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ABSTRACT

From a modern Bayesian point of view, the classic Julesz random-dot stereogram is a
cue-conflict stimulus: texture cues specify an unbroken, unslanted surface, in conflict
with any variation in depth specified by binocular disparity. We introduce a new visual
stimulus based on a novel texture, the Starry Night Texture (SNT), that is incapable of
conveying slant, depth edges, or texture boundaries, in a single view. Changing density
and changing intensity are equivalent for SNT, so an instance of the texture is
characterized (up to the random locations of the texture elements) by its densintensity.
We describe the SNT in its ideal form, consider deviations from the ideal that are needed
to realize the texture in practice, and describe a physical device that approximates SNT
using backlit metal foil. In three experiments with computer-generated stimuli we
examined human perception of SNT, to show that (1) the deviations from ideal that were
needed to realize SNT do not affect the invariance of its appearance, across changes in
distance of several orders of magnitude; (2) as predicted, observers match SNT better
than other textures across changes in distance; and (3) the use of SNT in a slant
perception experiment did not significantly increase observers' reliance on stereoscopic
slant cues, as compared to the sparse random dot displays that have been commonly
employed to study human perception of shape from binocular disparity and motion.



1. Introduction

Consider a Julesz random-dot stereogram (RDS),! printed on an unwrinkled sheet of
paper. The stereogram is composed of a rectangular array of pixels, each of which is
white or black. The property that made this stimulus interesting, according to Julesz,
was its being “devoid of all depth and familiarity cues except disparity”. However,
a modern Bayesian would conclude that the RDS is a cue-conflict stimulus. Real
depth edges are almost always accompanied by a discontinuity in visual texture, and
surface slants are almost always accompanied by texture gradients in the image.??
If head movements are allowed, then the absence of depth edges is also specified by
motion parallax cues. Thus, Julesz’s observation, that binocular disparity per se is
sufficient to evoke depth, is actually more impressive when one realizes the nature of
this conflict. However, the stated goal of creating a stimulus devoid of nonstereo cues
was not in fact realized in the Julesz RDS.

Visual texture (or surface pattern) reveals information about depth because visual
textures tend to be homogeneous. For our purposes, a homogeneous texture will be a
texture with measurable statistical properties that are translation invariant across the
surface. Projecting surface(s) into an image plane causes depth-dependent departures
from homogeneity in the image, from which depth information can be recovered,
under the assumption that the original texture was homogeneous. We will not be
concerned here with contrived, inhomogeneous textures that mislead the observer
as to depth structure. That is because texture cues are probabilistic by nature: any

depth structure could give rise to any image, if the structure were painted with the



proper inhomogeneous surface pattern.

The top row of Figure 3 illustrates two examples of depth information conveyed
by texture. A homogeneously patterned surface is shown at the top left. When the
distance to this surface is reduced by a factor of two (top middle panel), dot sizes and
spacing increase, from which an observer could infer that the distance has been halved.
No matching of individual texture elements is necessary to make this inference; it is
the change in the image statistics (dot size and density) that specify the change in
distance. Similarly, if the surface is slanted by 60° (top right panel), its image will
contain a giveaway texture gradient and, in this case, linear perspective and outline
cues. If one assumes homogeneity, then changes in slant across an imaged surface
can be quantified by fitting affine transformations from one part of the image to
another;%® a similar scheme could reveal changes in distance (up to a scale factor)
across depth edges. Even similarly textured surfaces that abut, without any change
in depth across their edge, usually give rise to a detectable edge between them, that
appears as a “second order” contour within the image. The orderly layout of texture
elements may suffer a discontinuity, or extended texture elements may themselves be
cut by the edge (not shown).

Thus, a texture must be neither homogeneous, nor contain identifiable texture
elements, if it is to completely hide slant, depth edges, and edges between abutting
surfaces. These considerations dictate that the texture must be comprised of indepen-
dently (randomly) placed points. And indeed, small, sparsely and randomly placed
dots are often used to create stereograms when it is important to minimize single-
image depth cues. Yet the sparse RDS is still not a perfect answer: both slant and
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distance increase the density of the dots within the image, so even small sparse ran-
dom dots convey some information about depth. In the case of small luminous dots,
changes in depth also give rise to variation in the “proximity luminance” cue.® To
completely hide changes in depth, one would have to make it impossible to reliably
compute not only the transformations that relate patches in different parts of the
image to one another, but also impossible to measure changes in dot density and
intensity.

The Starry Night Texture is a random-dot texture that, in its ideal form, renders
depth edges and changes in surface slant invisible within the image. Four properties

of SNT confer it with this ability; the third and fourth of these are novel to SNT.

1. Star size. SNT is composed of dots that are infinitesimal in size, so that dot
size, shape, and partial occlusion of texture elements cannot provide information
about depth structure within the scene. Because an infinitesimal dark dot is not
visible, SNT uses intense small dots (“stars”) on a dark background. Provided
the stars are sufficiently small, the point spread function of the eye (or other
imaging device) makes a bright distant star indistinguishable from a dim near

one, a property that is important to the scheme.

2. Star positions. The spatial position of each star in the texture is randomly
assigned from a two-dimensional uniform distribution across possible locations
on the surface, so that two regions of equal area on the surface are equally likely
to receive a given star. This prevents pattern matching between patches of the

surface, and in conjunction with (3) and (4) below, guarantees random uniform



distribution of dots within the image.

3. Star flux. A countably infinite number of stars are sprinkled onto the surface and
their fluxes are distributed as 1/t%. As a consequence (see below), the expected
number of stars, per unit area in the image, exceeding some intensity value, is
invariant to changes in the distance of the imaged surface. As we discuss below,

this property is not realizable in practice.

4. Star shape. Stars are not infinitesimal spheres, but rather infinitesimal, uni-
formly luminous flat disks, lying tangent to the surface. Consequently the amount
of light reaching the image from a given star is proportional not only to its flux
and the squared reciprocal of its distance from the observer, but also to the co-
sine of the local slant of the surface (see Figure 1). This property is responsible
for the imaging property that the expected number of stars exceeding criterion

intensity in the image is invariant to changes in surface slant.

Because a single view of SNT provides no information as to distance, slant, or
edge locations, SN'T can in theory be utilized to study the perceptual effects of motion
parallax or binocular disparity cues in isolation, without the presence of cue conflicts,
under the assumption that the visual system appreciates the absence of texture cues
when they are, in fact, absent. In practice, the utility of SNT is limited by two
factors. First, physical display devices are limited in their ability to portray small,
high intensity light sources. Second, using an infinite number of stars is not possible,
as this would make the image infinitely luminous, for the SNT.

This rest of the paper is organized as follows: in Section 2, we introduce the



Fig. 1. Idealized images of an infinitesimal luminous flat disk. ;From left to
right: cartoon depictions of the disk’s image frontoparallel at a distance of
1m; frontoparallel at a distance of 2m, and slanted by 60° at a distance of
1 m. Luminance of the imaged area does not change with distance or slant, so

luminous intensity is proportional to the disks’ image area.



theory of SN'T and describe how it can be implemented in practice. We describe the
statistics of the texture and give an algorithm for its construction. In Section 3, the
claim of invariant appearance across changes of distance is tested experimentally.
In two further experiments, the ability to match texture across change in distance
is compared for SNT and other textures; and the consequences of averaging across
different types of depth cues by the visual system are examined for SN'T and other

textures. Section 4 is a summary.

2. Theory and Implementation

We begin by defining symbols that will be needed in the paper.



e An “infinitesimal flat star” (IFS) is a flat luminous disk, so small
that its shape cannot be seen, that emits light from one of its
sides. Its luminous intensity L in the direction ¢ relative to the

surface normal of the star is
L =1xcos(p)/m (1)
candelas (cd), where [ is luminous flux in lumens (Im).

e The Starry Night Texture in the world consists of randomly ar-
ranged [FS’s tangent to a surface, with flux values that are dis-

tributed as 1/t%.

e SNT is fully characterized by two parameters: the lower bound on
IFS flux, «, and the densintensity, D. D is the number of IFS’s

per m? expected to have luminous flux > 1im.

e A Starry Night Image (SNI) depicts only SNT-ed surfaces. A SNI
can be represented by a set of scaled Dirac vectors 5(p), p € R?,

where p is the depiction locus of an IFS in the SNI.

e The density of IFS’s in the world (number of IFS’s per unit of area) is denoted

dy . Their density in the image is denoted d;.

e The expected number of IFS’s, per m?, per Im, to exhibit a flux value within
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Fig. 2. Cartoon illustrations of textures A, B, and C (left to right). Gray levels

represent flux.

the interval [t —€,t + €] lm, where € > 0 and € — 0, is given by function Dy (?),

where t € Ri and, thUS, f Dw(t) dt = dVV-

e The expected number of depicted IFS’s to exhibit a magnitude of luminous
intensity at the direction of surface normal per m? of image, per cd, within the
interval [¢ — €,q + €] cd, where ¢ € R’ , ¢ > 0 and € — 0 is given by function Dy

and, thus, [ D;(l)dl = d;.

Three other textures besides SNT are discussed: A, B, and C. In particular: A
consists of a lattice of IFS’s of constant flux against a black matte background; B is
as A, but the locations of the IFS’s are uniformly distributed by area; C is as B, but
the distribution of flux among the IFS’s is uniform (within some finite flux interval).

Figure 2 illustrates textures A, B, and C. SNT is shown in Figure 10.

10



A. The ideal SNT

The ideal SNT is composed of infinitely many IFS light sources on a black matte

surface. Their locations and intensity values are distributed as follows:

e The locations of the light sources on the matte surface are independent and

uniformly distributed by area.

e The distribution of the flux values of the IFS light sources is described by the
Probability Density Function (PDF): D(t) = 1/(kt*), where t > «, a € R,

and k= [ D(t) dt.

The definition above describes stochastically the distribution of flux among the IFS
light sources in the SNT. It does not specify the actual number that will occur per

unit area.

B. Absence of distance and slant information in images of SNT

The ability of SNT to conceal information about the distances and slants of surfaces
originates from the fact that changes in distance and slant do not cause any change
in the statistics of the image. With other textures, statistical changes that result
from change in distance and slant are a consequence of homogeneity' in the texture,
which yields a usable depth cue.’ Of course, knowledge of a particular instance of

the SNT does permit an estimate of slant and distance. However, knowledge of the

'Homogeneity is sometimes distinguished from isotropy, with homogeneity referring to the reg-
ularity in spacing of textural elements, and isotropy referring to regularity in the orientation of
textural elements. SNT has stationary statistics across the surface, but this is the only sense in

which it could be considered homogeneous or isotropic.
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statistical properties of SN'T is insufficient for the inference of anything about the
distance, slant, or edge locations of a depicted surface textured with the SNT. This

is illustrated in Figure 3.

1. Proof that SNI is devoid of depth cues

For convenience, we assume « to be small, and that SN'T can be characterized by D
alone. This assumption is justified as follows. Since o > 0, as the distance between
the surface to the center of projection decreases, there will eventually be completely
dark regions between visible stars in the image. We refer to the luminance of the
regions between discriminable IF'S’s as background luminance. Background luminance
is a monotonously increasing function of distance and/or slant for realizable SNT.
However, Experiment 1 showed that humans are unable to make use of this cue
across large changes in distance. Since differences in background luminance were not
detectable over some range of distances, we assume that within this range, differences
in background luminance are not usable depth cues.

Given that the ideal SNT can be described by a single parameter, its densintensity
D, we aim to show that the statistical properties in any region of the image are
invariant to the distances and slants of the SNT-textured surfaces that the region
depicts. We define an imaging system that obeys the standard laws of perspective
projection. To simplify the proof, we will let images be formed on a spherical imaging
surface that lies p = 1 m from the center of a projection. For convenience, we also
identify the imaging process with the process that replaces an IFS in the world (a

“distal” IF'S) with an IF'S in the image, such that a monocular observer at the center
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Fig. 3. The strength of depth cues due to texture can be dependent to the
statistics of the texture. Top row: Common textures are homogeneous and/or
isotropic and, thus, their images provide cues to relative distance and/or slant.
A homogeneous and isotropic texture (A) on a planar surface patch is imaged
from three viewpoints (left to right): (1) frontoparallel at distance L from the
patch center, (2) same as (1), but at distance L/2, and (3) same as (1), but
60° eccentrically. Circle radii indicate intensities of the imaged [F'S’s, not the
shapes of texture elements. The dashed square in the left panel shows the
portion of the surface that is visible in the middle panel. Bottom row: When
using the SN'T the compelling depictions of distance and slant become absent.
The panels depict real SNT (a > 0) for the same surface and viewpoints as in

the top row, in columnwise correspondence.
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of projection sees a point light source in the same direction and of the same luminous
intensity, whether looking at the distal IFS or at its image; this process is defined
in the next paragraph. For the same reason, we also assume (1) that the image is
filled by the depictions of SNT-textured surfaces, (2) that the depicted surfaces are
smooth and, thus, orientations of the IFS’s on the surfaces are well defined, and (3)
that there exists an upper bound on the local curvature on those surfaces.

The image is first segmented into a finite number of nonoverlapping openly
bounded regions that fill the image, such that any depth edges lie at the bound-
aries of image regions. Thus, no such region images a depth discontinuity. Next, each
of these regions is segmented into a set of nonoverlapping openly bounded subregions,
or windows, each one small enough to be covered by a disk of diameter €. The TFS’s
on a surface are countable; e.g. one can count them in order of decreasing flux. Thus,
every IF'S will be imaged in some window, and the probability is zero that any IFS
will be centered exactly on a boundary between windows. At depth discontinuities
caused by a slant of ¢ = 90°, the image intensity of a dot is zero by definition (Equa-
tion 1). As the value of € gets smaller, the image within each window approximates
a flat image formed by scaled orthographic projection. This approximation is valid
because (1) p > ¢,” (2) the image formation surface is spherical and, thus, everywhere
perpendicular to the optical axis,® and (3) surface curvature is bounded. Indeed, for
any 0; > 0, there exists an € > 0 such that 0; is an upper bound on the difference
in the image positions specified by perspective projection and scaled orthographic
projection. Let S; be the planar patch in the world, imaged by image region 7 and
which minimizes its deviation from surface patch i. Let I; be the flat image of S;
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formed by the scaled orthographic projection that minimizes image difference rela-
tive to the image of S; in window ¢. These minimizations can be conceived as the
ones that minimize e.g. the sum of squared distances of corresponding IFS’s or IFS’s
images, respectively (illustrated in Figure 4).

We proceed by showing (1) that each I; is itself textured by SNT, and (2) that
the SN'T of I; has densintensity D, the same as the distal surface. This will complete
the proof. To establish (1), we must show that the 2 and y image coordinates of the
IFS’s in I; are distributed uniformly and independently, and that their intensities are
distributed as 1/#2. First, note that the spatial layout of the IFS’s in I; is the same as
in S; after two scaling operations: uniform scaling of linear dimensions by a factor of
1/D;, where D; m is the distance to S;, and scaling by cos(slant;) in the tilt direction
of S;, where slant; is the slant of S;. Thus, the IFS’s in I; have spatial positions that
are related to those of the corresponding IFS’s in S; by an affine transformation. Since
the = and y coordinates of IFS spatial positions in S; are distributed independently
from uniform distributions, so too are coordinates for the IFS’s in I,;2.

. From the definitions of SNT and the imaging system, it follows that as € tends
to zero the flux of each IFS in I; becomes equal to the flux of the corresponding IFS

in S;, times the factor k; = cos(slant;)/D?, where D; is the distance of IFS 7 from the

2This fact is easy to see for changes in distance, that cause a uniform scaling of the image. But
changes in slant cause scaling in a single direction, and the reader may suspect this would leave visible
evidence in the form of an anisotropy. This is not the case. Points that are distributed randomly
from a two-dimensional uniform distribution will remain so after a one-dimensional scaling, for if
z and y are independent of each other across the set of points (z,y), then x and my will also be

independent of each other across the set of points (z, my).
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Surfaces in
world

Image sphere

Fig. 4. Illustration of surfaces referenced in the proof of the invariance of the
appearance of the SNT to changes of slant and distance (see text). A flat
surface patch S; approximates a surface region. The small and flat surface

patch I; approximates its image.
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optical center. Thus the flux of every IF'S in [; is equal to the flux of the corresponding
IFS in S; multiplied by a fixed scalar, k;. It follows that the fluxes of the IFS’s in I;
are distributed as 1/t?, so I; is a SNT.

Finally, if S; has densintensity D, what is the densintensity, Dy, of I;? The ex-
pected number of IFS’s in S;, per m?, exhibiting a luminance 1!m or greater, is D.
The area of I; is k; times the area of S; and the flux of each IFS in I; is k; times the
flux of each corresponding IFS in S;. Thus, I; is expected to have D IFS’s of flux k;
or greater, per k;, m?. Since I; is SNT, its IFS’s have flux distributed as D;/t*. By
integrating this quantity, from an arbitrary flux value f; to infinity, we see that in
I1, the expected number of IFS’s of flux f; or greater, per m?, is Dr/f1. Thus, two
expressions for the expected number of IFS’s in I; of flux k; or greater, per m?, are
D/k; and D;/k;. It follows that I; does indeed have densintensity D.

It can be shown that if the densintensity in two image windows is the same, then
the densintensity of the windows’ union (together with their shared border if they
have one) is the same as in either window. Thus, the image of an SNT-textured scene
is itself a SNT-textured scene of the same densintensity.

Intuitively, it is true for any texture composed of IFS’s (whether flux is SNT-
distributed or not) that if the distance to the surface is halved, only 1/4 of the
original surface will remain visible in the window, and the image intensities of the
visible IFS’s will quadruple. Similarly, if the slant of the surface increases from 0°
to 60°, then twice as much surface will be visible in the window, but the image
intensities will be halved. We suspect that only when flux is distributed as 1/¢* can
the distribution of IFS image intensities remain unchanged across such changes in
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distance or slant.

Based on the above, and assuming that background luminance provides no usable
cue, one can see why a single view of a SNT-textured scene does not provide any clues
as to the distances, slants, or edges of surfaces in the scene.

As mentioned above, the ideal SNT is impossible to realize for two reasons:

e The distribution D/t? for IFS flux in SNT implies an infinite number of IFS’s,
since: [°(D/t?) dt = oo, as v — 0. It is impossible to draw from a fixed positive
distribution an infinite number of times, without creating an infinitely luminous
image. (It is possible to build an infinite set of IFS’s that together do not create
an infinitely luminous image: the sequence of IFS’s having flux 1, 1/2, 1/4, 1/8,
... Im is such a set). In astronomy, Olbers’ paradoz?® is a similar puzzle: if stars
were point sources of constant flux, that were distributed with constant density
throughout an infinite universe, then the distribution of stars in the night sky

would be as 1/t* and the night sky would be infinitely bright.

e There exists an upper limit to the flux of IF'S’s that can be portrayed by physical
displays. Even if this were not the case, an upper bound on flux would be needed

to make displays safe to view.

Thus the distribution of IF'S fluxes in any realizable SN'T must be tailored so that

image luminance is not infinite, and also, no star is too intense. We therefore impose
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thresholds o and 8 on the PDF of IFS flux as follows:

;

T/t? fora<t<p

D(t)=1< o fort < a (2)

\ 0 fort > f
The term 7 in the numerator above is a constant of proportionality that makes the
area under the curve equal to 1 and is equal to (af3)/(5 — «). Once n is set, any given
star’s intensity can be drawn from this distribution. Densintensity now determines

the expected (finite) number of IFS’s per unit of area, in addition to being equal to

the expected number of IFS’s per m? of intensity greater than 11m?3.

2. The SNT from a Bayesian perspective

Bayes’” Theorem provides a theoretical framework for understanding how the image
of a scene can lead an optimal observer to infer the scene that has most likely given
rise to an image. To make an optimal decision, the observer must take into account
three factors: (a) the prior distribution (frequencies of scene occurrence in the world)
and (b) the likelihood that the acquired image could have been created by each scene.
The ideal observer also needs (c) a cost function, to map the posterior probabilities
of each scene to the choice of a particular scene. (see,' for an overview).

Given a SNI, infinite surface arrangements could have given rise to that particular
image, since all these arrangements give rise to the (stochastically) same image. In

principle, each possible interpretation of the image is equally probable. From the

3In principle, the lower threshold o can be greater than 1Ilm. For completeness, we therefore
define the densintensity parameter as specifying the distribution from which the stars are drawn,

rather than the actual number of expected stars per m? of intensity greater than 11m.
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Bayesian perspective, all possible images exhibit equal likelihood, or otherwise, the
resulting image does not convey any information to the ideal observer, as to which

stimulus was imaged.

3. Depth cues due to size, shape, and intensity of the IFS image

Besides texture statistics there exist other cues to depth in a SNI. In practice, real
light sources cannot be infinitesimal in size and, thus, should they occur at different
distances in the world they would be depicted with different sizes in the image. It
follows, that the silhouette boundary of the depiction of a flat and circular light source
would be a circle only when the source is gaze-normal. Thus, if dots are rendered to
exhibit equal size and circular shape, in the image, then the interpretation of image
dot size and shape would be that the observed dots are unslanted. We solve this
problem in principle by specifying that dots are to be rendered small enough so that,
given their distance from the eye and its point-spread function, the area they occupy
on the retina is indistinguishable from the area occupied by the image of an equally
intense point light source. In this case, no cue to the difference in size as well as
shape of rendered dots is available. Such an arrangement can be achieved in practice
by increasing the distance between the display and the observer; this has the side
effect of making the dots look dimmer. Since we were unable to render dots that were
simultaneously very small and very bright, we had to compromise, and dot sizes were
visible.

Note also that in the model, the intensity of an IFS in the image is related to its

distance from the observer by the inverse square law. This approximation is excellent
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for small pupils, but is not exactly correct. The IF'S intensity function is directionally
selective. If an imaging device has a constant, nonzero pupil size, it will gather light
from a larger set of emissive directions when it is close to the IF'S than when it is far
away. For a gaze-normal IFS, doubling the viewing distance would therefore decrease
image intensity by slightly less than a factor of 4, because a larger fraction of the

gathered rays would be from the IFS’s highest intensity directions.

4. FEzpected mean luminance and appearance of the SNT

The expected value for mean luminance in the image of an ideal SN'T can be estimated
as a scalar multiplicate of the integral across IFS flux, ¢, which is: [[*(D/t?)tdt = oo
and, thus, a surface patch equal to a unit area is expected to exhibit infinite intensity.
It follows that its image therefore exhibits infinite luminance. Because dim stars are
dense in the surface, and therefore in the image, probably any piece of the image will
also have infinite expected mean luminance. In the case of SN'T thresholded with lower
intensity cutoff v, the expected mean luminance is also infinite ([ (D/t?)t dt = o).
In this case, the possibility of IF'S’s with very high intensity causes the expected value
of mean luminance still to be infinite. However, any given image of a patch of SNT,
thresholded in such a way, counts a finite number of dots, each of finite intensity.
Thus, the image will have finite luminance. This analysis shows that mean luminance
is not a useful way to characterize visual stimuli based on the SNT.

When the viewpoint of image acquisition is very close to a thresholded instanti-
ation of the SNT| all of the dots within the imaging window will be bright enough to

see, and will be separated by black image regions. In principle, the lower end of the
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distribution (¢ < «) could be tailored in other ways besides a cutoff to zero intensity.
It is even possible to put an infinite number of dots into this dim portion of the dis-
tribution, without causing background intensity to be infinite: for example, by using
a 1/t or 1/1n(t) distribution function below the cutoff intensity. In this way, the rate
at which the foreground gets darker as an observer approaches a (foreground) SNT-ed
surface is reduced, and would at least never becomes zero. But still, the brightness of

a SNT background of the same densintensity, if visible, would be higher.

5. A numerical example

The effect of distance on the distribution of IFS image intensities is illustrated in
Figures 5 and 6. Three textures are considered: B, C, and realized SNT. A histogram
of IFS luminous fluxes in the image is shown for an instance of each texture at each
of three distances (2L, L, L/2). Figure 5 shows that for B and C, the IFS’s in the
image become more closely spaced, and less intense, as viewing distance increases. It
is therefore easy to distinguish which of two images represents a closer surface.

Figure 6 shows that the distribution of IFS fluxes in the image is invariant to
distance, in the case of SNT. IF'S fluxes in the image remain distributed as 1/¢? and
the distribution does not shift up or down. The figure also shows the limitation of the
realized version of SN'T: the SNT gains additional dim stars, and loses bright stars, as
the distance of the surface in the world is increased.

For these three textures, a change in slant affects the distribution of image fluxes
in a manner similar to, but not identical to, a change in distance. As slant increases,

both B and C realize an increase in IF'S density and decrease in flux, as with distance.
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Fig. 5. Histograms of IFS image flux for textures B (left) and C (right), for

frontoparallel surfaces at three distances (2L, L, L/2). The abscissa plots lu-

minous flux and the ordinate counts the number of IFS’s per unit area in the

image at a given flux. Both axes are logarithmic. Bin width was fixed in linear

units. For texture B, all IFS’s appear at a single value of flux that depends

on distance (left to right: 2L, L, L/2). For C, fluxes cover a range of values

(top-left to bottom-right: 2L, L, L/2). As distance increases, the maximum

IF'S flux in the image decreases, and there is an increase in the density of IFS’s

in the image at represented IFS flux values.)
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Fig. 6. Histograms of IFS flux in the image for SNT, for frontoparallel surfaces
at different distances. Axes are as in Figure 5. Left: Histograms for a thresh-
olded (realizable) version SNT at distances L(bold gray) and L/2 (black).

Right: Distances L (bold gray) and 2L (black).
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Under perspective projection, slant also has a secondary effect, as it causes some
distal IF'S’s to become closer, and others farther, from the observer. As with changes
in distance, changes in slant cause dramatic qualitative changes in the flux histogram

for B and C, and no such change for SN'T, except at the ends of the flux distribution.

6. A physical approzimation of SNT

Artificial gold leaf provides a crude approximation to SN'T. This material is extremely
thin. It is opaque (unlike gold leaf, which appears green when lit from behind) and
versions can be obtained that have a great many very small holes of varied size. When
backlit, the holes appear circular and the smallest holes are not individually visible.
The distribution of the sizes of these openings (and thus their luminous intensities)
of the material was not analyzed, but it is similar to the one required for SNT in at
least one respect: large holes occur and are rare. Figure 7 shows a device we built
to demonstrate properties of SNT. Two pieces of artificial gold leaf (“Sepp Guilding
Workshop Imitation Gold Leaf”) were lit from behind using two light boxes, that
were mounted on tracks so that the surfaces could be adjusted in distance or slant.
Observers reported being unable to see factor of two changes in distance, and 40°

changes in slant, in monocular views of the surfaces.

C. Stimulus Formation

We now present an algorithm for generating a SNI, taking into account imaging
limitations of the visualization medium. This algorithm and its variants were used to

generate the SNI’s in the modeling examples and experiments.
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Fig. 7. A device to illustrate SN'T’s ability to hide distance and slant informa-
tion. The two boxes can be adjusted to different distances and/or slants. Each
box is viewed through a tube that creates a fixed aperture and restricts view-
ing to a central portion of the box face. The inside of each box is lined with
reflective aluminum foil. The front face (dashed line) is translucent plastic, to
which a piece of artificial gold leaf has been applied. A lamp illuminates the

leaf from behind, and a black curtain blocks direct view of the surfaces.
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The process of physically realizing the SN stimulus, or otherwise generating a SNI,
has the following steps: (a) modeling the surfaces to be rendered, (b) instantiating the
texture on the surfaces, (c) generating an abstract representation of the image (IFS
locations and fluxes in the image), and (d) rendering the final image. In Figure 8, the

flowchart of this process is shown.

1. Modeling of surfaces

In this step of the algorithm, the model of the three-dimensional scene to be rendered
is determined, by establishing the positions of points on the surfaces of the depicted
scene. Data structure M contains the 3D coordinates of points on the visible regions of
the surfaces. A local surface slant is associated with each point in M, either explicitly,
or implicitly by virtue of the point’s belonging to a particular surface; information at
this stage must be sufficient to compute the distance and slant of each depicted surface
point, relative to the observer. Distance and slant are required for the computation
of the luminous fluxes of the imaged IFS light sources, in step (c¢) of the algorithm

(see Section 4).

2. Instantiation of the texture

The second step of the algorithm is the instantiation of the texture, that is, to de-
termine the number, location, and flux values of the imaged TFS light sources. The
input for this task is the density, the type of texture, and data structure M. A virtual,
calibrated, camera that will image the scene is also assumed.

The number n of the represented light sources is determined, based on texture
density and the area of the represented surfaces in M. The generation of the cor-

27



Surface Modeling

Model of surfaces to be rendered
in 3D, in world coordinates

v

Texture Instantiation

Flux values, positions, and orientation
in 3D of IFS’s on surfaces

v

Image Modeling

Real valued coordinates, in image
lane of IFS depictions and their
uminous intensities (Dirac image)

v

Image Rendering

Anti-aliased, raised cosine profiled
Starry Night image (pixel intensities)

Fig. 8. The flowchart of the SNI formation algorithm.
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responding n flux values requires as input the type of texture to be rendered. For
textures A and B, the flux values are constant. For textures C and SNT, a pseudo-
random number generator is utilized. Upon invocation this generator returns value
R € [0, 1], where each possible value of R is of equal probability. Given the PDF D(¢)
of the flux values of texture C, where t € I = [a, (], the distribution can be instanti-
ated by computing n times the function (8 — «) X R+ «. For the SNT, the problem
may be formulated as follows: given Equation 2, for which fl D(t) dt = 1, distribute
a set of numbers in [ so that the probability of values occurring in some interval
[v,v+¢ C Iis [T D(t)dt. But since, [ D(t)dt = ¢/(v(v + €)), a value drawn
from the distribution can be generated as ¢/(1 — Ue), where U = R x ((1—¢€?)/¢) + a.

The locations of the depicted light sources are random and of equal probabil-
ity. The corresponding, n, 3D-coordinates can be generated by assigning 2n pseudo-
random real numbers to the x and y coordinates to form planar textured patches; the
z-coordinates are set to zero. Then translation and rotation matrices can be employed
to apply these patches on the depicted surfaces, so that they cover them completely.
Intuitively, the process can be described as the construction of textured “wallpa-
per” pieces, which are then applied on the surfaces of the scene. The ranges of the
pseudo-random coordinates are determined by the size of the imaged surfaces.

The completion of this step of the algorithm yields structured data that represent

the locations of the luminous sources in space and their flux values.
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3. Creation of the image model

In this step of the algorithm, a model of the image to be rendered is generated. For
this purpose, the optical rays that reach the camera center are considered and their
intensity values in the image calculated.

In order to detect which light sources are not visible due to occlusions, the imaged
surfaces are perspectively backprojected from the camera center, until another surface
is encountered. The light sources that are encountered in this process are discarded.

In order to calculate the flux values of IF'S depictions in the image, the scene
structure, represented in data structure M, is considered. The luminous flux that a
depiction of an IF'S is required to exhibit, in order to simulate an IF'S in the world,

is:

cos

2
Ir = ly X cos ¢ X <£> X

rw

Ts 2 1
=l X cos ¢ X <—> X —— (3)

rw cos3 @’

where [y is the flux of IFS in the world, [; the flux of IFS in the image, ry radial
distance from observer to IFS in the world, rg the radial distance from observer to
screen, r; the radial distance from observer to IFS in the image, ¢ the slant of IFS
in the world relative to line of sight, and 6 the eccentricity of both IFS’s relative to
screen normal. Figure 9 illustrates the above.

The outcome of this step of the algorithm is a data structure, henceforth referred
to as a scaled Dirac image SNIs. This data structure represents the locations of the
images of the depicted light sources and their luminance values, as Dirac functions
that are centered at some point on the image plane and multiplied with a scalar. The

value of this scalar represents the magnitude of luminous intensity of the image of
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Fig. 9. The geometry of simulating a distal IFS (IFSy) in the world with a

luminous dot on a screen (IFSt).
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the depicted IF'S light source. The center of the Dirac impulse represents its location.
Data structure SNI; is treated as a list of 2D coordinates instead of as an image, thus

conserving the precision of the IFS depiction coordinates.

4. Rendering

In this step of the algorithm, the rendering of the SNI is performed, based on the
SNIs data structure. In particular, the tasks accomplished are: the localization, the
rendering of the depictions of the imaged light sources, and a final simple filtering of
the image.

The locations of the light source depictions are encoded in SNy, as floating point
numbers. An anti-aliasing procedure can be used to facilitate dot placement at ar-
bitrary positions between integral locations, for a discrete coordinate display (e.g. a
CRT). This procedure increases the localization accuracy with which dots are ren-
dered on the SNT and is based on 2D, bilinear in our implementation, interpolation. It
ought to be noted that since the coordinates of luminous dots on the SNI are treated
as independent variables, when two luminous dots occur at the same locus their lumi-
nance values are accumulated at that image point. Given the anti-aliasing procedure
described above, this accumulative process is performed for dots which, although may
not coincide, are proximate enough for their anti-aliased representations to overlap.
Thus, the anti-aliased representation for each dot is computed independently and the
results are additively summarized in the final image. The result of the process de-
scribed above is an image, which is henceforth referred to as anti-aliased scaled Dirac

image.
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The way that depictions of light sources are rendered is determined by their
desired size, in the image. In the case of the smallest size (2 x 2 pizels), the luminous
dots are rendered in the SNI as outputted from the anti-aliasing procedure, described
above. If a larger size is used, then the spatial distribution of luminance in the image
was chosen to exhibit a 2D raised cosine pattern as: (1 4+ cosd)/2, for d < p and 0
elsewhere, where p is the radius of the kernel and d the distance from its center, for the
following reasons. First, its the pattern is rotationally invariant and, thus, compatible
with the mental model of a ray of light intersecting the image plane. Second, the
raised cosine kernel gathers most of the luminous energy near the locus of the center
of depiction of the IFS light source. Third, all of the energy is enveloped within this
kernel (e.g. as opposed to a Gaussian kernel). After normalizing kernel values so that
their sum is 1, the final image can be then rendered as the result of the convolution
of the anti-aliased scaled Dirac image with the raised cosine kernel.

Finally, to compensate for the typically poor linearization of CRTs’ nearby the
lower end of its dynamic range, a 5% of the CRT’s intensity range is added to each

image pixel. IF'S flux values are chosen such that no overflow occurs.

5. Result (computer-generated SNT stimulus)

A sample output of the algorithm is shown, in Figure 10. Note, however, that the
images of SNT are probably not displayed veridically on this paper, since we did not
compensate for the gamma function of these displays. For this reason in Figure 10,
the logarithm of each pixel value was computed and the resulting image is shown on

the right.
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Fig. 10. A Starry Night Image. Left: the original image, with no correction of
the linearity of image intensity values, for the reflectance of the paper. Right:

The same image, with its intensity values logarithmized.
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3. Experiments

Three experiments were performed to characterize specific aspects of human percep-
tion for images of SN'T. First, it is important to determine the perceptual consequences
of truncating the flux distribution for IFS’s in the SN'T. Experiment 1 therefore com-
pared distance-discrimination thresholds for simulated surfaces textured with SNT
to thresholds for three other IFS textures (textures A, B, and C). To anticipate the
result: for the SNT we used, the cutoffs caused no visible differences between the im-
ages of near and far SN'T surfaces, for 100-fold changes in distance; in contrast, a 10%
change in distance sufficed for the other textures. Second, since texture is a cue to
distance and slant, the visual system must also be capable of estimating the properties
of textures in the world. In other words, the visual system should exhibit “texture
constancy”: the ability to determine whether the densities of texture elements on sur-
faces at different distances are the same, or if one texture is denser than another in
the world. If observers can make estimates of this sort for SN'T, they ought to adjust
the densintensity of SNI to be the same for surfaces depicted at different distances,
when trying to match textures in the world. In Experiment 2 we asked observers to
match textures at different distances, and we found large effects of simulated distance
for textures B and C, but not for SN'T. Third, our interest in SN'T derives from its
ability to hide information about distance and slant, so that nonpictorial depth cues
can be studied in isolation. Is it the case that our SNI differed measurably from tra-
ditional sparse RDS, causing the visual system to disregard pictorial cues, relative

to binocular disparity? In Experiment 3, we asked observers to estimate the slant of
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surfaces that were defined by disparity and texture cues. In the stimuli, for both SNT
and texture B the binocular disparity cues indicated nonzero slant. For the SNT the
texture cues were uninformative, whereas for texture B, texture indicated zero slant.
We found that slant was underestimated for both SN'T and texture B to the same
extent. This suggests that accommodation by the lens of the eye, or other depth cues,
were more important than dot density in explaining the underestimation of surface

slant, for our stimuli.

A.  Apparatus

The stimuli were displayed on a haploscope consisting of two large monochrome 19
inch Clinton medical monochrome CRT displays, each seen in a mirror by one eye.
These images were displayed at a resolution of 1280 x 1024 pizels and at a refresh
rate of 75 Hz, at an optical distance of 42 cm from the eye(s). In Experiments 1 and 2,
stimuli were monocular so only the right CRT was active and observers wore a patch
over the left eye. The mirrors were 6 x 10cm, rounded in shape to fit close to the eye,
oriented at 45° relative to the line of sight, and positioned 1.25 m above the floor. The
face of each CRT was always perpendicular to the line of sight from the eye to the
center of the screen. The room was completely dark except for scattered light from
the displays, and for Experiment 3, black paper frames with 4 cm saw-tooth edges
occluded the edges of the screen to insure against binocular matching of the display
edges. A computer generated the stimuli before the experiment, and displayed them
during the experiment, using Matlab and the Psychophysics Toolbox.!' Observer’s

responses were made using a numeric keypad and collected by the computer.
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The aspect ratio of each display was adjusted to 1. The visual locations of the dots
in the displays were specified to within ~ 30 seconds of arc. This high level of spatial
precision was achieved by use of two procedures: anti-aliasing and spatial calibration.
The anti-aliasing procedure was described in Section 4. Spatial calibration involved
the creation of a lookup table that converted desired visual directions into screen
coordinates. For the calibration procedure, thin nylon filament was stretched across
a precisely milled loom, creating a 36 x 26 cm? grid with 1 em spacing. The loom was
mounted 1 c¢m in front of each CRT in turn, and was viewed in the mirror from the
standard viewing position. Dots on the screen were positioned to be coincident with
their corresponding intersections in the grid. After adjusting approximately 70 dots,
the interpolated positions of the remaining dots were also correct to within the limits
of the experimenter’s acuity. The loom was then removed, and its former location
defined a virtual plane onto which stimuli were projected. The calibrated area was
48° x 36° on each monitor.

The luminance of the CRT’s was calibrated to be a linear function of the nominal
image intensity value, on a scale of 0 to 255. A photometer was used to measure 16
of the CRT’s luminance values, equidistantly distributed across the dynamic range.
At each measurement the total of image pixels were set to the same value and the
photometer was targeted at the center of the screen. At low levels of luminance
where the photometer was insensitive, calibration images were used to linearize the
response. Intermediate values were estimated using cubic splines. The two CRT’s were

calibrated to be equiluminant with each other.
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B.  FExperiment 1

The purpose of this Experiment was to determine the range of distances over which
the appearance of implemented SNT is invariant to human observers, and to compare
this range to the corresponding ranges for textures A, B, and C. Each texture was
tested at several densities (or densintensities for SNT) to ensure that performance

was not highly sensitive to density at the values tested.

1. Stimuli

Stimuli depicted a frontoparallel background surface. Half of the stimuli depicted a
foreground surface as well, that occluded the central region of the background surface.
The foreground and background had the same texture (A, B, C, or SNT). Viewing
was monocular.

An illustration of the depicted scene’s geometry is shown in Figure 11. The back-
ground surface was a 44 x 44 cm? frontoparallel, flat, square patch at a simulated
distance of r,y = 1m from the observer. In one of the two stimuli presented in a given
trial, the foreground surface was also present. This surface was also frontoparallel
and located at a variable distance r¢, < 1y, closer than the background surface, thus
partially occluding it. The foreground patch was square and its area in the the world
was adjusted as a function of distance so that, in the image, it occluded the central
1/4 of the area of the background square. Both surfaces were centered on the screen.
For texture A, the position of the texture on the foreground patch was centered so as
to be a pure expansion relative to the center of the patch. Dot size was 4 x 4 pixels.

The texture density range was selected as follows: the lowest density (or densin-
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Fig. 11. An instance of the virtual scene depicted by stimuli of Experiment 1.

tensity) was the one for which the texture was just dense enough to do the task.
At this density, just a few dots were visible in the image. The highest density was
determined by the resolution of the display; it was a density at which that almost
all pixels in the image were occupied by some part of a luminous dot. The range of
densities dy was 16 dots/m? to 625 dots/m? for textures A, B, and C and 11 dots/m?
to 4000 dots/m? for the SNT (for SNT, dy refers to the actual number of IFS’s placed
onto the surface, per unit area of texture in the world, whether IFS’s were visible in
the image or not). Finally, the flux range of IFS’s was chosen. For A and B, flux
was 7.5 x 10~ %Im. For textures C and SNT, flux was tuned separately for each den-

sity, such that a maximal number of IFS’s were visible, as follows: 3.7 x 10~?Im to
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7.5x 1078 Im, for C, and o = 3.7 x 1072 Im to = 4.5 x 10~° Im for SNT*.

2. Task

A two-interval forced choice task (2IFC) was utilized. On each trial, two stimuli were
presented for 2 sec each. One of them contained the foreground patch in addition to
the background patch; the observer’s task was to indicate which interval contained the
foreground patch, by making a keypress. Visual feedback was given after each trial.
A blank (black) screen was displayed for 1 sec between visual display. A 3-correct,
1-wrong staircase procedure controlled the depth interval between the background
and foreground patch. Novel instances of textures B, C, and SN'T were used on each
presentation. Increments in depth were spaced logarithmically (base 2). The staircase
terminated after 15 reversals; threshold was the average of the last 12 reversals. This
yielded an estimation of the detection threshold for which approximately 79% of
the observer judgments were correct. Each such estimation was considered as one

independent measurement. Observers were encouraged to rest whenever in need.

3. Results

Figure 12 plots the change-in-distance threshold for each of the four textures for two

observers, the authors. The abscissa is the texture density dy,, and the ordinate is the

4The upper limit of the flux interval is an order of magnitude greater for SNT than for the other
texture(s). However, few (if any) IFS’s had this level of flux, due to the sparseness of high-flux IFS’s
in SNT. In rare cases where the resulting luminous intensity magnitude would be greater than the
upper limit of the dynamic range of the display, the stimulus was rejected and replaced by a new

one. This rejection was performed in Experiments 2 and 3 as well.
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fractional change in distance between the background and foreground, required for
the stimulus containing a foreground and background patch to be discriminated from
the stimulus containing only the background patch. Fractional change was computed
as 1pe/7 7y — 1 where r,, and 7y, are the distances from the observer to the background
and foreground, respectively.

For both observers, distance discrimination was easiest with the lattice-point
texture (texture A); a change in distance of approximately 1% was sufficient to identify
the foreground-containing stimulus. For textures B and C, roughly 10% change in
distance was required. For SN'T, a roughly 100-fold change in distance was required.

Observer XZ collected data for IFS densities in the images that ranged from very
sparse (very few IFS’s in the image) to very dense (very little black space). Across
this range, increasing density caused a decrease in threshold; this effect was most

pronounced for textures A and SNT.

4. Discussion

The main observation from this experiment is that the monocular depth cue from
texture, as measured by the change in distance required to see a change in the image,
was three orders of magnitude weaker for texture SN'T than for textures B or C, and
four orders of magnitude weaker than for texture A. We conclude that depth is more
difficult to see in scenes that are textured with SN'T' than other textures.

It is important to remember that the stimuli used in these experiments were
not real surfaces, but rather, surfaces rendered on a computer screen. IFS’s were

simulated using dots of small but visibly nonzero size, and accommodation did not
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Fig. 12. Data from Experiment 1, for two observers XZ (left) and BTB (right).
The graph plots the threshold fractional change in distance required to identify
which of two stimuli contained an occluding surface patch, for 4 textures.
The abscissa is dot density and the ordinate is fractional change in distance.
Data points are the average of 3 threshold measurements from three separate

staircase procedures. The centers of the triangles mark the standard error of

the mean.
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indicate different distances for the foreground and surface patches, as would have been
the case for real surfaces. Accommodation (or blur cues) therefore conflicted with the
simulated changes in distance, that were specified by texture cues. Do our findings
apply to real SNT surfaces? It seems likely that a 100-fold change in distance would
indeed be required to see the change in distance for a real SN'T surface, but only if it
was far enough from the observer to make accommodation and blur cues unusable.

Dot size was another conflicting cue: in our stimuli, dot size in the image did
not increase with the decrease in simulated distance. If the visual system is obliged
to take dot size into account when judging surface distance, then this countercue
might have artificially elevated the distance threshold for SNT. However, the control
conditions (texture A, B, and C) show that constant dot size in the image does
not generally cause a failure in the ability to use other aspects of the texture cue
(such as dot density) for distance discrimination, so it is reasonable to infer that the
extraordinary ability of SN'T to hide changes in distance did not derive from this
artifactual property of our displays.

An aim of this experiment was to determine whether the lower and upper cut-offs
for IFS flux, that were needed to realize SNT, would cause failure of the theoretical
ability of ideal SNT to hide changes in distance. The cut-offs did not greatly compro-
mise this feature of ideal SN'T.

After the experiments, observers reported on the visual cues that they were aware
of using to do the task. For textures A, B and C, observers felt discrimination to be
based on the fact that the foreground surface appeared sparser and brighter than

the background. As texture density increased an additional cue became available in
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texture A: at the corner of the foreground surface, the spatial arrangement of the three
background dots and one foreground dot deviated from square when the foreground
surface was present. For SNT, distance discrimination seemed to be based on the
apparent darkness of the inter-IF'S regions: when the foreground surface was close
enough to the observer, it began to “run out” of the dim dots that contributed to
background luminance. At the highest density (for observer XZ), the background was
brighter, and it seemed that this made it easier to see decrements in brightness for
the near surface. SNT also provided another potential cue: the distribution of IFS
was clipped from above, so the foreground patch contained, statistically, more of the
most intense [FS’s than did the background. However, the observers were not aware
of using this cue.

It is interesting to note that texture C did little better than texture B at hiding
changes in distance. In texture C, IF'S fluxes were randomly chosen from a uniform
interval that spanned most of the CRT’s dynamic range. Randomizing intensity was
not sufficient to hide changes in distance; the particular 1/¢* distribution of IF'S fluxes
in SN'T is therefore a critical factor in its ability to hide changes in distance. The small
difference in threshold for textures B and C results from some combination of two
factors: the randomization of flux values in C, and the fact that the dimmest IFS’s

in C were not actually visible, which lowered the effective density in that texture.

C. FExperiment 2

Unlike other textures, the image statistics of an SN'T surface do not change when the

distance to the surface changes. It is therefore of interest to ask, for SNT, whether
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observers perceive a change in the texture in the world, when the distance to the
surface changes but the regional image statistics (densintensity of the SNI) do not.
In Experiment 2 we measured this indirectly, using a nulling paradigm, in which
observers adjusted the density (or densintensity) of a texture at a variety of distances,
until it matched the texture at a standard distance. Observers were instructed to
match texture properties in the simulated world, not the image. We predicted that
SNT’s would be adjusted until the densintensity of the test surface matched that
of the reference surface, independent of the simulated distance of the test surface.
At that point, the images of the test and reference surfaces would be very similar,
because of the statistical properties of SN'T. As a control, we repeated the experiment
using textures B and C'. For these textures, we predicted that observers would match
texture density in the world. Since observers have to use the images to do the task,
this prediction implies that observers will set the IFS density in the images to vary

as a function of distance.

1. Stimuli

Viewing was monocular. Stimuli depicted two square surface patches of equal size, the
test surface and the reference surface. Both were facing the observer and resting on a
checkerboard floor. The reference surface occurred always in the same position, while
the test surface varied in distance from the observer. In all stimuli, both surfaces were
textured with the same type of texture, one of B, C, or SNT. Scene geometry and a
sample stimulus are shown in Figure 13.

The reference surface was positioned at a depth of 20m from the observer, on the
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Fig. 13. Left: Schematic diagram of scenes used in Experiment 2 (top view).
The eye is shown on the left. The reference surface was at a fixed distance 20 m
from the observer, and the test surface varied in distance from 10m to 40 m;
some of those positions are shown in the figure. Right: Sample stimulus as
seen by the observer during the experiment. The test surface is at a simulated

distance of 15 m.
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right side of straight ahead. The test surface was on the left and its distance took on
one of 21 values logarithmically spaced between 10m and 40 m. Thus, the distance
for the ' test surface was 10 x 1.0718%, i € {0,1,2,...,20} m.

The size of the surfaces, in the world, was 2.2m x 2.2m. All of the surface was
visible. The observer was 1.25m above the checkerboard floor, which extended nearly
to a horizon at eye level. The checks in the checkerboard floor were gray (luminance
42 Im/m? in the image) and black. The sky was black.

Each IFS on the surface was portrayed by an antialiased dot occupying 4 pizels
on the display. The upper cutoff of the flux distribution (/3) was selected in the same
way as in Experiment 1. On the reference patch, densities for the three textures (B, C,
SNT) were selected so that these textures would appear similar in density. For texture
B, dy was 240 dots/m? and flux 2.6 x 1072 Im. For C, dy, was 240 dots/m? and flux
values were from 5.2 x 107%Im to 3.2 x 1073 Im. For SNT, dy was 3845 dots/m?,
a = 52x107% and 8 = 31.2 x 10 3Im. For the test patch, density, and in one
condition also flux, were adjusted by the observer as the dependent variable(s).

In these stimuli, the cues available to the observer to indicate the ratio of distances
to the test and reference surfaces were: the texture gradient and linear perspective
in the checkerboard floor, the relative sizes of the surfaces in the image (under the
assumption they were the same size in the world), and the declinations in the lines of
sight to the bottoms of the surfaces. For conditions B and C', IF'S flux in the image

was an additional cue.
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2. Task

Observers adjusted the density and flux of the texture on the test surface using
keypresses, until it appeared to be the same as the texture on the reference surface.
Observers were explicitly instructed to equalize these textural properties in the world,
not in the image. They took as long as needed to make a careful match, and rested
as needed.

The experiment had five conditions, blocked by session. In each condition, one
type of texture was used. The conditions were: B, C, SNT', B2, and B3 using textures
B, C, SNT, B, and B respectively. In the first three conditions (B, C', and SNT), the
observer adjusted density dy, (and consequently d;). The distribution of IFS fluxes
was always the same for both surfaces in these conditions. In other words, the fluxes
of the IFS’s in the image were clamped at their correct values, given the simulated
distance. In the last two conditions (B2 and B3), observers adjusted both density
and flux.

In conditions B, C', and SNT, a pair of keys was used to adjust the density of the
test surface texture. In condition B2 an additional pair of keys was available to the
observer for adjusting flux, and the observer could alternate at will between adjusting
density and adjusting flux. Finally, in condition B3, one pair of keys used to adjust
density and flux. In this condition, a keypress would increase or decrease both density
and flux.

Keypresses caused small changes in density or flux. Density and flux were log-

arithmically distributed throughout the ranges of allowed values. The range(s) on a
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given trial were centered at the density or flux specified by the observer’s response
on the previous trial, except on the first trial, where the center was pseudo-randomly
chosen. Approximately 400 levels of each property were available; step size was less
than the standard deviation in the observers’ settings and the ranges extended well

below and above the observers’ final responses.

3. Results

Three observers participated in the experiment, X7, MB, DMB; the first two were
naive to the experimental hypotheses and the last was one of the authors.

Figure 14 shows the results from the first three conditions. Of the nine graphs, the
three columns represent different observers and the three rows represent the different
conditions. In each graph, the abscissa is the distance from the observer to the test
surface. The ordinate is the density of texture on the test surface (dw), set by the
observer. The central horizontal line plots the density of the texture on the reference
surface, indicating the response predicted by complete perceptual constancy. The
diagonal line indicates the predicted settings for complete failure of constancy by
matching density in the images. The dashed lines show the limits of the range of
densities that was available to the observers.

The data for condition B2 are shown in Figure 15. Each column represents the
responses of one observer. The graphs in the top row are in the same format as
Figure 14. In the bottom row of graphs, the abscissa is distance and the ordinate is
IF'S flux. The diagonal, horizontal, and dashed lines have the same meaning as in the

top row, but now refer to flux instead of density. In all graphs, each data point shows
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Fig. 14. Data collected for conditions B, C', and SNT of Experiment 2.
Columns are data from the three observers, respectively. Rows show data for
different conditions. The abscissa is distance of the test surface from the ob-
server. The ordinate is the observer’s setting of density for the test surface.
Data points are from three independent trials; triangles mark standard errors.
The dashed horizontal lines show the range of allowed responses. The solid
horizontal line plots the density (in the world) of the reference surface, which
is therefore the setting predicted by complete perceptual constancy. The solid
diagonal line plots the settings predicted if observers simply matched dot den-
sity in the image of the test surface to dot density in the image of the reference
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Fig. 15. Data collected for condition B2 of Experiment 2. Columns are data

from the three observers, respectively. The top row shows the flux and the

bottom one the density reported by the observers. Graph arrangement as in

Figure 14.

the average of 3 independent measurements and the centers of the triangles indicate

standard errors. The three flux settings were collected on the same trials as the three

density settings, for a given observer at a given distance.

The data for condition B3 are shown in Figure 16. Each column represents the

responses of one observer. The graphs are in the same format as Figure 14. In the

figure, only the density settings are shown although that, in that condition, a keypress

would increase or decrease both density and flux. The reason is that these increments

or decrements were 100% correlated. In all graphs, each data point shows the average
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Fig. 16. Data collected for condition B3 of Experiment 2. Columns are data
from the three observers, respectively. Only the density settings are shown
because density and flux were 100% correlated in this condition. Graph ar-

rangement as in Figure 14.

of 3 independent measurements and the centers of the triangles indicate standard

errors.

4. Discussion

The extent of compensation for simulated distance in Experiment 2 can be summa-
rized by the slopes of the best-fitting density-vs-distance lines in the log-log plots in
Figures 14 to 16. A slope of zero indicates complete compensation, so the density
(in the world) on the test surface was set equal to the density (in the world) of the
reference surface. A slope of —2 indicates no compensation, because this describes
the case where the images themselves have equal density.

Figure 17 plots these slopes for each of the three observers in each of the five
conditions in a bar graph. The data are remarkably consistent across observers. They

show that density in the test surface was adjusted nearly correctly for SNT, and that
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simulated distance was increasingly undercompensated for in conditions B3, C, B
and B2, respectively.

The density settings for textures B and C (Figure 17) show that observers took
the simulated distance into account for purposes of equating texture, because images
of far test surfaces were set to be denser than images of near test surfaces, in agreement
with the geometry of the simulated scene. However, the magnitude of this effect was
smaller than predicted by complete constancy. This is shown in the graphs by the
fact that density in the world was not set to a constant value across changes in
simulated distance: observers set near textures to be denser, and far textures to be
sparser, than the texture on the reference surface. In terms of density in the images,
simulated distance had a large effect, though not as large as predicted by simulated
distance alone. This shortfall is not surprising because the perceptual consequences
of manipulating simulated distance in computer displays are usually smaller than the
manipulation predicts.'?

Thus, one can interpret the data for textures B and C as showing that observers
are able to accurately estimate the densities of textures in the world using an internal
estimate of distance, but that in our experiments, this internal estimate varied less
than the simulated distance.

Figure 17 also shows that observers’ responses were different for SN'T' compared
to their responses for textures B and C. Since the cutoff values for the realizable
SNT were fixed, density and densintensity were both defined (they are proportional
to one another) for the SNT test surface texture. The data show that settings for

SNT, measured on the test surface in the world, varied little with changes in simu-
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Fig. 17. Summary of data collected in Experiment 2. Each bar plots the slope
of the regression line in the log-log plot of density setting vs simulated distance,
from the data in Figures 14 to 16. Each group of five bars are data from one
observer; the five bars show the slopes for conditions B, C, SNT, B2, and B3;
the bars are colored from dark to light in that order. A slope of zero indicates
that the texture density of the test surface was adjusted to be equal to the
texture density of the reference surface, across simulated distances. A slope
of —2 indicates that the texture density in the image of the test surface was
adjusted to be the same as the texture density in the image of the reference
surface, across simulated distance. Error bars are SEs based on total RMS

error and the t-statistic
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lated distance. The fact that density in the world was adjusted correctly for SNT,
but not for textures B and C, is not an indication of better distance compensation
for SNT, because images of SNT are invariant to changes in distance. Rather, we
interpret these data as showing that the visual system correctly inferred that SNT
should not look different at a new distance. Whatever the internal distance estimate,
the transformation required to make the SNI of the test surface consistent with the
SNI of the reference surface results in a test-surface image with the same statistics
(densintensity) as the reference surface. To the extent that the visual system com-
putes this transformation correctly, the observer would set densintensity to be the
same in the image across changes in the distance of the test surface.

It is interesting to note that observers’ density settings were not completely in-
variant to changes in simulated distance. This dependence was idiosyncratic: observer
MB adjusted densintensity up with increasing distance, while by observers X7 and
DMB adjusted densintensity down with increasing distance. One explanation is that,
indeed, observers were not simply matching image statistics directly, but were in-
stead estimating what the surface would look like at a different distance-and doing
this slightly incorrectly.

The logic of this argument (namely that observers correctly make near-invariant
settings for SNT across changes in distance) depends on our having successfully ma-
nipulated the internal estimate of distance in condition SNT'. Is it possible that our
simulated distance manipulation had a much greater effect on the internal distance
estimate for textures B and C, than for SNT? If so, that could in itself explain why

observers adjusted textures B and C to be different in the image of the test surface,
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but not SNT. We used strong perspective cues because we wanted to ensure that
surfaces would be seen as having different distances from the observer. Nevertheless,
in conditions B and C' there was an additional cue to distance change that was not
present in SN'T, namely the relative intensity of the IFS’s in the images of the test
and reference surfaces. If this dominated observers’ density settings, then we might
not be able to claim that internal distance estimates were manipulated successfully
in condition SNT-and hence, the absence of a change in image statistics in that
condition would be uninteresting.

We therefore ran two additional conditions using texture B, to measure the con-
tribution of this cue to the density settings. In condition B2, observers adjusted both
the density and the flux of the IFS’s in the test surface. Intensity was not a distance
cue in this condition; instead, it had to be adjusted according to the distance cue
provided by perspective. In condition B3, flux was positively correlated with density,
so flux and density were inversely related indicators of distance. In this condition,
intensity became a “super cue”: only when density was correct for the simulated dis-
tance was image intensity also correct, and only at that value was the image of the
test surface consistent with the texture on the reference surface (i.e. for other settings,
there was no distance of the test surface that could have given rise to the particular
combination of density and intensity in the image®).

Observers’ settings in condition B2 showed that they once again undercompen-

5This was also true for condition B, however, changing density by a given amount in that condition
resulted in an image that deviated less from the nearest possible image than was the case in condition

B3.
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sated for simulated distance, by an amount similar to their undercompensation in
condition B. Thus, intensity was not a major determinant of perceived distance in
condition B. We conclude that internal distance estimates were probably similar in
conditions SNT', B, and B2, so failure to appreciate simulated distance does not
explain why the density of SN'T was set correctly.

Density settings in condition B3 also showed undercompensation for simulated
distance, but the settings were closer to prediction than for B and B2. Observers
reported that this task seemed easier than conditions B and B2. In condition B3,
there was additional information that could drive responses towards the predicted
value, because there was only one density setting (namely, the setting consistent with
simulated distance) for which the image was that of texture B at a new distance.
All other settings represented a change in the texture itself, i.e. a change in the ratio
of IFS flux to density. This ratio would normally be invariant in the image, across
changes of distance. As a result, in condition B3 it was possible to set the density
correctly for the simulated distance, without estimating the distance explicitly.

Condition B2 gives an indication of the extent to which observers can measure
the ratio of intensity and density. In this condition, flux and density were adjusted
separately, so the observer had an opportunity to make them both consistent with
the same distance (i.e., to reproduce their ratio from the reference stimulus). The
correlation between density and flux settings, across simulated distance, for observers
XZ, DMB, and MB was -0.88, -0.62, and -0.82, respectively. Thus, simulated distance
had a common effect on density and flux settings; this is also visible in the data of
Figure 15 as anticorrelation in the residuals for the top and bottom graphs. The corre-
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lation coefficients for the residuals in these graphs, across levels of simulated distance,
were -0.68, -0.56, and -0.70 for the three observers, respectively. This correlation can
be explained either by supposing that variance in the internal distance estimate had
common direct effects on independent settings of intensity and density, or by suppos-
ing that the internal distance estimate was used to set one of these values, followed
by setting the other value so that the ratio between intensity and density was the

same as in the reference stimulus.

D. FEzxperiment 3

In displays with real objects, perceived depth is consistent with binocular disparity
cues.'® In stereoscopic computer displays, however, perceived depth varies less than
simulated depth.!? This is presumably because nonstereo factors conflict with the
stereoscopic cues in these displays, and indicate the absence of depth modulation
across the display. The nonstereo factors may include a bias (prior assumption) of
equidistance to the elements in a scene,'* but if this were a major cause of under-
appreciated depth in computer displays, one would expect it to affect displays with
real objects as well. Computer displays do contain depth cues, including the absence
of differential blur across the display,'® the related cue of lack of change in monocular
parallax (accommodative demand) across the display, failure of texture gradients
and perspective to simulate distance and slant changes in the display, failure of the
texture elements to change intensity and size with simulated distance, and failure of
the texture elements to change aspect ratio with simulated slant.

Experiment 2 showed that, across changes of perceived distance, the visual system
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correctly infers that the image of SN'T ought not to change. By the same token, the
visual system might be able to infer that SNT contains no useful information about
distance; it might therefore give less weight to texture cues in computer displays,
when surfaces are textured with SNT, as compared to other textures. While an SNI
on a traditional display will still contain blur and accommodation cues, it would not
contain density or intensity cues, and if small spots are used to simulate IFS’s, an
SNI would minimize texture element size and shape cues. Because physical images
of SNT contain fewer cues that specify absence of depth, they ought, in principle, to
cause the visual system to give greater weight to stereo depth cues, as compared with
textures A, B and C. In Experiment 3, we aimed to determine whether stereoscopically
rendered slant is perceived as being greater in magnitude, when displays were images

of SNT, than when they were images of other textures.

1. Stimuli

Stimuli were stereo image pairs of slanted, elliptically-shaped surface patches textured
with IFS’s (texture A, B, C, or SNT). The patches were approximately circular in the
images, and subtended =~ 20° of visual angle. Binocular disparity was the only cue
that was manipulated explicitly. Vergence and vertical disparity were consistent with
a viewing distance of 1m, and accommodative demand was determined by the distance
to the screen (42 cm). Images were generated as follows: the surface was represented
as frontoparallel (unslanted) in space. The locations of IFS’s in the images were then
determined by projection separately for the left and right eyes. Then the horizontal

coordinates of the dots in the left and right images were scaled (relative to the center
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of the image) by factors \/(HSR) and 1/,/(HSR), respectively, where HSR was the
desired horizontal size ratio between the left and right eyes’ images, as determined
by solving for HSR in the slant equation S = —tan™'(1/(u x In(HSR))), where
was the vergence angle of the eyes at the 1m simulated viewing distance.!® Thus the
binocular disparity gradient was that of a flat surface with a slant of S degrees at 1m.
The dot density gradient was not affected by this scaling operation, so it continued
to specify a slant of 0°.

The slant specified by the stereo signal varied from —60° to 60° in steps of 5°.
A small fixation mark consisting of four vertically aligned dots was provided at the
center of the disk and observers were instructed to fixate at this mark during the
experiment. Stimuli were prepared individually for each observer and were therefore
correct for each observers’ interocular distance. All 25 x 4 stimuli were presented once,
in a random order, during a single session.

On the circular disk, densities and IFS fluxes for the four textures (A, B, C,
SNT) were selected so that these textures would appear similar. For textures A and
B, dw was 240 dots/m? and flux 2.6 x 1073 Im. For C, dy was 240 dots/m? and flux
values were from 5.2 x 107%/m to 3.2 x 1073 Im. For SNT, dy was 3845 dots/m?,
a=52x107% and B = 31.2 x 1073 Im. As usual, for SNT the majority of the IFS’s

were too dim to be individually visible.

2. Task

On each trial, the observer viewed the slanted surface in alternation with a “response

stimulus”. The observer controlled the alternation between the test stimulus and
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Fig. 18. Displays from Experiment 3. Left to right: (a) One image of a stereo
pair that depicted a surface textured with texture B. (b) Same, for SNT. (c)
The response stimulus used to indicate perceived slant. Observers adjusted the
angle of the oblique line segment relative to the fixed horizontal segment, to

indicate the slant they perceived in the stimulus.

response stimulus using keypresses. The response stimulus contained a pair of line
segments,'” and the angle between them was adjustable using keypresses. Observers
indicated the perceived slant by adjusting this angle (see Figure 18). When the ob-
server was content, he made a separate keypress and the computer recorded the slant

setting and started the next trial.

3. Results

Figure 19 plots data collected from the two observers (the authors). In each graph,
the four data series plot data for the four texture types, respectively. The effect of
texture on the perceived slant was summarized by fitting a line to each data series;
the slope of this line is the gain of the slant response relative to the slant specified by

stereo cues.!” These slopes are plotted (with error bars that show standard error) in
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Fig. 19. Data from observers XZ (left) and BTB (right) in Experiment 3. The
abscissa plots the slant in the stimulus that was specified by disparity cues. The
ordinate plots the observer’s slant response. Different linestyles correspond to

different textures, as shown in the legend.

the bargraph shown by Figure 20.

4. Discussion

Observers’ slant responses were smaller than the slant specified by disparity for all four
textures. Since we did not collect responses for real stimuli under full-cue conditions,
we cannot say to what extent this reflected the mapping from stimulus to percept,

and to what extent the mapping from percept to response.!® However, the data in
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Figure 20 makes it clear that texture A evoked very little perceived slant, and that
textures B, C, and SNT evoked significant perceived slant, the magnitude of which
depended on the disparity gradient. Textures B, C, and SNT evoked slant percepts
that were not measurably different from one another.

Why was perceived slant so small for texture A? The visual system presumably
knows that a square lattice of dots in the image is most likely to have been caused by
an unslanted, square lattice of dots in the world. The alternative scenes that might
have produced this image all require contrived surface patterns, on surfaces that, by
coincidence, have just the right depth profile to cancel out the pattern contrivance in
the image. The prior probability for slant is highest for unslanted objects (optical slant
in the world is distributed as cos(slant) if surfaces have random orientations in space),
homogeneously textured surfaces are more common than surfaces patterned with tex-
ture gradients, and coincidental viewpoints are unlikely. These three factors conspire
with accommodation and residual texture element size and shape cues, to prevent the
stereo signals from prevailing during construction of the percept. In Bayesian terms,
the likelihoods and priors for stimulus A both contribute to a posterior probability
that strongly favors the unslanted, regular surface.!®

We predicted that perceived slant would be greater for SNT than for textures
B and C. This was not the case. To understand why this might be the case, let
us consider the sources of information available in textures B and SNT. Binocular
disparity specified the same slants for both textures. The outlines of the stimuli
were always circular in the image, so it specified a slant of zero for both textures,

under the reasonable assumption that circles are the most commonly observed ellipses.
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Accommodative demand was approximately constant across the display, so it also
specified a slant of zero for both stimuli. Very small dots were used, but to the
extent that a gradient in dot size was visible across the display, it specified a slant of
zero. The texture gradient was defined for texture B but not for texture SNT. Our
hypothesis was that the visual system should interpret the texture gradient of zero
as an additional cue to slant for texture B, that was not present for SN'T, resulting
in perceived slants of smaller magnitude for texture B.

For texture A, it is reasonable to suppose that texture was a strong indicator that
the surface had zero slant. To what extent was this the case for texture B? Would a
truly slanted surface give rise to images with measurably different image statistics?
If not, there would be no reason to suppose that a texture gradient of zero would be
given weight by the visual system. The stimuli in this experiment subtended 18° of
visual angle. An object slanted by 60°, seen within this window, is 1.8 times farther on
the right side than the left, and is slanted at 60°, £9° at the two sides of the window,
respectively, resulting in a density ratio between the extreme sides of the display of
1.72x cos(51°)/ cos(69°) = 5.7. The intensity ratio between sides of the window would,
correspondingly, be 1/5.7. Variations of this magnitude would be easily visible in our
displays. Thus, density and intensity cues should have been reliable indicators that
the slant of texture B was 0°, rather than 600, when stereo specified 60°. In that case,
texture cues in the image of texture B should have been given significant weight, so
texture B should have appeared less slanted than SN'T, but this was not the case.

However, three additional factors must be considered. First, the internal repre-

sentation of distance, that was used to scale disparity, may have been less than the
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1m specified by vergence and vertical disparity. If it were 50, cm instead, then the
maximum disparity gradient in the display (HSR = 1.113 for PD = 6.2 ¢m) should
be interpreted not as 60°, but rather as 41°. At this slant, the density ratio between
extreme sides of the display would be only 2.6. More generally, texture cues provide
less information about changes in slant for surfaces with small slants than for surfaces
with large slants.'® It is possible that the magnitude of the texture gradient itself has
a disproportionately large impact on the extent to which the visual system relies on
texture as a slant cue. In that case, one might predict the following in situations
where texture provides weak information about slant: because the texture gradient is
zero, it is given little weight. If so, then texture would be given little weight for both
textures B and SNT.

Second, we saw in Experiment 2 that observers did not keep SNT completely
invariant in the image, across changes in distance. Thus it would be reasonable to
suppose the visual system doesn’t correctly compute expected changes in the images
for SN'T across changes in slant, either. Although changes in slant do not change the
image statistics for SN'T, the visual system might not know this; it might erroneously
behave as though texture were a cue to slant for SN'T, that indicated zero slant.

Finally, it is possible that slant was underestimated because slant cues provided
by the CRT screen had a large effect. These cues were the same for SN'T and texture
B. If they played a large role in determining perceived slant, then the relative weight
accorded to the density gradient in texture B would have been correspondingly re-
duced, and this could make it difficult to see the effect of presence (texture B) vs.

absence (SNT) of a texture density gradient. Observers are able to use this cue to
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6

make monocular judgments of the slant of a CRT screen'® and the same pattern of

retinal disparities evokes greater perceived slant when the CRT screen agrees with
the stereoscopically specified slant, as compared to when the screen is unslanted.?%2!

The foregoing analyses suggest that other experiments might be able to show
greater stereo depth in SNT than texture B. For example, if observers were asked to
estimate depth intervals instead of slant, in displays where disparity specified a step
change in distance from one part of the display to another, then texture might have
been a strong cue to the absence of depth for texture B, strong enough to result in
greater perceived depth from stereo for SN'T than for texture B.

Finally, we allowed unlimited views of displays. Imposing a time limit might,
in principle, reveal a difference between SNT and textures B and C; subjectively,
observer XZ felt that slant was more readily visible for SN'T, and that perceived slant
grew over time more for textures B and C than texture SNT. So it is possible that
the initial estimate of slant was dominated by texture, with additional weight being
given to stereo over time. In that case, it is conceivable that small differences between

perceived slant in textures B or C, and SN'T, might have been resolvable using shorter

display durations.

4. Summary

The SNT is a novel texture, that does not convey information about surface distance
or slant when imaged. SN'T is not realizable in practice. To implement it, compromises
were necessary: the distribution of IFS fluxes must be truncated at both ends, and

finite-size display elements must be used to represent the IFS’s.
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Experiment 1 showed that the ability of SN'T to hide changes in distance survived
the truncation of the distribution of IFS fluxes. Experiment 2 showed that observers
have significant ability to match textures in the world across changes in perceived
distance, and that they appreciated, at least to some extent, the fact that SNI’s
generated by a particular SNT are invariant to changes in distance. Experiment 3
failed to show that binocular disparity is given greater weight by the visual system
for SN'T than for other textures, in a slant estimation task.

Whether SNT will be useful for its property of isolating binocular disparity (or
motion parallax) depth cues remains to be seen. In principle, SNT allows the exper-
imenter to create stimuli that do not contain pictorial cues to depth. We could not
demonstrate this in Experiment 3, because unavoidable cues in computer displays
(such as texture element size and accommodation) limited the effectiveness of dispar-
ity as a cue to depth, and/or because observers interpreted SNI as indicating zero
slant when in fact it was uninformative. In Experiment 2, observers set SNI to be
nearly, but not exactly equal to one another across changes in distance. It is possible
that through training, during which observers interact with real or simulated objects
that are painted with SNT, the visual system might learn to better appreciate that

image statistics for SNT are invariant to changes in distance and slant.
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