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ABSTRACT

COMMUNICATION FOR TEAMS OF NETWORKED ROBOTS

Jonathan Fink

Vijay Kumar

There are a large class of problems, from search and rescue to environmental monitoring,

that can benefit from teams of mobile robots in environments where there is no existing

infrastructure for inter-agent communication. We seek to address the problems neces-

sary for a team of small, low-power, low-cost robots to deploy in such a way that they

can dynamically provide their own multi-hop communication network. To do so, we for-

mulate a situational awareness problem statement that specifies both the physical task

and end-to-end communication rates that must be maintained. In pursuit of a solution

to this problem, we address topics ranging from the modeling of point-to-point wireless

communication to mobility control for connectivity maintenance. Since our focus is on

developing solutions to these problems that can be experimentally verified, we also detail

the design and implantation of a decentralized testbed for multi-robot research. Experi-

ments on this testbed allow us to determine data-driven models for point-to-point wireless

channel prediction, test relative signal-strength-based localization methods, and to verify

that our algorithms for mobility control maintain the desired instantaneous rates when

routing through the wireless network. The tools we develop are integral to the fielding of

teams of robots with robust wireless network capabilities.
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Chapter 1

Introduction

In this thesis, we address the problem of communication for networked teams of robots in a

comprehensive way. This entails a unified examination of many problems that are typically

considered separately including system architectures, wireless communication modeling,

network routing, and coordinated motion planning. We focus on communication because,

in the same way that joint kinematics or obstacle avoidance are fundamental constraints

of single robot systems, communication is a fundamental constraint for teams of robots.

It enables dynamic point-to-point communication infrastructure, an external command

structure, and coordinated algorithms for control, estimation and inference. In other

words, the communication capability of a team of robots is essential even for applications

where it is not the primary objective.

The potential application of teams of robots to search and rescue applications is well

accepted [17, 46]. Teams of low-cost, low-power, expendable robots are able to distribute

themselves through disaster sites in place of human rescuers in order to locate survivors

and identify dangerous locations. In the most general case, flows of sensory data from

each robot must be aggregated at a fixed operation center outside the disaster area. A

specialization of this application is the flow of sensory and control data necessary to

teleoperate a single robot while the team act as communication relays. To accomplish

these types of task, the robots must be able to estimate point-to-point communication
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capabilities in the environment and position themselves such that the necessary flows of

data can be accommodated by their wireless network.

The primary challenge facing the design and implementation of such a system is that

point-to-point radio communication is notoriously hard to predict. The variability of its

performance makes it difficult to guarantee a certain rate of communication over a single

link and only becomes more challenging when considering a network of links. Furthermore,

gathering enough measurements to adequately characterize communication performance

for any point-to-point link in a new environment is prohibitive. A secondary independent

challenge of this work is that even when given an approximate prediction of point-to-point

communication capability, planning coordinated motions of many robotic agents such that

communication flows are maintained is a complex undertaking.

The primary challenge of uncertain point-to-point radio communication motivates the

need for experimental verification. Based on our assumption that communication will be

inherently unpredictable, we cannot argue that theoretical analysis or simulation results

will be adequate to verify the success or performance of any solution to the communication

problems faced by teams of networked robots. Consequently, in this thesis we also address

the development of an experimental testbed for networked teams of robots. In doing

so, we demonstrate how the properties of an experimental testbed affect the type of

system architecture that can be verified. This forces us to focus on approaches to solve

the communication problems for a team of robots that can be implemented and verified

experimentally on our testbed. Finally, since our focus is on communication issues, we

will assume the primary objective for the team, e.g. sensing or data fusion, are externally

available but beyond the scope of this work.

1.1 Objective

The focus of this thesis is presented in two pieces. The first objective is to consider the

design of system architectures and the implications this has on the development of an

experimental testbed to investigate the wide range of research problems underly multi-
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robot coordination and cooperation. We detail the design criteria and evolution of a

system necessary to support a large class of robots and increasing size of the operating

environment. A large part of testbed design includes the evaluation and implementation

of control and localization techniques for individual robots. In later experiments, this

allows us to assume basic individual robot functionality as an available technology.

The second objective of this thesis is to address the communication problems faced by

teams of networked robots. We begin by formulating a motivating problem statement for

situational awareness and a solution that addresses the problem through the development

of two core capabilities. The first capability is a system to provide statistical predictions of

point-to-point radio communication. By analyzing experimental measurements, we evalu-

ate several candidate models and develop this capability. The second capability necessary

is a suite of algorithms that rely on the point-to-point communication predictions to de-

termine how robots should move to accomplish their high-level task specification while

maintaining the fundamental communication constraints. Our treatment of the communi-

cation problems faced by networked robots concludes with experimental results verifying

that our approach succeeds in solving our situational awareness problem statement.

1.2 Literature Review

As is typical in robotics problems, the relevant literature extends across several fields. In

the case of communication issues for robotic networks, we draw on results from radio com-

munication, wireless networking, control theory, and robotic motion planning literature.

We begin by considering the problem of modeling point-to-point radio communication.

This leads us to a short tangent into the area of relative localization based on received

signal strength. These ideas can be used to provide robotic networks with additional lo-

cation information in unknown environments. Next, we survey recent results in the field

of wireless networking, i.e. determining how to route messages from source to destination

through a network with dynamically changing link topology. Finally, we examine results

on coordinated control and connectivity for multi-agent systems. While much of this
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work relies on simplifying abstractions about the nature of the communication channels,

it provides a strong theoretical basis for the development of architectures and algorithms.

1.2.1 Point-to-point Radio Communication

The basis for arbitrary communication in networked teams of robots is point-to-point

radio communication. That is, the use of radio frequency transceivers to communicate

control, coordination, sensing, and other data. It is well understood the capability of a

wireless communication channel is dependent on the signal-to-noise ratio at the receiver

[93]. Consequently, the problem of modeling and predicting the propagation of a radio sig-

nal through the environment is well studied. We are most interested in the literature that

considers indoor environments and the application of models to problems with inherent

node mobility.

Radio signal propagation is a complex, multi-scale process that occurs at a number of

length scales. At the coarsest scale, radio signal power decays with increasing distance from

the transmitter. At a medium scale, obstacles in the environment can lead to shadowing,

i.e. signal power attenuation due to the obstacle. The so-called phenomena of small-scale

fading occurs due to multi-path effects. That is, the radio signal reflects and refracts off of

scatterers in the environment causing several “copies” of the signal to arrive at the receiver

at approximately the same time with dramatically varied power characteristics. In fact,

small movements in the scatterers, transmitter, or receiver can result in large changes in

the received signal strength [86].

Models in the literature can be classified based on the computation of radio signal path

as direct path, dominant path, or ray-tracing. The class of direct path models have the

highest level of adoption due to the simplicity of their implementation. All of these models

are grounded in the concept of a distance dependent path loss. However, these models

are empirical and require training based on experimental measurements that may lead

to varied parameterizations from environment to environment. For indoor models, the

recognition that walls generate non-smooth attenuation of signal power is incorporated by
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Damosso et al. in the multi-wall model that assumes a fixed attenuation, on a log scale,

for each wall between the source and receiver [14]. There are several additions to this

model that consider the effects of wall type [48] and thickness [58].

Based on the experimental observation that radio propagation seems to occur in two

distinct regions, Cheung et al. [11] propose a direct path model that relies on two unique

path-loss exponents for short-range and longer-range channels. Extending their model

even further, they introduce an angle dependence to the signal attenuation attributed to

obstacles in the environment and allow for one level of signal diffraction at corners in the

environment.

A practical limitation of direct path methods is that they offer limited modeling of the

medium-scale effects and no modeling of the small-scale fading effects. For robotic teams,

accurate prediction of received signal strength and communication channel capability re-

quires consideration of these effects since the nodes are operating in possibly cluttered

environments and are mobile [74]. Fortunately, it has been observed that small-scale fad-

ing for particular environments can be approximated as a random variable with log-normal

[55], Rician [62], or Rayleigh [12] distribution.

The class of ray-tracing models consider a large number of rays sent in all directions

by the transmitter [67]. At each interaction with obstacles in the environment, i.e. trans-

mission, reflection, refraction, the number of rays increases exponentially. As each rays

interacts with the environment, signal attenuation is computed based on path loss and

dielectric properties of the interacting obstacles in the environment. The set of rays that ar-

rive at the receiver enumerate the multi-path effect and provide a more accurate portrayal

of the small-scale fading phenomenon. Though the naive implementation of ray-tracing

methods leads to exponential complexity, there are methods for efficient approximation,

e.g. Gorce et al. [34] introduce a multi-resolution frequency domain ParFlow (MR-FDPF)

approach for fast simulation of radio wave propagation in indoor environments.

While ray-tracing methods have the capability to accurately model radio signal prop-

agation at several length scales, they are fragile in their dependence on precise models of
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the environment that include material properties such as the dielectric constant of each

obstacle. Wölfle et al. [107, 109] propose the dominant path class of models that seek to

efficiently predict the sequence of ray interactions that leads to the primary component

of the signal power arriving at the receiver. Dominant paths are inferred by training of

neural network prediction models on coarse geometric maps of the environment and path

loss along the dominant path is based on known properties of the environment. They

demonstrate that this paradigm outperforms both direct-path and ray-tracing models in

terms of accuracy and efficiency [110].

Separate to the issue of model selection is the problem of building accurate indoor

databases of received signal strength. Wahl et al. [103] address this issue by examining

the inaccuracies for an indoor environment with two accurate models – one fast ray-tracing

and one dominant path model. Specifically, they enumerate a number of factors that lead

to inaccuracies in building databases, e.g. time varying obstacles and adjacent building

structures. Neskovic et al. [76] also provide a survey of many radio propagation models

and note that even temporal effects in indoor environments due to people moving through

the environment can cause significant changes in received signal strength. They summarize

that do date a perfect system has not been found for the prediction of radio signal strength

– each has its advantages and disadvantages.

The advances in radio signal propagation modeling has had an effect on both the

wireless sensor network and mobile robotics communities. Indeed, the wireless sensor

network community has recognized the need to incorporate more accurate propagation

models into simulation environments [36, 96]. Furthermore, both communities have turned

to received signal strength as a sensory input that can be used to provide localization

services. This is, in part, due to several commercial systems that offer real-time location

information for warehouse and hospital environments, e.g. [22, 3, 2].

Localization techniques for wireless sensor networks can be broken into two categories –

range-based and range-free methods. Awad et al. [6] examine the application of received

signal strength indicators to network-centric localization of a wireless sensor network.
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Specifically, they focus on methods for estimating distance from received signal strength

and the challenges that arise – namely the transmit power, node orientation, and quality of

reference measurements. They demonstrate that proper selection of transmission power

can increase the accuracy of distance estimation. An alternate approach, presented by

Yedvalli et al. [112], ignores the idea of range inference from signal strength and instead

relies on the assumption that an ordering of received signal strength of point-to-point

links predicts the distance-based order of those same links. By comparative analysis of

their method with four state-of-the-art localization methods, they demonstrate improved

performance over a range of channel conditions and node deployments.

In the robotics community, assumptions for received signal strength-based localization

typically involve mobile nodes on a smaller scale than wireless sensor networks. The

advantage of controlled node mobility is that a time series of measurements can help

refine the location estimate. However, a theme here is that model-based approaches cannot

provide adequate accuracy for mobile robot localization. Instead, most methods rely on a

priori measurement campaigns at reference locations followed by probabilistic filtering to

estimate mobile robot localization [53, 37]. These methods are forced to make discretizing

assumptions based on the location of reference measurements while Ferris et al. [25] adopt

a model-free approach by training a Gaussian process on a set of a priori measurements

in the environment. In doing so, they are able to accurately model the spatial process of

received signal strength in a probabilistically correct way. Recently, Zickler et al. [117]

have demonstrated that a range-based approach can succeed for mobile robot localization

with a small number of nodes. They pursue the idea of a data-driven probabilistic model

that maps received signal strength to inter-node distance distributions. When embedded in

a grid-based localization algorithm, this model effectively enables localization of a moving

node.

The development of radio signal propagation models does not directly address the

mobile robotics problem of mapping received signal strength in a partially unknown en-

vironment. A common robotics application requires the nodes to deploy into a new en-
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vironment with limited a priori knowledge of radio signal strength propagation and learn

the necessary features of that environment during operation. This presents a challenging

problem. Indeed, even for environments where the received signal strength model has been

learned, temporal variations may quickly invalidate that model, e.g. [113]. Furthermore,

the task of capturing point-to-point training data for even a small environment can be

prohibitive.

Nonetheless, there are limited examples of how signal strength maps can be generated

in an online fashion by mobile robots. For example, Hsieh et al. [41] propose a method

that relies on a convex cell decomposition of the environment. Within each cell, they

assume that the line-of-sight channel can be predicted with reasonable accuracy based on

distance-based signal transmission models. A finite set of point-to-point signal strength

measurements are then made to determine signal strength between convex cells. Much

of the work focuses on determining sampling plans that visit the pairs of positions in

an efficient manner. Mostofi et al. [75] propose an application of compressed sensing

to the mapping of signal strength with minimal sensing. Their method allows for the

reconstruction of a signal strength map based only on sparse measurements.

1.2.2 Wireless Networking

The entire field of wireless networking is well studied and beyond the scope of this thesis.

Here we examine a slice of that literature that provides insight to the problems faced by

networked robot teams and an idea of the research trajectory that brings us to our solu-

tions. The main issues of wireless networking arrise directly from the challenges introduced

by point-to-point radio communication as described above. The inherent variability in the

performance of radio communication degrades the performance of traditional networking

algorithms developed for wired systems. When applied to robotic networks, where a ma-

jority of the nodes are mobile, traditional methods become entirely unsuitable as even the

basic topology of the network becomes dynamic.
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Early solutions to the problem of changing network topology include Ad Hoc On

Demand Vector routing (AODV) [83] and Dynamic Source Routing (DSR) [45]. In both

of these approaches realtime measurements are collected to determine the connectivity

of the network and the algorithm determines how messages should be routed based on

a minimum hop-count metric. That is, both algorithms seek to minimize the number of

the links necessary to send a message from source to destination. Problems quickly arrise

when these algorithms are applied to real-world dynamic networks.

Most of these problems can be reduced to the concept that the existence of a link in

a wireless network is not a binary quantity. Lundgren et al. [64] first observe that the

problem of detecting link existence is not straight forward. They propose the concept of a

communication grey zone where link performance has degraded to a point where reception

of control packets used to identify link existence is possible but reception of data packets

is not. The difference in reception arises from a number of reasons, e.g. transmission

rate and packet size. They propose a method whereby each possible communication link

is evaluated according to a signal quality threshold before it is included in the network

routing algorithm.

While eliminating communication links based on a signal quality threshold maintains

performance in real world networks, it may lead to a disconnected system where nodes

that could otherwise communicate at low rates are unreachable. An alternate approach,

presented by De Couto et al. [18], defines the expected transmission count metric as a

replacement for the minimum hop-count metric typically used when selecting routes in a

dynamic wireless network. In essence, this approach avoids the false notion that hop count

is a good predictor for route performance. While De Couto et al. experimentally demon-

strate improved performance, Stojmenovic et al. [98] examine similar metrics based on

expected hop count and the probability of delivery to develop algorithms with theoretical

guarantees. The common conclusion from these studies and others is that route choice

should be based on a quality metric rather than satisfaction of a threshold.
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A recent thread of the literature eschews the idea of a single deterministic route for

messages in an uncertain wireless network. Instead, Ribeiro et al. [89] present a framework

where each link in the network is defined as a probability of successful communication.

This allows them to develop stochastic routing protocols where packets are routed ran-

domly according to probabilities that are the result of properly defined optimality criteria.

Wu et al. [111] extend this work to model uncertain link reliabilities based on their mean

and variance which allows for robust routing algorithms that can be formulated as convex

optimization programs. By taking into account the statistical properties of the link capa-

bilities, this approach satisfies optimality criteria in spite of link uncertainty. Furthermore,

it is demonstrated that these optimization problems have a separable structure and can

be computed in a distributed way through communication with one-hop neighbors. These

probabilistic approaches are particularly interesting for robotics applications where node

movement prevents accurate estimation of point-to-point communication capability.

1.2.3 Coordinated Control

Coordinated control refers to the ability of a team or group of robots to work together

in order to accomplish an application or task. Typical coordination tasks for a team

of mobile robots include formation control, cooperative manipulation, and sensor fusion.

However, a large class of coordination problem can be considered as the general consensus

problem. Accordingly, there has been a large amount of effort devoted to understanding

the algorithms and network conditions under which consensus can be achieved. Nearly

all of this work relies on a coarse abstraction for network communication – that links

are a binary quantity where connections can be considered available or not. While this

abstraction may seem to be an oversimplification based on the wireless communication

literature reviewed above, it does allow some strong graph theoretic statements to be

made.

The generic consensus problem is defined such that all agents of a team must inde-

pendently determine the value of some global quantity based on interactions with other
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agents in the team. The precise form of interaction is generally abstracted and can be

indirect, i.e. each node senses the state of its neighbors, or more explicit, i.e. exchange of

data through a wireless communication channel. Much of this work can be traced back

to that of Jadbabaie et al. [43] where they provide a theoretical explanation for flocking

models when each agent only has knowledge of its heading and the headings of its cur-

rent neighbors. They prove that the described system converges, i.e. achieves consensus,

despite changes to each node’s neighbor set so long as a union of the collection of inter-

action graphs is connected frequently enough. Similar results are extended by Ren et al.

[88] for directed graphs where the condition for convergence is that a spanning tree exist

frequently enough.

This work is extended even further by Olfati-Saber et al. [79] when they consider a

large set of consensus problems with fixed or switching networks, time delays, and directed

or undirected information flow. A primary contribution of this work is the establishment of

the connection between algebraic connectivity, also know as the Fiedler eigenvalue, and the

performance of linear consensus protocols. They additionally show that there is a trade-

off between robustness to time-delays and the performance of linear consensus protocols.

Olfati-Saber et al. [78] go on to provide an overview on much of the theory and applications

of consensus problems in networked systems. Most importantly they demonstrate that a

number of seemingly different consensus algorithms are, in fact, closely related.

Mart́ınez et al. [65, 66] diverge from analysis of consensus problems to develop a theory

of time and communication complexity for motion coordination algorithms.. They do this

by formalizing the notions of a robotic network with control and communication laws.

They define the time complexity of a control and communication law to be the minium

number of rounds of communication necessary to achieve the specified task. Using their

formalization, they are able to analyze several well-known coordination algorithms and

provide lower and upper bounds on their complexity.

We present this slice of the coordinated control literature to demonstrate the amount

of effort that has been put into analyzing interaction systems. Indeed, this body of work
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has been able to make remarkable guarantees about the convergence and performance of

consensus-type algorithms that act on interaction graphs as an abstraction for sensing

or wireless communication. Consequently, there is an accordingly large segment of the

coordinated control literature that addresses the problem of connectivity maintenance.

That is, the problem of completing a primary task, be it rendezvous, sensing, or target

tracking, under the constraint that the communication network must remain connected.

Solutions to this problem can be classified based on the model used for point-to-point

communication.

The first model, and perhaps most widely considered, is the disk model. This implies

that communication capability can be directly inferred by proximity, e.g. if two nodes are

less than a distance R from each other, communication is possible. Examining the models

for wireless communication, it is easy to see the attractiveness of this as a conservative

approximation of connectedness since communication is often quite reliable if two nodes are

close enough. Most importantly, the disk-model allows for an easy geometric construction

of the communication graph. Notarstefanno et al. [77] introduce a result for a system of

double integrators that transforms the desired controls for each agent to find the closest

input that maintains connectivity. They do this in a distributed fashion by developing the

concept of a double integrator disk graph an employing distributed flow-control algorithms.

More recently, Chakraborty et al. [8] formulate a convex optimization problem to maintain

k-connectivity during network reconfiguration. The major contribution of this work is the

development of a distributed incremental algorithm that solves their problem with local

information and improved scalability over the centralized problem.

Spanos et al. [95] take an alternate approach to most of the literature reviewed here

by developing methods for distributed motion planning that take connectivity constraints

into account. By introducing the concept of the connectivity robustness of a network,

i.e. a quantification of the freedom of individual vehicles to undergo arbitrary motions

without disconnecting the network, they are able to show that distributed motion planning

methods are able to efficiently solve the problem. Unlike many methods which seek to
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analytically construct controls, they rely on algorithmic search to produce optimal controls

subject to obstacle-avoidance and communication constraints.

The second class of model-based connectivity maintenance algorithms extend the disk

model by assuming some sort of smooth distance-based decay of connectivity. The pri-

mary result of this extension is that they gain the ability to analytically evaluate gradient

information about connectivity constraints. Another common feature of these approaches

is the use of the second smallest eigenvalue, the Fiedler value, of the graph Laplacian as

a measure for connectivity of the wireless network. DeGennaro et al. [19] use a model

of exponential decay for point-to-point communication and propose a decentralized al-

gorithm for eigenvector computation that yields the desired distance for each link. A

potential-based control law then drives the system toward the set-point distances that

increase the connectivity. Ji et al. [44] extend this work by considering a class of problems

where the team has a primary formation control style objective that must be achieved

while maintaining connectivity. The problem is further refined by Zavlanos et al. [115]

who formulate the connectivity requirement as a differentiable constraint on individual

agent motion based on the dynamics of the Laplacian matrix. This allows for a leader-

follower application where follower nodes move based on gradient information to maintain

connectivity.

A limitation of the above approaches that leverage the graph Laplacian and act to

increase algebraic connectivity is that they ignore the discrete nature of the network

structure. Zavlanos et al. [116, 70] address this limitation by proposing a hybrid systems

approach where a continuous controller maintains existing links while a discrete controller

operates to delete links unnecessary for connectivity by means of a gossip algorithm. They

demonstrate the effectiveness of their approach in both simulation and experiments.

Stump et al. [99] continue the work of [19] for an environment with obstacles. They

do this by incorporating obstacle–based constraints and casting the resulting problem

as a convex optimization that is solved at each time step. By doing so, they are able
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to demonstrate a reactive controller that can maintain distance-based connectivity in an

environment with complex obstacles.

Schuresko et al. [92] take an alternate approach to develop algorithms that determine

if a collective action will break connectivity and modifying that action to guarantee that

connectivity is maintained. Like many of the methods above, they rely on the use of the

second smallest eigenvalue of the graph Laplacian as a metric for connectivity but are

able to deal with outdated information due to delays in communication and robot motion.

They accomplish this with a game theoretic solution approach. Doing so frees them from

many of the analytic restrictions on the mapping from inter-robot distance to edge weight

in the connectivity graph, i.e. non-convex mappings are allowable.

A third model-based class of connectivity algorithms avoid the use of proximity as a

predictor for communication capability. Instead, they make the assumption that a line-

of-sight path between two nodes is a good predictor of a reliable communication channel.

Indeed, some of the models from the radio communication literature do support this

assumption. In particular, Stump [100] develops considers the problem of maintaining a

line-of-sight chain from a fixed node to a single moving node under external control. He

solves this problem by an adaptation of [31] and the application of Steiner trees to the

visibility maintenance problem to compute deployments that provide a minimum length

mutual visibility sequence to the moving node.

There is a growing segment of the literature that rely on empirical measurements or

stochastic models of communication capability that can handle the small-scale fading phe-

nomena that occur in most realistic environments and disrupt many implementations of

the literature referenced above. Hsieh et al. [38, 40] avoid the issue of predicting the

relationship between node positions and communication capability by measuring the local

gradient of each channel’s performance and computing controls accordingly. They are

able to demonstrate that for simple communication topologies, their controller maintains

connectivity to a base station in a real environment. Lindhé et al. [61] pursue a parallel

problem to the connectivity maintenance problem – they seek to exploit small-scale fad-
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ing to locally improve communication performance. They accomplish this by developing

analysis for the optimal sampling necessary in order to determine if small local movements

can reliably improve the performance of a communication link. The approach is experi-

mentally verified but does assume that nodes are stationary and that multi-path effects

are slow to change in the environment.

In the radio communication field, small-scale fading is often modeled as a random

variable. Mostofi [73] explicitly considers the random fading of wireless channels and

identifies the impact this fading has on decentralized mobile networks. She demonstrates

a characterization of communication noise and the variance on that noise as a function of

the signal-to-noise ratio and proposes a random motion planning strategy that can drive

agents out of highly correlated deep fades. Ghaffarkhah et al. [32] continue this approach

by addressing a specific target tracking problem where measurements of a moving target

are communicated back to a base station. The positions of the robots observing the target

are constrained by the quality of communication to the base station which is estimated in

a realistic way that includes random fading.

Similar to Hsieh et al., Le Ny et al. [56] avoid specific models for the prediction of

communication performance and instead propose an approach based on general gradient

descent frameworks when the objective function is based on uncertain or dynamic values.

By turning to stochastic gradient descent algorithms, they demonstrate a source seeking

behavior with realistic stochastic wireless connectivity constraints that are incorporated

into the random objective function.

Finally, all of the previous treatments of the wireless connectivity problem either rely

on simplified communication models and use algebraic connectivity as an abstraction for

the wireless network performance or rely on more accurate point-to-point communication

models while avoiding the difficult issues of network topology and end-to-end connectivity.

Zavlanos et al. [114] rely on deterministic functions to predict point-to-point reliability

but they also make the leap that occurred in the wireless networking literature to consider

the end-to-end performance of the network. In other words, their solution occurs in the
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joint space of network routing and node mobility. They accomplish this with a hybrid

control approach where continuous motion controllers based on potential fields interact

with discrete optimization of the communication variables that control network routing.

Rather than consider topological metrics, communication integrity is based on the ability

of the network to support desired end-to-end communication rates.

1.3 Approach

The objective of this thesis is to present and experimentally verify a system that can

address communication issues for a team of networked robots. This problem is clearly

divided into two pieces: first, the development of system architectures and experimental

testbed design and second, the algorithms that make up our solution to a particular

instance of the communication connectivity problem for a team of mobile agents.

In the first part, we begin by classifying the choice of system architecture according to

the communication abstraction – nearest-neighbor, centralized, or multi-hop. The choice

of system architecture presents implications for both the target deployment system as

well as the experimental testbed for verification. We continue by describing the evolu-

tion of our experimental testbed from a centralized model with the ability to emulate

nearest-neighbor algorithms to a fully decentralized model that can accurately implement

nearest-neighbor or multi-hop algorithms. We demonstrate the effectiveness of a cen-

tralized testbed with case study on the verification of a nearest-neighbor algorithm for

multi-robot manipulation.

To address the second piece, we formulate a situational awareness problem statement

with a proposed solution that relies on two subsystems – one that provides point-to-

point communication predictions and another that controls robot motions to maintain

communication. To generate point-to-point communication predictions, we compare the

performance of several direct-path models based on [14, 48, 11] and an extension of the

Gaussian process approach taken by Ferris et al. [25].
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In order to determine robot motions that satisfy a task specification while maintaining

communication constraints, we propose a novel approach that unifies wireless networking

and coordinated control. The wireless networking component is based on the premise of

considering the end-to-end performance as in [18] and the stochastic routing as in [111]. By

adopting a stochastic routing scheme, we are able to compute network solutions that are

robust to link uncertainty. The coordinated control component of our algorithm is most

closely related to [114]. By considering the problems jointly, we are able to choose solutions

to the networking problem that maximize a utility function related to each node’s freedom

to move. Conversely, node motions are constrained such that they will not invalidate the

current network solution. We present both local gradient-based methods similar to the

existing literature as well as global planning-based methods that are able to operate in

complex environments with obstacles.

Since the underlying point-to-point communication performance is inherently variable,

we conclude with a series of experiments to verify our solution to the situational awareness

problem statement. We conduct experiments in multiple environments and demonstrate

that instantaneous network performance matches or exceeds the task specifications.

1.4 Thesis Contributions

This thesis makes several novel contributions to the communication problems faced by

teams of networked robots.

First, we reformulate the traditional connectivity maintenance problem to incorporate

noisy point-to-point channels and support quality-of-service specifications for a team of

robots. This is done in a robust way by translating quality-of-service specifications into

end-to-end rates that must be maintained with a certain probability in the presence of

uncertain wireless communication. By defining connectivity based on on precise quality-of-

service specifications rather than abstractions for connectivity based on graph theory, we

are able design solutions that efficiently satisfy problem requirements when implemented

on a team of mobile robots.
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Second, in order to predict the achievable end-to-end rates across the network, we

develop probabilistic models for the point-to-point communication rate between pairs of

robots. These models can be refined as robots explore new regions of the environment. The

key feature of our approach is that it models local changes in the point-to-point commu-

nication capability and is able to represent uncertainty about predictions for unexplored

regions of the environment.

Third, we explore the use of robot mobility to enable and improve communication

quality-of-service. Using our probabilistic model for connectivity, we develop local con-

trollers that move agents to satisfy task specifications while optimizing connectivity and

performance of the network in an open environment. Furthermore, we present a global

planning algorithm that searches the joint configuration space of a team of robots to find

a sequence of network deployments that satisfy task specifications for complex environ-

ments with obstacles. By employing a global planning strategy, we are able to operate in

complex real-world environments in order to satisfy a large class of multi-robot tasks that

are subject to communication constraints.

Fourth, through the design and implementation of a decentralized experimental

testbed, we verify that a team of robots can sample point-to-point signal strength

measurements in an environment, learn a probabilistic model of point-to-point com-

munication, and make useful predictions about the performance of wireless channels in

arbitrary configurations. More importantly, we demonstrate experimental verification

that our algorithms are able to maintain connectivity and desired quality-of-service spec-

ifications with low-power radios in a real indoor environment. We believe our approach is

the first to rely on concurrent design of routing protocols and control policies in order to

address connectivity maintenance problem. Consequently, it is also the first system with

experimental verification of these capabilities.

Finally, our experimental testbed supports not only the experimental verification of

our approach to the connectivity maintenance problems but many other investigations in

the area of multi-robot systems [30, 29, 70, 20, 9, 71, 100]. Its capabilities and flexibil-
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ity demonstrate the impact our testbed has on experimental verification of multi-robot

systems.

1.5 Thesis Outline

The remainder of this thesis continues as follows.

Chapter 2 begins by presenting a classification of coordination algorithms for teams

of robots based on their communication requirements. These requirements influence the

necessary capabilities of the experimental testbed. We finish this chapter by detailing the

evolution of our experimental testbed and the types of problems it is suitable for studying.

Chapter 3 presents two example problem statements targeted for a networked team of

robots. The first is a nearest-neighbor algorithm for multi-robot manipulation. The second

is a generic situational awareness problem statement that serves as a motivating example

for the remainder of this thesis. It formalizes our task representation and the structure

of our communication requirements. This chapter finishes with a system architecture

outlining our proposed solution to the situational awareness problem.

Chapter 4 details several candidate models for predicting point-to-point received

signal strength by a team of robots. After experimentally analyzing the candidate models,

we make some recommendations to their applicability. This chapter also includes some

supplementary material towards the estimation of relative node location based on received

signal strength.

Chapter 5 presents the central algorithmic pieces of this thesis as we present a unified

way to consider robust network routing and constrained node mobility. We begin with

a local gradient-based controller, demonstrate the local minima that lead to its short-

comings, and conclude with a global planner that allows for flexible planning of network

configurations in complex environments.

Chapter 6 combines the results of Chapters 2 – 5 to present a set of experiments

on our decentralized testbed that demonstrate our solution to the situational awareness

problem with an experimental system. We go on to provide results that verify the perfor-
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mance of our solution to the communication problem based on real-world instantaneous

measurements of the underlying wireless channels.

Chapter 7 finishes with some concluding remarks and thoughts for future work.
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Chapter 2

System Design and Architecture

We are interested in comprehensively addressing the components necessary for a team of

networked robots to accomplish their assigned task. Design goals that are central to our

interests include experimental verification, the ability to compose individual subsystems,

and scalability in terms of team size, capability, and operating region. In this chapter,

we begin by discussing approaches and abstractions for problems of multi-agent com-

munication and coordination. We continue by examining the design of an experimental

architecture. Finally, we conclude with a description of two approaches to experimental

testbed design that allow for robust verification of a wide variety of solutions to multi-agent

problems.

2.1 Communication & Coordination

For robotics applications, the coordination of agents is closely tied to their communication.

As a result, abstractions for inter-agent communication are a necessary first step in the

design of coordinated algorithms. Furthermore, the choice of abstraction can affect the

transition to deployed systems as well as scaling to complex environments or larger teams.

Architectures for communication and coordination can be separated into three groups:
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• centralized systems where information is globally shared and it is assumed every

agent can communicate with every other,

• multi-hop systems where direct communication is only allowed with agents belonging

to a small neighborhood but multi-hop routing can pass messages across a network

of agents, and

• nearest-neighbor systems where communication is limited to a single hop and typi-

cally confined to a small neighborhood.

One way of contrasting these paradigms is to consider the space of problems parame-

terized by allowable group size and workspace complexity as depicted in Fig. 2.1. It is
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Figure 2.1: Graphical depiction of the space of multi-robot systems. These systems can be classified
based on allowable abstractions for their communication structure. Teams with very few agents
can assume a centralized paradigm while very large teams must rely only on local information
and nearest-neighbor interactions. There is a large middle category where the system explicitly
computes the multi-hop network that is necessary for information sharing. Currently, centralized
approaches are the most successful when dealing with large complex environments.

interesting to note that both nearest-neighbor and fully centralized systems can be consid-

ered via communication abstractions which allows for ease in algorithm development and

implementation but only for the class of problems amenable to these methods. On the
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other hand, multi-hop methods can be applied to a larger class of problems but require

more complicated implementations that explicitly address communication issues. Also,

there is a general correlation that as one moves from nearest-neighbor systems to cen-

tralized systems, individual agents exhibit increasing size and capability. Currently, the

increased agent capability translates to the ability to operate in large complex environ-

ments. A primary goal of multi-robot research is to increase the capabilities of multi-hop

and nearest-neighbor systems.

Centralized

For small teams of highly capable agents, it is possible to consider a centralized system

in which information is assumed to be globally available via high bandwidth connections

between all agents. Clearly this is only tractable for small teams with large amounts of

resources dedicated to inter-agent communication. However, in the limited space of prob-

lems where this is feasible, a centralized system greatly simplifies algorithm development

and implementation. The requirements placed on an experimental testbed for verification

of centralized algorithms are quite steep. In general, it requires a testbed that is itself

centralized with excess bandwidth that can be devoted to the task of synchronizing agents.

Nearest-Neighbor

A large class of algorithms for coordinated control stem from the concept of nearest-

neighbor communication with the assumption that an agent can identify and communi-

cate only with some small set of immediate neighbors [43, 88, 78]. This communication

abstraction is often typified by homogeneous teams with anonymous agents which allows

for robustness to the addition or deletion of agents from the team.

A nearest-neighbor approach is warranted for applications where the system must be

capable of scaling well in terms of the number of agents. However, a shortcoming of

nearest-neighbor approaches is the translation of tasks from a group-level specification

into rules based on local information which is often challenging. Since many nearest-

neighbor algorithms rely on the existence of a connected interaction graph for convergence,
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these systems will work best when the density of agents is such that the frequency of

connectedness is high. This limits their application in large environments.

Within the scope of nearest-neighbor systems, we advocate the adoption of an asym-

metric broadcast control (ABC) architecture [69] where an external observer has the ca-

pability to communicate with all agents via a high-powered broadcast mechanism. In

fact, we argue that as the team size grows, it becomes a mathematical necessity to define

an abstraction that maps the large state space to a lower dimensional space that has a

physical interpretation and is easy to control and command. This necessitates the need

for a global supervisory agent that provides control inputs in the abstract state directly

to all agents via a high bandwidth broadcast downlink. Individual agents then interpret

the commands in the abstract space based on their local state and low-bandwidth coor-

dination with neighbors. The asymmetric nature of the required communication when

using the ABC architecture significantly reduces the complexity of network design and

implementation for even very large systems.

Multi-hop

When dealing with any system not at the extremes of the space defined in Fig. 2.1, it

becomes necessary to explicitly consider multi-hop communications. That is, uniquely

identified agents must cooperatively route messages over a communication network. Be-

cause communications occur over shared channels, care must be given to properly allocate

resources in order to satisfy problem constraints. Effectively, this means that algorithm

design for coordinated control can not consider communication and coordination tasks in

isolation via abstraction as is possible with both nearest-neighbor and centralized systems.

Instead, the communication and coordination problems must be addressed in concert.

While the requirements on a testbed to verify multi-hop systems are relatively limited,

the actual implementation of these systems is generally quite complex.

24



2.2 Experimental Testbed

Experimental validation is particularly important in multi-robot systems research for a nu-

mer of reasons. First, the differences between models and real world conditions that may

not be apparent in single robot experiments are amplified because of the large number

of robots, interactions between robots, and the effects of asynchronous and distributed

control, sensing, and actuation. Furthermore, accurate portrayal or modeling of some

system components, such as wireless communication, is often infeasible. Finally, experi-

mental validation forces the development of a comprehensive solution and eliminates many

simplifying assumptions that cannot be engineered into a real system.

An experimental testbed must be:

• robust and reliable;

• scalable and allow the easy addition or deletion of agents;

• capable of measuring and logging state information (including ground truth) for

analysis;

• extensible to a variety of applications;

• inexpensive; and

• easy to use and maintain.

Robustness and reliability is of great concern when designing an experimental testbed.

Since an assumption is made on the performance of the testbed when evaluating an al-

gorithm, uncharacterized failures prevent accurate verification. Scalability is the focus of

much research and cannot be limited by the system implementation. Measurements, state

information, and algorithm status provide real-time insight into the performance of the

algorithms being tested and are invaluable during the debug phase of development. Fur-

thermore, the ability to access or log such information at run-time or for post-processing
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is vital to the analysis of any experiment. In fact, it is this analysis of results that allows

us to consider multi-robot systems in a scientific way.

Extensibility ensures that the testbed can be used to test a wide range of algorithms.

We argue that over-specification of a system with respect to computation, communication,

and sensing is important as it allows for the verification of a wide range of applications

– the abilities of an individual robot can typically be artificially scaled to emulate less

capable devices. The system must be designed to be inexpensive so that researchers can

incrementally increase the size of the system. Finally, ease of use and maintenance are

of great concern since the testbed consists of multiple independent units and supports

collaborative research with many individuals accessing the system.

The remainder of this chapter focuses on the design decisions and specific components

that make up the experimental testbed in the Multi-robot systems laboratory (MRSL)

in the GRASP laboratory at the University of Pennsylvania. We cover the hardware,

simulation tools, and two iterations of software architecture used for supporting a wide

range of multi-robot experimentation. This work was completed in collaboration with

Nathan Michael and with the initial pieces published in [68].

2.2.1 Hardware

The MRSL testbed consists of both ground and aerial robots. The central component

of the ground fleet is the Scarab platform, a custom differential-drive wheeled platform.

For aerial experiments, we rely on the Hummingbird and Pelican platforms designed and

manufactured by Ascending Technologies GmbH [4]. A motion capture arena is available

with full 6-DOF pose tracking data provided by a Vicon motion capture system [102]

running at 100 Hz with millimeter accuracy.

The Scarab platform, in its third revision and pictured in Fig. 2.2, is driven by two

Maxon A-Max brushed DC-motors which are in turn controlled with PWM by a dedicated

microcontroller on the Acroname Moto 1.0 module with 3 Amp H-bridges. The Moto 1.0

module performs PID-based feedback with optical encoders to provide velocity control
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of each motor. The on-board computer is equipped with a Nano-ITX motherboard with

a 1.5 Ghz processor, 1 GB of RAM and a 32 GB solid-state drive for storage. Wireless

communications are facilitated by a high-bandwidth IEEE 802.11a device operating in

the 5 GHz frequency range and a Zigbee device with 0.1 − 1 mW (−10 − 0 dBm) power

output in the 2.4 GHz frequency range [21]. Range sensing is provided by a Hokuyo

URG laser range finder with a 5.5 m range and 240◦ field of view. Additional sensing,

including cameras, can be easily added via the USB. Power is supplied via an Inspired

Energy NL2024 smart Lithium-Ion battery. With 95Wh of capacity, it provides between

3 to 4 hours typical usage.

Figure 2.2: Eight Scarab platforms in the MRSL

2.2.2 Simulation

While it does not replace experimental validation, simulation tools are an integral part of

the multi-robot testbed [26]. They allow for development and basic verification of algo-

rithms in software before handling the additional challenges associated with deployment
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on a real system. Additionally, it provides opportunities to explore environments not

physically available as well as the ability to gather many more trials than is feasible with

real systems.

Robotics Simulator

Physics 

Simulator

Perceptual

Simulator

Middleware

Strict Interface Types

Network Data 

Packing/Unpacking

Message Queues

Controllers & 
Algorithms

Sensor Data &

Controller Inputs

Peer-to-Peer Communication Manager

Abstracted Messaging

Channel Simulation Backend

Sensor Data, 

Controller Inputs &

Peer-to-peer messages

State Information

From Simulator

Peer-to-peer

Message Requests

Figure 2.3: Our basic simulation architecture is modular in design to allow for independent simula-
tion of the physical and wireless communication systems. By relying on a middleware with proper
software layering, we can switch transparently from simulation to experimental hardware.

Figure 2.3 depicts the structure of our simulation architecture. It is designed with

a modular architecture with independent simulation of the physical and communication

systems so that we can rely on a hierarchy of simulation fidelity. For example, research

focusing on wheeled ground robots with low-power radio communication requires a simple

kinematic simulation of the physical system but an accurate portrayal of the randomness

inherent in wireless communication. On the other hand, a system that assumes a central-

ized algorithm for multi-robot manipulation is more considered with faithfully representing

the physical interaction of each robot with the environment.

Central to this approach is a capable middleware, i.e., message passing software that

allows for arbitrary messages and software layering. In effect, this allows us to abstract

the development of algorithms from the interface with experimental hardware. The result

of this abstraction is that controller and algorithm development can happen somewhat

independently of the experimental hardware itself. Assuming simulation modules present

the same interfaces and messaging as the actual testbed hardware, the transition from
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simulation to experiment is nearly transparent. Thus the challenge in designing simulation

tools lies in the faithful reproduction of the interactions that take place with hardware

rather than system simulation itself, i.e., physical interactions or wireless communication

in our context. As more realistic simulation models become available, they can be applied

to narrow the gap between simulation and experimental verification.

2.3 Experimental Architecture

In Section 2.2.2, we introduce the importance of a middleware for robotics software de-

velopment. Here we build upon that to investigate the architectural issues that face

experiment design for multi-robot research. It is important to note that the architecture

employed for an experimental system does not directly map to the algorithms and archi-

tectures that we are researching. Indeed, we wish to design an experimental architecture

that can be relied on to address a wide range of research. In a way, this makes the exper-

imental architecture a meta-system within which we must implement the system we are

interested in testing. Consequently, we must ensure that our experimental architecture

sufficiently exceeds the capabilities that we assume for the system being studied. Finally,

as stated in Section 2.2, ground truth information about the physical state of the system

is necessary for scientific analysis. The experimental architecture must be amenable to

collecting, logging, and real-time reporting of this information.

The experimental architecture for a multi-robot system is primarily a function of soft-

ware engineering decisions, collection of ground truth, and communication capabilities.

Each of these items is heavily influenced by the robotics middleware, self-localization

capability, and radio hardware respectively.

Software engineering for a robotic system relies on the concept of a middleware that, as

described in the previous section, provides arbitrary messaging and hardware abstraction

layers. The framework of a robotics middleware allows us to write modular software that

can be flexibly connected to build an experimental system. Within this experimental

system, we implement the system and algorithms that are the focus of our research.
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We rely on ROS [85], a so–called robotics operating system, which provides a number of

development advantages. First, in terms of testing and debugging a complex system that

relies on numerous drivers and algorithms, ROS adopts a flexible structure where each

piece of software runs independently and connections are managed by a stable master

node. This yields a number of stability benefits to the system when introducing new and

untested software. ROS also maintains a low barrier for the creation of message types

and communication channels. This supports modular code that can be shared across

several applications. A second-order benefit of ROS is the growing community of users

and availability of open-source software that address many of the necessary single-robot

capabilities – namely perception, localization, and navigation.

The collection or aggregation of ground truth information presents the second driving

concept behind an experimental architecture. Ground truth information includes the

state of algorithms, sensor data, and the physical state of each robot in the experiment.

This data must be measured and collected at a rate appropriate to the dynamics of the

experiment for thorough analysis. Often, real-time access to this data is invaluable in

algorithm testing and development. However, for a multi-robot system that is deployed

throughout a large environment, the measurement and aggregation of this data can be

challenging.

Finally, in the same sense that the experimental architecture must act as a meta-

system to the multi-robot system undergoing verification, we propose that communication

capabilities of the experimental architecture must be independent of those relied on by our

research. On our experimental hardware, this is achieved through the use of two radios

– high-powered IEEE 802.11a on the 5 GHz band for the experimental architecture and

low-powered IEEE 802.15.4 (Zigbee) on the 2.4 GHz band for research algorithms. Relying

on these two radios offers range and throughput for the experimental architecture that far

exceeds the capabilities of the system being experimentally verified.

We consider two models for the experimental architecture. First, we present the cen-

tralized model, where we assume that the experimental network is always fully connected
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and that bandwidth is sufficient to support real-time data logging in a central location.

Second, we present a decentralized model where the experimental architecture assumes

each robot operates more independently with an experimental network that may have

intermittent connectivity. Each of these models offers a different set of capabilities and is

particularly amenable to a class of applications.

2.3.1 Centralized Model

In the centralized model, we assume that the full state information of the system is always

available at a central location. This implies a high-throughput network that is fully

connected and that tracking and localization of the physical state of the system is measured

from a central point.

When it is possible to efficiently achieve these capabilities, the centralized model for

an experimental architecture is advantageous because it offers easy methods for software

development and debugging. Additionally, it allows us to study a wide class of multi-

robot algorithms by assuming a subset of the experimental architecture’s capabilities are

available for the algorithm being investigated. However, as is expected, it becomes difficult

to maintain these strict capabilities as the size of the multi-robot team and the operating

environment grows.

Tracking & Localization

Initially, we developed and relied heavily on an overhead camera-based tracking system to

provide a centralized tracking service for robots moving on the ground-plane. Eventually

this system was replaced by the Vicon motion capture system [102] which provides full

6−DOF pose measurements at 200 Hz. The overhead tracking system allows control algo-

rithms to assume known pose in a global reference frame, thus eliminating the localization

problem. Conversely, the tracking system allows the verification of localization algorithms

as ground truth. It is also possible to use the tracking system in lieu of sensors that

may be unavailable such as neighbor sensors or collision avoidance sensors. A centralized
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tracking solution such as the Vicon system offers the additional capability of being able to

offer high fidelity pose information at high rates that can be used for studies in dynamics

and advanced control.

Network

Since we need a low-latency network to communicate between agents and controllers with

reasonable data rates, we rely on a dedicated 802.11a wireless access point in a frequency

range not used by adjacent wireless networks to ensure that we have complete control

over the bandwidth available to the robots. We have successfully experimented with

tens of computers, robots, and sensors performing data-intensive experiments without a

noticeable impact on the performance or latency of the network. A limitation of this

centralized network infrastructure is that the robots are confined to operate within range

of the access point. The IEEE 802.11abgn standard does not allow for fast enough access

point switching to accomodate control algorithms.

Data Logging

A requisite component of an experimental system is logging functionality. The system de-

sign permits local or networked data logging depending on the demands of the experiment.

Logging to local storage or mounted network drives on each robot is possible depending

on the space and logging frequency required. Additionally, since we use PSG, a common

logging interface exists that permits networked logging. As each robot communicates with

other robots in the system, the same messages are sent to a computer which stores the data

for post-processing. With such a design, we are able to log relevant system information

without requiring significant computational overhead from the robots.

Additional Considerations

The robots and supporting computer infrastructure are networked with a dedicated local

area network managed by a server with networked storage and a centralized user database.
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A user remotely accesses the robots in the same way they would access a desktop computer

and all working repositories and code are mounted via network drives. Since the robots

and workstations all use the same x86 computer architecture, the same compiled binaries

work on all platforms for easy development. Deployment is simple since the same storage

is available on both robots and workstations. By viewing the team of robots as a system

of networked computers and using off-the-shelf technology, we are able to effortlessly

distribute changes in the code base to all of the robots. Additionally, the dedicated server

hosts web server capabilities, a repository for software and documentation, and other data

to facilitate research and collaboration.

2.3.2 Decentralized Model

As we transition towards algorithms and experiments that require larger and more complex

environments, it is necessary to move towards a truly decentralized testbed while attempt-

ing to maintain some qualities of the centralized model. Since the centralized approach

to experimental testbed design required a persistant network connection for the purposes

of data logging and code deployment, its range is limited to that of a single access point.

Switching between multiple IEEE802.11 access points does not occur quickly enough, e.g.

on the order of 5 s, for real time control. Thus, in order to operate effectively across the

environment in Fig. 2.4 we rely on several enabling technologies and components.

Localization

A second order strength of ROS is a large library of software for basic robotic tasks that

has been developed and tested by Willow Garage [106]. The open-source release of the

navigation stack with some optimizations for our platforms provides reliable laser-based

localization and motion planning across very large environments as depicted in Fig. 2.4.
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Figure 2.4: Map for laser-based localization. Note that under the centralized model, experiments
were confined to the range of a single access point. The truly decentralized testbed allows for
experiments that range throughout the available environment.

Mesh Network

The open80211s consortium [80] is developing an open-source implementation of the

emerging IEEE 802.11s mesh networking standard and distributing it into modern linux

kernels. It works effectively to allow transparent multi-hop routing of network traffic be-

tween many systems operating on the mesh where mesh routes are dynamically computed

based on current conditions. By bridging the mesh network with our local wireless/wired

network, we create an environment where laptops and desktops used for development are

connected via the mesh network to robots across the building.
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Decentralized Operation

Though the mesh network extends in the attempt to provide ubiquitous network connec-

tivity, it is inevitable that during some experimentation, the connectivity will fail. In

order to be robust to such failures, we seek to deploy ROS in a truly decentralized way.

Though the focus of ROS development is on a single robotic system, the PR2, ROS mes-

sage passing takes place via UDP or TCP/IP channels and can operate over a network

on multiple machines. However, the presence of a central master that manages message

connections makes it not well suited to deal with intermittent connectivity.

We have solved this problem by augmenting the default ROS master with a version that

performs automatic service discovery of other ROS masters and allows for synchronization

of communication channels that are currently being managed. In this way, an experimental

system is designed such that each robot locally registers it’s hardware drivers, algorithms,

and communication channels with its local ROS master. When mesh connectivity is

available, each robot’s ROS master discovers and synchronizes its table of running software

and interfaces.

Data Logging

The ROS environment provides an efficient means to log arbitrary messages to a local

filesystem. This means that logging of state information, communication messages, and

other sensory data on an individual robot is trivial. However, the intermittent connectivity

of a truly decentralized experimental testbed complicates the matters of data logging for

experimental verification. We address this problem by ensuring that each robot operates

on a synchronized clock and aggregating individual logs after each experimental trial.

While this does not provide quite the same ability of the centralized testbed where the

full state of the system can be queried at any time during an experiment, it is a robust

and reliable way to log large amounts of data without overburdening the mesh network.
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Chapter 3

Coordinated Control

We present two examples of problem statements targeted for networked teams of robots.

The first is a case study involving caging manipulation by a team of agents. It assumes

a disc model for local communication with asynchronous broadcast control to facilitate

decentralized controllers. The second example is more tightly coupled as it considers the

networking and mobility problems associated with providing general situational awareness

capabilities to a team of mobile robots. It serves as motivating problem statement for the

remainder of this thesis.

3.1 Multi-Robot Manipulation via Caging

The concept of object closure or caging for manipulation is introduced in [82] where mul-

tiple robots are used to geometrically confine a payload to a compact set in the plane.

Here we extend this method for manipulation with a decentralized algorithm for large

teams of robots [27, 29] by employing sequential composition of vector fields as in [42].

Team behaviors are chosen that approach, surround, and transport a payload where each

behavior is defined by a vector field that requires global task parameters and local state

information allowing it to operate within the ABC architecture. Transition between be-

haviors is accomplished by local sensing and message passing as depicted in Fig. 3.1. In

this way we are able to construct a system for payload transport that is robust to agent
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addition or deletion, the presence of obstacles, and a wide range of modeling errors with

respect to the underlying manipulation task.

APPROACH

SURROUND

TRANSPORT

Near_Object

~Closure !

~Quorum

Closure "

Quorum

~Near_Object

Figure 3.1: Behavior architecture. The software for each robot is identical and consists of several
simple modes and the sequential composition of these modes.

3.1.1 Methodology

We consider a group of N planar, fully actuated robots each with kinematics given by

q̇i = ui where qi = (xi, yi)
T and ui denote the ith agent’s position and control input. We

assume the agents are disk–shaped with radius ri and can localize themselves in a shared

global coordinate frame. In addition, we assume agents are able to sense the proximity of

their teammates and/or obstacles within the environment. Thus, the neighborhood of qi

is determined by the range and field of view of the sensing hardware. We denote the set

of neighbors for agent i by Γi. For collision and obstacle avoidance purposes, we assume

a circular influence range, Ri, such that collision and obstacle avoidance maneuvers are

active only when agents are within this range.

Our objective is to design control inputs to enable the N–robot team to approach,

surround, and transport a payload in an environment with circular obstacles from one

location to another. To achieve this, we propose to construct artificial potential functions,

ϕ, that can stabilize the agents onto a one-dimensional boundary (curve) such that they

cage the desired payload and achieve closure by orbiting around the payload, all the

while avoiding collisions. Once closure is obtained, the robots transport the payload from
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an initial position to a goal location based on a global navigation function, Φ, while

maintaining closure.

Given a convex workspace W, we assume the boundary, denoted by ∂W, can be

described by an implicit function of the form sW0 − sW(x, y) = 0. For the given W, we

denote the set of circular obstacles in W as O and let qO,k and ρk be the center and the

radius of each obstacle k ∈ O respectively. Furthermore, given a payload whose centroid is

denoted as qobj , we assume there exists a smooth star shape, S, whose boundary, ∂S, is a

smooth, regular, simple, closed curve of the form s(x, y) = 0 such that the desired payload

is contained within ∂S. In general, we can always find such a shape S by considering

the following two parameters of the payload. First, define Dmin(obj) as the smallest

gap through which the payload will fit, and second, Dmax(obj) as the maximum distance

between any two points on the payload. Then, for any given payload, the circular boundary

with radius given by:

rcage =
1

2
Dmax(obj) + max

i
ri + ε, (3.1)

where ε > 0 is a constant scalar, will always contain the payload as depicted in Fig. 3.2a.

We refer to this circle as the caging circle.

(a) (b)

Figure 3.2: Visualization of the caging manipulation methodology. (a) depicts notation such as
the payload properties and caging radius. (b) depicts the shape control surface along with the
descent and surround components of the vector field.
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Given the caging radius rcage and a team of N robots each with radius ri > 0 and

influence range Ri > 0, we define r = maxri ∀ i ri and R = maxRi ∀ iRi. Our goal is to

synthesize decentralized controllers that will allow the team to surround the payload while

avoiding collisions. Therefore, the length of ∂S, L, will naturally impose an upper bound

on the number of robots, e.g. Nmax > 0, that can fit on this boundary. Additionally, for

a given rcage and Dmin(obj), there must be at least Nmin > 0 number of agents to ensure

object closure. We make the following assumptions where dmin(·, ·) denotes the minimum

Euclidean distance between a position and boundary in W:

1. Nmin ≤ N < Nmax;

2. rcage > R;

3. dmin(qobj(0), ∂W) > (rcage + 2r), where qobj(0) denotes the inital position of the

obstacle;

4. ‖qobj(0)− qk‖ > (rcage + 2R) for all k ∈ O;

5. ‖qO,j − qO,k‖ > (ρj + ρk + 2R) for all j,k ∈ O; and

6. ‖qobj − qi‖ ≤ (rcage + r) for i = 1, ..., N in the Transport behavior.

Assumption 1 ensures the agents be able to surround the payload and achieve closure.

Assumption 2 ensures convergence of the team to the boundary surrounding the payload.

Assumptions 3 and 4 ensure the payload is initially located at a position where agents can

surround and orbit it without colliding with ∂W or other obstacles in the environment.

Assumption 5 ensures the agents will have the ability to maneuver around the obstacles

in the environment. Finally, assumption 6 ensures the agents will be able to maintain

closure when transporting the payload around the environment.

Our approach to caging and manipulation of payloads can be summarized by the

behavior architecture in Figure 3.1. The architecture relies on three behaviors.

1. Approach: The robot approaches the payload while avoiding collisions with obsta-

cles and other robots in the environment;

39



2. Surround: The robot stabilizes to a trajectory that orbits the payload while avoid-

ing collisions with other robots; and

3. Transport: The team moves toward the goal configuration following a global nav-

igation function.

As shown in Fig. 3.1, transitions between behaviors are based on conditions derived from

sensor abstractions. If a robot is near the payload, a sensor sets its Near Object flag

causing that robot to switch to Surround mode. A Quorum flag is set based on the

number of neighbors within its field of view. The Closure flag is set when the robot team

surrounds the payload. When Closure and Quorum are both set, the robot enters the

Transport mode and starts moving the payload. Reseting the flags can cause the robot

to regress into a different mode.

Shape controller

We base our decentralized feedback controllers for boundary following on the ones de-

scribed in [39]. This controller has been shown to be scalable to large teams and stability

and convergence properties have been established with collision and obstacle avoidance

guarantees for a certain class of boundaries.

Let ∂S be described by s(x, y) = 0 such that s(x, y) < 0 for all (x, y) in the interior

of ∂S and s(x, y) > 0 for all (x, y) in the exterior of ∂S. Let γ = s(x, y), and β0 =

s2
W0
− s2
W(x, y) so that we can define the shape navigation function, ϕ, as

ϕ(q) =
γ2

γ2 + β0
. (3.2)

The shape navigation function will generate an input to drive each agent towards ∂S.

To enable the agents to surround and orbit the object in a counter-clockwise direction,

let

ψ =

[
0, 0,

γ√
γ2 + β0

]T
.
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We impose an additional input given by −∇× ψ, where ∇× ψ is a vector tangent to the

level set curves of ϕ which drives each agent to travel along the boundary in a counter-

clockwise direction. To enable avoidance of circular obstacles in the environment, a third

input is included to drive the robots around any obstacles within their influence range.

Thus, the decentralized shape control law is given by:

ui = −KN∇iϕi · f(Ni)−∇i × ψi · g(Ti)

−
∑

j∈Γi,‖vj‖=0

∇i × β̂j
dp2
ij

h(qi, qj) (3.3)

where ∇i denotes differentiation with respect to agent i’s coordinates, dij = ‖qi − qj‖ −

(ri + rj), ϕi = ϕ(qi), ψi = ψ(qi), and β̂j is defined as:

β̂j =

0, 0,
dij√
d2
ij + β0

T .
The functions f(Ni), g(Ti) ∈ [0, 1] and h(qi, qj) ∈ [−1, 1] are scalar switching functions

used to independently modulate each term in (3.3). As such, the components of each

robot’s vector field are modulated to avoid collisions depending on the positions of its

neighbors and the obstacles in the environment. The first term of (3.3) drives the agents

towards ∂S, the second term drives them along the level set curves of ϕ in a counter-

clockwise direction, and the third term enables them to avoid collision with obstacles in

their neighborhood as depicted in Fig. 3.2b. We note since the ϕ and ψ are common

among all agents, robots do not have to exchange information. Instead, it suffices to know

only the positions of the neighbors which be obtained via sensing alone.

Composition of behaviors

Our multi-robot manipulation system is based on a decentralized shape controller and

a global navigation function with proven stability and convergence results [39, 90]. By

varying certain properties of our controller, i.e. the sequential composition of (3.3) and

41



(3.7), each mobile agent can operate in one of several modes: Approach, Surround, or

Transport. Composition of these modes result in a global vector field such that, when

combined with local interactions, achieves the desired task. Transitions between these

modes, as well as exceptions in the case of failure, can be defined robustly while keeping

individual agent decisions a function of local sensing.

The Approach behavior is characterized by a larger gain KN on the descent compo-

nent of (3.3) to yield agent trajectories that efficiently approach the object from a distance

while avoiding collisions with other agents.

In the Surround mode, agents are near the desired shape and KN is decreased so

that the agents can distribute themselves around the object. Given enough robots, this

behavior will lead to object closure. For a given rcage and Dmin(obj), the minimum

necessary number of robots to achieve object closure is

Nmin =
2πrcage

2r +Dmin(obj)
. (3.4)

Additionally, to ensure convergence to the boundary of the desired shape, the size of the

team must be no greater than

Nmax =
πrcage
r

. (3.5)

In practice, we do not always require this condition as the state transition events are

robust to excess robots.

The Transport mode controller relies on composition of the first two terms in

(3.3) with a descent direction derived from a global navigation function [90]. Given the

workspace, W, circular obstacles O, and a payload goal configuration qgoal, let

βk(q) = ‖q − qk‖2 − (ρk + 2r + rcage)
2,
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where k ∈ O. Then the global navigation function is given by

Φ(q) =
‖q − qgoal‖[

‖q − qgoal‖2κ + Π
|O|
k=0βk

]1/κ
(3.6)

with the feedback controller for the payload given by

uobj = −∇objΦ(qobj). (3.7)

Here, Φ(q) is conservatively constructed by expanding the boundaries of the obstacles and

by decreasing the world boundary by (2r + rcage) so as to ensure collisions do not occur

between the team and the environment.

In general, each agent’s transition between modes will result from local observations of

its neighbors as well as its distance to the manipulated object. An agent will initialize to

the Approach mode if Dobj(qi) > Dnear object (i.e. it is far from the object). As the agent

approaches the desired caging shape, Dobj(qi) ≤ Dnear object will result in a transition to

the Surround mode.

In the Surround mode, the orbiting term of the shape controller is favored so the

robots are distributed around the object to be manipulated. Given at least Nmin agents,

this mode converges to an equilibrium where object closure is attained. While closure is

a global property of the system, we propose an algorithm for local estimation of closure.

To locally define quorum, we introduce the concept of a forward neighborhood Γ̂+ and

a backward neighborhood Γ̂− with respect to the manipulated object and the Surround

mode. For agent i, the Surround mode introduces an approach component, i.e. ∇iϕi,

and rotation component, i.e. ∇i×ψi, so that we can define the set of robots to be in front

of agent i and another set behind. If a neighborhood Γ̂i represents the agents within a

distance Dmin(obj), then

Γ̂±i = {j ∈ Γi | 0 < ±(qj − qi)T (∇i × ψi)}. (3.8)
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Furthermore, we can define specific agents from Γ̂+
i and Γ̂−i ,

i+ = argmaxk∈Γ̂+
i

(qk − qi)T∇iϕi
‖qk − qi‖

, (3.9)

i− = argmaxk∈Γ̂−i

−(qk − qi)T∇iϕi
‖qk − qi‖

, (3.10)

to be the adjacent agents in the potential cage around the object as depicted in Fig. 3.3.

Figure 3.3: Agent i’s neighborhoods Γ̂+
i and Γ̂−

i with i+ and i−

Since we are interested in strategies requiring little to no communication among the

agents, consider the following update rule for quorumi,

quorumi =


0 if (Γ̂+

i = ∅) ∨ (Γ̂−i = ∅),

Nmin if f(i+, i−) > Nmin,

min(quorumi+ , quorumi0) + 1 otherwise.

(3.11)

This strategy only requires the exchange of small bits of information and can be easily

handled by agents with limited communication resources. We shall use quorumi, quorumi+ ,

and quorumi− to determine when there is object closure.

If there is no closed loop around the object, quorumi will converge to the minimum

of Nmin and the shorter of the forward/backward chain of agents. On the other hand,

if there is a complete loop around the object, quorumi will grow as large as the imposed

bound Nmin.
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We define local closure to be

closurei =

(quorumi ≥ Nmin) ∧ (quorumi = quorumi+) ∧ (quorumi = quorumi−).

(3.12)

Our condition for local closure will coincide with global closure for any situation where

up to 2Nmin agents are used to form a cage around the object.

When an agent estimates that local closure has been attained, it will switch to the

Transport mode and begin manipulation of the object. The quorum and closure events

are defined such that they represent a kind of distributed consensus and as a result, the

set of manipulating agents will switch into the Transport mode in a nearly simultaneous

fashion. Should closure be lost during manipulation, each agent in the system will return

to the Surround mode to re-acquire the object.

3.1.2 Results

For experimental verification, we implemented and deployed the algorithms for caging

manipulation on the centralized testbed described in Section 2.3.1. Though the testbed is

based on a centralized model, it is well suited for decentralized algorithms where identical

software executes on each agent. Rather than address the perception problems associated

with each agent performing local estimates of its neighbor’s states, we simulate these

measurements via global state information. Thus, we are able to test decentralized caging

algorithms that rely entirely on information that is local to each agent.

Figure 3.4 depicts an experimental trial where four robots approach, surround, and

transport a circular payload around an obstacle in the workspace. Figure 3.4a depicts the

trajectory of the object as it is manipulated around a virtual obstacle inside the workspace.

The shaded region around the trajectory denotes the conservative approximation used to

represent the area occupied by the payload and robots during the execution of the task.

The number of agents executing the behaviors Approach, Surround, and Transport

during the experiment is shown in Fig. 3.4b to demonstrate how the agents reach con-
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sensus and transition from one behavior to the next. The trial begins with three of the
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Figure 3.4: (a) Object trajectory and area occupied by the object and the robots during task
execution. (b) The number of agents in each mode over the duration of the experiment. Marker
“a” points to the first instance when all agents have entered the Transport mode. Marker “b”
denotes a time when closure was lost and the robots attempt to re–acquire the object. Marker
“c” identifies instances where individual robots detect loss of closure, however, closure is regained
before the object escapes.

four robots already close enough to the object to enter the surround mode. Once all

four agents enter the surround mode, i.e. at 20 s, they begin exchanging messages with

their neighbors to determine when closure is achieved. At approximately 30 s, all four

nodes simultaneously detect closure and enter the transport state. During manipulation

there are several instances where closure is lost – causing the agents to stop Transport

and fall back into the Surround behavior until closure is regained. This behavior is

entirely decentralized and contributes to the robustness of this method for multi-robot

manipulation.

Figure 3.5 depicts the transport of an L-shaped payload through a field of obstacles.

It demonstrates the composition of vector fields in a more complex environment where

agents must approach the payload through a field of obstacles. Once the payload is caged,

a global navigation function is followed to steer the team through the field of obstacles. As

this experimental trial is generated with exactly the same decentralized controllers running
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Transport of an L-shaped payload through a field of obstacles with a decentralized
method for multi-robot manipulation via caging. Figures. (a) and (b) depict the approach behavior,
Figs. (c) and (d) depict the surround behavior and Figs. (e) and (f) the transport behavior.

on each robot, it serves to demonstrate the generality of our approach. No changes to the

algorithm are necessary to utilize more robots or transport a payload with more complex

geometry.

Through experimental verification, we have demonstrated that, with varying numbers

of mobile robots and varying payload geometries, our algorithm facilitates payload trans-

portation in complex environments. By performing manipulation based on the ideas of

caging, we avoid the considerable challenges of modeling the effect of surface friction be-

tween the payload and supporting surface. Furthermore, our algorithm for decentralized

caging manipulation is well suited to the asynchronous broadcast control architecture. It

relies on identical anonymous agents that receive high–level task specifications, e.g. rcage,

Dmin,max, and Φ, from a supervisory agent that requires no aggregation of information

from individual agents.

3.1.3 Summary

There are currently some limitations to this work. The potential field approaches we

employ will present issues when applied to more complex environments. Fortunately, the
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Approach behavior we present could be substituted with a straight-forward motion plan-

ning algorithm that brings agents through an complex environment until they are within

a convex region of free space that includes the payload. Also, the notion of caging manip-

ulation implicitly assumes a conservative region of free space within which to transport

the payload. More tightly coupled approaches to multi-robot manipulation are applica-

ble if we require precise positioning in narrow environments, e.g. [10, 28]. Furthermore,

while the underlying shape-control behavior will scale well to large teams of robots, the

manipulation task we present here will only succeed for Nmin ≤ N ≤ Nmax agents. This

presents a limitation that must be resolved with resource allocation methods to ensure

that an appropriate number of agents interact with the payload at one time. This kind of

global allocation can be handled by the supervisory agent with the ABC architecture.

In this work, maintenance of communication constraints were simplified by several

features. First, inter-agent collision avoidance is based entirely on local knowledge of

neighbor states. This information is obtained either by sensing or simple one-way broad-

cast of state information. There is no need to reach any sort of consensus – inter-agent

priority is explicitly determined based on a common control policy. Even in the case of

unreliable communication of local state information, this approach would succeed so long

as the dynamics of motion are slower than the wireless channel fading which is typically

true.

Second, the one part of this work that requires communication for coordination is the

determination of object closure. For this, we assume reliable communication between any

agents with range R. Since message passing only happens between neighbors that are

closer than Dmin(obj), i.e., close enough that the object cannot escape, we must only en-

sure that Dmin(obj) < R. In fact, we can assert this inequality for any object and maintain

a conservative notion of closure. Of course, a system where it is impossible to guarantee

reliable communication for any range R will require further analysis to demonstrate that

consensus is reached with regards to payload closure.
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3.2 Situational Awareness

The general problem of maintaining “situational awareness” for a team of networked mo-

bile robots depends on the ability of the team to deploy into an environment and ac-

complish a sensing task while relaying the result of sensing to an operating center that

coordinates high–level tasks. A typical scenario is search and rescue missions in hazardous

situations where a team is deployed to scout points of interest. While a designated lead

member of the team moves to a specified location, the remaining robots provide mission

support. Critical for task accomplishment is the availability of wireless communications.

Communication is required to exchange information between robots as well as to relay

information to and from the human operators.

Availability of wireless communication infrastructure is unlikely in the harsh environ-

ments in which autonomous robot teams are to be deployed. Rather, we want the robots

to self organize into a wireless network capable of supporting the necessary information

exchanges.

3.2.1 Problem Statement

Consider a team of N robots and denote their positions as xi, for i = 1, . . . , N . We assume

the robots are kinematic and fully controllable which allows us to consider simple models

of the form

ẋi(t) = ui(t), (3.13)

where ui(t) is the input. A fixed operation center that we index as i = 0 is located at

position x0. Further define vectors x := (x0, . . . , xN ) ∈ R2(N+1) and ẋ = (ẋ0, . . . , ẋN ) ∈

R2(N+1). The task assigned to the team is specified through a generic scalar convex task

potential function Ψ : R2(N+1) → R. If the potential minimum Ψmin is attained at x∗,

i.e., if Ψ(x∗) = Ψmin, the configuration x∗ satisfies task completion. E.g., if a designated
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leader agent ` must visit a target location x`,goal ∈ R2, we can define

Ψ(x) = ‖x` − x`,goal‖2. (3.14)

The minimum Ψmin = 0 is attained by any configuration x∗ = (x0, . . . , x`, . . . , xN ) for

which x` = x`,goal, or equivalently by any member of the set

x∗ ∈ {x = (x0, . . . , x`, . . . , xN ) : x` = x`,goal} . (3.15)

Irrespective of the particular form of Ψ(x), the control problem is to find inputs ẋ(t)

such that at some time tf the team configuration x(tf ) = x(0) +
∫ tf

0 ẋ(t)dt satisfies task

completion in that we have Ψ(x(tf )) = Ψmin. Mathematically, we can write this mobility

control formulation as

min
ẋ(t),t∈[0,tf ]

Ψ(x(tf ))

subject to x(t) = x(0) +

∫ t

0
ẋ(u) du . (3.16)

As robots move to accomplish their task, they maintain end-to-end data communication

flows between members of the team and/or members of the team and the operation center.

Information flows are indexed as k = 1, . . . ,K. Flows may have multiple sources and

multiple destinations. The set of destinations of the k-th information flow is denoted as

dest(k). For agent i and flow k, the variable aki,min represents the required communication

rate between agent i and any of the agents in the set of destinations dest(k). E.g., if the

only communications of interest are from the lead robot ` to the operation center, there

are only K = 1 flows. Since the flow k = 1 is intended to the operating center, dest(1) = 0

and a1
`min denotes the minimum level of service for the communication from the leader to

the operating center. All other variables akimin = 0 are null.

We model point-to-point connectivity through a rate function Rij(x) = Rij(xi, xj) that

determines the amount of information that agent i at position xi can send to agent j at
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Figure 3.6: A network of nodes where we are interested in end-to-end rates from node i to desti-
nation (or flow) k. Routing variables αk

ij determine the fraction of time node i sends packets to
node j for flow k. Rij is defined as the supported rate of the wireless channel from node i to node
j.

position xj . Since direct communication between the source and the destination of an

information flow is not always possible, terminals self-organize into a multihop network to

relay packets for each other. Packet relaying is determined by routing variables αkij which

describe the fraction of time node i spends transmitting data for flow k to node j; see

Fig. 3.6. Thus, the product αkijRij(x) determines the rate of point-to-point information

transmission from i to j. If we consider the transmission to all neighboring terminals for

which Rij(x) > 0, the total rate at which packets leave agent i is
∑N

j=0 α
k
ijRij(x). Likewise,

the total rate at which i receives packets from other terminals is
∑N

j=0,j /∈dest(k) α
k
jiRji(x).

The information rate aki (α,x) available for flow k at source i is the difference between

outgoing and incoming rates

aki (α,x) =
N∑
j=0

αkijRij(x)︸ ︷︷ ︸
Outgoing packets

−
N∑

j=0,j /∈dest(k)

αkjiRji(x)

︸ ︷︷ ︸
Incoming packets

, (3.17)

where we define the vector α grouping all routing variables αkij . Notice that the variables

αkij represent time slot shares and must therefore satisfy 0 ≤ αkij ≤ 1 for all i, j, and k.

It must also be that
∑

j,k α
k
ij ≤ 1 for all i to ensure that the sum of all time shares at

terminal i does note exceed 1. It is possible to, alternatively, require
∑

i,j,k α
k
ij ≤ 1 if we

wish for only one link to be active at any time across the entire network.
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Routing variables α and configuration-dependent rates Rij(x) determine the set

aki (α,x) of end-to-end communication rates from each node i and flow k as per (3.17).

The task specification requires that end-to-end rates exceed the minimum threshold

aki,min. Therefore, integrity of the communication network necessitates that for all i and k

aki (α,x) ≥ aki,min for all i, k. (3.18)

Notice that aki (α,x) is a function of positions x and routing variables α. To control

end-to-end connectivity, i.e., to satisfy (3.18), we can resort to control of positions x, to

control of routes α, or both.

Since communication is necessary for task completion, the mobility control problem as

summarized in (3.16) is redefined. The new goal is to find algorithms and control policies

that govern robot motions in order to satisfy the task specifications in (3.16) and (3.18).

Reducing Ψ(x) as per (3.16) and ensuring network integrity as per (3.18) may be conflicting

requirements. We therefore replace (3.16) by a concurrent search of trajectories x(t) and

routes α(t) so that the task potential is minimized without ever breaking communication

connectivity. Mathematically, we write this objective as the optimization problem

min
α(t),ẋ(t),t∈[0,tf ]

Ψ(x(tf ))

subject to aki (α(t),x(t)) ≥ aki,min

x(t) = x(0) +

∫ t

0
ẋ(u) du (3.19)

where rates aki (α(t),x(t)) are given by the expression in (3.17) with α = α(t) and x = x(t).

Figure 3.7 depicts an architectural diagram of our proposed solution to the concurrent

routing and mobility problem (3.19). There is a module performing task specification,

a second module computing the control law and networking solutions, and a third mod-

ule conducting actuation and state estimation. A parallel module estimates and predicts

point-to-point communication capabilities. The task specification module interfaces with
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Figure 3.7: Full system architecture. Task Specification here represents a generic spatial application
defined by a convex task potential function Ψ(x) while providing a stream of data to the operator.
Individual robot components consist of the low-level robot control, estimation, and communication.
A subsystem is available to build an online model of radio communication in the environment.
Concurrent methods are developed for solving the routing and mobility control problem (3.19).

the operator and integrates robot observations and requirements to determine specifica-

tions that it passes on to the control module. These specifications come in the form of

a potential function Ψ(x) that must be minimized and communication rates aki,min that

must be maintained at all times. The control module then determines control inputs ẋ(t)

and network variables α(t) that are conducive to task completion. It relies on estimates of

achievable point-to-point rates Rij(x) which are provided by the communication modeling

module.. Individual robots implement the control law ẋ(t) and route packets according

to variables α(t). Robots also take observations yi(t), e.g., a video feed, that they relay

to task planning and perform position estimation x̂i(t) that they feedback to the control

block. Using available technologies for mapping, control, and state estimation, each robot

estimates its position x̂i(t) and controls its velocity ẋi(t) with respect to a common known

map of the environment; see e.g., [101].

This thesis continues by developing the techniques and algorithms necessary to im-

plement the architecture in Fig 3.7 on an experimental system. We first address the

issues of communication modeling in Chapter 4. We go on to propose control and plan-
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ning algorithms that provide solutions to the concurrent routing and mobility problem in

Chapter 5. For the scope of this work, we focus on straight-forward task specifications,

e.g. a single leader node that must visit a series of waypoints while maintaining a minium

rate of communication back to a fixed operating center.
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Chapter 4

Communication Modeling &

Mapping

The primary goal of communication modeling is to predict signal strength in order to

infer communication capability between two nodes. The secondary objective is to provide

a measurement model that can be used for sub-tasks such as relative localization and

mapping. We begin by introducing radio signal propagation and its connection with

wireless channel capacity. We then proceed by describing a series of candidate models

for received signal strength with increasing complexity focusing on regression techniques

for learning each model from measurements in an environment. Next, we compare the

performance of these models with experimental data from two indoor environments with

differing architecture. We conclude with a treatment of the secondary objective which

is to understand if we can leverage communication models in order to provide relative

localization.

4.1 Received Signal Strength and Channel Capacity

Received radio signal power is a complex multi–scale process that is a function of the

distance from the source, shadowing due to obstacles, electromagnetic interference, and
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multi–path phenomena that arise as a result of reflections and refractions of the signal

with the environment. While spatially and temporally averaged behavior can be fit to

deterministic path loss models, small-scale fading due to multi–path can cause variations

to received signal strength on the order of ±10 dB over small length scales of even a few

centimeters. Though small–scale fading can be modeled by complex ray–tracing methods

[34], we adopt a stochastic approach that assumes small–scale fading is drawn from a

probability distribution [33].

Given our fundamental assumption that radio signal propagation is a stochastic pro-

cess, the most basic models we can consider are stationary models which are purely a

function of the distance between source and receiver – all environmental features are in-

corporated into the stochasticity of the model. However, this type of model presents

difficulties as the size of the environment grows. As more environmental features are cap-

tured by the stochastic component, the model becomes more and more coarse. That is, it

becomes more general and an underapproximation of the actual behavior for a particular

point–to–point channel. Thus, we consider not only distance–dependent models, but also

methods for mapping the radio signal propagation in large complex environments. This

includes the considerations necessary to handle measurements are a function of position,

i.e. R2, position and relative orientation, SE(2), and point-to-point channels, R2 × R2.

In general, we describe the received signal strength at xj when transmitted from xi as a

random variable with known mean and variance, P̄R(xi, xj) and P̃R(xi, xj) respectively.

Ultimately, we seek to describe a model that relates node positions xi, xj with the

supported rate of communication Rij between them. Since it is well known that com-

munication rate is a function of the bit-error-rate of a channel and that bit-error-rate is

a function of the signal-to-noise ratio [93], we employ a cascaded model that first deter-

mines the received signal strength due to radio signal propagation, i.e. PR(xi, xj), and

then the bit-error-rate and uses this as a measure of the supported communication rate

over a channel.
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From [93], bit error rate (pb) and received power level PR(xi, xj) are a function of the

modulation scheme but can be generically related by

pb(PR(xi, xj)) = erfc

(√
PR(xi, xj)

PN0

)
(4.1)

where PN0 is the noise power (we useN0 to refer to the noise power in dBm on a logarithmic

scale with respect to 1 mW) and erfc(x) is the complementary error function. Zigbee

(802.15.4) employs a modulation scheme: O-QPSK with half-sine pulse shaping (MSK)

with 16 channels spaced at 5 Mhz and has transmission rates of 250 kb/s [54].

The rate function for a channel from a node at xi to another node at xj is then

Rij(xi, xj) ∝ 1− pb(PR(xi, xj)) (4.2)

Since we know that received signal strength suffers from small–scale fading and must

be considered as a random variable, it is necessary to consider Rij(xi, xj) as a random

variable. Specifically, we will consider the statistics on Rij – that is, the mean, R̄ij , and

variance, R̃ij . We can apply the delta method to compute the variance of the bit-error-rate

function due to the variance on received power via its Taylor series expansion [49]

R̃ij(PR(xi, xj)) = var [Rij(PR(xi, xj))] ≈
(
R′ij(P̄R(xi, xj))

)2
P̃ (xi, xj). (4.3)

Figure 4.1 depicts the resulting distribution on channel reliability as a function of distance

when using a standard log-normal model

P̄R(xi, xj) = L0 − 10n log10(‖x1 − x2‖) (4.4)

P̃R(xi, xj) ∼ N (0, σ2
F ). (4.5)

Note that (4.4) and (4.5) represent received power relative to 1 mW in the units of dBm

and will be described in more detail in Section 4.3. We visualize the distribution by
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plotting the mean behavior R̄ij(xi, xj) and several confidence intervals. The confidence

levels in Fig. 4.1a are computed numerically. For each distance d = ‖xi−xj‖, we plot the

surfaces

Rij

(
P̄R(xi, xj)− k

√
P̃R(xi, xj)

)
, (4.6)

for k = −2,−1, 0, 1, 2. Figure 4.1b is based on the approximation from (4.3) and depicts

R̄ij(xi, xj)− k
√
R̃ij(xi, xj), (4.7)

for k = −2,−1, 0, 1, 2. While modeling point–to–point channel capabilities as a normal
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Figure 4.1: Model of the mapping from distance to link reliability shown with several confidence
intervals due to the log-normal fading on received-signal power. While the delta-method provides
a variance on reliability, there are some artifacts of approximation as can be seen when comparing
confidence intervals in (a) and (b).

random variable is an approximation, it is instrumental in later applications for robust

communication. A topic of future work is the identification of more accurate probability

distributions for point–to–point reliability.

4.2 Gaussian Processes

As we consider environments of increasing complexity, it becomes difficult to predict re-

ceived signal strength with distance-based models and we turn to spatial mapping tech-

niques. In particular, we investigate the use of a Gaussian process (GP) which is a gener-

alization of a typical Gaussian distribution and describes a distribution over functions. In
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fact, using a Gaussian process to model radio signal strength is specifically considered in

[25], where Ferris et al. demonstrate the utility of Gaussian processes for robotic localiza-

tion tasks and continue in [24] by addressing the simultaneous localization and mapping

problem when receiving transmissions from multiple base stations. Our work differs from

these approaches in that we are more interested in the predictive capabilities of the GP

– specifically the ability to represent increasing uncertainty about unexplored regions of

the environment [30].

Adopting the function–space view defined in [87], a GP describes a process f(x) as a

distribution over functions that is parameterized by a mean function µ(x) and covariance

function k(x,x′) which are defined as

µ(x) = E [f(x)] , (4.8)

k(x,x′) = E
[
(f(x)− µ(x))(f(x′)− µ(x′))

]
. (4.9)

The GP is then written as

f(x) ∼ GP(µ(x), k(x,x′)). (4.10)

For data–driven regression on radio signal strength, we consider (4.10) to be a prior

distribution and incorporate training points (XT ,yT ) with the interpretation that yi =

f(xi) +F , i.e. a noisy measurement model where random variations of the received signal

strength on a log-scale are considered to be normally distributed with variance σ2
F . The

goal of regression is then to determine a posterior GP that can be used to make predictions

about sample points X∗ = [xi∗].

As a convention, define K(X,X′) to be the matrix of k(·, ·) evaluated pairwise across

the elements of X and X′. Furthermore, to make things more compact, define KA =

K(XA,XA) and KA,B = K(XA,XB). For a single test point x∗, we write k∗ to represent

the vector obtained by computing k(x∗, ·) for all points in XT . The joint distribution of
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measurements y and sample outputs f∗ = f(X∗) is then given by

y
f∗

 ∼ N

 µ(X)

µ(X∗)

 ,
KT + σ2

FI KT,∗

K∗,T K∗


 . (4.11)

By conditioning on the observations, we can write the posterior predictive distribution as

f∗|X∗,XT ,yT ∼ N
(
µ(X∗) + K∗,T

[
KT + σ2

FI
]−1

(yT − µ(XT )) ,

K∗ −K∗,T
[
KT + σ2

FI
]−1

KT,∗
) (4.12)

or, for a single test point x∗, the measurement prediction as

ȳ∗ = µ(x∗) + kT
∗
[
KT + σ2

FI
]−1

(yT − µ(XT )) , (4.13)

var [y∗] = k(x∗,x∗)− kT
∗
[
KT + σ2

FI
]−1

k∗ + σ2
f (4.14)

where ȳ∗ and var [y∗] give the mean and variance of the predicted measurement respec-

tively. This is the distribution we are interested in as it predicts the observed signal

strength of the channel.

So far, we have not explicitly defined µ(x) or k(x,x′). The prior for the mean function

can be any parametric function of the input state x and it is somewhat standard in

the Gaussian process literature to begin by considering a squared-exponential covariance

function, i.e.,

kse(x1, x2) = σk exp
−‖x1 − x2‖2

2`2
, (4.15)

to model a wide range of spatial processes. By adopting a stationary kernel, i.e. one

that varies as a function of the difference between points, several of the calculations to

determine the posterior are simplified. The key idea of the squared-exponential covariance

function is that measurements are highly correlated within a characteristic length scale `.

Examining the structure of var [y∗], it is evident that prediction variance is controlled

by σ2
f and the position of training measurements. Consequently, as we make predictions
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farther from the region of the environment where training is performed, the variance of

the prediction will increase. This serves to represent our uncertainty about the behavior

of the modeled process in regions where we have not applied training.

4.3 Candidate Models

Most work with signal strength mapping is conducted with the assumption of a static

source so that the input space of the model is R2 and the source location is a fixed

parameter in R2. However, in a general application, both nodes of a point–to–point

channel will be mobile so that the true input space for mapping is R2×R2. Consequently,

we will consider regression techniques where a single measurement consists of an received

signal strength indicator (RSSI) yi and tuple of positions in R2, xi = (xs, xr) ∈ R4. A set

of N measurements is then given by X = {x1, . . . ,xN}, y = {y1, . . . , yN}. To match our

experimental measurements and for simplicity of presentation, we denote received signal

strength power in units of dBm, i.e., relative to 1 mW. We consider a series of models

presented in order of increasing complexity to explore the tradeoffs that are implicit to both

predictive performance and parameter estimation. We denote the unknown parameters of

each model as the vector θ and the estimated parameters based on measurements as θ̂.

All of the models we examine consider fading in a stochastic manner. The idea of

modeling fading power as a random variable is well accepted [74] and it is generally

considered to be drawn from a log–normal, Rayleigh, or Rician distribution. Any of

these distributions is parameterized based on an expected value and a single parameter

representing the magnitude of the random fading. We assume a log–normal distribution

so that fading power can be considered as an additive Gaussian on the log-scale that we

will typically use for convenience.

M1: Distance–dependent path loss with log–normal fading. The most basic model we con-

sider is a function solely of the distance between source xs and receiver xr. It is parame-

terized by L0 which denotes the received power at 1 m, decay term n, and fading variance
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σ2
F ,

PR,1(xs, xr) = L0 − 10n log10(‖xs − xr‖)︸ ︷︷ ︸
Path loss

+ F︸︷︷︸
Fading

. (4.16)

F models the small–scale fading as a normal random variable where F ∼ N (0, σ2
F ). Ad-

ditionally, note that L0 aggregates the transmitted power, which we assumed to be fixed,

and attenuation due to the amplifier–antenna system on both transmitter and receiver.

Parameters of this model are θ1 = (L0, n, σF ).

M2: Distance–dependent path loss with log–normal fading and fixed attenuation for non

line of sight (NLOS) channels. If some knowledge of the environment’s geometry is avail-

able, it is possible to explicitly model the radio signal attenuation for non-line-of-sight

channels by introducing a term W (xs, xr) that represents a fixed signal–strength attenu-

ation. We introduce a function V(xs, xr) as an indicator for the existence of line of sight

or visibility between two nodes at xs and xr. V(xs, xr) = 1 when there is visibility and 0

otherwise so that

W (xs, xr) =

 w if V(xs, xr) = 0,

0 otherwise
(4.17)

where w represents the fixed attenuation due to obstacles in the environment. Fixed

attenuation due to the shadowing effects of obstacles is then incorporated into (4.16) so

that

PR,2(xs, xr) = L0 − 10n log10(‖xs − xr‖) +W (xs, xr) + F . (4.18)

with θ2 = (L0, n, w, σF ).

M3: Distance–dependent path loss with models for log–normal fading that are dependent

on line-of-sight and non-line-of-sight channels. Extending the idea of (M2), we define a

distance–dependent path loss model with log–normal fading where the parameters of the

model are explicitly fit for line–of–sight and non–line–of–sight regimes so that

PR,3(xs, xr) = L0(xs, xr)− 10n(xs, xr) log10(‖xs − xr‖) + F(xs, xr) (4.19)
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where

L0(xs, xr) =

 L0 if V(xs, xr) = 1,

L0,NLOS otherwise

n(xs, xr) =

 n if V(xs, xr) = 1,

nNLOS otherwise.

(4.20)

The random fading term in this model is a function of the channel’s line-of-sight status.

For example, if we assume a log-normal distribution then,

F(xs, xr) ∼ N (0, σF (xs, xr)),

σF (xs, xr) =

 σF if V(xs, xr) = 1,

σF ,NLOS otherwise.

(4.21)

The parameters of this model are then θ3 = (L0, n, σF , L0,NLOS, nNLOS, σF ,NLOS). At the

cost of complexity, this model can be extended to consider an arbitrary number of channel

classes, e.g. to handle variations in obstacle material that affect the extent of shadowing

or multi–path fading.

M4: Gaussian process with naive uniform prior. In the spirit of (M3), consider the sce-

nario where we continually introduce new channel classes and accompanying parameters

as the environment is explored. In the limit, this can be modeled by a Gaussian process.

Models of radio signal propagation using a GP are able to capture a wide range of shadow-

ing and environmental effects without prior knowledge of the environment. This contrasts

with (M3) where we assume knowledge of the environment’s geometric structure and that

the geometry provides a good predictor for radio signal propagation.
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Remembering that x = (xs, xr) we can restate (4.12), (4.13), and (4.14) to write the

received power for a particular point–to–point link as the posterior GP

PR,4(xs, xr) ∼ GP
(
µ(x) + Kx,T

[
KT + σ2

FI
]−1

(yT − µ(XT )) ,

Kx −Kx,T

[
KT + σ2

FI
]−1

KT,x + σ2
FI
)
.

(4.22)

For (M4), we will temporarily suspend any prior knowledge we have of radio signal

propagation and set µ(x) = −90 dBm to coincide with the minimum threshold of the

radios in our experimental testbed – making the prior assumption that communication is

not possible between two arbitrary points. For processes where the behavior is correlated

at multiple length scales, one can build more complicated covariance functions based on

the sum of several squared exponential functions with different length parameters.

We choose a covariance function that is the sum of two squared exponentials

k(x,x′) = σ2
k,1 exp

−d(x,x′)2

2`21
+ σ2

k,2 exp
−d(x,x′)2

2`22
. (4.23)

The intent is that one length scale `1 is longer and represents path loss components of

the process while the other length scale `2 relates to shadowing due to obstacles in the

environment. We rely on a non-euclidian distance function d(·, ·) to model our assumption

that channels are symmetric. While it may turn out that this assumption is incorrect, it

serves to significantly reduce the sampling burden in the training phase. We define the

distance function between points x = (xs, xr) and x′ = (xs
′
, xr

′
) as

d(x,x′) = min


∥∥∥∥∥∥∥
xs
xr

−
xs′
xr
′


∥∥∥∥∥∥∥ ,
∥∥∥∥∥∥∥
xs
xr

−
xr′
xs
′


∥∥∥∥∥∥∥
 . (4.24)

Given our choice of µ(x) and k(x,x′), the so–called hyperparameters of the GP used

to represent (M4) are θ4 = (σ2
F , σ

2
k,1, `1, σ

2
k,2, `2).
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M5: Gaussian process with model–based prior. While it is feasible to consider a dense

but limited sampling of R2 as a single robot explores the environment, it is impractical

to make this assumption for the R2 × R2 space of all point–to–point links that we are

interested in. As a result, large quantities of training data are necessary before (M4) can

make useful predictions. We address this difficulty by incorporating the basic path–loss

model used in (M1) into the mean function prior. In fact, any parametric model, e.g.,

(M1) – (M3), can be used as the prior. Then,

µ(x) = L0 − 10n log10(‖xs − xr‖). (4.25)

Consequently, the covariance function can be simplified to be

k(x,x′) = σ2
k,1 exp

−d(x,x′)2

2`21
(4.26)

since it only needs to take into account shadowing due to obstacles in the environment.

With the introduction of a parameterized prior, the hyperparameters of the GP in (M5)

are θ5 = (σ2
F , σ

2
k,1, `1, L0, n). The posterior for (M5) has the same form as (4.22), i.e.

PR,5(xs, xr) ∼ GP
(
µ(x) + Kx,T

[
KT + σ2

FI
]−1

(yT − µ(XT )) ,

Kx −Kx,T

[
KT + σ2

FI
]−1

KT,x

) (4.27)

where µ(x) and k(x,x′) are redefined in (4.25), (4.26). The idea of (M5) is that once

a coarse model for path loss and small–scale fading has been determined, reasonable

predictions can be made anywhere in the space and local deviations are incorporated into

the posterior GP by the covariance function.

4.4 Experimental Analysis and Evaluation

Ultimately we are interested in online estimation and adaptation to obtain accurate models

of received signal strength in an unknown environment. However, in order to compare
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the basic representations or models we have proposed above, we analyze each model’s

ability to incorporate measurements and then make predictions in a real environment.

To demonstrate the generalization of each model, we perform this comparison in two

indoor environments of drastically different design and materials on the University of

Pennsylvania campus. With construction occurring in 1996 and 2003, the Levine building,

depicted in Fig. 4.2, offers modern construction – interior walls are primarily made up of

wood or metal framing with drywall. The Towne building, built in 1903–1906 and depicted

in Fig. 4.3, offers drastically different construction materials including brick and concrete

walls.

We collect data about the point–to–point links within a team of n mobile robots as

they execute a pre-planned deployment within the desired workspace. Per the testbed

description in Section 2.2, each robot is capable of self–localization in the environment

and communication with its neighbors via a 2.4 GHz Zigbee radio. This means that at

each measurement round, the system can collect on the order of n2 measurements in the

desired R2 × R2 input space. Each robot embeds its current pose xs in the world–frame

into a message packet and broadcasts to its neighbors at a rate of 5 Hz. On arrival, the

receiving robot includes its current pose xr and the received signal strength y and logs the

measurement. After an experimental trial, signal strength measurements are aggregated

into a single dataset of all measurements {X,y}. We use a subset of the data {XT ,yT }

to train each model. Training entails least–squares parameter estimation for (M1)–(M3)

and normal Gaussian process regression with ad hoc selection of maximum likelihood

hyperparameters for (M4), (M5).

Least–squares parameter estimation for models (M1)–(M3) will implicitly maximize

their log-likelihood. For the Gaussian process models, hyperparameters are chosen by

maximizing the log–marginal likelihood of the training data

log p(yT |XT , θ) = −M
2

log 2π − 1

2
log |KT + σ2

F |

− 1

2
(yT − µ(xT ))T

(
KT + σ2

FI
)−1

(yT − µ(xT ))

(4.28)
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(a) Levine building

(b) (c)

Figure 4.2: (a) Projection of full measurement dataset X onto R2 for the Levine building environ-
ment. Though measurements are made between pairs of robots in a 6 robot team, i.e., R2 × R2

we display the measurement locations by projecting onto R2 and only displaying the location of
the receiving node for each measurement. The uniform training set XT is determined by choosing
1, 000 of the measurements – displayed here as black points. (b) and (c) depict snapshots from the
environment
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(a) Towne building

(b) (c)

Figure 4.3: (a) Projection of full measurement dataset X onto R2 for the Towne building environ-
ment. Though measurements are made between pairs of robots in a 6 robot team, i.e., R2 × R2

we display the measurement locations by projecting onto R2 and only displaying the location of
the receiving node for each measurement. The uniform training set XT is determined by choosing
1, 000 of the measurements – displayed here as black points. (b) and (c) depict snapshots from the
environment

where M is the number of training points in XT . It is possible to compute the gradient of

this function and employ standard gradient-ascent algorithms to find hyperparameters that

achieve local maxima of the log–marginal likelihood. A complexity difficulty arises when

considering GP–based regression on the large datasets we encounter (e.g. a system of 6

robots broadcasting messages at 5 Hz can capture up to 10, 000 measurements in less than

a minute). In fact, standard GP regression with M training points requires the inversion

of an M × M matrix which happens in O
(
M3
)

time. There are a number of modern

approaches to sparse approximations to GP regression [13, 94, 104, 84]. We employ the

sparse pseudo-input Gaussian process (SPGP) method proposed in [94] to make Gaussian

process regression and prediction tractable on the extremely large datasets we capture.
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The log-likelihood, or evidence, of each model with parameters based on training

measurements {XT ,yT } is then computed for the full dataset {X,y}. To make this

a fair comparison between the Gaussian process and parametric models, we make the

following standardizations. First, we assume that each measurement is independently

distributed. For all models (M1)–(M5), we note that the received power at a single point

can be represented as a normally distributed random variable

PR,i(xs, xr) ∼ N (P̄R,i(xs, xr), P̃R,i(xs, xr)) (4.29)

with mean P̄R,i(xs, xr) and variance P̃R,i(xs, xr). Then, we define the likelihood for each

model i based on N measurements {X,y}, training {XT ,yT }, and estimated parameters

θ̂i to be

L(Mi) = log P
[
y |X,XT ,yT ,Mi, θ̂i

]
=− N

2
log 2π −

N∑
j=1

log P̃R,i(xs,j , xr,j)

2
−

N∑
j=1

(
yj − P̄R,i(xs,j , xr,j)

)2
P̃R,i(xs,j , xr,j)

.
(4.30)

To normalize, we also consider the average likelihood L̄(Mi) = 1
NL(Mi). Models with

larger likelihood do a better job of explaining the captured measurements. By training on

a subset of the data and then computing the likelihood over the entire set of measurements

in a given environment, we test for each model’s ability to provide predictions throughout

the environment.

We consider two testing paradigms that affect the choice of training subset {XT ,yT }.

In the first, we seek to identify a baseline comparison between models by uniformly choos-

ing training measurements across the entire domain. In the second paradigm, we explicitly

test the extrapolation capabilities of each model by training on a local subset of X chosen

by uniformly sampling measurements taken in the initial phases of a deployment.
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Uniform Training Set

There are N = 98, 454 measurements in the Levine dataset. We choose NT = 1, 000 train-

ing points such that {XT ,yT } is uniformly distributed across the measurement domain

using hierarchical clustering methods [16]. The estimated model parameters θ̂ found by

least–squares regression on the training measurements {XT ,yT } for models (M1)–(M3)

are given in Table 4.1. Likewise, the hyperparameters that lead to maximum likelihood

for the GP–based models are given in Table 4.2. Finally, the likelihoods L(Mi) for each

model are given in Table 4.3.

L0 n w L0,NLOS nNLOS σ2
F σ2

f,NLOS

Results for Levine building

(M1) Path loss -50.6 2.75 - - - 40.5 -
(M2) Fixed attenuation for walls -51.3 2.07 -7.58 - - 31.6 -
(M3) Piecewise parameters -52.7 1.78 - -50.1 3.03 24.2 29.6

Results for Towne building

(M1) Path loss -52.6 2.51 - - - 37.9 -
(M2) Fixed attenuation for walls -53.3 2.20 -4.7 - - 34.8 -
(M3) Piecewise parameters -53 2.25 - -62.2 1.81 40.13 22.3

Table 4.1: Least–squares parameter estimation for models (M1)–(M3) based on a uniform training
set with NT = 1, 000 points as depicted in Figs. 4.2 and 4.3.

σ2
F σ2

k,1 `1 σ2
k,2 `2 L0 n

Results for Levine building

(M4) GP with constant prior 8 93 5.75 14 0.25 - -
(M5) GP with (M1) prior 15 44 2.25 - - -50.6 2.75

Results for Towne building

(M4) GP with constant prior 13 93 5.25 13.5 0.25 - -
(M5) GP with (M1) prior 14 41.5 1.75 - - -52.6 2.51

Table 4.2: Hyperparameters for Gaussian process models (M4)–(M5)

We can draw several conclusions from this data. First, note that as the model com-

plexity is increased, the σ2
F parameter representing fading variance decreases. This implies

that as the model becomes more expressive, deviations in the underlying process can be

explicitly modeled and are not subsumed into the randomness used to model small–scale
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M1 M2 M3 M4 M5

Levine uniform XT -3.25 -3.13 -3.11 -3.14 -3.08
Towne uniform XT -3.27 -3.24 -3.24 -3.21 -3.21

Table 4.3: Comparison of each model’s average log–likelihood L̄(M).

fading. The alternate explanation, that increasing model complexity leads to overfitting, is

countered by the fact that model likelihood L̄ is computed using points outside the train-

ing set and also shows an inverse relationship with the sequence of increasing complexity

models (M1) – (M5). However, while there is a trend of increasing model likelihood, the

actual improvement in performance as measured by the likelihood is minimal. This is due

to the fact that the local behavior of the underlying process is dominated by small–scale

fading, see Fig. 4.4. For example, consider (M2) fit to the Levine building environment.

Based on samples across the entire environment, the model extracts that an additional

5.8 dBm attenuation is present for non-line-of-sight channels while the variance associated

with small–scale fading is σ2
F = 34.4. This amounts to a standard deviation of 5.87 dBm

meaning that 32% of the time, a channel will instantaneously exhibit changes to received

signal strength as dramatic as losing line of sight.

The increase in performance from (M1) to (M2) serves to demonstrate the benefit

that can be derived from geometric information about the environment, e.g., to determine

if a wireless channel is line-of-sight. However, if we examine the performance of (M2)

with (M4) in Table 4.3, it is clear that the two models perform similarly. This occurs

despite the fact that the Gaussian process-based (M4) incorporates no knowledge about the

environment. Furthermore, this serves to highlight a feature of spatial mapping approaches

based on the Gaussian process – they are able to represent un-modeled received signal

strength phenomena.

Finally, a strength of the parametric models (M1) – (M3) is that a physics–based

explanation can be assigned to the estimated parameters. However, this clearly breaks

down when we consider the multi–modal fit of (M3) for the Levine building. In this case,

the best fit for non–line–of–sight channels inflates the received signal strength at 1 m,
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(a) M1
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(b) M5

Figure 4.4: Predictive output of candidate models (M1) and (M5) for received signal strength in
the Levine building. The models’ output is visualized as a function of distance with an envelope
depicting ±2σ and is overlaid with actual measurement values. Since (M5) is spatially correlated,
its prediction is made along the upper hallway in Fig. 4.2 and compared to nearby measurements.
Note that predictions farther from measurements incur larger uncertainty.

i.e. L0,NLOS > L0, and compensates with increased fading exponent nNLOS = 3.49. This

behavior occurs because no short range non–line–of–sight measurements are captured in

this dataset. The models (M1) – (M3) rely on deterministic parameters and have no

representation for uncertainty due to lack of adequate measurements. This contrasts with

the GP–based models (M4) and (M5) which explicitly model predictive uncertainty as a

function of training measurements as depicted in Fig. 4.4b.

Similar to the results in the Levine building, the Towne building dataset includes

N = 181, 376 measurements with NT = 1, 000 training measurements across the domain

of the environment as depicted in Fig. 4.3. Parameter estimates and model likelihoods

are reported for this dataset in Tables 4.1, 4.2, and 4.3. We observe the same trend of

increasing model likelihood with complexity. Additionally, examining the coarse model

(M1) for the Levine and Towne building, it is evident that a single model with a large

random component can be used as a conservative model across both environments. Fur-
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thermore, the nature of the GP–based models, where correlations are determined by local

kernel functions, admits the best of both scenarios where a coarse deterministic prior is

used in conjunction with local measurements to refine the model in different regions of

the environment.

Local Training

The results presented above that rely on uniform training measurements across the entire

measurement domain are useful to provide a baseline comparison of candidate models

but do not adequately represent many applications. Here we alter the paradigm used to

choose a subset of measurements for training to be more realistic. In both the Levine and

Towne datasets, the team of six robots begin located in close proximity and are deployed

into the environment. To produce a “local” training set, we perform uniform sampling of

measurements captured in the first 100 s of each deployment. This results in a training

set XT for each environment as depicted in Fig. 4.5.

(a) (b)

Figure 4.5: Projection of full measurement dataset X onto R2 for the (a) Levine and (b) Towne
buildings. In order to display the data in R2, only the source location is depicted for each measure-
ment. The local training set XT is determined by choosing 2% of the measurements in a subset of
the environment – displayed here as black points.

73



Following the same procedures as above, we find the best parameterizations of the

candidate models based on these drastically reduced training sets as reported in Tables 4.4

and 4.5.

L0 n w L0,NLOS nNLOS σ2
F σ2

f,NLOS

Results for Levine – local

(M1) Path loss -52.4 2.07 - - - 43 -
(M2) Fixed attenuation for walls -52.2 1.95 -3.9 - - 41.3 -
(M3) Piecewise parameters -52.4 1.9 - -49.5 3.11 39.7 42.4

Results for Towne – local

(M1) Path loss -53.6 2.18 - - - 41.4 -
(M2) Fixed attenuation for walls -54 1.95 -6.3 - - 39 -
(M3) Piecewise parameters -54 1.83 - -54.2 2.69 35.7 57.1

Table 4.4: Least–squares parameter estimation for models (M1)–(M3) based on a local training
set as depicted in Figs. 4.5a and 4.5b.

σ2
F σ2

k,1 `1 σ2
k,2 `2 L0 n

Results for Levine – local

(M4) GP with constant prior 8 93 5.75 14 0.25 - -
(M5) GP with (M1) prior 15 44 2.25 - - -50.6 2.75

Results for Towne – local

(M4) GP with constant prior 13 93 5.25 13.5 0.25 - -
(M5) GP with (M1) prior 14 41.5 1.75 - - -52.6 2.51

Table 4.5: Hyperparameters for Gaussian process models (M4)–(M5) based on a local training set
as depicted in Figs. 4.5a and 4.5b

Comparison of these parameters with those found based on the more “ideal” uniform

training set reveals a systematic underapproximation of the received signal strength. In-

deed, the model likelihoods reported in Table 4.6 clearly demonstrate reduced performance

over their counterparts above.

A key feature of the GP–based model (M5) is its representation of increased predictive

uncertainty away from measurements used for training. The local training set illustrates

this as depicted in Fig. 4.6 where we train the model–based prior on short range line–of–

sight measurements and then make a series of predictions. Since each prediction is given
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M1 M2 M3 M4 M5

Levine local XT -3.46 -3.27 -3.13 -4.03 -3.45
Towne local XT -3.31 -3.29 -3.29 -3.50 -3.44

Table 4.6: Comparison of each model’s average log–likelihood L̄(M). Note that some models, e.g.
(M3), cannot not be fit for training sets with no non–line–of–sight measurements such as Towne
local.

by a normal distribution, the mean of that distribution matches the performance of (M1)

but increased variance indicates decreased certainty about the received signal strength.

To specifically analyze the performance of the GP–based model with a path loss model

as we make predictions farther from the set of training measurements, consider Fig. 4.6c

which depicts the evolution of each model’s likelihood based on validation measurements.

By the time measurements are more than 10 m from the source, the performance of the

GP–based model exceeds that of its path loss-based prior. Since the expected value of

predictions from the GP model rely entirely on the prior here, the increased likelihood is

due to the uncertainty representation that grows in regions where we have not captured

measurements for training.

Summary

Our results, as expected, indicate that fitting performance increases with model complexity

in cases where the training data is uniformly distributed across the domain of the final

test data. This indicates that, in the absence of computational complexity concerns,

the Gaussian process-based model (M5) is the best choice of model. However, the issue

becomes more complicated when we consider the local training examples where models

(M2) and (M3) perform better than GP–based models. In these particular examples,

knowledge of the environment geometry allows for accurate extrapolation of performance

in untrained regions of the environment. On the other hand, the GP–based models (M4)

and (M5) capture model uncertainty in regions where training samples have not been

collected.
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Figure 4.6: Illustration of increased model uncertainty in unexplored regions for GP–based model
(M5) (a) depicts the sample source location xs, measurements used to train the model (gray
points), measurements used to validate the model (black points), and the dashed line along which
predictions are made. (b) is the predictive output of the GP with the darker dashed line and
envelope depicting the prediction from (M1) while the solid line with lighter envelope depicts the
prediction from the GP in (M5). (c) depicts the evolution of the likelihood of both models (M1)
and (M5) as we consider points increasingly far from the source and training data.

In conclusion, model choice is not as straightforward as the complexity to performance

relationship. However, it is true that the inclusion of accurate environment geometry does

increase the extrapolation performance. The real benefit of the computational complexity

incurred by GP-based models is twofold: first, the ability to represent signal strength

features that are not predicted by geometry and second, the capability to report increased

uncertainty away from training samples.
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4.5 Localization

Our work towards communication modeling is primarily driven by the situational aware-

ness problem statement from Section 3.2. However, a common alternate application of

received signal strength modeling is relative localization of mobile agents [2, 3, 6, 7, 15,

22, 24, 25, 35, 37, 81, 91, 97, 112]. As demonstrated in Sections 4.3 and 4.4, small–scale

fading in indoor environments presents itself as a significant source of noise that poses

difficulties to any localization method that relies on received signal strength.

4.5.1 Radio Signal Source Localization

Here we consider the problem of a single static node broadcasting messages from an

unknown position xs. An individual or team of mobile agents with self–localization capa-

bilities move through the environment receiving messages from xs and measuring received

signal strength. The goal is to determine an estimate of the source location x̂s based on

an inferred model of radio signal propagation. In practice, the estimation of a static node

at an unknown position can be applied to a wide range of applications including search

and rescue based on cellular phone signals or connectivity maintenance to a static access

point.

In the context of using a Gaussian process to model received signal strength, the prob-

lem of localizing an unknown source location can be formulated as a maximum likelihood

estimation on the parameters of the Gaussian process prior function [30]. Consider the

candidate model (M5) which relies on a parametric function of path loss as a prior

PR(xs, xr) = L0 − 10n log10(‖xs − xr‖)︸ ︷︷ ︸
Path loss

+ F︸︷︷︸
Fading

. (4.31)

In the communication mapping work developed in Section 4.3, we assume the parameters of

this equation are (L0, n, σF ) and that the source location for each received signal strength

measurement is known. To perform source localization, we extend the parameters of (4.31)
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to be (L0, n, σF , xs) where xs ∈ R2 represents the location of an unknown node that is

broadcasting messages. Given a set of measurements {X,y} where each measurement

x ∈ X is now in R2, we utilize gradient–based maximum likelihood estimation to find

the source location xs along with the other hyperparameters θ of the Gaussian process.

Given this method for maximum likelihood estimation of the source location, we propose

an active control strategy that drives a mobile agent to collect the samples necessary for

accurate source localization.

Maximum likelihood source estimation

The Gaussian process model described in (M4) and (M5) denotes θ as the hyperparameters

of the process, i.e. the parameters of the priors on mean and covariance functions. Here,

we further decompose hyperparameters θ into those affecting the mean prior as θm and

those affecting the covariance or kernel function as θk. For the source localization work,

we assume accurate prior knowledge of the covariance hyperparameters θk. Given a mean

function prior similar to (4.31), we denote it as an explicit function of parameters θm so

that µ(x, θm) incorporates the signal source location and parameters describing path loss

in the environment. Then, the marginal log-likelihood function of the associated Gaussian

process with N measurements {X,y} is

L(θm) = log P [y|X, θm]

= −1

2
(y − µ(X, θm))T(K + σ2

FI)−1(y − µ(X, θm))

− 1

2
log
∣∣K + σ2

FI
∣∣− N

2
log2π.

(4.32)
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To find the maximum likelihood estimate θ̂m of the mean function parameters θm, we

consider the gradient of the log-likelihood ∂L(θm)/∂θm

∂L(θm)

∂θm
=
∂ log P [y|X, θm]

∂θm

= (y − µ(X, θm))T(K + σ2
FI)−1∂µ(X, θm)

∂θm

=

(
∂µ(X, θm)

∂θm

)T

(K + σ2
FI)−1 (y − µ(X, θm))

(4.33)

and perform gradient ascent to find θ̂m. Note that if we assume to know the kernel

parameters, this optimization can be evaluated with a single computation of the inverse

(K+σ2
FI)−1 which avoids the typically prohibitive O(N3) cost when computing Gaussian

process models for large datasets.

Furthermore, as shown in [1], we can use the second derivative of the log-likelihood

∂2L(θm)

∂θm,i,j
=

(
∂2µ(X, θm)

∂θm,i,j

)T

(K + σ2
FI)−1 (y − µ(X, θm))−(

∂µ(X, θm)

∂θm,i

)T

(K + σ2
FI)−1∂µ(X, θm)

∂θm,j

(4.34)

to compute the Fisher information matrix

Ii,j = −∂
2L(θm)

∂θm,i,j
(4.35)

which, via the Cramer-Rao bound, provides a lower bound on the covariance of the maxi-

mum likelihood estimate θ̂m. Thus, we describe the uncertainty of a maximum likelihood

source estimate to be normally distributed, e.g.

θm ∼ N (θ̂m,Σm) where Σm = I−1. (4.36)
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Control law

Our focus is on using a mobile robot to continuously drive through an environment and

sample the signal strength. We assume that signal strength mapping is the only task

assigned to the robot so that it has full freedom to choose control directions that are

most informative with respect to signal strength mapping. Here we take an exploration-

exploitation approach similar in spirit to [51]. When the robots first enter an environment

and have very few training samples, the estimate of x̂s is poor or sometimes impossible to

determine – random exploration is the best or only strategy. However, when an estimate

is available for x̂s, the controller can choose directions that are more informative.

To formalize, we define two control inputs uexplr and uexplt. The exploration input

uexplr is chosen to locally reduce the entropy of the Gaussian process by following the

gradient of the predictive variance (4.14) at the current position x∗, i.e.

uexplr(x∗) =αexplr∇var [y∗]

=αexplr

(
∂k(x∗, x∗)

∂x∗
− 2

∂k∗
T

∂x∗
Qk∗

) (4.37)

where Q = (K+σ2
FI)
−1. The exploitation input is chosen based on the current maximum

likelihood estimate of the source location x̂s

uexplt(x∗) = αexplt (x̂s − x∗) . (4.38)

The intuition behind the exploit control input is that for estimating the parameters of

a log-based function, samples must be collected near the source and away from the flat

tail of the function where the local variation will be within that explained by small–scale

fading.

Control inputs are chosen at discrete intervals indexed by k and applied for a fixed

distance based on the characteristic length of the Gaussian process as determined by the

length hyperparameter ` in the covariance function k(·, ·). This ensures that statistically
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independent samples of the received signal strength are collected. Each control input uk

is chosen with equal probability to be either uexplr(x(k)) or uexplt(x(k)). The first control

input u0 is chosen entirely at random since there is no prior knowledge of ∇var [y∗] or

x̂s. Control gains αexplr and αexplt are chosen based on velocity constraints of the mobile

robot.

Experimental Results

We place a stationary Scarab robot in an open environment and have it broadcast packets

via its Zigbee radio at 2 Hz. A mobile robot is started in the same obstacle-free region and

follows the controller defined above as depicted in Fig. 4.7. After a random initial control

direction in Fig. 4.7a, there is an estimated source location in the +x-direction and the

uexplt action is selected in Fig. 4.7b. Figure 4.7c and 4.7d depict the uexplr control action

while Figs. 4.7e and 4.7f depict execution of uexplt. Note that as samples are collected,

multiple local maxima of the likelihood function L(θm), e.g. Fig. 4.7e, are resolved to the

true maximum shown in Fig. 4.7f.

In a complex hallway environment, allowable control directions are limited, precluding

the use of the control law defined in (4.37) and (4.38). Instead, we perform a constrained

exploration by driving the length of the hallway as depicted in Fig. 4.8a. After collecting

non–collinear data, there is a single maximum likelihood estimate of the source location

x̂s that closely approximates the true source location.

4.5.2 Bearing–based Localization

All of our signal strength modeling up until now has focused on the location and distance

between the transmitting and receiving nodes while making the assumption that the an-

tennas are isotropic. While antenna design typically strives to be isotropic in its sensitivity,

real antennas will inevitably have some orientation dependence. In fact, any real antenna

implementation will have a “lobe” structure where there exist bearings along which the
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(a) n = 20 (b) n = 38 (c) n = 73

(d) n = 85 (e) n = 112 (f) n = 155

Figure 4.7: The evolution of the likelihood function L(θm) with respect to the signal source location
xs after n samples. As the experiment progresses from (a)–(f), the measurements are incorporated
into the Gaussian process, affecting the likelihood of the source location. The trial concludes when
there is a clear global maximum of the likelihood function. Samples are represented by yellow
points, the vector field depicts the gradient of L(θm). The white circle in each figure represents
the actual signal source location.

Training x
y

T
ra
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g

(a)

(b) n = 48 (c) n = 130

Figure 4.8: In complex environments such as (a), constraints on sampling make it difficult to
accurately estimate the source location. In this example, a clear maximum in the likelihood
function L(θm) is not found until the robot turns the corner in (c). In (b) and (c), the actual
source location is marked by a white disk.
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antenna is much less sensitive as demonstrated in the experimental results depicted in

Fig. 4.9.
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Figure 4.9: Bearing estimator results. Figures 4.9a and 4.9b both depict raw data that enters the
bearing estimation process. The magenta circle in each example illustrates ψ̄i,j and the red dot
indicates the actual bearing. Figure 4.9c depicts the estimator error with a histogram over 100
trials to justify our Gaussian approximation.

A generic two-lobe structure can be approximated on a dB scale by

Ψ2(θ) = 20 log10

(∣∣∣∣∣− cos
(

1
2π cos θ

)
π cos θ

∣∣∣∣∣
)

+ 20 log10 π + η (4.39)

where η is a normalization term to account for the magnitude of the received signal at

a particular location. More general lobe structures can be generated by composition of

several parameterized versions of (4.39) where we indicate the number of lobes by the

subscript of Ψ(θ).
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Given these antenna profiles, our approach is to gather received signal strength data

while rotating the antenna and identify the most likely bearing to the signal source. Let

an individual RSSI measurement be ψi,j(θi) and assume that a relative bearing estimate

is computed after sampling θi ∈ [0, 2π). Then, a function

E`(φi,j) =

∫ 2π

0
(ψi,j(θi)−Ψ`(θi − φi,j))2 dθi (4.40)

describes the error of the collected measurements given a relative bearing φi,j . The nor-

malization parameter η is set η = maxθi∈[0,2π) ψi,j(θi). Based on empirical evidence, we

attempt to fit both one and two-lobe models to the measured data. The best estimate for

φi,j is then given by the minimum over E1(φi,j) and E2(φi,j),

φ̂i,j = argmin
φi,j∈[0,2π),`∈{1,2}

E`(φi,j). (4.41)

By relying solely on the relative deviations in signal strength during a rotation, we divorce

ourselves from the necessity to learn environmental characteristics of radio signal prop-

agation. However, the symmetric nature of antenna profiles dictate that this method of

bearing measurement will suffer from directional ambiguity, motivating the development

of tools for solving bearing–only localization problems in the presence of a π-ambiguity.

It is clear that for a cycle of robots making π-ambiguous relative bearing measurements

as depicted in Fig. 4.10, the number of possible solutions is combinatoric. However, it is

possible to discover the true configuration via two observations. First, we prove that for

position-only localization, the combinatoric set of feasible solutions reduces to 2. Second,

we show that it is possible to disambiguate feasible solutions through node motion, see

e.g., [20].

Experimental Results

In order to properly characterize the noise model of our RSSI–based bearing estimator, we

conduct over 100 trials where one robot transmits packets and another rotates in place so as
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θ1
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{x2, y2, θ2}
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φ2,3

φ3,1

φ3,2

{x3, y3, θ3}

Figure 4.10: Notation for agent state xi, yi, θi, relative bearing measurements φi,j , and the interior
angles of a cycle αi for three agents.

to compute the bearing measurement (4.41). For the purposes of this experiment, we rely

on the ground truth data to properly resolve the direction ambiguity in the measurement.

Figures. 4.9a and 4.9b show sample datasets. Figure 4.9c depicts a histogram of the error,

demonstrating that it can be approximated by a Gaussian distribution with σzŵi
= 17◦.
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(b) 6 Rounds
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(c) 12 Rounds

Figure 4.11: Snapshots of the three robot experiment demonstrating the convergence of the pro-
posed filter with relative bearing estimates based on RSSI measurements from off-the-shelf Zigbee
radios. The state estimate is provided relative to the root node which starts at (−1, 0) m. Ground
truth is depicted by blue arrows while the EKF estimate is indicated with green arrows and con-
fidence ellipsoids.

A three robot experiment is conducted as depicted in Fig. 4.11 where two agents are

stationary while a third agent, moves through an elliptical trajectory to ultimately disam-

biguate the state hypotheses and perform localization. In this trial, all robots belong to

the same neighborhood so that relative bearing measurements are made between all pairs

of robots resulting in fast convergence of team-state depicted in Fig. 4.12. Observe that

after only 7 measurement rounds, the team obtains a formation that is nearly consistent
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with scale of 0.87 and has a mean–squared-error (MSE) over the interior angles and rel-

ative position of 8× 10−3rads2 and 0.027 m2. After completing 12 measurement rounds,

the scale is 0.92 with MSE values being 1× 10−3 rads2 and 0.033 m2. The interior angle

error is used as a metric to capture the scale–free convergence of our method.
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Figure 4.12: The scale, MSE of formation interior-angles, and relative position with respect to
the root node in the experimental trial depicted in Fig. 4.11.

4.6 Summary

In this chapter, we have thoroughly explored several methods for communication modeling

and its applications for teams of mobile robots. Our primary focus was the presentation

of several candidate models for received signal strength and extensive experimental results

to compare the performance of these models. We have also explored the application of

models for received signal strength to the problem of relative localization for a team of

mobile robots.

The results in this chapter can be distilled into several specific points. First, geo-

metric knowledge of the environment, e.g., a map built from laser range scans, provides

information that effectively improves the quality of received signal strength predictions.

In cases where this geometric map is unavailable or fails to adequately capture the full

nature of radio signal propagation, Gaussian proceses can serve as a framework for spatial

mapping of point-to-point wireless channels. GP-based methods can model a wide range

of signal strength phenomena and have the ability to represent increased uncertainty in

untrained or unexplored regions of the environment. Further, we demonstrate that the
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Gaussian process model for received signal strength can be readily applied to the local-

ization problem by examining the marginal likelihood of the model with respect to an

unknown source location. Finally, though we spend considerable effort developing and

experimentally verifying models that ignore the relative orientation of radios, it is the

case that real antennas are rarely isotropic and, in fact, demonstrate significant variation

in their performance based on the orientation to the signal source. We demonstrate that

this variation is highly correlated such that we can build a relative localization method for

teams of robots based on purely relative information. That is, we avoid the complexities

of learning a global model for radio signal propagation.

In aggregate, we have defined a framework in which we can capture point-to-point

measurements of received signal strength with a team of mobile robots in a complex

indoor environment, extract a model or map of received signal strength, and use this to

predict the supported rate between robots at arbitrary points in the environment. The

prediction of point-to-point communication rate consists of both a mean and variance and

thus provides an essential capability to the development of connectivity control algorithms

that are focused on maintaining specific rates of end-to-end communication.
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Chapter 5

Concurrent Mobility Control &

Robust Routing

A drawback of our formulation to the situational awareness task in (3.19) is the difficulty

of ensuring that the end-to-end rate constraints in (3.18) are satisfied. As seen in (3.17),

rates aki (α,x) depend on the link reliabilities Rij(x), which are difficult to estimate as

demonstrated in Chapter 4. The challenge here is that R̄ij(x) estimates are needed not

only for configuration x(t), but for nearby configurations where the robots will move.

The high variability of wireless channels makes R̄ij(x(t)) a poor predictor of Rij(x) even

if x is close to x(t). In formal terms, uncertainty of channel estimates means that the

variances R̃ij(x) of channel estimates R̄ij(x) are large for potential future positions x.

Based on the models developed in Chapter 4, we assume that the communication modeling

algorithm provides mean, R̄ij(x), and variance, R̃ij(x), estimates for arbitrary network

configurations x.

Thus, we seek to redefine (3.19) in a manner that takes into account the probabilistic

formulation of channel rates. The important observation here is that if point-to-point

link rates become random, so do the rates aki (α,x) of end-to-end communication flows.

Consequently, it is not possible to guarantee satisfaction of the constraints in (3.18).

88



Rather, we introduce a reliability tolerance ε and require that for all i and k,

P
[
aki (α,x) ≥ aki,min

]
≥ ε. (5.1)

That is, we require that the end-to-end link between all sources i and the destinations of

all corresponding flows k exceed their minimum required level of service with probability

larger than ε. As in the case of the rate requirement in (3.18), we can satisfy (5.1) by

controlling α and x.

In order to robustly satisfy the networking constraints in (5.1), the concurrent routing

and mobility problem (3.19) is replaced by

min
α(t),ẋ(t),t∈[0,tf ]

Ψ(x(tf ))

subject to P
[
aki (α,x) ≥ aki,min

]
≥ ε

x(t) = x(0) +

∫ t

0
ẋ(u) du (5.2)

The problem formulation in (5.2) inherits some standard complications from the control

formulation in (3.16). The problem is infinite dimensional and due to, e.g., the presence of

obstacles, not convex. The concurrent optimization in (5.2) is further complicated by the

entanglement of the routing and mobility problems. We deal with this entanglement by

fixing x and selecting α in a manner that optimizes the reliability P
[
aki (α,x) ≥ aki,min

]
.

We follow up with local and global searches for positions x that minimize Ψ(x) while

maintaining communication reliabilities above the ε threshold.

5.1 Robust Routing

The major difficulty in solving (3.19) is the uncertainty in achievable transmission rates

between nearby agents. Assuming that actual channels Rij(x) coincide with their esti-

mates R̄ij(x) may result in a drastic difference between predicted and actual end-to-end

rates. A simple way to account for the uncertainty in Rij(x) is to artificially decrease
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R̄ij(x) to reduce the likelihood of having actual rates less than the predicted value. A

better way to account for this uncertainty is to recall that end-to-end failures rather than

point-to-point failures are relevant. In fact, it is possible to exploit spatial redundancy

to devise robust routes that guarantee small changes in end-to-end rates despite large

variability in Rij(x) [111].

To develop robust routing algorithms, we start by noticing that computing the proba-

bility in (5.1), which is part of the problem formulation in (5.2), necessitates modeling the

probability distribution of aki (α,x). This is difficult in general. However, if we explicitly

consider the stochastic model of point-to-point links via their means and variances, we

can compute the mean and variance of end-to-end rates aki (α,x) as

āki (α,x) :=E
[
aki (α,x)

]
=
∑
j

αkijR̄ij(x)−
∑

j /∈dest(k)

αkjiR̄ij(x), (5.3)

ãki (α,x) :=var
[
aki (α,x)

]
=
∑
j

(αkij)
2R̃ij(x)+

∑
j /∈dest(k)

(αkji)
2R̃ij(x). (5.4)

A substitution for the probability in (5.1) is the difference between aki (α,x) and its mean

āki (α,x) normalized by its standard deviation
√
ãki (α,x). Indeed, for any probability

distribution, we can invoke Chebyshev’s inequality to claim that

āki (α,x)− aki,min√
ãki (α,x)

≥
√

1

ε
. (5.5)

is a sufficient condition for satisfying (5.1). Using specific assumptions on the distribution

of Rij(x) tighter bounds can be obtained. If, e.g., we assume that Rij(x) has a Gaussian

distribution, then (5.1) is equivalent to

āki (α,x)− aki,min√
ãki (α,x)

≥ Φ−1(ε) (5.6)

where Φ−1(ε) is the inverse of the normal distribution’s cumulative distribution function.

The idea in robust routing algorithms is to reduce end-to-end uncertainty by taking advan-
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tage of spatial redundancy. To exploit spatial redundancy it is necessary to split traffic

among various different routes. Indeed, (5.6) is satisfied by either increasing the mean

āki (α,x) or decreasing the variance ãki (α,x). Since the mean is a linear function of α,

traffic splitting has a minor effect on āki (α,x). The variance is a quadratic function of α

so that traffic splitting reduces ãki (α,x) by a factor proportional to the splitting – recall

that αij ≤ 1. Thus, traffic splitting tends to increase the slack with which (5.6) is satisfied

because it keeps āki (α,x) more or less constant but reduces ãki (α,x) significantly.

For given positions x, we want to find routing variables α that satisfy (5.6) or (5.5).

In either case there is some indeterminacy because there is a non-unique set of variables α

that satisfy the corresponding inequality. This indeterminacy provides a degree of freedom

that can be used to increase the reliability beyond the required level. For doing so we

introduce a slack variable a∆ and write the following optimization problem which seeks

to maximize the minimum aki,min threshold that can be maintained with probability ε.

α(x) = argmax
α, a∆

a∆

subject to
āki (α,x)− (aki,min + a∆)√

ãki (α,x)
≥ Φ−1(ε),

(5.7)

where āki (α,x) and ãki (α,x) are given as in (5.3) and (5.4), the routing variables α are

further constrained to 0 ≤ αkij ≤ 1 and
∑

j,k α
k
ij ≤ 1, and the probability constraints are

required for all i and k.

The original goal as stated in (5.6) is to find routing variables that make aki (α,x) ≥

aki,min with probability ε. The formulation in (5.7) seeks the best margin a∆ for which we

can have aki (α,x) ≥ aki,min + a∆ with probability ε. A large value of a∆ implies that the

constraints in (5.6) are satisfied with significant slack and that there is significant liberty

to change the physical configuration without violating communication constraints. The

goal of maximizing a∆ is to find routing variables that maximize the flexibility to change

the configuration for which α was chosen. This flexibility is instrumental for the mobility

control algorithms.
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The optimization problem in (5.7) can be formulated as a second order cone program

(SOCP) [63] as long as ε > 0.5 so that Φ−1(ε) > 0 which maintains (5.8) as a convex

second–order cone constraint. Start by noticing that the route allocation constraints

0 ≤ αkij ≤ 1 and
∑

j,k α
k
ij ≤ 1 are linear in α. The probability constraints can be rewritten

as √
ãki (α,x) ≤ āki (α,x)

Φ−1(ε)
− a∆

Φ−1(ε)
−

aki,min

Φ−1(ε)
. (5.8)

We define the N × N matrix Ak = (αkij) and α = (vec(A1), . . . , vec(AK)). Likewise,

define the rate matrix R = (Rij) which yields vectors r̄ = vec(R̄) and r̃ = vec(R̃) that

represent the aggregate rate means and variances respectively. Then, define the matrix

B = diag
(

(
√
r̃, . . . ,

√
r̃, 0)

)
with K instances of

√
r̃ and the variable y = (α, a∆). For

each node, define the vector ci = (vec(R̄ ·S), . . . , vec(R̄ ·S),−1)/Φ−1(ε) with K instances

of vec(R̄ · S) where R̄ · S is the component wise multiplication of R̄ with a sign matrix

such that āki (α,x) = Φ−1(ε)cT
i y. Finally, define the constant di = −ai,min/Φ−1(ε) and

rewrite (5.8) as

‖Ay‖ ≤ cTi y + di (5.9)

The constraint in (5.9) defines a second order cone because it constrains the norm of a

vector with a linear function. A problem with conic and linear constraints and a linear

objective is, by definition, an SOCP. SOCPs are a particular case of convex optimization

problem that can be efficiently solved with primal-dual potential reduction or interior

point methods [63].

The computational complexity of solving (5.7) is represented as a polynomial function

of the dimension of the SOCP problem M , O
(
M3
)

[63]. The dimension of the SOCP in

(5.7) is based on the number of agents, N , and communication flows, K, whereM = K ·N2.

However, in practical implementations, the N2 term can be reduced by eliminating links

where R̄ij is below a certain threshold. The actual computation time for an SOCP, using a

primal-dual potential reduction method on a 2.5 GHz processor, is depicted in Fig. 5.1 for
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Figure 5.1: Running time statistics for the solution to the SOCP (5.7) on a 2.5 Ghz processor.
The SOCP size refers to the dimension of y in (5.9). Error bars indicate one standard deviation.

a number of different problem sizes where the problem size is the dimension of y in (5.9).

5.2 Coordinated Control of Robot Mobility

As per the robust concurrent routing and mobility control problem (5.2), the objective

of mobility control is to find robot trajectories that decrease Ψ(x) while satisfying the

probability constraints in (5.6) which are equivalent to P
[
aki (α,x) ≥ aki,min

]
≥ ε. To

check for the feasibility of a joint mobility and network configuration (α,x), we define the

probability margin as the minimum slack in probability constraints across all flows and

sources,

ν(α,x) := min
i,k

 āki (α,x)− aki,min√
ãki (α,x

′)
− Φ−1(ε)

 (5.10)

Notice that a necessary and sufficient condition for feasibility of the physical component

of the configuration x is to have ν(α(x),x) ≥ 0, with routing variables α(x) given by the

unique solution of the convex optimization problem in (5.7). A sufficient condition for

the feasibility of physical configuration x′ is the existence of a network configuration α
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for which ν(α,x′) ≥ 0. In particular, for x′ close to x we expect to have ν(α(x),x′) ≥ 0

since the channel statistics at x and x′ are close.

5.2.1 Gradient Control Law

Since joint optimization over α and x is problematic, e.g. there is a non-convex relationship

between positions x and end-to-end rates aki (α,x) via the rate function R(x), we pursue a

controller that uses gradient descent to find locally optimal solutions to (5.2). That is, we

choose robot velocities ẋ(t) proportional to the negative gradient of −∇Ψ(x(t)). However,

since the problem in (5.2) is subject to communication constraints, a local controller should

be based on gradients of the potential function Ψ(x(t) projected onto the feasible set

ν(α,x) ≥ 0. However, the complex description of the feasible set precludes computation

of projected gradients. Instead, we consider the probability margin ν(α(x),x) and modify

the potential function Ψ(x) by incorporating the probability margin constraint into the

objective through a barrier function with scaling parameter µ,

Ω(x) := Ψ(x)− µ log
(
ν(α(x),x)

)
. (5.11)

Since non-negativity is necessary and sufficient for feasibility of the physical configuration

x, the potential function Ω(x) in (5.11) is defined if and only if physical configuration x

is feasible.

The control law for the team of robots is defined to implement gradient descent on the

modified potential Ω(x) introduced in (5.11), i.e.

u(t) = −∇Ψ(x(t)) + µ
∇xν

[
α(x(t)),x(t)

]
ν
[
α(x(t)),x(t)

] . (5.12)

The term ∇Ψ(x(t)) in (5.12) drives the system to satisfy the mobility task. The term

µ∇xν
[
α(x(t)),x(t)

]
/ν
[
α(x(t)),x(t)

]
serves as a barrier that drives robots away from

configurations for which there is a low probability of exceeding the desired reliability in

end-to-end rates. The scaling parameter µ is initialized to µ0 = 1 and robots are driven
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so that ẋ(t) = u(t) from (5.12) until we reach a stationary point for which u(x(t)) = 0.

We define the stationary point for a given µ to be x∞(µ) = limt→∞ x(t). For a task that

cannot be satisfied without violating the communication constraints, consecutive reduction

of µ leads to configurations that further minimize Ψ(x∞(µ)).

Proposition 5.2.1. Solving (5.2) by application of (5.12) and (5.7) represents a family

of algorithms that are parameterized by µ. Each instance will converge to a stationary

point x∞(µ) = limt→∞ x(t) such that one of the following is true

1. Ψ(x∞(µ)) = Ψmin (i.e. the task is accomplished),

2. Ψ(x∞(µ)) ≤ Ψ(x) ∀
{
x ∈ Bx∞(µ) : ν(α,x) ≥ µ∇xν

(
α(x),x

)
∇xΨ(x)

}
.

Proof. Both of these cases represent a stationary point of the controller where u(x∞(µ)) =

0,

∇xΨ(x∞(µ)) = µ
∇xν

(
α(x∞(µ)),x∞(µ)

)
ν
(
α(x∞(µ)),x∞(µ)

) (5.13)

for all components of x. Case (1) occurs when the system globally minimizes the task

potential function so that ∇xΨ(x) = 0, i.e., Ψ(x∞(µ)) = Ψmin, and ∇xν(α(x),x) = 0

which corresponds to a local maxima of the team’s probability margin. Since ∇xΨ(x) = 0

only at the global minima of the task potential function, the condition of local optimality

in case (2) occurs when (5.13) is true and ∇xΨ(x∞(µ)) > 0. We can rearrange (5.13) to

be

ν
(
α(x∞(µ)),x∞(µ)

)
= µ
∇xν

(
α(x∞(µ)),x∞(µ)

)
∇xΨ(x∞(µ))

for all components of x. Given the definition of α(x) as the unique argmax of an SOCP

(5.7), it is true that

ν
(
α(x∞(µ)),x∞(µ)

)
= µ
∇xν

(
α(x∞(µ)),x∞(µ)

)
∇xΨ(x∞(µ))

≥ ν
(
α,x∞(µ)

)
for all α and all components of x. This is a necessary condition for x∞(µ) to be a

stationary point. Therefore a sufficient condition for x to be a non-stationary point is
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that

ν
(
α,x

)
≥ µ∇xν

(
α(x),x

)
∇xΨ(x)

.

Thus, gradient-based optimization with (5.12) will converge to a point where

Ψ(x∞(µ)) ≤ Ψ(x) ∀
{
x ∈ Bx∞(µ) : ν(α,x) ≥ µ∇xν

(
α(x),x

)
∇xΨ(x)

}
(5.14)

Note that case (2) in Proposition 5.2.1 refers to a condition of local optimality for

(5.11). As µ→ 0, the condition (5.14) represents a network configuration that cannot move

closer to the goal configuration without violating the networking constraint ν(α,x) ≥ 0.

5.2.2 Algorithm for Coordinated Control

By assumption, computing ∇Ψ(x(t)) is straight forward. However, computing

∇xν(α(x),x) is difficult because: (i) Values of ν(α(x),x) depend on reliabilities Rij(x)

that are not known in analytic form but queried from a channel estimation module; see

Fig. 3.7 and Chapter 4. (ii) The margin ν(α(x),x) depends on α(x) that is computed as

the solution of the SOCP in (5.7). To approximate ∇xν(α(x),x), we consider a finite set

of perturbations X′ of the position x and define ∇̂xν(α(x),x) as the average of the finite

difference ratios,

∇̂xν(α(x),x) =
∑
x′∈X′

ν(α(x),x)− ν(α(x′),x′)

‖x− x′‖ (x− x′). (5.15)

To compute ∇̂xν(α(x),x) in (5.15) it is necessary to solve the SOCP in (5.7) for all

positions x′ ∈ X′. To reduce computational cost, we define a simplified gradient estimate

∇̂(s)
x ν(α(x),x) as

∇̂(s)
x ν(α(x),x) =

∑
x′∈X′

ν(α(x),x)− ν(α(x),x′)

‖x− x′‖ (x− x′), (5.16)
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Algorithm 1 Search for feasible node velocities
Require: Routing solution at x(t), α(x). Prediction function for link rates, R(xi, xj). Desired velocity

for each node ẋdesi . Initial position of nodes at time t, x(t). Increment to use when scaling velocities,
∆v

1: vj = 0 for all j ∈ J {Initialize all node velocities to zero}
2: for k = 0, . . . ,K do {each flow k}
3: Q = Empty queue
4: M = Empty set {To store scaled nodes}
5: Enqueue(Q, k)
6: while Q not empty do
7: j = Dequeue(Q)
8: uj = ẋdesj /‖ẋdesj ‖
9: vj = ‖ẋdesj ‖

10: while vj ≥ 0 and ν (α(x(t)),x(t) + v(t)T ) < 0 do
11: vj = vj −∆v {Scale velocity of node j}
12: Add(M, j) {Mark node j as done}
13: end while
14: for i ∈ {J : αk

ij > 0} do {each child of j}
15: if i 6∈M then
16: Enqueue(Q, i)
17: end if
18: end for
19: end while
20: end for

where the routing solution α(x) is used as an approximation to α(x′). Though the lower

compuatational cost of ∇̂(s)
x ν(α(x),x) facilitates real-time implementation, use of the gra-

dient approximation ∇̂xν(α(x),x) will yield final configurations with lower task potential.

On a real system, the proposed local controller operates in discrete time intervals of

duration T . At times t = kT for k = 1, 2, . . . optimal routes α(x(kT )) are computed as per

(5.7) and control inputs u(kT ) are computed as per (5.12). Network variables α(x(kT ))

are used to route packets through the network of robots and the physical positions of the

robots are updated as

xi((k + 1)T ) = xi(kT ) + βiTui(kT ) (5.17)

where βi scale control inputs ui(kT ) to ensure ν(α(x(kT )),x((k + 1)T )) ≥ 0. That is,

constants βi guarantee that routing variables α(x(kT )), optimized for configuration x(kT ),

are a feasible operating point for configuration x((k + 1)T ).

Scale factors βi in (5.17) are chosen so that the predicted probability margin

ν(α(x(kT )),x((k + 1)T )) after time horizon T remains positive. A simple solution is to
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uniformly chose all βi = β such that

ν(α(x(kT )),x(kT ) + T (βu̇(t))) ≥ 0. (5.18)

A suitable value for β can then be found through line search algorithms. However, values

of β tend to be prohibitively conservative. To see this, consider the case where one link

in the communication network is utilized such that any decrease in its reliability will

invalidate ν(α(x(kT )),x(kT ) + δ) ≥ 0. Uniform scaling would force β = 0 and stop the

motion of all nodes.

A method to select βi separately is shown in Algorithm 1. We consider the nodes

participating in each flow k according to the tree induced by the routing solution α(x(t)) in

the following breadth-first fashion. Starting at dest(k) for the first flow, we set βdest(k) = 1

and then scale βi for all nodes i ∈ {j : αkj,dest(k) > 0}, i.e those sending data directly to

dest(k), so that

ν(α(x(kT )), xi(kT ) + βiui(kT )) ≥ 0 (5.19)

As above, the search for each βi is a line search. However, after scaling βi for immediate

neighbors of dest(k), the algorithm procedes with the 2-hop neighbors and so forth in a

breadth-first search facilitated with a first in, first out queue.

5.2.3 Simulation Results

We implement in simulation the local controller with position updates as in (5.17), mobility

control inputs given by (5.12), communication variables obtained from (5.7), and using

the velocity search in Algorithm 1. Allowable communication rates are chosen according

to (M1) from Chapter 4. Computing controls based on local optimization of the network-

level end-to-end rates allows for a method of realizing team deployment while maintaining

the necessary level of network connectivity. Figure 5.2 depicts an example deployment
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trajectory with three robots for a time-varying task potential,

Ψ(x(t)) =


x2,goal = (4, 0) t < 40

x2,goal = (8, 0) t < 60

x2,goal = (6, 5) t ≥ 60.

(5.20)
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Figure 5.2: Deployment via local control law (5.12) for a system with a fixed access point, relay
node x1 and lead node x2 which is controlled by a time-varying task potential Ψ(x(t)).

Most importantly, this example demonstrates convergence of the task potential Ψ(x)

while maintaining P [ai ≥ ai,min] > ε as depicted in Figs. 5.3a and 5.3c. However, it is

also interesting to observe that when task potential is minimized, e.g. t ≤ 30 s, the local

control law (5.12) maximizes the probability of each end-to-end rate exceeding its minium

threshold. When the task potential switches so that Ψ(x) is no longer minimized, the

probability margin is reduced so that the primary objective, minimization of Ψ(x), is

prioritized. Finally, Fig. 5.3b depicts the end-to-end rate of the node x2 that must remain

above a2,min = 0.1. Recall that Rij(x) is a random variable that affects the end-to-end

rate. The envelope around ā2 in Fig. 5.3b depict the effect that different realizations of

communication channels Rij(x) will have on the end-to-end rate. Since the pursuit of

minimization on Ψ(x) is constrained to have a probability margin ν(α(x),x) ≥ 0, the

end-to-end rate exceeds its threshold in the presence of deviations to Rij(x).
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Figure 5.3: Performance of the local control law (5.12) demonstrating convergence of Ψ(x(t)) in
(a), the maintenance of expected end-to-end rate greater than the threshold of a2,min = 0.1 in (b),
and the P [ai ≥ ai,min] > 0.6. The envelope surrounding E [a2] in (b) depicts the 60% confidence
interval for realizations of the end-to-end rate with stochastic Rij(x).

We perform a four robot simulation, depicted in Fig. 5.4, to demonstrate how the

complexity of the objective function (5.11) increases with more nodes. Similiar to the

three robot simulation above, the task potential function is time-varying so that Ψ(x) =

0 for t < 50 s and Ψ(x) = ‖x3 − (9, 0)‖ for t ≥ 50 s. When t < 40 and the task

potential is already minimized, control of x1 and x2 is based soley on the maximization of

log ν(α(x),x). From the symmetric initial configuration, the maximization drives x1 and

x2 towards a local maxima where they would be positioned at the same point.

To further illustrate the “terrain” of the objective function (5.11) that drives local

control we observe the convergence of Ψ(x(t)) as depited in Fig. 5.5a. For times 70 s <

t < 90 s, convergence of Ψ(x(t)) slows, ν(α(x),x) as depicted in Fig. 5.5c shows little

change, and x1 and x2 cease progress. Fortunately, the gradient of Ψ(x), though small,

is enough to pull the system out of the local minima so that it can achieve a global

minimum at t = 140 s. As the number of agents increases, the frequency of local minima

in −ν(α(x),x) becomes more and more of an issue for local control. The addition of

obstacles into the environment adds further difficulties as it not only affects feasible x
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Figure 5.4: Snapshots from a four robot trial. The end-to-end rates and probability of meeting the
problem specifications are depicted in Fig. 5.5. Ψ(x(t)) = ‖x3−(9, 0)‖ for t > 50 s and Ψ(x(t)) = 0
for t ≤ 50 s.
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Figure 5.5: The (a) convergence of Ψ(x), (b) end-to-end rates, and (c) probability of success for
the four robot trial depicted in Fig. 5.4.
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due to collision constraints, but also introduces non-smooth components in the underlying

point-to-point communication links Rij(x).

5.3 Optimal Configurations

As demonstrated in Section 5.2, solutions to (5.2) that rely on local gradient–based control

will converge to stationary points of the modified objective function Ω(x) given in (5.11).

Even when the task potential is globally minimized, i.e. Ψ(x) = Ψmin, there are often

multiple configurations x that achieve local maxima of the “barrier” term in the modified

potential function Ω(x). We seek to characterize these so–called optimal configurations in

order to understand the local minima that will disrupt gradient–based controllers and to

inform our configuration search as we move towards global planning methods.

Rather than consider all possible task potential functions Ψ(x), we will restrict our

attention to the joint optimization of ν(α,x) over all routes α and robot configurations

x for the simplest task potential function. We will begin by examining the problem set

of three nodes restricted to operate along a straight line. There is one fixed operating

center at x0 = 0, one mobile node x1 acting as a relay, and one fixed node x2, e.g.

x2 is placed such that Ψ(x) = Ψmin. Thus, the joint space of physical and network

configurations are described by (x1, α1,0, α2,0, α2,1) and the problem is parameterized by

x2, a1,min, a2,min as depicted in Fig. 5.6. We will continue to assume the point-to-point

0 1 2

x1
x2

α20

α21α10

Figure 5.6: Configuration of three nodes restricted to operate along a straight line. x0 and x2 are
fixed, leaving x1 to move in order to optimize the probability of achieving the desired rates.

communication capability is given by (M1) where, for notational convenience, we will use

R̄(d), R̃(d) to denote the mean and variance respectively of the supported rate over a
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distance d. Remembering the SOCP formulation in (5.7), we seek to maximize ν(α,x) =

min P [ai(α,x) ≥ ai,min] by maximizing a∆, the largest end-to-end rate margin that can

be maintained with probability ε. We can write this same optimization, now over both

routing variables x as well as node positions x, as

maximize
x1,α1,0,α2,0,α2,1,a∆

a∆

subject to
α2,0R̄(x2) + α2,1R̄(x2 − x1)− a2,min − a∆√

α2
2,0R̃(x2) + α2

2,1R̃(x2 − x1)
≥ Φ−1(ε)

α1,0R̄(x1)− α2,1R̄(x2 − x1)− a1,min − a∆√
α2

1,0R̃(x1) + α2
2,1R̃(x2 − x1)

≥ Φ−1(ε).

(5.21)

We make the assumption that the fixed position of x2 is such that it cannot maintain the

desired rate of communications with the operating center with a direct link, i.e.

R̄(x2)− a2,min√
R̃(x2)

< Φ−1(ε) (5.22)

Furthermore, based on (M1), we can assume that R̄(d) is monotonically decreasing and

that R̃(d) is monotonically increasing with distance d. This introduces a series of additional

inequalities

R̄(x2) ≤ R̄(x2 − x1) (5.23)

R̄(x2) ≤ R̄(x1) (5.24)

R̃(x2) ≥ R̃(x2 − x1) (5.25)

R̃(x2) ≥ R̃(x1) (5.26)

The problem in (5.21) seeks to maximize the minimum end-to-end rate margin that can

be maintained with probability ε. This means that its solution is a Pareto optimal point
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with the necessary condition that the two constraint slacks be equivalent, i.e.

α2,0R̄(x2) + α2,1R̄(x2 − x1)− a2,min − Φ−1(ε)
√
α2

2,0R̃(x2) + α2
2,1R̃(x2 − x1)

= α1,0R̄(x1)− α2,1R̄(x2 − x1)− a1,min − Φ−1(ε)
√
α2

1,0R̃(x1) + α2
2,1R̃(x2 − x1).

(5.27)

We can make some well-founded assumptions about the network routing solution at

an optimal configuration. First, α1,0 = 1 as this will only serve to maximize a∆ with

no ill effects. Second, α2,0 = 1 − α2,1 since in an optimal configuration, node x2 will

maximize its outgoing channel. Then, by manipulating (5.27), we arrive at a fourth-order

polynomial in α2,1. The roots of this polynomial yield four solutions for α2,1 as a function of

R̄(x2), R̄(x2−x1), R̃(x2), R̃(x2−x1). We can numerically verify that one of these solutions

matches the solution to the SOCP. While this approach yields an analytic solution to the

optimal routing variables for a small problem, optimization of a∆ is still a function of the

mean and variance of the rate function, R̄ij(x), R̃ij(x), which are non-convex.

However, for small systems like this, it is possible to exhaustively sample the space of

node configurations x and use the SOCP (5.7) that results when positions x are fixed in

(5.21) to compute α(x). Choosing a parameterization of the three robot system described

above, i.e. L0 = −53 dBm, n = 2.52, N0 = −70 dBm, σ2
F = 40, a1,min = 0, a2,min = 0.1,

ε = 0.8, and x2 = 13 m, we can sample 0 < x1 < x2 = 13 m to find the point where a∆

is maximized as depicted in Fig. 5.7a. it is tractable to do this over two dimensions as in

Fig. 5.7b where we sample over all 0 ≤ x1 ≤ x2 ≤ 17 m. Figure 5.7 demonstrates that a∆

for a one–relay system is well behaved as we vary x and has a unique maximum placing

the relay near the midpoint of x2 and the operating center at x0. Thus, we can expect

gradient–based optimization to converge to the optimal configuration.

We continue by examining the four robot case, i.e. one fixed operating center x0,

one fixed node x3 with a3,min > 0, and two mobile relay nodes x1, x2 as depicted in

Fig.5.8. The increased complexity of this problem is immediately evident as the system of

variables describing solutions is now (x1, x2, α10, α20, α21, α30, α31, α32). Furthermore, the

additional relay node precipitates an additional constraint when writing the optimization
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Figure 5.7: Exhaustive sampling of x to determine maximum of a∆ for the one–relay case depicted
in Fig. 5.6 where x2 = 13 m. In (a), x2 = 13 m while in (b), we sample across x1 ≤ x2 ≤ 17 m.
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Figure 5.8: System of four robots

(5.21). Rather than attempt an analytic solution to this formulation, we procede with

the exhaustive sampling approach whereby we fix values for x1, x2 and solve the resulting

SOCP to determine α(x) and the optimal a∆. Figure 5.9 depicts the optimal a∆ for

combinations of x1, x2 when the fourth node is fixed at x3 = 15 m. Unlike the one relay

case where there is a single x that locally maximizes a∆, the introduction of a second relay

leads to multiple configurations that achieve local maxima. It is interesting to note that

the two local maxima appearing in Fig. 5.9 have intuitive explanation. One maxima, at

x1 = x2 ≈ 6.2 m, corresponds to a “diversity” type of solution where traffic is split between

the two relay nodes. The other, at x1 = 3.9 m, x2 = 8 m, corresponds to a “multihop”
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Figure 5.9: Exhaustive sampling of x to determine maximum of ν(α,x) for the two–relay case
depicted in Fig. 5.8 where x3 = 15 m.

type of solution where traffic is sent serially from x3 to x2 to x1 to x0. A gradient–based

controller will converge to one of these two local maxima based on its initial condition.

As x3 is increased, the “diversity” solution becomes infeasible and the system returns to

a regime with a single optimal configuration as depicted in Fig.5.10. Thus, the complexity

(a) (b) (c)

Figure 5.10: Exhaustive sampling of x to determine maximum of a∆ for the two–relay case while
varying x3 – (a) x3 = 13 m, (b) x3 = 17 m, and (c) x3 = 21 m.

associated with local maxima of a∆ is not only a function of the number of relays but also

the parameterization of the problem, i.e. the position of the fixed node that is sending data
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back to the operating center. As we consider larger teams with even more complicated

network topologies and complex environments with obstacles, local maxima of a∆ become

more of an issue.

5.4 Global Planning

Local control will drive the system towards local minima of (5.11). We propose that

a global search of (5.2) is necessary in order to accomplish the high-level situational–

awareness tasks we are interested in.

To consider global search of (5.2), we redefine the problem to be more amenable to

motion planning approaches from the robotics literature. Let X be a bounded, connected

open subset of R2N that represents the full joint state space for the team of robots where

xinit is the initial configuration of the team. In general, the goal region will be defined

as Xg = {x : Ψ(x) < Ψmin + δ}. In an application where Ψ(x) = ‖x` − x`,g‖2 where a

lead agent must visit x`,g, Xg = {x : ‖x` − x`,g‖ < δ}. The obstacle region Xobs contains

any configuration that places an individual robot on a physical obstacle and the infeasible

region represents configurations where it is infeasible to satisfy the network constraint

(5.6),

Xinf =

{
x :

āki (α,x)− aki,min√
ãki (α,x)

≥ Φ−1(ε)

∀ α ∈
{
αkij : 0 ≤ αkij ≤ 1,

∑
j,k

αkij ≤ 1
}}

. (5.28)

The free space Xfree is then X \ (Xobs∪Xinfeasible). Finally, a path in X is parameterized

by a scalar s ≥ 0 and given by σ : [0, s] → X. Concatenation of paths is defined

by σ = σ1|σ2. A feasible path, and solution to our global-planning problem, is then

σ : [0, s]→ Xfree such that σ(0) = xinit and σ(s) ∈ Xg.

The dimensionality of our problem and the high computational cost of verifying a state

is in Xfree makes deterministic search algorithms impractical. Instead we turn to proba-
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Algorithm 2 Structure of the rapidly exploring random tree algorithm

Require: Initial state x0, goal region Xg, representation of the bounded configuration
space X.

1: T .init(x0)
2: while i < N do
3: x̂← RandomState(X, T )
4: xmin ← Nearest(T , x̂)
5: if xnew ← Extend(xmin, x̂) then
6: T .add vertex(xnew)
7: T .add edge(xmin,xnew)
8: if xnew ∈ Xg then
9: return T

10: end if
11: end if
12: end while
13: return T

xinit

Xobs

Xgoal

Xfree

xnearest
xrandom

xnew

Xobs

Figure 5.11: Graphical depiction of the RRT search process visualized in R2.

bilistic search methods than offer good space-filling properties and efficient exploration of

an unknown space e.g. rapidly–exploring random tree (RRT) algorithms [52]. The basic

structure of an RRT as detailed in Algorithm 2 and depicted in Fig. 5.11 is to start with

an initial point x0 and expand to fully explore the workspace, adding states in a tree-like

structure until a feasible point is added such that x ∈ Xg. The tree is expanded by pick-

ing a random state x̂ = RandomState(X, T ), finding the closest point on the existing

tree xmin = Nearest(T , x̂), and attempting to add a new point by extending from xmin,

x = Extend(xmin, x̂).
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A common problem encountered when applying RRT algorithms to high-dimensional

state spaces is that computation of Nearest is inefficient for increasing tree sizes. We

adopt the strategy of storing the tree T in a KD-tree data structure which stores states

in Rd by recursively subdividing based on alternating axis-aligned hyperplanes [5]. This

enables approximate nearest neighbor calculations that maintain performance even as the

dimension increases. However, there are two additional difficulties that arise when apply-

ing standard RRT algorithms to solve the specific high-dimensional network connectivity

problem in (5.2): the verification of feasible states as Extend is used to expand the tree

towards x̂ and the prohibitive cost of uniformly exploring Xfree for our high-dimensional

problem with slow-to-compute constraints.

5.4.1 Efficient verification of feasible states

The Extend(xfrom,xto) algorithm attempts to virtually drive the system from xfrom

towards xto by successively verifying that points along the line connecting xfrom and xto

are in Xfree. It returns the state xnew as the closest state to xto such that all states

sampled with precision ∆x between xfrom and xnew are in Xfree. In traditional motion

planning applications, verification that x ∈ Xfree is based on an algebraic constraint or

collision query with a multitude of efficient methods for doing so [60, 72, 59]. While the

necessary computation to determine x /∈ Xobs is typically small, computation of x /∈ Xinf

requires a solution of the SOCP (5.7) and can be costly (see Fig. 5.1).

Consequently, we store α(x) for every node in T and reuse methods from Section 5.2

to extend new states. By relying on the fact that an optimal robust routing solution α(x)

will be feasible for neighboring states, it is often possible to extend x towards x̂ without

the costly overhead of numerical optimization as detailed in Algorithm 3.

5.4.2 Biased space sampling

Random states x̂ are chosen to sample the space X ⊂ R2N according to a probability

distribution px(x) representing the belief about configuration x being part of a feasible
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Algorithm 3 Extend(xfrom,xto)

Require: Initial state xfrom, desired final state xto, verify segment over K steps
1: xnew ← x← xfrom
2: α← argmax (5.7) for rates Rij in configuration xnew.
3: ∆x← (xto − xfrom)/K
4: while xnew 6= xto andα 6= ∅ do
5: xnew ← x
6: x← xnew + ∆x
7: if ν(α,xnew) ≤ 0 then
8: {Recompute α if the probability margin at xnew is negative}
9: α← argmax (5.7) for rates Rij in configuration xnew.

10: end if
11: end while
12: if xnew = xfrom then
13: return ∅
14: else
15: return xnew
16: end if

path σ(s). If nothing is known about σ(s), we choose px(x) uniform in the space X; i.e.,

we make px(x) = 1/v(X)I {x ∈ X} where I {x ∈ X} denotes the indicator function of the

set X and v(X) the volume of set X. In general, the final configuration is known in that

σ(s) ∈ Xg. We can then bias the distribution towards Xg by making

px(x) =
pg

v(Xg)
I {x ∈ Xg}+

1− pg
v(X \Xg)

I {x /∈ Xg}. (5.29)

When pg = v(Xg)/v(X) the distribution in (5.29) corresponds to uniform sampling. Larger

values of pg make x̂ more likely to hit Xg than what corresponds to its volume v(Xg).

Goal biasing as in (5.29) improves efficiency of RRT algorithms by reducing the number

of samples necessary to find a feasible path σ(s) in the high dimensional space X ⊂ R2N .

In some cases of interest, the volume of Xg is comparable to the volume of X. In these

cases goal biasing offers little improvement over uniform sampling. In, e.g., the application

where Ψ(x) = ‖x` − x`,g‖2 the goal position of the leader x`,g is known, but the positions

of the remaining robots are free. Thus, goal biasing would reduce the exploration cost

along the components associated with x` but keep the cost of exploring the remaining
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2(N − 1) dimensions fixed. To further reduce exploration cost in this case we construct a

prediction X̃g ⊂ Xg of the final configuration and bias sampling towards this configuration

prediction by making the sampling distribution

px(x) =
pg

v(X̃g)
I
{
x ∈ X̃g

}
+

1− pg
v(X \ X̃g)

I
{
x /∈ X̃g

}
. (5.30)

Constructing a final configuration prediction X̃g is task-specific. We describe here a

method applicable to the telepresence–type application where the final position of a lead

node is specified. To determine the configuration prediction X̃g we determine config-

uration predictions X̃i,g for each robot and compute X̃g as the Cartesian product of

these individual sets, i.e., X̃g =
∏N
i=1 X̃i,g. Notice that for the lead robot we can make

X̃`,g = X`,g = {x` ∈ R2 : ‖x` − x`,g‖ < δ}.

Observe now that X ⊂ R2N is the Cartesian product X =
∏N
i=1Xi of the N decoupled

spaces Xi ∈ R2 corresponding to each individual robot. If we further assume a homoge-

neous team of robots then all robots operate in the same space Xi = Y , with a common

set of physical obstacles Yobs, and consequently a common free space Yfree = Y \ Yobs.

It follows that the joint free space Xfree is also a Cartesian product of N identical sets

Yfree minus those configurations for which a network cannot be established with sufficient

reliability,

Xfree = (Yfree)
N \Xinf . (5.31)

While infeasible network configurations are captured by Xinf as given in (5.28), Xfree can

otherwise be described by the free space of individual robots.

To exploit this observation, we first determine an obstacle free path γ : [0, s]→ R2 such

that γ(0) = x0 is the position of the operating center and γ(s) ∈ X`,g; see Fig. 5.12a. This

path can be determined by a RRT algorithm [47] or other discrete planning algorithms

[57]. Since the dimensionality of the space and the goal set X`,g are small, it is possible

to find this path with small computational cost. The obstacle-free path γ : [0, s]→ Yfree

is split into N − 1 equal length segments γk such that γk : [0, sk]→ γ : [ ks
N−1 ,

(k+1)s
N−1 ]. The
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Figure 5.12: Illustration of the biased space sampling. Since we only know one component of the
goal state xg,` and it is expensive to expand our search space in the high-dimensional state of the
entire system, it is beneficial to bias our search towards configurations that are deemed likely to
succeed. In (a), an obstacle-free path γ : [0, s] → R2 is found between the access point and goal
location. In (b), the path is divided into N − 1 segments and enlarged to represent a class of
possible goal configurations X̃i,g.

ith robot is then assigned to a segment by the function k(i) based on euclidian distance

to its midpoint such that
∑

i 6=0,` ‖γk(i)(s/2)−xi,0‖ is minimized; see Fig. 5.12b. Segments

are then enlarged to define the region X̃i,g for i 6= 0, `. Since this is a heuristic for the goal

configuration, the only requirement on X̃i,g is that γk(i) : [0, s]→ X̃i,g. A typical choice is

X̃i,g = {xi : min
s
‖xi − γk(i)(s)‖ < d̃g}

where d̃g is a parameter controlling the enlarged size of X̃i,g. The predicted final configu-

ration is then computed as the Cartesian product X̃g =
∏N
i=1 X̃i,g.

This procedure is summarized in Algorithm 4. In lines 1–3, the predicted goal con-

figuration X̃g is constructed. A random sample x̂ is then drawn uniformly from X̃g with

probability pg or from X \ X̃g otherwise. It should be noted that the construction of X̃g

described above is based on the heuristic that a feasible goal configuration in an environ-

ment with obstacles will resemble a line-of-sight communication chain. Increasing the size

of X̃g with large values of d̃g limits the implication of this assumption.
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Algorithm 4 RandomState(X)

Require: Configuration space description X, obstacle-free path γ(s) → R2 such that
γ(0) = x0 and γ(s) = x`,g, probability pg.

1: X̃`,g = {x` ∈ R2 : ‖x` − x`,g‖ < δ}
2: X̃i,g ← Enlarge

(
γk(i)

)
3: X̃g ←

∏N
i=1 X̃i,g

4: p← Uniform[0, 1]
5: if p > pg then
6: x̂← Uniform(X \ X̃g)
7: else
8: x̂← Uniform(X̃g)
9: end if

10: return x̂

5.4.3 Simulation Results

The randomized motion planner is able to find feasible configurations that allow target

servicing at positions not attainable with the local control approach from Section 5.2. It

can additionally provide a feasible sequence of configurations to get to the target con-

figuration. A centralized controller is employed to drive individual robots through the

sequence of feasible network configurations in a coordinated fashion.

To test the global planner on a system with one fixed access point and 5 robots, we

introduce a sequence of task potential functions Ψ1(x),Ψ2(x), . . . ,ΨM (x) that require the

lead node x5 to visit a sequence of positions while the remaining 4 robots act as relays to

support end-to-end communication with the access point of a5,min = 0.05. As with the

local control examples in Section 5.2.3, we require that this end-to-end rate be satisfied

with probability ε = 0.6. The problem is made more complicated by the introduction of

obstacles that not only block robot motions but also degrade received signal strength by

9.5 dBm when line-of-sight is lost as in (M2).

Algorithm 2 is queried to find a feasible path σi : [0, s] → R10 for each task Ψi(x) in

order such that σi(0) = σi−1(s) and σ1(0) = xinit. The trajectory of the lead node x5 for

the concatenation of paths σ = σ1| . . . |σM is depicted in Fig. 5.13a. After solving for a

feasible path, ẋdes(t) is computed so that x(t) follows σ. Before considering the state of
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Figure 5.13: Global planning with 5 robots in a complex environment. (a) depicts the solution
trajectory for the lead node x5. Positions of other nodes in x are omitted for clarity. (b) depicts
the expected end-to-end rate a5(α(x(t)),x(t)) for x5 with an envelope representing ±0.5σ (to
approximately correspond with ε = 0.6). (c) depicts the probability margin ν(α(x(t)),x(t)) as a
solid line with individual probabilities P (ai > ai,min)− Φ(ε) shown dashed.

the full system, note that ν(α(x(t)),x(t)) > 0 for nearly the entire trajectory as depicted

in Fig. 5.13c. The three distinct points where the probability margin drops below zero are

situations where the system is operating at the edge of its feasible workspace and indi-

vidual robot control fails to keep the node precisely on the planned path. While optimal

solutions to α(x(t)) effectively maximize the probability margin for a particular x(t), the

global planner only satisfies these constraints. Large probability margin corresponds to

robustness to controller errors as well as stochastic channels.

The interplay between expected end-to-end rate āi and variance ãi and their relation-

ship with the satisfaction of probability-based constraints can be observed in Fig. 5.13b.

Early in the trajectory, t < 100 s, the expected end-to-end rate can be maximized such

that even with a large variance, ν(α(x),x) > 0. However, as the system extends farther

from the access point, expected end-to-end rate decreases and the variance of the solution

must be decreased.
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Figure 5.14: Snapshots of the team controlling to follow the feasible path σ for time t = 135 s −
300 s. For this interval, Xg requires the lead robot x5 to reach the designated point in the right
hallway. The line weight between nodes indicates the magnitude of each allocation for the optimal
robust routing solution.
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Figure 5.15: Snapshots of the team controlling to follow the feasible path σ for time t = 325 s −
425 s. For this interval, Xg requires the lead robot x5 to reach the designated point in upper-right
corner. The line weight between nodes indicates the magnitude of each allocation for the optimal
robust routing solution. This segment of the deployment specifically represents reconfiguration
behavior not possible with local control – the movement of node x2 to provide connectivity to
node x5 as it moves to minimize Ψ(x).

Figure 5.14 depicts three snapshots from the trajectory control x(t) to follow the

feasible path σ during the times 135 s ≤ t ≤ 300 s. In this example, the progress of x5 is

stopped until x3 moves to support better end-to-end communication at time t = 200 s.

Figure 5.15 depicts three snapshots from the trajectory control x(t) to follow the

feasible path σ during the times 324 s ≤ t ≤ 425 s. This segment of the deployment is

included to demonstrate the large-scale shifts in topology of the communication network

that are found with global planning methods. Specifically, in the configuration at t = 135 s

depicted in Fig. 5.15a, the heuristically determined goal region from (5.31) is achieved by

nodes x1, x4, x3, i.e. the lower line of sight path. However, in order to support the network

constraints for x5 at time t = 425 s as depicted in Fig. 5.15c, the entire network must
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reconfigure to support the upper line of sight path. In a sense, it is these dramatic changes

to the topology of the underlying communication network that are only found by global

planning.

The computational cost of exploring a large or complex environment can be high. The

primary expense for our motion planning problem is the verification of a feasible state

which can require the solution of several SOCP optimization problems per iteration as

described in Section 5.4.1. With regards to the running time of Alg. 2, we note that it is

difficult to characterize the performance of randomized search algorithms. One factor is

the complexity of Xfree which is determined both by physical obstacles in the environment

as well as the constraints placed on feasible network configurations, e.g. solution to α(x).

Another component in determining running time is the “planning-horizon” or, roughly,

the number of states that must be expanded in order to find a solution. For example, the

global planning problem illustrated in Fig. 5.13 is the result of 5 sequential global plans

with a cumulative running time of 1200 s.

In order to better characterize the performance of our global planning algorithm, we

construct a benchmark task that can be solved many times with different problem param-

eterizations. The task, depicted in Fig. 5.16a, requires the lead robot to visit a series of

positions in the environment (labeled 1–8) while communicating data at a specified rate,

amin, to the operating center located near waypoint 1. We parameterize the task by the

number of robots N and the end-to-end rate of communication that must be maintained,

amin. Point-to-point communication is simulated according to model (M2) and end-to-end

rates are maintained with probability ε = 0.8.

The performance is measured by the running time to compute the series of network

configurations necessary for the lead robot to visit its sequence of waypoints. The average

performance is depicted in Fig. 5.16b based on 10 trials per task parameterization. As

expected, increasing the number of robots adds to the complexity of both the individual

SOCP solutions as well as the randomized search algorithm. Increasing the minimum

end-to-end rate, amin, has a similar effect on the complexity. Intuitively, increased amin
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Figure 5.16: Running time for benchmark environment with global planner solving the task de-
picted in (a). The average running time for tasks with different amin and number of robots N are
depicted in (b). The variance of the running time for a particular task is depicted in (c).

corresponds to increasing the complexity of the space of feasible configurations. This

increases the planning effort necessary to explore the workspace and find a feasible path.

Additionally, as we increase the end-to-end rate requirement, more agents are necessary

for task completion.

Randomized planning algorithms can only offer the guarantee of probabilistic com-

pleteness. That is, the probability of finding a solution, if one exists, approaches 1 as

time spent planning increases. Since there is no precise way to determine when a task

cannot be solved with the current configuration, we test for task infeasibility by stopping

the planning process after a specified timeout period. For the purposes of this bench-

marking, that timeout is 300 s for each subtask. An artifact of this timeout is that tasks

in extremely complex spaces (e.g. amin = 0.51, N = 8) are not solved though we know
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a solution exists (e.g. the solution for amin = 0.51, N = 7 is a subset of the possible

solutions with N = 8). As the complexity of the task increases, so does the variance of

the running time as depicted in Fig. 5.16c for a particular task, amin = 0.61. Since the

planning algorithm is randomized, the running time is also random.

5.5 Summary

In Chapter 3, we describe a situational awareness problem statement (3.19) that encodes

a mobility task for a team of robots with a potential function Ψ(x) while maintaining a

set of communication requirements. Instead of considering communication requirements

with an abstraction such as graph connectivity, we require the maintenance of specific

end-to-end rates across the network. This problem is difficult for two reasons. First,

the problem statement is cast as a joint-optimization problem over all robot positions and

routing variables. For N robots and even a single flow of data, this means we are searching

a (2N + N2)-dimensional space. Second, the end-to-end-rate capabilities rely explicitly

on the performance of point-to-point channels which, as demonstrated in Chapter 4, are

difficult to accurately predict.

In this chapter, we address the difficulties in solving (3.19), develop algorithms that

find solutions to (3.19), and present simulation results that demonstrate these solutions.

We manage the uncertain nature of point-to-point wireless channels by modeling their ca-

pability as a random variable and transforming the end-to-end communication constraints

of (3.19) into constraints on the probability of exceeding the desired threshold. This leads

to a robust reformulation of the problem statement in (5.2). The joint optimization of

positions and routing variables in this robust formulation is a non-convex problem due to

the models for point-to-point wireless channel capability. However, if we fix the positions

of the robots, the optimization of the remaining N2 routing variables is a convex problem

and can be cast as an SOCP and efficiently solved for a unique solution.

Given an efficient way to solve for optimal network routes, we propose two methods for

searching the remaining 2N position variables that describe the physical configuration of
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the robots. In the first method, we rely on a gradient controller to minimize an objective

function that incorporates the task potential function and a barrier to maintain communi-

cation constraints that are computed with the optimal network routing solution. However,

as demonstrated through simulation results, gradient-based controllers may drive the sys-

tem into local minima of the objective function without satisfying the task specification.

Dealing with environments that include obstacles complicates matters even further. Con-

sequently, we develop a randomized motion planning algorithm that globally searches for

physical configurations that achieve the task specification. By customizing traditional ran-

domized motion planning algorithms to the particularities of end-to-end communication

constraints and relying on an optimal solution for network routing variables, we are able

to efficiently search the 2N -dimensional space of physical configurations in order to find

deployments that satisfy the task specification in real indoor environments.

The work presented in this chapter makes several key contributions to the existing

connectivity control literature for teams of mobile agents that require communication.

First, we move entirely away from the concept of a disc-based model of reliable communi-

cation and adopt a probabilistic model. In fact, we make no assumption about the specific

model for point-to-point communication except that, for a given source and receiver posi-

tion, a prediction of the supported communication rate is made with mean and variance.

Second, rather than rely on graph-based abstractions for connectivity, we consider quality-

of-service metrics that can be cast as probabilistic constraints on the end-to-end rates of

the network. In this chapter, we present simulation results that are based on communica-

tion models obtained as a result of extensive experiments in Chapter 4. However, these

simulations do not address the instantaneous realization of the end-to-end rate in a real

network which leads us to pursue experimental verification of the entire system next in

Chapter 6.
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Chapter 6

Robust Routing & Mobility

Control Experiments

In this chapter we describe a set of experiments used to validate our approach to the

situational awareness problem described in Section 3.2. The communication modeling

developed in Chapter 4 and algorithms developed in Chapter 5 enable implementation

of the system architecture depicted in Fig. 3.7. Experiments allow us to verify that the

instantaneous realization of point-to-point communication links yield end-to-end rates that

satisfy our design requirements.

6.1 Methodology

The full implementation of the system architecture in Fig. 3.7 relies on a closed-loop

structure where the model of point-to-point communication capability is continually up-

dated as measurements are collected. Here, we realize an instantiation of this architecture

where point-to-point communication measurements are collected a priori and used to fit a

probabilistically correct model of communication for the environment. For now, we adopt

model (M2) as described in Chapter 4 to make predictions of received signal strength and
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supported communication rate that are a function of the distance and line-of-sight nature

of the link connecting transmitter with receiver.

We rely on centralized implementations of the algorithms for concurrent solutions

to the robust routing and mobility control problem that are presented in Chapter 5.

Since the algorithms we present in Chapter 5 implicitly maintain a connected network

of agents, coordinated control commands can be robustly routed through the wireless

network. Furthermore, a centralized implementation is not a shortcoming for the problem

sizes we consider, i.e. 5 to 20 agents, since typical scalability problems such as state

aggregation are not yet an issue.

Each experiment consists of a situational-awareness type task, e.g. (3.19), that re-

quires a single lead robot, indexed by `, to visit one or more locations in the environment

while maintaining a desired end-to-end communication rate, a`,min, with a fixed operating

center. This type of task is amenable to a straightforward quadratic task potential func-

tion, Ψ(x) = ‖x` − x`,g‖2, where x`,g represents the desired location for the lead robot.

The algorithms introduced in Chapter 5 yield feasible configurations for the team – α(t)

and x(t) which represent the network and physical configurations respectively. During

an experiment, each robot probes the communication channels with its neighbors to de-

termine actual instantaneous measurements of the point-to-point received signal strength

at a rate of 5 Hz. This data is logged locally and aggregated after each experiment to

compute the supported communication rate R̂ij(t) between node i and j at time t. Using

these measurements in conjunction with the network routing solution α(t), we can predict

the actual supported end-to-end rate at time t for each node i, âi(α(t),x(t)).

On a real system, the implementation of stochastic routing is such that node i sends

packets that are part of flow k to node j with probability αkij . The rate interpretation of

this routing policy is that traffic for flow k from node i to node j assumes the rate αkijRij .

This rate of traffic affects the end-to-end rate of both node i and node j and our robust

routing solution is such that P
[
aki (α,x) > ai,min

]
≥ ε is satisfied optimally. While we

have not focused on the particulars of such an implementation, for the purposes of these
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experiments we will assume that each node can meter its outgoing traffic so that the actual

rate αkijR̂ij does not exceed the expected rate αkijR̄ij . This assumption is reasonable since

we are typically concerned with actual point-to-point rates R̂ij that are worse than the

expected value.

Recall that the problem statement in (5.2) requires that

P
[
aki (α,x) ≥ aki,min

]
≥ ε

for all nodes i. Indeed, the structure of end-to-end rates with stochastic routing dictates

that in our experimental verification each node must be able to maintain

âi(α(t),x(t)) > ai,min (6.1)

with probability ε. To achieve the desired end-to-end rates, all nodes in the team must

satisfy this constraint. Thus, in experimental analysis we will evaluate (6.1) across the

duration of the experiment to determine the percent of time âi(α(t),x(t)) > ai,min and

use this as a metric for the success of that trial.

6.2 Local Control

The algorithm for local control described in Section 5.2 does not take obstacles or collisions

with other robots into account. Accordingly, we modify the velocity search algorithm, i.e.

Algorithm 1, to limit individual robot velocities so that they remain out of collision with

each other over the next T seconds.

We verify the local control algorithms on a four robot team where one robot acts as the

fixed operating center, x0, two act as relays, x1, x2, and one is the lead robot, x3. The lead

robot must maintain a rate of a3,min = 0.4 with probability ε = 0.9 to the fixed operating

center. The relay nodes must satisfy rates a1,min = a2,min = 0 to maintain queue stability

as they support the flow of data from the lead node to the fixed operating center. The
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task potential function for this experiment is Ψ(x) = ‖x3−(4, 0)‖. In this experiment, the

time horizon is set to be T = 2 s, i.e. all robot velocities are constrained such that network

constraints are probabilistically guaranteed for the next 2 s. Another way of interpreting

the time horizon T is that the current robust routing solution is feasible for T seconds

before a new solution must be computed and, more importantly in the case of a centralized

implementation, deployed to the individual agents.

The robot trajectories for an experimental trial in the Levine building are depicted in

Fig. 6.1a. Actual end-to-end rates âi(α(t),x(t)) are depicted in Figs. 6.1b and 6.1c. By

t = 80 s, the system reaches a stationary point and x3 cannot move to further minimize

Ψ(x) without violating the constraint ν(α(x),x) ≥ 0.

6.3 Global Planning

For global planning experiments, we return to the two environments considered in Chap-

ter 4 – the Levine and Towne buildings on the University of Pennsylvania campus. We

perform tests in both environments to demonstrate the versatility of our methods to indoor

environments of drastically different construction. In each experiment we demonstrate the

ability of the global motion planning algorithm to find a sequence of network configura-

tions that enable the lead robot to visit a series of pre-specified waypoints. We then verify

that the instantaneous end-to-end rate âi(α(x(t)),x(t)) ≥ ai,min with probability ε over

the duration of the experiment.

Levine Environment

Figure 6.2 depicts the series of waypoints that the lead node, x5 must visit in the Levine

building experiment. Four additional mobile nodes, x1, x2, x3, x4 are available to relay data

back to the fixed access point indicated in the lower left of Fig. 6.5. In this experiment, the

lead node must maintain and end-to-end rate of a5,min = 0.25 with probability ε = 0.75

while each relay node must maintain end-to-end rates greater than zero.
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Figure 6.1: Local control experiment with two relay nodes. (a) depicts the trajectory of each node.
(b) and (c) depict the rates âi(α(t),x(t)) for the lead and relay nodes respectively. In (b), the
solid line with shaded envelope depicts ā3 and variations that occur with probability ε = 0.9 based
on ã3. The dashed line represents the instantaneous end-to-end rate â3
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(a) (b)

Figure 6.2: The task specification for the Levine building experiment. It requires the lead node,
x5 to follow a sequence of waypoints that take it in a loop through the environment as depicted in
(a). The initial configuration of the team is depicted in (b).

The predicted and measured end-to-end rates of each node are depicted in Fig. 6.3.

First, notice that the instantaneous rate â5(α(t),x(t)) is almost always above its minimum

threshold of a5,min = 0.25. In fact, it drops below the minimum threshold only 2.9% of

the time, well within the allowable 25% for this problem specification. However, for that

rate to be maintained in an end-to-end sense across the network, each node must be able

to support the necessary rate margin ai,min. The corresponding fraction of time spent

below the minimum threshold for each of the instantaneous node rates â1, â2, â3, â4 is

9.2%, 0.8%, 0.3%, and 0.6%.

Representative network configurations are depicted in Fig. 6.4. In Fig. 6.4a, at t =

100 s, the predicted goal state X̃g assumes the shortest line of sight path which is the left

hallway, i.e. a similar result to the reactive methods in our local control algorithm. As

the system transitions to Fig. 6.4b, where the lead node x5 has been tasked to a waypoint

in the right hallway, the prediction for X̃g shifts to a chain of relays going through the
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Figure 6.3: The end-to-end rates of the nodes during the Levine building experiment depicted in
Fig. 6.2. (a) depicts the prediction, ā5, ã5, and instantaneous, â5, end-to-end rate for the leader
and (b) – (e) depict the instantaneous rates of the relay nodes. In each plot, the solid line with
shaded envelope depicts āi and variations that occur with probability ε = 0.75 based on ãi. The
dashed black line represents the instantaneous end-to-end rate âi. The dashed red link in (a)
depicts the threshold a5,min = 0.25.

126



1

2

3

4

5

(a) t = 100 s

1

2

3

4

5

(b) t = 278 s

1

2

3

4

5

(c) t = 482 s

1
2

3

4

5

(d) t = 622 s

Figure 6.4: Snapshots from the sequence of feasible network configurations that satisfy the task
depicted in Fig. 6.2.
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right hallway. This shift in the basic topology of X̃g focuses exploration of the joint state

space so that x4 moves towards a configuration that will lower the performance of the

network over the short term. As node x5 completes the desired loop, it utilizes x4 as a

relay channel and is able to maintain the desired end-to-end rate. It is this dramatic shift

in network topology that highlights the advantage of our global planning approach as we

are able to accomplish continuous end-to-end rate maintenance that would not be possible

with a purely reactive method.

Towne Environment

In the second experiment, depicted in Fig. 6.5, the structure of the environment does

not require any dramatic shifts in the topology of the network routing as in the prior

experiment. However, in this experiment we train the communication model on a subset

of the environment, i.e. the labeled “training region” in Fig. 6.5. After deploying to the

leader state indicated at time t = 900 s in Fig. 6.5, the leader is tasked with returning to

its initial condition.

Figure 6.5: The task specification for the Towne building experiment. It requires the lead node,
x5 to follow a sequence of waypoints that take it as far as possible from the fixed operating center.

The predicted and measured end-to-end rates of each node are depicted in Fig. 6.6.

Despite the limited training data, the performance in this environment is comparable to

the Levine experiment. The empirical failure rate for each node is 8.2%, 3.3%, 17%, 0.5%,

and 16.7% for a1 through a5 respectively. The actual end-to-end rate, â5, for 300 ≤ t ≤
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Figure 6.6: The end-to-end rates of the nodes during the Towne building experiment depicted in
Fig. 6.5. (a) depicts the prediction, ā5, ã5, and instantaneous, â5, end-to-end rate for the leader
and (b) – (e) depict the instantaneous rates of the relay nodes. In each plot, the solid line with
shaded envelope depicts āi and variations that occur with probability ε = 0.75 based on ãi. The
dashed line represents the instantaneous end-to-end rate âi. The dashed red link in (a) depicts the
threshold a5,min = 0.25.
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900 s is consistently offset from the prediction since this robot is operating far from the

training region. This result is expected based on the communication modeling experiments

conducted in Chapter 4. However, it also demonstrates an important capability of the

robust methods we employ since we are still able to maintain communication within the

desired parameters when the model systematically overestimates the performance of point-

to-point links. The use of a more complex radio communication model, such as the

Gaussian process method (M5), would incorporate increased uncertainty in this region and

require more conservative configurations from the global planner – leading to improved

performance.

Representative network configurations for this experiment are depicted in Fig. 6.7. Due

to the communication model and geometric nature of this environment, line-of-sight links

are favored as the lead robot extends farther from the fixed operating center. Though the

physical state of the robots resembles a pure multi-hop solution due to the global planning

heuristic for X̃g, the robust network solution still splits traffic and routes data over links

with lower expected rates in order to decrease the variance of the end-to-end rate.

6.4 Summary

In this chapter, we address the experimental verification of algorithms developed in Chap-

ter 5 for concurrent control of mobility and network routing. These algorithms are fo-

cused on providing solutions to a situational awareness task that require the completion

of a physical objective while maintaining specified end-to-end communication rates across

the network. In this chapter, we focus on verifying that instantaneous realizations of the

random end-to-end rates across the network are maintained. By conducting a series of

experiments in complex, indoor environments, we show that the end-to-end rates based

on real wireless channels do exceed the threshold with the desired probability.

In these experiments, we chose to employ the distance-based model with fixed atten-

uation for non-line-of-sight channels, i.e. (M2), presented in Chapter 4. While GP-based

models may provide tighter predictions, this model is provides fast predictions and re-
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Figure 6.7: Snapshots from the sequence of feasible network configurations that satisfy the task
depicted in Fig. 6.5.
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quires minimal training. Furthermore, the success of these results serves to demonstrate

the robustness of our network routing and mobility control methodology in that it succeeds

despite a coarse model of point-to-point wireless communication. This raises an impor-

tant question for future work which will seek to determine how model complexity in the

prediction of point-to-point wireless channels affects the solution to situational awareness

problems within our framework.

Finally, these experimental results are heavily dependent on the capabilities of the

decentralized testbed presented in Chapter 2. However, the success and flexibility of these

experiments is also the product of a large base of software that implements the system

architecture pictured in Fig 3.7. For example, this software base consists of a network

layer for the radios, efficient motion planning algorithms, a simulation architecture for

wireless communication, and many miscellaneous tools for the definition and setup of

each experimental trial. The result of this, not explicitly referenced in this chapter, is

that it requires minimal effort to take an arbitrary set of robots to a new environment,

build a coarse model of communication, and perform network deployments that maintain

the specified quality-of-service metrics. This capability opens the door to a wide range of

multi-robot experiments in nearly arbitrary environments.
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Chapter 7

Conclusions

In this thesis, we addressed the problems inherent to wireless networking for a team of

mobile robots. We do this in a comprehensive way that focuses on real implementation

and places significant emphasis on experimental validation. Consequently, an intermedi-

ate accomplishment of this work was the development of a flexible experimental testbed

for distributed multi-robot systems. In fact, this testbed impacts multi-robot experiments

beyond the scope of this thesis and has also been applied to research on multi-robot ma-

nipulation and perception tasks. The main accomplishment of the work in this thesis is a

system-based solution to the situational awareness problem which relies on a probabilis-

tic model of point-to-point communication capabilities and a set of algorithms that find

concurrent solutions the network routing and mobility control for a team of robots. The

methods we have described in this thesis provide the basic communication capabilities

necessary for the robust operation of teams of robots in complex environments.

7.1 Summary of the Thesis

In Chapter 2 we explore a classification of system architectures based on tools for the

abstraction of communication capabilities. Specifically, we look at how this translates to

the design criteria and evolution of our experimental testbed. We describe the details and
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core capabilities of our decentralized multi-robot testbed that allows for a wide range of

experimental validation across a large indoor environment.

Building on the design of our experimental testbed, in Chapter 3 we examine two case

studies in coordinated control that have been evaluated on our testbed. The first example

relies on the nearest-neighbor abstraction for communication and addresses the problem

of multi-robot manipulation via caging. We are able to demonstrate how a decentralized

team of anonymous agents are able to approach and transport a payload through a field of

obstacles in a robust manner. This chapter concludes with the definition of a situational

awareness problem statement that serves to explicitly motivate the remainder of this

thesis. Our solution to this problem relies on the development of two core capabilities:

probabilistic communication modeling and concurrent solutions to the network routing

and mobility control problems.

In Chapter 4 we develop a framework to provide probabilistic communication predic-

tions for arbitrary point-to-point channels in an indoor environment. By providing an

experimental comparison of several candidate models, we draw conclusions about their

effectiveness. Two key results area product of this evaluation. First, it is possible to

rely on geometric maps of the indoor environment to increase the predictive performance

of a communication model. Second, though the use of a Gaussian process-based model

increases the complexity of training and predictions, it offers the powerful capability to

represent model uncertainty in regions where training data has not been collected.

This chapter also demonstrates two methods for relative localization. In the first

method, we rely directly on a Gaussian process-based model and show the ability to infer

the location of a static source. In the second method, we ignore typical signal-strength

based localization schemes that require extensive training and instead rely on the ob-

servation that physical antennas are not isotropic and have a predictable bearing-based

attenuation pattern. By implementing a multi-hypothesis filter, we are able to demon-

strate the relative localization of a team of mobile agents. Furthermore, this approach
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serves to demonstrate that modeling point-to-point channels in R4 discards a significant

amount of useful information that should be considered for future predictive models.

Chapter 5 addresses the second core capability necessary for our solution to the situa-

tional awareness problem presented in Chapter 3, i.e. a concurrent solution to the network

routing and mobility control problem. Our goal is to develop a unified understanding of

the interplay between network routing solutions and control of node mobility. We do this

by first relying on the statistical point-to-point predictions of wireless channel performance

to design an optimal robust network routing solution given a fixed physical configuration

for the team of robots. Then, we employ two techniques that seek to jointly solve the

mobility control problem with the network routing problem. Both techniques utilize the

fact that our solution to the network routing problem is robust to node motions that can

lead to increased channel uncertainty.

The first technique relies on an optimization problem with a representation of net-

work constraints in optimization objective function through a barrier function. Gradient

descent is then used to move towards minima of the combined objective function in a

component-wise fashion, i.e. iterative optimization of the physical configuration with op-

timization of the network solution. While we are able to demonstrate that this method

is successful in maintaining the desired network connectivity, it is not able to deal with

complex environments and suffers from issues of local minima in the combined objective

function that arise as a result of complicated network topologies.

The second technique we propose for concurrent solutions to the network routing

and mobility control problem takes cues from random motion planning algorithms that

have found great success in the robotics literature. We have developed a random motion

planning algorithm that explores the joint configuration space of a team of robots that are

subject to the solution of our robust routing algorithm formulated as a convex optimization

program. Using this algorithm, we are able to demonstrate the ability to efficiently solve

robust deployment plans for teams with up to ten mobile robots, i.e. operating in the

physical space of x ∈ R20. These solutions demonstrate the ability of randomized planning
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to discover non-trivial shifts in network topology that allow us to address situational

awareness problems that are infeasible with reactive methods.

Finally, in Chapter 6, we present a series of experiments that validate our solution to

the situational awareness problem described in Chapter 3. We deploy a team of robots

utilizing our decentralized testbed based on the result of our global planning algorithm.

During deployment, each robot continuously measures the instantaneous point-to-point

communication capability with its neighbors. Using this data, we are able to provide

the first experimental validation of communication connectivity maintenance with real

wireless channels. Furthermore, our definition of connectivity is such that it will support

a task-specified end-to-end rate for each node.

7.2 Main Contributions

In this thesis, we address communication problems faced by teams of networked robots

and make several key contributions. We reformulate traditional connectivity maintenance

problems to present a generic situational awareness problem that combines a physical task

specification with quality-of-service constraints for networked communication. By incor-

porating quality-of-service constraints into the problem formulation, we gain the ability to

satisfy the underlying physical task while ensuring the necessary rates of communication

across the network. This provides a stronger statement about communication capabilities

than traditional methods that seek only to maintain graph-theoretic notions of connectiv-

ity. However, our approach does increase the complexity of the problem in two ways.

Frist, any solution to our situational awareness problem requires accurate prediction

of point-to-point communication capability between arbitrary points. This leads us to

develop Gaussian process-based methods for building spatial maps of point-to-point wire-

less channel performance. These GP-based models offer two key advantages over existing

models. Primarily, they can represent variations in signal strength that cannot be pre-

dicted without extremely accurate geometric maps and information about the dielectric

properties of the environment. Secondarily, GP-based models provide the capability to
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represent increased uncertainty about communication capability in unexplored regions of

the environment.

Second, the introduction of quality-of-service constraints dictates that network routing

solutions must be considered in parallel with robot motion. This increases the complexity

of the non-convex situational awareness problem. However, we are able to demonstrate

that for a fixed configuration of robot positions, the networking problem can be formulated

and efficiently solved as a convex second order cone program. Using this fact, we propose

two methods for searching the space of physical configurations to find solutions to the

situational awareness problem. The second of these methods, a randomized global search

technique, incorporates both communication and physical constraints to find solutions

to the network deployment problem. Furthermore, we provide experimental verification

that the actual end-to-end rates during deployment satisfy the specified constraints. This

represents a major step forward in the capabilities of networked teams of robots.

A key component of our experimental verification is the demonstration that end-to-end

rates are maintained even when planning relies on a coarse model for point-to-point capa-

bilities. This feature can be leveraged to support a generalization of the specific problem

we consider in this thesis. If we consider a scenario where prior knowledge of the communi-

cation model is low and there is no time to train a specific model, planning for deployment

can rely on a very coarse model that under approximates point-to-point performance. In

this way, our framework will find and utilize conservative team configurations that are

robust to large uncertainties in point-to-point channels.

Furthermore, while this thesis focuses on a particular instance of the situational aware-

ness problem statement, i.e. a single lead node sending a flow of data back to a fixed oper-

ating center, the methods we describe are immediately flexible to address several scenarios.

For instance, the introduction of multiple communication flows or destinations is facili-

tated by additional routing variables and end-to-end rate constraints in the robust routing

formulation. Likewise, a large class of physical tasks can be represented by task potential

functions. The nature of our randomized motion planning algorithm makes it amenable
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to any constraint whose satisfaction can be queried. On the other hand, some applications

require more complicated physical task specifications. In these cases, the gradient-based

control approach is more natural as it can incorporate desired robot velocities from an

arbitrary controller.

A parallel contribution of this thesis is the development of an experimental testbed

that supports a wide range of multi-robot research. Experimental work with the multi-hop

communication paradigm for a team of robots requires a complex system of algorithms that

interface with hardware, re-create traditional network layers, and provide individual robot

capabilities such as localization and navigation. This is in addition to the algorithms that

are the focus of research. Consequently, the key component of a testbed for multi-robot

research is a modularized software architecture. This allows for the development of stable

algorithms that provide low-level capabilities such as self-localization and navigation. An

easy to use software architecture additionally allows for efficient hardware abstractions

and for algorithm development in simulation with few simplifying assumptions. We have

demonstrated this capability through the experiments described in this thesis as well as a

large body of previous work [30, 29, 70, 20, 9, 71, 100].

7.3 Future Work

While we have experimentally demonstrated a nearly complete solution to the situational

awareness problem as we posed it, there are several challenges facing deployment of this

type of system in a real-world environment. Here we identify key directions for future

work that address these challenges.

In Chapter 4, we examine several candidate models for radio signal propagation and

point-to-point communication capability with a relatively large stochastic component to

account for uncertainty and small-scale fading. We explicitly modeled large stochastic

components so that our robust network routing solutions in Chapter 5 would yield con-

servative solutions. One clear direction for future work is to find models that allow for

tighter bounds on the uncertainty. We see this being achieved in two ways. First, radio
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communication literature seems to indicate that dominant path models have greater pre-

dictive ability than the direct path models we tested [108, 107, 109]. Second, none of our

candidate models explicitly allow for the ability to predict non-stationary fading. For a

Gaussian process model, this amounts to adopting a non-stationary covariance function

which increases complexity but may offer significant improvements in the tightness of our

predictions.

The other major challenge that we avoid in our treatment of communication modeling

is online or iterative updates to the model parameters during operation. We took a batch

approach in Chapter 4 to provide a clear basis for comparison amongst several candidate

models based on a static dataset. When we turned to experimental verification of our

solution to the situational awareness problem, we assumed an a priori dataset to generate

communication predictions. Clearly this assumption will not be valid in many applications.

Online solutions to the parameters of our parametric models via extended Kalman filtering

[105] or iterative Gaussian-process methods [13] are both likely avenues for success.

As we transition to online models for point-to-point channel prediction, global planning

methods will have to be updated accordingly. Since initial deployment plans will be

based on a prior models, they may be conservative with respect to the actual point-

to-point communication. In fact, it is easy to imagine situations where the necessary

deployment is infeasible given the a priori communication model. As online updates to the

point-to-point model make predictions more accurate, it is necessary to update or re-plan

team deployments. The problem of re-planning within randomized[23] and deterministic

frameworks [50] is well-studied in the robotics literature.

In Chapter 5 we begin by introducing a local gradient-based method that seeks to drive

the system towards optimal configurations with respect to both the task specification and

network utility. We quickly abandon this approach for complex environments in favor

of randomized global planning methods that explore the space of feasible configurations

without accounting for the optimality of a configuration with respect to the networking

properties. A direction for future research is the unification of these approaches where
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local control techniques can be used in a virtual sense to extend the state expansion

capabilities during global planning.

Throughout this work we have focused on a multi-hop communication model but made

the implicit assumption that modeling, control, and planning algorithms are implemented

in a centralized manner. We argue that this assumption is acceptable given the team sizes

we consider and the fact that we explicitly maintain connectivity of the network. However,

an important extension of the work in this thesis is the adaptation of our methods and

algorithms to decentralized implementations with increased robustness and flexibility.
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[108] G. Wölfle, FM Landstorfer, R. Gahleitner, and E. Bonek. Extensions to the field
strength prediction technique based on dominant paths between transmitter and
receiver in indoor wireless communications. ITG FACHBERICHT, pages 29–36,
1997.

148

http://www.vicon.com
http://www.willowgarage.com/
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