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Modeling the Effect of Images on Product Choices

Abstract

Conjoint is one of the most popular methods in marketing research, widely used to un-

derstand how customers trade-off features of a product. Since product images have a strong

influence on customer choice, it is natural to want to include images in conjoint studies, yet

this has proven to be difficult, since images are difficult to parsimoniously characterize in the

utility function. This paper proposes a novel approach to account for the effect of images on

respondents’ choices, in which consumer heterogeneity in the appeal of the images is modeled

through the covariance structure in a probit model. The covariance structure is informed by a

separate task where respondents rate the images included in the study. In our application to

midsize crossover vehicles, we show that our approach readily scales to a large number of im-

ages, fits better than several alternatives commonly used in practice, and makes more reasonable

predictions about product substitution when a new product enters the market. We discuss how

this approach could be used predict the effect of other difficult-to-characterize product attribute

such as sound quality or taste on product choice.

Keywords: Choice Models, Conjoint, Images, Visual Design, Styling, Bayesian Methods, Au-

tomotive Industry, Multinomial Probit Model
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1 Introduction

Choice-based conjoint is arguably the most widely-used tool in marketing research (Wittink and

Cattin, 1989; Green and Srinivasan, 1990; Green et al., 2001), making it easy for product designers

to quantify the relative importance of product attributes on consumer preferences. In most conjoint

studies, the attributes of a product are described in words or numbers (cf. Louviere et al., 2000;

Orme, 2006), yet we have long known that the visual design of a product can have a large influence

on consumer choice (Kotler and Rath, 1984; Yamamoto and Lambert, 1994; Bloch, 1995; Page and

Herr, 2002; Cox and Cox, 2002; Bloch et al., 2003; Creusen and Schoormans, 2005; Landwehr et al.,

2011) and that consumers process images differently than they process text (Holbrook and Moore,

1981). So, it isn’t surprising that practitioners want to understand how product design will influence

product choice relative to other attributes. Practitioners frequently field choice surveys like that

in Figure 1, where each alternative is described with both a picture and a set of verbal attributes

(as described by Green and Srinivasan, 1990).1 This image-plus-text format is very natural for

respondents, mimicking the typical product page at an online retailer, and customer responses to

questions like that in Figure 1 have the potential to provide marketers with information about how

customers value the product design shown in the image relative to other features, an important

consideration for product designers (Krishnan and Ulrich, 2001).

While conjoint tasks like the one depicted in Figure 1 are quite popular in practice, incorporating

the effect of these images into a choice model is not straightforward. Since the images that are

displayed convey information about the alternative not captured in the text descriptions, the effect

of the images themselves should be accounted for in the choice model used to analyze the data.

The most common approach in practice is to estimate the effect of each image (using a dummy

variable in the utility specification), but since this requires an additional parameter for each image,

it rapidly becomes infeasible as the number of images included in the conjoint design increases. For

example, in our application, we include 32 distinct images that can be paired with any combination

of the other attributes in the choice survey (see Figure 2). Conjoint respondents answered 20 choice

tasks each with 4 alternatives, which means that each image appeared in the choice tasks only 2-3

times for each respondent. This survey design, which is typical of commercial conjoint surveys,

1Note that these images do not illustrate the text-based attributes, as in Vriens et al. (1998), but provide additional
information about the product.
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Figure 1: A choice task that includes images in addition to verbal attributes.
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is insufficient to estimate effects for all images, particularly when accounting for heterogeneity in

preferences for images. Extending this standard approach to larger numbers of images would require

either more respondents or more questions for each respondent and rapidly becomes infeasible in

commercial conjoint studies. We propose an alternative, highly-scalable approach for modeling the

effect of images on product choice, which we summarize next.

1.1 Data Collection and Modeling Approach

The key idea underlying our approach is to augment the choice task in Figure 1 with direct ratings

of the appeal of the images from a task like that in Figure 3. As we show, this additional data

can be parsimoniously incorporated into the choice model through the covariance of a multinomial

probit model (McCulloch and Rossi, 1994; Haaijer et al., 1998).

The ratings of the images can be collected from a different sample of respondents, drawn from

the same population as was the conjoint sample. To further minimize the burden on respondents,

a split-questionnaire can be used so that each respondent only has to rate a subset of the images

(Raghunathan and Grizzle, 1995; Adigüzel and Wedel, 2008). This additional data can be used to

estimate the mean appeal rating for each image across the population, as well as the heterogeneity

in preferences for the images (i.e., the variance and covariance of the ratings across consumers).

To incorporate this additional information in the choice model, we include the population

mean appeal rating for each image as an “attribute” in the specification of the product utility.

However, as we will show, simply using the mean ratings as an attribute in the usual hierarchical

multinomial logit model only accounts for differences in average preferences for the images and

ignores the heterogeneity in the appeal of the images. To account for the fact that respondents

vary in which images they prefer, we analyze the choice data using a multinomial probit model where

the covariance structure of the error in choice utility is a function of the estimated correlations in the

consumer ratings for the images. That is, if people who rate one image highly also tend to rate the

other image highly, then the utility between products with those two images is correlated through

the covariance in the probit utility. In this way, our approach is akin to spatial modeling approaches

where similarities or distances enter the model through a covariance structure (cf. Banerjee et al.,

2014). Our proposed specification allows us to decompose the estimation problem into estimating

1) a mean and covariance matrix for the appeal of the images using data collected specifically for
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Figure 2: Images included in the choice task. Three visually similar “sister” vehicles are highlighted.
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Figure 3: Product image ratings task.

that purpose, and 2) a choice model with only one additional parameter per conjoint respondent,

regardless of how many images are included in the study. Incorporating the effect of the images

in this way is more parsimonious than the approach of estimating an effect for each image using

conjoint data only, which requires K−1 parameters for K images. We also show that the covariance

in the appeal ratings can be replaced by a measure of “distance” between pairs of images that is

computed directly from the images themselves, without reducing the model fit, further simplifying

the requirements for the ratings task in Figure 3, as we will discuss. The proposed model is not

only motivated by theory and a better fit to the data, but also results in substantially different

predictions for product share than a model that does not account for heterogeneity in the appeal

of images.

In particular, we will show that the proposed model makes substantially different predictions

for new product entries when those products have an image that looks similar (and so appeals to

the same subgroup of respondents) as other products already in the market. This has important

implications; since it is expensive to develop new product designs, companies frequently consider
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developing product extensions that will look similar to existing products, yet will have different

price, brand and features. For example, in our application, we apply this method to estimate the

effect of product images relative to other important features such as fuel economy, seating and

price for midsize crossover vehicles. In this market, there are a number of “sister vehicles” that

share a common engineering platform and have similar product styling, thus saving on design and

tooling costs, but are marketed under different brands at different price points. For example, the

three similar-looking vehicles highlighted in Figure 2 are the 2008 models of the Mazda Tribute, the

Mercury Mariner and the Ford Escape, which were all produced in the same factory, but marketed

by three distinct brands owned by two independent companies. In order to engage in meaningful

cost-benefit analysis, designers must be able to make accurate share projections for this set of

vehicles (cf. Krishnan and Ulrich, 2001; Desai et al., 2001) in a way that properly accounts for

cannibalization. A standard choice model that ignores the styling similarity between these three

sister vehicles, will over-estimate the combined share for the three products and underestimate sub-

stitution between them. In our application, we show how our proposed model yields substantially

different predictions about the combined share for sister vehicles than the hierarchical multinomial

logit model commonly used in practice. As we will show, product designers who use näıve ap-

proaches common in practice are at risk of coming to different conclusions about whether a sister

vehicle will produce enough incremental sales to justify the development costs.

1.2 Related Literature

Our approach draws on the tradition of using probit models to capture non-IIA substitution pat-

terns in choice models. These models have typically been used to estimate non-IIA substitution

patterns between brands or SKUs (Chintagunta, 1992; McCulloch and Rossi, 1994), whereas we use

the probit covariance structure to capture non-IIA substitution patterns between images. A major

challenge with estimating a probit model from choice data alone is that the number of parame-

ters in the covariance structure grows large as the number of alternatives presented to consumers

grows. For example, while Chintagunta (1992) and McCulloch and Rossi (1994) both estimate

full-covariance probit models from observed purchases, both limit their empirical applications to

estimating the covariance structure across 6 brands, while in our application we use a probit co-

variance structure across 32 images. Our approach to identifying the probit covariance structure
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relies on collecting additional data (for example, ratings for each image) which is used to inform

the covariance structure. The resulting model, which can be scaled to accommodate a large num-

ber of images, fully accounts for the heterogeneity in respondent’s preferences for the images and

heterogeneity in how important the images are relative to other attributes. Thus, our work stands

in contrast to approaches that do not collect outside data, but instead rely solely on restrictions

of the covariance structure to increase parsimony. For example, Elrod and Keane (1995) impose

a latent factor structure on the covariance and Kamakura and Srivastava (1984) assume that the

covariance is a function of the attribute similarities between products. Unlike these approaches,

which restrict the range of possible substitution patterns, our approach allows for any pattern of

substitution between products, and this substitution pattern is informed by the additional data.

Our work is also related to the literature in marketing on the visual design of products, most

of which is outside of the literature on choice modeling and conjoint. Much of the literature on

visual design has attempted to decompose images into specific features which are predictive of the

appeal of the image. For example, Veryzer and Hutchinson (1998) use lab studies to show that

the rated appeal of a product design is a function of the cohesiveness between design elements

(“unity”) and the prototypicality of the design in the category. Similarly, Landwehr et al. (2011)

characterize product designs by their prototypically, as well as their “complexity” and show that

these dimensions are related to real-world product sales. Similarly, Orsborn et al. (2009) develop

a method to describe SUV images in terms of a long vector of dimensions and then use principal

components to reduce the dimension of that vector, so that the first few principal components can

be used as attributes of the product alternatives in a choice model.

While describing the image in terms of specific features and measuring preferences for those

features is useful in helping designers understand what makes an image appealing, these approaches

cannot fully account for the effect of images on choice when making predictions. This is because

we do not yet fully understand the full set of features that makes an image appealing. In contrast

to these other approaches, we do not attempt to decompose the images and instead focus on

accounting for non-IIA substitution patterns in choices between images. This allows us to account

for the effect of images on product choices without trying to explain what features of those images

make them appealing or unappealing and closer or more distant substitutes. Our approach has

the added benefit that we do not need to assemble a set of images that spans the design space, as
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is required to define prototypicality or compute principal components of design variation. In our

case study we apply the method to conjoint data that includes vehicle images and show that our

approach fits the choice data better and makes more accurate predictions than these alternative

approaches to modeling the effect of design on choice.

2 Model Development

As described above, a key component of our approach is to collect ratings of the overall appeal

of each image included in the design in an additional survey task (see Figure 3). We model this

vector of ratings for each of k = 1, . . . ,K images with a multivariate normal distribution across the

population of consumers, i:

zi = (zi1, . . . , ziK) ∼ NK(z̄,Σ) (1)

The model in (1) could be replaced with a cut-point model to accommodate ordinal ratings

(Rossi et al., 2001); in our application we collected ratings on a near-continuous scale and the

normal model is an appropriate approximation and simplifies the exposition.

Using ratings data from any sample of the target population, we can estimate the population

average appeal for each image, z̄, as well as the population covariance, Σ. The additional ratings

data can be collected from the same respondents who answer the conjoint survey, or, if minimizing

survey length is important, it can be fielded with a different sample of respondents from the same

population. When there is a large number of images to be included in the study, the survey length

can be further reduced (at the expense of requiring more respondents) by collecting the ratings

data according to a split-questionnaire design where each respondent rates a subset of the images.

In our case study, each conjoint respondent rated one of 8 subsets of 16 of the images; subsets were

designed so that each pair of images occurred together in at least one of the subsets. Thus, despite

some elements of zi being missing (by design) for some respondents, z̄ and Σ can be estimated using

the standard Bayesian MCMC algorithm for the multivariate normal model with data augmentation

for the missing elements of zi (Raghunathan and Grizzle, 1995; Adigüzel and Wedel, 2008). In our

application, we standardized the ratings before estimation and use conjugate, weakly-informative

priors on z̄ and Σ. The point estimates of z̄ and Σ are then used in fitting the multinomial probit
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models.

In addition to collecting the ratings data, we also collect choice data where one of the images is

included with each product profile (see Figure 1). To motivate our model for the observed choices,

we begin by assuming that respondent i’s utility for product j follows a random-utility specification

that is a function of both the usual product attributes, xij , and the (unobserved) subject-specific

appeal of the image shown with alternative j, zij :

Uij = x′ijβi + λizij + εij (2)

where βi is a vector of parameters that reflect the importance of the attributes (that are described

in words) to subject i’s overall utility and λi is a scalar representing the importance of image appeal

to respondent i (relative to the other attributes). As is usual, we assume that εij is an IID error

term with variance σ2 and that customer i chooses the alternative with the greatest realized utility.

However, this is not the model we estimate, since zij is not observed for each respondent i.

Instead, we rewrite the utility in (2) as a function of the average appeal for each image, z̄j where

z̄j is the element of z̄ corresponding to the image shown in alternative j. The utility can then be

re-written as:

Uij = xijβi + λiz̄j + λi(zij − z̄j) + εij

= xijβi + λiz̄j + ηij

(3)

where the new error term ηij = λi(zij − z̄j) + εij incorporates the heterogeneity among respondents

in the appeal of the images. Assuming zij is normally distributed, the resulting vector of errors

ηi = (ηi1, . . . , ηiJ) follows a multivariate Normal distribution with zero mean (since both zij − z̄j

and εij have mean zero). The covariance of ηi is

cov(ηi) = λ2i Σj + σ2I (4)

where σ2 is the variance of the IID error terms εij and λ2i Σj is the covariance induced by incorpo-

rating λi(zij − z̄j) into the error term, which is simply the marginal of Σ for the images included

in task j.2

2Unlike in Zeithammer and Lenk (2006) the “missing dimensions” of the multivariate normal in the choice task
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Our key insight is that (3) can be estimated as a multivariate probit model (with a very specific

error structure) using our estimates ˆ̄z and Σ̂ from the image ratings data. Conditional on those

estimates, we constrain the covariance of the probit model to be equal to λ2i Σ̂j +σ2I. The resulting

model is:

Uij = xijβi + λi ˆ̄zj + ηij

ηi ∼ NJ(0, λ2i Σ̂j + σ2I)

(5)

where ˆ̄zj and Σ̂j are point estimates of the mean and covariance of the image ratings in the ratings

task, xij are the observed product attributes and βi, λi and σ are parameters to be estimated

from the choice tasks. This probit model allows for flexible substitution patterns between images;

the parameter λi is identified as respondents make repeated choices from collections of products

with images that vary in terms of similarity, as measured by Σ̂. Note that the parameter λi both

scales the contribution of Σ̂ to the covariance and is the coefficient on the mean appeal rating (ˆ̄z)

in the deterministic portion of the utility. Thus, our proposed model requires just one additional

individual-level parameter in the choice model to estimate the effect of images on choice.3 Following

the usual hierarchical modeling approach, the individual-level parameters, βi and λi, are assumed

to follow a multivariate normal distribution across the population.

We estimate the probit model by Bayesian MCMC using standard, weakly-informative, con-

jugate priors on the population-level parameters (Rossi et al., 2005). As λi appears in both the

mean and covariance structure, the standard data augmentation based estimation approach for

multinomial probit models cannot be used in this context. Rather, we draw realizations of the

model parameters from the posterior distribution using the Metropolis-Hastings algorithm, where

the model likelihood is computed using the GHK simulator Geweke (1991); Keane (1994). Con-

vergence was assessed by initiating multiple chains using random starting values and using the

Gelman-Rubin statistic to confirm that both chains had converged to the same location.

To summarize, our proposed model is a hierarchical multinomial probit model where the utility

do not present any estimation challenges since Σ̂ is estimated from the ratings data and treated as known when
estimating the choice model in (5).

3We explored alternative model specifications that allowed estimation of separate parameters to scale the covari-
ance structure and/or weight the mean appeal of the alternative. We found little improvement in fit beyond this
more parsimonious and theoretically-motivated model we present here. Results are available from the authors upon
request.
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is specified as a function of the product attributes and the population mean appeal rating of the

image plus an error term that has the covariance structure specified in (5). This formulation

accounts for individual differences in which images are most appealing and in how important the

images are to product choice overall, yet requires only one additional individual-level parameter,

λi, to accommodate all of the images. The only added cost of this approach is that of collecting

ratings data on each of the images. If necessary, this data can be collected from a different sample

of respondents as the conjoint respondents (but, of course, from the same target population) to

reduce survey length and respondent burden.

The idea that heterogeneous perceptions of features like styling can induce correlations in the

utility structure can be attributed to Hauser and Simmie (1981) who noted that any time there

is a transformation from a set of physical design dimensions to a set of perceptual dimensions (in

our case from the image to the appeal rating) and that transformation is not modeled directly in

the utility function, then a covariance between the utilities of the alternatives is induced (page

44, equation 2). While estimating a full-covariance structure from conjoint data is certainly one

way to handle this problem Chintagunta (1992); McCulloch and Rossi (1994), it requires K(K−1)
2

additional parameters, where K is the number of images. Our approach offloads this burden to a

more appropriate method by relying on additional image ratings to inform the covariance structure.

(As we will discuss in Section 4, there are also other, less-costly data sources that can also be used

to inform this covariance structure.) Decomposing data collection in this way makes it possible to

reduce overall respondent burden and obtain better information about the covariance structure of

utility.

3 Application: Conjoint Study for Midsize Crossover Vehicles

The goal of this application is to illustrate the proposed method and to compare the predictions

made by our proposed model to several alternative approaches. We do this in the context of a typical

conjoint study for midsize crossover sport utility vehicles (SUVs) that included line drawings of the

vehicle designs (see Figure 1) as well as a number of traditional attributes like fuel economy and

price. (See Table 1 for the complete list of attributes.)
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Table 1: The attributes and levels included in the application are typical of a choice model for
vehicle purchases.

Attribute Level (as described to respondents)

AWD/FWD
AWD
FWD

Fuel Economy

14 mpg city
16 mpg city
18 mpg city
20 mpg city
26 mpg city
30 mpg city

Engine
4 cylinder
6 cylinder
4 cylinder hybrid

Seating
5 passengers (2 front / 3 rear)
7 passengers (2 front / 2 middle / 3 rear)
8 passengers (2 front / 3 middle / 3 rear)

Cargo Capacity
15 cu. ft. (about 3 large suitcases)
25 cu. ft. (about 5 large suitcases)
35 cu. ft. (about 7 large suitcases)

Maximum Cargo Capacity
(with seats folded down)

good (60 cu. ft.)
better (80 cu. ft.)
best (100 cu. ft.)

Price (MSRP)

$21,999
$24,999
$27,999
$30,999
$33,999
$36,999
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3.1 Survey Design

The ratings task and the choice questions were both completed by 258 respondents, who were

recruited from an online research panel and indicated that they intended to purchase a new car or

truck in the next three years and that they would consider a “crossover sport utility vehicle” for

their next purchase.

3.1.1 Image Ratings

For the image ratings task (Figure 3), each respondent was asked to rate the “styling appeal”

of 16 of the 32 images shown in Figure 2 on a continuous scale with end anchors labeled “Very

Unappealing” and “Very Appealing.” Each respondent rated one of 8 sets of 16 vehicles; the sets

were designed so that each pair of vehicles occurred in exactly 4 of the 8 sets. Thus, the split-

questionnaire design provided ample information from which to estimate the covariance in ratings,

Σ, while only requiring respondents to rate half of the images.

Because a primary goal of the study was measuring response to vehicle design, the drawings

were also carefully constructed to be comparable representations of the basic vehicle shape and

proportions. Measuring preference for shape and proportion relative to other attributes like cargo

capacity and seating is critical early in the product design process when the basic architecture

of the vehicle must be established. (Color and trim details can be determined later in the design

process.) The drawings were all scaled to appear the same size, so that respondents would not make

inferences about size or roominess based on the images. Any brand information (e.g., a brand logo)

was removed from each line drawing, so that the respondents would make minimal inferences about

other attributes based on the images. While we chose to use line drawings in this study, we note

that the method we propose could be used with any set of representations, including full-color

photographs or virtual reality experiences.

To identify the image effect, λi, it is critical that the images vary in how appealing they are

and how similar they are to each other. For this demonstration of the method, we chose 32 images

that represent the midsize crossover SUVs available in the United States in 2008; this group varies

substantially in their shape and their similarity to one another (see Figure 2). While the designs

tested in this case study happen to represent products that were on the market, the method could
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Figure 4: Distribution of cross-image correlation used in the proposed model shows substantial
variation across pairs of images.

also accommodate images of new prototype designs as well. In applications where designers are

testing new design concepts, the number of images to test could easily exceed 30 or 50 images,

making it nearly impossible to estimate fixed effects for each image from the choice tasks alone.

Using the ratings, we estimated the normal multivariate model in (1) using a Bayesian data aug-

mentation approach that accounts for the missing observations for each respondent. For example,

the greatest estimated positive correlation in ratings is between image 4 and image 7 (correlation

= 0.625), meaning that respondents who rate the boxy image 4 highly also tend to rate the boxy

image 7 highly. Similarly, there is a positive correlation in the appeal ratings for images 2 and 9,

which represent the sister vehicles Ford Escape and Mazda Tribute which both have traditional

SUV styling (correlation = 0.489), while we find a negative correlation in ratings is between the

image 2 and image 19, which represents the Ford Edge and has a more modern “crossover” look

(correlation = -0.406). The distribution of correlations between pairs of images is summarized in

Figure 4.
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3.1.2 Choice Tasks

In addition to rating 16 images, each respondent also answered 20 choice scenarios like that in Figure

1. Each question offered the choice from among 4 product profiles that were described in terms of

the attributes listed in Table 1 along with one of the 32 pictures in Figure 2. For the traditional

attributes, the profiles were selected based on an optimally-efficient Bayesian experimental design

(Sandor and Wedel, 2001; Sándor and Wedel, 2005) using weakly informative, zero-centered prior

of the form proposed by Lenk and Orme (2009). A total of 12 alternative versions of the conjoint

survey were created and respondents were randomly assigned to one version. The 32 line drawings

were rotated across tasks in a way that balanced the number of times that any pair of images

occurred together in the same task.

3.2 Model Fit

First, to demonstrate how including styling in the model improves the fit of the choice model, we

compare our proposed model (Model 2) to two naive models (Model 0 and Model 1). Our first

benchmark specification is a hierarchical independence multinomial probit model (i.e., a probit

model with a covariance equal to the identity matrix) that includes all of the attributes except

styling (Model 0). The independence probit is identical to the standard hierarchical multinomial

logit model widely used in practice (up to the distributional form of the error term) and so closely

represents what a practitioner would estimate if he completely ignored the effect of the images on

choice and estimated a hierarchical multinomial logit model for the other attributes. Unsurprisingly,

we find that this model fits our data substantially worse than our proposed model (log-marginal

density4 = -3847 versus -3551) strongly suggesting that ignoring the effect of styling on choice

entirely is not reasonable. To guard against over-fitting, we also compute the average hit rate5 for

one hold-out question that was not used in estimation. Although the differences in hit rate are

more modest, we find that the independence probit that ignores styling performs worse than our

proposed model (out-of-sample average hit rate = 0.500 v. 0.534).

4We estimate the log-marginal density using the Newton-Raftery estimator. Because this estimator is unstable,
we computed it for several sub-samples from the posterior draws and the ranking of the models remained the same.
The median and average deviance of the draws also ranked the models in the same order.

5We define the average hit rate as the average likelihood of the chosen alternative at the posterior mean of the
parameters. This metric favors a model that makes accurate predictions with high certainty over a model that makes
accurate predictions with lower certainty.
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Table 2: Our proposed model (Model 2) fits the choice data better than naive benchmarks.

Model
In-Sample Out-of-Sample

Log-Marginal Density Hit Count Hit Rate

Model 0
-3847.14 150 0.500Independence probit

ignoring images

Model 1

-3701.79 150 0.510
Independence probit
with mean image rating
in the utility specification

Model 2
-3551.01 153 0.534Proposed model

with structured covariance

A benchmark that more closely represents what might typically be done in practice is an inde-

pendence probit that includes the average styling rating as an attribute in the mean utility speci-

fication in (5) but ignores the covariance and sets ηij ∼ N(0, σ2I)). The comparison between this

model (Model 1) and the proposed model (Model 2) represents the additional gain in performance

achieved by accounting for the heterogeneity in the appeal of the images through the structured

covariance. Model 1 also fits substantially worse than our full specification (log-marginal density

= -3702 versus -3551, out-of-sample average hit rate = 0.510 versus 0.534). The fit of Models 0,

1 and 2 are compared in Table 2. In total, the in- and out-of-sample model fit suggests that our

proposed model fits the data better than models that ignore the non-IIA substitution patterns

between images, resulting from heterogeneity in preferences for the images.

We also find that the other parameter estimates, the part-worths of the conventional attribute

levels, are not substantially different between Model 1 and Model 2; the improvement in fit comes

almost entirely from the addition of the covariance between images. Estimates of the population-

level parameters for our proposed model (Model 2) and the independence probit with styling ratings

in the mean (Model 1) are reported in Table 3.

We attempted to fit a model where we estimated a fixed effect for each image as an attribute

with 32 levels, requiring 31 additional parameters, but found that the posterior for the individual-

level parameters for the images was highly diffuse, to the point where we had trouble obtaining a

sample from the posterior using MCMC with diffuse priors. To see how unreasonable this approach

is, consider that each respondent only sees each image on average 2.5 times in the choice tasks,
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Table 3: Estimates of part-worths are similar between the benchmark independence probit (Model
1) and our proposed model (Model 2)

Estimated Population Mean
Model 1 Model 2

Independence Probit Proposed Model
Est 95% HPD Est 95% HPD

FWD (versus AWD) -0.19 [-0.31,-0.05] -0.20 [-0.31,-0.08]

Fuel Economy (MPG) 1.41 [1.33,1.85] 1.57 [1.32,1.78]

6 Cylinder Engine
0.51 [0.37,0.75] 0.57 [0.41,0.73]

(versus 4 Cylinder)

4 Cylinder Hybrid Engine
0.08 [-0.13,0.20] 0.09 [-0.05,0.24]

(versus 4 Cylinder)

7 Passengers (versus 6) 0.35 [0.21,0.54] 0.35 [0.20,0.50]

8 Passengers (versus 6) 0.34 [0.19,0.52] 0.36 [0.20,0.50]

25 cu. ft. Cargo Capacity (versus 15) 0.19 [0.09,0.35] 0.22 [0.11,0.34]

35 cu. ft. Cargo Capacity (versus 15) 0.26 [0.15,0.42] 0.28 [0.12,0.44]

Better Maximum Cargo Capacity
0.05 [-0.05,0.20] 0.08 [-0.05,0.19]

(versus Good)

Best Maximum Cargo Capacity
0.27 [0.17,0.43] 0.29 [0.17,0.39]

(versus Good)

$24,999 (versus $21,999) -0.19 [-0.32,-0.01] -0.17 [-0.30,-0.04]

$27,999 (versus $21,999) -0.47 [-0.61,-0.24] -0.43 [-0.59,-0.26]

$30,999 (versus $21,999) -0.99 [-1.27,0.77] -0.97 [-1.16,0.78]

$33,999 (versus $21,999) -1.42 [-1.74,-1.16] -1.47 [-1.72,-1.20]

$36,999 (versus $21,999) -1.94 [-2.38,-1.62] -2.03 [-2.32,1.75]

Average Styling Rating 0.34 [0.26,0.43]

λi
0.35 [0.24,0.49](weight for Average Styling Rating

and covariance structure)
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which gives very little information from which to estimate heterogeneous effects for each image.

If a respondent never chooses an alternative with a particular image, which is quite common in

our data, then the individual’s parameter for that image is not identified by the data and depends

entirely on the population-level distribution. We were unable to estimate this model without placing

highly-restrictive hyper-priors on the population-level covariance of the individual-level parameters

(βi).

3.3 Model Predictions

In the previous subsection, we showed that the proposed Model 2 fits the data better both in-sample

and out-of-sample, but the improvement might be considered modest. However, the differences in

predictions between Model 1 and our proposed Model 2 are substantial and important in practice.

For example, consider the situation where a company is considering introducing a new product to

the market that is similar to an existing product. An example of a scenario like this is described in

Table 4, where the existing products are described by in columns 1-6. We look at this example from

the perspective of the company that produces vehicle 5 in Table 4 and is interested in launching

a the new vehicle described in the final column which will compete with vehicle 5 and the other

competitors.

The new vehicle, shown in the last column of Table 4, has image 13 in Figure 2, which is similar

to the image for vehicle 5 (image 1 in Figure 2). Our model recognizes that these two images have

correlated appeals ratings (correlation = 0.282). (Note these are moderately correlated images;

some pairs have correlations in appeal rating close to 0.5.)

Figure 5a shows the shares before and after the launch of the new vehicle as predicted by Model

1, which only includes average image appeal in the mean specification and ignores the heterogeneity

in image appeal. While the Independence of Irrelevant Alternatives property does not strictly hold

for this hierarchical model, we do find that the share predictions show an IIA tendency with share

for the new vehicle coming from other vehicles somewhat in proportion to their initial shares. This

can be seen clearly in the source-of-volume predictions (on the right in Figure 5a), which show the

proportion of share for the new vehicle that comes from each of the existing vehicles. While Model

1 does predict some competition between vehicle 5 and the new vehicle, the new vehicle still gains

about half its share from other vehicles. The model optimistically predicts that together, vehicle 5
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Table 4: A hypothetical new product introduction of a “sister vehicle” to vehicle 5.

Attribute Veh 1 Veh 2 Veh 3 Veh 4 Veh 5 Veh 6 New

FWD 0 0 0 0 0 0 0

Fuel Economy 26 18 26 16 20 18 20

6 Cylinder Engine 0 1 0 0 1 0 1
4 Cylinder Hybrid 0 0 1 0 0 0 0

7 Passengers 0 1 0 0 0 0 1
8 Passengers 1 0 1 0 1 1 0

25 cu. ft. cargo 0 0 0 1 0 0 0
35 cu. ft. cargo 1 0 0 0 1 0 1

Better Maximum Cargo 0 0 0 1 0 1 0
Best Maximum Cargo 1 0 0 0 1 0 1

$24,999 0 0 1 0 0 0 0
$27,999 0 0 0 0 1 0 1
$30,999 0 1 0 0 0 0 0
$33,999 1 0 0 0 0 0 0
$36,999 0 0 0 0 0 0 0
Ave. Image Rating (ˆ̄z) 0.07 0.10 0.85 -3.46 1.12 0.08 0.72
Image Number 2 5 3 4 1 6 13

and the new vehicle will achieve 42.3% share.

Our proposed Model 2, in contrast, accounts for the increased competition between vehicle

5 and the new vehicle due to their similar images. The predicted probit covariance matrix for

the 7 vehicles after the hypothetical new product launch is shown in Table 5 and reflects the

strong predicted competition between vehicle 5 and the new vehicle. The share predictions for the

structured covariance probit shown in Figure 5b reflect this strong competition, predicting that

71.2% of the volume for the new vehicle will come from vehicle 5. (Note, as well, that Model 1

and Model 2 predict an almost identical share for vehicle 5 before introduction of the new vehicle.)

The combined share of both vehicles together is predicted to be 38.5%, which may not be enough

of an increase (over the base share of vehicle 5, which is 34.0%) to justify the additional cost of

producing and marketing the new vehicle. While profit calculations would require cost data and are

beyond the scope of this paper, the results show that the difference in predictions between Model

1 and Model 2 can be substantial enough to affect critical for business decisions such as whether

to launch a sister vehicle.

To see how this example of launching a new similar-looking product compares to launching a

new dissimilar looking product, we ran a second counterfactual simulation with the same settings as
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(a) Model 1: Independence Probit (b) Model 2: Proposed Model

Figure 5: Share predictions from the benchmark independence probit and our proposed model for
the hypothetical new vehicle launch described in Table 4. Bars represent the vehicles in Table 4 in
the same order. Bars for Vehicle 5 are shaded in grey and the bar for the new vehicle is black.

Table 5: The average predicted probit correlation matrix for the hypothetical scenario described
in Table 4 shows strong competition between vehicle 5 and the new vehicle

Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle New
1 2 3 4 5 6 Vehicle

Vehicle 1 1.00
Vehicle 2 -0.28 1.00
Vehicle 3 -0.35 0.34 1.00
Vehicle 4 0.08 -0.04 -0.11 1.00
Vehicle 5 -0.19 0.18 0.26 -0.10 1.00
Vehicle 6 -0.17 0.16 0.16 0.14 -0.12 1.00

New Vehicle -0.07 0.07 0.13 -0.05 0.48 0.00 1.00
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Figure 6: Predicted product line market share for introduction of a similar versus dissimilar product
based on the market described in Table 4.

Model

Predicted Share for
Vehicle 5 before New

Entry

Predicted Combined Share for Vehicle 5 and
New Vehicle for Alternative Product Images

Image 1 Image 13 (similar) Image 10 (Dissimilar)

Model 1
32.9% 42.3% 42.7%

Independence Probit

Model 2
34.0% 38.5% 43.1%

Proposed Model

in Table 4, except assuming that the new vehicle has a more distinct image (image 10 in Figure 2).

The combined market share for vehicle 5 and the new vehicle predicted by the independence probit

(Model 1) are 42.3% when the new vehicle has an image that is similar to vehicle 5 (image 13) and

42.7% when the new vehicle has an image that is dissimilar (image 10). This shows that when we

ignore the similarity between images (and the resulting heterogeneity in preferences for images),

we do not see a substantial difference in the combined shares for vehicle 5 and the new vehicle. By

contrast, our proposed model (Model 2), predicts a substantial difference in the combined share

for vehicle 5 and the new vehicle, with 38.5% when the new vehicle has a similar image and 43.1%

when it has a dissimilar image. Thus, we can see that there is a substantial difference in the

predictions between the two models. A company who plans to launch vehicle 5 and the new vehicle

together as a product line would likely choose the similar-looking design if they used Model 1, since

similar designs are usually less costly to produce. However, using predictions from Model 2 the

company would be able to see the substantial difference in combined share for the product line and

(depending on costs) would be more likely to choose to make the investment to differentiate the

designs. Combined share for vehicle 5 and the new vehicle for both models under both scenarios is

summarized in Figure 6.
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4 Alternative Model Based on Physical Dimensions

In this section, we offer an alternative approach to quantifying the differences between images and

using these images to approximate the probit covariance. This approach computes the distances

between images directly from the images themselves, reducing the need for the appeal ratings

data (but not completely eliminating it, as we will discuss shortly.) We do this by quantifying

the distance between images based on the features of those images and then using those distances

to approximate the probit covariance. We find that this approach performs as well as the model

described in the previous section, while requiring less additional survey data from outside the

conjoint survey.

The line drawings presented in Figure 2 can be summarized using a shape-space, which is a

system for encoding the shape of an object using a minimal number of points. In fact, all of the

images in Figure 2 were generated from a shape space, defining the shape of a midsize crossover

vehicle based on a vector of 343 key points in 2-D space (see Smith et al., 2007, for more details).

Using these points, we can compute a distance between two images and use that distance to

approximate the heterogeneity in preferences, Σ̂ in (5). The key assumption in doing this is that

images which are physically similar (as determined by the shape space) are likely to appeal to the

same subset of people, and so will be more substitutable.

After removing control points that do not lie on the curves that make up the line drawing,

we computed the simple Euclidian distance between the two vectors of points that define any two

vehicle images in the shape space. For example, using this metric, the distance between the images

2 and 9 (which are sister vehicles Ford Escape and Mazda Tribute) is 0.029, while the distance

between images 2 and 19 (which are the Ford Escape and the Ford Edge) is much greater at 0.065.

The distribution of the squared distances is shown in Figure 7. Comparing the distance based on

the shape space and estimated correlation in appeal ratings, we find that the distance measure

based on the physical dimensions is negatively associated with the correlation in appeal ratings

(correlation = -0.586 over 496 pairs of images).

We scaled the physical distance measure to lie in the unit interval and used it to approximate

Σ̂ in (5), rather than using the covariance in appeal estimated from the ratings data. We then

estimated the model in (5) and we find the model based on the physical distances between images
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Figure 7: Distribution of physical distances between images.

(Model 3) fits the data as well as the one that uses the estimated covariance based on the ratings

(Model 2). In fact, the fit statistics for Model 3 slightly outperform Model 2 (log-marginal density

= -3508 v. -3551, out of sample average hit-rate = 0.538 v. 0.534). This suggests that the physical

distance metric can be used to form a reasonable approximation to the covariance matrix; that is,

two vehicles that are “close” according to the shape-space distance seem to appeal to the same

subset of customers and are closer substitutes in the choice task.

We note that Model 3 still uses the average appeal rating from the task in Figure 3 as an

“attribute” in the mean utility, so this approach would still require collecting ratings data for each

image. However, since we do not need to estimate the covariance matrix Σ from the ratings data, the

ratings for each vehicle could be collected from a different, smaller sample of the target market. This

would allow the use of short, inexpensive internet based surveys (e.g., Google consumer surveys)

to gather the image ratings, with the caveat that care needs to be taken to avoid methods biases.

The Model 2 approach described in the previous section requires a survey where each respondent

rates a substantial subset of the images so that the covariance is identified, requiring longer surveys

for each respondent.
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4.1 Comparison to Other Approaches Based on Physical Dimensions

While Model 3 uses the physical dimensions of the image to compute a distance metric between

images, several alternative ways to characterize product images so that they can be included in a

choice model have been proposed in the literature. Unlike our covariance-based approach, these

alternatives primarily focus on summarizing the image, which has a large number of dimensions,

using a smaller number of dimensions that can be incorporated directly as attributes in the mean

specification of a model (i.e., as elements in xij) . For example, Landwehr et al. (2011) build on

information-processing theory to model consumer choice of images based on two aspects of vehicle

styling: the styling “prototypicality” and the styling “complexity”. The prototypicality is computed

directly from physical dimensions that describe line drawings (in their case, 50 characteristic feature

points of frontal vehicle designs) as the distance between the centerpoint of a group of images and

the target image. The complexity is gauged by the size of the image file after compression. Then,

using German sales registration data for the first six months of 2007, they regressed each model’s

sales in that period on prototypicality, complexity, their interaction, and other typical marketing

mix variables. They conclude that, all else equal, vehicles with images that are prototypical, but

complex, have higher sales.

To see how well prototypicality and complexity predict choice in our conjoint study, we fit an

independence probit model with these two features as attributes in the mean utility specification

(Model 4) and show and find that it fits substantially worse than Model 3 (see Table 6). While

prototypically and complexity are clearly associated with choice, they don’t seem to be a compre-

hensive set of all the ways that images affect choice. While our approach does not speak to what

makes an image appealing, as Landwehr et al. (2011) do, it accommodates a larger array of sub-

stitution patterns (through the covariance) and fits the data better. This means that either of our

proposed approaches (Model 2 or Model 3) is preferable when it is important to accurately predict

the effect of images on choice. It also suggests that one might combine the two approaches by

using prototypicality and complexity as attributes in the utility specification and then basing the

covariance on the residuals of the appeal ratings after prototypically and complexity are regressed

out.

A second benchmark is proposed by Orsborn et al. (2009). They reduce the large number of
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Table 6: Alternative approaches to modeling the effect of images on choice do not fit the data as
well as our proposed models.

Model
In-Sample Out-of-Sample

Log-Marginal Density Hit Count Hit Rate

Model 2
-3551.01 153 0.534Proposed model

with covariance based on ratings
Model 3

-3508.21 153 0.538Proposed model
with covariance based on distance
Model 4

-3695.70 151 0.513
Complexity and prototypicality
Model 5

-3611.12 151 0.521
Principal components

dimensions of the image by identifying the first few principal components of variation among the

images of a set of competitive vehicles. Those principal components can then be used as attributes

in the utility specification. We benchmark our approach against this alternative by computing the

principal components for the images in Figure 2, based on the points in the shape-space. Our

proposed model fits substantially better (LMD=-3551 v. -3611, hit rate = 0.534 v. 0.521). Table

6 summarizes the model fit for Models 2 through 6.

While both of these approaches based on the literature provide some predictive power in our ap-

plication, our more flexible approach does a better job at capturing departures from IIA substitution

and fits the data better. We also note that both of these alternative approaches to characterizing

images require the researcher to collect a set of images that represent the products currently on the

market (to assess prototypicality or to estimate principal components). Our approach, by contrast,

does not require the researcher to establish a set of images that represents the market and only

requires that the analyst be able to define a distance metric between the images to be tested. This

makes the approach particularly useful in product design applications where designers wish to test

a large number of new images and may not be concerned with why particular images are more

appealing.
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4.2 Making Predictions for New Images After the Model is Estimated

Throughout the design process, product designers are constantly creating new designs, making it

difficult to anticipate the full set of images for which the company might want predictions at the

time the conjoint study is fielded. Using Model 3, which relies on the distance metric computed

directly from the images, it is straightforward to make predictions for new images that were not

included in the conjoint survey. With the standard approach of estimating fixed-effects for each

image, this cannot be done without collecting additional conjoint data. However, since the distance-

based estimate of the covariance is computed directly from the line drawings, we can easily compute

a estimate of the new covariance matrix, Σ, for any new line drawings. The only additional data

requirement is to estimate the mean appeal ratings for the new drawing, which is something the

company would likely want to do anyway, and can be done quickly with a one-question survey.

This makes it very easy for the company to rapidly adjust the choice model to understand how the

new image will affect consumer’s likelihood to purchase a proposed design.

5 Discussion

In this paper, we have presented a parsimonious way to account for the effect of a large number

of images on respondents’ choices in conjoint studies. Our proposed approach accounts for hetero-

geneity in the appeal of the images through the covariance structure in a probit model, which is

informed by a separate task where respondents rate the images included in the study. Using data

collected for midsize vehicles, we have shown that this approach fits better than several alternatives

commonly used in practice. Further, we have shown that the proposed model makes different and

more reasonable predictions about product substitution when a new product enters the market.

This approach can be adapted to a variety of marketing problems. As we illustrated in our case

study, it can be used in nearly any product design context to predict how product design influences

product choice. This is a critical application area in practice, where aesthetic considerations are

often in direct conflict with other practical features of the product and it is important to understand

how consumers will react to alternative designs. Similarly, the approach could be adapted to aid

with online merchandising, helping a retailer understand which product images will make an online

shopper more likely to purchase a product. The “cost” of our improved ability to account for the
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effect of images on product choice is that our approach requires some additional data on appeal

ratings for each image; data which is relatively simple to collect requiring minimal effort from

respondents.

Going beyond images, the structured covariance probit approach could be used to model non-

IIA substitution patterns between levels of any attribute with a large number of levels. For instance,

to include a large number of brands in a conjoint study, one could collect ratings for the appeal of

specific brands and use the heterogeneity in those ratings to inform a covariance structure between

those brands, following the same approach we have used for images. Our approach is particularly

useful for modeling non-IIA substitution between levels of other aesthetic attributes like sound

quality or taste, where each level included in the conjoint study can be represented by a (possibly

large) vector of dimensions that can be used to compute a distance. For these types of attributes,

the covariance can be based either on ratings or on a similarity metric (minimizing the additional

data collection that is required).

There are several limitations of the approach that we should point out. For convenience, we

estimate the multinomial normal model for the ratings and multivariate probit model for product

choice separately. However, it would be possible to estimate these two models jointly and such an

approach would propagate the posterior uncertainly in z̄ and Σ into the choice model. This may

lead to wider (and more accurate) posteriors for λi, particularly when the ratings data does not

lead to tight posteriors for z̄ and Σ. This would require a relatively straightforward integration of

the Gibbs samplers for both models. Second, we should caution that the approach we propose only

captures departures from IIA substitution between the images. There are certainly many other

potential sources of covariance between alternatives and those sources could be incorporated into

this framework.

We see our approach as a practical – but not the ultimate – solution to modeling and under-

standing preference for styling. As engineers and psychologists begin to better understand how

people perceive and form preferences images, they will be able to effectively translate between the

pixels in an image and key dimensions that people perceive when they see these images. Once

we understand these perceptual dimensions, they can be incorporated directly in the mean utility

specification. While the literature has identified some candidates for these perceptual dimensions

(Veryzer and Hutchinson, 1998; Landwehr et al., 2011), we are far from a complete theory of visual
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perception and preference, and product designers continue to face the dilemma of how to incorpo-

rate images into choice models. While we hope that others will continue to develop our collective

understanding of visual design of products and its effect on product choice, in the absence of a

comprehensive theory of perception, our approach provides a practical solution to accounting for

the effect of images in conjoint studies, providing product designers with more accurate predictions

for how their products will fare in the market.

29



References
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Appendix

Figure 8: To ensure that the styling could be viewed clearly, respondents were able to view a larger
version of each picture, by clicking on the thumbnail image in the choice task.
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