains a class definition of the fonn class c(7) = p . . . end.

2. V t- c l (t l) 5 c 2 (z) if 'D contains a class definition of the form

class c l (c) = p isa {.. . , c 2 (Z) , . ..) wi th . . . end.

--
3. 'D f- c l (E) 5 ~~(75) if 'LJ I - C I (~) F c z (Z) and (iT,E) is an znstance of (p i , ~ ;) .

4 . V t- c , (K) 5 CZ(Z) if 2) t- C I (K) L c 3 (E) and 2) t- c ~ (E) I CZ(E) for some ~3(75).

The combination of multiple inheritance and type parameterization requires certain restriction

on isa declarations.

Definition 6.2 A class contezt V is coherent if V I- c l (K) 5 c z (Z) and V I- c i (z) 5 c z (z)
-

then = pi .

We require a class context to be coherent. This condition is necessary to develop a type inference

algorithm for the extended language. Even if some other formulation of classes in a statically typed

polymorphic language is preferable to the system proposed here, I believe that similar issues will

arise.

Lemma 6.1 For a given class contezt D , it is decidable whether D is coherent or nor.

Proof Let c l , . . . , c, be any sequence such that V contains a class definition of the form

c l a s s c ; (~ ; -) . . i s a { ..., c,+l(P;+1) , . . . end (1 < i 5 n - 1)

- - -
Define inductively as follows: = t l , pi = := pi-l] (2 < i 5 n) . Kow define P (, ~ , ,
-

as p i . B y the definition of subsumption, V t c(B) 5 ~ ' (7) iff there is a sequence c l , . . . , c, such

that 2) contains class c i (q - . . i s a {.. . , ~ ;+~(p i+ l) ,... } - . . end (1 < i < n - I) , c = cl,c' = c,
-

and p' = n [T ; := 71. Therefore V is coherent iff for each pair (c , c ') , p(,,,,..,, n) are all identical

for all sequences c l , . . . , c,, such that 2, contains class c ~ K) . . . isa {. . . , ~,+~(pi+l) , . . .) . . . end

(1 < i < n - I) , and c = cl,cl = c,. Since 2) is finite, the above condition can be effectively

checked. I

CVe say that a subsumption relation 2) I- c l (K) < c 2 (E) is more general than V I- c l (z) 5
- -

c z (2) if (p i , p i) is an instance of (E,E). A subsumption relation 2) I- c l (z) 5 c z (E) is prznczpal if

it is more general than all provable subsumption relations between cl and c 2 . Under the coherency

condition, the subsumption relation has the following property:

L e m m a 6.2 If V is coherent and V I- c l (E) 5 c z (E) then there is a princzpal subsumption relatlon

r0 I- c l (F) < c 2 (g) . Moreover, there is an algonihm which, given a coherent class context V and

a pair c1 ,czr miurns either (7 , ~) or failure such that if it retuns (7 , ~) then V t cl(T) < ~ ~ (7) IS a

principal subsumption relation between c l , c2 otherwise there is no subsumption relation between c,

and cz.

Proof The algorithm is defined as follows. Let c, c' be a given pair of class names. If there

is no sequence c l , . . . , c, such that V contains class ci&) . . . isa {. . . , c,+l(pi+l), . . .} . . . end,

1 5 i < n - 1 , cl = c, c,, = c', then report failure. Otherwise pick one such sequence c l , . . . , c,

and return (? ,p(c ,,.,.,, , ,)), where p(, is defined in the proof of the previous lemma. If the

algorithm reports failure then there is no sequence c l , . . . , c, satisfying the above conditions. By

the subsumption rules, it implies that there is no subsumption relation between c and c'. Suppose

the algorithm returns (i,~). Then by the subsumption rules this implies D I- c l (q 5 c l (p) . Let

2) t c l (f i) 5 c ' (E) be any provable subsumption relation. By the rule 3 of subsumption relation,

2) t- cl (z) 5 c1(7[T := pl]) is also provable. Since 2) is coherent, = @ := pl] . I

6.4 Proof System for Class Definitions and Typings

The extended type system has the following forms of judgements:

M C + t D D is a well typed class context,

M C + t- D, A b e : r the typing 'D, A D e : r is derivable.

where A stands for type assignments. The proof systems for those two forms of judgements are

defined simultaneously.

Let D be a class definition of the form class c(S) = p,. . .end. D induces the tree subst~tution

q!JD on type-schemes. For finite type-schemes, r#JD(p) is defined by induction on the structure of p

as follows:

Since p, is not a type variable, d D is a non-erasrng second-order substttut~on on trees [33] which

extend uniquely to regular trees. See [32] for the technical details. Since regular trees are closed

under second-order substitution [32], r#JD(p) is a well defined type-scheme.

Definition 6.3 (P roo f Sys t em for Class Definitions) The rule for M C + I- D is defined by

induction on the length of V:

1. The empty class contezt is a well typed class contezt, i.e. t- 0.

2. Suppose t- D. Let D be the following class definition:

class c(T) = p isa {cl(%), . . . , c , (z))

with

val ml = e l : M I ;

val mn = en : M,,;

end.

Then MC+ I- V ; D if the following conditions hold:

(a) it is coherent,

(b) if a class name c' appear in some of p, p,, , . . . , p," then V contains a definition of the

form class ~'(7). - . e n d ,

(c) MC+ t- V , 8 D e, : T for any ground instance T of dD(Mi[sub :=

(d) for any method val m = em : Mm defined in some definition of class cl(F) in V such

that 2) I- c @) 5 c l (a) , MC+ k V , 0 D em : T for any ground i n s i a n c e . ~ of M,F :=
-
p', sub := p].

We have already discussed the necessity of the condition (a). The necessity of the condition (b) is

obvious. The condition (c) states that each method defined in the definition of the class c(7) is type

consistent with its own implementation. The condition (d) ensures that all methods of all super

classes that are already defined in 2) are also applicable t o the class c(r). This is done by checking

the type consistency of each method em defined in a super class against the type-scheme obtained

from M m by instantiating its type variables with type-schemes specified in isa declaration in the

definition of the class c (q and replacing the variable s u b with the implementation type-scheme p

of the class c@).

Definition 6.4 (P roo f Sys t em for Typings) The proof system for typrngs of the extended lan-

guage is the one obtalned from the proof system for Machiavelli (sectzon 5.2.3, definition 3.22) b y

changing typing formula A D e : r to V , A D e : T and adding the following rule:

(METHOD) MC+ I- V , A b m : r

i f MC+ I- 2) and there is a method val m = e : M of a class c(7) in 2> such that T is an

instance of MF := p, s u b := c'(F)] for some V k d(F) 5 ~ (7) .

6.5 Soundness of the Type System

We show the correctness of the type system for the extended language with respect t o the type

system of Machiavelli.

Let 'D be a given class context and T be a type. The ezposure of r under V , denoted tiy

ezposev (r) , is the type given by the following inductive definition on the length of V :

1. if 2) = 0 then ezposev(r) = T ,

2. if 'D = V'; D then e z p o s e v (r) = e z p o s e v ~ (~ j ~ (r)) .

Intuitively, exposev(r) is the type obtained from T by recursively replacing all its classes by their

implementation type-schemes. Since exposel, is a composition of second-order-substitutions which

is also a second-order substitution, the following property follows from their general properties [32]:

Lemma 6.3 Let V be any class contezt and f be any type constructors other than class names

appears in 2). ezposev(f (T I , . . . , r,)) = f (e z p o s e v (r l) , . . . , ezposep(r,)) . 1

We extend ezpose to any syntactic structures that contain types. The above property also extends

to such syntactic structures.

The unfold of a raw term e under a class context I) , denoted by unfol&(e), is the raw term

given by the following inductive definition:

1. if D = 0 then unfol&(e) = e ,

2. if 'D = ?)';class.. .with

val m l = el : M I ;

val m, = en : M,

end,

then unfol&(e) = unfoldvt(e[el/rnl , . . . , e,/m,]).

unfol&(e) is the raw term obtained from e by recursively replacing all method names defined in V

with their implementations. The following property is an immediate consequence of the definition:

Lemma 6.4 For any class contezt V ,

Theorem 6.1 If MC+ t- V , A D e : r then M C I- e x p o s e v (A) b unfoldv(e) : e x p o s e v (~) .

Proof Proof is by induction on the length of 2). The basis hold since if V = 0 then M C + I-

reduced t o M C t- and e z p o s e v , e z p o s e v are both identity functions.

The proof for the induction step is by induction on the structure of e . Let V be the following class

context:

V 1 ; c l a s s c(7) = p . . . with

val ml = e l : M I ;

val m, = en : M n

end.

The cases other than m follows directly from the above two lemmas and the induction hypothesis

(in terms of the structure of e) . Suppose MC+ t- V , 0 D m : 7 . Then by definition of the

extended proof system for typings (i.e. the rule (METHOD)), there is a method val m = e : A.I in a

definition of a class ~ ~ (5 ;) in V such that r is an instance of M f i := K, sub := c a (K)] for some

V I- c 2 m 5 c l (Z) . We need to prove that M C I- 0 D unfo ldv(m) : e z p o s e o (r) . We distinguish

the following cases:

1. Case cl = c1 = C: m must be one of the mi in the definition of c and = K, which is a

renaming of 5. By the definitions of u n f o l h and e x p o s e n , unfo l&(m,) = unfol&,(e ,) and

e z p o s e p (r) = e z p o s e p l (d D (r)) . But since = Z, which is a renaming of 7, and Mi is finite,

by the inductive definition of d o , d D (r) is an instance of 4 ~ (M ~ [s u b := p]) . Since M C + k

D , 0 D m : r implies MC+ t- V , by the definition of M C + t- V , M C + t- I?', 0 D e , : r'

for any instance r' of d ~ (M , [s u b := p]) . In particular, M C + t- V 1 , O D e , : I $ D (r) . By the

induction hypothesis (of the main induction), MC F- 0 b u n f o l d p , (e i) : e ~ p o s e ~ ~ (4 ~ (r)) .

Therefore M C I- 0 b u n f o l d D (m) : e z p o s e v (r) .

2. Case c2 = c and cl # c: By the definitions of unfoldv and e z p o s e o , unfo l&(m) = u n f o l d D t (m)

and e x p o s e v (7) = e z p o s e v l (d ~ (r)) . Since T is an instance of h4[S; := E , s u b := c q (G)] ,

cp = C, and none of M , j i , E contain c2, d D (r) is an instance of M , f i := z , s u b := p] .

But since M C + I- 2) , 0 D m : r implies MC+ t- V , by the definition of M C + t- V ,

M C + t- V1,0 b m : r' for any instance r' of M[t; := z, s u b := In particular, M C f I-

Vf,O b m : I $ D (T) . Then by the induction hypothesis (of the main induction), MC t

0 D unfo l&, (m) : e x p o s e v ~ (d ~ (r)) . Therefore M C t- 0 D u n f o l d D (m) : e z p o s e v (r) .

3. Case cl # c and c2 # c: Then unfo ldv(m) = unfo ldv , (m) , e z p o s e V (7) = e z p o s e v , (r) and

MC I- 0 D unfo l&, (m) : e z p o s e V , (r) implies M C I- 0 D u n f o l d v (m) : e z p o s e v (r) . The

desired result follows from the induction hypothesis (of the main induction).

By the definition of subsumption relation, c~ = c and c2 # c contradict the assumption that

V I- c z @) 5 c l (K) . Therefore we have exhausted all cases. 1

This theorem establishes the correctness of the type system with respect to the type system of the

core language. In particular, since the type system of the core language prevents all run-time type

errors, a type correct program in the extended language cannot produce run-time type error.

The converse of this theorem, of course, does not hold, but we would not expect it to hold, for

one of the advantages of data abstraction is that it allows us to distinguish two methods that may

have the same implementation. As an example, suppose V contains definitions for the classes car

and person whose implementation type-schemes coincide and person has a method m i n o r which

determines whether a person is younger than 21 or not. By the coincidence of the implementations,

F 8 D e z p o s e (m i n o r (c)) : bool for any car object c . But I- V , A D m i n o r (c) : bool is not provable

unless we declare (by a sequences of isa declarations) that car is a subclass of person. This prevents

illegal use of a method via a coincidence of the implementation type-schemes.

6.6 Type Inference for the Extended Language

We now solve the type inference problem for the extended language by defining an algorithm to

compute a principal conditional typing schemes. For this purpose we introduce a new form of

conditions.

Definition 6.5 A subsumption condition is a formula of the form i s a (p , c (T)) . A substitutiotl 6

satisfies the subsumption condition under the class context V if V I- 6 (p) 5 B (c (7)) .

Note that the satisfiability for subsumption conditions is defined relative to a class context.

The notion of conditional typing schemes is now extended to include subsumption conditions.

Definition 6.6 A conditional typing scheme for the extended language ts a formula of the form

D, C, I= D e : p such that for any substitution B that i s ground for C , C and p and that satisfies C

under t h e class contezi V , MC+ I- V , B (C) b e : B (p) .

The definition for principal conditional typing schemes is the same a s before

Since the typing judgment M C + I- V , A D e : r implies the well typedness MCC I- V of the

class context V , in order to define a type inference algorithm we also need to define a type-checking

algorithm for class contexts. A subtle complication in defining these algorithm is that we need to

develop them simultaneously, since the two forms of judgements are mutually dependent. We solve

this problem in the following two stages:

1. to develop an algorithm that computes a principal conditional typing scheme under a type

correct class c o n t e d D (proposition 6 .1) ; then

2. to develop an algorithm to decide whether a class context is well typed or not using the above

result (proposition 6.2).

P r o p o s i t i o n 6.1 For any raw i e n n e , and any class contezt V if e has a typrng u n d e r 73 then t t

has a principal conditional typing scheme. Moreover, there is a n algorithm which, given any raw

term and any wel l typed class contezt D, computes a prtncipal conditional typzng scheme if one

ez is ts otherwise reports failure.

P r o o f If V is not well typed then by definition there is no typing of e uner V. Suppose 'D is

well typed. The algorithm to compute a principal conditional typing scheme is obtained from the

algorithm C T S (theorem 5.1) for Machiavelli by adding a parameter 'D and the following case for

methods:

C T S (V , e) = (C , C, p) where

(6) Case e m:

let

val rn = e : r\l be the method defined in the class definition for ~ (i) in V

in

C = { (i s a (t z , c (Q)) (t1,b fresh),

C = 0,
-

p = M[i := t l , s u b := t 2]

Other cases are the same as before. In particular, they do not depend on V

Since p returned in the case above is a type-scheme (i.e. it does not contain sub) and a set of

conditions denotes the conjunction of all its elements, the correctness of the algorithm for the

above case follows immediately from the definition of the condition isa(p, ~ (7)) . The proof of the

correctness of the other cases is same as the proof in theorem 5.1. 1

Proposition 6.2 For any class context V , it is decidable whether M C + t V o r no t .

Proof The proof is by induction on the length of D. Basis is trivial. For the induction step, let D

be the following class context:

Dt;class c@) = p . . . with

val m l = e l : M I ;

val m, = en : M,

end.

In order to decide whether M C + I- V , we need to check the four conditons (a) - (d) of definition 6.3.

We have shwon by lemma 6.1 the decidability of condition (a). The decidability of condition (b) is

obvious. We show that condition (c) is decidable. Since Mi is finite, dD(M,[sub := p]) is effectively

computable by the inductive definition of 4D. By induction hypothesis, it is decidable whether

MC+ I- V or not. Then by proposition 6.1, we can compute a principal conditional typing scheme

MC+ F V,C,C D ei : p. We can then decide whether MC+ I- V,0,0 D ei : dD(Mi[sub := p])

is a conditional typing scheme or not by checking whether there is a substitution 6 that satisfies

C and B(C,p) = (O,dD(Mi[sub := p]) . This implies the decidability of condition (c). Since the

subsumption condition is decidable (lemma 6.2), the decidability of condition (d) is shown similarly

to condition (c). 1

We now have a complete type inference algorithm:

Theorem 6.2 There i s an algorithm which, given any raw t e r m e and a n y class context D , com-

putes a principal conditional typing scheme of e under 'D if one exists otherwise reports failure.

Proof The algorithm is first checks the well typedness of the class context 2) by using propo-

sition 6.2 and if it is well typed then computes a principal conditional typing shceme by using

proposition 6.1 otherwise reports failure. The correctness of the algorithm follows from the defini-

tion of typings. 1

In subsection 5.4.2 we noted that the existence of a conditional typing scheme is not enough for

complete type-checking because a set of conditions may not be satisfiable. Subsumption conditions

we have introduced in this section is another source of unsatisfiability. To see this consider the

following examples. Suppose V contains the class definitions for person and car (without type

parameters) with the method

fun make-person(n , a) = . . . : (s t r ing * i n t) -+person

for person and the method

fun f ue l (c) = . . . : s u b -+ string

for car. Now consider the expression: f ue l (makeqerson(" Joe", 21)) . This expression has the

following conditional typing scheme:

M C + t- V , { isa(person, c a r) } , 0 D f uel(make-person(" J o e 1 , 2 1)) : s tr ing

which has no instance because of the unsatisfiable condition i sa(person,car) (unless person is

defined to be a subclass of car in V) . As we have done for Machiavelli we develop a method to

detect these inconsistency of subsumption conditions by transforming them into a simpler form.

Definition 6.7 A set of condifion C is in weak subsumpfion normal form if the following properttes

hold:

1. i f i sa(p1, c(&)) E C then p is a type variable,

2. i f i s a (t , c l (E)) E C and i s a (t , c 2 (E)) E C then cl # c2.

Proposition 6.3 If a set of conditions C is saiisfiable under a given coherent class context D, ihen

there is a set C' of conditions which is a refinement of C and is i n weak subsumpiion normal form.

hloreover, there is an algorithm which, given a set of conditions C and a coherent class context

D, compuies either a pair (C ' , 8) or unsatisfiable such that if ii returns (C', 8) then C' is in weak

subsumption normal form and is a refinmeni of C with 8 a refinement substitution oiherwise, C is

unsatisfiable under V .

Proof We first define aset of transformation rules on pairs of a set of conditions and a substitution:

(C u (i s a (c i (F i) , c 2 (E))) , 0) =j

(O1(C) , 8' o 8) where 6' = U((z,z), (z, F)) such that V I- cl (z) 5 c 2 (~)

is a principal subsumption relation between cr and c2 under V ,

(C u cl (TI)), 2 4 2 , ~ l (i G))) , 8)

(el(C u { i s a (t , c l (pi)))), 8' o 8) where 8' = U (E , E)

We now define the algorithm SUB as:

(c l , 0) if (C, id) &- (C', 8) and C' is in weak subsumption normal

SUB(C) = form

unsat is jable otherwise

(by assuming some brdering on applications of the rules).

Since the both transformation rules strictly reduce the number of conditions in C , the algorithm

always terminates. The correctness of the algorithm is proved similar to the proof of proposition 3.5

using lemma 6.2 and the coherent assumption on 2). 1

We can then extend theorem 5.2 with subsumption conditions:

Theorem 6.3 Let C be a set of condition that does not contaln join conditions and all projectton

condi t ions are those that have a finite target t ype . IfC is satrsfiable then there is a refinment C' of

C that is i n record-vartant normal form and in weak subsumptzon normal form. Moreover, there is

an algorithm t o compute C' and a refinement substitution 8 if they ez i s t .

Proof Let a be the transformation relation obtained by combining the transformation rules

defined in the proof of proposition 5.5 and the proof of proposition 6.3. Now define the algorithm

R V P S as follows:

(C", 8) if C' = 3 P (C) , (C', i d) (C", 8) such thatC" is in

R V P S (C) = record-variant normal form and in weak subsumption normal form

failure otherwise

Since all the rules defined in the proof of proposition 5.5 and the proof of proposition 6.3 strictly re-

duce the number of conditions, * also strictly reduces the number of conditions and the algorithm

always terminates. The correctness of the algorithm follows from theorem 5.2 and proposition 6.3.

I

Similar to record and variant conditions, subsumption conditions in weak subsumption normal

form also have a compact representation. We extend the set of conditional type-schemes defined in

subsection 5.4.2 to include representations of subsumption conditions:

where (t i s a ((c l (K) , . . . , c , (r))) is a type variable associated with the set of subsumption condi-

tions isa(t, c i (z)) , 1 5 i 5 n. Conditional typing schemes for raw terms that do not contain joins

and projections on infinite target types can be represented by these conditional type-schemes.

Note however that theorem 6.3 is weaker than theorem 5.2. Unlike the record-variant normal

form (definition 5.7), the fact that C is in weak subsumption normal form does not implies that all

subsumption conditions in C are satisfiable. To see this consider the following example. Suppose

2) consists of the two class definitions student and employee with the method

fun grade s = . . . : s u b -. ant

for student and the method

fun salary e = . . . : s u b --, int

for employee. Now consider the following function definition:

f u n saralynnd-grade p = (salary(p), grade(p)).

This function has the following conditional typing scheme:

MC+ I- D, 0,0 D saralynnd-grade : (t isa(student, employee)) - (int * int) .

But since there is no class that is a subclsss of both student and employee, the above typing scheme

has no instance.

As a formal system it is easy to fix this problem by adding the following condition to that of

weak subsumption normal form of a set C of conditions under a class context V:

if isa(t , c l (E)) E C , i sa (t , c z (E)) E C , . . . , isa(t, c , (z)) E C then there is some c(7)
and a substitution 0 such that 2) t- c(B(7)) ci(O(F)) for all 1 5 i 5 n.

Since the number of classes defined in 2) is finite, the above condition is shown to be decidable by

checking against all classes defined in Z) by using lemma 6.2. However, in practice, 2) might become

very large and such test might be prohibitively expensive. We think that the weak subsumption

normal form is satisfactory for practical purpose. The only remaining subsumption conditions are

on function types. This means that the existence of weak subsumption normal form guarantees

that all applications of methods to objects are type correct. This solution is similar to the one

we have adopted for the satisfiability checking of join conditions and projection conditions with an

infinite target type (subsection 5.4.2). Also note that this problem does not arise in type-checking

a class context because of explicit type specifications of methods.

6.7 Further Examples

In section 6.1, we defined the classes person and employee. The sequence of the two definitions is

indeed a type correct class context in our type system. Figure 6.1 shows an example of an interactive

session involving these class definition in our prototype implementation. ('a < person) and (' a

< employee) are bounded type variables. As seen in this example, the system displays the set of

all inherited method for each type correct class definition.

Let us look briefly at some further examples of how type parameterization can interact with

inheritance. At the end of section 6.1 we defined a polymorphic list class list(a). We could i~nrne-

diately use this by implicit instantiation of a . For example, the function

fun sum 1 = if null(1) then 0 else hd(1) + sum(tl(1))

will be given the type list(int) - int, as would happen in ML. However we can instantiate the

type variable a in other ways. For example, we could construct a class

class genintlist(b) = (rect. (Empty : nil, List : [Head : [Ival : int , Cont : b],Tail : t]))

isa list([Ival : int, Cont : b])

with

end

which could be used, say, as the implementation for a "bag" of values of type b. In this case all the

methods of pre-list and list are inherited. However, we might also attempt to create a subclass of

list with the following declaration in which we directly extend the record type of the List variant

of the implementation:

class genintlist(b) = (rec t. (Empty : nil, List : [~ k a d : int,Cont : b, Tai l : t]))

isa l ist(int)

with

end

-> class person = [Name : string, ~ g e : int]
with

end ;

>> class person with
make-person : (string*int) -> person
name : ('a < person) -> string
age : (' a < person) -> int
incrementage : ('a < person) -> ('a < person)

-> class employee = [Name:string,Age:int,Salary:int]
with

end ;

>> class employee isa person with
make-employee : (string*int) -> employee
addsalary : (('a < employee)*int) -> (a1 < employee)
salary : ('a < employee) -> int

inherited methods :
name : ('a < person) -> string
age : ('a < person) -> int
incrementage : ('a < person) -> ('a < person)

-> va1 joe = make,person("Joe" ,211 ;
>> val joe = , : person

-> val helen = make-employee("Helen",31)
>> val helen = - : employee

-> age(joe1;
>> 21 : int

-> val helen = incremenLage(he1en);
>> val helen = - : employee

-> age (helen) ;
>> 32 : int

-> fun wealthy e = salary(e) > 100000;
>> val wealth = in : ('a < employee) -> boo1

Figure 6.1: A Simple Interactive Session with Classes

In this class, all the methods of pre-list could be inherited but the method cons of l is t (a) cannot b e

inherited because the implementation type-scheme of geninilist(b) is incompatible with any of the

possible types of cons. In this case, the type checking for class definition fails and the type system

reports an error.

6.8 Limitations and Implementation

First, we should point out that the language we have proposed differs in some fundamental ways

from object-oriented languages in the Smalltalk tradition. A static type system does not fit well

with late binding - a feature of many object-oriented languages. One reason to have late binding

might be to implement ovem'ding of methods. I t is possible that some form of overloading could

be added to the language t o support this.

Another limitation is the restriction we imposed on inheritance declarations in connection to

type parameters. We required that if a class c (t 1 , . . . , t ,) is a subtype of both c'(r1, . . . , r,) and

c'(T~, . . . , <) then rj = rj' for all 1 < i 5 n. This is needed to preserve the existence of princi-

pal conditional typing schemes for all typable raw terms. This disallows certain type consistent

declarations such as:

class C 1 (t) = p wi th

fun m x = m(x) : sub -+ t

end;

class C2 = p' isa { C l (i n t) , Cl (bool)) w i t h

c = e : C 2

end.

This definition is type consistent in any implementation type-schemes p,pf but creates a problem

that terms like m(c) do not have a principal conditional typing scheme. However, we believe that

the condition is satisfied by virtually all natural declarations. Note that in the above example the

result type of the method m is the free type variable t without any dependency of its domain type

s u b which reflects the property that the method m does not terminates on any input. I could not

construct any natural example that is type consistent but does not satisfy this coherent condition.

Form a practical perspective, checking the type-correctness of a class definition with isa decla-

ration requires the consistency checking of all methods of all super-types already defined. A naive

way to do this would involve recursively unfolding definitions of types and method and then type-

checking the resulting raw term in the type system of the core language, which will be prohibitively

expensive when the class hierarchy become large. This problem is avoided using the existence of

a principal conditional typing scheme for any typable raw term in the extended language. At the

time of a definition of each method, we can save its principal conditional typing scheme. The

type correctness of the method against a newly defined subclass can then be checked by checking

whether the required method type is an instance of its principal conditional type-scheme or not.

This eliminates repeated type-checking of method bodies but still requires checking of type cor-

rectness against the set of all inherited methods. This can be also avoided. The set of all possible

implementation type-schemes of subclass of a class can be represented by a single principal condi-

tional type-scheme. As an example, consider the example of person we defied in the introduction.

The most general conditional type-scheme of the type variable s u b in the definition of person can

be computed as ((1) Name : s tr ing,Age : in t] . Using this property, the type correctness of a sub-

class declaration can be checked by checking that the implementation type-scheme is an instance

of [(t) N a m e : s tr ing,Age : in t] without checking the consistencies of each method. While the

number of inherited methods might become very large, we expect that the number of super-classes

is relatively small even in development of a large system and therefore that this strategy yields an

efficient implementation of a static type-checking of large class hierarchy.

Chapter 7

Object-identities and Views for

Ob ject-oriented Databases

This chapter extends Machiavelli with reference types to represent database objects with "identi-

ties" and describes a method to represent object-oriented databases.

7.1 Introduction

As we have demonstrated through examples in section 5.7, Machiavelli provides a suitable medium

to represent the relational and other complex object models in ML style type system. In these

models, database objects are pure values in the sense that two objects are equal iff they denote a

same regular tree (remember the definition of eq primitive in Machiavelli in section 5.5). In those

value-based database systems, real-world objects are represented by sets of their attribute values.

Moreover, the information about a single real-world object such as a person might be stored in

various places. Query processing is done by manipulating these values using join, projection and

other operations.

In contrast to those value-based approach, many other data models have been developed based

on the intuitively appearing idea that a real-world entity should be directly represented by a single

database object. Perhaps the first well established model based on this idea is the entity-relationship

model (281. Many recent proposals such as (46, 74, 671 also integrate the features of object-oriented

programming, forming the increasingly popular area of "semantic" data models and object-oriented

databases. See [12, 581 for surveys in this area.

There have been arguments [103, 121 that object-oriented databases provide better solutions

to problems of database programming than those provided by value-based systems. It is however

apparent that there are many applications for which value-based systems provide simpler and more

elegant solutions. As an example, recent development of a formalism in natural language processing

called feature s tructures [97] strongly suggests that the databases for linguistic information are best

represented in a value-based system. On the other hand many ideas developed in object-oriented

databases such as object identities and extents of classes have obvious practical benefits. I believe

that the real problem we should solve is to integrate these two features in a unified type system

so that the programmer can enjoy both advantages of the two approaches. There have been also

argued [12, 661 that value-based database systems such as the relational model and its extensions

do not well fit a type system of a programming language. Through chapter 4 to chapter 5 , we

have just shown the opposite by integrating very general complex objects into a polymorphic type

system of a programming language. In this chapter we present a method to integrate the features

of object-oriented database programming into our type system.

There have been a number of arguments on the properties of object-oriented databases (65,

17, 121. Here rather than adding to this philosophical discussion, we restrict our attention to

the notions of object ident i t ies and ez ten t s . When combined with the central features of object-

oriented programming, they provide what we believe to be the desired features of programming with

object-oriented databases. We have integrated central features of object-oriented programming in

Machiavelli in chapter 5 and 6. In this chapter we analyze object identities and extents and propose

a method to represent them in Machiavelli.

The notion of object identities is based on the intuitive idea that database objects should model

real-world entities that change their attributes while maintaining their "identities". The properties

of objects with identities can be summarized as follows:

1. two objects are equal if and only if they are identical (i.e. they are created by the same

instance of the creation operation),

2. an object has a set of attribute values that can be changed without affecting its identity,

3. an object is referred and accessed independently of the values of its attributes.

The practical importance of these properties is that they nicely represent sharing and mutability,

which are rather cumbersome to represent in a pure value-based system. Objects with identities are

usually implemented by maintaining a special value space such as "object identifier" [67] and "key"

[7]. Objects are referred and accessed by those special values. User are required to create objects

so that their identifying values are unique. The system enforces the uniqueness requirement. -

The notion of extent is related to the notion of classes in object-oriented programming we have

analyzed and integrated in Machiavelli in chapter 6. A class in object-oriented programming can

be regarded as an association of a (hidden) structure defining the internal representation of objects

and a set of operations defining their external behavior. Such classes are hierarchically organized

by inheritance relation supporting method sharing. For example, if we define a class point with a

method m o u e (p , z , y) that displaces a point p by co-ordinates z and y , we can define a subclass,

c i rc le , of point and expect that the same method, m o v e , can be applied t o instances of the class

c i rc le . In object-oriented databases, the notion of classes not only represents these inheritance

relation but also imposes a relationship on the sets of objects of classes. For example, when we

say an e m p l o y e e i s a person in a object-oriented database system, as in object-oriented languages

we expect employee t o be a subclass of person in that every method of person is applicable to

instances of employee but we also mean that, in a given database, the set of e m p l o y e e objects

is a subset of the set of person objects. We call a set of objects of a class an ezient of a class.

Note that the notion of extents are relative to a database for a subset of a database depending on

the context). Since it is natural and sometimes necessary to maintain multiple databases having a

same class structure, it is desirable t o allow multiple extents for a single class.

An important implication of this notion is that classes in object-oriented databases cannot be

directly modeled by types. This contrasts with object-oriented programming whose classes are

accurately represented in the type system we have constructed in chapter 6. To clarify this issue,

let us look at a sketch of a database query in which this subset assumption is made.

1. Obtain the set S of students in the database.

2. Perform some complicated restriction of S, e.g. find the subset S' of S whose Age is below

the average Age of S .

3. Obtain the subset E of S of employees in S'

4. Print out some information about E, e.g. print the names and ages of people in E with a

given salary range.

Since each object is a model of a real-world entity, the above query certainly make sense and the

process (3) might be done by "intersecting" the set of employee objects and S . Different from the

typing relation between values and types, an object o belongs to a class c does not means that the

entire structure of o is specified by c but it should mean that c specifies some partial information of

the structure of o . A person object might be an e m p l o y e e . It also suggests that an object-oriented

database require some form of heterogeneous collection of objects.

Programming such queries are certainly possible in a dynamically typed language, and can easily

be handled in object-oriented database languages based on dynamic type-checking. Of course this

situation can be also handled in a statically typed system by maintaining disjoint sets of e m p l o y e e s

and persons instances, each of which is uniformly typed, and at the same time by maintaining a

"natural" embedding (injective map) from the set of e m p l o y e e s to the set of p e r s o n s as a typed

function in the language. This is what is done in the relational model through (seldom implemented)

foreign key constraints. Implementing the query then involves join a t line 3 in order to find the

employees who have a key that is in the relation containing the selected persons.

Galileo handles this problem by introducing special types called "classes". For each class-type,

Galileo maintains a unique extent associated with a class. An object of a class-type is required to

have a key that is unique not only among the set of all objects of that class but also among the

set of all objects of all its subclasses. The system then maintain the inclusion relation of extents

associated with classes. This approach has a disadvantage that we can have only one extent for

each class. This creats a problem when we want to define generic methods which are applicable to

many extentns sharing common structures. For example, if we want to maintain a separate extent of

students for each department then we are forced to define a separate class for each department. This

means that even if the structure and required set of methods are identical for all those departments

we are forced to repeat class and method definitions for each department.

In this chapter, we introduce the reference types to represent objects with identities. \Ye then

introduce the notion of views to represent extents and demonstrate that Machiavelli type system

can represent object-oriented databases. Tlle justification of these notions are, however, intuitive

and ad hoc. Development of a formal theory for object identities and extents is left to future

investigation.

7.2 Reference Types

We claim that the properties of object identities we have described are accurately captured by

reference types (or pointer types) that are implemented in many typed programming language

including Standard ML [47].

We extend hlachiavelli type system by adding the type constructor ref, i.e. if r is a type then

-
reflr) is a type. The set of raw terms are also extended with three constant functions:

ref : r --+ refir) (reference creation)

! : reflr) -4 r (de-referencing)

:= : refir) -+ r -r ni l (update)

where nil is a trivial base type containing only one value Nil . Following the syntax of Standard

ML, we use the notation el := e:! for :=(el)(e2).

As has been known and was pointed out in [71], a general use of reference in ML style type

system can create type inconsistency not detected by static type-checking. The following example

is given in [71]:

l e t

val x = ref Ax. x

in

(x := Ax. x + 1,!x t r u e)

e n d .

If the type system treat the constant ref as an ordinary constant then the type system infer the

type boo1 for the above expression but cause a runtime type error if the evaluation of pair (x :=

Ax. x + 1, !x t rue) is left to right. Here we adopt the solution proposed in [TI] that the "actual"

argument t o the function ref must have a ground type. This condition is the same as the one we

imposed on the function join and proj' (with infinite a) and therefore can be enforced by the same

method (subsection 5.4.2).

Two references are equal iff they are created by the same invocation of ref. For example.

re f (3) = re f (3) is false but let val a = re f (3) in a = a end is t rue . A reference is created with a

value which can be arbitrary complex and can be changed without changing the value of reference

itself. For example, if we create a department object (with identity) as the following reference

value:

val d = ref ([Dname = *@Sales", Building = 451);

and from this we create two employee objects:

val empl = ref ([Name = "Jones", Department = 4);
val emp2 = ref ([Name = *'Smithw, Department = 4);

then these two employees have the object d in the Department field not the value [Dnarne =

"Sales1', Building = 451. The following change of values of d:

let

val d = (!empl).Department

in

d := rnodtfy(!d, Building, 67)

end

will be reflected in the department as seen from empz and the expression

is evaluated t o 67.

7.3 Views for Representing Extents

T h e way we capture the notion of view in our language is through coercions or vrews. The type of

an object will, in general, be a reference to a rather complicated type, say PersonObj. A database

(or a part of i t) will consist of a set D of such objects, i.e. a value of type {PersonObj). A view of

D is a set of relatively simple records in which we "reveal" a part of the structure of each member

of D so that we can apply operations on database objects we have already developed. For example,

{ [Name : string, I d : PersonObjlD and {{[Name : string, Age : int , Id : PersonObj]) can be the

types of views of the set D. But notice that within these records we have kept a distinguished I d

field that contains the object itself, and this field, being a reference type, can also be treated as

an "identity" or key when we have a set of objects. Because of the presence of this field, we can

define generalized set operations on views even though they are of different types. In fact we have

already seen one such operation, join. \Vhen applied to views it is an operation that takes the

intersection of sets of identities, but produces a result that has a join type and gives us the union

of the "methods". In fact we shall simply define a class assoctaied wzth ezienis as any record type

that contains an Id field, which will be assumed t o be some reference type.

As an example. a part of the database could be a collection of "person" objects modeling the

set of persons in a university. Among persons, some are students and others are employees. Such

subsets naturally form a taxonomic hierarchy or class structure. Figure 7.1 shows a simple example.

Note that the arrows not only represent inheritance of properties but also actual set inclusions. LVe

use variant types to represent structures of objects that share common properties (e.g. being a

Teaching Fellows R
Employees 5? 7
Figure 7.1: A Simple Class Structure

person) but differ in special properties. The example is then represented by the following types in

Machiavelli.

PersonObj = reA[Name : string,Salary : (None : nil, Value : i n t) ,

Advisor : (None : nil, Value : PersonObj),

Class : (None : nil, Value : string)])

Person = [Name : string, Id : PersonObj]

Student = [Name : string, Advisor : PersonObj, I d : PersonObj]

Employee = [Name : string,Salary : Integer, Id : PersonObj]

TeachingFellow = [Name : string, Salary : Integer, Advisor : PersonObj,

Class : String, I d : PersonObj]

The reference type PersonObj is the type of person objects. The type Person, Employee and

TeachingFellow are types of person objects viewed as persons, employees and teaching fellows

respectively. For example, a person object is viewed as (or more ~recisely can be coerced to) an

employee if it has name and salary attributes. A database would presumably contain a set of person

objects, i.e. a set of type {PersonObj}}, and views of any set of this type can be constructed in

Machiavelli by the following definitions:

fun PersonView(S) =

se lec t [N a m e = (! x) . N a m e , Id = x]

w h e r e x E S

w i t h t rue ;

fun EmployeeView(S) =

select [N a m e = (! x) .Name ,Sa lary = va lue (((!x) .Sa lary) , Id = x]

w h e r e x E S

with(case (!x).Saraly of < Value = x >a t rue ,< None = y >* fa lse);

fun S t u d e n t V i e w (S) =

select [N a m e = (! x) .Name , Advisor = zralue((!x).Advisor), Id = x]

where x E S

w i t h (c a s e (!x).Advisor of < Value = x >+ t rue , < None = y >a f a l se) ;

fun T F V i e w (S) =

select j o in (x , [Course = value((!x) .Course)])

w h e r e z E j o in (S tuden tV iew(S) , Employee (S))

w i t h (case (!x).Course of < Value = x >* t rue , < None = y >+ fa lse);

where value is the function defined as:

fun ualue(v) = (case v of < Value = x >=. I, < None = y > j E r r o r) ;

The types inferred for these functions will be quite general, but the following are the instances that

are important to us in the context of this example.

Personv iew : { P e r s o n O b j) - { P e r s o n]

Employeeview : { P e r s o n O b j] - {Employee]

S t u d e n t v i e w : I(PersonObj] - {{Student]

T F V i e w : {PersonObj}} --, {TeachingFellow]

In the definition of T F V i e w , the join of two views models both the intersection of the two

classes and the inheritance of methods. If al,a? are types of classes, then a1 < a? implies that

projectu ' (View, , (S)) 2 V i e w , , (S) where View,, and View,, denote the corresponding viewing

functions on classes a1 and a?. This property guarantees that the join of two views corresponds to

the intersection of the two. We therefore define:

fun view-intersection Vl V2 = join(Vl, V2).

The property of the ordering on types and Machiavelli's polymorphism also supports the inheritance

of methods. For example, suppose we have a database persons. Then

always represents the set of objects that are both student and employee. Moreover, the type of

the intersection is the join of the types of StudentView(persons) and EmployeeView(persons)

and therefore methods defined on StudentView(persons) and EmployeeView(persons) are auto-

matically inherited by Machiavelli's type inference mechanism. Here are some examples of query

processing in a interactive session in Machiavelli:

(* New view of people who are both Student and Employees *)

-> val supported-student =

view-intersection(Student~iea(persons) ,EmployeeView(persons)) ;

>> val supported-student = (. . . . 3

: <[Name:string, Salary:int, Advisor:PersonObj , Id:PersonObjl3

(* lames of students who earn more than their advisors *)

-> select x.Name

where x <- supported-student, y<-EmployeeView(persons)

with x.Advisor=y.Id andalso x.Salary > y.Salary;

>> val it = < . . . 3 : €string3

Dual to the join which corresponds to the intersection of classes, we can define the "union" of

extents in Machiavelli. The result type of the union of two views should be the type "common" to

both of the types. Using our ordering on description types, this can be represented by the following

typing rule:

view-union : {a l) x %b2) - {{bl n 62))

The appropriate definition for the view-union can then be given as:

which is reduced to the standard set-theoretic union when 61 = 62. This operation can be used to

give a union of classes of different type. For example,

correspond to the union of students and employees. On such a set, one can only safely apply methods

that are defined both on students and employees. As with join, this constraint is automatically

maintained by Machiavelli's type system simply because the result type is {{Person}}.

In addition one can easily define the "membership" operation on objects of disparate type.:

fun view-member(x, S) = join(fIx], S) # {)

view-member(x, S) = true iff there is some member of s of S such that x and s have a common

identity. In this fashion it is possible to extend a large catalog of set-theoretic operations to classes.

It is interesting to note that this approach, when considered as a data model, has some similari-

ties with that proposed in the I F 0 model [3]. The database consists of a collection of sets of different

types of which a set of type PersonObj in our example, would be one. Subclasses ("specializations"

in IFO) correspond to views. However, unions of these cannot be formed directly, because the Id

fields will have different types. The correct way to form a union (IFO's "generalizations") would

be to exploit a variant type.

Chapter 8

Conclusion and Topics for Further

Research

This thesis has proposed a programming language for databases and objet-oriented programming.

The language has a static type system with static type inference and hlL style polymorphism.

The type system uniformly integrates complex database objects, central features of object-oriented

programming and ML style polymorphism. Various complex models including complex object

models and object-oriented databases can be directly represented in the type system. This allows

database programmers to share benefits of hlL style type system and useful features of object-

oriented programming such as multiple inheritance and data abstraction.

This thesis has achieved this goal by extending hlL style type system to st.ructures and oper-

ations for databases and object-oriented programming. I have analyzed the syntax and semantics

of M L and constructed a framework for denotational semantics for hJL polymorphism and axiom-

atized the equational theory that correspond to the semantics. I have also constructed a theory of

types for database objects and proposed a concrete type system for complex database objects that

is rich enough to represent virtually all proposed database objects. By combining the analysis of

ML and the type system for database objects, I have defined the polymorphic core of the proposed

language and developed a type inference algorithm. The core has then been extended to include

user definable classes for object-oriented programming. I have also presented a method to represent

object-oriented databases in the language.

As in many endeavors, the work presented in this thesis is not complete with respect to its

ultimate goal. There are many topics that remain to be investigated before a truly satisfactory

programming language for data intensive applications can become a reality. The rest of this chapter

lists some of these topics that can be regarded as continuations of this work.

8.1 Semantics

One of my belief underlying this study is that construction of a clean mathematical semantics

is essential t o understand existing systems, to extend existing systems and t o integrate various

different systems. The following investigations should be useful for a better understanding of the

type system proposed in this thesis and for further extensions.

8.1.1 A Concrete Models for Machiavelli

In section 3.3, I defined the notion of models and equational theories for hIL like languages and

proved the soundness and completeness theorem. The notion of models for hlachiavelli was defined

based on this result. By the completeness theorem for the simply typed lambda calculus, we know

that there is a model. But it is also interesting t o construct a syntax free model for Machiavelli.

By the definition of models of Machiavelli, it is enough to construct a model for the explicitly

typed language ~Machiavelli. An appropriate formalism might be the domain theory. In [91]

Plotkin constructed a domain theoretic model for a variant of the simply typed lambda calculus

with recursion. In this model, base types are interpreted as flat cpos (complete partial orders)

and function types are interpreted as continuous function spaces. In this language the only type

constructor is the function type constructor, which corresponds t o the continuous function space

construction on cpos. In xXlachiavelli, types correspond t o regular trees generated by various type

constructors. Since a regular tree is specified by an equation, one way to construct a domain

theoretic model for xhlachiavelli might therefore be to translate an equation on regular trees to an

equation on cpos and to interpret a type as the solution of the corresponding equation over cpos.

8.1.2 Call-by-Value Semantics for ML Polymorphism

My analysis of a denotational semantics for ML polymorphism was based on the standard model

theory and the standard equational theory for lambda calculus. It assumed &equality both in

equational theories and in semantic spaces (through a condition on semantic mappings). As I

pointed out in section 3.1, however, these theories do not agree with the operational semantics based

on the "call-by-value" evaluation. Although the operational semantics is sound with respect to the

denotational semantics in the sense that if a term is evaluated to another term then they have the

same meaning, the denotational semantics is not cornputatronally adequate [76] for those operational

semantics and therefore the full abstraction result presented in subsection 3.6 has little help to them.

It is therefore desirable to develop another frameworks for equational theory and denotational

semantics that correspond to the call-by-value evaluation. Under our view of ML polymorphism,

we need t o develop a model theory and equational theory for the simply typed lambda calculus.

Once we have those theories, I hope it might not be hard to develop the corresponding theories for

ML like language using similar strategy I developed in section 3.3.

8.1.3 Semantics of Class Declarations

Another interesting question is a semantics of class definitions. A definition of a class determines

a subset of types that are compatible with the set of methods (i.e. the set of raw lambda terms

that implement the methods). This suggests that a class definition could be regarded as a form of

existential type 3sub : I<. (MI x . . . x M,) where Ii denotes the subset of types that are compatible

with the set of methods and M I , . . . , 111, are the types of the methods defined in the class definition.

This is a form of bounded ezisteniial types introduced in [27] but differs from theirs in that the kind

Ii reflects directly the implementations of methods. Semantics of such types should explain not

only the functionality of the set of methods (as was done in [80]) but also the structure of a kind

Ii determined by a set of raw lambda terms.

8.1.4 Semantics of Object Identities

In section 7.2 , I claimed that the properties of objet identities were accurately captured by ref-

erence types. However, the justification was intuitive and ad hoc. Although the notion of object

identities is intuitively clear and appealing, the precise formulat.ion of t.he semantics of objects with

identities constitutes a challenge. A uniform and elegant integration of objects with indentities into

a programming language type system may need an analysis analogous to the one I did for complex

database values in chapter 4.

8.2 Extensions of the Language

1 believe that the structures and operations available in the language proposed in this thesis is a

good approximation t o a sufficient set for practical programming. However, there are many features

that might be useful.

8.2.1 General Set Operation

The set of available operations on the set data types in the language are union, map, prod, join

and proj. I demonstrated that they enables us to define a general selection function, which was

named filter, and therefore seem sufficient for query processing in the style of relational algebra.

However, determining whether they are sufficient for general programming with sets or not needs

more investigation. In particular, some application might want an operation that maps a set to

a sequence. With the existence of references, such operation is definable. The following is one

example:

fun f (S : {{s]) =

let

val lre f = (ref ni l) : refllist(s))

fun f e = Ire f := conse(!lre f)

val dummy = map f S

in

!Ire f

end;

The type specifications S : fIs) and (ref nil) : reAlist(s)) are required to prevent the problem

associated with the interaction between polymorphism and references (see section 7.2). The type

l is t ($) and the function cons are easily defined.

A better approach would be to introduce a general elimination operator, which we call hom

here, for sets analogous to the operations on lists such as the "pump" operation in FAD [13] and

the 'Told" or "reduce" in many functional languages. One possible definition for hom is:

It seems that virtually all useful operations are definable by using horn, union and join. For

example, the following are definitions for map and filter:

fun map f S = hom(Xt. {{x], union, $8, S),
fun filter p S = hom(Xz. if p x thenfix) else #] ,un ion , S) .

In addition to these examples, horn can be used to define the cartesian product (prod) of sets, set

difference, membership in a set, and the powerset (the set of subsets) of a set.

A problem of introducing horn as a primitive operation on sets in the definition of the language

is that the result of this operation will in general depend on the order in which the elements of

the set are encountered and therefore the above definition of horn does not completely specifies the

behavior of horn unless the third argument op is an associative commutative operation and the first

argument f does not cause side-effect. It seems impossible to determine statically these properties

for each application of horn. If it is the case then we will be forced to leave the effect of horn as

implementation dependent if op and f do not satisfy the above property.

8.2.2 Heterogeneous Sets

As I analyzed in section 7.1, an object-oriented database require some form of heterogeneous col-

lection of objects. I solved this problem by encoding heterogeneous collection in a (homogeneous)

set of variants. Combining with views, it has almost achieved the goal of having static type system

that deals properly with collections of heterogeneous objects. Using join and proj, queries on views

looked the way we want them to look in object-oriented databases. However the construction of

complicated "catch-all" variant types (like PersonObj in section 7.3) and the definition of views -

even though they could be automatically generated from a semantic data model schema - is some-

thing we would prefer to avoid. It would be more natural if the schema were directly represented

in the type system.

One radical solution would be to introduce the heterogeneous set type constructor {{a,, . . . , on B.
In order to build a type system based on this idea, we need to decide the meaning of the typing

judgement { e l , e s , ..., e n) : { r l , rz, ..., T,}. There are a t least the following three possibilities:

1. for each e , there is some rj such that e , : rj,

2. for each T, there is some e j such that ej : r,,

3. the conjunction of the two.

Unfortunately none of them provide a satisfactory interpretation. Tlie first interpretation implies

the set expressions have more than one types, yielding the same problem as found in subtype

based systems (section 5.1). The other two interpretations do not support necessary operations

on sets including intersection and difference. For example, under either of the two interpretations,

S1 : {rl , ..., T,} and S 2 : {TI, ..T,) does not imply Sl n Sz : (71, ..., 7,). The second interpretation

is also unsafe when combined with function application.

A more promising approach would be to introduce some notion of partial type information for

sets. One way to specify partial type information is to specify a set of possible types. In the theory

of types, sets of types are sometimes called kinds [70] and are treated as themselves objects. The

special set constructor can then be characterized as an operator which takes a kind and returns a

type. In particular, the following kinds representing various sets of record types seems particularly

useful in object-oriented databases

K I < (T) I (/ : K , . .. , / : 6)

where Ii(r) is the kind correspond to the singleton set of r and (Il : ~ 1 , . . . , I , : ti,) denote the set

of all record types containing at least all the fields 11, . . . , I, of types specified by respective kinds.

This relation can be easily formalized by kinding rule, which also induce a partial order on kinds.

The set of types can be extended by partial types:

where T(K) is the type with partial type information represented by the kind K . Since our objective

is to integrate heterogeneous sets, the following introduction rule seems the only necessary intro-

duction rule for partial types.

Possible elimination rules are:

Union and intersection can be generalied to these partially specified set types.

where K I U ~2 and K I fl ~2 denote respectively the least upper bound and greatest lower bound of

kinds under the set inclusion ordering.

8.3 Communicating to Existing Databases

Of course, a good database programming language should not only be able t o manipulate databases

that conform t o its own type system but others as well. In particular, most current object-oriented

database languages do not have any static type-checking, but we would still like to deal with them

in the same way that we have dealt with uniformly typed classes. This is possible through use of

dynamic values. A dynamic value [l] is one which carries its type description with it. Functions

exist for interrogating this type description and for coercing dynamic values back to ordinary typed

values. Let us assume that dynamic values also behave like references in that two dynamic values

are equal only if they were created by the same invocation of the function Dynamic, which creates

values of type dynamic.

iVe can now view an external database as a single large set of dynamic values, i.e. it has the

type {dynamic]. In the same fashion that we generated views in chapt,er 7 , we can generate views

(probably by some external procedures) based on dynamic. Thus an employee view of the database

might be a class of type

{[Name : string, Salary : in t , Id : dynamic]l

and a department view could be a class of type

{{[Dname : string, Building : string, Id : dynamic]]

with the "intersection" of these classes being empty. Once this has been done we can write programs

to manipulate these structures in the type-safe way I have advocated throughout this thesis even

though the underlying database does not have any imposed type constraints. The implementation

of views (in addition we would need procedures to perform updates) must, of course, respect the

projection property I described earlier. But I also hope that, for a given object-oriented database

system, building these views will be straightforward and could be carried out by generating them

automatically.

8.4 Implementation Issues

There are a number of important ways in which Machiavelli needs to be augmented to make it a

viable programming language for databases and object-oriented programming. The most important

of these is the implementation of persistence and efficient evaluation algorithm for expressions -

especially those containing records and sets. I believe that these issues are orthogonal to Machiavelli

type system and many existing approaches can be adopted. On the other hand I also feel that we

do not need to deal in great detail with the efficiency of the whole range of database structures. My

hope is that Machiavelli can be parasitic on already implemented database management systems

and will serve as a medium for communication between heterogeneous systems and, in particular,

that it will allow us to achieve a clean integration of already implemented relational and object-

oriented systems.

IVith the future efforts towards efficient implementations, I hope that hlachiavelli (or some

language like i t) will become a practical programming language for various databases, object-

oriented system and other data intensive applications.

Appendix A

Abstract Syntax of Machiavelli

T h e following is the summary of the abstract syntax of Machiavelli. T h e syntax is given as a syntax

free grammar . T h e top level objects are declarations denoted by decl. Key words and lexical tokens

are writ ten in typewriter font. Optional constructs are enclosed in square bracket ([I) . < denote

the empty string. We use the following syntactic classes:

id the set of identifiers

atomics atomic tokens representing values of base types

const f un builtin functions on base types such as addition and conditionals.

decl : : = classdecls I binding I expr

classdecls : : = E I classdecl I classdecls

classdecl : : = class = id = type i sa {ctype , . . . , c type)

methoddecls

end

methoddecls : := c I binding : methodtype ; methoddecls

binding : := val id = expr I fun id id . . . id = expr

expr : := integer I boolean I string I real I

(fn id => e z p r) I expr expr I let id = expr in expr end I

[id = e x p r , . . . , id = e x p r l I e x p r . id I

<id = expr> I

(c a s e e x p r o f <id = i d =>expr, . . .,

<id = id> =>expr

[, o t h e r =>ezpr]) I

{ e x p r , . . ., e x p r) I u n i o n (e x p r , e x p r) I h o m (e x p r , e x p r , e x p r , e x p r) I

j o i n (e x p r , e x p r) I p r o j (e x p r , t y p e) I c o n (e x p r , e x p r) I e q (e x p r , e x p r) I

(r e c i d . e x p r) I (e x p r) I (e x p r : t y p e)

type : := ' i d I " id I i n t I b o o l I s t r i n g I r e a l I

[(i d) i d : t y p e , . . . , i d : t ype] I < (i d) i d : t y p e , . . . , id : type> I

(i d > d t y p e) I (i d i s a c t y p e , ..., c t y p e) I

C id: type , ..., i d : t y p e l I < (i d) i d : t y p e , ..., i d : t ype> I

t ype -> t ype I i d (t ype , . . . , t y p e)

m t y p e : := sub I) i d I " id I in t I b o o l 1 s t r i n g I r e a l I

C i d : m t y p e , . . . , i d : m t y p e] I < (i d) i d : m t y p e , . . ., i d :m type> I

m t y p e -> m t y p e I i d (m t y p e , . . ., m t y p e)

ctype : : = id I " id I int I boo1 I s t r i n g I r e a l I (i d i s a c t ype , . . . , c t y p e) I

[i d : ctype , . . . , i d : ct ypel I < (i d) i d : ct ype , . . . , i d : ct ype> I

ct ype -> ct ype I i d (c t ype , ct ype)

dtype : := int I boo1 l s t r i n g I r e a l l

Cid:d type , ..., i d :d t ype l I <id :d t ype , ..., id :d type> I

(r e c id d t y p e)

Bibliography

[I] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically-typed

language. In Proc. 16th AChl Symposium on Principles of Programming Languages, 1989.

[2] S. Abiteboul and N. Bidoit. Non first normal form relations to represent hierarchically orga-

nized data. In Proc. ACAf Symposium on Princtples of Database Systems, Waterloo? Ontario,

Canada. 1984.

[3] S. Abiteboul and R. Hull. IFO: A formal semantic database model. ACAf Transactions on

Database Systems, 12(4):525-565, December 1987.

[4] S. Abiteboul and R. Hull. Restructuring hierarchical database objects. Theoretical Computer

Science, 62:3 - 38, 1988. Special issue dedicated to the 2"d International Conference on

Database Theory.

[5] A. V. Aho and J.D. Ullman. Universality of da ta retrieval languages. In Proc. 6th AChl

Symposium on Pnnctples of Progmmmrng Languages, pages 110-120, 1079.

(61 H. Ai't-Kaci. A Lattice Theoretic Approach to Computatton based on Calculus of Parttally

Ordered Type S tn~c tures . PhD thesis, University of Pennsylvania, 1985.

[7] A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly typed, interactive conceptual

language. A Chf Transactions on Database Systems, 10(2):230-260, 1985.

[8] M. hf. Astrahan and Chamberlin D. D. Implementation of a structured english query lan-

guage. Communicalions of the ACM. 18(10):580-587, 1975.

[9] M.M. Astrahan, M. IV. Blasgen, D. D. Chamberlin. K. P. Eswaran, J . N. Gray, P. P. Griffiths,

W. F. King, R. A. Lorie, P. R. hlcJones, J . W. Mehl, G . R. Putzolu, I. L. Traiger, B . I\'.

Wade, and V. Waston. System R: a relational approach to database management. ACh!

Tmnsacitons on Database Systems, 1(2):97-137, June 1976.

[lo] M.P. Atkinson and O.P. Buneman. Types and persistence in database programming lan-

guages. A CM Computing Surveys, June 1987.

[I l l L. Augustsson. A compiler for lazy ML. In Symposium on LISP and Functional Programming,

pages 218-227. ACM, 1984.

[12] F. Bancilhon. Object-oriented database systems. In Proc. ACM Symposium on Principles of

Database Systems, Austin, Texas, March 1988. ACM SIGART-SIGMOD-SIGACT.

[13] F. Bancilhon, T. Briggs, S. Khoshafian, and P. Valduriez. FAD, a powerful and simple

database language. In Proc. Intl. Conf. on Very Large Data Bases, pages 97-105, 1988.

[14] F . Bancilhon and S. Khoshafin. A calculus for complex objects. In Proc. ACM Symposium

on Principles of Llatabase Systems, 1986.

[15] H.P. Barendregt. The Lambda Caluculus, volume 103 of Studies in Logic and the Foundations

of Mathematzcs. North-Holland, 1984, revised edition.

[16] J . Biskup. A formal approach t o null values in database relations. In Advances in Data Base

Theory Vol 1. Prenum Press, New York, 1981.

[IT] T . Bloom and S. Zdonik. Issues in the design of object-oriented database programming

languages. In OOPSLA, pages 441-451, 1987.

[18] R.J. Brachman and J.G. Schmolze. An overview of the kl-one knowledge representation

system. Cognitive Science, 9(3), 1985.

[19] V. Breazu-Tannen and A. R. Meyer. Lambda calculus with constrained types (extended ab-

stract) . In R. Parikh, editor, Proceedings of the Conference on Logics of Programs, Brooklyn,

June 1985, pages 23-40. Lectum Notes rn Computer Scaence, Vol. 193, Springer-Verlag, 1985.

[20] I<. B. Bruce, A . R. hleyer, and J . C. hlitchell. The semantics of second-order lambda calculus.

Informatzon and Computation, 1988. to appear.

(211 K. B. Bruce and P. Wegner. An algebraic model of subtypes in object-oriented languages.

SIGPLAN Notices, 21(10):163-172, October 1986.

[22] P. Buneman, A. Jung, and A. Ohori. Using powerdomains t o generalize relational databases.

Theoretical Computer Science, To Appear, 1989. Available as a technical report from De-

partment of Computer and Information Science, University of Pennsylvania.

[23] L. Cardelli. Amber. Technical Memorandum T M 11271-840924-10, A T k T Bell Laboratories,

1984.

[24] L. Cardelli. A semantics of multiple inheritance. In Semantics of Data Types, Lecture No@s

i n C o m p u t e r Science 179. Springer-Verlag, 1984.

[25] L. Cardelli. Quest. Technical report, Digital Equipment Corporation, 130 Lytton Avenue,

Palo Alto, CA 94301, 1988.

[26] L . Cardelli and J . Mitchell. Semantic methods for object-oriented languages. Unpublished

lecture notes for tutorial given at the Conference on Object-Oriented Programming Systems,

Languages, and Applications, September 1988.

[27] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.

Computing Surverys, 17(4):471-522, December 1985.

[28] P. P. Chen. The entity-relationship model: Toward a unified view of data. A C M Transactions

on Database Sys tems , 1(1):9-36, 1976.

[29] E. F . Codd. A relational model for large shared databank. Communicat ions of the A C M ,

13(6):377-387, 1970.

[30] M . Coppo. Completeness of type assignment in continuous lambda models. Theoretical

C o m p u t e r Science, 29:309-324, 1984.

[31] M . Coppo. A completeness theorem for recursively defined 'types. In G. Goos and J . Hart-

manis, editors, Automata, Languages and Programming, 12th Colloquium, L N C S 194, pages

120-129. Splinger-Verlag, July 1985.

[32] B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science, 25:95-

169, 1983.

[33] 0. Dahl and I(. Nygaard. Sirnula, an Algol-based simulation language. Communtcat ions of

the A Chf, 9:671-678, 1966.

[34] L. Damas and R. hlilner. Principal type-schemes for functional programs. In Proc. 9th A C h f

Sympos tum on Princtples of Programming Languages, pages 207-212, 1982.

[35] C.J. Date. A n Introduction to Database Sys tem Vol 1. Addison-Wesley, third edition, 1981.

[36] P.C. Fischer and S.J. Thomas. Operators for non-first-normal-form relations. In Proc. IEEE

C O M P S A C , 1983.

[37] H . Friedman. Equations between functionals. In Lecture Notes in hfathematics 453, pages

22-33. Springer-Verlag, 1973.

[38] Y-C. Fuh and P. Mishra. Type inference with subtypes. In Proceedings of E S O P '88, pages

94-114, 1988. Springer LNCS 300.

[39] M. R. Garey and D. S. Johnson. Computer and Intractability, A Guide to the Theory of

NP-Completeness . Freeman, New York, 1979.

[40] G. Gierz, H.K. Hoimann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium

of Continuous Lattices. Springer-Verlag, 1980.

[41] Susanna Ginali. Iterative Algebraic Theories, Infinite Trees and Program Schemata. PhD

thesis, University of Chicago, 1976.

[42] J.-Y. Girard. Une extension de I'interpretation de godel a I'analyse, e t son application a

I'Climination des coupures dans I'analyse et thCorie des types. In Second Scandinavian Loglc

Symposium. Springer-Verlag, 1972.

[43] E. M. Gold. Complexity of automaton identification from given data. Unpublished

manuscript, 1974.

[44] A . Goldberg and D. Robson. SA4A LLTA LK-80 . The language and zts implementation.

Addison-Wesley, 1983.

[45] S. Gorn. Explicit definitions and linguistic dominoes. In J . Hart and S. Takasu, editors,

Sys tems and Computer Science, pages 75-105. University of Toronto Press, 1967.

[46] N . Hammer and D. hlcleod. Database description with ShID: a semantic database model.

A CA! Transacttons on Database Systems, 6(3):351-386, September 1981.

[47] R. Harper, D. B. hlacQueen, and R. Milner. Standard ML. LFCS Report Series ECS-LFCS-

86-2, Department of Computer Science, University of Edinburgh, hlarch 1986.

[48] R. Harper, R. Milner, and M . Tofte. The definition of Standard ML (version 2). LFCS Report

Series ECS-LFCS-88-62, Department of Computer Science, University of Edinburgh, August

1988.

[49] J . R. Hindley and J . P. Seldin. Introduction to Combinators and A-Calculus. Cambridge

University Press, 1986.

[50] R. Hindley. The principal type-scheme of an object in combinatory logic. Trans. American

Mathematical Sociely, 146:29-60, December 1969.

[51] R. Hindley. The completeness theorem for typing A-terms. T h e o m t ~ c a l Computer Sctence,

22:l-17. 1983.

[52] J . Hopcroft and J . Ullman. Introduction to automata theory, languages, and computation.

Addison-Wesley, 1979.

[53] J .E. Hopcroft and R.M. Karp. An algorithm for testing the equivalence of finite automata.

Technical Report TR-71-114, Department of Computer Science, Cornell University, Ithaca,

NY., 1971.

[54] P. Hudak and P. (editors) Wadler. Report on the programming language Haskell, a non-

strict, purely functional language, version 1.0. Technical report, University of Glasgow, 1989.

Pre-release Draft for FPCA '89.

[55] G Huet. Rksoluiion d'e'quations dans les langages d'ordre 1,2, . . . w. PhD thesis, University

Paris, 1976.

[56] R. Hull. Relative information capacity of simple relational database schemata. SIAM J.

Computzng, 15(3):856-886, August 1986.

(571 R. Hull. Databases, chapter 5 A survey of theoretical research on typed complex database

objects, pages 193-253. Academic Press, 1987.

[58] R. Hull and R. King. Semantic database modeling: Survey, applications and research issues.

Computrng Surveys, 19(3), September 1987.

[59] R. Hull and C.K. Yap. The format model: a theory of database organization. Journal of t h e

ACh1, 31(3):518-537, 1984.

[60] J.H. Ichbiah, J.G.P. Barnes, J.C. IIeliard. B. Krieg-Bruckner. 0. Roubine, and B.A. II'ich-

mann. Rationale of the design of the programming language Ada. SIGPLAX Nottces. 14(6),

1979.

[61] T. Imielinski and W. Lipski. Incomplete information in relational databases. Journal of A C,l1,

31(4):761-791, October 1984.

(621 G Jaeschke and H. Schek. Remarks on algebra on non first normal forn relations. In Proc.

ACM Sympostum on Prznczples of Database Systems, pages 124-138, Los Angeles, March

1982.

[63] L. A. Jategaonkar and J.C. Mitchell. hIL with extended pattern matching and subtypes.

In Proc. A Cllf Conference on LISP and Functional Programm:ng. pages 198-211, Snowbird,

Utah, July 1988.

[64] K. Jensen and N. Wirth. PASCAL user manual and report. Springer-Verlag, Berlin, second

edition, 1975.

[65] S.N. Khoshafian and G.p. Copeland. Object identity. In Proc. OOPSLA, pages 406-416,

September 1986.

[66] C. Lecluse and P. Richard. Modeling inhertitance and genericity in object-oriented databases.

In Proc. 2nd International Conference on Database Theory, pages 223-238, 1988.

[67] C. Lecluse, P. Richard, and F. Velez. 02, an object-oriented data model. In Proceedtngs of

A Chf SIGhfOD Conference, pages 424-434, 1988.

[68] Y. Lien. On the equivalence of database models. Journal of the AChf , 29(2):333-362, April

1982.

1691 IV. Lipski. On semantic issues connected with incomplete information databases. slC,tl

Transacttons on Database Systems, 4(3):262-296, September 1979.

[TO] N. Maccracken. An Itivesfrgatton of a Programmtng Language wzth a Polymorphtc Type

Structure. PhD thesis, Syracuse University, 1979.

[71] D. MacQueen. References and weak polymoprhism. Note in Standard h1L of New Jersey

Distribution Package, 1988.

[72] D.B. hlacQueen, G.D. Plotkin, and Sethi. An ideal model for recursive polymorphic types.

Informatton and Control, 71(1/2):95-130, 1986.

[73] D. Maier. The Theory of Relatzonal Databases. Computer Science Press. 1983.

1741 D. hlaier. A logic for objects. In Proceednngs of It'orkshop on Deductnve Database and Loglc

Progmmmtng, Ii'ashington. D.C., August 1986.

[i5] D Maier. IVhy database languages are a bad idea. I n F. Bancilhon and P. Buneman, editors.

Workshop on Database Programming Languages. Addison-Wesley, 1989. To Appear.

[76] A.R. Meyer and S.S. Cosmadakis. Semantical paradigms. In Proc. IEEE Symposzum on Logrc

tn Computer Sc~ence, July 1988.

[T i] R. Milner. Fully abstract models of typed A-calculi. Theorettcal Computer Science, 4:l-22,

1977.

[i8] R. Milner. A theory of type polymorphism in programming. Journal of Computer and System

Sciences, 17:348-375, 1978.

[79] J . C. Mitchell and R. Harper. The essence of ML. In Proc. 15th ACM Sympostum an

Principles of Pmgramming Languages, pages 28-46, San Diego, California, January 1988.

[80] J. C. Mitchell and G. D. Plotkin. Abstract types have existential types. In Proc. 12th AChf

Symposium on Principles of Programming Languages, pages 37-51, New Oreans, January

1985.

[81] K. Mulmuley. A semantic characterization of full abstraction for typed lambda calculus. In

Proc. 25-th IEEE Symposium on Fundations of Computer Science, pages 279-288, 1984.

[82] A. Ohori. Denotational semantics of relational databases. Master's thesis, Department of

Computer and Information Science, University of Pennsylvania, 1986.

[83] A. Ohori. Semanticsof types for database objects. Theorettcal Computer Science, Spectal issue

dedicated to 2"* International Conference on Database Theory (To Appear), 1989. Available

as a technical report form Universit.~ of Pennsylvania.

[84] A. Ohori. A simple semantics for h,fL polymorphism. In Proceedings of A CM/IFIP Conference

on Functtonal Programming Languages and Computer Architecture, pages 281-292, London.

England, September 1989.

[85] A. Ohori and P. Buneman. Type inference in a database programming language. In Proc.

ACM Conference on LISP and Functional Programming, pages 174-183, Snowbird, Utah,

July 1988.

[86] A. Ohori and P. Buneman. Static type inference for parametric classes. In Proceedrngs of

AChf OOPSLA Conference, pages 445-456, New Orleans, Louisiana, October 1989.

[87] A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programming in hlachiavelli -

a polymorphic language with static type inference. In Proceedtngs of the AChf S I G I ~ ~ O D

conference, pages 46-57, Portland, Oregon, Xlay - June 1989.

[88] G. Ozsoyoglu. Z. M. Ozsoyoglu, and V. Alatos. Extended relational algebra and relational

calculus with set-valued attributes and aggregate functions. ACJf Transacttons on Database

Systems, 12(4):566-608, 1987.

(891 2. Ozsoyoglu and L. Yuan. A new normal form for nested relations. ACM Transactzons on

Database Systems, 12(1):111-136, March 1987.

[go] G. Plotkin. Call-by-name, call-by-value, and the A-calculus. Theoretrcal Computer Science,

1:125-159, 1975.

[91] G. Plotkin. tw as a universal domain. Journal of Computer and System Sciences, 17(2):209-

236, 1978.

[92] G.D. Plotkin. LCF considered as a programming language. Theoretical Computer Science,

5:223-255, 1977.

[93] D. RCmy. Typechecking records and variants in a natural extension of ml. In David Mac-

Queen, editor, A C h i Conference on Principles of Programming Languages, 1989.

[94] J.C. Reynolds. Towards a theory of type structure. In Paris Colloq. on Programming, pages

408-425. Springer-Verlag, 1974.

[95] A.M. Roth, H.F. Korth, and A . Silberschatz. Extended algebra and calculus for -1nf re-

lational databases. Technical Report TR-84-36. Department of Computer Sciences. The

University of Texas at Austin. 1984. revised 1985.

[96] M. A . Roth. H . F. Korth, and A . Silberschatz. Extended algebra and calculus for nested

relational databases. ACAf Transactzons on Database Systems, 13(4):389-417, 1988.

[97] W. Rounds. Set values for unification-based grammar formalisms and logic programming.

CSLI Technical Report CSLI-88-129, Center for Study of Language and Information, June

1988.

[98] D.A. Schmidt. Denotational Semanttcs. A hiethodology for Language Det>elopment. Allyn

and Bacon. 1986.

[99] J . W . Schmidt. Some high level language constructs for data of type relation. AClll Transac-

tzons on Database Systems. 5(2), 1977.

[loo] E. Sciore. Null values, updates, and incomplete information. Technical report, Department

of Electrical Engineering and Computer Science, Princeton University, 1979.

[lol l D. Scott. Domains for denotational semantics. In ICALP. July 1982.

[lo21 S.hl. Shieber. An introduction to unification-based approaches to grammar. In Proc. Z3rd

Annual 12feetlng of the Assocratron for Computatronal Lznguzstzcs, 1985.

[I031 K. E. Smith and S. B. Zdonik. Intermedia: A case study of the difference between relational

and object-oriented database systems. In Proc. of OOPSLA Conference, pages 452-465,

October 1987.

[I041 M.B. Smyth. Power domains. Journal of Computer and System Sczences, 16(1):23-36, 1978.

(1051 R. Stansifer. Type inference with subtypes. In Proc. 15th ACIII Symposium on Prznciples of

Progmmming Languages, pages 88-97, 1988.

[lo61 R.D. Tennent. Princtples of Progmmming Languages. Prentice-Hall, 1981.

[107] D.A. Turner. Miranda: A non-strict functional language with polymorphic types. In Func-

tional Programming Languages and Computer Architecture, Lecture Notes in Computer Sci-

ence 201, pages 1-16. Springer-Verlag, 1985.

[108] J .D. Ullman. Principle of Database Systems. Pittman, second edition, 1982.

[log] A. et al. van Wijngaarden. Report on the algorithmic language Algol 68. .Numerische Math-

ematik, 14:79-218, 1969.

[110] hi. Wand. A types-as-sets semant~cs for hlilner-style polymorphism. I n Proc. 1 l t h A CJ1l

Symposrum on Princtples of Programmtng Languages, pages 158-164, January 1984.

[I l l] M. Wand. Complete type inference for simple objects. In Proceedzngs of the Second Annual

Sympostum on Logtc tn Computer Sctence, pages 37-44. Ithaca. Kew York. June 1967.

[112] C. Zaniolo. Database relation with null values. Journal of Computer and System Sczences.

28(1):142-166, 1984.

Index

5 16

5 , ~ 34

< 79

i f 1 9,92

[(P? 3 1 9

a / a 12

=l /a 10

f r A 8,16

f { x := v) 8

e [e l / x l , .. . , e n / x n] 30

(M I x MZ)/CY 18

(F,.) 45

T A 44

TA+ 55

E T A +,A 45

E M L k M L 44,45 .

T h T A (E T ,) 45

T h M L (E M L) 43

MIIML 49

MlI 46

111 46

M 46

M 50

DMI- 26

T A k 44

MW t 27

C E I- 110

MC I- 114

M C + I - 155

abstract data type 147

Ada 22

Algol 22

Amber 61,105

bounded existential type 181

bounded join property 9

bounded quantification 103,153

class 146

- context 153

scheme 152

coherent 154

completeness

of TA theory 46

of TA+ theory 56

of Core-ML theory 51

of ML theory 57

condition 117,159

normal form 126,162

refinement 126

satisfiability 117

conditional ty pe-schemes 130,163

conditional typing scheme 118,159

context

in Th+ 58

in ML 58

class - see class

Core-ML 30

Core-XML 26

data abstraction 146

database domain 76

database type system 74

description

universe of 83

flat - 69

description domain 74

description type 78

flat - 69

Dobj 83

Dobjm 83

down-coercions 71

D t y p e 78

Dtypem 78

Ernb 92

Ernbm 92

embedded language 108

embedding 75

equality type 117

equation

of TA 45

of TA, well typed 45

of TA, valid 46

of Core-ML 43

of Core-ML, well typed 43

of Core-ML, valid 50

existential type 181

extents 171,174

fixed point combinator 54,111,138

frames 45

extended 55

extentional 45

function

monotone 75

restriction 8

full abstraction 57

Galileo 61,108,172

generic instance 25

generic type-scheme 25

Haskel 30

heterogeneous set 183

information ordering

on description types 79

on flat description types 69

on descriptions 67

on flat descriptions 70

inheritance 100,146

by subtyping 101

by type inference 105

for classes 152

instance 16

ground 16

join 62

of complex objects 77,08

relational 66

kind 181,184

L 10

lable 10

labeled tree 11

subtree 12

with variables 15

Lazy h l L 30

let dgree 30

liner order 9

Lisp 2.23,105

loss of type information 102

lower bound 9

greatest 9

hlachiavelli 98,146,169

method inheritance see inheritance

Miranda 2,30,61,138,147.149

ML 22,52

model

abstract , 56

of TA 46

of TA+ 55

of Core-ML 44

of database type system 77

of Machiavelli 133

of Machiavelli, concrete 180

hIoore machine 17

path 17

reachable state 17

regular trees represented by 18

mutability 171

null value 64,83

object identity 170

object-oriented databases 169

o bject-oriented programming 98,146

operational equivalence

in TA+ 58

in ML 58

operational semantics 57

of Machiabvelli 180

P (A) 8

parametric class see class

partial type information 184

partial order 8

partially ordered set 9

Pascal 22,61,101

Pascal-R 108,148

PCF 59

polymorphism 23

prefix 10

proper 10

preorder 8

preordered set 9

Proj 92

Projo0 92

projection 75

of complex objects 77,97

relational 67

product machine 18

program scheme 132

query language 107

quotient poset 9

R(F) 16

raw terms

of Core-ML 30

of Core-ML, complexity of 32

of Machiavelli 113

of ML 24,52

reduction

of TA 45

of Core-ML 44

reference type 172

regular tree 16

Moore machine representation 1s

term representation of 20

relational model 64

seman t ics

denotational see model

object identity 161

of classe 181

operational 57,180

sharing 170

Smyth ordering 71

soundness

of TA theory 46

of TA+ theory 56

of Core-ML theory 50

of ML theory 57

of type system 156

SQL 107,138

Standard ML 2,26,54,61,105,117,132,

138,139,147,172
b

structural induction

on labeled trees 14

System R 106

substitution 15

composition of 16

condition on 117

ground for a tree 16

substructure relation 87

subsumption relation 153

more general 154

satisfiability 16 1

sub 152

Subtrees(cr) 12

subtype relation 101

T m (F) 11

T m (F , V) 15

T (F) 11

T (F , I") 15

t m (F) 13

term

of TA 44

of TA+ 55

of Core-ML 35

of Machiavelli 133

theory

T A 45

Core-ML 43

well typed TA 45

well typed Core-ML 43

tree 13

- domain 13

type

of TA 44

of Core-ML 32

of Machiavelli 109

of ML 52

type-checking

for Core-ML 35

for classe 160

type inference

for classes 159

for Core-ML 35

for Machiavelli 116

for ML 53

NP-hardness 130

type parameterization 147

type variable 24

description - 118

unconditional - 118

t y pe-scheme

of Core-ML 32

of Machiavelli 117

of ML 53

typing

of Core-ML 33

of ML 53

of Machiavelli 114

for class 156

typing relation

of complex objects 85

typing scheme 33

unifier 16

more general 16

up-coercion 71

upper bound 9

least 9

value-based models 169

Va l idML(M) 50

Val i&"(M) 46

view 169,174

~Machiavelli 133

model of ~Machiavelli 133

Yplottin 137

1'c,rr, 54

Yturing 54

