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Abstract 
In this paper, we propose a new family of controllers 
for multi-jointed planar monoped runners, based on 
approximate but accurate models of the stance phase 
dynamics of a two degree of freedom “SLIP” leg. Un- 
like previous approaches, the new scheme gives control 
over all parameters of the system including the hop- 
ping height, forward speed and duty cycle. The con- 
trol laws are “deadbeat” in nature, derived by com- 
puting the inverse of an approximate return map and 
corrected by integral compensation. We use the ex- 
pressions obtained in this way to control the original 
SLIP leg as well as radically different, more realistic 
four degree of freedom legs. In each case, the perfor- 
mance of the deadbeat scheme in controlling forward 
running velocity is compared to a modified Raibert 
control strategy, whose experimental stability proper- 
ties have been analyzed carefully in the low degree of 
freedom setting. 

1 Introduction 
Biomechanists have gained great leverage in under- 
standing basic principles of locomotion in creatures as 
diverse as humans and cockroaches by considering the 
“simple” SLIP model shown in Figure 1 as a metaphor 
for running and hopping [l, 3, 4, 51. While simple 
to the biomechanist, even this model presents difficul- 
ties to the engineer wishing to pursue formal analysis 
and control since it is a hybrid system with nonlinear 
stance dynamics which are not closed-form integrable. 
Even so, previous work by two of the authors [15, 161 
provides approximate functional relationships for the 
SLIP dynamics, enabling a consideration of control via 
established techniques. 

The question remains, however, whether such con- 
sideration is warranted. Is the SLIP model any more 
than a metaphor for running and hopping? Is it actu- 
ally a control target aimed for by humans and animals 
in spite of their greater degrees of freedom? If so, will 
the careful consideration of such a simple model allow 
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the engineer to  create robots with dexterity reminis- 
cent of humans and insects, or is this a LLzoomorphic 
fallacy” tantamount to  building a flying machine with 
flapping wings? 

In answer to the former two questions, growing bio- 
logical evidence, including recent work in our lab with 
human running data, suggests that the SLIP dynamics 
are more than just a metaphor. They are the literal 
control target for the center of mass of the subjects we 
have studied to  d.ate [14]. 

The latter question was in one sense answered by 
the landmark work of Raibert and his students [12] 
who used robots readily characterized by the SLIP 
model. The power of such simple leg models was 
demonstrated by the extensibility of the single leg 
ideas to  two and four legged runners as well as the 
variety of behaviors generated: running with a num- 
ber of gaits, jumping over obstacles, and performing 
acrobatic maneuvers. However, the legs used in this 
work were constructed to be SLIP-like. The question 
remains: Is it possible to use the simple SLIP model to 
characterize more complicated and biologically plausi- 
ble leg models having ankle, knee and hip joints? 

The biological evidence seems to provide a proof 
by existence. Additionally, intuition regarding the 
Lagrangian dynamics suggests that a “heavily-laden” 
higher degree of freedom leg will behave “almost iden- 
tically” to a 2 DOF SLIP leg [16]. 

Given this evidence, this paper reports on our pre- 
liminary efforts to investigate the extensibility of SLIP 
based controllers to more complicated leg models. 

1.1 Scope of the Paper: Coupled Con- 
troller for a “Special” SLIP Run- 
ner 

The first work in the control of SLIP runners was the 
successful implementation by Raibert and his students 
[la] of simple, roughly decoupled controllers to inde- 
pendently control the hopping height and forward ve- 
locity of their robots. This stunning success motivated 
a series of papers [lo, 17, 11, 151 characterizing the sta- 
bility of these decoupled controllers. 

In this paper we present a new coupled approximate 
deadbeat controller for a SLIP runner having a “spe- 
cial” spring potential model which makes a simplified 
version of the stance dynamics closed-form integrable. 
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We then explore the applicability of the decoupled con- 
troller (that we will term R,aibert-like) and the new 
coupled controller in more biologically plausible legs. 

1.2 Contributions of the Paper: The 
Power of the SLIP Model 

In this paper we use simulation to suggest the possi- 
bility that control laws designed for SLIP leg, can be 
extended more biologically plausible leg models. As 
far as we know, this represents the first attempt to ap- 
ply any 2 DOF derived return map controller to more 
complex single legs. We contrast a “deadbeat” and a 
Raibert-like controller in so doing. 

It is not surprising to find that the approximate 
deadbeat controller outperforms the decoupled con- 
troller in the 2 DOF leg for which they were both de- 
veloped. l It is surprising to find that the decoupled 
controller continues to function well in the 4 DOF leg. 
However, it seems to us truly noteworthy that the ag- 
gressive 2 DOF coupled controller can be adopted in 
the same way to the 4 DOF leg as well, even to the 
point of outperforming the decoupled algorithm. This 
significantly bolsters our suspicion that the “collapse 
of dimension” observed in biological control hierarchies 
might be explained in terms of isometries of the kind 
we have explored in [IS]. 

Good performance can be achieved in the decoupled 
scheme when the gain parameters are tuned, whereas 
in contrast, the deadbeat controller is tuned automat- 
ically in its defining formula. Moreover, it allows for 
explicit control over duty factor2. 

Introducing the ability to  explicitly command duty 
factor in addition to forward speed and hopping height 
may be useful when considering higher level control 
problems in dynamic locomotion such as foot place- 
ment on irregular terrain. Hodgins [7] studied the use 
of three different techniques for foot placement on ir- 
regular terrain: controlling forward speed, flight du- 
ration and stance duration. While we have not ex- 
plored the implications of this work on foot placement 
in irregular terrain, the coupled controller’s ability to 
explicitly control forward speed, hopping height and 
duty factor will prove advantageous in such contexts. 

2 The “Special’’ SLIP Runner 
2.1 Model and Assumptions 
The SLIP model considered in this paper is shown in 
Figure 1. The leg is assumed massless and the body 

lThe tradeoffs between deadbeat and less model dependent 
controllers are well understood. The relative benefits in perfor- 
mance promised by the former can evaporate in the presence of 
noise and model mismatch that might not significantly under- 
mine the latter. 

21n fact, the introduction of the duty fac;tor (the ratio of time 
a leg is on the ground over a complete cycle of leg movements) 
as a control objective is also a novelty of this work. While 
commonly considered in the biomechanics literature for either 
it’s power in classifying gait [2] or in its effect on metabolic 
efficiency, it has been all but ignored in the robotics literature. 

Lift-Of€ point 
Leg Length at Lift-off 
Leg Angle at Lift-off 
Radial Velocity at Lift-off 
Angular Velocity at Lift-off 
Apex Point 
Apex Hopping Height 
Apex Forward Velocity 
T i m e F l i g h t  
T imeStance  

Touch-Down Point 

Radial Velocity at Touch-Down 
Angular Velocity at Touch-Down 

Table 1: Notation for the SLIP Leg Model 

Figure 1: The spring loaded inverted pend.ulum(SLIP) 
leg model(1eft) and the “ankle-knee-hip” (AKH) leg 
model(right). 

a point mass at the hip joint. During stance the leg 
is free to rotate arouind its toe and the mass is acted 
upon by a radial spring with potential U(q,). In flight, 
the mass is considered as a projectile acted upon by 
gravity. We assume there are no losses in either the 
stance or flight phases. 

Despite its structural simplicity, the stance dynam- 
ics of this system are not integrable. Therefore, we 
begin our formal consideration by eliminating grav- 
ity from the stance dynamics yielding a simple central 
force problem wherein energy and angular momen- 
tum are both constants of motion and can be used 
to integrate the stance dynamics. The structure of 
the integrals suggest certain forms for the spring law 
which are physically realistic and also admit closed 
form integration [15, 161. In particular, as in [15], we 
have chosen to work with the compressed air spring 
U A ( ( I T )  = k/2(1/$ - l/q,”o>. 

Before formulating the return map, we discuss the 
control inputs available for the SLIP runner. The first 
control input is the leg angle at touchdovvn, q g t .  We 
assume that during flight we are able to swing the leg 
to any desired angle relative to the ground. The other 
control inputs come from the ability to tune the spring 
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potential. In this work, we choose to  tune the spring 
potential via choice of the stance compression and de- 
compression spring constants, kl and kz , respectively. 

2.2 The Control Objective 
In formulating the control problem it is natural to work 
in the set of apex states (see Table 2 for state defini- 
tions), 

since its elements are easily observable and represent 
directly natural control specifications such as " jump 
this high" or "ran this fast". 

Given this perspective, an obvious next step is to  
introduce the apex return map, fa : xa x Uk c) xa 
where 

U = { U  I U = [ qs t ,  ki, k2 IT} 
is the set of control inputs. We are now in position to 
consider the coupled control problem. 

That is, suppose we want to achieve the desired 
apex state (control objective), 

' *  x; = [ b,, b;, 5,, $* IT 

One possible solution is the deadbeat control, that 
is, the control input U* = [ q i t , ,  k:, k; 1' such that 
X: = f , (X,,u*),  effectively taking the current apex 
state X, to the desired state X:  in one cycle. 

The most direct way to find the deadbeat control 
U* would be to  invert the map fa.  However, the con- 
trol inputs appear in the apex return map in a com- 
plicated manner making a direct computation of the 
inverse map difficult. In consequence, we introduce a 
new coordinate system, which affords an almost com- 
pletely closed form inverse to an approximate return 
map. 

2.3 The Liftoff Return Map 

Consider the new state and control sets, 

U = {a I a = [ qs t ,  U l ,  ff 1') 
where El is the energy at liftoff, $1 is the ratio of for- 
ward velocity to vertical velocity at liftoff and 

Assuming qTl = qTt = qTo, the liftoff return map 

fi : 21 x U C )  21 can be written as3 

where 

and we define the following two parameter family of 
functions, 

Notice that apart from certain values of the param- 
eters (e.g. ~1 = 1 and ~2 = 0) this family cannot be 
expressed in terms of a single elementary function. Fi- 
nally note that both $t and q T t ,  which appear in (4) 
can be expressed in terms of 21 and qst. 

3 The SLIP Deadbeat Con- 
troller 

We want the ability to control the SLIP hopper to 
achieve a goal state,4 

2," = [ 4 0 l ,  E,", +?, 4* IT (11) 

We are looking for the the deadbeat control, ii*, 
such that 

z,* = fl(zl,c*) (12) 

3Please refer to  [13] for more details on the derivation of the 

4As in Section 2.2 we can only choose three independent con- 
liftoff map. 

trol objectives, here we select El, + l  and 4 
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3.1 Inverting the Return Map to Find 
Deadbeat Control 

The simple form of the liftoff return map makes it pos- 
sible, under a reasonable assumption, to reduce the in- 
version of fi to the solution of a single equation in a 
single variable. The assumption that makes this pos- 
sible is 

BE, z 0  (13) 
This assumption is reasonable in practice since AE, 

appears in (4) only as a result of the unnatural en- 
ergy discontinuities at touchdown and liftoff due to 
our no-gravity stance model, and does not appear in 
the stance dynamics with gravity. 

Given this assumption, solution of the E1 and q5 
equations of (4) yields 

We then substitute both (14) and (15) into the $Q 
equation of (4) to arrive at a single equation in a single 
unknown variable, q g t .  Namely the equation 

?h* = t(L-01 (ZI ,zI*,Qst))O (16) 

The function of qst on the right hand side of the 
equation behaves nicely (e.g. it is monotone for most 
choices of 21, 2;) and can be easily solved using nu- 
merical methods. 

After solving for qst from (16), we substitute the 
result into (14) and (15) to obtain cy and al.  F’rom 
here, it is trivial to go back to k1 and k2, completing 
the inversion. 

Finally, we can express the desired liftoff state, 2; 
in terms of X l  and the control inputs [13]. Substitut- 
ing the appropriate relationships, (16) becomes 

Equation (17) is used in the remainder of the paper 
to solve for qst numerically (since no closed form ex- 
pression involving elementary functions is available) . 
This is in turn used to find kl and kz using the closed 
form expressions (2), (3), (15) and (14). 

3.2 The Deadbeat and Modified Raib- 
ert Controllers 

The procedure outlined in Section 3.1 gives an open 
loop approximate deadbeat controller for the ideal case 
where the plant exactly matches (save the omission of 
the AE, term) the SLIP model with the compressed 
air spring introduced in Section 2.1. 

Previous work by two of the authors [16] investi- 
gated the impact of the omission of gravity during 

stance on the accuracy of the approximations and sug- 
gested possible corrections to the model. To minimize 
the effect of the prediction errors to  controller per- 
formance, we augment the inverse apex map with a 
gravity correction policy, increasing the stance spring 
constants as a function of the gravitational potential at 
bottom [13]. The resulting control law is the approxi- 
mate deadbeat controller we have been discussing. 

For the purposes of comparison, we propose a de- 
coupled alternative to this strategy based on Raibert’s 
original control ideas. First, the forward velocity con- 
trol is achieved by approximating a neutral leg place- 
ment and adjusting it, with a proportional error term, 
yielding 

where kj. and the choice of x are controller param- 
eters. Next, we implement a Raibert-like hopping 
height controller by supplying the appropriate energy 
at bottom, via a change in spring constant AEu = 
Ukz (rb) - U k l  (rb) ,  in order to provide the energy dif- 
ference between two successive apex points. In the 
absence of an estimate for rb, we use measurements 
from previous strides. Similar to  2 and kk, this is an 
estimation parameter which requires careful tuning for 
best performance. 

Since both controllers, by their nature, will have 
tracking errors, we use integral feedback compensa- 
tion, yielding a discrete closed loop system of the form 

e[k + 11 
where e[k]  is the integral of the apex state error, Xi[k] 
is the “reference” tram and u,(X,, X,*) is a particular 
gait-level controller, in this paper, either the deadbeat 
or the modified Raibert controller. 

3.3 Performance of the Deadbeat Con- 
troller 

Even with integral coinpensation deadbeat control is 
an aggressive approach, imposing strong model depen- 
dence on the control law. In the absence of analyti- 
cal results for the stability of the proposed controller 
in the presence of model mismatches, we explore in 
simulation the performance of the deadbeat controller 
and compare it to the benchmark of a modified Raib- 
ert control strategy. In particular, in Section 3.3.2, 
we begin by studying a simple SLIP, removing the as- 
sumption that gravity can be ignored during stance. 
We continue in Section 4.2 by considering two differ- 
ent four DOF legs having ankle, knee and hip joints 
and mass distributed throughout the leg. 

Due to lack of space, this comparative study primar- 
ily focuses on the forward velocity behavior resulting 
from the control strategy. However, similar results are 
seen when considering the hopping height and duty 
factor behaviors [13]. 
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3.3.1 Simulation Strategy 

In this simulation study, we consider two families of 
waveforms we wish the apex velocity trace to track: 
one of step references and another of sinusoid refer- 
ences. 

0 0 5 ,  

P 

O l y , ,  . , ":I , , 

5 10 15 20 25 30 10 20 30 40 
apex numbs, apex number 

Figure 2: Sample runs of the deadbeat controller(so1id 
lines) and modified Raibert(dashed lines) controllers 
applied to  the 2 DOF SLIP leg for step and sinusoid 
references over 35 strides. Dotted lines represent the 
reference trace, while solid and dashed lines represent 
the actual performance of the SLIP runner. 

Examples of both are shown in Figure 2. In each 
case, the hopper stabilizes around an initial running 
speed and the desired reference waveform is introduced 
at the end of 15 gait cycles. 

When representing these references, we parameter- 
ize a step by its initial value and step amplitude and a 
sinusoid by its period and amplitude. Simulations are 
run over a range of these two dimensional parameter 
spaces. For a particular reference command, we sum- 
marize the control performance by the mean square 
error (MSE), 

where N is the number of strides taken. 
In presenting responses to these step and sinusoid 

reference command spaces, we collapse the initial ve- 
locity and sinusoid amplitude dimensions by averag- 
ing. In each case, 10 data points in the collapsed di- 
mensions are chosen such that the forward velocity 
command always remains in the range [0,3]m/s. 

3.3.2 Simulation Results 

Figure 3, summarizes the simulation data for step and 
sinusoid reference commands in forward velocity where 
we fix 8; = 1.2m and q5* = 3. The plots show the mean 
and variance of MSE for both controllers as a function 
of step amplitude(1eft) and sinusoid frequency(right) . 
The results show that for this plant, the deadbeat con- 
troller provides better tracking than a modified Raib- 
ert controller. This observation about the control per- 
formance in not particular to the 2 DOF SLIP model, 
for we will see similar results for a 4 DOF AKH leg 
model in Section 4.2. 

I 

w , d' 
0.015. 

f 0.01 

!OCQ5.  

P 

&re,' * - - * - - - +  
,p * * * - y -  , 

0 04 0.06 0.08 0.1 
Frequency of sin input 

Figure 3: Step(1eft) and Sinusoid(right) References: 
The mean and variance of MSE as a function of the 
step amplitude(1eft) and sinusoid frequency(right), for 
the deadbeat(x) and modified Raibert(o) controllers. 
For this plant, m = 50.48kg, &; = 1.2m, q5* = 3. 

Simulations with sinusoid reference commands re- 
veal another property of the deadbeat controller. Due 
to  its long settling time, the tracking error of the de- 
coupled controller increases significantly for high fre- 
quency reference commands. The deadbeat controller, 
however, has shorter settling times - it ideally reaches 
the desired trajectory in one cycle - and consequently 
displays better tracking over a wide range of frequen- 
cies. 

4 A More Realistic Leg Model 
In this section, the application of the SLIP dead- 
beat controller to  a much more complex dynamical leg 
structure, the four degree of freedom ankle/knee/hip 
model (Figure 1) is investigated. We consider two con- 
siderably different configurations of the four degree of 
freedom model: one with human-like and one with 
kangaroo-like kinematics and mass distribution. We 
present simulation evidence for the efficacy of the same 
approach as was used in Section 3.3.2 for the 2 DOF 
SLIP. 

4.1 The 4 DOF AKH Leg Model 
To simplify our thinking about this problem and make 
the application of the SLIP deadbeat controller as 
straightforward as possible, we consider a virtual SLIP 
leg connecting the toe of the 4 DOF leg to its center of 
mass (COM). The control objectives will remain the 
same as for the 2 DOF leg: the achievement of de- 
sired apex height, forward velocity and duty factor. 
The control implementation, however, will be consid- 
erably different, since the control inputs specified by 
the deadbeat controller, U = [ q&, k1, kz 1' are not di- 
rectly transferable to the control inputs of the 4 DOF 
leg. Furthermore there is not a one to one correspon- 
dence between the 4 DOF leg angles and qOt nor be- 
tween the joint torques and the virtual leg force. 

Consequently, we must develop rules for choos- 
ing posture (the leg configuration) at touchdown to 
achieve the desired qst and the joint torques during 
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stance to  achieve the desired virtual leg stiffnesses, kl 
and k g .  The manner in which we use biological evi- 
dence to guide the mathematical considerations used 
in forming these rules is presented in the next section. 

I [ m a , n b k , m h , m b .  

30 ,30 ,5 ,4  

4.2 
In controlling the four-jointed leg, we identify two lev- 
els, a joint level torque control, and an apex level vir- 
tual leg control. 

Our controller attempts to force the COM trajec- 
tory of the 4 DOF leg to mimic a SLIP leg by proper 
choice of touchdown joint configuration and stance 
torques ’. Our objective is to develop by closed loop 
joint contro!!erz a “target leg” dynamics, yielding vir- 
tual leg dynamics as close as possible to SLIP dynam- 
ics. We accomplish this by constraining the work done 
by the joint torques to equal the work that would be 
done by a virtual spring between the toe and the center 
of mass, yielding 

Control of the AKH Leg 

-TA 
F b = -rTq (19) 

where FT and $ are the virtual spring force and the 
center of mass velocities respectively. Note that this is 
substantially different from forcing the center of mass 
to follow a prespecified target trajectory. The actual 
stance trajectory is still governed by AKH dynamics. 

We then combine the torque constraint of (19) with 
a set of symmetry constraints of the form 

[ l a ,  El , ,  l h ,  l b :  
[0.15,0.35,0.40,0.35~ 

[0.5,0.7,0.6,0.5; 

where p and y are symmetry parameters, fixed for any 
particular locomotor. Intuitively, Equation 20 con- 
strains the body link angle with respect to  the ground 
to be y, and the knee angle to be proportional to the 
ankle angle. In our simulations, the human-like leg 
has y = 7r/2 and p = 1 and the kangaroo-like leg, has 
y = 71f4 and p =  1. 

The leg configuration at touchdown is now com- 
pletely specified, bridging the gap between the 4 dof 
leg model and the SLIP controller. As a consequence, 
we are able to use the controller principles explained 
in the preceding sections without any modifications. 
From the point of view of the apex controller, the com- 
bination of the torque control compensated leg dynam- 
ics are very close to SLIP dynamics. 

We investigate the validity of this approach in sim- 
ulation on two different 4 DOF legs, one human-like 
and one kangaroo-like whose structural parameters are 
given in Table 2. 

As in Section 3.3.2 we issue step and sinusoid ref- 
erence forward velocity commands and measure the 
tracking performance with the results shown in Fig- 
ures 4 and 5, respectively. They support the validity 
of two major assumptions in the paper. First, they 
confirm that the SLIP model for running is applica- 
ble to significantly different kinematics and dynamics. 

5Please refer to [I31 for a detailed discussion. 

Table 2: Structural simulation parameters for human- 
like and kangaroo-like four degree of freedom legs [9]. 

Second, they suggest that, the connection between the 
SLIP model and the four-jointed complex model we 
consider does not rely on the particular “target pose”. 

.ioosl 
- 0.04 

r”.J 0 

Figure 4: Step Reference: The mean and variance of 
MSE for human-like (left) and kangaroo-like (right) 
legs as a function of the step amplitude with the dead- 
beat(x) and modified Raibert(o) controllers. For this 
plant, by = 1.2m, 4* = 3. 

-* 

0.04, 

, 
I 

,0’ 

0.04 0.06 0.W 0.1 

0.04 

g 0.02 

t P- 

P 0.015 

8 0.01 

p 0.005 

0.04 0.W 0.08 0.1 
Franiimcv d sin innid 

Figure 5: Sinusoid Reference: The mean of MSE 
for human-like (left) ;and kangaroo-like (right) legs as 
a function of the sinusoid frequency with the dead- 
beat(x) and modified Raibert(o) controllers. For this 
plant, by = 1.2m, I$* := 3. -* 

5 Conclusioin 
The present work serves as a tribute to the foresight of 
both those in the biomechanics community and those 
in the engineering coimmunity, such as Raibert, who 
have insisted that the SLIP model is the right place 
to begin thinking about dynamic locomotion. For not 
only is this model useful in describing the COM behav- 
ior of a multi-joint monoped runner as the biomecha- 
nists have claimed, but also for prescribing the control 
needed to achieve some desired behavior as Raibert 
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originally intuited. In particular, in this paper the 
control prescription arises from the extension of the 2 
DOF SLIP deadbeat control to  the higher degree of 
freedom AKH leg. 

As far as we are aware, this is the first time that 
the SLIP model has been shown to be applicable to  
more zoomorphically realistic legs. Therefore, we be- 
lieve this work will be of interest to both the engineer- 
ing and biomechanics communities. 

5.1 Relevance to Engineering 

We witness in nature that advantage is conveyed to  
walkers and runners with higher degree of freedom 
legs. As such, while Raibert’s robots demonstrated 
remarkable abilities, it seems certain in the long term 
that walking and running robots must be designed 
with higher degree of freedom legs. But not much 
work has been undertaken in building multi-degree of 
freedom runners, presumably because of the difficulty 
in “getting it right”. Instead, research has progressed 
more rapidly in the direction of high degree of free- 
dom dynamic animations, such as the exciting work 
by Hodgins and her students [8]. In either case, it 
would be useful to  design easily tunable controllers in 
terms of high level behaviors, such as desired speed 
and hopping height. 

We feel that the work presented in this paper is 
the first step in the direction of easily implementable, 
provably correct task based controllers for the high de- 
gree of freedom, zoomorphically realistic problem. We 
are encouraged by our current successes and hope to 
pursue the implementation of these deadbeat inspired 
controllers into dynamic simulations and experimental 
platforms with increasing degrees of freedom. 

5.2 Relevance to  Biomechanics 
Given the almost universal ability to  characterize an 
animal’s COM behavior by the simple SLIP model, 
biomechanists are beginning to  question how the many 
degrees of freedom are coordinated to  mimic the 2 
DOF SLIP [6].  In other words, they would like to  
identify the joint level controllers that in combination 
give the SLIP-like behavior of the COM. Given the 
difficulties of such a task and the absence of any other 
control strategies, we feel that the multi-joint deadbeat 
control strategy presented in this paper may serve as 
a good initial guide for addressing this problem. 
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