
IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 1

Real-time Decision Policies with Predictable
Performance

Houssam Abbas, Member, IEEE, Rajeev Alur, Fellow, IEEE, Konstantinos Mamouras, Member, IEEE, Rahul
Mangharam, Member, IEEE, and Alena Rodionova, Member, IEEE

Abstract—As methods and tools for Cyber-Physical Systems
grow in capabilities and use, one-size-fits-all solutions start to
show their limitations. In particular, tools and languages for
programming an algorithm or modeling a CPS that are specific
to the application domain are typically more usable, and yield
better performance, than general-purpose languages and tools.
In the domain of cardiac arrhythmia monitoring, a small,
implantable medical device continuously monitors the patient’s
cardiac rhythm and delivers electrical therapy when needed. The
algorithms executed by these devices are streaming algorithms, so
they are best programmed in a streaming language that allows the
programmer to reason about the incoming data stream as the ba-
sic object, rather than force her to think about lower-level details
like state maintenance and minimization. Because these devices
are resource-constrained, it is useful if the programming language
allowed predictable performance in terms of processing runtime
and energy consumption, or more general costs. StreamQRE is
a declarative streaming programming language, with an efficient
and portable implementation and strong theoretical guarantees.
In particular, its evaluation algorithm guarantees constant cost
(runtime, memory, energy) per data item, and also calculates
upper bounds on the per-item cost. Such an estimate of the cost
allows early exploration of the algorithmic possibilities, while
maintaining a handle on worst-case performance, on the basis of
which hardware can be designed and algorithms can be tuned.

Index Terms—Quantitative Regular Expressions, Streaming
languages, Arrhythmia monitoring, Tachycardia, Real-time

I. INTRODUCTION

THE last few years have witnessed an explosion of IoT
systems in applications such as smart buildings, wearable

devices, and healthcare. A key component of an effective IoT
system is the ability to make decisions in real-time in response
to data it receives. For instance, a gateway router in a smart
home should detect and respond in a timely manner to security
threats based on monitored network traffic, and a healthcare
system should issue alerts in real-time based on measurements
collected from all the devices for all the monitored patients.
Programming the desired logic as a deployable implementation
is challenging due to the volume of data and hard constraints
on available memory, power usage, and response time.

In current practice, a general-purpose imperative language
such as C is used to program real-time decision making
policies. Due to the challenges in analyzing such code, this
approach does not lead to predictable performance and does
not facilitate exploration of design options at early stages.
A specialized language for specifying these policies in a
declarative manner, with programming abstractions suitable
for processing data streams with performance guarantees, can
be a potential solution to both these challenges. It can play

the same role as model-based design does for safety-critical
embedded control software [1], [2], [3], [4].

To specify the decision logic based on computing quanti-
tative summaries of data streams we advocate Quantitative
Regular Expressions (QREs) [5], [6]. The language allows
the computation to be expressed as a streaming composition
of stages. The core QRE combinators, which are quantitative
extensions of operations in classical regular expressions, can
be used to impart to the input data stream a logical hierarchical
structure facilitating modular specifications (for instance, to
view patient data as a sequence of episodes and to view
network traffic as a sequence of Voice-over-IP sessions). The
QRE compiler translates a high-level query into a streaming
algorithm with precise complexity bounds on per-item pro-
cessing time and total memory footprint. The StreamQRE
library, an implementation in Java, has been shown exper-
imentally to have superior performance compared to other
existing high-performance engines for processing streaming
data [6]. This experimental evaluation involved workloads that
are representative of clickstream analysis (Yahoo streaming
benchmark [7]) and real-time analytics for business event
streams (NEXMark benchmark [8]). A variant of StreamQRE
(called NetQRE) has been shown to be useful for network
monitoring [9].

Medical devices offer an ideal test-bed for exploring the
applications of formal methods in system design due to
their safety-critical nature that demands predictable opera-
tion [10]. Recently, the implantable pacemaker has been used
to illustrate the benefits of model-based design [11], [12],
[13]. This involves specifying the algorithms for detecting
slower-than-normal rhythms used by pacemakers using formal
modeling languages, such as timed automata [14] and hybrid
automata [15], and verifying correctness requirements using a
model checker such as UPPAAL [16].

While this previous work dealt with pacemakers,
Implantable Cardioverter Defibrillators (ICDs) and Insertable
Loop Recorders (ILRs) are a more sophisticated class of
implantable cardiac devices that must do multi-beat rhythm
classification, not only detect whether a beat was missing, like
pacemakers do. The goal of such an Arrhythmia Monitoring
Algorithm (AMA) is to detect undesirable patterns in the
(discretized) input signal being monitored. We argue that such
a classification task is best viewed as a matching algorithm
over streaming data, and the desired decision logic can be
naturally expressed using QREs.

In particular, we program a representative AMA, used in an
ICD by Boston Scientific [17], using the QRE language. The

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 2

QRE compiler then generates the low-level implementation
whose space complexity and per-item processing time com-
plexity are constant — that is, independent of the number of
samples processed so far (see Section 4 of [6]). Furthermore,
we show how the QRE compiler can statically compute an
upper bound on the cost of processing each item, where the
cost can be, for example, the energy consumption on a specific
platform. This assures predictable real-time performance. Such
estimates, provided early in the design cycle, allow one to
compare design alternatives (that is, different variants of the
monitoring algorithm) statically in terms of their achievable
worst-case costs. Such analysis complements average-case
analysis (i.e., measured performance when running the algo-
rithm on a typical load). We demonstrate the latter type of
analysis by profiling the energy consumption of the QRE on
a signals database on a given hardware platform.

The paper is organized as follows. Section II gives a back-
ground on cardiac function, necessary for understanding the
complexity of arrhythmia monitoring. Section III motivates the
programming of AMAs in QREs, and Section IV introduces
the QRE formalism and the Java library that implements it.
This library is available online at [18]. Section V describes
one representative AMA and Section VI details its QRE
implementation. The Java library is used in Section VII to
illustrate the implemented AMA on a database of arrhythmia
episodes. Section VIII describes how to compute upper bounds
on QRE cost, like per-item energy consumption. Section IX
summarizes related work and Section X concludes the paper.

II. BACKGROUND ON CARDIAC FUNCTION

To understand the arrhythmia monitoring algorithm pre-
sented in this paper and appreciate its complexities, it is
necessary to first understand some basics of cardiac electro-
physiology: how the heart beats normally, why it could go
into arrhythmia, and what measurements are available to an
implantable device to detect this.

A. Cardiac electrophysiology

The heart has two upper chambers called the atria and
two lower chambers called the ventricles (see Fig. 1) The
synchronized contractions of atria and ventricles assure an
adequate supply of oxygenated blood to the rest of the body.
This contraction is driven by electrical activity in the heart,
which originates in the right atrium, floods the atria first,
then conducts down to the ventricles and floods those in
turn. The cardiac muscle contracts as it is being traversed by
the electrical wavefront, i.e., as it depolarizes. In a first ap-
proximation which is sufficient for understanding AMAs, we
may consider that this contraction is an instantaneous event,
and refer to it as an (atrial or ventricular) beat. This normal
pattern of electrical activity is referred to as Normal Sinus
Rhythm (NSR), after the sino-atrial node where the electricity
normally originates. Disturbances of NSR are referred to as
arrhythmias. They can arise because of structural defects in
the cardiac muscle, like a re-entrant circuit around which the
electrical waveform circulates very fast, or because of irritable
tissue that starts to depolarize faster than the sino-atrial node.

Shock
Coils

Right Ventricular Electrode

Left Atrium
Left Ventricle
Right Atrium
Right Ventricle

ICD

Can (Shock)
Electrode

Atrial
Signal

Ventricular
Signal

Shock
Signal

Atrial
Sensed Event (AS)

Ventricular
Sensed Event (VS)

AS AS
VS VS

Right Atrium
Electrode

Sense

Therapy

Fig. 1: ICD and its connection to the heart

Ventricular Tachycardia (VT) is an example of an arrhythmia
originating in the ventricles, in which the ventricles depolarize
at a very high rate and effectively drive the rhythm. This
high rate of depolarization doesn’t give enough time for the
muscle to contract and relax properly, which can result in
insufficient blood supply. If the VT is sustained, or degenerates
into Ventricular Fibrillation (VF) (Fig. 2), it is fatal within a
minute. An abnormally fast heart rate that originates in the
atria and/or the conduction system above the ventricles is
referred to as a Supra-ventricular Tachycardia (SVT). An SVT
causes patient discomfort but is not fatal in the short-term and
does not require device treatment. Most fast arrhythmias fall
under these two categories: VT or SVT.

B. Implantable devices

Two types of implantable devices monitor a heart’s rhythm
continusouly to detect abnormally fast arrhythmias, aka tachy-
cardias. The first is Implantable Cardioverter Defibrillators
(ICDs). An ICD is inserted under the pectoral muscles, and
has one or two leads that are directly implanted in the cardiac
chambers, and through which it measures local electrical
activity - see Fig. 1. The measured signals are known as
electrograms, or EGMs, and are termed ‘atrial’ or ‘ventricular’
depending on the chamber where they are measured1. See
Fig. 3. An ICD uses EGMs to distinguish a wide range of
tachycardias. If it detects a potentially fatal tachycardia, then
it delivers therapy to the heart in the form of either low-energy

1In this paper, we will ignore the so-called ‘shock EGM’ as it will not be
used in describing arrhythmia monitoring algorithms.

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 3

Fig. 2: Electrical activity during Normal Sinus Rhythm (NSR) and Ventricular Fibrillation (VF). The color scale runs from blue = rest
state to red = excited (aka depolarized) state. (Colors in digital version). In the top left, the ventricles are shown from two different angles,
during a phase of NSR. The ventricles are fully exicted. The bottom left panel shows a later phase of the same beat, where the ventricles
are progressively relaxing, starting with the apex (the pointed tip of the heart). This orderly propagation insures adequate muscle contraction
and blood flow. Three surface ECGs are shown beneath the left column, with red bars indicating the timing of the two snapshots. Note the
periodic pattern. The right column shows two snapshots during VF (earlier snapshot on top). Note the disorganized nature of the electrical
activity, wavefront breakup, and the multiple regions of depolarization. Note also the change in the surface ECG from periodic and regular
(early on) to disorganized. The AMA reads two such signals (obtained, however, intra-cardially and not from the surface) and tries to detect
fibrillation. [Obtained from video of a simulation of the ventricles by the UCLA Cardiac Modeling Group, courtesy of Luigi Perrotti]

0 1000 2000 3000 4000 5000 6000

-1000

-500

0

500

1000

0 1000 2000 3000 4000 5000 6000

-1

-0.5

0

0.5

1

0 1000 2000 3000 4000 5000 6000

-200

0

200

400

600

ATRIAL

ATRIAL BOOLEAN

VENTRICULAR BOOLEAN

VENTRICULAR

Fig. 3: EGMs (top and bottom panels) and corresponding boolean
beat signals (middle) during atrial tachycardia. Beats correspond to
peaks in the EGMs.

pacing sequences or (possibly more than one) very high-energy
shock. Either way, the goal of the therapy is to stop the current
rhythm and allow a normal rhythm to start. VTs and SVTs can
share similar heart rates and other characteristics, so an SVT
can be mis-diagnosed as a VT. This is problematic because
shock therapy used to stop a VT can deliver between 30-60
Joules of energy at around 700 Volts in under 15ms [19],
directly to the heart, which is very painful to the patient2, and

2Patients compare the shock to a “horse kicking you in the chest”.

has been shown to increase morbidity [20]. Therefore, one of
the biggest challenges for ICDs is to discriminate between VF
and sustained VT that typically requires a shock, and SVT that
typically should not be shocked [21]. This paper will present
one particular ICD AMA in detail in Section V.

The second type of device that monitors tachycardias is the
Insertable Loop Recorder (ILR) (also known as Implantable
Cardiac Monitor). An ILR is a small device (the smallest ILR
on the market is smaller than a key) that is inserted sub-
cutaneously, and monitors surface ECG signals. It uses these
signals to compute a number of long- and short-term statistics
of the rhythm, and in particular to detect Atrial Fibrillation
(AF) episodes. AF is an abnormally fast and disorganized
atrial rhythm that can lead to fainting spells, and which, in
the long term, contributes to blood clot formation. These clots
can cause a stroke upon reaching the brain. The ILR does
not have any therapeutic functions, but only monitors the
heart rhythm. As an example, Biotronik’s BioMonitor [22]
calculates and stores the following daily quantities, in a sliding
window of 240 days where the oldest day drops out of the
window. The quantities include 1) the average daily heart
rate, 2) the daily minimum average heart rate, where the
averages are calculated over consecutive blocks of 10 mins in
the day, 3) daily heart rate variability, defined as the standard
deviation of the sliding 5-minute averages, and 4) the rate
histogram, where each heartbeat is binned into bins of width

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 4

10 beats-per-minute (bpm). In addition, the BioMonitor will
take consecutive windows of n beats and count the number of
cycle lengths that fall below a fixed value in each window.

Remote continuous monitoring has recently been shown
to improve treatment outcomes [23] and to reduce time-to-
treatment for patients with atrial tachycardia burden [24], so it
is important to develop algorithms that can monitor over longer
periods of time and/or compute more advanced statistics that
can better detect the arrhythmia burden.

C. Device measurement: from real-valued to boolean signal

Formally, an EGM is a uniformly-sampled, discrete-time
real-valued bounded signal. An EGM signal can be char-
acterized by the timing of beats that produced it, and the
morphology of the signal itself. To detect the beat timing (i.e.,
when the chamber is contracting), the peaks of the EGM are
detected [25]. The output of peak detection is a discrete-time
boolean signal, where a 1 indicates a beat. See Fig. 3. Beat
timing is crucial to an arrhythmia’s detection, since it is used
in all discriminators.

The ‘morphology’ refers to the shape of the EGM. The so-
called ‘shock’ EGMs during an atrially-driven rhythm look
different from the shock EGMs during a ventricularly-driven
rhythm. The ICD uses this to help it determine whether the
current arrhythmia is an SVT or VT. In this paper, and in order
to keep the exposition simple, we will only work with the beat
signal, i.e., the boolean signal produced by peak detection on
the local atrial and ventricular channels, as shown in Fig. 3.

III. STREAMING ALGORITHMS FOR ARRHYTHMIA
DETECTION

An AMA is naturally viewed as a pipeline of streaming
algorithms, where each node of the pipeline performs a
streaming calculation on its input signal, and passes its output
signal to the next node. So what is a streaming algorithm?
And why view arrhythmia monitors as streaming algorithms?
The main characteristics of a streaming algorithm are that
it views its input as a sequence, or stream, of items from
some data domain, arriving one at a time. It gets to process
each item only once, after which it discards it and moves on
to the next item in the input stream. After processing each
item, the algorithm produces an output value (which might
also be null). A streaming algorithm has limited memory
available (much smaller than the length of the stream which,
for practical purposes, may be regarded as infinite), and
limited processing time. Section IV gives several examples
of streaming calculations.

The following considerations, which govern the design and
execution of an AMA, establish the suitability of the streaming
model of calculation for AMA. First, an AMA’s input is a
uniformly sampled discrete-time electrical signal that arrives
in real-time, one sample at a time, and thus can be viewed
as a stream. Second, when running on an ICD, the AMA
has a delay constraint. Namely, not much time must elapse
betwen the onset of a fatal VT and the moment that the AMA
detects it, because this delays the delivery of therapy. This
requirement translates directly into a requirement of small

processing time per item of the input signal, which is a key
constraint on streaming algorithms. Third, ICDs and ILRs
share a power consumption concern. Indeed, power is the
main non-functional design factor for these devices. Even
for today’s ICDs, which can have a battery life between
7 and 11 years, an additional 3 months of battery life are
still worth pursuing [26], since they can mean the difference
between having to surgically replace the ICD or not. Because
most ICD and ILR recipients are older patients with health
complications [27], it is desirable to prolong battery life and
reduce the likelihood of a replacement [26]. The power in
an ICD is consumed by the monitoring algorithms, the shock
therapy, and the pacing therapy. Although shocks are the single
most power-hungry event, over an average device’s lifetime,
they will only consume 3% of the battery, and it is exceedingly
rare that they consume more than 36% [28]. The rest is shared
between pacing and monitoring. Thus it is important to reduce
the power cost of monitoring. For ILRs, because they do not
have any therapeutic functions, most of the power is consumed
by monitoring. Thus an AMA has a more general small cost-
per-item constraint.

If AMAs are viewed as streaming algorithms, then it
follows that they are best programmed using a streaming
programming language. That is, a language that is expressly
designed and optimized for describing streaming algorithms
and automatically generating efficient code from the program
description. Indeed, it is important to note the productivity
gains achievable by using a Domain Specific Language (DSL).
It is generally agreed that programming in a DSL results in
greater productivity for the development teams producing the
software - see, e.g., [29] and [30] where development time
reductions of 5-7x are routinely reported. During the design
exploration stage when AMAs are developed, tweaked and
compared, it is helpful to program in a language that allows
high-level reasoning about the stream as the basic object of
manipulation and easy capture of patterns in the stream.

The StreamQRE language [18], [6] permits such a declar-
ative way of programming. StreamQRE (pronounced ‘stream
query’) allows the developer to create Quantitative Regular
Expressions (QREs), which are a quantitative extension of
regular expressions. A QRE declares how the stream should
be divided up (by matching against a regular expression) and
which arbitrary operations should be executed on the match-
ing pieces. Similarly to regular expressions, QREs can be
combined using quantitative extensions of regular combinators
to form more complex computations. QREs are described
in detail in the next section. QREs also provide theoretical
guarantees on the memory, time and energy consumed to
process a data item by the resulting algorithm. Specifically, a
QRE has per-item memory and time complexities and energy
consumption that are independent of the length of the stream,
and depend only on the size of the query. Thus, a QRE
program automatically gives a baseline implementation with
constant cost per data item. One also automatically gets a
static upper bound on the per-item cost of a QRE. This allows
a cost comparison to choose between similarly-performing
algorithms. Such early feedback on cost allows early design
exploration, at a point in the design cycle where algorithmic

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 5

changes are easy and can be correlated to cost decrease, and
where it is well-established that the most gains are possible.

Of course, during design exploration, AMAs can also be
programmed in a general purpose language like C++, and in
a non-streaming fashion, e.g., by keeping a sliding window
big enough to store the entire signal segment of interest
and repeating all computations with every new sample that
enters the window. However, this requires the programmer to
explicitly think of keeping state information and minimizing
it, and to think of various sources of delay in her code
and minimize those. Moreover, it is much harder to obtain
upper bounds on cost (whether power, memory or processing
time) of freeform code than the cost of QREs, which have
sufficient structure to enable the above analysis. Finally, when
it is possible, analysis of cost at code-level enables late-stage
implementation changes whose effect on cost will typically be
small compared to early-stage algorithmic changes.

In summary, the advantages of describing AMAs in a
streaming language, and more specifically in StreamQRE, over
describing them in a general purpose language, are:

• A more natural way to reason about the algorithm’s
streaming operation, which highlights opportunities to re-
use computation results.

• A declarative way to program the algorithm, which en-
ables reasoning at the stream level and how it needs to
be divided hierarchically and processed, rather than get
bogged down in item-level computations.

• An automatic implementation of the algorithm that guar-
antees bounded memory, runtime, and energy consump-
tion per data item that is independent of the input signal
length. The algorithm designer is relieved from having to
explicitly maintain state.

• An automatic way to obtain an upper bound on the cost of
a QRE as a function of the costs of the basic operations.
This cost can model power consumption, for example.

IV. INTRODUCTION TO QRES

This section is an introduction to the language of Quan-
titative Regular Expressions (QREs). First, we present the
semantic model of streaming functions for describing stateful
streaming transformations. Then, we introduce the language
of QREs and define some derived constructs that will be used
later to specify the arrhythmia detection algorithm. Finally, we
discuss an efficient implementation of QREs as a Java library.

A. Streaming functions

We introduce here the basic semantic objects for our lan-
guage, called streaming functions, which are partial functions
from sequences of input data items to an output value. Each
streaming function has an associated rate that captures its
domain, that is, as the function reads the input data stream,
the rate characterizes the prefixes that trigger the production
of the output. In our language, the rates are required to be
regular, captured by symbolic regular expressions, which lead
to decision procedures for constructing well-typed expressions.

As a motivating example, consider a stream that consists of
integers and special separator symbols #:

3 −5 4 1 −3 # 7 −2 9 # 1 −4

Given such an input data stream, suppose we want to specify
the transformation illutrated below that outputs at every occur-
rence of the # symbol the sum of all integers from the start
of the stream.

input : 3 −5 4 1 −3 # 7 −2 9 # 1 −4
output : 0 14

This transformation can be modeled by a streaming function,
i.e. a partial function f : D∗ ⇀ Z, where D = Z∪{#} is the
set of input data items. For example, f(3−5 4 1−3 #) = 0
and f(3−5 4 1−3 # 7−2 9 #) = 14. The rate of f is the
set of all finite sequences over D that end with #, which
is denoted by the regular expression D∗ ·#. This rate is also
captured by the equivalent expression (Z∗ ·#)+, where Z∗ ·#
matches a block of integers terminated by a # symbol.

Suppose now that we want to process further the output
stream produced by f in order to emit at every occurrence of
a negative output of f the count of all negative outputs of f so
far. This second processing state is described by a streaming
function g : Z∗ ⇀ N, whose rate is denoted by the regular
expression Z∗ ·Z<0, that counts the number of negative input
elements and emits the count at every occurrence of a negative
input item. We write Z<0 for the set of negative integers. The
overall computation is described by the streaming composition
f � g, which supplies the stream of outputs produced by f
as the input stream to g.

B. Quantitative Regular Expressions

We will introduce now the language of Quantitative Regular
Expressions (QREs) for representing stream transformations.
For brevity, we also call these expressions queries. A query
represents a streaming transformation whose domain is a
regular set over the input data type.

To define queries, we first choose a typed signature which
describes the basic data types and operations for manipulating
them. We fix a collection of basic types, and we write A,B, . . .
to range over them. This collection contains the type B of
boolean values, and the unit type U whose unique inhabitant
is denoted by def. It is also closed under the cartesian product
operation × for forming pairs of values. Typical examples of
basic types are the natural numbers N, the integers Z, the
rationals Q, and the real numbers R. We write a : A to mean
that a is of type A. For example, we have def : U.

We also fix a collection of basic operations on the basic
types, for example the k-ary operation op : A1×· · ·×Ak → B.
The identity function on D is written as idD : D → D, and
the operations π1 : A × B → A and π2 : A × B → B
are the left and right projection respectively. We assume that
the collection of operations contains all identities and projec-
tions, and is closed under pairing and function composition.
To describe derived operations we use a variant of lambda
notation that is similar to Java’s lambda expressions [31]. That
is, we write (A x) -> t(x) to mean λx:A.t(x), which is an

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 6

(anonymous) function that takes an argument x of type A and
returns the value t(x). We write (A x, B y, C z)->t(x, y, z)
to mean λx:A, y:B, z:C.t(x, y, z). For example, the identity
function on D is (D x)->x, the left projection on A× B is
(A x, B y)->x, the right projection on A×B is (A x, B y)->
y, and (D x)->def is the unique function from D to U. We
will typically use lambda expressions in the context of queries
from which the types of the input variables can be inferred,
so we will omit the types as in (x, y)->x.

For every basic type D, assume that we have fixed a
collection of atomic predicates, so that the satisfiability of
their Boolean combinations (built up using the Boolean op-
erations: and, or, not) is decidable. We write ϕ : D → B
to indicate that ϕ is a predicate on D, and we denote by
trueD : D → B the predicate that is always true. The
predicate ((Z x) -> x > 0) : Z → B is true of the strictly
positive integers.

Example 4.1: We consider a Boolean ventricular heart
signal, where the data items are values of type B = {0, 1}.
A value 1 indicates a ventricular contraction of the heart, and
a value 0 indicates the absence of a contraction. The signal
is sampled uniformly with a sampling rate of f Hz. The
predicates ¬isV and isV test if a Boolean value is zero or
one respectively. �

For a type D, we define the set of symbolic regular
expressions over D [32], denoted RE〈D〉, with the grammar:

r ::= ϕ | [predicate on D]
ε | [empty sequence]
r t r | [nondeterministic choice]
r · r | [concatenation]

r∗ [iteration].

The concatenation symbol · is sometimes omitted, that is, we
write rs instead of r · s. The expression r+ (iteration at least
once) abbreviates r · r∗. We write r : RE〈D〉 to indicate the r
is a regular expression over D. Every expression r : RE〈D〉 is
interpreted as a set JrK ⊆ D∗ of finite sequences over D:

JϕK , {d ∈ D | ϕ(d) is true}
and the rest of the regular construct have their usual inter-
pretations. Two expressions are said to be equivalent if they
denote the same language.

Example 4.2: The symbolic regular expression (¬isV)∗·isV
denotes sequences of samples that contain a single ventricular
beat (contraction) at the end. �

A string can be matched efficiently against a regular ex-
pression if there’s only one way in which it could match the
expression. Intuitively, this reduces the number of possible
matches that have to be kept track of. The notion of unam-
biguity for regular expressions [33] is a way of formalizing
the requirement of uniqueness of parsing. The languages L1,
L2 are said to be unambiguously concatenable if for every
word w ∈ L1 · L2 there are unique w1 ∈ L1 and w2 ∈ L2

with w = w1w2. The language L is said to be unambiguously
iterable if for every word w ∈ L∗ there is a unique integer
n ≥ 0 and unique wi ∈ L with w = w1 · · ·wn. The definitions
of unambiguous concatenability and unambiguous iterability

extend to regular expressions in the obvious way. Now, a
regular expression is said to be unambiguous if it satisfies
the following:

1) For every subexpression e1 t e2, e1 and e2 are disjoint.
2) For every subexpression e1 · e2, e1 and e2 are unambigu-

ously concatenable.
3) For every subexpression e∗, e is unambiguously iterable.
Example 4.3: Consider the finite alphabet Σ = {a, b}. The

regular expression r = (a t b)∗b(a t b)∗ denotes the set of
sequences with at least one occurrence of b. It is ambiguous,
because the subexpressions (a t b)∗b and (a t b)∗ are not
unambiguously concatenable: the word w = ababa matches r,
but there are two different splits w = ab ·aba and w = abab ·a
that witness the ambiguity of parsing. The regular expressions
a∗b(atb)∗ and (atb)∗ba∗ are both equivalent to r, and they
are unambiguous. �
Checking whether a regular expression is unambiguous can
be done in polynomial time. For the case of symbolic regular
expressions this results still holds, under the assumption that
satisfiability of the predicates can be decided in unit time [34].

After these preliminaries, we now define quantitative regular
expressions, or queries, recursively. Informally, a query f is a
symbolic regular expression, called the rate of f and written
R(f), with a way to compute quantities over the strings that
match the expression. The rate denotes the domain of the
transformation that f represents. The definition of the query
language has to be given simultaneously with the definition of
rates (by mutual induction), since the query constructs have
typing restrictions that involve the rates. We annotate a query
f with a type QRE〈D,C〉 to denote that the input stream has
elements of type D and the outputs are values of type C.

1) Atomic queries: The basic building blocks of queries are
expressions that describe the processing of a single data item.
Suppose ϕ : D → B is a predicate over the data item type D
and op : D → C is an operation from D to the output type C.
Then, the atomic query atom(ϕ, op) : QRE〈D,C〉, with rate
ϕ, is defined on single-item streams that satisfy the predicate
ϕ. The output is the value of op on the input element.

Notation: It is very common for op to be the identity
function, and ϕ to be the always-true predicate. So, we
abbreviate the query atom(ϕ, idD) by atom(ϕ), and the
query atom(trueD) by atom().

Example 4.4: For the Boolean ventricular heart signal, the
query that matches a single item that is a heartbeat and returns
nothing is f = atom(isV, x->def). The type of f is QRE〈B,U〉
and its rate is isV. �

2) Empty sequence: The query eps(c) : QRE〈D,C〉, where
c is a value of type C, is only defined on the empty sequence
ε and it returns the output c.

3) Iteration: Suppose that we want to iterate a computation
f : QRE〈D,A〉 over consecutive subsequences of the input
stream and aggregate all these output values sequentially using
an initial value c : B and an aggregation operation op : B ×
A→ B. The iteration query

iter(f, c, op) : QRE〈D,B〉
describes this computation. More specifically, we split the
input stream w into subsequences w = w1 w2 . . . wn, where

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 7

each wi matches f. The output values a1 a2 · · · an with
ai = f(wi) are combined using the list iterator left fold with
start value c : B and aggregation operation op : B ×A→ B.
This can be formalized with the combinator

fold : B × (B ×A→ B)×A∗ → B,

which takes an initial value b : B and a stepping map op :
B ×A→ B, and iterates through a sequence of values of A:

fold(b, op, ε) = b

fold(b, op, γa) = op(fold(b, op, γ), a)

for all sequences γ ∈ A∗ and all values a ∈ A. For example,
fold(b, op, a1a2) = op(op(b, a1), a2).

In order for iter(f, c, op) to be well-defined as a function,
every input stream w that matches iter(f, c, op) must be
uniquely decomposable into w = w1w2 . . . wn with each wi

matching f. This requirement can be expressed equivalently
as: the rate R(f) is unambiguously iterable.

Example 4.5: For the Boolean heart signal, the query g

below matches a sequence of data items that are not heartbeats
and returns their count:

f : QRE〈B,B〉 = atom(¬isV)

g : QRE〈B,N〉 = iter(f, 0, (x, y)->x+ 1)

The rate of f is ¬isV, and the rate of g is (¬isV)∗. �
4) Combination and application: Assume the queries f

and g describe stream transformations with outputs of type
A and B respectively that process the same set of input
sequences, and op is a function of type A×B → C. Then,

combine(f, g, op) : QRE〈D,C〉

describes the computation where the input is processed accord-
ing to both f and g in parallel and their results are combined
using op. This computation is meaningful only when both
f and g are defined on the input sequence. So, we demand
w.l.o.g. that the rates of f and g are equivalent.

This binary combination construct generalizes to an arbi-
trary number of queries. For example, we write

combine(f, g, h, (x, y, z)-> op(x, y, z))

for the ternary variant. In particular, we write apply(f, op)
for the case of one argument.

Example 4.6: For the Boolean heart signal, suppose g counts
all heartbeats seen so far and h counts all data items. Then,
the query k below computes the ratio of these values.

f : QRE〈B,N〉 = atom(trueB, x->if x then 1 else 0),

g : QRE〈B,N〉 = iter(f, 0, (x, y)->x+ y)

h : QRE〈B,N〉 = iter(atom(), 0, (x, y)->x+ 1)

k : QRE〈B,Q〉 = combine(g, h, (x, y)->x/y)

The rate of f is true and the rates of the queries g, h and k

are all equal to true∗. �

5) Quantitative concatenation: Suppose that we want to
perform two streaming computations in sequence: first execute
the query f : QRE〈D,A〉, then the query g : QRE〈D,B〉, and
finally combine the two results using the operation op : A ×
B → C. The query

split(f, g, op) : QRE〈D,C〉

describes this computation. More specifically, we split the
input into two parts w = w1w2, process the first part w1

according to f with output f(w1), process the second part w2

according to g with output g(w2), and produce the final result
op(f(w1), g(w2)) by applying op to the intermediate results.

In order for this construction to be well-defined as a
function, every input w that matches split(f, g, op) must
be uniquely decomposable into w = w1w2 with w1 matching
f and w2 matching g. In other words, the rates of f and g

must be unambiguously concatenable.
The binary split construct extends naturally to more than

two arguments. For example, the ternary version would be
split(f, g, h, (x, y, z)-> op(x, y, z)).

Example 4.7: For the Boolean heart signal, suppose that
g matches sequences that end with a heartbeat and h counts
the size of sequences without any heartbeat. Then, the query k

below outputs the time that has elapsed since the last heartbeat.

f : QRE〈B, Ut〉 = iter(atom(), def, (x, y)->def)

g : QRE〈B, Ut〉 = split(f, atom(isV), (x, y)->def)

h : QRE〈B,N〉 = iter(atom(¬isV), 0, (x, y)->x+ 1)

k : QRE〈B,N〉 = split(g, h, (x, y)-> y)

The rate of f is true∗, that of g is true∗ · isV, the rate of h
is (¬isV)∗, and the rate of k is true∗ · isV · (¬isV)∗. �

6) Streaming composition: A natural operation for query
languages over streaming data is streaming composition: given
two streaming queries f and g, f�g represents the computa-
tion in which the stream of outputs produced by f is supplied
as the input stream to g. Such a composition is useful in setting
up the query as a pipeline of several stages. We allow the
operation � to appear only at the top-level of a query. So, a
general query is a pipeline of�-free queries. At the top level,
no type checking needs to be done for the rates, so we do not
define the function R() for queries f� g.

Example 4.8: For the Boolean heart signal, suppose we
want to emit at every heartbeat the average heart rate over the
entire stream. We will describe this computation as a two-stage
pipeline. The first stage (query h below) produces a sequence
of natural numbers which correspond to the number of 0’s
between two consecutive 1’s (heartbeats).

f : QRE〈B,N〉 = iter(atom(¬isV), 0, (x, y)->x+ 1)

g : QRE〈B,N〉 = split(f, atom(isV), (x, y)->x)

h : QRE〈B,N〉 = split(iter(g, def, (x, y)->def),

g, (x, y)-> y)

The rate of f is (¬isV)∗, the rate of g is (¬isV)∗ · isV, and
the rate of h is ((¬isV)∗ · isV)+. The second stage (query n

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 8

below) processes a stream of these numbers to compute the
average heart rate in beats per minute.

k : QRE〈N,N〉 = iter(atom(), 0, (x, y)->x+ y)

l : QRE〈N,N〉 = iter(atom(), 0, (x, y)->x+ 1)

m : QRE〈N,Q〉 = combine(k, l, (x, y)->x/y))

n : QRE〈Q,Q〉 = apply(m, x-> (60 · f)/x)

where f is the sampling rate in Hz. The query m computes
the average number of samples between two consecutive
heartbeats. The top-level query is the pipeline h� n. �

7) Global choice: Given queries f and g of the same type
with disjoint rates r and s, the query or(f, g) applies either f
or g to the input stream depending on which one is defined.
The rate of or(f, g) is the union rts. This choice construction
allows a case analysis based on a global regular property of
the input stream.

Example 4.9: In our Boolean heart example, suppose we
want to compute a statistic across days, where the contribution
of each day is computed differently depending on whether or
not an abnormally short interval between consecutive heart-
beats occured or not. Then, we can write a query summarizing
the daily activity with a rate capturing normal days (the ones
without any short interval) and a different query with a rate
capturing abnormal days, and iterate over their disjoint union.

Consider the stream of interval lengths between consecutive
heartbeats, i.e. the output stream of query h defined in Exam-
ple 4.8. We assume that T is the threshold for an abnormally
short interval between two consecutive heartbeats. Query h

below computes the smallest interval length for sequences with
at least one abnormally short interval:

f : QRE〈N,Q〉 = iter(atom(x->x > T),∞,min)

g : QRE〈N,Q〉 = iter(atom(),∞,min)

h : QRE〈N,Q〉 = split(f, atom(x->x ≤ T), g,min)

The rate of f is (x > T)∗, the rate of g is true∗, and the rate
of h is (x > T)∗ · (x ≤ T) · true∗. Query m below computes
the average interval length for sequences with no abnormally
short interval:

k : QRE〈N,N〉 = iter(atom(x->x > T), 0, (x, y)->x+ y)

l : QRE〈N,N〉 = iter(atom(x->x > T), 0, (x, y)->x+ 1)

m : QRE〈N,Q〉 = combine(k, l, (x, y)->x/y)

The rates of k, l and m are all equal to (x > T)∗. The top-level
query is then or(h, m). �

C. Derived constructs

The core language of Section IV-B is expressive enough to
describe many common stream transformations. We present
below several derived constructs.

1) Matching without output: Suppose r is an unambiguous
symbolic regular expression over the data item type D. The
query match(r), whose rate is equal to r, does not produce
any output when it matches. This is essentially the same as

producing def as output for a match. The match construct
can be encoded as follows:

match(ϕ) , atom(ϕ, x->def)

match(r1 t r2) , or(match(r1), match(r2))

match(r1 · r2) , split(match(r1), match(r2), (x, y)->def)

match(r∗) , iter(match(r), def, (x, y)->def)

An easy induction establishes that R(match(r)) = r.
2) “Until” Iteration: Suppose that φ and ψ are disjoint

predicates on the input data type D, the function op : C×D →
C is an aggregation operation, and c : C is the initial
aggregate. The query iterUntil(φ, ψ, c, op) aggregates a
sequence of data items that satisfy φ and stops when an item
that satisfies ψ is found. It is encoded as:

iterUntil(φ, ψ, c, op) , split(iter(atom(φ), c, op),

atom(ψ), (x, y)->x)

The query has type QRE〈D,C〉 and rate φ∗ · ψ.
3) Stream Annotation: Suppose that the input stream has

items of type D, f is a query of type QRE〈D,C〉, and we
want to produce an output stream with items of type E in the
following way: when the query f produces an output (upon
consumption of the input stream) apply op2 : D×C → E to
the last input element and its output to get the final result,
and when the query f is undefined apply op1 : D → E
to the last input element. This computation is described by
the query annt(f, op1, op2) : QRE〈D,E〉 with rate D+. This
annotation query can be encoded using the regular constructs
of Section IV-B, but the encoding is complex and inefficient,
so we provide a custom efficient implemenation.

a) Tumbling windows: The term tumbling windows is
used to describe the splitting of the stream into contiguous
non-overlapping subsequences [35]. Suppose we want to de-
scribe the streaming function that iterates f at least once and
reports the result given by f at every match. The following
query expresses this behavior:

iterLast(f) , split(match(R(f)∗), f, (x, y)-> y).

The rate of iterLast(f) is equal to R(f)+.
4) Efficient Sliding Windows: Suppose we want to apply

the query f : QRE〈D,A〉 to consecutive nonoverlapping parts
of the input, and efficiently aggregate the intermediate results
over a sliding window of size W . That is, the W most recent
output values of f are aggregated to produce the final output.
The aggregation is described by an initial aggregate c : B and
three functions: an insertion operation ins : B × A → B
describes how to add a new value of type A to the aggregate
(of type B), the removal operation rmv : B×A→ B describes
how to remove a value from the aggregate, and the finalization
operation op : B → C computes the final result from the
aggregate. This computation is described by the query

wnd(f,W, c, ins, rmv, op) : QRE〈D,C〉,
whose rate is equal to R(f)+. This query can be encoded using
the regular constructs of Section IV-B and an additional data
type for FIFO queues (in order to maintain the buffer of values
of type A that are currently in the active window).

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 9

// Process a single value: rate Double
QRe<Double, Double> f =

Q.atomic(x -> true, x -> x);

// Sum of sequence of values: rate Double*
QRe<Double, Double> sum =

Q.iter(f, 0.0, (x,y) -> x+y);

// Length of sequence of values: rate Double*
QRe<Double, Long> count =

Q.iter(f, 0L, (x,y) -> x+1);

// Average of sequence of values: rate Double*
QRe<Double, Double> avg =

Q.combine(sum, count, (x,y) -> x/y);

Iterator<Double> stream = ... // input stream

// evaluator for the query
Eval<Double, Double> e = avg.getEval();

// execution loop
Double output = e.start();
// e.start() returns null, if undefined
while (stream.hasNext()) {

Double d = stream.next();
output = e.next(d);
// e.next(d) returns null, if undefined

}

Fig. 4: StreamQRE Library in Java: Computing the average of
a sequence of values.

D. A Java Library of QREs

StreamQRE has been implemented as a Java library [18]
in order to facilitate the easy integration with user-defined
types and operations. The implementation covers all the core
constructs of Section IV-B, and also provides optimizations
for the derived constructs of Section IV-C (matching without
output, “until” iteration, stream annotation, etc.).

Figure 4 gives a simple example that illustrates how to
program with the StreamQRE Java library. The query avg
describes the computation of the average of a sequence of
values of type Double. The method getEval, which stands
for “get evaluator”, is used to obtain an object that encapsu-
lates the evaluation algorithm for the query. On this evaluator
object, the methods start and next are used to initialize the
algorithm and consume data items respectively.

V. AN ICD ARRHYTHMIA MONITORING ALGORITHM

We now describe in details an Arrhythmia Monitoring
Algorithm (AMA) found in one of the ICDs on the market
today [17]. All ICD AMAs on the market today take the form
of a decision tree, such as the one in Fig. 5. Each node in
the tree is a discriminator, which computes one feature of
the input signal and decides, on its basis, how to branch.
Thus, each discriminator returns a decision, Yes or No. We
chose to present this particular AMA because variants on
its discriminators can be found in the AMAs of all devices
on the market. For example, all devices measure average
heart rate, compare atrial and ventricular rates, measure rate

Three consecutive short intervals &
8/10 intervals are short

Begin Duration (1 to 5sec)

6 out of every 10 intervals are short No Therapy

V rate > A rate + 10 bpm Therapy

Afib Rate &
V rate unstable &
Onset is gradual

Therapy

No Therapy

YES

NO

YES

NO

NO

YES

Duration

Fig. 5: Boston Scientific discrimination algorithm

variability, onset of arrhythmia, etc. The differences are in how
variability is defined (variance or sum of absolute differences,
for example), the size of windows for computing quantities,
the way they are combined in the decision tree, etc.

A. Discriminators
Recall that the input to the AMA is a discrete-time boolean

signal, which is obtained by running a peak detector on
the discrete-time real-valued EGM signal. The peak detector
outputs a 1 at peaks, and 0 otherwise. The signals we work
with in this paper have a sampling period of 1ms. Formally,
let B = {0, 1}. At every time t ∈ N, the AMA receives a data
item s of the following form

s = (V,A, t) ∈ D := B× B× N (1)

where V = 1 indicates there is a ventricular beat at time t
(and V = 0 indicates that there is not). Similarly for A. We
will find the need to refer to the ventricular boolean signal
separately, and we write V ∈ B∗ to denote it. It will also be
called the ventricular channel. Similarly, A ∈ B∗ is the atrial
channel. See Fig. 6. Given an item s, the function call s.V
returns its first element; similarly for s.A and s.t.

An (atrial or ventricular) interval in a given channel is the
interval of time between two consecutive beats. Its length is
denoted by I , and is always an integer measured in millisec-
onds (ms). The average (atrial or ventricular) rate is the inverse
of the average interval length.

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 10

Fig. 6: Input stream from one channel. Measured electrogram (top figure) and corresponding Boolean stream (bottom figure).
In the Boolean stream, spikes represent beats, and Ik is an interval of time between beats. Duration is a fixed time period,
here set to 5 seconds.

The decision tree of the AMA we describe is shown in
Fig. 5. It is made up of the following discriminators.

1) Three Consecutive Short Intervals: Three consecutive
short intervals are required to initiate rhythm analysis, as
they indicate a potentially accelerating rhythm. Therefore, this
discriminator checks if three consecutive intervals are shorter
than some pre-specified threshold Tcsi. Referring to Fig. 6:

CSI := (I5 < Tcsi) ∧ (I6 < Tcsi) ∧ (I7 < Tcsi) (2)

2) 8/10 Short Intervals: A rhythm that becomes fast for a
few beats then slows down again is not fatal and so should not
cause therapy to be delivered. To estimate whether the current
rhythm is sustained, this discriminator checks whether 8 out of
10 intervals are shorter than some threshold T8/10. Referring
to Fig. 6:

Short8outof10 := |{Ik : 5 ≤ k ≤ 14, Ik < T8/10}| ≥ 8 (3)

3) Sudden Onset: Ventricular Fibrillation (VF), which is
fatal, usually occurs suddenly, whereas a tachycardia that ac-
celerates gradually is usually non-fatal. The Onset discrimina-
tor quantifies the suddenness of tachycardia onset as follows. It
operates in two steps, which process a window of 2m intervals.
To help explain this discriminator using Fig. 6, we will assume
m = 4. In the first step, it detects the ventricular beat in
the first 4 intervals (I1, . . . , I4) at which the interval length
decreased the most. This is the pivot beat. If the amount of
decrease is greater than some threshold, Step I declares Onset.
In the second step, the algorithm computes the differences be-
tween the average of 4 pre-pivot beats ((I1+ . . .+I4)/4 := µ)
and each of 4 post-pivot beats (I5, . . . , I8). I.e., it computes
d5 = µ−I5, . . . , d8 = µ−I8. If at least 3 of these 4 differences
d5, . . . , d8 is greater than a threshold, Step II declares Onset. If
both stages declare Onset, the discriminator declares Sudden
Onset. In our implementation, we simplify things by taking

the pivot to be the middle beat in the window of 2m = 8
intervals. So SuddenOnset is computed as:

SO-StepI := Ipost−pivot < α · Ipre−pivot (4)
SO-StepII := |{dk : dk > To2}| ≥ 3 (5)

SuddenOnset := SO-StepI ∧ SO-StepII

When both Three Consecutive Short Intervals and 8/10 Short
Intervals match, then a Duration is started. A Duration is a
fixed-length time period (e.g., 5sec) during which the algo-
rithm will continue to monitor the rhythm to see whether the
arrhythmia is sustained, or it slows down and dies out. In
the latter case, no therapy is delivered. See Fig. 6. During
Duration, the following four discriminators are evaluated.

4) A/V Rate Comparison: If the ventricles have more beats
than the atria, this is an almost sure sign that the arrhythmia
is ventricular in origin (i.e., the ventricles are driving the atria
and not the other way around). This discriminator compares
the average ventricular heart rate rV with the average atrial
heart rate rA, where the average is computed over the last 10
intervals in the Duration window:

AVRate := rV > rA + 10bpm

5) Sliding 6/10: Sometimes an arrhythmia terminates on
its own, which is preferable to having the device terminate it
with a shock. This discriminator continuously checks whether
6 out of every 10 intervals are short; if any 10 intervals fails
this check, the discriminator declares No Therapy.

Sliding6outof10 := For every 10 intervals I1, . . . , I10
|{Ik : Ik < T6/10}| ≥ 6

6) Stability: VF is an unstable rhythm, meaning that the
interval lengths during fibrillation vary greatly. The Stability
discriminator defines rhythm stability as being the variance in
ventricular intervals’ lengths during Duration. If variance is

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 11

1 1 1
STAGE 0

(1, I) (1, I) (1, I)
STAGE 1

(1, I, w10fast, w10sum)
(1, I, w10fast, w10sum)

…

STAGE 2

(1, I, w10fast, w10sum, SO, BD)
(1, I, w10fast, w10sum, SO, BD)

STAGE 3

THERAPY NO THERAPY

(1, I, w10fast, w10sum)

…

……

……

……

……

(1, I, w10fast, w10sum, SO, BD)

NO THERAPY

Fig. 7: The overall detection algorithm, shown for the ventricular
channel and with the timestamp sequence omitted. The top stream
gives the input boolean signal. Streams below it are annotated with
the information in bold font. I = Interval Length, w10fast = number
of last 10 intervals that are short, w10sum = sum of last 10 interval
lengths, SO = Sudden Onset flag, BD = Begin Duration flag.

below a threshold Tstab, then the rhythm is deemed stable.
With Ī denoting the average interval length,

Stability :=
1

n

n∑

k=1

(Ik − Ī)2 ≤ Tstab

7) AFib Rate: Atrial Fibrillation (AF) is an atrially-driven
rhythm with a high rate, and is one possible source of
misclassification for the AMA. To circumvent this issue, this
discriminator measures the atrial rate throughout the Duration.
As long as at least 4/10 intervals are shorter than the AF
threshold Taf , this discriminator decides that the current
rhythm is in fact AF and therapy should be withheld.

SlidingAFib := For every 10 interval lengths I1, . . . , I10
|{Ik : Ik < Taf}| ≥ 4

VI. QRE IMPLEMENTATION OF THE ARRHYTMIA
MONITORING ALGORITHM

The QRE implementation of the BSC algorithm of SectionV
is divided into four main stages. The first two stages annotate
the input signal with additional information: the lengths of
the intervals between heartbeats, and some sliding-window
statistics over them. The annotated stream is passed to the
later stages in order to compute the discriminators for decid-
ing whether therapy should be delivered or not. We give a
high-level overview of each stage in Section VI-A, as well
as more detailed descriptions and QREs implementations in
Sections VI-B to VI-E.

1 1 1

(1, 253) (1, 190) (1, 200)

……

…

I = 253 I = 190

1

I = 200

(1, 260)V0 =

V =

…

Fig. 8: Stage 0 annotates both channels V and A with interval
lengths, i.e. the number of 0s between 1s. Here it is shown operating
on the ventricular channel.

A. Overview of Implementation Stages

All discriminators described in Section V use the interval
lengths between consecutive heartbeats. In order to simplify
the later computations, it is useful to annotate the stream
with this extra information so that it is readily available in
the next processing steps. Similarly, there are some sliding-
window statistics that are required for the discriminators “A/V
Rate Comparison”, “Sliding 6/10” and “AFib Rate”. These
quantities require looking at the 10 previous intervals to be
computed. The specification of the algorithm is much easier
if this information is already present in the stream, which
obviates the need to look back 10 intervals into the past. This
motivates our design choice to always annotate the stream with
these useful sliding-window statistics.

The ICD’s AMA receives beats from the atrium and the
ventricle. The input stream consists of data items that are of
the form shown in (1). The implementation is a multi-stage
pipeline, where each stage is a QRE. Each stage feeds its
output stream to the following stage for further annotation
and processing. They are:

• Stage 0: pre-processing stage which annotates the input
stream s with the lengths of the ventricular and atrial
intervals. See Figure 8. The output from this stage will
be used in all subsequent stages. Call the output stream
of this stage s0.

• Stage 1: augments its input stream s0 with two pieces of
information. The first is the total duration of every win-
dow of 10 consecutive intervals, in both channels. This
will be used for the A/V Rate Comparison discriminator.
The second piece of information is the number of short3

intervals in every window of 10 consecutive intervals, in
both channels. This will be used for the Sliding 6/10 and
AFib Rate Comparison discriminators. See Figure 9 for
the computation of both quantities on the V channel. Call
the output stream of this stage s1.

• Stage 2: detects the beginning of Duration, the period
of time during which the rhythm is monitored for a
fixed amount of time to confirm whether a suspected
arrhythmia is indeed sustained and ventricular in ori-
gin. For Duration to be declared and monitored, both
the Three Consecutive Short Intervals and 8/10 Short
Intervals discriminators must return Yes. If Duration is

3I.e., those that are shorter than a pre-defined threshold T6/10.

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 12

(1, 253) (1, 190) (1, 200)
…

(1, 260)V0 = (1, 203)

 0 + 1 + … + 1

10 intervals

260 + 253 + … + 190
P

IkP
(Ik < 255?)

(w10sum, w10short) = (3640, 2)

0 + 1 + … + 1

253 + 242 + … + 200

(w10sum, w10short) = (3580, 3)

1 + 1 + … + 1

241 + 240 + … + 203

(w10sum, w10short) = (3530, 5)

V1 = …, (1,190, 3640, 2), (1, 200, 3580, 3), (1, 203, 3530, 5), …

…

…

Fig. 9: Stage 1, shown acting on the V channel, augments V0 with
the total duration counter w10sum and the short intervals counter
w10short, computed over the last 10 intervals. Here, the threshold
T6/10 = 255.

initiated as a result, the input stream s1 is annotated
with a BD marker to indicate the start of Duration. See
Fig. 10. This stage also computes the Onset discriminator
and annotates the stream with flag SO = 1 if it is met.
Call the output stream of this stage s2.

• Stage 3: final stage, has input stream s2. It computes
all discriminators in Duration: Stability, Sliding 6/10, AV
Rate Comparison, and AFib Rate. Based on all these and
the value of Onset, the stage makes a final decision of
Therapy or No Therapy. See Figure 10.

REMARK. Because a QRE describes a streaming algorithm,
each of the above stages operates continuously and issues an
output with every new data item (including ⊥ if the string
so far doesn’t match). So for example, it is possible for
Stage 2 to declare the start of Duration several times in a
row, i.e., to output BD = 1 several times. See Fig. 14 for
an example. The first Duration to end in a Therapy decision
in Stage 3 will cause therapy to be scheduled, and the other
Durations in progress are aborted. On the other hand, if the first
Duration does not end in therapy, the subsequent ones continue
to be monitored to their conclusion. Thus one important
consequence of this streaming implementation is that it is
possible for the QRE to track multiple simultaneous potential
arrhythmias. In this way, no potentially fatal arrhythmia is
missed.

We will explain now each stage in detail, and present the
precise implementation in the StreamQRE language. Recall the
QRE constructs of Section IV and the type of the input data
items (1). Some computations are performed in the same way
both on the atrial and the ventricular channel. In such cases
we will only give the queries that describe the processing of
the ventricular channel for the sake of brevity.

…

(1, 190, 3640, 2)V1 =

Three
Consecutive

Short
Intervals

14 intervals

Sudden Onset I

8/10 Short Intervals

Stability

5 seconds = Duration length

(1, 301, 3500, 9)

Sudden Onset
II

BD = 1 (Begin Duration)

SO = 1 (Sudden Onset)

Sliding 6/10 Short
Intervals

AV Rate Comparison
AFib Rate

THERAPY

V2 = …, (1, 301, 3500, 9, SO = 1, BD = 1), (1, 257, 3400, 7, 0, 0), …

STAGE 2
Computations

STAGE 3
Computations

V3 = …, THERAPY, THERAPY, NO THERAPY, …

500 350 355 342 350 350 348 342 349 355 325 343 351 341

350 < ↵ · 500

IV =

Ik Tcsi

Ik T8/10 = 350

Fig. 10: Stages 2 and 3. The rectangles show the computed discrimi-
nators, and their width covers the part of the input stream used in the
computation. E.g., “8/10 Short Intervals” uses the 10 intervals above
its box, while Stability uses all intervals in the Duration window.
Downward blue arrows indicate when a quantity is computed. E.g.,
the BD marker is computed every 14 intervals. SO and BD are
added to stream V1 to obtain stream V2. The A channel is not
shown, though it enters in the calculation of AV Rate Comparison
discriminator.

B. Stage 0: Annotate interval lengths

This stage annotates the stream with heartbeat interval
lengths, that is, the lengths of the sequences between two
consecutive heartbeats. So, the length of an interval of the
form 100 · · · 001 is the number of 0s between the 1s. This
computation is performed both for the ventricular and atrial
channel. The regular expression that describes a signal that has
a single heartbeat at the end is 0∗1. The query for computing
the ventricular interval lengths is the following:

lincr = (x, y)->x+ 1, of type N× N→ N
intV = iterUntil(¬isV, isV, 0, lincr)

allIntV = iterLast(intV) // rate ((¬isV)∗ · isV)+

annt0V = annt(allIntV, x->x, (x, c)->x[IV := c])

stage0 = annt0V� annt0A

The query intV iterates over the 0s of the ventricular channel
(predicate ¬isV) while incrementing a counter until it encoun-
ters a 1 (predicate isV). The query allIntV iterates intV over
consecutive nonoverlapping subsequences, thus processing all
ventricular intervals. The query annt0V annotates the input
elements with the interval values IV calculated by allIntV,
and annt0A does the same with the atrial channel. See Fig. 8.
Therefore, the output stream s0 from this stage consists of

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 13

data items of the following form:

s0 = (V, IV , A, IA, t) ∈ D0 = (B× N)2 × N (6)

C. Stage 1: Sudden Onset and Short Intervals

The input stream for this stage consists of items of the form
shown in (6). In this state, we first calculate the sum of interval
lengths over a sliding window that consists of 10 intervals, and
we annotate the stream with this information (see Fig. 9):

blockV = split(match((¬isV)∗), isV, (x, y)-> y.IV)

wndSumV = wnd(blockV, 10, 0, (x, y)->x+ y)

stg1SumV = annt(wndSumV, x->x, (x, c)->x[SumV := c])

The query blockV matches 0∗1 in the ventricular channel and
returns the length of the interval that ends with the matched 1.
The query wndSumV executes blockV over a sliding window
of size 10 and accumulates the interval lengths by summing
them up. The query stg1SumV annotates the stream with all
these sliding-window sums.

In the second part of this stage we also calculate the number
of short ventricular intervals over a sliding window of size 10,
where “short” is defined as being of length less than T6/10.

shortV = apply(blockV,

x->if (x ≤ T6/10) then 1 else 0)

wndShortV = wnd(shortV, 10, 0, (x, y)->x+ y)

stg1ShortV = annt(wndShortV, x->x,
(x, y)->x[ShrtV := c])

The query shortV applies a thresholding operator to the
output of blockV. As before, shortV is run in a sliding-
window fashion using the wnd construct, and the output is
annotated onto the stream using annt.

The same two computations are performed on the atrial
channel, but with a different threshold, Tafib , for stg1ShortA.
The final query for this state is the streaming composition of
the above channel-specific computations:

stage1 =

stg1SumV� stg1ShortV� stg1SumA� stg1ShortA

The output stream s1 of this stage consists of items (with
re-arrangement) of the following form:

s1 = (V, IV , SumV, ShrtV,A, IA, SumA, ShrtA, t)

∈ D1 = (B× N3)2 × N (7)

D. Stage 2: Sudden Onset and Begin Duration

This stage computes the Sudden Onset discriminator and
Begin Duration (BD) marker at every ventricular beat. In order
to do this, the last 14 ventrical intervals I1, I2, . . . , I14 have
to be considered, as shown in Fig. 10.

• The first 4 intervals I1, I2, I3 and I4 are used for Step I
of “Sudden Onset”, defined in (4).

• The next 4 intervals I5, I6, I7 and I8 are used for Step
II of “Sudden Onset”, defined in (5).

• The intervals I5, I6, I7 are used for the “Three Consec-
utive Intervals” discriminator, defined in (2).

• The last 10 intervals I5, I6, . . . , I14 are used for the “8/10
Short Intervals” discriminator, defined in (3).

This stage splits the stream into consecutive intervals, and
evaluates all the relevant discriminators over the last 14
intervals using the operation opStage2 : N14 → B × B. The
input to opStage2 is a vector of 14 ventricular interval lengths,
and the output is a pair of Boolean values: the first component
indicates the presence of “Sudden Onset” (SO), and the second
component indicates the presence of “Begin Duration” (BD).

sobd = split(blockV, . . . , blockV,

(x1, . . . , x14)-> opStage2 (x1, . . . , x14))

wndsobd = split(match(R(blockV)∗), sobd, π2)

stage2 = annt(wndsobd, x->x,
(x, 〈c1, c2〉)->x[SO := c1,BD := c2])

The query sobd : QRE〈D1,B2〉 matches 14 consecutive ven-
tricular intervals, and applies the function opStage2 to their
lengths in order to compute the Boolean flags for “Sudden
Onset” and “Begin Duration”. This computation is executed
in a sliding-window fashion and the output is used to annotate
the stream. The output stream s2 from Stage 2 contains data
items of the following form:

s2 = (s1,SO ,BD) ∈ D2 = D1 × B2

E. Stage 3: Therapy Decision

This stage uses the four discriminators shown in Fig. 10
to make the final decision whether to apply therapy or not.
Whenever “Begin Duration” (BD) is detected by the previous
stage, the algorithm considers the window of N data items
following BD, and the discriminators are computed using the
information contained within this window. For example, if the
Duration window is programmed to be 5 seconds, and the
sampling rate is 256Hz, then the window contains N = 5 ×
256 = 1280 items. The query

stage3 = wnd(atom(), N, 0, ins, rmv, discr)

describes a sliding-window computation that maintains a
buffer with all ventricular and atrial beats of the duration
period. The function ins adds a new item to the buffer, the
function rmv removes an expiring item from the buffer, and
the operation discr computes the discriminators and the final
therapy decision using only the items contained in the buffer.

F. Overall AMA Query

The top-level query for this Arrhythmia Monitoring Algo-
rithm is the streaming composition of all stages (see Fig. 7):

AMA = stage0� stage1� stage2� stage3.

VII. ILLUSTRATIVE EXAMPLES

A. Sample executions

Two examples will serve to illustrate the details of the
query execution. Fig. 11 shows a Ventricular Fibrillation (VF)
EGM signal along with the corresponding boolean beat stream.
The results of running stage2 on this signal are presented

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 14

Fig. 11: EGM during a VF. Top panel shows the atrial EGM. Bottom panel shows the ventricular EGM. The middle panel shows the
sensed boolean signal that is part of the input stream s to the AMA. Spikes above the x-axis indicate atrial beats, and spikes below it are
the ventricular beats.

Fig. 12: Boolean beat stream from Fig. 11 and the streaming output of QRE stage2 (which calculates CSI, Short8outof10 and SuddenOnset).

in a Fig. 12. At times 12, 572 ms and 12, 811 ms the start
of Duration is detected (BD = 1). At the end of the first
initiated Duration (at 17, 572 ms), the A/V Rate Comparison
discriminator and Sliding 6/10 discriminator are satisfied and
the AMA outputs Therapy. This is consistent with the decision
tree in Fig 5.

Fig 14 shows an Atrial Fibrillation (AF) signal. The al-
gorithm never outputs therapy. Before time 15, 529 ms the
rhythm is not determined to be fast (Three Consecutive Short
Intervals and 8/10 Short Intervals are never satisfied together).
The first time when the fast rhythm is detected is at 15, 529ms.
Therefore, the first BD = 1 flag happens at time 15, 529 ms
and Duration starts. At the end of this Duration (20, 529 ms),
A/V Rate Comparison is not satisfied. Moreover, the rhythm
is determined to be unstable with gradual onset and AFib Rate
condition is satisfied. Therefore, no therapy is delivered at this
point. The same thing occurs for the next ventricular beat time
point (15, 867 ms), and no therapy is detected again.

B. Validation of the QRE Implementation

To validate the correctness of our QRE implementations, we
created three versions of the AMA in Fig. 5. These three ver-
sions will also be used in the power analysis of Section VIII.
The baseline version, presented in Section V, includes all

discriminators and has a Duration length of 5sec. The second
version does not use the Sudden Onset discriminator. This
discriminator is Off by default when the device ships. The
third version reduces Duration length to 1sec. Accuracy is
measured using the Specificity and Sensitivity of detection,
defined respecitvely as

Specificity =
correctly detected SVTs

true SVTs
× 100%

Sensitivity =
correctly detected VTs

true VTs
× 100%

where the denominators are the number of true SVTs and VT,
respectively.

The three versions were run on a database of 960 EGMs,
equally divided into 480 SVTs and 480 VTs. The beat timing
in the EGMs (in other words, the boolean stream s) was
generated by the heart model of [36],[37]. Briefly, this model
can simulate beat generation and propagation at different rates,
from different locations in the heart. E.g., it can simulate a
Normal Sinus Rhythm (NSR) which originates in the sino-
atrial node and conducts down, or a fast ventricular rhythm
that starts in the ventricles and conducts up to the atria. The
model can also simulate different conduction pathways and
conduction delays between locations. In this manner, it is

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 15

Fig. 13: Atrial Fibrillation (AF) EGMs and their boolean beat streams.

Fig. 14: Boolean beat stream from Fig. 13 and the streaming output of QRE stage2.

capable of simulating a wide range of VTs and SVTs. These
simulated arrhythmia episodes are automatically labelled by
the model so that we know whether they should be treated by
the device or not, thus allowing us to compute specificity and
sensitivity.

The validity of the simulated beat stream is guaranteed
in three complementary ways: 1) The model implements
well-known clinical principles of arrhythmia generation, such
as re-entrant circuits [21], and the implementation has been
reviewed by two cardiologists. 2) Key output stream charac-
teristics, like the rate, are guaranteed to fall in the clinically
observed ranges. And finally, 3) a representative sample of
model outputs has been validated as correct by two cardiolo-
gists.

Table I shows the results of running these three versions on
the signals database. It also includes throughput, which is the
number of data items processed per second. First, we note that
the Sensitivity of all three agorithms is 100%, which matches
the reported sensitivity of ICDs in the literature. Indeed, miss-
ing a true VT or VF can have a debilitating or fatal effect on
the patient, so the algorithms are programmed to err on the side

TABLE I: Database-averaged detection accuracy for three versions
of AMA. Throughput measured on a standard desktop with Intel i5
processor running Ubuntu.

Algorithm

Measurements: Baseline No Onset Duration = 1s

Throughput [items/sec] 674.602 714.206 914.746
Sensitivity 100% 100% 100%
Specificity 92.5% 93.13% 88.54%

of safety and guarantee 100% sensitivity. Second, we note that
turning off Sudden Onset has a negligible effect on Specificity,
which justifies its being turned off by default in real devices.
Finally, shortening Duration futher decreases Specificity, as
expected: when Duration is shorter, the algorithm is leaving
less time for the arrhythmia to terminate on its own, and is
taking a Therapy decision for signals that shouldn’t be treated.

VIII. UPPER BOUNDS ON QRE COST

Power consumption is an important consideration when de-
signing the software and hardware of an implantable medical
device. Replacing an implantable device requires surgery, and

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 16

most ICD and ILR recipients are older patients with various
health issues [27], so reducing the likelihood of a replacement
by prolonging battery life is highly desirable [26].

It is generally true that the higher the abstraction level at
which power consumption is estimated, then the easier it is to
correlate algorithmic changes to power changes and the more
questions can be answered analytically. However, the estimates
are then less accurate in absolute terms. Conversely, at a lower
abstraction level, the power model is more accurate, but is
much harder to correlate to algorithmic changes, especially if
it is tied to a particular target processor.

In this section, we provide a way to compute an upper bound
on the energy consumed by a QRE per data item. The per-item
consumption is the appropriate unit of measurement since a
stream can be arbitrarily long. Being an upper bound, it allows
the algorithm developers to compare design options very
early on based on worst-case cost, and hardware engineers
to provision battery capacity and electronics that are suitable
for the expected worst-case energy draw. The upper bound is
obtained by first measuring the per-item energy consumption
of all the predicates and ops that appear in the QRE. These
will be referred to as the basic costs. Then the QRE evaluator
itself is used to combine these basic costs into the worst-case
cost of the query. It is possible to do this for programs written
in the StreamQRE language because of the well-understood
syntactical restrictions it imposes, in particular, the restriction
that computation results cannot be used in predicates. Note
that these analyses apply trivially to any other additive cost,
such as processing time, and not just power.

The upper-bound energy analysis described in the previous
paragraph is meant to provide only a crude estimate of energy
consumption for early design space exploration. It is not meant
to replace a more fine-grained analysis (such as a WCET
analysis) that takes the hardware and the input data into
account. Such a high-precision analysis is useful for finetuning
the performance of a production implementation, but a more
rough analysis is still useful in the early design stage.

A. An upper bound based on the evaluator

We first need to understand roughly how the QRE evaluator
works. The evaluator is the algorithm that evaluates a QRE
on a given stream For a query q, the evaluator first invokes
a query-specific start routine to initialize the internal data
structures appropriately. With every new data item that arrives,
the evaluator invokes a query-specific next routine to process
it. Moreover, next might have to pass the item to sub-queries:
e.g., split(f, g) will pass the item to g everytime the string
seen so far matches f. In such a case, next will need to invoke
the start method of g. Therefore, the cost of processing a
data item is the cost of calling the QRE’s next routine.

1) From basic cost to QRE cost: Let cost(ϕ) and cost(op)
be the cost of evaluating the predicate ϕ and operation op re-
spectively. It is assumed that these costs are data-independent,
which is true for the queries that appear in AMA. Let start(q)
and next(q) be functions that return the cost of executing
start and next methods of query q. The per-item cost of a

QRE q can be upper-bounded using the following recursion
on its structure.

q = atom(ϕ, op) :

start(q) = 0

next(q) = cost(ϕ) + cost(op)

q = split(f, g, op) :

start(q) = start(f) + start(g) + cost(op)

next(q) = next(f) + next(g) + start(g) + cost(op)

q = iter(f, init, op, out) :

start(q) = start(f) + cost(out)

next(q) = next(f) + cost(op) + start(f) + cost(out)

q = iterLast(f) :

start(q) = start(f)

next(q) = next(f) + start(f)

q = iterUntil(ϕ, ψ, init, op) :

start(q) = 0

next(q) = cost(ϕ) + cost(ψ) + cost(op)

q = wnd(f, size, init, ins, rmv, out) :

start(q) = start(f)

next(q) = next(f) + cost(ins) + cost(rmv)+

cost(out) + start(f)

q = annt(f, op1, op2) :

start(q) = start(f)

next(q) = next(f) + max(cost(op1), cost(op2))

q = f� g :

start(q) = start(f) + start(g) + next(g)

next(q) = next(f) + next(g)

To understand this recursion, consider the case
q = atom(ϕ, op). Starting the evaluator doesn’t cost anything
in this case. When the data item arrives and it matches
ϕ, then op is executed and we pay cost(ϕ) + cost(op).
Otherwise, we only pay cost(ϕ). Thus an upper-bound on
cost is cost(ϕ) + cost(op), as indicated.

For a more involved example, consider the case q =
split(f, g, op). start-ing q involves start-ing f and g,
and we pay the corresponding costs. If both of them match
the empty string, then we also pay cost(op). So worst-case
cost of start is as shown. When a data item arrives, it is
passed to both f and g: f might match the string in multiple
positions, and it is not possible to know ahead of time which
will be the right split point, so the string is always fed to f, and
we pay next(f). If the string seen so far matches f then the
item is also passed to g to see if the string suffix will match
it, and we pay start(g). g might also be in the middle of
matching a previous suffix (remember the evaluator maintains
all possible matches). In that case, it will also process the new
item using its next routine, and we pay next(g). Finally, if
both f and g match, then op(JfKw, JgKw) is evaluated and we
pay cost(op). Thus in the worst-case, the cost of next(q) is
next(f) + next(g) + start(g) + cost(op), as shown.

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 17

TABLE II: jRAPL-reported values for basic costs (Obtained by
averaging over 20M execution of the operation (= 1 experiment),
and over 125 experiments after a 25-experiment warm up.

Basic operation

Measurements: x-> True x->x

DRAM [J·e−5] 0.000003244 0.00004134
CPU [J·e−5] 0.0000045418 0.0001023086
Package [J·e−5] 0.00001155 0.0002180939
Total [J·e−5] 0.000019336 0.000361745

2) Measuring the basic costs: To start the above recursion,
we need knowledge of cost(ϕ) and cost(op). For example,
consider query stage3 defined in Section VI-E and its asso-
ciated costs:

stage3 = wnd(atom(), N, 0, ins, rmv, discr)

start(stage3) = start(atom()) = 0

next(stage3) =next(atom()) + cost(ins) + cost(rmv)

+ cost(discr) + start(atom())

= cost(x->True) + cost(x->x)

+ cost(ins) + cost(rmv) + cost(discr)

Therefore, it is necessary to measure the following:

C1 = cost(x->True)

C2 = cost(x->x)

C3 = cost(ins) + cost(rmv) + cost(discr)

The costs of predicates and ops can be measured using
jRAPL [38] for example. jRAPL provides a mean to mea-
sure the energy consumption of any snippet of Java code
by enclosing it between getEnergyStats function calls.
The getEnergyStats function accesses Machine-Specific
Registers (MSRs) that store the energy consumed since a pre-
defined datum. Thus we can measure the energy consumed
by a given piece of code by comparing the register contents
before and after invoking that code, e.g. as shown below:

EnergyCheckUtils ec = new
EnergyCheckUtils();

double[] before = ec.getEnergyStats();
long duration =

Queries.execute(streamlength, stream,
myquery); //nano-sec

double[] after = ec.getEnergyStats();
double[] energy = after - before;
System.out.println("Consumed energy = "

+ energy);

Internally, jRAPL is a Java wrapper around the RAPL li-
brary. RAPL (Running Average Power Limit) is a suite of low-
level interfaces to the MSRs with the ability to monitor and
control energy and power consumption of different hardware
levels, and is widely supported in Intel architectures. RAPL
allows energy/power consumption to be reported separately
from the CPU core, package (L3 cache, on-chip GPUs, and
interconnects), and DRAM.

TABLE III: jRAPL-reported energy values for C3 = cost(ins) +
cost(rmv) + cost(discr), for three versions of AMA. Obtained as
average of 100 experiments after a 25-experiment warm-up, each
experiment having 1M runs.

Measurements: Baseline No Onset Duration = 1s

DRAM [J·e−5] 0.55755 0.54573 0.182398
CPU [J·e−5] 0.549273 0.502224 0.23123
Package [J·e−5] 2.2693036 2.21987 0.726192
Total [J·e−5] 3.376137 3.267839 1.13983

For the example of stage3, Table II shows the energy
values C1 and C2 reported by jRAPL. These operations
are extremely cheap and their measurement can be non-
deterministically affected by irrelevant processes running on
the hardware (like page swaps), compiler optimizations (like
discarding of unused outputs, which is why in the code listing
above we print out duration). Therefore, and to account for
this variability, we compute cost by running the same operation
20M times and averaging the energy over the runs. We call
this an experiment. We run 125 such experiments in a row,
and discard the first 25 experiments to take into account
background noise caused by the warm up, and average the
last 100 experiments. The final reported number is then the
energy per predicate or op.

REMARK. As noted, measuring the cost of simple basic
operations is affected by irrelevant sources of energy con-
sumption. When the objective is to compare algorithms, it is
reasonable to assume unit costs for the cheap basic operations,
and proportionally larger cost to more complex operations, and
compare the QREs on the basis of this cost model. The results,
of course, are as good as our guess of the relative magnitudes
of the various basic costs.

Table III shows the energy value C3, when running as part
of the three versions of AMA described in section VII-B:
the Baseline algorithm, version with no Sudden Onset dis-
crimintor, and version with a Duration of 1sec. The energy
consumption of discr depends on which algorithm it is
running in because, for example, a shorter Duration implies
that discr is operating on fewer items, while no Onset means
that the value of Sudden Onset is not used in the decision
making of discr.

Equipped with these numbers we can upper-bound the per-
item energy consumption of stage3 by C1+C2+C3. On this
basis, the Duration=1sec version is the cheapest in the worst-
case, and Baseline is the most expensive. On the other hand,
No Onset has a per-item cost which is only slightly smaller
than that of Baseline. This can be explained by the fact that
Baseline only performs one extra AND relative to No Onset,
which is a cheap operation (and even that is sometimes not
executed, depending on the ordering of arguments). The fact
that disabling Onset does not yield meaningful energy savings
suggests that for patients that might benefit from Sudden
Onset discrimination (like patients who have low frequency of
SVTs), it can be enabled without any loss in device longevity.

B. Measured Energy Consumption of Entire Algorithm

In addition to the upper bounds, it is of course possibe to
measure the cost of a QRE on a typical workload, e.g., when

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 18

TABLE IV: Database-averaged jRAPL-reported energy for three
version of entire algorithm. Obtained as average of 40 experiments
after a warm-up of 10 experiments, each experiment having 1 run.

Algorithm

Measurements: Baseline No Onset Duration = 1s

DRAM [J·e−5] 1.7177 1.5836 1.1813
CPU [J·e−5] 2.7648 2.0992 1.6067
Package [J·e−5] 6.7009 5.9251 4.4322
Total [J·e−5] 11.1834 9.6078 7.2203

processing the signals in the EGM database. The three versions
of AMA and the signals database were described in Section VII.
The energy is measured again using jRAPL. Because the AMA
is a sufficiently costly operation and its energy measurements
will not vary significantly between repeated runs, each exper-
iment consists of a single run of the QRE on the database of
signals. We still run and discrad some initital experiments as
warm-up.

Table IV reports the per-item energy consumption, averaged
over the signals in the database. The energy numbers match
expectations: the baseline version consumes the most energy.
Version No Onset is second most expensive, because elim-
inating Sudden Onset reduces the costs of Stage 2 (which
computes the Onset decision SO – see Fig. 10 and QRE
stage2), and Stage 3 (which uses the SO value in an AND
statement). Finally, Shortening Duration saves the most energy,
since it implies shorter computations for 4 discriminators
(Fig. 10).

IX. RELATED WORK

Medical device algorithms. Most of the literature on formal
methods for medical device algorithms focuses on verifying
and testing the functionality of the algorithm - see [39], [40],
[41], [42] for examples in the specific context of implantable
cardiac devices. These concerns are orthogonal to ours: the
focus of this paper is the description of a programming
language that is suitable for arrhythmia monitoring, and the
meta-functional characteristics it automatically guarantees. It
is worth nothing that the U.S. Food and Drug Administration
(FDA), which regulates medical devices in the U.S.A., does
not mandate particular types of validation, such as model
checking [43]. Rather, it describes in generic terms the kind
of evidence that should be provided. For example, it stipulates
that “Software quality assurance needs to focus on preventing
the introduction of defects into the software development
process”, and that “software developers should use a mixture
of methods and techniques to prevent software errors and to
detect software errors that do occur. ” [43, Section 4.2].

The FDA Guidance does not explicitly address meta-
functional properties. Works in quantitative verification, such
as [44] and [45], model the heart and pacemaker to verify
statistically or through simulations whether some quantitative
properties are satisfied. This contrasts with our approach which
is model-free, and provides cost upper bounds based on the
QRE code itself, not a model of it. An application of QREs to
arrhythmia monitoring appeared in [25] where a peak detector
is coded in an early variant of the language.

QREs are a Domain-Specific Language (DSL): they are
meant for programming queries on arbitrary data streams,
with strong theoretical foundations [5] and a flexible program-
ming environment [6], [18]. DSLs have been developed for
medical device development, albeit these are usually meant
for the creation of the entire device, including hardware, and
focus on capturing object-oriented aspects of the domain (i.e.,
identifying the main objects in the domain and modeling
them and their relations). E.g., [46] develops a graphical
language for modeling blood separator machines, along with
code generators and lock-step simulators of the model and its
generated code. No work has appeared in the literature on a
DSL for ICDs or ILR algorithms, and more generally, rhythm
monitoring algorithms.

Streaming languages. There is a large body of work
on streaming database languages and systems such as Au-
rora [47], Borealis [48], STREAM [49], and StreamInsight
[50], [51]. The query language supported by these systems
(for example, CQL [52]) is typically a version of SQL
with additional constructs for splitting the stream into finite
windows (e.g., tumbling or sliding windows, count-based or
time-based). This allows for rich relational queries, including
set-aggregations (e.g. sum, maximum, minimum, average,
count) and joins over multiple data streams. Such SQL-based
languages are, however, limited in their ability to express
properties and computations that rely on the sequence of
the events such as: sequence-based pattern-matching, and
numerical computation based on list-iteration when the order
of the data items is significant. There are streaming engines
such as IBM’s Stream Processing Language (SPL) [53], [54],
ReactiveX [55], Esper [56] and Flink [57], which support user-
defined types and operations, and allow for both relational and
stateful sequential computation. However, none of these en-
gines provides support for decomposing the stream in a regular
fashion and performing incremental computations that reflect
the structure of the parse tree, which is a central feature of the
QRE language. LOLA [58] allows arbitrary computations on
streams and incremental computation of statistics, but does not
support regular decomposition of the stream to define the com-
putation domains. Finally, Timed Regular Expressions [59]
allow the specification of time windows during which the
timed string must match a regular expression. As such they are
a specification language rather than a programming language
and do not support the rich computations and quantitative
combinators that QREs support.

Power estimation. Since QREs are aimed at high-level
programming and the cost analysis is aimed at early de-
sign exploration, we don’t review the vast literature on low-
level power estimation techniques (anything below C program
level), nor do we review analyses that focus on the impact of
particular hardware choices like [60]. Such analyses occur later
in the design cycle and require the availability of low-level
artifacts like circuits. The interested reader can consult [61]
for a recent review of such techniques.

In [62],[63] and [61], a functional level power model is used
for estimating the power consumption of a C program without
compiling it. It requires partitioning the target processor into
functional units, and estimating some key parameters like the

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 19

cache miss rate, external data memory access rate and the
processing rate. It also depends on the user providing low-level
execution details like the data mapping. This target-specific
code-level analysis complements our presented bounds, which
occur earlier in the design cycle and are at the algorithm level.

The approach in [64] estimates battery dissipation. It treats
the processor as a black box and instead decomposes the
program into types of basic instructions, similar to what we did
to obtain the upper bounds in Section VIII. However, the basic
instructions in [64] are at the instruction-set level, like integer
and floating point loads and stores. And while we exploit the
fact that we have a uniform evaluation algorithm for any QRE
to infer bounds on the entire program’s cost, the authors in [64]
must establish empirically, for a given processor and program,
that the program’s cost is the weighted sum of the dissipations
for basic instructions.

A static analysis of energy consumption of XC programs
is presented in [65]. 4 After building an ISA-level power
model using hardware measurements of a test suite, the XC
program is translated to Horn clauses in the Ciao programming
language [66]. The Ciao pre-processor can then bound the
power consumption as a function of input data sizes. This
technique was later extended to use a power model at the
level of the compiler’s intermediate representation rather than
the ISA level [67]. This approach applies to programs that
can be translated into a logic program. Another static analysis
technique [68] uses integer linear programming to compute the
worst case energy consumption, given estimates of dynamic
and leakage power contributions of basic blocks in a program’s
control flow graph. This is inspired by well-known Worst-Case
Execution Time estimation techniques.

X. CONCLUSION

This paper has argued that arrhythmia monitoring algo-
rithms are best viewed as streaming algorithms, and that they
are best programmed in the StreamQRE language. Unlike
traditional streaming applications where throughput is a prime
concern, here energy consumption is the primary design factor.
A program written in StreamQRE automatically gets a baseline
implementation with a constant memory, processing time and
energy consumption per item. Moreover, the QRE evaluator
automatically provides upper bounds on the per-item cost of
the query, which can be used early in the design cycle to guide
the choice of algorithm, and to decide whether some discrimi-
nators are worth having at all. We showed how the StreamQRE
Java Library can be used to program and evaluate a query and
to obtain cost upper bounds, and how these bounds correlate
to actual power measurements. We believe this approach to
exploring and programming arrhythmia monitors, and other
medical device algorithms, has the potential to greatly alleviate
the device development burden. In particular, it opens the
possibility of designing ILR algorithms that collect statistics
over longer time durations than is currently done. Other ap-
plications that might benefit from StreamQRE include glucose
monitoring [69], [70], where a mobile device periodically or
continuously measures a diabetic’s blood glucose and performs

4XC is a high-level C-based programming language.

various filtering operations to predict hypo- or hyperglycemic
episodes.

The theoretical basis of StreamQRE raises the possibility
of performing static (formal) analysis of its performance.
It is already possible, for queries written in a subset of
the language, to answer questions such as “Does the worst-
case peak power consumed by the algorithm exceed some
threshold?”, “Could the long-term average power consumed by
the algorithm exceed some threshold?”, and “Does algorithm
A consume less peak/average power than algorithm B?”.
Answers to these questions impact the choice of electronics
that must withstand the peak power draw, and the capacity of
the device battery.

On the tools side, two projects are worth exploring: first,
implementing the decision procedures that perform the above-
described static analysis. Second, creating a compiler that
compiles a QRE into C or assemly code targeting a given
hardware platform. This would complete the path from algo-
rithm to code to implementation, and would allow a reliable
comparison of upper-bounds to actual energy consumption of
the compiled code. In niche areas, expert coders might be
able to squeeze more performance per Watt from hand-written
code than a compiler could from automatically generated code.
However, it is to be expected in the long run that medical
devices will follow the arc of semiconductors, where automa-
tion has gradually out-performed humans, or has yielded such
productivity gains that small performance losses are more than
made up for by the reduced time-to-market, reproducibility and
scalability of the design process, and automatic guarantees of
correctness and performance.

REFERENCES

[1] E. A. Lee, “What’s ahead for embedded software,” IEEE Computer, pp.
18–26, 2000.

[2] T. Henzinger and J. Sifakis, “The embedded systems design challenge,”
in FM 2006: 14th International Symposium on Formal Methods, ser.
LNCS 4085, 2006, pp. 1–15.

[3] A. Sangiovanni-Vincentelli, “Quo Vadis SLD: Reasoning about trends
and challenges of system-level design,” Proceedings of the IEEE, vol. 95,
no. 3, pp. 467–506, 2007.

[4] R. Alur, Principles of Cyber-Physical Systems. MIT Press, 2015.
[5] R. Alur, D. Fisman, and M. Raghothaman, “Regular programming for

quantitative properties of data streams,” in Programming Languages and
Systems - 25th European Symposium on Programming, ser. LNCS 9632,
2016, pp. 15–40.

[6] K. Mamouras, M. Raghothaman, R. Alur, Z. Ives, and S. Khanna,
“StreamQRE: Modular specification and efficient evaluation of quanti-
tative queries over streaming data,” in Proc. 38th ACM SIGPLAN Conf.
on Programming Language Design and Implementation, 2017, pp. 693–
708.

[7] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, and P. Poulosky,
“Benchmarking streaming computation engines: Storm, Flink and Spark
Streaming,” in 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), 2016, pp. 1789–1792.

[8] P. Tucker, K. Tufte, V. Papadimos, and D. Maier, “NEXMark: A
benchmark for queries over data streams,” Available at http://datalab.
cs.pdx.edu/niagara/NEXMark/, 2002.

[9] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and B.-T. Loo, “Quan-
titative network monitoring with NetQRE,” in Proc. ACM SIGCOMM
Conf. on Data Communication, 2017.

[10] I. Lee, O. Sokolsky, S. Chen, J. Hatcliff, E. Jee, B. Kim, A. King,
M. Mullen-Fortino, S. Park, A. Roederer, and K. Venkatasubramanian,
“Challenges and research directions in medical cyber-physical systems,”
Proceedings of the IEEE, vol. 100, no. 1, pp. 75–90, 2012.

http://datalab.cs.pdx.edu/niagara/NEXMark/
http://datalab.cs.pdx.edu/niagara/NEXMark/

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 20

[11] P. Ye, E. Entcheva, R. Grosu, and S. A. Smolka, “Efficient modeling of
excitable cells using hybrid automata,” in Proceedings of Computational
Methods in System Biology, 2005, pp. 216–227.

[12] Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam, “Modeling
and verification of a dual chamber implantable pacemaker,” in Tools
and Algorithms for the Construction and Analysis of Systems - 18th
International Conference, ser. LNCS 7214. Springer, 2012, pp. 188–
203.

[13] T. Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre, “Quantita-
tive verification of implantable cardiac pacemakers over hybrid heart
models,” Information and Computation, vol. 236, pp. 87 – 101, 2014.

[14] R. Alur and D. Dill, “A theory of timed automata,” Theoretical Computer
Science, vol. 126, pp. 183–235, 1994.

[15] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical Computer Science, vol. 138,
pp. 3–34, 1995.

[16] G. Behrmann, A. David, K. Larsen, P. Pettersson, and W. Yi, “Develop-
ing UPPAAL over 15 years,” Software – Practice and Experience, vol. 41,
no. 2, pp. 133–142, 2011.

[17] Boston Scientific Corporation, “The Compass - Technical Guide to
Boston Scientific Cardiac Rhythm Management Products,” Device Doc-
umentation, 2007.

[18] “StreamQRE library,” http://www.seas.upenn.edu/∼mamouras/
StreamQRE/StreamQRE.jar.

[19] A. Thammanomai, M. O. Sweeney, and S. R. Eisenberg, “A comparison
of the output characteristics of several implantable cardioverter-
defibrillators,” Heart Rhythm, vol. 3, no. 9, pp. 1053–1059, 2017/07/01.
[Online]. Available: http://dx.doi.org/10.1016/j.hrthm.2006.05.006

[20] M. Rosenqvist, T. Beyer, M. Block, K. Dulk, J. Minten, and F. Lin-
demans, “Adverse Events with Transvenous Implantable Cardioverter-
Defibrillators: A Prospective Multi-center Study,” Circulation, 1998.

[21] K. Ellenbogen, G. N. Kay, C.-P. Lau, and B. L. Wilkoff, Clinical Cardiac
Pacing, Defibrillation, and Resynchronization Therapy. Elsevier, 2011.

[22] Biotronik, “BioMonitor Technical Manual,” Device Documentation,
2015.

[23] J. M. Nasir, W. Pomeroy, A. Marler, M. Hann, T. Baykaner,
R. Jones, R. Stoll, K. Hursey, A. Meadows, J. Walker, and
S. Kindsvater, “Predicting determinants of atrial fibrillation or flutter
for therapy elucidation in patients at risk for thromboembolic events
(predate af) study,” Heart Rhythm, vol. 14, no. 7, pp. 955 – 961,
2017. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1547527117304927

[24] W. Amara, C. Montagnier, S. Cheggour, M. Boursier, C. Gully,
C. Barnay, F. Georger, A. Deplagne, S. Fromentin, M. Mlotek,
A. Lazarus, J. Taieb, and on behalf of the SETAM investigators,
“Early detection and treatment of atrial arrhythmias alleviates the
arrhythmic burden in paced patients: The SETAM study,” Pacing and
Clinical Electrophysiology, vol. 40, no. 5, pp. 527–536, 2017. [Online].
Available: http://dx.doi.org/10.1111/pace.13062

[25] H. Abbas, A. Rodionova, E. Bartocci, S. A. Smolka, and R. Grosu,
Quantitative Regular Expressions for Arrhythmia Detection Algorithms.
Cham: Springer International Publishing, 2017, pp. 23–39. [Online].
Available: https://doi.org/10.1007/978-3-319-67471-1 2

[26] R. D. Berger, “A novel strategy to mitigate icd shock-related pain,” in
Heart Rhythm Scientific Sessions, 2017.

[27] F. A. Masoudi, A. S. Go, D. J. Magid, A. E. Cassidy-Bushrow,
J. M. Doris, F. Fiocchi, R. Garcia-Montilla, K. A. Glenn, R. J.
Goldberg, N. Gupta, J. H. Gurwitz, S. C. Hammill, J. J. Hayes,
N. Jackson, A. Kadish, M. Lauer, A. W. Miller, D. Multerer, P. N.
Peterson, L. M. Reifler, K. Reynolds, J. S. Saczynski, C. Schuger,
P. P. Sharma, D. H. Smith, M. Suits, S. H. Sung, P. D. Varosy,
H. J. Vidaillet, and R. T. Greenlee, “Longitudinal study of implantable
cardioverter-defibrillators,” Circulation: Cardiovascular Quality and
Outcomes, vol. 5, no. 6, pp. e78–e85, 2012. [Online]. Available:
http://circoutcomes.ahajournals.org/content/5/6/e78

[28] G. Boriani, P. Ritter, M. Biffi, M. Ziacchi, I. Diemberger, C. Martignani,
C. Valzania, S. Valsecchi, L. Padeletti, and F. Gadler, “Battery drain
in daily practice and medium-term projections on longevity of
cardioverter-defibrillators: an analysis from a remote monitoring
database,” EP Europace, vol. 18, no. 9, p. 1366, 2016. [Online].
Available: http://dx.doi.org/10.1093/europace/euv436

[29] Juha-Karna, J.-P. Tolvanen, and S. Kelly, “Evaluating the use
of domain-specific modeling in practice,” in OOPSLA Workshop
on Domain-Specific Modeling, 2009. [Online]. Available: http:
//www.dsmforum.org/events/dsm09/papers/karna.pdf

[30] J.-P. Tolvanen, N. Brouwers, R. Hendriksen, G. Kahraman, and
J. Kouwer, “Industrial use of domain-specific modeling: Panel sum-
mary,” in The Domain Specific Modeling Workshop, Amsterdam, Nether-
lands, 2016.

[31] “Java’s lambda expressions,” https://docs.oracle.com/javase/tutorial/java/
javaOO/lambdaexpressions.html.

[32] M. Veanes, P. de Halleux, and N. Tillmann, “Rex: Symbolic regular
expression explorer,” in Proceedings of the 3rd International Conference
on Software Testing, Verification and Validation (ICST ’10). IEEE,
2010, pp. 498–507.

[33] R. Book, S. Even, S. Greibach, and G. Ott, “Ambiguity in graphs and
expressions,” IEEE Transactions on Computers, vol. C-20, no. 2, pp.
149–153, 1971.

[34] R. Alur, D. Fisman, and M. Raghothaman, “Regular programming for
quantitative properties of data streams,” in Proceedings of the 25th
European Symposium on Programming (ESOP ’16), 2016, pp. 15–40.
[Online]. Available: http://dx.doi.org/10.1007/978-3-662-49498-1 2

[35] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “Semantics
and evaluation techniques for window aggregates in data streams,” in
Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’05, 2005, pp. 311–322.

[36] H. Abbas, Z. Jiang, K. J. Jang, M. Beccani, J. Liangy, and R. Mang-
haram, “High-level modeling for computer-aided clinical trials of med-
ical devices,” in 2016 IEEE International High Level Design Validation
and Test Workshop (HLDVT), Oct 2016, pp. 85–92.

[37] Z. Jiang, H. Abbas, K. J. Jang, M. Beccani, J. Liang, S. Dixit, and
R. Mangharam, “In-silico pre-clinical trials for implantable cardioverter
defibrillators,” in 2016 38th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), Aug 2016,
pp. 169–172.

[38] K. Liu, G. Pinto, and Y. D. Liu, “Data-oriented characterization of
application-level energy optimization,” in Fundamental Approaches to
Software Engineering: 18th International Conference, A. Egyed and
I. Schaefer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
April 2015, pp. 316–331. [Online]. Available: http://dx.doi.org/10.1007/
978-3-662-46675-9 21

[39] Z. Jiang, M. Pajic, R. Alur, and R. Mangharam, “Closed-loop
verification of medical devices with model abstraction and refinement,”
International Journal on Software Tools for Technology Transfer,
vol. 16, no. 2, pp. 191–213, 2014. [Online]. Available: http:
//dx.doi.org/10.1007/s10009-013-0289-7

[40] H. Abbas, K. J. Jiang, Z. Jiang, and R. Mangharam, “Towards model
checking of implantable cardioverter defibrillators,” in Proceedings of
the 19th International Conference on Hybrid Systems: Computation and
Control, ser. HSCC ’16. New York, NY, USA: ACM, 2016, pp. 87–92.
[Online]. Available: http://doi.acm.org/10.1145/2883817.2883841

[41] L. A. Tuan, M. C. Zheng, and Q. T. Tho, “Modeling and verification
of safety critical systems: A case study on pacemaker,” in 2010 Fourth
International Conference on Secure Software Integration and Reliability
Improvement, June 2010, pp. 23–32.

[42] S. Andalam, H. Ramanna, A. Malik, P. Roop, N. Patel, and M. L. Trew,
“Hybrid automata models of cardiac ventricular electrophysiology for
real-time computational applications,” in 2016 38th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Aug 2016, pp. 5595–5598.

[43] U.S.FDA, “General principles of software validation; final guidance for
industry and fda staff,” Center for Devices and Radiological Health,
2002.

[44] T. Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre, “Quantitative
verification of implantable cardiac pacemakers over hybrid heart
models,” Information and Computation, vol. 236, pp. 87 – 101, 2014,
special Issue on Hybrid Systems and Biology. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0890540114000157

[45] C. Barker, M. Kwiatkowska, A. Mereacre, N. Paoletti, and A. Patan,
“Hardware-in-the-loop simulation and energy optimization of cardiac
pacemakers,” in 2015 37th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Aug 2015, pp.
7188–7191.

[46] J.-P. Tolvanen, V. Djuki, and A. Popovic, “Metamodeling for
medical devices: Code generation, model-debugging and run-time
synchronization,” Procedia Computer Science, vol. 63, pp. 539 –
544, 2015, the 6th International Conference on Emerging Ubiquitous
Systems and Pervasive Networks (EUSPN 2015)/ The 5th International
Conference on Current and Future Trends of Information and
Communication Technologies in Healthcare (ICTH-2015)/ Affiliated
Workshops. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S187705091502517X

http://www.seas.upenn.edu/~mamouras/StreamQRE/StreamQRE.jar
http://www.seas.upenn.edu/~mamouras/StreamQRE/StreamQRE.jar
http://dx.doi.org/10.1016/j.hrthm.2006.05.006
http://www.sciencedirect.com/science/article/pii/S1547527117304927
http://www.sciencedirect.com/science/article/pii/S1547527117304927
http://dx.doi.org/10.1111/pace.13062
https://doi.org/10.1007/978-3-319-67471-1_2
http://circoutcomes.ahajournals.org/content/5/6/e78
http://dx.doi.org/10.1093/europace/euv436
http://www.dsmforum.org/events/dsm09/papers/karna.pdf
http://www.dsmforum.org/events/dsm09/papers/karna.pdf
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://dx.doi.org/10.1007/978-3-662-49498-1_2
http://dx.doi.org/10.1007/978-3-662-46675-9_21
http://dx.doi.org/10.1007/978-3-662-46675-9_21
http://dx.doi.org/10.1007/s10009-013-0289-7
http://dx.doi.org/10.1007/s10009-013-0289-7
http://doi.acm.org/10.1145/2883817.2883841
http://www.sciencedirect.com/science/article/pii/S0890540114000157
http://www.sciencedirect.com/science/article/pii/S187705091502517X
http://www.sciencedirect.com/science/article/pii/S187705091502517X

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 21

[47] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: A new model and
architecture for data stream management,” The VLDB Journal, vol. 12,
no. 2, pp. 120–139, 2003.

[48] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. Zdonik, “The design of the Borealis stream processing
engine,” in Proceedings of the 2nd Biennial Conference on Innovative
Data Systems Research (CIDR ’05), no. 2005, 2005, pp. 277–289.
[Online]. Available: http://cidrdb.org/cidr2005/papers/P23.pdf

[49] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,
R. Motwani, U. Srivastava, and J. Widom, “STREAM: The Stanford
data stream management system,” Stanford InfoLab, Tech. Rep.
2004-20, 2004. [Online]. Available: http://ilpubs.stanford.edu:8090/641/

[50] R. S. Barga, J. Goldstein, M. Ali, and M. Hong, “Consistent
streaming through time: A vision for event stream processing,” in
Proceedings of the 3rd Biennial Conference on Innovative Data
Systems Research (CIDR ’07), 2007, pp. 363–374. [Online]. Available:
http://cidrdb.org/cidr2007/papers/cidr07p42.pdf

[51] M. Ali, B. Chandramouli, J. Goldstein, and R. Schindlauer, “The
extensibility framework in Microsoft StreamInsight,” in Proceedings of
the 27th IEEE International Conference on Data Engineering (ICDE
’11), 2011, pp. 1242–1253. [Online]. Available: http://dx.doi.org/10.
1109/ICDE.2011.5767878

[52] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query
language: Semantic foundations and query execution,” The VLDB
Journal, vol. 15, no. 2, pp. 121–142, 2006. [Online]. Available:
http://dx.doi.org/10.1007/s00778-004-0147-z

[53] M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar,
V. Kumar, M. Mendell, H. Nasgaard, S. Schneider, R. Soulé, and K. L.
Wu, “IBM Streams Processing Language: Analyzing big data in motion,”
IBM Journal of Research and Development, vol. 57, no. 3/4, pp. 7:1–
7:11, 2013.

[54] M. Vaziri, O. Tardieu, R. Rabbah, P. Suter, and M. Hirzel,
“Stream processing with a spreadsheet,” in Proceedings of the 28th
European Conference on Object-Oriented Programming (ECOOP ’14).
Springer Berlin Heidelberg, 2014, pp. 360–384. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-44202-9 15

[55] “ReactiveX: An API for asynchronous programming with observable
streams,” http://reactivex.io/.

[56] “Esper for Java,” http://www.espertech.com/esper/.
[57] “Apache Flink: Scalable batch and stream data processing,” https://flink.

apache.org/.
[58] B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson,

B. Finkbeiner, H. B. Sipma, S. Mehrotra, and Z. Manna, “Lola: runtime
monitoring of synchronous systems,” in 12th International Symposium
on Temporal Representation and Reasoning (TIME’05), June 2005, pp.
166–174.

[59] “Timed regular expressions,” J. ACM, vol. 49, no. 2, pp. 172–206, Mar.
2002. [Online]. Available: http://doi.acm.org/10.1145/506147.506151

[60] J. L. Ayala and M. López-Vallejo, “Integrating functional and power
simulation in embedded systems design,” J. Embedded Comput.,
vol. 1, no. 3, pp. 325–340, Aug. 2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1233748.1233752

[61] M. E. A. Ibrahim, M. Rupp, and H. A. H. Fahmy, “A precise high-level
power consumption model for embedded systems software,” EURASIP
J. Embedded Syst., vol. 2011, pp. 1:1–1:14, Jan. 2011. [Online].
Available: http://dx.doi.org/10.1155/2011/480805

[62] E. Senn, N. Julien, J. Laurent, and E. Martin, “Power consumption
estimation of a c program for data-intensive applications,” in
Proceedings of the 12th International Workshop on Integrated Circuit
Design. Power and Timing Modeling, Optimization and Simulation, ser.
PATMOS ’02. London, UK, UK: Springer-Verlag, 2002, pp. 332–341.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646949.712708

[63] H. Blume, D. Becker, L. Rotenberg, M. Botteck, J. Brakensiek, and
T. G. Noll, “Hybrid functional- and instruction-level power modeling
for embedded and heterogeneous processor architectures,” J. Syst.
Archit., vol. 53, no. 10, pp. 689–702, Oct. 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.sysarc.2007.01.002

[64] C. Krintz, Y. Wen, and R. Wolski, “Application-level prediction of
battery dissipation,” in Proceedings of the 2004 International Symposium
on Low Power Electronics and Design (IEEE Cat. No.04TH8758), Aug
2004, pp. 224–229.

[65] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia,
N. Grech, M. V. Hermenegildo, and K. Eder, Energy Consumption
Analysis of Programs Based on XMOS ISA-Level Models. Cham:

Springer International Publishing, 2014, pp. 72–90. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-14125-1 5

[66] “The ciao system,” https://ciao-lang.org/, accessed: 2017-06-17.
[67] K. Georgiou, S. Kerrison, Z. Chamski, and K. Eder, “Energy

transparency for deeply embedded programs,” ACM Trans. Archit. Code
Optim., vol. 14, no. 1, pp. 8:1–8:26, Mar. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3046679

[68] R. Jayaseelan, T. Mitra, and X. Li, “Estimating the worst-case energy
consumption of embedded software,” in 12th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’06), April
2006, pp. 81–90.

[69] B. W. Bequette, “Continuous glucose monitoring: Real-time algorithms
for calibration, filtering, and alarms,” Journal of Diabetes Science
and Technology, vol. 4, no. 2, pp. 404–418, 2010, pMID: 20307402.
[Online]. Available: http://dx.doi.org/10.1177/193229681000400222

[70] Y. Leal, W. Garcia-Gabin, J. Bondia, E. Esteve, W. Ricart, J.-M.
Fernndez-Real, and J. Veh, “Enhanced algorithm for glucose estimation
using the continuous glucose monitoring system,” Med Sci Monit 2010;
16(6): MT51-58, vol. 16, no. 6, pp. 51–58, 2010.

Houssam Abbas (M’01) received his B.E. in Com-
puter Engineering from the American University
of Beirut (Lebanon) and his M.S. and Ph.D. in
Electrical engineering from Arizona State Univer-
sity. He was a Design Automation engineer in the
SoC Verification group at Intel from 2006 to 2014.
Houssam is currently a postdoctoral fellow in the
Department of Electrical and Systems Engineering
at the University of Pennsylvania. His research inter-
ests are in the verification, control and conformance
testing of Cyber-Physical Systems. Current research

includes the verification and performance analysis of life-supporting medical
devices, the verification and control of autonomous vehicles with a view
towards certifying such systems, and anytime computation and control.

Rajeev Alur is Zisman Family Professor of Com-
puter and Information Science at the University of
Pennsylvania. He obtained his bachelor’s degree in
computer science from IIT Kanpur in 1987 and PhD
in computer science from Stanford University in
1991. Before joining the University of Pennsylvania
in 1997, he was with the Computing Science Re-
search Center at Bell Labs. His research is focused
on formal methods for system design, and spans
theoretical computer science, software verification
and synthesis, and cyber-physical systems. He is a

Fellow of the AAAS, a Fellow of the ACM, a Fellow of the IEEE, an Alfred
P. Sloan Faculty Fellow, and a Simons Investigator. He was awarded the
inaugural CAV (Computer-Aided Verification) award in 2008, ACM/IEEE
Logic in Computer Science (LICS) Test-of-Time award in 2010 and the
inaugural Alonzo Church award by ACM SIGLOG/EATCS/EACSL in 2016
for his work on timed automata. He is the author of the textbook Principles
of Cyber-Physical Systems (MIT Press, 2015).

http://cidrdb.org/cidr2005/papers/P23.pdf
http://ilpubs.stanford.edu:8090/641/
http://cidrdb.org/cidr2007/papers/cidr07p42.pdf
http://dx.doi.org/10.1109/ICDE.2011.5767878
http://dx.doi.org/10.1109/ICDE.2011.5767878
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1007/978-3-662-44202-9_15
http://reactivex.io/
http://www.espertech.com/esper/
https://flink.apache.org/
https://flink.apache.org/
http://doi.acm.org/10.1145/506147.506151
http://dl.acm.org/citation.cfm?id=1233748.1233752
http://dx.doi.org/10.1155/2011/480805
http://dl.acm.org/citation.cfm?id=646949.712708
http://dx.doi.org/10.1016/j.sysarc.2007.01.002
http://dx.doi.org/10.1007/978-3-319-14125-1_5
https://ciao-lang.org/
http://doi.acm.org/10.1145/3046679
http://dx.doi.org/10.1177/193229681000400222

IEEE PROCEEDINGS, VOL. VV, NO. NN, MONTH 2018 22

Rahul Mangharam (M’02) received the B.S., M.S.,
and Ph.D. degrees in electrical and computer en-
gineering from Carnegie Mellon University, Pitts-
burgh, PA, in 2000, 2002, and 2008 respectively.

He is an Associate Professor in the Dept. of
Electrical & Systems Engineering and Dept. of
Computer & Information Science at the University
of Pennsylvania. He is the Director of the Real-
Time and Embedded Systems Lab and Mobility21
DoT National University Transportation Center. His
current interests are in the application of formal

methods, controls and machine learning for safe and efficient life-critical
systems in medical devices, energy markets and autonomous systems.

Dr. Mangharam received the US Presidential Early Career Awards for
Scientists and Engineers in 2016, DoE CLEANTECH Prize (Regional) in
2016, National Science Foundation CAREER Award in 2014, IEEE Benjamin
Franklin Key Award in 2013, Intel Early Faculty Career Award in 2012 and
was selected by the National Academy of Engineering for the 2012 and 2017
Frontiers of Engineering.

Alena Rodionova received her B.S. and M.S. in
Mathematics from the Siberian Federal University
(Russia) in 2012 and 2014, respectively. Before
joining the University of Pennsylvania in 2017, she
was with the Cyber-Physical Systems Group at TU
Wien. Alena is currently a doctoral student in the
Department of Electrical and Systems Engineering
at the University of Pennsylvania. Her research is
focused on formal analysis and verification of safety-
critical systems such as medical devices, and risk as-
sessment, verification and control of Cyber-Physical

Systems such as autonomous vehicles.

Konstantinos Mamouras completed his undergrad-
uate studies in Electrical and Computer Engineering
at the National Technical University of Athens,
obtained an M.Sc. in Computer Science from Im-
perial College London, and a Ph.D. in Computer
Science from Cornell University. He is currently a
postdoctoral researcher in the Department of Com-
puter and Information Science at the University of
Pennsylvania. His research interests lie in the area of
programming languages for data stream processing,

and logical approaches for program verification.

	Introduction
	Background on cardiac function
	Cardiac electrophysiology
	Implantable devices
	Device measurement: from real-valued to boolean signal

	Streaming algorithms for arrhythmia detection
	Introduction to QREs
	Streaming functions
	Quantitative Regular Expressions
	Atomic queries
	Empty sequence
	Iteration
	Combination and application
	Quantitative concatenation
	Streaming composition
	Global choice

	Derived constructs
	Matching without output
	``Until'' Iteration
	Stream Annotation
	Efficient Sliding Windows

	A Java Library of QREs

	An ICD Arrhythmia Monitoring Algorithm
	Discriminators
	Three Consecutive Short Intervals
	8/10 Short Intervals
	Sudden Onset
	A/V Rate Comparison
	Sliding 6/10
	Stability
	AFib Rate

	QRE Implementation of the Arrhytmia Monitoring Algorithm
	Overview of Implementation Stages
	Stage 0: Annotate interval lengths
	Stage 1: Sudden Onset and Short Intervals
	Stage 2: Sudden Onset and Begin Duration
	Stage 3: Therapy Decision
	Overall AMA Query

	Illustrative Examples
	Sample executions
	Validation of the QRE Implementation

	Upper Bounds on QRE cost
	An upper bound based on the evaluator
	From basic cost to QRE cost
	Measuring the basic costs

	Measured Energy Consumption of Entire Algorithm

	Related work
	Conclusion
	References
	Biographies
	Houssam Abbas
	Rajeev Alur
	Konstantinos Mamouras
	Rahul Mangharam
	Alena Rodionova

