SafetyNet: Improving the Availability of
Shared Memory Multiprocessors with Global Checkpoint/Recovery

Daniel J. Sorin, Milo M. K. Martin, Mark D. Hill, David A. Wood
Computer Sciences Department
University of Wisconsin—Madison
{sorin, milo, markhill, david}@cs.wisc.edu
http://www.cs.wisc.edu/multifacet/

Abstract both transient and permanent faults. For example, higher
frequencies exacerbate crosstalk [3, 8] and supply voltage
noise [39], and smaller devices and wires suffer more from
electromigration and alpha particle disruptions [36, 49].

We develop an availability solution, call&hfetyNet that
uses a unified, lightweight checkpoint/recovery mechanism
to support multiple long-latency fault detection schemes.
At an abstract levelSafetyNetlogically maintains multi- Decades of research in fault-tolerant systems suggest a
ple, globally consistent checkpoints of the state of a sharedpath toward addressing this problem. Mission-critical sys-
memory multiprocessor (i.e., processors, memory, andtems routinely employ redundant processors, memories,
coherence permissions), and it recovers to a pre-fault and interconnects (e.g., triple-modular redundancy [26] or
checkpoint of the system and re-executes if a fault ispair-and-spare [45]) to tolerate a broad class of faults.
detected. SafetyNet efficiently coordinates checkpoints However, for many applications, the highly competitive
across the system in logical time and uses “logically commercial market will seek lower overhead solutions.
atomic” coherence transactions to free checkpoints of For example, RAID level 5 [31] has been deployed widely
transient coherence stateSafetyNet minimizes perfor- because its overhead is 1/Nth (for N data disks) rather than
mance overhead by pipelining checkpoint validation with the 100% overhead for mirroring. In contrast to mission-
subsequent parallel execution. critical systems, commercial servers aim for high avail-

We illustrate SafetyNetavoiding system crashes due to ag'rlflgrg:tn\ggl ac;i?&gigi;gg% Cr?g:ﬁsi tié?iri?]\gug?r?t/
either dropped coherence messages or the loss of an inter? ' q 9

connection network switch (and its buffered messages).d.atab"’lSe Iogglng and c.IL_Jstgnng—heIp preserve data integ-
: . X . rity and service availability in these cases.

Using full-system simulation of a 16-way multiprocessor

running commercial workloads, we find thaafetyNet(a) Current servers employ a range of hardware mechanisms

adds statistically insignificant runtime overhead in the to improve availability. RAID, error correcting codes

common-case of fault-free execution, and (b) avoids a(ECC), interconnection network link-level retry [18], and

crash when tolerated faults occur. duplicate ALUs with processor retry [40] target specific,
) localized faults such as transient bit flips at memory, links,
1 Introduction or ALUs. Computer architects seeking system-wide cover-

age currently must integrate a patchwork of localized

Availability has become increasingly important as internet ;
detection and recovery schemes.

services are integrated more tightly into society’s infra-
structure. Availability is particularly crucial for the shared- In this paper, we seek a unified, lightweight mechanism

memory multiprocessor servers that run the applicationthat provides end-to-end recovery from a broad class of
services and database management systems that musgtansient and permanent faults. This recovery mechanism
robustly manage business data. However, unless architecean be combined with a wide range of fault detection

tural steps are taken, availability will decrease over time asmechanisms, including strong error detection codes (e.g.,
implementations use larger numbers of increasingly unre-CRCs), redundant processors and ALUs [18, 40], redun-
liable components in search of higher performance [21, dant threads [37], and system-level state checkers [9]. By
43]. The high clock frequencies and small circuit dimen- decoupling recovery from detection, our approach allows a
sions of future systems will increase their susceptibility to range of implementations with varying cost-performance.

We develop a lightweight global checkpoint/recovery

This work is supported in part by the National Science Foundation, with . . .
grants EIA-9971256, CDA-9623632, and CCR-0105721, Intel GraduateSCNeMe calledafetyNetand we illustrate its abstraction

Fellowship (Sorin), IBM Graduate Fellowship (Martin), two Wisconsin 1N Figure 1.SafetyNeperiodically creates a system-wide
Romnes Fellowships (Hill and Wood), and donations from Compaq Com-(logical) checkpointSafetyNetheckpoints can span thou-
puter Corporation, Intel Corporation, IBM, and Sun Microsystems. sands or even millions of execution cycles, permitting

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

System D

Processor / J\j’/ [l Sﬁj‘

Checkpoints Waiting
To Be Validated

Figure 1. SafetyNetAbstraction. In SafetyNet, [Node

o) ppET A T
N Y
BER SHTEOH

processors operate on the current state of the system, —
O the system recovers to the recovery point if a fault eheckpoies
is detected, andJ] some number of non-current S

checkpoints can be pending validation.

powerful detection mechanisms with long latencies. After

detecting a fault, all processors, caches, and memories
revert to and resume execution from a consistent system-
wide state, therecovery point SafetyNetis a hardware Half Network

scheme that requires no changes to any software or the Swieh '”‘“‘{“
instruction set. MoreoveafetyNehas limited impact on o
the processor, coherence protocol, and I/O subsystem. Switch

SafetyNé$ basic approach is to log all changes to the]
architected state. This presents three main challenges for a Figure 2. ExampleSafetyNetSystem

lightweight recovery scheme. First, naively saving previous o])

values before every register update, cache write, and coherM€C€ssary to maintain checkpoint state—register check-
ence response would require a prohibitive amount of stor-P0iNt buffers and Checkpoint Log Buffers (CLBs)—added
age. Second, all processors, caches, and memories in ¥ Processor-memory nodes of an example system imple-
shared-memory multiprocessor must recover to a consis-mentation. Register checkpoints, CLBs, caches, and mem-
tent point. For example, recovery must ensure that all node<2/1€s are deemed “stable storage” and must be protected by
agree on the coherence ownership and data values of eachCC becaus8afetyNetannot recover from uncorrectable
memory block. ThirdSafetyNetnust determine when it is .errors.to these structures. Aere_ssmg this class of faults,
safe to advance the recovery point (i.e., validate a newincluding processor-cache chip kills, is future work.
checkpoint), without degrading performance to wait for SafetyNeis a recovery mechanism that is largely decou-
slow fault detection mechanisms. pled from any specific fault detection mechanisms. How-

SafetyNetefficiently meets these three challenges, as €€l to make the exposition more concrete, we use two
described in Section 2. First, logging is reduced by check- SyStém-level faults as running examples. We focus on the
pointing at a coarse granularity (e.g., 100,000 cycles). OnlthO faults presented l:.)elow,' and we deeerlbe their causes
the first change to a piece of architectural state—register,2nd detection mechanisms in more detail in Table 1.

memory block, or coherence permission—within a check- (1) Dropped MessageA transient fault causes the loss

point interval requires a log entry, reducing the log over- of a coherence message in the interconnect.
head by one or two orders of magnitude. Sec@afetyNet

efficiently coordinates checkpoint creation usig@pbal
logical time and logically atomic coherence transactigns
ensuring a consistent recovery point. Third, checkpoint val- In Section 4, full system simulations with commercial
idation is pipelined and overlapped with normal execution. Workloads show that, in the common case of fault-free exe-
Pipelining validation allowsSafetyNetto tolerate long cution,SafetyNetloes not increase execution time (relative

latency detection mechanisms while continuing execution. to an unprotected system) by a statistically significant

. . amount. MoreoverSafetyNetcontinues to run after the
In Section 3, we develop SafetyNeimplementation that injection of the two example faults. Recovery time is

minimizes runtime overh for ions in th mmon
case ofef;ultI frteeeefeceutigsdiSncIoud{ijlrtl:t omzmort %Ce)ratio(ris reduced from a system crash/reboot to a performance
’ 9 y op “speed bump” of less than one millisecond. We also show

and coherence transactions. Figure 2 depicts the structure§nalt 512 kbyte CLBs are large enough, for our commercial

(2) Failed Switch: A hard fault kills a switch element,
irretrievably losing all buffered messages.

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

Table 1. Two Example Faults

Dropped Message:This example fault assumes a lost or misrouted coherence message due to a transient envirpnmental
condition (e.qg., alpha particle [28, 36, 49]). The fault may corrupt the message while it is stored in a switch buffer or by
disrupting a switch’s internal logic. The fault might be detected using an error detection code (e.g., CRC), by an end-
point receiving an illegal message, or by a request timing out. The detection latency may be large in the case gf request
timeout or if longer error detection codes are used (longer codes are inherently stronger).

Failed Switch: This example fault assumes the permanent loss of an interconnect switch element (e.g., due to electromi-
gration), causing the loss of all buffered messages. We consider a 2D torus topology that prevents a single point-pf-failure
by splitting each switch into two half-switches. As illustrated in Figure 2, nodes have separate paths to the north-south
and east-west half-switches, providing redundancy in case one half-switch fails. We use the same mechanisms|discussed
above to detect the fault. Execution may resume after reconfiguring the interconnect to route around the lost swjtch [14],
but with some loss of bandwidth.

workloads, to tolerate fault detection mechanisms with controllers log every change to the memory/coherence state

over 100,000 cycles of latency. (i.e., save theold copy of the block) whenever an action

d (i.e., a store or a transfer of ownership) might have to be
undone. To reduce storage and bandwidth requirements,
SafetyNebnly logs the block on the first such action per
checkpoint interval. By using coarse checkpoint intervals
(e.g., 100,000 cycleskafetyNesignificantly reduces log-

2 SafetyNetOverview ging overhead (evaluated in Section 4.3). Checkpointing of

processor register state can be done in many ways, includ-

ing shadow copies or writing the registers into the cache.

Section 5 expands upon the wide variety of faults an
detection mechanisms compatible wiafetyNet Like
most prior work, we focus on tolerating all single faults,
plus coverage for many double faults.

This section presents a high-level overviewS#dfetyNet,
while Section 3 describes one specific implementation.

2.3 Creating Consistent Checkpoints

2.1 High-Level View

o . All of the components (caches and memory controllers)
SafetyNetperiodically checkpoints the system state, 10 o rginate their local checkpoints, so that the collection of
allow the system to recover its state to a consistent previouggg| checkpoints represents a consistent global recovery

checkpoint. If a fault is detectecsafetyNetrecovers the it Coordinated system-wide checkpointing avoids both
state to theecovery pointthe old checkpoint most recently cascading rollbacks [15] and an output commit problem

validated fault-free. Checkpoints between the recovery 1) for inter-node communication. Checkpoints are coor-
point and the active system state are pending validation. Aginated across the systemlayical timeto avoid a poten-
system-wide checkpoint includes the state of the Processokja|ly costly exchange of synchronization messages.
registers, memory values, and coherence permissgais-

tyNethas a small impact on the underlying cache coherencel© ensure that checkpoints reflect consistent system states,
protocol. We assume a sequentially consistent memorthe logical time base must ensure that all components can

any coherence transaction occurs (not just its request). We

SafetyNetaddresses the three challenges for 109ging gypioit the key insight that, in retrospect, a coherence trans-
schemes described in Section 1. FifsafetyNeexploits @ ction appears logically atomic once it completes. A trans-

coarse checkpoint granularity to reduce the amount of 10g- 5 ction'spoint of atomicityoccurs when the previous owner
ging (Section 2.2). SeconchafetyNetcreates CONSistent ot the requested block processes the request. To inform the
global checkpoints (Section 2.3) such that all processorsqq estor, the response includes the checkpoint number of
and memories recover to a consistent recovery point UpONhe noint of atomicity. Figure 3 illustrates ho@afetyNet
fault detection. ThirdSafetyNepipelines checkpoint vali- yatermines this point. Note that the requestor does not learn
dation off the critical path and hides the latencies of fault o |ocation of the atomicity point until it receives the
detection mechanisms (Section 2.4). response that completes the transaction. To ensure that the
- . . system never recovers to the “middle” of a transaction, the
2.2 Checkpointing Via Logging requestor does not agree to advance the recovery point until
Logically, SafetyNetheckpoints contain a complete copy all of its outstanding transactions complete successfully.
of the system’s architectural state. For efficierBgfetyNet After completion, the transaction appears atomic, so there
explicitly checkpoints registers and incrementally check- is no “middle.” Furthermore, by waiting for outstanding
points memory state by logging previous values and coher-transactions to complet&afetyNetavoids checkpointing
ence permissions. Conceptually, processors and memoryransient coherence states and in-flight messages.

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

Procossor Memory Coordination can be pipelined gnd performed in the bacl_<—
ground. For example, checkpoint nhumber k can be vali-
dated only if every component agrees that it could be the

Checkpoint #1 recovery point, i.e, all execution prior to checkpoint num-

[0 |_<request B> ber k was fault-free. For a che_ck_point ir_1terva| to be fault-

Ny | Checkpoint #2 free, every transfer of own_ersh|p in that interval must com-
int of plete successfully, by which we mean that the data was
U g%migity transferred fault-free to the requestor. Once every compo-
4 : nent has independently declared that it has received fault-
<data,CN3 Checkpoint #3 free data in response to all of its requests in the interval
before the checkpoint, the recovery point can be advanced.
Checkpoint #4 At this point, all transactions prior to this checkpoint have
/ had their points of atomicity determined. After validation,
b Checkpoint #5 state for the prior recovery point can be deallocated lazily.
p_fX/SiCéU Validation latency depends on fault detection latency, since
time a checkpoint cannot be validated until it has been verified
Figure 3. Example of Checkpoint Coordination fault free. For our fault examples, the detection latency is as
In this example, physical time flows downwards, and check- long as the requestor’s “me‘?”t latency. Timeout latency
point lines in logical time are not necessarily horizontal, sifce Ca_n t_’e many travgrsals of the 'nte.rconneCt] F’“{S some slack
logical time is not equal to physical time. Logical timje builtin for contention delays. Adding to validation latency,
respects causality, so a message cannot be sent in one (heck-Va“dation cannot occur until all nodes have coordinated
point interval and arrive in an earlier interval. At, the pro- their validations, and this involves an exchange of mes-

cessor requests ownership of block B from the memory, which sages. Since validation latency is lor8afetyNeperforms

is currently the owner of the block. The memory processeqthe validation in the background and off the critical path.

request at] and defines the transaction’s point of atomicify, . S .
sending checkpoint number (CN) 3 along with the data. In fet- Checkpoint validation also determines when the system

rospect, the transaction appears to have occurred atomicgly at Can interact with the outside world of I/O devices. Thg-

this point. A recovery to CN 2 or before would restore ownpr- put commit problenfil 6] requires that only validated, fault-
ship to the memory. A recovery to CN 3 or later would majn- free data can be communicated outside of the sphere of
tain ownership at the processor. A recovery to CN 2-5 (the recovery. For example, the system cannot communicate
duration of the transaction) is not possible until after the trgns- unvalidated data with the disks if the effects of this commu-
action, since the processor would not validate any of tese pjcation cannot be undone through recovery. A standard
checkpoints until the transaction completed successfully solution is to delay all output events generated within a
checkpoint until that checkpoint is validated. A standard
solution for theinput commit problenfil 6] is to log incom-

g messages so that they can be replayed after recovery.

Many bases of logical time exist. A simple example in a
broadcast snooping system is for each component to coun
the number of coherence requests it has processed and use
that as its ngical time. .If _comp_onents create checkpoint32_5 Recovering to a Consistent Global State
every K logical cycles, it is trivial for all components to

agree on the interval in which a transaction's request If a fault is detectedSafetyNetestores the globally consis-
occurred. In this paper, we focus on systems with directory tent recovery point. The recovery point represents the con-
protocols, and thus we need a different logical time base. IfSistent state of the system at thegical time that this

we could distribute a perfectly synchronous physical clock, checkpoint was taken. Recovery itself requires that the pro-
we would have a viable logical time base in which logical cessors restore their register checkpoints and that the
and physical time are the same. In Section 3, we relax thiscaches and memories unroll their local logs to recover the
requirement by deriving a logical time base from a loosely System to the consistent global state at the pre-fault recov-

synchronizedheckpoint clock ery point. All state associated with transactions in progress
at the time of recovery is discarded, since this state is (by
2.4 Validating Checkpoints definition) unvalidated state that occurs logically after the

. o - ., recovery point. After recovery, the system reconfigures, if
Checkpoint validation is the process of determining which necessary, and resumes execution from the recovery point.

check_pomt s the recovery .p0|r_1t. Processors and MEMONeL 1 the lost switch example, reconfiguration involves rout-
coordinate checkpoint validation so that alll componentsing around the faulty switch

recover to the same checkpoint number on a recovery.

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

3 A SafetyNeﬂmpIementation interval is protocol-dependent, and it is the only significant
difference in implementingafetyNeton top of different
classes of protocols (i.e., directory vs. snooping). In a
directory protocol, the point of atomicity occurs when the
block’s owner processes the request.

In this section, we discuss one implementation of Siafe-
tyNetabstraction. Our goal is to incur low overhead in the
common case of fault-free execution, while not allocating
resources towards optimizing the rare case of recovery.

3.3 Logging

3.1 System Model
. . _ . SafetyNetusesCheckpoint Log Buffers (CLBg) incre-
Figure 2 illustrates a single node, containing a processor, %entally checkpoint memory and coherence state. Logi-

ET]Chi’ a_ncti I_a poéti?fn Ofct[]e syste_rrl’s dShiLed mﬁmor?]/. Acally, SafetyNetwrites a memory block to a CLB whenever
eckpoint Log Buffer (CLBpssociated with each cache anupdate-actior{i.e., store or transfer of ownership) might

hierarchy and each memory controller, stores logged Statehave to be undone in the case of a recovery. Since proces-

Pro_cessor register checkpoints are maintained "! Shadov\éors perform stores into caches and both caches and memo-
registers. Nodes communicate througha2Dtorusmtercon—rieS can transfer ownership of blocks, both caches and

nection network. The cache coherence protocol is based on, ; ;
) . emories have CLBs. Except during recovery, CLBs are
a typical MOSI directory protoc&] andSafetyNehas only write-only and off the critical Eath g y

a slight impact on it. The system also includes redundant

system service controllers (which exist in many servers, SafetyNebnly logs a block on the first update-action per
such as the UltraEnterprise E10000's service processorgheckpoint interval. To detect this cassafetyNetdds a
[10]), that help coordinate advancement of the recovery checkpoint number (CNp each block in the cache, denot-

point as well as system restart after recovery. ing to which checkpoint it belongs. On each update-action,
SafetyNet(1) compares the component’s current check-
3.2 Logical Time Base point number (CCN) with the block's CN, (2) logs the

block if CCN= CN, (3) updates the block’'s CN to CCN+1,
and (4) performs the update-action. For example, a store by
a processor with CCN=3 to a block with CN=4 need not be
?ogged. Blocks with null CNs have not been written or
transferred lately, and they implicitly belong to the recov-
ery point as well as all subsequent checkpoints. Having
CNs on blocks is an optimization that enables logic to
determine whether logging an update-action is redundant.
Figure 4 illustrates an example of logging at a cache.

As discussed in Section 2, checkpoints are coordinated
across the system in logical time. For our system with
directory-based coherence, we use a loosely synchronou
(in physical time) checkpoint clockthat is distributed
redundantly to ensure no single point of failure. On each
edge of this clock, each component creates a checkpoin
and increments itscurrent checkpoint number (CCN)
While it might be difficult to distribute a synchronous clock
across a system with near-zero skew, it is not nearly so dif-
ficult to distribute one with the same frequency and some When giving up ownership of a block, a component per-
amount of skew between nodes. As long as the skewforms logging (as described above) and then sends a
between any two nodes is less than the minimum commu-response with the blocland the updated CNo the
nication time between these nodes, the checkpoint clock isrequestorThis policy follows from a key insight from Wu

a valid base of logical time, since no message can travelet al. [48]: a transfer of ownership is just like a write, in that
backwards in logical tim@. we cannot be sure that it will not be undone by a recovery.

W logical time to add th . hall . Consider the case where ownership is transferred with its
€ use jogical ime to address the primary challenge In oy gt g 3 (i.e., the sender's CCN is 2) and the receiver

coordina_ting chec.kpoints across a system, which is keeF)in%ishes to then perform a store to it while its CCN is still 2.
checkpoints consistent with respect to memory and COher'Logging is unnecessary, since the receiver was not the

Bwner at checkpoint 2. This case is the same as an owner of

transaction, on the checkpoint interval in which that trans- a block with CN=3 overwriting it while its CCN is still 2.

action occurred. Assigning a transaction to a checkpoint
The CLBs can be sized for performance and not correct-

ness, sinc&afetyNetan avoid situations in which the CLB

1. In this paper, we assume a directory protocol and a 2D torus, fills up. Even when it appears that an entry must be logged
but we have also implement&afetyNebn a system with a in the CLB, logging can be avoided at the cost of some per-
broadcast snooping protocol and a totally ordered interconnect. formance. In the case of store overwrites, we can throttle
2. Otherwise, the following inconsistency could arise. Consider requests from the CPU. For coherence ownership transfers,
the case where processor P1 has a CCN of 3 and sends a reque%e can negat|ve|y acknowledge (nack) Coherence r'equests7

to the owner, P2, while P2’s CCN is still 2. Thus, checkpoint 3 : : :
would include the reception of the request but not its sending! although this may require changing the protocol. Note that

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

Cache forwarded a request to a processor owner (i.e., 3-hop trans-

Data CN cLe action) completed successfully. Thus, the requestor must
CoNT ay ER | send an acknowledgment to the directory after its request
storeA-10 Al 10 [2 | has been satisfied, so that the directory can deallocate its
StoreA-15 A[15 [2] buffer entry for the transaction. Any lost message will pre-
CCN2 storeA. 20 A: vent recovery point advancement. If the recovery point can-
Deallocate CN2 o, [5 T3] not be advanced after a given amount of time, the system
|

assumes an error has occurred (such as a lost message) and
triggers a system recovergafetyNetan maintain a recov-
Figure 4. Logging at the Cache ery point as long as necessary, in the worst case, by stalling
execution. However, fault-free performance is best if, in the
a stall due to a full CLB will not cause deadlock, since the average case, fault detection mechanisms validate check-
CLB will eventually either deallocate state from a check- points fault-free in one or a few checkpoint intervals (e.qg,
point that validates or recovery occurs if validation fails. jn 100,000 cycles or 0.1 milliseconds).

Time ccN3 peallocate cN3A: [20 | null |

3.4 Checkpoint Creation We coordinate validat_ion with a 2—pha§e scheme. Once
every component has informed the service controllers that
Checkpoint creation must be lightweight, since it is a com- it is ready to advance the recovery point, the service con-
mon-case event that occurs on each edge of the checkpoingollers broadcast the nemcovery point checkpoint num-
clock. A processor checkpoints its non-memory architec- per (RPCN) Similar to a fuzzy barrier [22], execution does

tural state (i.e., registers) and increments its CCN. not slow while checkpoints validate in the background.
memory controller simply increments its CCN. Check-

pointing of memory and coherence state is achieved
through logging, so no checkpointing of that state is neces-
sary at checkpoint creation.

Components deallocate a checkpoint by discarding their
now unneeded architectural checkpoints. A processor dis-
cards its register checkpoint. In the caches, a checkpoint is
deallocated by clearing the CN of all blocks that had CN
Checkpoint creation policy is simply choosing a suitable set to the newly deallocated checkpoint. Logged data at the
checkpoint clock frequency.. As f; decreases (given a CLBs from this checkpoint is discarded.

constant number of outstanding checkpointSafetyNet

can tolerate longer fault detection latencies. For example,3.6 System Recovery and Restart

we allow four outstanding checkpoints and chofysequal

to 10 kHz (i.e., the checkpoint interval is 100,000 processor
cycles at a processor clock of 1 GHz) to enable 400,000
cycles (0.4 msec) of detection latency tolerance. The cost
of increasing tolerable detection latency is larger CLBs and
longer output commit delays. While decreasiicallows

for more optimized logging, since we log only the first
update-action on a block in an interval, total CLB storage is
a function both of logging frequency and interval length.
The value off; has little effect on performance, since we
show in Section 4 th&afetyNetdds little overhead.

If a component detects a fault, it triggers a recovery. The
recovery message, which includes the RPCN, is broadcast
by the service controllers, and all nodes then recover to the
recovery point. The process of recovery involves several
steps, and it leverages the insight that any transactions in
progress, by definition, belong to unvalidated checkpoints.
First, the interconnection network is drained, and all state
related to coherence transactions that were in progress at
the time of the recovery is discarded. Second, processors,
caches, and memories recover the RPCN checkpoints.
Memories sequentially undo the actions in their CLBs. Pro-
3.5 Checkpoint Validation cessors restore their register checkpoints. Caches invalidate
all blocks written or sent in an unvalidated checkpoint

Checkpoint validation requires that all components agreejnterval (i.e., blocks with non-null CNs) and undo the
that execution up until that checkpoint was fault-free. A |ogged actions in their CLBs.

cache controller only agrees to validate a checkpoint onceAft d . tion (if ded). th .
every transaction it initiated in the interval before that er recovery and reconfiguration (if needed), the service

checkpoint completed successfully. A directory controller controllers broadcast a restart message to instruct the nodes

only agrees to validate after every transaction for which it to resume_o_peratl_on. The restart cgnnot be_gln_untll every

node has finished its recovery. As with coordination to vali-
date checkpoints, we implement a 2-phase coordination
3. Since CNs are encoded in a finite number of bits, an imple- where every node informs the system service controllers

mentation should not re-use a CN until its preViOUS incarnation once it |S ready to restart and then the Serv|ce Controllers
has been discarded. We ensure this by setting the request timeo%roadcast the restart message

latency to be less than the minimum wraparound time.

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

3.7 Summary of Implementation Table 2. Target System Parameters

We have developed an implementation of tBafetyNet L1 Cache (I and D) 128 KB, 4-way set associative
abstraction that addresses the three challenges that were 2 cache 4 MB, 4-way set-associative
raised for logging schemes. First, we exploit checkpoint | pmemory 2 GB, 64 byte blocks

granularity to reduce the amount of logging necessary. Sec-
ond, we efficiently coordinate checkpoints across the sys-
tem in a logical time base that is loosely tied to physical
time. Third, we enable checkpoint validation to be per-
formed in the background, thus hiding the potentially

lengthy latency of fault detection. To achieve these fea- Simics.Simics is a system-level architectural simulator

tures, we made limited changes to the processor and the(Jleveloped by Virtutech AB. We use Simics/sun4u, which
coherence pratocol. simulates Sun Microsystems’s SPARC V9 platform archi-
This implementation required three changes to the proces+tecture (e.g., used for Sun E6000s) in sufficient detail to
sor and L1 cache. First, the processor must be able toboot unmodified Solaris 8. Simics is a functional simulator
checkpoint its register state. This is not performance-criti- only, and it assumes that each instruction takes one cycle to
cal, since it is infrequent, and copying out registers is execute (although 1/O may take longer), but it provides an
straightforward if it does not need to be fast (we will interface to support detailed memory hierarchy simulation.

assume 100 cycles n later results). Second, we must bqi’rocessor ModelWe use Simics to model a processor
able to_ copy old versions of blocks out_ of_the cache before core that, given a perfect memory system, would execute
overwr_mng or transfer_rlng the”_‘- This Increases cache four billion instructions per second and generate blocking
pandmdth, but we W'.” ShOV_V in Section4.3 that the requests to the cache hierarchy and beyond. We use this
increase |sasmallfrgct_|on. Thqu,we add CNs o L1 CaChesimple processor model to enable tractable simulation
blocks, to enable optimized logging. times for full-system simulation of commercial workloads.
This implementation also required three changes to theWhile an out-of-order processor model might have an
underlying directory coherence protocol. First, we add impact on the absolute values of the results, it would not
checkpoint numbers on data response messages, so that tlygialitatively change them (e.g., whether a crash is
requestor knows the transaction’s point of atomicity. Sec- avoided). For evaluating overhead for checkpointing regis-
ond, we allow both directories and processors to nackter state, we model a conservative latency of 100 cycles.
coherence requests, in order to avoid filling a CLB. Third, a We conservatively charge eight cycles for logging store
three-hop transaction requires a final acknowledgmentoverwrites (8 bytes/cycle for 64 byte cache blocks), but
from the requestor to the directory (to inform the directory these are only about 0.1% of instructions.

of the transaction’s point of atomicity).

Miss From Memory 180 ns (uncontended, 2-hop)
Checkpoint Log Buffer 512 kbytes total, 72 byte entrles
Interconnection Network | 2D torus, link b/w = 6.4 GB/sec
Checkpoint Interval 100,000 cycles = 1j0€ec

Memory Model. We have implemented a memory hierar-
4 Evaluation c.hy. simulator that supportg a MQSI diregtory protocol,
similar to that of the SGI Origin, with and witho&afety-
In this section, we evaluatSafetyNet We begin in Net support. The simulator captures all state transitions
Section 4.1 by describing our methodology. Then, in (including transient states) of our coherence protocols in
Section 4.2, we quantitatively determiSafetyNeperfor- the cache and memory controllers. We model a 2D torus
mance by running three experiments in which we compareinterconnection and the contention within this interconnect,
the performance dbafetyNeversus that of an unprotected including contention due to validation coordination mes-
system. We seek to determine the impacSafetyNebn sages. In Table 2, we present the design parameters of our
fault-free performance and to determine h@&mfetyNet target memory system. With a checkpoint interval of
behaves in the presence of hard and soft faults. Lastly, in100,000 cycles and four outstanding checkpoiSiafety-
Section 4.3, we perform sensitivity analyses on the amountNet can tolerate fault detection latencies up to 400,000

of cache bandwidth and CLB storage tBafetyNetises. cycles (0.4 msec at 1GHz). To exercise the protocol imple-
mentation, we drove it for billions of cycles with a random
4.1 Methodology tester that injected faults and stressed corner cases by

We simulate a 16-processor target system with the Simics€Xploiting false sharing and reordering messages [47].
full-system, multiprocessor, functional simulator [29], and USing & methodology described by Alameldeen et al. [2],

we extend Simics with a memory hierarchy simulator to We Simulate each design point multiple times with small,
compute execution times. We evalu&afetyNetwith four pseudo-random perturbations of memory latencies to cause

commercial workloads and one scientific workload.

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

Table 3. Workloads

OLTP: Our OLTP workload is based on the TPC-C v3.0 be
mark using IBM’s DB2 v7.2 EEE database management
tem. We us a 1 GB10-warehouse database stored on five
disks and an additional dedicated database log disk. Therg
simulated users per processor. We warm up for 10,000 tra
tions, and we run for 500 transactions.

nch-
Sys-
raw
are 8
nsac-

Java Server: SPECjbb2000 is a server-side java benchr
that models a 3-tier system with driver threads. We used
HotSpot 1.4.0 Server JVM. Our experiments use 24 thread
24 warehouses (~500 MB of data). We warm up for 100
transactions, and we run for 50,000 transactions.

nark
bun’s
s and
000

Static Web Server:We use Apache 1.3.19wWwv.apacheorg)
for SPARC/Solaris 8, configured to use pthread locks and
mal logging as the web server. We use SURGE [6] to gen

for ~80,000 requests, and we run for 5000 requests.

web requests. We use a repository of 2,000 files (totalling| ~
MB). There are 10 simulated users per processor. We waim up

mini-
erate

Dynamic Web Server: Slashcode is based on a dynamic
code 2.0, Apache 1.3.20, and Apacheiad_ped 1.25 modulé

database is a snapshot déshcodecom , and it contain
~3,000 messages. A multithreaded driver simulates broy

240 transactions, and we run for 50 transactions.

message posting system usedslaghdotcom . We use Slash-

for the web server. MySQL 3.23.39 is the database enging.

The
5
vsing

and posting behavior for 3 users per processor. We warm yip for

2 suite [46], with the 16K body input set. We measure from

Scientific Application: We usebarnes-hufrom the SPLASH}

start of the parallel phase to avoid measuring thread forkirg.

the

alternative scheduling paths. Error bars in our results repre-

sent one standard deviation in each direction.

=

o

I
ind

7
2
%

q

ONNNNNNNNNN

Y

normalized performance
o
T

apache
Il Unprotected fault-free
I Unprotected with fault
SafetyNet fault-free

I SafetyNet with 10 transient faults per second
[SafetyNet with a hard fault

]bb s|ashcode

=

Figure 5. Performance Evaluation ofSafetyNet

0 require logging. Overheads due to register checkpointing

(every 100,000 cycles) and stores that require logging
(0.1% of all instructions) are negligible, and back pressure
due to filling up the CLBs is rarely needed. We present sen-
sitivity analysis of CLB sizing in Section 4.3.

Experiment 2: Dropped Messagedn this experiment,

we periodically inject transient faults into the system by
dropping a message every 100 million cycles (i.e., ten
times per second). The requestor times out on its request
and triggers recovery. The second “bar” reflects the unpro-
tected system performance (crash). The fourth bar from the
right representSafetyNetehavior, and we see that it is
statistically similar to the fault-free scenafio.

The exact recovery latency is not critical, siriBafetyNées
recovery latency is orders of magnitude shorter than the
latency of crashing and rebooting (and also preserves data

Workloads. Commercial applications are an important integrity). Recovery latency consists of discarding unvali-

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02)
1063-6897/02 $17.00 © 2002 IEEE

workload for high availability systems. As such, we evalu- dated checkpoint state, restoring the state from the recovery
ate SafetyNewith four commercial applications and one point, re-configuring if necessary (e.g., changing the rout-
scientific application, described briefly in Table 3 and in ing to avoid a dead switch), and re-executing the work that
more detail by Alameldeen et al. [2]. was lost between the recovery point and the fault. Re-exe-
cuting lost work is the dominant factor, since the recovery
point can be hundreds of thousands of cycles in the past.
SafetyNetan tolerate longer fault detection latencies with
less frequent (i.e., larger) checkpoints, at the cost of more
potential lost work. Nevertheless, even a one million cycle
recovery latency is still only one millisecond (i.e., much
shorter than a crash).

4.2 Experiments

We perform three experiments to evalugtgfetyNeperfor-
mance and show the results in Figure 5. For each workload,
we plot five bars: two bars for systems unprotecte&hife-
tyNetand three bars for systems w@hfetyNet

Experiment 1: Fault-Free Performance.In this experi-
ment, we run two system§afetyNeaind a similar system
that is unprotected bpafetyNetin a fault-free environ-
ment. In Figure 5, the first and the third bars (from the left)
for each workload reflect the normalized performances of
the unprotected system arf8afetyNet respectively. We
observe that the two systems perform statistically similarly
for all workloads. Intuitively, SafetyNetdoes not impact
common case actions, such as loads and stores that do n

Experiment 3: Lost Switch.In this experiment, we inject

a hard fault into an interconnection network switch after
one million cycles, killing the half-switch and dropping its
buffered messages. The second “bar” reflects the crash of

4. The variability for the static web server and OLTP workloads
dﬁ high enough to erroneously suggest, if one considers only mean
values, thaBafetyNeperforms better when faults are injected.

TEEE .2

COMPUTER
SOCIETY

the unprotected system. The fifth bar refléstdetyNeper- wy
formance, and we observe that, most importa@fetyNet R
avoids a crash. Performance suffers, with respect to the 3 ol
fault-free case, due to restricted post-fault bandwidth. z

g
4.3 Sensitivity Analyses g

5
To explore SafetyNeés sensitivity to implementation e
parameters, we present analysesSaffetyNes usage of o pre o0
cache bandwidth and the impact of CLB sizing. checkpoint interval (in cycles)

— — —all stores

Cache Bandwidth.SafetyNés$ additional consumption of T conerence reduests
cache bandwidth depends on the frequencies of stores that coherence requeststhat use CLB

require logging. These stores consume additional cache Figure 6. Frequencies of Stores and Coherence
bandwidth for reading out the old copy of the block. Log- Requests (Static Web Server Workload)
ging due to transferring cache ownership, however, does

not incur additional bandwidth, since the cache line must 104
be read anyway. In Figure 6, for the static web server work- <

. . s 0.8+
loacP, we plot this frequency as a function of the check- s ‘
point interval. Both axes use log scales. Distinguishing 2 061 ;é‘;ﬁg‘rre‘gce

. e}

between all stores and only those stores that require log- B o v74 Cache Fills
ging, we notice the drop-off in the latter as the checkpoint 3 I Cache Hits
interval increases. These trends are the same for the other £ 024
workloads, and the intuition is that spatial and temporal =

locality reduce the number of distinct blocks touched per
interval. For an interval of 100,000 cycles, only 2-3% of
stores (less than 0.1% of all instructions) require logging. Figure 7. Bandwidth vs. Checkpoint Interval
In Figure 7, for the static web server workload, we plotthe (Static Web Server Workload)

percentage of cache bandwidth used by cache hits, cache

fills, responding to coherence requests, and logging due tQye 4o not claim that 512 kbyte CLBs are sufficient for all
store overwrites. The additional cache bandwidth used byworkloads or all design points. These workloads are neces-

SafetyNetanges from 0.3% for million cycle intervals up 5yl scaled to enable tractable simulation times, and

to 4% for short 5,000 cycle intervals. larger workloads may place more pressure on the CLBs.
Storage CostAn implementation ofSafetyNetseeks to ~ However, the primary determinants of CLB usage are the
size the CLBs to avoid performance degradation due to full checkpoint interval length and the program behavior, and
CLBs. Total CLB storage is proportional to the number of not the cache sizes. This is because logging occurs the first
allowable checkpoints and the number of entries per check-time a block is overwritten or transferred outside of the
point. We allow for four checkpoints and a CLB entry is 72 node during an interval, but not for transfers between
bytes (8-byte address and 64-byte data block). The numbercaches within a given node.

of entries per checkpoint corresponds to logging frequency))

which is, in turn, a function of the frequencies of stores and © DIScussion

coherence requests. Figure 6 shows that, on average, onlyo this point, this paper has explained h@afetyNetan
about 100-150 CLB entries are created per 100,000 instrucenable a recovery after the detection of a lost message or
tions (although the variance in this rate requires more stor-fajled switch fault. Most generallySafetyNetcan enable

age). In Figure 8, we plot the performanceSaffetyNeisa recovery for any fault that does not corrupt ECC architec-
function of CLB size. While 512 kbyte and 1 Mbyte CLBs tural state, provided that:

produce statistically equivalent performances across the

workloads, 256 kbyte CLBs degrade the performances of®

jbb and apache and 128 kbyte CLBs degrade the perfor-

mances of all of our workloads. ¢ and faults are detected whi&afetyNestill maintains a
fault-free recovery point.

0_
10k 50k 100k 500k 1M
checkpoint interval (cycles)

a system can be augmented with a mechanism to detect
the fault (or sign off on its absence),

5. We only present the results for the static web server, but these
results are qualitatively the same for all of our other workloads.

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

ness. Detecting faults in storage cells can be accomplished
% 107 with error detecting codes. A system wilafetyNehas to
£ protect the cache hierarchy and memory with ECC, since
T ;;1’\2?(ykt)§te they contain memory blocks that could potentially be the
B 05 174 256 Kbyte only valid copies in the system, so an uncorrectable fault
g could be unrecoverable. Memory chip kills can be tolerated
2 by using a RAID-like scheme for DRAM [13].

0.0~

jbb apache slashcode oltp barnes

5.3 SafetyNetHardware Faults

The SafetyNehardware itself is also susceptible to faults,

We now discuss other faults, including those tBafetyNet apd we target S|.ngle fault |_nstance§. we ensure that th_e Ser-
vice controller is not a single point of failure by using

can tolerate, those for which other schemes are sufficient, . . .
redundant controllers. The other possible single point of

and faults in th&afetyNehardware itself. . o L o

failure is in the communication of validation messages, but
. . a dropped or corrupted validation message will lead to a
5.1 Tolerating Other Faults with SafetyNet timeout and recovery. Most other faults in tBafetyNet
This section considers additional faults, in the interconnec-hardware only manifest themselves during a recovery,
tion network and coherence protocol, tigsfetyNetould which implies a double fault situation.
tolerate. A typical interconnection network fault model
focuses on link errors, trying to detect single, double, or 6 Related Work

burst errors. Link errors are normally detected with ermor paated research exists in fault tolerance, as well as in log-
detecting codes, such as parity, SECDED, or cyclic erun'ging for speculation and versioning of data. Prior work in
dancy check (CRC) [14, 33]. Current systems, such as thegjt tolerance can be classified into two broad categories:
SGI Origin’s Spider router [18], use short codes (€.9., 0N 8 5 ckward error recovery (BER) and forward error recovery
or 16 bytes), since the code must be checked before data '%FER). Among other differences, the evaluationSaffety-

forwarded or usedsafetyNepermits longer, and inherently Netais0 advances previous work in fault tolerance by using
stronger, codes because of its ability to tolerate long detec'full-system simulation of commercial workloads.

tion latenciesSafetyNets also compatible with other fault

models, such as lost and misrouted messages (detectedardware Backward Error Recovery. In BER schemes,
with timeouts), corrupted internal switch state (detected the state of the system is checkpointed periodically (or dif-
with error detecting codes), and switch controller malfunc- ferences are logged), and a fault is tolerated by recovering

tion (detected with internal consistency checks). to a pre-fault checkpoint. IBM mainframes [23, 40] use
register checkpoint hardware and store-through caches to

There are numerous soft faults in the prptocol engine thatrecover from processor and memory system errors, respec-
can be tolerated with global checkpoint/recovery. This e\ The CARER scheme [24] for uniprocessors uses a

class of faults includes sending the wrong message or send o ma) cache with a writeback update policy to assist rapid

ing duplicate messages, as well as faults in the reception ot 5 ck recovery. Checkpointed system state is maintained
messagesSafetyNetalso could be used to recover from iy main memory, and checkpoints are established whenever
design faults in the protocol, if they could be detected reli- 5 g ified cache block needs to be replaced. Ahmed et al.
ably [9, 17] and would not keep recurring after recovery |1 extend CARER for multiprocessors by synchronizing

Figure 8. Performance vs. CLB Size

(leading to livelock). the processors whenever one needs to take a checkpoint.
. o Wu et al’s [48] multiprocessor extension of CARER
5.2 Faults Tolerated with Existing Schemes allows a processor to write into its cache between check-

Processor faults can be detected with numerous schemegoints. Checkpointing, which flushes all modified blocks,
including parity, redundant ALUs, and redundant threads is performed when ownership of a block modified since the
[35, 37, 42]. Localized recovery schemes, including DIVA last checkpoint changeSafetyNets more efficient, since

[4], can tolerate processor faults, MBafetyNetombined it does not checkpoint before every ownership transfer. The
with processor fault detection provides a unified mecha- Sequoia system [7] uses caches to hold state between
nism to tolerate these and other faults. checkpoints, and flushes dirty cache blocks to memory at
every checkpoint. Banéatre et al. [5] describe a Recoverable
Shared Memory module that requires a shadow copy of the
entire memory and a mechanism for maintaining the inter-
processor dependence graph.

Fault tolerance schemes for memory, both SRAM and
DRAM, are already well-established, and we present the
fault model and prior detection techniques for complete-

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

Software Backward Error Recovery. Software check-
pointing has also been used, but at radically different engi-

¢ SafetyNeefficiently coordinates checkpoint creation in
logical time, without having to either quiesce the sys-

neering costs. In Tandem NonStop machines, every process tem or exchange synchronization messages.

periodically checkpoints its state on another processor [38].
Work by Plank [32] and Wang and Hwang [44] uses soft-
ware to periodically checkpoint applications to aid fault

We see interesting avenues for future work. First, one could
use SafetyNeto tolerate many of the faults discussed in
Section 5 by developing suitable detection mechanisms.

tolerance. These schemes differ in the degree of SUploor%inceSafetyNeprovides recovery for long-latency detec-

required from the programmer, libraries, and operating sys-
tem. At the link level, SCI [25] supports software retry of
dropped or corrupted messagesafetyNetdiffers from

tion mechanisms, we can focus on stronger, high-latency
codes and signatures. Second, one couldSafetyNeto
tolerate harder faults, such as the loss of architectural state

these works in that it is a hardware solution.
(Hardware) Forward Error Recovery. FER schemes use

in a processor-cache chip kill. However, this alternative
design will achieve this higher level of fault-tolerance for

redundant hardware to mask faults. For example, redundanincreased overheads in time, space, and/or cost.

processors [4, 26, 27, 45] or redundant threads within a
processor [42] can be used to mask processor faults.
Redundant paths through adaptive networks allow packet
to be routed around faults [12, 14]. The Intel 432 [27] uses
replication of commaodity parts to achieve a range of fault
tolerance needs. The Stratus [45] computer system use
pair-and-spare processors, and the Tandem S2 [26] uses tri-

Acknowledgments

SWe would like to thank the Wisconsin Multifacet group,
Virtutech AB, the Wisconsin Condor group, Jim Goodman,
Peter Hsu, Alain Kagi, Mikko Lipasti, Mark Oskin, Ravi
]S-Qajwar, Kewal Saluja, Bob Zak, and Craig Zilles.

ply modular redundant (TMR) processors, for masking References

faults. Slipstream [42] is a lighter-weight processor scheme
that uses redundant threads within a processor to maskl]
faults. DIVA [4] uses a checker processor to implement
FER on the processor (but not on the system).

Speculation and Versioning of DataPrior research for [2]
supporting speculation has logged changes in state that is
local to a node [19, 34]SafetyNés$ logging is similar,
although it must also log transfers of coherence ownership
in our global scheme. Speculative multithreading schemes 3]
use versioning to implement sequential program semanticé
[11, 20, 30, 41]. Our goal differs in that we superimpose
checkpoints on system execution withrallel semantics

to support availability. We use globally consistent check-
points rather than local checkpoints at different places in a
sequential execution.

[4]

[5]
7 Conclusions

In this paper, we develop a scheme, cal&afetyNetthat
improves the availability of shared memory multiproces-
sors. We describe an implementationS#HfetyNetand we
demonstrate that it adds little performance overhead and

(6]

has reasonable storage costs. In develofiafgtyNetthis [7]
paper makes three contributions which all@afetyNeto
be efficient in the common case of fault free execution. 8]
¢ SafetyNeadds no latency to the common case of 99.9%

of all instructions. [9]

¢ SafetyNehides the latency of fault detection by pipelin-
ing the validation of checkpoints. The system can con-
tinue to execute while it determines if old checkpoints [10]
can be validated.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02)
1063-6897/02 $17.00 © 2002 IEEE

R. E. Ahmed, R. C. Frazier, and P.N. Marinos. Cache-
Aided Rollback Error Recovery éCARER Algorithms for
Shared-Memory Multiprocessor SystemsPhoceedings of
the 20th International Symposium on Fault-Tolerant
Computing Systempages 82-88, June 1990.

A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper, M. M.
Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. Evaluatin
Non-deterministic Multi-threaded Commercial Workloads.
In P_roceedlngs of the Fifth Workshop on Computer
Architecture Evaluation Using Commercial Workloads
pages 30-38, Feb. 2002.

R. Anglada and A. Rubio. An Approach to Crosstalk Effect
Analyses and Avoidance Techniques in Digital CMOS
\1/I7_Sl£§?8|r80wts. International Journal of Electroni¢g$(5):9—

T.M. Austin. DIVA: A Reliable Substrate for Deep
Submicron Microarchitecture Design. Rroceedings of the
32nd Annual IEEE/ACM International Symposium on
Microarchitecture pages 196—207, Nov. 1999.

M. Banatre, A. Gefflaut, P. Joubert, P. Lee, and C. Morin.
An Architecture for Tolerating Processor Failures in
Shared-Memorf/ Multiprocessor$EEE Transactions on
Computers45(10):1101-1115, Oct. 1996.

P. Barford and M. Crovella. Generating Representative
Web Workloads for Network and Server Performance
Evaluation. InProceedings of the 1998 ACM Sigmetrics

Conference on Measurement and Modeling of Computer
Systemgpages 151-160, June 1998.

P. Bernstein. Sequoia: A Fault-Tolerant Tightly Coupled
Multiprocessor for Transaction ProcessinglEE
Computey 21(2), Feb. 1988.

M. Bohr. Interconnect Scaling - The Real Limiter to High
Performance. IfProceedings of the International Electron
Devices Meetingpages 241-244, Dec. 1995.

J. F. Cantin, M. H. Lipasti, and J. E. Smith. Dynamic
Verification of Cache Coherence ProtocolsWorkshop on
M_em%réAPerformance Issuedune 2001. In conjunction
wit .

A. Charlesworth. Starfire: Extending the SMP Envelope.
IEEE Micro, 18(1):39-49, Jan/Feb 1998.

YF]',F.

COMPUTER
SOCIETY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02)

M. Cintra, J. Martinez, and J. Torrellas. Architectural
Support for Scalable Speculative Parallelization in Shared-
Memory Systems. InProceedings of the 27th Annual
Iznotg{)natlonal Symposium on Computer Architecturane

W.J. Dally, L.R. Dennison, D.Harris, K.Kan, and

T. Xanthopoulos. Architecture and Implementation of the
Reliable Router. IrProceedings of 2nd Hot Interconnects

SymposiumAug. 1994.

T.J. Dell._ A White Paper on the Benefits of Chipkill-
Correct ECC for PC Server Main Memory. IBM
Microelectronics Division Whitepaper, Nov. 1997.

J. Duato, S. Yalamanchili, and L. Nilnterconnection
Networks IEEE Computer Society Press, 1997.

E. Elnozahy, D.Johnson, and Y.Wang. A Survey of
Rollback-Recovery Protocols in Message-Passing Systems[35]
Technical Report CMU-CS-96-181, Department of
Computer Science, Carnegie Mellon University, Sept. 1996.

E. ElInozahy and W. Zwaenepoel. Manetho: Transparent
Rollback-Recovery with Low Overhead, Limited Rollback,
and Fast Output CommiEEE Transactions on Computers
41(5):526-531, May 1992.

S. J. Frank. Tightly Coupled Multiprocessor System Speeds [37]
g/lgeSngory-access imesElectronics 57(1):164-169, Jan.

[31]

[32]

[33]

[34]

[36]

M. Galles. Spider: A High-Speed Network Interconnect.
IEEE Micro, 17(1):34-39, Jan/Feb 1997.

C. Gniadg, B. Falsafi, and T. Vijail]kumar. Is SC + ILP =
RC? In Proceedings of the 26th Annual International
%&ngposmm on Computer Architectupages 162-171, May

[38]
[39]

S. Gopal, T.Vijaykumar, J.E. Smith, and G.S. Sohi.
Speculative Versioning Cache.Rmoceedings of the Fourth
IEEE Symposium on High-Performance Computer
Architecture pages 195-205, Feb. 1998.

G. Grohoski. Reining in ComplexitylEEE Computer
pages 41-42, Jan. 1998.

R. Gupta. The Fuzzy Barrier: A Mechanism for High Speed

Synchronization of Processors.Pnoceedings of the Third

International Conference on Architectural Support for

Pro%rammln% Languages and Operating Systepeges
Apr. 1989.

[40]

[41]

54-63, 2]

R. Gustafson and F. Sparacio. IBM 3081 Processor Unit:
Design Considerations and Design Procé8s! Journal of
Research and Developme6:12-21, Jan. 1982.

D. Hunt and P. Marinos. A General Purpose Cache-Aided [43]
Rollback Error Recovery (CARER) Technique. In
Proceedings of the 17th International Symgosmm on Fault- [44]
Tolerant Computing Systenpmages 170-175, 1987.

IEEE Computer SocietylEEE Standard for Scalable
Coherent Interface (SGIAug. 1993.

D. Jewett. Inte?rity S2: A Fault-Tolerant UNIX Platform. In
Proceedings of the 21st International Symposium on Fault-
Tolerant Computing Systenmages 512-519, June 1991.

D. Johnson. The Intel 432: A VLSI Architecture for Fault-
'{Slseélrant ComputinglEEE Computer pages 40-48, Aug.

[45]
[46]

T. Juhnke and H. Klar. Calculation of the Soft Error Rate of [47]

Submicron CMOS Logic CircuitdEEE Journal of Solid-
State Circuits30(7):830—-834, July 1995.

P. S. Magnusson et al. Simics: A Full System Simulation
Platform.[EEE Computer35(2):50-58, Feb. 2002.

J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. S.
Lam, and K. Olukotun. Software and Hardware for
Exploit_in% Speculative Parallelism with a Multiprocessor.
Technical Report CSL-TR-97-715, Stanford University,
May 1997.

[48]

[49]

1063-6897/02 $17.00 © 2002 IEEE

D. A. Patterson, G. Gibson, and R. H. Katz. A Case for
Redundant Arrays of Inexpensive Disks (RAID). In
Eé%%eedmgs of 1988 ACM SIGMOD Conferendeine

J.S. Plank, K.Li, and M.A. Puening. Diskless
Checkpointing. IEEE Transactions on Parallel and
Distributed System$(10):972-986, Oct. 1998.

D. K. Pradhan.Fault-Tolerant Computer System Design
Prentice-Hall, Inc., 1996.

P. Ranganathan, V.S. Pai, and S.V. Adve. Using
Speculative Retirement and Larger Instruction Windows to
Narrow the Performance Gap between Memory
Consistency Models. IProceedings of the Ninth ACM
Symposium on Parallel Algorithms and Architectyesges
199-210, June 1997.

S. K. Reinhardt and S.S. Mukherjee. Transient Fault
Detection via Simultaneous Multithreading.Pnoceedings

of the 27th Annual International Symposium on Computer
Architecture pages 25-36, June 2000.

J. Robertson. Alpha Particles Worry IC Makers as Device
Features Keep Shrinkingsemiconductor Business News
October 21, 1998.

E. Rotenberg. AR-SMT: A Microarchitectural Approach to
Fault Tolerance in Microprocessors. Rroceedings of the
29th International Symposium on Fault-Tolerant
Computing Systempages 84-91, June 1999.

O. Serlin. Fault-Tolerant Systems in Commercial
Applications.IEEE Computerpages 19-30, Aug. 1984.

K. Seshan, T.Maloney, and K.Wu. The Quality and
Reliability of Intel's "Quarter Micron Processintel
Technology JournalSept. 1998.

L. Spainhower and T.A. Greg_rq. IBM S/390 Parallel
Enterprise Server G5 Fault Tolerance: A Historical
PersPectlveJBM Journal of Research and Development
43(5/6), September/November 1999.

J. G. Steffan and T.C. Mowry. The Potential for Using
Thread-Level Data Speculation to Facilitate Automatic
Parallelization. In Proceedings of the Fourth IEEE

Ey[)nplc>95étém on High-Performance Computer Architegture
eb. .

K. Sundaramoorthy, Z.Purser, and E. Rotenberg.
Slipstream Processors: Improving both Performance and
Fault Tolerance. IfProceedings of the Ninth International
Conference on Architectural Support for Programming
Languages and Operating Systemsv. 2000.

M. Tremblay. Increasing Work, Pushing the Clod¢kEE
Computey pages 40-41, Jan. 1998.

Y.-M. Wang, Y.Huang, K.-P. Vo, P.-Y. Chung, and
C. Kintala. "Checkpointing and Its Applications. In
Proceedings of the 25th International Symposium on Fault-
Tolerant Computing Systepmages 22—-31, June 1995.

D. Wilson. The Stratus Computer System. Resilient
Computer Systempages 208-231, 1985.

S. C.Woo et al. The SPLASH-2 Programs: Characterization
and Methodological Considerations. Rroceedings of the
22nd Annual International Symposium on Computer
Architecture pages 24-37, June 1995.

D. A, Wood, G. A. Gibson, and R. H. Katz. Verifyingl_a
Multiprocessor Cache Controller Using Random Test
Generation.|IEEE Design and Test of Computerdug.

K. Wu, W. K. Fuchs, and J. H. Patel. Error Recovery in
Shared Memory Multiprocessors Using Private Caches.
IEEE Transactions on Parallel and Distributed Systems
1(2):231-240, Apr. 1990.

J. Ziegler et al. IBM Experiments in Soft Fails in Computer
Electronics.IBM Journal of Research and Development
40(1):3-18, Jan. 1996.

YF]',F.

COMPUTER
SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

