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ABSTRACT

SENSITIVITY ANALYSIS FOR NON-IGNORABLE DROPOUT OF MARGINAL TREATMENT

EFFECT IN LONGITUDINAL TRIALS FOR G-COMPUTATION BASED ESTIMATORS

Emin Tahirović

Andrea B. Troxel

We specify identifying assumptions under which linear increments (LI) estimator can be used to es-

timate unconditional expectation for longitudinal data from a clinical trial in the presence of dropout.

We show that these are analog conditions under which extended linear SWEEP estimator achieves

unbiased estimation of the identical parameter in the same setting. Within a class of linear au-

toregressive models we specify how strategies implemented in LI and extended SWEEP relate to

each other w.r.t. the conditional expectation of increments and outcomes respectively. We utilize

conceptual overlap of these two methods to define a sensitivity analysis for both of them in pres-

ence of non-ignorable dropout. Interdependency of these two approaches offers a natural solution

to a prominent problem of asynchronous association between outcome and dropout inevitably en-

countered in sensitivity analysis for dropout in longitudinal data. Validation of our approach is done

on the data coming from a randomized, longitudinal trial of behavioral economic interventions to

reduce CVD risk. We subsequently show that our approach to sensitivity analysis can be perceived

as extension of the pattern mixture method defined by Daniels and Hogan in 2007. to longer se-

quences of observations. For T=3 we give the explicit expression for bias of our approach w.r.t.

mentioned pattern mixture approach. We further show on a subset of the data from the same

study that this bias does not invalidate our sensitivity analysis for LI when it comes to evaluating the

robustness of findings under increasingly less ignorable dropout.
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CHAPTER 1

INTRODUCTION

Incremental accrual of information over time is the shared characteristic for both survival analysis

and longitudinal studies. Motivated by this important shared concept some authors have tried to

adapt the ideas and methods from survival analysis to the longitudinal data setting. The hope is to

benefit from similarities and differences in a way that would then contribute to better understand-

ing of the methods and their assumptions in both frameworks. We will focus on the work done by

Diggle, Farewell, and Henderson, 2007. In it, authors propose an adaptation of a technique used

in survival analysis for making inference on the distribution of a counting process using right cen-

sored sample. Identification and interpretation of the parameters that quantify answers to questions

of relevance to investigators are rendered possible through the prominent independent censoring

assumption. The modeling part of the approach makes use of Aalens additive risk model (Aalen,

1980) adapted for the discontinuous nature of longitudinal data. The adapted version of the additive

risk model replaces the continuous time notion of the risk λ(t) with the expectation of discrete time

increments ∆Yt = Yt − Yt−1. This results in a model that is an amalgamated version of transition

and random effects model. When such a transfer of concepts is done from a setting in which time

(of a jump of the counting process) is random to longitudinal data setting where time of observation

is predetermined and not random, some caution is necessary. During this transfer a shift in the

interpretation of the parameter that can be estimated from observed data can occur. In a stochastic

process setting we have one probabilistic object that is a single counting process whose proba-

bilistic characteristics are governed by jumps that can be realized only within individuals present

in the study at that time. Nevertheless probabilistic and sampling characteristics are defined on

the level of a single counting process. This risk λ(t) has to remain “unblemished” by the act of

dropout of any individual. This is reflected by the preservation of its counterfactual interpretation at

each time t as a risk that would be there in case no one dropped out. This is achieved by a promi-

nent independent censoring assumption (see Appendix) which serves as an ignorability condition

for unbiased estimation/identification of dropout-free, counterfactually interpreted risk of a counting

process. Heuristically speaking, randomness (and non-discrete characteristic) of time within this

setting makes sure that independent censoring is all we need to preserve such interpretation of the
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risk in case of dropout. It works like a probabilistic “glue” w.r.t. different individuals, so that a single

counting process (more accurately its risk) can be written as a sum of individual specific counting

processes (risks) without any measure theoretic ambiguities. Probability of jumps within different

individuals happening at the same time is 0 due to the continuous random time.

When transferring these concepts and applying them for longitudinal clinical trial data we have to

make sure that the transfer of the identifiability/ignorability assumption is done appropriately so

that the marginal interpretation of the parameter, prominently of interest in clinical trials, remains

preserved. The most important aspect is in the change between random time of jumps and pre-

determined observation times in a longitudinal clinical trial. Now, without time as the probabilistic

“glue”, our identifiability/ignorability assumption will have to compensate for the part that was cov-

ered by randomness of continuous time. As an anchor for defining the appropriate ignorability

condition when such transfer of concepts is implemented we will use the relationship between lin-

ear increments approach (LI from now on, Diggle, Farewell, and Henderson, 2007) and a method

suggested by Robins, Rotnitzky, and Zhao, 1995. Authors called it the extended SWEEP estima-

tor and it was presented together with an accompanying ignorability/identifiability assumption (IIA

from now on), under which the identification of a marginal (unconditional, we will use these inter-

changeably) treatment effect, using only observed data, in the case of dropout is possible. We will

describe how this ignorability condition can be expressed in terms of increments and compare the

identificational assistance offered by both of these estimators in the case of dropout. Any estimator

that offers identificational benefit above and beyond the case of dropout happening completely at

random should offer itself (if possible then intuitively) to interpretable sensitivity analysis w.r.t. non-

ignorable dropout or equivalently to systematic departure from its IIA. This way the researchers

using this estimator can get a sense of robustness of their findings to possible association of the

dropout behavior and their outcome of interest not captured by the corresponding IIA.

From the new insight in how LI and extended SWEEP differ and coincide we are able to define

a unified approach to sensitivity analysis for violation of ignorability conditions for both of these

estimators. From the specific interdependence relationship between them a natural solution for

the issue of asynchronous association between outcome process and dropout process becomes
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apparent. More precisely, we will see how for any sensitivity analysis in a longitudinal setting we

have to survey experts on sensitivity parameters non-identifiable from the observed data and at the

same time very hard intuitively to conceive. To exemplify this imagine describing the influence of

the outcome YT at the end of the study on dropout behavior at the second time point. It is usu-

ally quite hard to conceive such asynchronous, maybe even counterfactual (outcome at the end of

the study might be never observed) association, let alone quantify it accurately. We show how the

proposed sensitivity analysis for LI solves this issue under some additional, but plausible conditions.

Sensitivity analysis for LI (we will sometimes use the acronym LISA instead) is a new addition to

tools for evaluating robustness of the findings in a longitudinal trial to dropout. We believe that

formally positioning it as precisely as possible into the existent landscape of similar tools can only

be beneficial in the sense of better understanding LISA, as well as those techniques already in

use. We show that LISA can be perceived as an extension of the approach presented originally

in Daniels and Hogan, 2008 to longer sequences of observations without necessarily increasing

the number of sensitivity parameters. This keeps the sensitivity analysis proposed by Daniels and

Hogan interpretable even after some parameter reductions. We offer natural conditions under which

this reduction in parameter number does not introduce a significant bias. For 3 time points we ex-

press the functional form of the bias from LISA and show how it can be evaluated and its influence

curtailed w.r.t. to preserving the usefulness of LISA for longer sequences of observations.

We introduce some notation we will use throughout the paper; in what follows we suppress indices

denoting individuals for simplicity, but later incorporate them as they prove important in differentiat-

ing between conditions on one individual and conditions on one time interval. Define baseline time

as t = 0 and assume that at this time we measure a set of baseline covariates X = (X1, . . . , Xp).

Assume observations Yt are taken at t = 1 and then at regular, non-random intervals up to T .

The response at time t is an s-dimensional vector Wt = (VT
t , Yt) where Yt, the outcome of in-

terest, is a scalar, and Vt is a possibly vector valued set of endogenous covariates/outcomes

measured at each time in addition to Yt. Since VT
t is not crucial for illustrating and conveying

our main message we will leave out for now any contemporaneusly measured, endogenous vari-

ables. It will be convenient to define the notation for the history of a process in discrete time:

3



Wt = {XT ,WT
0 ,W

T
1 , . . . ,W

T
t }. The complementary concept w.r.t. the number of planned ob-

servations T is denoted W t = {WT
t+1,W

T
t+2, . . . ,W

T
T }. Further define W0 = X and note that

dim(Wt) = p + st where p is the dimension of X. Dropout occurs at any time after t = 1 when

all subjects are observed. Define Rt = 1 if Wt is observed at time t. We assume that the only

missingness is due to dropout, i.e., once a subject leaves the study return is not possible.

In chapter 2 we define the IIA for linear increments estimator and describe its relationship to ex-

tended SWEEP estimator. We describe how identification becomes an artifact of specification for

the LI and how is this to understand in the light of positivity assumption (see 2). In the same chapter

we discuss simulation set up under which cogent comparison of LI and extended SWEEP on one

side and the weighted estimator (with inverse probability of observation posing as weights) on the

other is possible. After defining IIA for LI in 2, we proceed in 3 to conceptualize a structured way

to depart from this IIA for LI. We describe the idea for our approach and showcase methodology

involed, after which we validate the approach on a real data set coming from a randomized, longi-

tudinal trial of behavioral economic interventions to reduce CVD risk. In 4 we express sensitivity

parameters from LISA defined in 3 as a function of sensitivity parameters from Daniels and Hogan

approach and show how these two coincide. Further we evaluate the bias of LISA w.r.t. to Daniels

and Hogan approach and argue for its low influence w.r.t. the purpose LISA is meant to serve.

For three time points we quantify this bias in the real data set and discuss its minor influence as

captured by the possibility of decision discrepancy about robustness of the findings from LISA and

Daniels and Hogan approach for same set of sensitivity parameters. We conclude with a short

recap and possible future directions in chapter 5. R-code can be found in Apendix C.1 and C.2.
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CHAPTER 2

IGNORABLE DROPOUT FOR G-COMPUTATION BASED ESTIMATORS

2.1. Introduction

As already mentioned our starting point will be the work done by Diggle, Farewell and Hender-

son (Diggle, Farewell, and Henderson, 2007). The dynamic machinery that the authors adapt for

continuous longitudinal data in a randomized trial relies mainly on two theoretical concepts: Doob

decomposition of a stochastic process (into a predictable compensator process and a zero-mean

martingale, see Appendix) and Aalen’s additive risk model Aalen, 1980. This method was estab-

lished under the name linear increments and appeared in several papers (Aalen, 2012, Aalen and

Gunnes, 2010) as a choice for analyzing data from longitudinal clinical trials with dropout. Under-

lying motivation is taken from analogy between the risk of a counting process λt at time t and an

expected increment ∆Yt = Yt − Yt−1.

Longitudinal clinical trials are almost exclusively designed to consistently estimate either the com-

plete time evolution of the unconditional treatment effect or the unconditional treatment effect

on the outcome measured at end the trial. In that regard and by the non-randomness of the pre-

specified observation times the estimation target is different from capturing exactly the time-specific

dynamics of a process. Both of these parameters can be expressed using parameters of the un-

conditional joint distribution of the outcomes (Y1, . . . , YT ). Dropout or intermittent missingness are

almost inevitable in trials where repeated measurements are collected over time. In such settings,

if the outcome of interest and reasons for missingness are related, the marginal treatment effect

E[YT | X = 1] − E[YT | X = 0] (we exclusively use X as treatment indicator), or more generally,

the marginal expectation E[YT |X = x] might not be estimable from the observable data only. An

assumption enabling identification is often referred to as an identifiability/ignorability assumption

(IIA from now on).

No modeling assumptions are needed for formulating an IIA. In fact, the work that set firm concep-

tual groundwork on the problem of identifiability (Koopmans and Reiersol, 1950) states:
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One might regard problems of identifiability as a necessary part of the specification problem. We would consider such a

classification acceptable, provided the temptation to specify models in such a way as to produce identifiability of relevant

characteristics is resisted. Scientific honesty demands that the specification of a model be based on prior knowledge of the

phenomenon studied and possibly on criteria of simplicity, but not on the desire for identifiability of characteristics in which

the researcher happens to be interested.

To avoid such conflation between modeling and identification, IIA should be model-agnostic and

define non-parametrically how to express E[YT |X = x] in terms of observable or known quantities

alone. The IIA landscape in the literature is conceptualized primarily through the existence and

interrelation between the distribution of complete data FC(Θc) and distribution FO(Θo) of observed

data. IIA for estimators that adjust for dropout by specifying only the model for outcome (within

of implicit or explicit parametric G-computation) don’t always guarantee existence of FC(Θc). In

particular, the choice of models for expected increments that render increments exchangeable be-

tween dropouts and adherers at each scheduled time might not be congenial. In other words, there

may not exist such FC(Θc) within which all these models can be simultaneously true. Note that this

issue is related, but different from the notion of correctness of our modeling choices w.r.t. the truth.

Congeniality becomes an issue if we parametrize the same part of FC(Θc) in at least two ways

that cannot simultaneously be accommodated by any valid FC(Θc). For these reasons in the case

of such estimators (LI, extended SWEEP) it is necessary to a priori define which parameter w.r.t.

FC(Θc) is of interest when formulating IIA. Otherwise, as we will see, the concepts of identifiability

and ignorability remain elusive and their definitions prone to logical loops within which we identify

what we specify and/or specify what we can identify.

As a platform for illustrating these subtleties we will use the relationship between E-SEQ-MAR (de-

fined below, presented as an unnamed IIA in Robins, Rotnitzky, and Zhao, 1995, from now on

RRZ) and discrete time independent censoring (DTIC) (as presented in DFH; Aalen, 2012; Aalen

and Gunnes, 2010). For estimation purposes we will use estimators that complement these two

IIA’s: (non-)linear extended SWEEP estimator (Appendix B of RRZ) and LI. E-SEQ-MAR yields a

minimal requirement for using the G-computation formula (Robins, 1986) to identify and estimate

6



E[YT |X = x]. The relationship between E-SEQ-MAR/(non-)linear SWEEP and DTIC/LI exemplifies

a subtle difference between censoring, from a stochastic process viewpoint, as a characteristic of

a time interval w.r.t. a preceding time interval and the concept of dropout, more characteristic of

longitudinal or panel data, as a patient level event. We will see how these two characterizations of

missingness coincide under positivity assumptions in longitudinal trials with continuous data.

Another useful analogy for framing these conditions is the concept of justifiable reductions on the

sample space as defined in Florens and Mouchart, 1985, where a series of reductions is considered

justified if it does not lose information on the parameters of interest. This perspective on preserving

identifiability of E[YT |X = x] frames our problem as one of dynamic specification.

In what follows, we will illustrate the relationship between (non-)linear SWEEP and LI w.r.t. es-

timation of E[YT | X = x] and/or E[YT , YT−1, . . . , Y1 | X = x] and explain how congeniality of

model choices for increments assumes a role analogous to the one positivity has when it comes

to identification by estimators that relay on estimating equations weighted by inverse probability of

observing.

2.2. Estimators

In this section we will describe two estimators, extended SWEEP and LI estimator, as representa-

tives of two estimation paradigms: discrete time longitudinal (panel) data and continuous, random

time, counting processes paradigm adjusted for discrete time continuous longitudinal data. Defini-

tion of these estimators is independent of any possible coarsening process complete data might be

subjected to so we will introduce dropout as a form of data coarsening later. For now imagine we

are dealing with complete data. (Non-)linear SWEEP and LI can each be presented in two different

ways: as strategies based on imputation of observation-level missing data followed by the analysis

of the full imputed data, and as standalone estimators. It will prove illustrative to present them in

both ways.

7



2.2.1. Linear increments

Theoretical motivation

A very nice historical perspective of application of martingales in survival analysis is given by Aalen

et al. (2009) while a comprehensive and more technical description of the rigorous development

of this technique can be found in the monograph by Fleming and Harrington (1991). A basal

tool in the analysis of counting (and even more general stochastic) processes is to break them

down into separate martingale and drift terms. This is a powerful technique underlying a lot of

martingale methods in survival analysis. It is simply described in the case in which {Yt}t=0,1,... is

a stochastic process adapted to the discrete-time filtered probability space (Ω,F , {Ft}t=0,1,..., P ).

If Y is integrable, then it is possible to decompose it into the sum of a martingale M and another

process A. The process A which starts from zero is such that At is Ft−1-measurable (predictable)

for each t ≥ 1. Due to M being a martingale we have the identity

At −At−1 = E
[
At −At−1|Ft−1

]
= E

[
Yt − Yt−1|Ft−1

]
(2.1)

The first equality follows from the fact that At is Ft−1-measurable, and the second by the martingale

characteristic of the process {Mt}t=0,1,....

So, A is uniquely defined by

At =

t∑
k=1

E
[
Yk − Yk−1|Fk−1

]
(2.2)

and is referred to as the compensator of Y . We remark that this is an abstract existence result

and that generally there is no concrete characterization of the process A. This is known as “Doob-

Meyer decomposition” and transferring it from its application in continuous time counting process

setting to discrete non-random time continuous longitudinal data is the theoretical background for

linear increments (LI) estimator. This transfer can be perceived as taking 2 steps at the same time:

continuous random time→ discrete deterministic time and count outcome→ continuous outcome.

8



We will look at it in detail and try to identify where it could yield some pathological situations w.r.t.

the usual discrete non-random time framework within which evaluation of established IIA’s for longi-

tudinal data and their corresponding estimators is traditionally facilitated. In particular we will track

how to best preserve comparability of the LI method and its assumptions to the already existent

methods in the literature.

Modeling increments

Let ∆Yt = Yt − Yt−1 and ∆Y1 = Y1 by convention. Then a basic building block of LI is a model for

the expected increment

E
[
∆Yt |Yt−1

]
= ωt(Yt−1 ;b∆Yt).

DFH stress that the function ωt, although additive, does not have to be strictly linear (main effects)

in history, given one uses random effects or other more complicated structures. It will be useful to

state what models ωt imply about models for corresponding expected outcomes. We draw atten-

tion to a self evident fact: by moving Yt−1 from ∆Yt = Yt − Yt−1 to the right hand side, we imply

something about the model for E
[
Yt |Yt−1

]
. Thus, by specifying a model for ωt, no matter how un-

restricted it might be in the functional sense, we implicitly impose a constraint on the model for the

expected outcome at t: value of Yt−1 added to whatever is specified by ωt. This correspondence

between models for increments and models for outcomes is a very simple example of congeniality

of model choices. In a simple linear independent effects model for ωt that includes the whole his-

tory except the most recent Yt−1 this constraint translates into specifying E
[
Yt |Yt−1

]
by a linear

independent effects model where the coefficient that corresponds to Yt−1 is held fixed at 1.

The LI estimator of βLIt for time t is defined as the following sum:

9



β̂LIt =

t∑
j=1

ω̂j(Yj−1 ;b∆Yj )

DFH give some general insight in how to interpret this parameter within the joint distribution of WT

or YT

... parameters of our dynamic model have a marginal interpretation in the case where only exogenous covariates are used.

This interpretation is lost when dynamic covariates are used.

Without further assumptions, as pointed out by DFH, βLIt cannot be interpreted as E[Yt |X = x]. As

one option, they suggest adapting classical path analysis introduced by Wright, 1921 to marginal-

ize calculated β̂LIt so that after this process is done we can interpret the resulting statistic as

Ê[Yt | X = x]. Since we are dealing with non-random visit times this suggested “marginaliza-

tion” will be feasible only within a set of congenial outcome models implied by models specified for

increments (for a similar strategy within the domain of counting processes where time is random

see Fosen et al., 2006). As we will see extended SWEEP estimator is an analog of the strategy

from Fosen et al., 2006 for longitudinal data coming from a randomized trial.

The other approach for estimation of E[Yt |X = x] using LI was presented in Gunnes et al., 2009:

let Ŷi1 be the resulting prediction (later, with introduction of dropout, this will be imputation for those

missing) for ith individual calculated as ω̂1(Xi ; b̂Y1
) . Here, depending on the assumed functional

form of ω1 one can use linear or nonlinear least squares as estimation strategy. Define Ŷit as

Ŷit =

t∑
j=1

ω̂j(Ŷ i(j−1) ; b̂∆Yj )

at t = T, . . . , 1. If, for illustration, we assume that all ωj are linear in history then b̂∆Yj is an estimate
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from the linear regression of ∆Ŷj = Ŷj − Ŷj−1 on Ŷ (j−1) where Ŷ (j−1) is the history of predictions

(imputations) until and including time j − 1. Then

Ê(Yt) =
1

n

n∑
i=1

Ŷit

is interpreted in Gunnes et al., 2009 as the consistent estimate of the marginal mean E [Yt |X = x].

This would mean that our interpretability issue involving βLIt from DFH has been solved by the de-

cision to use an imputation implementation of LI. Such a “shortcut” for implementing formal path

analysis via predictions/imputations, as we will see, hides assumptions that become even more

important when dropout is introduced. Namely, correct interpretation hinges upon a specific char-

acteristic of the sequence of models one specifies for ωj ’s in order to make observed and missing

increments exchangeable at each time w.r.t. their mean. With such an approach it is then hard to

decouple specification from identifying assumptions and conflation of identification and specification

becomes unavoidable.

Implied data generating mechanism

After laying out the theoretical background, DFH illustrate what such a strategy implies about the

underlying true data generating process (which we present in its original form from DFH).

Yt =

t∑
j=1

E
[
∆Yj |Yj−1

]
+Mt + εt (2.3)

 measured

response

 =

 predictable

compensator

+


zero mean

martingale

random effect

+

 measurement

error



11



We won’t comment on this structure further except to contrast it to the approach where overdis-

persion in the data is captured by a classical Laird-Ware (Laird and Ware, 1982) random effect

consisting of random intercept and possibly a random slope. In such a setting we assume a joint

Gaussian distribution for latent intercept and slope. Further, none of the outcome models includes

past outcomes or contemporaneous endogenous covariates so it remains reasonable to assume

that the conditional (on X) and marginal distribution of the random effect is the same. This allows

us to specify how an estimate conditional on random effect can be marginalized over the distribu-

tion of the intercept and the slope to calculate its unconditional estimate. Compared to that, only a

martingale assumption on a random effect at each time is too little to clearly define how and over

which distribution to marginalize in the sense previously mentioned. The situation is further com-

plicated by the fact that at each time we include most recent past in some form, which is inevitably

associated with and in a way defines the next martingale random effect.

2.2.2. Extended SWEEP

(Non-)Linear extended SWEEP for E [Yt |X = 1, 0]

Extended SWEEP estimator was introduced in RRZ as a generalization of a computation technique

(Roderick, Little, and Rubin, 1986) for calculating MLE in the case when normally distributed re-

peated measurements are coarsened by MAR dropout. We first introduce its general form. We

specify for each individual i t (non-)linear models ηi t′ t ≡ ηt′ t(Yt′−1 ; θt′ t) for t
′

= t+ 1, . . . , 1 where

we choose the functional form of ηt′ t according to domain experts’ knowledge about the associ-

ation of outcome and dropout. Use η̂i 1t as an estimate of E [Yit |Xi] (remember the convention

W0 = X) where η̂i t′ t is recursively defined as

1) η̂i t+1,t = Yit

2) η̂i t′ ,t is defined only for those individuals with Ri t′−1 = 1 as the predicted value from a

(non)linear least squares regression of η̂i t′+1,t on Yt′ among those subjects j with Rj t′ = 1

according to specified (non-)linear function ηt′ t(· ; θt′ t)

Then, as already stated, by standard least squares theory if all ηt′ t(· ; θt′ t)’s are correctly specified

we can use η̂i 1t as an unbiased asymptotically normal estimator of E [Yit |Xi = x]. Another way to

use the predictions from this series of models is
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Figure 2.1: Different parts of the joint distribution of Y4 parametrized byη’ and ω’s

Ê(Yt) =
1

n

n∑
i=1

η̂i 1t

which is more analogous to imputation oriented use of LI. Notice the “relaxation” of the (observed)

history w.r.t. the time point t at which we are interested to estimate the marginal mean and how in

the case of LI we don’t specify such “lagged”, but only contemporaneous association. See Figure

2.1 or illustration of different ways η’s and ω’s constrain the joint distribution for T=4.

Linear extended SWEEP for E
[
Yt |X = 1, 0

]
and congeniality of η’s

If we try to use the above approach to estimate E
[
YT |X = x

]
, the expectation over the whole

study period, we have to acknowledge the possible issue of lack of congeniality (see Section 2.3.1)

for assumed non-linear models. The above non-linear SWEEP approach amounts to T (T − 1)/2

specified (believed to be true) non-linear models ηt′ t for 1 ≤ t ≤ T and 1 ≤ t
′ ≤ t + 1 (ηt+1,t

and η1,t is degenerate, implied form respectively) . Then for a pair (Yk, Yj) and m < min(k, j), the

assumed functional forms ηmk(·;θmk) and µmj(·;θmj) might not be simultaneously possible within

any joint distribution of YT . These issues were originally warned against in RRZ as well for the
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case where non-linear SWEEP is used to estimate E
[
Yt |X = 1, 0

]
. This also implies that the

interpretation of η̂i 1k and η̂i 1j simultaneously as marginal expectations within some joint distribu-

tion of YiT dominated by a valid probability measure is not possible. We say, following Florens

and Mouchart, 1985, that the collection of sequential reductions on the sample space of observed

data in the form of ηt′k and µt′′ j for t
′

= k + 1, . . . , 1 and t
′′

= j + 1, . . . , 1 is not justifiable w.r.t.

identification of E [Yik, Yij |X = 1, 0].

If we choose ηtt(· ; θtt)’s for t ∈ T, . . . , 1 above to be linear we are able to write an estimate of the

extended SWEEP as a series of matrix multiplications. (We will assume, in what follows, that we are

in a more general setting where Vt 6= ∅. For the imputation based representation of the extended

SWEEP we kept Vt = ∅ for the sake of notational simplicity. It is not hard to do a mental experiment

where η’s specify not only a model for a conditional expectation of a specific Yt but for a vector Wt.

Then η’s become s-dimensional vectors of functions.) Let θ̂t t = (θ̂Yt , θ̂t1, . . . , θ̂t(s−1))
T ) to be the

least squares estimate from the multivariate linear regression of W it on W i(t−1) Dimension of

θ̂t t is s × (p + s(t − 1)). Let further B̂t denote the (p + st) × (p + s(t − 1))-dimensional matrix

(Ip+s(t−1), θ̂
T
t t)

T . The extended SWEEP estimator of E(W iT |X) is equal to

Ê(W iT |X) = X θ̂sw

where θ̂sw = B̂T × B̂T−1× · · ·× B̂2× B̂1 which is a (p+ sT )× p dimensional matrix. Out of (p+ sT )

rows of this matrix p correspond to baseline covariates and have a degenerative distribution (co-

efficients will all be 1), T rows correspond to the outcome of interest YT while (s − 1) × T are

for auxiliary (possibly endogenous) covariates V. Congeniality of T (T − 1)/2 implicitly defined η

models within this linear implementation of the extended SWEEP can still be discussed. Within a

linear class of models, ηtt’s for t ∈ T, . . . , 1 will imply numerical values for the coefficients of all of

the remaining T (T − 1)/2− T = T (T − 3)/2 η models.
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We want to point out that although extended SWEEP does not model probability of dropout it has

a built in mechanism for recovering a marginal treatment effect, or more general, marginal mean

of E(Y iT | X). This is, at the same time its parameter of interest. Through the above defined

series of matrix multiplications it is possible to recover marginal treatment effect when the series of

conditional mean models ηtt(· ; θtt)’s for t ∈ T, . . . , 1 is linear w.r.t. history. This way one compactly

implements a general concept of path analysis (Wright, 1921), precursor of structural equation

modeling. ”Padding“ the coefficient matrix θ̂Tt t with the identity matrix Ip+s(t−1) is done with the pur-

pose of making this matrix multiplication mathematically defined while its statistical characteristics

remain unchanged.

We can of course always use any single markov assumptions we might believe to be true when it

comes to estimating θ̂t t = (θ̂Yt , θ̂t1, . . . , θ̂t(s−1))
T ). We would “code” any markov assumption in B̂j ’s

matrices by setting the part of θ̂t t that a particular markov assumption annuls to zero.

Congeniality remains to be an issue even if we decide to model increments instead of outcomes.

Since LI is inherently incremental technique it is not possible to estimate βLIj without acknowledging

necessity for all of the previous βLIk (k < j). ωt’s specified for LI introduce a set of analogous se-

quential reductions on the sample space as well. Heuristically, for a pair (Yk, Yj) and m < min(k, j),

a single ωm has to be correct w.r.t. to E [Yik |X = x], E [Yij |X = x] and E [Yik, Yij |X = x] if we

want to interpret βLIj (w.l.o.g. k < j) as E [Yij |X = x]. All of these congeniality considerations are

defined w.r.t. FO(Θo).

To end this section we note an important difference between non-linear SWEEP and LI. The above

approach for non-linear SWEEP can be used to identify and estimate a singleE [Yit |X = x] without

any issues related to lack of congeniality of the chosen models. On the other hand, the LI estimating

approach, due to its incremental, inherently conditional paradigm, implicitly specifies t(t − 1)/2

models by deciding on a model for an expected increment at each m < t. In other words, writing Yt

as a sum of increments ∆Y1 + ∆Y2 + · · ·+ ∆Yt hard-wires the estimation of E
[
Yt |X

]
as the only

option, and it is not possible to decouple and concentrate only on one outcome without (implicitly)

specifying models for all those that are measured before it. This way we are making identification
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and specification of the parameter more dependent than it is necessary when using non-linear

SWEEP to estimate E [Yit |X = x] in case of non-ignorable dropout.

To reiterate, in the case in which we choose all ηt′ t’s to be linear and autoregressive in observed

history there is no need to differentiate between E [Yt |X = x] and E
[
Yt |X = x

]
as parameters

of interest. That is, t linear models ηt′ t(· ; θt′ t) for t
′

= t, . . . , 1 implicitly specify all t(t− 1)/2 models

that include those η·j for j ∈ t− 1, . . . , 1.

2.3. Extended SWEEP and LI as strategies for ignorable dropout

2.3.1. Congeniality, specification, identification and ignorability for extended SWEEP and LI

Ignorability and identification can, when left too vague, lead to non-trivial caveats when it comes to

evaluating one estimator w.r.t. the other in presence of missing data. The modeling assumptions

implied by ω’s and/or η’s about different (conditional) moments within the joint distribution of longi-

tudinal data Y T are made independently and dynamically. These modeling assumptions can’t be

ordered and combined in a way that allows us to conclude what set of joint distributions can they be

accommodated by. There is no structured way of doing this, but, what we in some cases can do is

recognize when are these assumptions in the form of dynamic specification not congenial among

each other. In general the more assumptions we make, the easier it gets to recognize that no joint

distribution is able to accommodate them. In other words, we can sometimes have a good enough

idea about if they can simultaneously be true in any valid joint distribution of the complete data

(Y T , RT ) including the dropout indicators. This is captured by the concept of congeniality of these

parametric assumptions. A prominent example (we give it without proof for illustration purposes

only) of a set of uncongenial constraints is : (Y1, Y2) ∼ N((µ1, µ2)T ,Σ) and

P (R2 = 0 | Y1, Y2) = expit{α+ γ1Y1 + γ2Y2}

P (R2 = 0 | Y1) = expit{α
′
+ γ

′

1Y1}
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Assuming that the complete data distribution is bivariate normal and that P (R2 = 0 | Y1, Y2) has

the presented logistic form preserving this form for P (R2 = 0 | Y1) when we “marginalize” P (R2 =

0 | Y1, Y2) w.r.t. P (Y2 | Y1) is not possible.

We are not offering any algorithmic solution for establishing or disproving congeniality (it is not a

trivial task), but merely pointing it out as something that one should be aware of. Precise effect

of congeniality on identification and ignorability becomes relevant when we compare one estima-

tion strategy to another w.r.t. their ability to adjust for same modality of dropout. At that moment

we should either render congeniality irrelevant for both strategies or allow it to have same conse-

quences for both. This, when it is possible, is also necessary because lack of congeniality has a

“confounding” effect on a relationship between specification and identification in the framework of

missing data (or any framework where one needs to make untestable assumptions). Related to that

we give a quote from the work that set firm conceptual groundwork on the problem of identifiability

(Koopmans and Reiersol, 1950):

One might regard problems of identifiability as a necessary part of the specification problem. We would consider such a

classification acceptable, provided the temptation to specify models in such a way as to produce identifiability of relevant

characteristics is resisted. Scientific honesty demands that the specification of a model be based on prior knowledge of the

phenomenon studied and possibly on criteria of simplicity, but not on the desire for identifiability of characteristics in which

the researcher happens to be interested.

This is in alignment with our notion of “confounding” effect of the lack of congeniality on the rela-

tionship between identification and specification. Without considerations what lack of congeniality

means for our estimation strategy w.r.t. specification and identification, ignorability and identification

can become a concept meaningful only within the set of semi-parametric assumptions entailed in

functional forms of η′s and/or ω’s and lose it’s meaning within some/any valid underlying joint distri-

bution of complete data. Specifying what is the target of estimation w.r.t. complete (counterfactual)

data distribution is a good first step in detecting lack of congeniality.
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So for a clear definition of ignorability and identification it is imperative to specify some question

of interest we are trying to answer using our data, before data collection and coarsening occurs.

In particular, one should be able to map this question of interest onto a parameter of the true joint

distribution of Yt. Specification therefore secures the unique domain within which ignorability and

identification preserve unambiguous meaning. In the setting for which the use of LI and extended

SWEEP is suggested, namely longitudinal data coming from a traditional clinical trial, one is mostly

interested in marginal treatment effect on the outcome at each, or often, at the last of the scheduled

measurement times. (Non-)linear extended SWEEP as originally introduced does preserve this as

its parameter of interest, while LI’s parameter of interest is not clearly defined and thus becomes

a result of collection of models ω we choose for each increment. We will always achieve unbiased

estimation of βLIt in this case, only the meaning of this parameter within any possible joint distribu-

tion of YT will depend on congeniality of our modeling choices. In the next section we specify IIA

under which βLIt can be interpreted as a marginal mean.

2.3.2. Identifiability and ignorability assumptions (IIA)

Without imposing any additional regularity conditions (see measurable separability in Florens,

Mouchart, and Rolin, 1993 or condition (T3) in Eichler and Didelez, 2010) , the relationship be-

tween FO(Θo) and FC(Θc) hinges only on a set of constraints on conditional expectations, implied

by ηt′ t 1 ≤ t ≤ T and 1 ≤ t
′ ≤ t + 1 (and/or ωt’s 1 ≤ t ≤ T ). Both E-SEQ-MAR and DTIC are

constraints analogously relating observed (w.r.t. FO(Θo)) and marginal (w.r.t. FC(Θc)) moments.

E-SEQ-MAR for identification of E[YT |X = x] is formulated as

E[Yi, T |Yi, j−1, Ri, j = 1] = E[Yi, T |Yi, j−1, Ri, j−1 = 1], 2 ≤ j ≤ T. (2.4)

Index j relaxes the history so that at each time t the conditional expectationE[Yi, T |Yi, j−1, Ri, j−1 =

1] is equated with its observed component

E[Yi, T |Yi, j−1, Ri, j = 1]. Notice that ηt′T (· ; θt′T ), 1 ≤ t
′ ≤ T + 1 is the functional form of the left

hand side of (2.4). We then use (2.4) as a justification for the imputation algorithm in (2.2.2). DTIC,

18



as pointed out in Aalen and Gunnes, 2010, is, in its original form, an assumption about missingness

of responses and not about censoring of the individual. This is a remnant of its motivation within

theory of counting processes where differentiating between probability measure for a time interval

and a probability measure for an individual cannot result in any ambiguous behavior w.r.t. null

sets. In a longitudinal clinical trial observation times are not random any more and we will see

how this reflects on DTIC when we write it out using notation accommodating discrete non-random

observation time. For DTIC in longitudinal clinical trial we write

E[∆Yt |Yt−1, Rt = 1] = E[∆Yt |Yt−1, Rt = 0, Rt−1 = 1], 2 ≤ t ≤ T (2.5)

We can see that the conditioning (and exchangeability of mean increments) in DTIC is specified only

w.r.t. to the most immediate past, while the “relaxation” of this “gap” as present in (2.4) is not part

of this IIA. Notice that (2.5) consists of the all the “first” constraints that (2.4) includes for different

t ∈ 2, . . . , T . This is naturally not enough to imply (2.4) in general for any t > 2. Thus, transitioning

from random observation time to pre-scheduled one makes a more explicit specification of DTIC

necessary for identification of E(YT |X). Loosely speaking, there are parts of DTIC necessary

for identification of E(YT |X) that were “covered” implicitly in process notation by randomness of

observation times. For now we express those parts, that were before implicit in randomness of

observation time, explicitly and the version of DTIC that implies (2.4) is

E[∆Yi, k |W j , Rj = 1] = E[∆Yi, k |Wj , Rj−1 = 1],

j, k 1 ≤ j ≤ k, 1 < k ≤ t (2.6)

We show (see Appendix B.1) how within a restricted class of linear autoregressive models for

ωt’s equivalence of (2.5) and (2.4) depends on positivity assumption (for positivity see Appendix A

and Laan and Rose, 2011) in the data. Heuristically, positivity ensures that every individual that

contributes to ignorability of dropout w.r.t. two consecutive time intervals, contributes also to the

same extent to making dropout ignorable across individuals. In other words, adding up “ignorability
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preserving contributions” across individuals and across intervals is exchangeable under positivity.

If positivity does not hold for each t ≤ T then a) it is still possible to interpret β̂LIt as a marginal

parameter of the joint distribution as long as the T (T − 1) model implicit in ωt’s are congenial

(with non-linear models it is not clear how congeniality is defined) and b) identification is facilitated

exclusively through model choices we make for η’s and/or ω’s. Notice that a) and b) are opposite

goals, and the art is to achieve balance between them, while still making plausible assumptions

w.r.t. the association between dropout and the outcome of interest. This means that, without

including positivity assumption, unambiguous characterization of the relationship between LI and

non-linear SWEEP estimator w.r.t. identification of E [YiT |Xi = x] is not possible.

2.4. Simulations

2.4.1. Set up

We will define our simulation scenario by accentuating how it differs from the one presented in DFH.

Equation (2.4) depicts coarsely the full data generation process, which follows closely that in DFH.

The precise structure for one individual and one time point is

YMt = µt +Mt + εt

Y St = µt + St + εt

for t ∈ (0, 1, 2, 4, 6, 8). We use µ1 = · · · = µ6 = 0 and

Mt = U1 + · · ·+ Ut

St = U1 + t× U2

where Ui ∼ N(0, σ2
i ). Thus Mt is a zero-mean random walk (martingale) while St is a Laird-Ware

random effects model with intercept and slope. The σ2
i ’s are chosen as in DFH to facilitate compar-
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ison. We show results for the sixth observation time point, which corresponds to the sixth column

of Table 1 in DFH.

LI and extended SWEEP are evaluated for two choices of linear independent effects models w.r.t:

full history and intercept only. Further on, we evaluate a hybrid strategy consisting of predic-

tion/imputation of the whole data set by Ŷij using models ωk(· ;b∆Yk), 2 ≤ j ≤ 6, 1 ≤ k ≤ j

followed by applying linear SWEEP with ηt′6(· ; θt′6) for 1 ≤ t
′ ≤ 6. We do this for each combina-

tion of full history and intercept only model. In addition we show IPW EE estimator from RRZ with

true and incorrectly modeled probability of dropout. We assume intercept to be the only baseline

covariate X (we observe and compare the estimate of the mean outcome Y6 only in one treatment

group) and no auxiliary contemporaneous covariates (outcomes) VT
t are measured.

For each choice of the random effect (martingale or Laird-Ware) we introduce four types of dropout:

1. (SEQ)-MAR / no positivity

2. NMAR / no positivity

3. (SEQ)-MAR / positivity

4. NMAR / positivity

The second dropout model is the same as described in DFH. We generate dropout at time t based

on the logistic model that includes only the latent random effect at t − 1. No observations are

missing at baseline, so Y1 is completely observed. This, in general, results in NMAR dropout.

P (Rt = 0 |Rt−1 = 1,Yt−1,Mt−1) = P (Rt = 0 |Rt−1 = 1,Mt−1)

= expit{αt−1 + γt−1Mt−1} (2.7)
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P (Rt = 0 |Rt−1 = 1,Yt−1,St−1) = P (Rt = 0 |Rt−1 = 1, St−1)

= expit{αt−1 + γt−1St−1} (2.8)

for t ∈ 1, 2, 4, 6, 8. The first dropout model differs only from the second in that the predictor is not the

previous random effect but previous outcome Yt−1, which makes it SEQ-MAR dropout as defined

in RRZ.

For this dropout model we used

(α0, α1, α2, α4, α6) = (−8,−6,−6,−6,−4)

(γ0, γ1, γ2, γ6, γ8) = (0.2, 0.3, 0.3, 0.5, 0.6)

To evaluate estimators under the assumption of positivity we introduce two additional modes of

dropout. These are positivity preserving versions of (2.7) and (2.8) and their positivity preserving

MAR counterparts. At each time point probability of dropping out is truncated at 0.3 so that the

minimum probability of being observed at t = 6 is approximately 0.75 = 0.17.

P (Rt = 0 |Rt−1 = 1,Yt−1,Mt−1) = 0.3×
[
expit{α(p, t−1) + γt−1Mt−1}

]

P (Rt = 0 |Rt−1 = 1,Yt−1,St−1) = 0.3×
[
expit{α(p, t−1) + γt−1St−1}

]
.

The α(p, t−1) are chosen such that the proportions of the missing observations at each time t =

2, 3, 4, 5, 6 are equal to the proportions in the original set-up (2.7). These are (≈ 1%, ≈ 11%, ≈

16%, ≈ 30%, ≈ 50%) for t = 2, 3, 4, 5, 6.

We generate full data with sample size n = 500 and results correspond to Monte Carlo (MC) means

and standard deviations of 1000 iterations.
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2.4.2. Results

The first four columns of Table 2.1 show results for all models when the positivity assumption is

upheld. π denotes an average of the minimum over 1000 iterations of
(
Π6
j=2P (Ri, j = 1 | Ri, j−1 =

1,Yi, j−1)
)

. E-SEQ-MAR and DTIC in this case have the same contribution w.r.t. identification

of the marginal mean of Y6. We can see that given a correct collection of models ηt′6(· ; θt′6) for

1 ≤ t
′ ≤ 6 extended SWEEP estimator will be unbiased for E[YMi, 6 |X] and E[Y Si, 6 |X]. For SEQ-

MAR dropout, the correct choice of ηt′6’s are linear independent effects in complete history. The

same choice of ωt’s for t = 1, . . . , 6 will yield unbiased estimates for both types of random effect

structure. When dropout is NMAR the correct ηt′6’s might no longer be linear in observed history

for data generated using Laird-Ware latent effect so using such models will not yield an unbiased

estimate of E[Y Si, 6 | X]. Correct choice of ηt′6’s in the case of martingale random effect is a con-

strained version of a linear model where the coefficient next to the most recent outcome is held

fixed at 1 while others are fixed at 0 with the intercept remaining to estimate from the data. For

such a choice we can estimate E[YMi, 6 |X] unbiasedly. We show the equivalent LI estimator (row 5)

that will be unbiased for E[YMi, 6 |X] if ωt’s for t = 1, . . . , 6 are all chosen to be intercept only mod-

els. This correct specification comes only due to our exogenous knowledge of a correct functional

form (of outcomes and/or increments) that will make dropout ignorable. So in this case we have an

MNAR but still ignorable dropout. In these columns the IPW EE estimator that uses true probability

of dropout in the weights (row 9) is biaswise comparable to correct choice of ωt’s. In the case of LI

though, we need to keep in mind that congeniality of ηt′ t’s (1 ≤ t ≤ 6 and 1 ≤ t
′ ≤ t) implied by

these “intercept only” choices for ωt’s still remains an issue to consider.

In columns 5 to 8 we have a near loss of positivity and congeniality of ηt′ t’s (1 ≤ t ≤ 6 and 1 ≤ t′ ≤ t)

becomes the only criteria under which we can claim identification, and, for correct choice of models,

an unbiased estimation of the unconditional mean. FC(Θc) without positivity condition cannot be

unambiguously defined only from FO(Θo) and its mere theoretical existence is in question. Identi-

fication here becomes even on a semantical level an artifact of modeling choices for ηt′ t’s or ωt’s

(1 ≤ t ≤ 6). Under such conditions we risk to conflate identification and specification to the unpre-

dictable extent. Again, we have correct linear choices for ηt′6’s and ωt’s if dropout is SEQ-MAR. In

contrast to the set up with positivity, the IPW estimator exhibits very large standard errors which is
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Table 2.1: MC mean and standard deviation for 1000 iterations for sample size 500
SEQ-MAR NMAR SEQ MAR NMAR

π ≈ 0.18 π ≈ 0.18 π ≈ 0.18 π ≈ 0.18 π ≈ 0.07 π ≈ 0.07 π ≈ 0.07 π ≈ 0.07

Est. YM YS YM YS YM YS YM YS

1 LI-fh Mean -0.06 0.00 -1.52 -2.87 0.04 -0.02 -6.09 -8.30
SD 1.98 1.022 1.99 1.84 2.97 2.30 2.01 1.54

2 SWLI-fh,fh Mean -0.02 0.06 -0.38 -0.56 0.06 -0.05 -3.59 -3.33
SD 1.68 1.28 1.63 1.28 2.60 1.65 2.99 1.34

3 SWLI-c,fh Mean -0.00 0.05 -0.20 -0.82 0.06 -0.03 -2.70 -3.44
SD 1.72 1.31 1.64 1.29 2.66 1.66 1.97 1.29

4 SW-fh Mean -0.02 0.06 -0.38 -0.56 0.06 -0.05 -3.59 -3.33
SD 1.69 1.28 1.63 1.28 2.60 1.66 1.99 1.34

5 LI-c Mean 2.40 -1.30 0.03 -4.10 6.17 -2.08 0.01 -7.73
SD 1.90 1.80 1.90 1.79 2.20 1.80 1.80 1.46

6 SWLI-fh,c Mean 0.60 -1.53 0.05 -2.00 1.95 -2.84 -0.01 -4.38
SD 1.58 1.22 1.54 1.19 1.68 1.17 1.50 1.11

7 SWLI-c,c Mean 0.40 -1.46 0.05 -2.10 1.70 -2.69 -0.02 -4.21
SD 1.62 1.27 1.56 1.21 1.69 1.20 1.55 1.14

8 SW-c Mean -8.55 -12.22 -9.00 -12.95 -20.00 -24.10 -19.42 -22.29
SD 2.38 2.46 2.40 2.40 2.08 1.81 1.80 1.65

9 IPW Mean -0.08 -0.08 -0.06 -0.09 -14.50 -17.64 -14.22 -16.35
SD 2.30 2.48 2.33 2.53 6.85 5.83 5.16 5.78

10 IPW-Y Mean 6.95 12.32 1.00 2.22 -14.87 -18.1 -12.78 -15.24
SD 9.15 13.96 4.51 5.60 5.63 5.00 3.13 2.03

Note : Est = estimator; fh-full history; c = only intercept;
SW = ext. SWEEP; SWLI-fh,c = impute missing using only intercept
model for LI then use SWEEP with fh;
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a known drawback of this estimator. What is somewhat surprising is that even when we use true

probabilities for SEQ-MAR dropout, IPW EE still highly underestimates the marginal mean. With

the sample size of 500 that would in practice correspond to a large clinical trial observing such high

finite sample bias should be an aspect of IPW EE to consider. When comparing IPW EE to other

estimators a special attention should be given not only to inflated standard errors, but also a finite

sample bias coming from near loss of the positivity in the simulated sample. On the other side, we

can see that with the correct value for weights and a positivity preserving sample (column 3) IPW

EE can serve as an alternative to the LI “intercept only” series of models. In column 7 this “intercept

only” choice for ωt’s result in unbiased estimation of βLI6 . Interpreting this parameter as E[YMi, 6 |X]

in this case hinges on congeniality of the models chosen, since identification becomes inseparable

from specification. Figure 2.2 shows the relationship between specification and identification in the

light of (observed) positivity, congeniality and IIA for LI and extended SWEEP.

ω’s nonlinear

η’s nonlinear

ω’s linear, autoregressive

(≡
η’s linear)

ω’s congenialE-SEQ-MAR

(o
bs

er
ve

d)
po

sit
ivi
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IDENTIFICATIONSPECIFICATION

Figure 2.2: Identification by specification of the outcome model ((observed) positivity, congeniality
and IIA for LI and extended SWEEP
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2.5. Discussion

LI was proposed as a method for accurate description of time evolution of longitudinal data when

faced with dropout. For this purpose it is a very easily implemented and powerful technique. DTIC

as presented in DFH and expressed as (2.5) in notation characteristic for non-random observation

times is enough to achieve this goal. We showed that under E-SEQ-MAR, LI can be used for

a more ambitious task of identifying the unconditional mean or the unconditional treatment effect

in longitudinal clinical trial with dropout. Difference between these two applications of LI are on

some level analogous to difference between Pearls’s intervention based causality (Pearl, 2009)

and Granger’s causality (Granger, 1969). Our goal is comparable to the one authors in Eichler and

Didelez, 2010 had. There, conditions on a multivariate time series are specified that are needed

in addition to Granger’s non-causality (Granger, 1969, Florens and Mouchart, 1982), to identify

average causal effect (ACE) of interventions from observed data. The similarities go only to certain

extent since fitting dropout as any single type of intervention defined in Eichler and Didelez, 2010

is not possible. This is due to a special characteristic that only dropout process exhibits, issue that

has been implicitly acknowledged in Dawid and Didelez, 2010

But now we also have the collection U of unobservable domain variables (for simplicity we suppose throughout that which

variables are observed or unobserved is the same under all regimes considered).

That is to say that latent variables remain latent from the beginning till the end of the study. This

is impossible to assume for our setting because negative version of the statement above is the

definition of dropout. Y or V can become latent at some point, if a person drops out.

Without the help of measure theoretic set up we discuss the intricate relationship between positiv-

ity, congeniality and identification. LI, due to its incremental nature, implicitly specifies more of the

FC(Θc) than it is necessary for extended SWEEP to identify the unconditional mean at t. Thus,

congeniality in general becomes a larger issue for LI than for extended SWEEP. In the case where

we can rely on (observed) positivity in our data this is a lesser issue, but it becomes important

when positivity ceases to be a guarantee of existence of some/any FC(Θc). Then congeniality of

T (T − 1)/2 models implied by ωt’s remains the only footing on which the existence of some/any

FC(Θc) hinges. Usually, in situations when identification is not an issue, congeniality can be classi-
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fied as only one of the ways to parametrically missspecify true FC(Θc), but when we try to facilitate

identification by specifying only models for expected outcome (or its expected increments) conge-

niality becomes the criteria that determines if there is anything at all, unambiguous enough, left to

identify. For these reasons, we argue that the comparison of the actual ability of the estimators

to adjust for dropout in simulations should be judged using simulated data that preserves all the

characteristics that both (or more) estimators need to preserve mutually equivalent interpretation

of their estimands within any/some existent FC(Θc). In the case of IPW EE this characteristic is

(observed) positivity, since without it IPW EE is unusable. For extended SWEEP and LI congeniality

of (implied) models specified has a similar role, but somewhat different consequences w.r.t. these

estimators. While absence of some level of observed positivity makes IPW EE unusable, absence

of congeniality of models makes numerically unbiased estimates possible at the cost of interpreta-

tion of the parameter estimated. In other words, we could have a sequence of ignorably missing

increments with their mean unbiasedly estimated at each time 1 to t from observed data, but still in

principle have unidentified unconditional mean at t (this notion is somewhat related to the concept

of difference between initial and sequential Bayesian cut in Florens and Mouchart, 1985). This can

happen if ωt’s, that made sure increments in adherers remain representable w.r.t. mean, imply t(t-1)

η−models that can’t be accommodated simultaneously by any single FC(Θc).

Issues of congeniality are hardly a problem in complete parametric approaches since we rely on the

complete likelihood. With that in mind, we suggest classifying missingness in longitudinal trials via

level of observed positivity in the data in addition to classical dropout modes MCAR, MAR, NMAR

if the estimators used rely only on semiparametric constraints as LI does.

Sensitivity analysis for LI is now possible to conceptualize. In fact the incremental machinery in this

case could serve as a possible (conditional) solution to a problem often encountered in strategies

for global sensitivity analysis. In a longitudinal trial this manifests in asking a subject-matter expert

to speculate how the outcome at the end of the study affects the dropout at early stages of the

study. Such a task goes against the ingrained human perception of causality as it relates to tem-

poral order, where cause precedes effect. It is much easier to conceptualize how the simultaneous

outcome or the one just preceding the event of dropout is causing dropout to occur. This retrospec-
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tive aspect of eliciting the experts’ opinion is an acknowledged issue in the work dealing with global

sensitivity analysis for dropout (Scharfstein, Rotnitzky, and Robins, 1999, Scharfstein et al., 2014).

Eliciting only contemporaneous information about the association of the outcome process and

dropout process and using linear increments to add this shift between dropouts and adherers over

the whole course of study could be a strategy to deal with the above issue. Of course this kind

of strategy hides assumptions and we would have to make sure that these don’t take the sensitiv-

ity analysis too far from its goal of robustness in the sense of a non-parametrically defined model

(Scharfstein, Rotnitzky, and Robins, 1999).

28



CHAPTER 3

SENSITIVITY ANALYSIS FOR LINEAR INCREMENTS (LISA)

In this chapter we define a structured way of departure from E-SEQ-MAR for LI. This way we

can evaluate how robust estimates from LI are to dropout behavior that departures from the one

captured by E-SEQ-MAR (see Figure 2.2).

3.1. Introduction

In recent years (see National Research Council report “The Prevention and Treatment of Missing

Data in Clinical Trials”) continued efforts have been made to promote sensitivity analysis w.r.t. to

missing data in clinical trials from its anecdotal and optional character to an indispensable part of

the primary data analysis and a mandatory component of its reporting. For this reason we will

refrain from further accentuating its contribution to acquiring a complete picture of the estimated

effect in a clinical trial. A theoretical gold standard for sensitivity analysis would fall into the cate-

gory of global sensitivity analysis (for a concise exposition on local and global characterization see

Scharfstein et al., 2014; for a more detailed one see Daniels and Hogan, 2008, DH from now on,

and/or Scharfstein, Rotnitzky, and Robins, 1999) and it can be conceptualized, with considerable

simplification, by three components: sensitivity parameter(s) α, distribution FO of observed data,

and a functional relationship ξ between FO and α that uniquely determines the distribution of the

complete data FC . This characterization roughly aligns ξ with the definition of non-parametrically

identified model from Scharfstein, Rotnitzky, and Robins, 1999. Such a completely non-parametric

gold standard is almost never achievable in a non-trivial applied setting for few different reasons.

In longitudinal clinical trial with a continuous outcome (which will be our focus) and/or at least one

continuous, contemporaneously measured covariate, these reasons can be classified under the

category of a) feasible non-parametric estimation (see “curse of dimensionality” Robins and Ritov,

1997); b) preserving interpretability of a low-dimensional α through the whole sequence of planned

repeated measurements (it can be very difficult to interpret and cogently present the influence of a

three- or higher-dimensional α on one’s findings); and c) eliciting confident information about that

particular α from domain experts (since α is not identified from the observed data we need to con-

sult subject matter experts in order to decide on plausible values for α). Nevertheless, this gold
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standard is still useful as a reference and a starting point from which we can then move in a con-

trolled manner, by sequentially imposing restrictions on ξ and/or FO. Obstacles coming from these

three categories are in no way non-overlapping and imposing restrictions in one usually changes

the domain within which the other two interact. When it comes to estimating a treatment effect in

longitudinal clinical trials, goals under b) and c) are particularly exclusive of each other. In con-

trast to the setting with repeated measurements, the goal of balancing all three of these aspects

of the sensitivity analysis is much more achievable when we are interested in an effect of a one-

time intervention instead of a vector sequence of treatments whose compound effect over time is

of interest (see Diaz and Laan, 2013) for sensitivity analysis for a single time point in causal setting).

Scharfstein et al., 2014 gives a very nice exposition of the trade-off between these three goals in

prominent methods for sensitivity analysis for dropout in longitudinal clinical trials. We will use this

work to position our proposed method within the established literature. Roughly, it can be viewed

as an extension of the pattern mixture approach of DH to longer sequences of repeated mea-

surements while keeping the number of sensitivity parameters manageable, but still interpretable.

Since we are defining sensitivity analysis for estimators that don’t specify a model for probability of

dropout, we, like Daniels and Hogan, use observed dropout proportions throughout. Due to conclu-

sions from Robins and Ritov, 1997 the interpretation is confined within a certain set of parametric

assumptions about conditional means given the past for observed data. In this regard it is different

from Scharfstein et al., 2014. Similarity to this work comes from a mutual goal to allow experts

to offer more confident information about the contemporaneous association between dropout and

the outcome process. This endeavor is also made easier by the fact that our sensitivity parameter

is defined on the scale of the outcome of interest and not, as in Scharfstein et al., 2014, on the

log-odds ratio scale. We will not elaborate on the difficulty related to thinking about time shifted

association, beyond quoting one of the authors from Scharfstein et al., 2014:

... we have found that subject matter experts who have been exposed to the RRS technology have difficulty quantifying

how the distal outcome scheduled to be measured at the end of the study affects the risk of dropping out at intermediate

time points. Rather, we found that these experts were more comfortable thinking about how the outcome scheduled to be

measured at assessment k+1 affects the risk of dropping out between assessments k and k + 1.
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Resolving this issue is equivalent to simultaneously achieving goals b) and c) and this often hap-

pens inevitably at some expense of goals in category a).

The baseline setting to which our sensitivity framework collapses when the sensitivity parameter

is set to zero is E-SEQ-MAR. This is the assumption we introduced in the preceding chapter un-

der which the extended SWEEP estimator and linear increments (LI) estimator deliver consistent

and unbiased estimates of the sequence of unconditional (marginal) means E
[
Yt |X = 1, 0

]
:=

(µt, . . . , µ1) These two estimation strategies offer same identificational assistance within the class

of linear autoregressive mean models. This class is also the one within which a cogent sensitivity

analysis w.r.t. non-ignorable dropout for these estimators is possible without modeling the proba-

bility of dropout. Further, outside of this class of models it is not immediately clear how to specify

any lower dimensional α as a meaningful sensitivity parameter.

3.2. Methodology

3.2.1. Identification and sensitivity functions

We assume in this chapter that V = ∅ and X ∈ 0, 1. All of the following assumptions and mathe-

matical manipulations are assumed to be done separately in each treatment group X ∈ {0, 1}, thus

conditioning event X = x is implicitly omnipresent and propagated through each conditioning step.

Let E(Y3) := η13 ≡ η13(Y0 ; θ0,3) and T = 3. Assume further that η23 ≡ η23(Y1 ; θ1,3) := E(Y3 |R1 =

1,Y1) and η33 ≡ η33(Y2 ; θ2,3) := E(Y3 | R2 = 1,Y2). The treatment effect is then identified and

estimated as E(Y3 |X = 1)− E(Y3 |X = 0). Using only iterative expectation we have

E(Y3) = E(E[Y3 | Y1])

= E
(
E[Y3 |R2 = 1, R1 = 1, Y1] P (R2 = 1 |R1 = 1, Y1) +

E[Y3 |R2 = 0, R1 = 1, Y1]P (R2 = 0 |R1 = 1, Y1)
)

(3.1)

In the above expression E[Y3 | R2 = 0, R1 = 1, Y1] is not identified from observed data. P (R2 =
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0 | R1 = 1, Y1) can be estimated given the correct model, while E[Y3 | R2 = 1, R1 = 1, Y1] can still

be segmented recursively through iterative expectation to see which parts of it are identifiable. For

now we assume that

E[Y3 |R2 = 0, R1 = 1, Y1] = E[Y3 |R2 = 1, R1 = 1, Y1] + ϕ31(γ;Y1) (3.2)

This makes

η23(Y1; θ23) = E[Y3 |R2 = 1, R1 = 1, Y1] + ϕ31(γ;Y1)P (R2 = 0|R1 = 1, Y1) (3.3)

We can write E(Y3 | R2 = 1, R1 = 1, Y1) using iterative expectation in an analogous manner as we

did with E(Y3):

E(Y3 |R2 = 1, R1 = 1, Y1) = E
(

E[Y3 |R2 = 1, R1 = 1, Y2, Y1]
∣∣∣R2 = 1, R1 = 1, Y1

)

= E
(
E[Y3 |R3 = 1, R2 = 1, R1 = 1, Y2, Y1]×

P (R3 = 1 |R2 = 1, R1 = 1, Y2, Y1) +

E[Y3 |R3 = 0, R2 = 1, R1 = 1, Y2, Y1]×

P (R3 = 0 |R2 = 1, R1 = 1, Y2, Y1)
∣∣∣R2 = 1, R1 = 1, Y1

)
(3.4)

Again we have parts identifiable given correct models: E[Y3 | R3 = 1, Y2, Y1] and P (R3 = 0 | R2 =

1, Y2, Y1) and the non-identifiable part E[Y3 |R3 = 0, R2 = 1, Y2, Y1]. Thus, we specify analogously
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E[Y3 |R3 = 0, R2 = 1, Y2, Y1] = E[Y3 |R3 = 1, Y2, Y1] + ϕ32(γ;Y2, Y1) (3.5)

Similarly, this makes

η33(Y2 ; θ33) = E[Y3 |R3 = 1, Y2, Y1] + ϕ32(γ;Y2, Y1)P (R3 = 0|R2 = 1, Y2, Y1) (3.6)

Substituting (3.5) into (3.4) and (3.4) into (3.1) we get

E(Y3) = E(E[Y3 | Y1])

= E
{
E
(
E[Y3 |R3 = 1, Y2, Y1] × P (R3 = 1 |R2 = 1, Y2, Y1) +

[E[Y3 |R3 = 1, Y2, Y1] + ϕ32(γ;Y2, Y1)] × P (R3 = 0 |R2 = 1, Y2, Y1)∣∣∣R2 = 1, R1 = 1, Y1

)
× P (R2 = 1 |R1 = 1, Y1) +

(
E[Y3 |R2 = 1, R1 = 1, Y1] + ϕ31(γ;Y1)

)
× P (R2 = 0 |R1 = 1, Y1)

}

(3.7)

Now substitute (3.2) into (3.7)
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E(Y3) = E(E[Y3 | Y1])

= E
{
E
(
E[Y3 |R3 = 1, Y2, Y1] × P (R3 = 1 |R2 = 1, Y2, Y1) +[
E[Y3 |R3 = 1, Y2, Y1] + ϕ32(γ;Y2, Y1)

]
× P (R3 = 0 |R2 = 1, Y2, Y1)∣∣∣R2 = 1, R1 = 1, Y1

)
× P (R2 = 1 |R1 = 1, Y1) +

(
E
(
E[Y3 |R3 = 1, Y2, Y1] × P (R3 = 1 |R2 = 1, Y2, Y1) +[
E[Y3 |R3 = 1, Y2, Y1] + ϕ32(γ;Y2, Y1)

]
× P (R3 = 0 |R2 = 1, Y2, Y1)∣∣∣R2 = 1, R1 = 1, Y1

)
+ ϕ31(γ;Y1)

)
× P (R2 = 0 |R1 = 1, Y1)

}

Simplifying the above expression gives

E(Y3) = E
{
E
(
E[Y3 |R3 = 1, Y2, Y1]

∣∣∣R2 = 1, R1 = 1, Y1

)}
+

E
{
E
(
ϕ32(γ;Y2, Y1) × P (R3 = 0 |R2 = 1, R1 = 1, Y2, Y1)

∣∣∣R2 = 1, R1 = 1, Y1

)}
+

E
{
ϕ31(γ;Y1) P (R2 = 0 |R1 = 1, Y1)

}
(3.8)

In order to implement any sensitivity analysis for the treatment effect at T = 3 we need to specify

functions ϕ32(γ;Y2, Y1) and ϕ31(γ;Y1) not identifiable from observed data. ϕ32(γ;Y2, Y1) can be

recovered by surveying an expert about how the expected outcome Y3 differs between those absent

and those present at the third time point given identical histories up to and including time 2. This

type of question focuses on the contemporaneous relationship of the dropout process Rt and the

outcome process Yt, and is natural to think about because outcome Y3 and dropout indicator R3

relate to the same time point in the study. A more complicated endeavor is to inform a plausible form
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and/or value of ϕ31(γ;Y1). This sensitivity function relates in a time-shifted manner the outcome

process Yt and the dropout process Rt. Namely, an expert needs to think back in time about the

influence of the third outcome on dropping out at the second time point as reflected by the shift in

the conditional mean of Y3 between those who drop out at time 2 and those who don’t. Conversely,

one can frame this as a question about how dropout at the second time point is governed by the

yet-to-be-measured distant outcome at the end of the study. This is not a very intuitive way to think

about association and it has in general proven to be hard for experts to conceive an intuitive and

plausible choice for ϕkj(γ;Y j) for k − 1 � j in case of such a lagged relationship. We suggest a

way to incorporate and set ϕ31(γ;Y1) implicitly by specifying analogously defined shifts δ21(α;Y1)

and δ32(α;Y2, Y1) on the scale of increments ∆Y2 = Y2 − Y1 and ∆Y3 = Y3 − Y2.

ϕ31(γ;Y1) = E(Y3 |R2 = 0, Y1)− E(Y3 |R2 = 1, Y1)

= E
(

∆Y3 + Y2|R2 = 0, R1 = 1, Y 1

)
− E

(
∆Y3 + Y2|R2 = 1, R1 = 1, Y 1

)
= E

(
∆Y3|R2 = 0, R1 = 1, Y 1

)
− E

(
∆Y3|R2 = 1, R1 = 1, Y 1

)
+

E
(
Y2|R2 = 0, R1 = 1, Y 1

)
− E

(
Y2|R2 = 1, R1 = 1, Y 1

)

= δ31(α;Y1) + δ21(α;Y1)

This does not solve the problem of specifying a shifted association, since a choice for δ31(α;Y1)

might be even harder to conceive than ϕ31(γ;Y1). We do nevertheless make a step towards speci-

fying ϕ31(γ;Y1). The incremental paradigm allows us, formally for now, to chronologically partition

the shift ϕ31(γ;Y1) into a part contemporaneous with the specific dropout time 2 and any residual,

lagged influence of the dropout at time 2 on the outcome at time 3. We can now be more confident

at least about the part of ϕ31(γ;Y1), since experts usually have a good idea about δ21(α;Y1). For

linear, autoregressive models η33 and η22 it trivially holds that δ32(α;Y2, Y1) = ϕ32(γ;Y2, Y1) and

δ21(α;Y1) = ϕ21(γ;Y1). The form and value of ϕ31(γ;Y1) for this class of models is then implicitly

“completed” by our imputation algorithm (see beneath) based on a conditional normal distribution.
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This implicit choice for δ31(α;Y1) is congenial with the assumption of future independence (see

Section 3.2.2). Notice that, as soon as we move from ϕ’s to sums of δ’s and to models for incre-

ments implied by both η33 and η22, we should move from identification of a single E(Y3 |X = x) to

that of a two-dimensional vector E(Y3, Y2 |X = x). It is theoretically possible to conceive a situation

in which both η33 and η22 are correct but δ21(α;Y1) and δ31(α;Y1) are both incorrectly specified in a

way that their biases cancel out in their sum which makes ϕ31(γ;Y1) correct. With correctly chosen

ϕ32(γ;Y2, Y1) (and a model for probability of dropout) we can still identify E(Y3 |X = x) although

the estimate of E(Y2 |X = x) based on LI would be biased. Within an incremental paradigm, such

as LI, such situations are pathological and we will exclude such synergistic bias (or lack thereof)

that can in general happen when we decide to estimate an unconditional expected outcome as a

sum of unconditional expected increments previously marginalized in accordance with a valid joint

distribution of the full data FC . Thus, instead of coding ignorable dropout for T=3 in terms of values

for ϕ31 and ϕ32, we do it using δ32(α;Y2, Y1) = δ31(α;Y1) = δ21(α;Y1) = 0. Then, (3.3) is equivalent

to first two rows of (3.9) while the third characterizes ignorable dropout w.r.t. E(Y2 |X = x):

E[Y3 |R3 = 1, R2 = 1, R1 = 1, Y2, Y1] = E[Y3 |R2 = 1, R1 = 1, Y2, Y1]

E[Y3 |R2 = 1, R1 = 1, Y1] = E[Y3 |R1 = 1, Y1]

E[Y2 |R2 = 1, R1 = 1, Y1] = E[Y2 |R1 = 1, Y1] (3.9)

3.2.2. Model for observed increments and non-ignorable imputation algorithm

Anchor the sensitivity analysis at δ21(α;Y1)

Specifying the sensitivity function δ21(α;Y1) can be formulated as the following question: Given the

same value at time 1, what is the shift w.r.t. the next expected incremental change introduced by

the act of dropping out? (inform δ21). Further we could ask an expert if she thinks this shift changes

with time. A plausible belief would be that the longer subjects with the same history remain on

study, the “closer” will they be with respect to the characteristics determining time of dropout. In our
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conditional pattern mixture approach, this will be reflected by a smaller shift in the next expected

increment within a drop out-adherer pair. This sort of behavior can be captured by introducing an

attenuation parameter ρ ∈ [l, 1]

δt,t−1 = ρt−2 × δ21

(3.10)

The effect of the dropout at a later study phase, as reflected by the shift in the conditional mean

increment between adherers and dropouts, is smaller than at the beginning (0.8 ≤ l ≤ 1). It will

be hard for a domain expert to be able to specify δ21(α;Y1) as a function of Y1. Thus the loss of

generality reflected by assuming δ21(α;Y1) is a constant α in the light of experts simplified input

should not be regarded as dramatic in practical sense.

Non-ignorable imputation algorithm

Our sensitivity analysis is based on imputation of the missing increments. For the expected ob-

served increment ∆Yt at each time t ∈ {2, . . . T} we fit a linear autoregressive model. For t = 1

∆Y1 = Y1 per definition and the model for the expectation includes only the intercept.

E[∆Yt |Rt = 1, Y t−1] = b0∆Yt + bt−1
∆Yt

Yt−1 + · · ·+ b1∆YtY1 (3.11)

Notice that the coefficients bj∆Yt j ∈ {0, 1, . . . , j−1} are all equal to coefficients collectively denoted

as θt−1,t in ηtt except for the coefficient in ηtt corresponding to bt−1
∆Yt

. Corresponding θ is then equal

to bt−1
∆Yt

+ 1. Estimates of the coefficients from these models are used to impute the value of the

missing increment at time t for individual i according to the following recursive imputation algorithm:

1. For t = 1 set Ê(∆Yi1|Ri1 = 1) = Yi1

For t = 2, . . .T
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2. Fit E(∆Yt|Rt = 1, Y t−1) on observed data

3. calculate Ê(∆Yi,t|Rt = 0, Y t−1) + ρt−2 × α

4. sample εit ∼ N(0, σ̂t) where σ̂t is the estimate of the residual standard error from

E(∆Yt|Rt = 1, Y t−1) = b0∆Yt + bt−1
∆Yt

Yt−1 + · · ·+ b1∆YtY1

5. use ˆ∆Yit = Ê(∆Yi,t|Rt = 0, Yt−1, I
t−1
kt−1

) + ρt−2 × α+ εit as the imputed increment

Notice that this is a recursive procedure since for a person i dropping out at t, ∆Y miss
it is the only

data point that will be imputed exclusively from his/her observed data. All subsequent ones will use

their data imputed at the previous step by the algorithm. ρt−2 × α is a specific shift in the intercept

of the model in (3.11). For patients that drop out at t = 2 this recursive procedure introduces an

implied shift for E(Y3 | R2 = 0, Y2, Y1) − E(Y3 | R3 = 1, R2 = 1, Y2, Y1) = ρα also. One way of

interpreting this implied shift is that, after imputing the data on missing Y2, we are done correcting

the outcome Y3 w.r.t. dropping out at time 2, since at the next step, we will use that imputed Y2 to

impute ˆ∆Yi3. What’s left is to specify how the act of dropping out at 3 is reflected in the shift δ32. This

implies that δ31 is 0. This can be interpreted as shifting or accumulating the whole ϕ31 = δ31 + δ21

in δ21, a parameter our domain experts can realistically have accurate input on. In general δ31 of

course does not have to be 0 and it might not be realistic to expect that the probabilistic structure of

FC is simple enough to capture the whole effective shift ϕ31 in outcome through only δ21. There is

though an assumption, which we call future independence given present, about the joint distribution

of the complete data FC that does allow, in principle, such aggregation without introducing bias. A

version of future independence (under the name future ignorability) in causal setting is introduced

by Joffe, Yang, and Feldman, 2010, while its version for longitudinal clinical trial data with dropout

implies assumption 1 in Scharfstein et al., 2014. We will state it for general number of observations

T as

Yt⊥Rj |Yj , for 1 ≤ j < t, 3 ≤ t ≤ T (3.12)

For T = 3 this means that f(Y3|R2 = 0, Y2, Y1) = f(Y3|R2 = 1, Y2, Y1).
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This assumption allows us, even with parameter aggregation implied by non-ignorable imputation

algorithm, to interpret
∑n
i=1

∑3
j=1 ∆̂Y ij as E(Y3). We show a sketch of a proof in the Appendix B.2.

3.3. Behavioral economic interventions to reduce CVD risk

3.3.1. Observed data

A modified dataset coming from a multi-center cluster-randomized controlled trial comparing three

alternative economic interventions for reducing LDL cholesterol among patients with high cardio-

vascular risk will be used to exemplify the use of our method. Participating primary care physicians

(PCPs) from the University of Pennsylvania, Geisinger Health System, and Harvard Vanguard Med-

ical Associates were randomly assigned to one of four study arms: control (C), physician incentives

(PHYS), patient incentives (PAT), and shared physician-patient incentives (shared). The outcome

of interest was low-density lipoprotein (LDL). Eligible and participating patients of these PCPs were

allocated to the arm to which their PCP had been randomized. Longitudinal data on LDL was col-

lected every 3 months over 15 months (t = 1, . . . , 6). We restrict our sensitivity analysis to the

effect of the shared intervention (n=347) compared to control (n=365). We will further modify any

intermittent missingness into drop-out by leaving out any outcome recorded after the first occasion

a subject has missed. Sensitivity analysis is presented for the mean change in LDL at month 15.

There was a modest to considerable portion of missing observations in the observed data with

around 20% of observations missing at 15 (t=6) months (see Table 3.1).

Shared-incentive arm (n=347) Control arm (n=365)
t=2 5.7 % 3.8 %
t=3 11.5 % 10.1 %
t=4 14.4 % 13.4 %
t=5 17.0 % 17.5 %
t=6 19 % 21 %

Table 3.1: Marginal dropout proportions

We do not distinguish among reasons for dropout. Figure 3.1 shows mean LDL values per dropout

pattern. Each profile line corresponds to the single dropout pattern so the groups used for the

calculation of the mean are disjoint. We can see a differential tendency for dropout, (assuming

explainable dropout) in two treatment groups. It seems that subjects in the shared group usually
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Figure 3.1: Mean LDL values per dropout pattern

experience a decrease of the mean LDL before they decide not to appear at the next visit. This

pattern is exactly opposite in the control group. There, subjects who are not observed at the next

time point have a noticeable increase in their mean LDL. This directional dissonance w.r.t MAR

dropout and the last observed change in LDL is especially apparent for times t = 3, 4 and 5.

Figure 3.2 shows on the mean level the observed data fit at each time t for both treatment groups.

The fit of linear autoregressive models w.r.t. to the mean seems to be quite well aligned along the

main diagonal of the graph. Table 3.2 shows treatment effect estimated using a) observed means

(OLS), b) inverse probability of observing-weighted estimator (IPW) with last observed outcome

only, in the logit model used to estimate probability of dropout and c) LI and SWEEP estimators. b)

and c) estimators yield unbiased estimates of the treatment effect in case of SEQ-MAR dropout or

if the version of (3.9) for T = 6 holds, respectively. We see by comparing OLS and other two/three

that, at least with respect to models used for IPW and LI/SWEEP, we can exclude MCAR as a

dropout mode in this data. This is in accordance with the plots in Figure (3.1). To further diverge

from dropout explainable by observed data to non-ignorable dropout we will utilize the non-ignorable

imputation algorithm for increments as governed by different choices of δ2,1(α) and ρ.
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Figure 3.2: Observed 1
nt

nt∑
i=1

Yit vs. predicted 1
nt

t∑
j=1

nt∑
i=1

Ê(∆Yi,j |Ri,j = 1, Y i,t−1), where

nt =
n∑
i=1

I{Ri,t=1}

estimator Shared inc.-effect
OLS -6.39

SWEEP -8.06
IPW -8.92

LI -8.06

Table 3.2: Difference in differences (negative) at T = 6 between Shared and No Incentive (SWEEP
and LI resulting in identical estimates)

3.3.2. Sensitivity analysis for shared incentive effect on LDL

Moving away from ignorable dropout

The purpose of the sensitivity analysis is to subject the effects from the rows 2 and 3 of the Table

3.2 calculated under the assumption δ2,1(α; LDL1) = 0 to a test of robustness of its significance

and direction to different levels of bias due to non-ignorable dropout. An analogous way to subject

IPW estimator from Table 3.2 to such a test could be to use a non-ignorable version of the logit

model in which coefficient next to the outcome contemporaneous with the time dropout is modeled

for, serves as a sensitivity parameter. This is a similar, though oversimplifying route compared to
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the one from Scharfstein et al., 2014.

Our sensitivity analysis is centered around a pair of values for δ2,1 in the shared incentive and con-

trol groups. For each of these pairs we can calculate a difference in implied means between groups.

Additionally, we calculated 95% non-parametric bootstrap CI (n=10 000) for the effect estimate at

each of the pairs. We can then evaluate the robustness of the effect corresponding to any choice

of the pair δ2,1 = 0 for both groups. The significance of the effect is established by checking if its

95% bootstrap confidence interval includes 0. Although we can use the approach described for

sensitivity analysis of shared incentive effect estimated by LI at any time t we will present results

and conclusions for the last time point T = 6. The most conservative version of our approach is to

allow no attenuation over time with ρ = 1. We show plots for α between -10 and 10 (with step of

0.5) since this area proves to be enough to get a complete picture of the robustness of the analysis

to the version of the ignorability assumption (3.9) for T = 6.

Results and implications

Figure 3.3 shows treatment specific means and difference in means at T = 6 between missing and

observed. We can see that the conditional shift δt,t−1(α; LDLt−1) = α for t ∈ {2, . . . , 6} between

−10 mg/dL and 10 mg/dL yields a marginal difference in the mean between missing and observed

at time 6 that ranges between −20 mg/dL and 20 mg/dL. The slope of the linear approximations of

the curves in the first row of plots is similar in both groups and the rate of increase seems to be 1

mg/dL for each 4 mg/dL change in conditional shift α. This constant, but attenuated, change in the

marginal mean in each group w.r.t. change in α is due to a) modest dropout rates (< 20% at time

6) and b) the fact that, within the class of models we assume, the marginal shift is mathematically a

weighted sum of α shifts (see Appendix B.2 for T = 3) where weights are observed (non-cumulative)

dropout rates.

By viewing these plots experts can decide on the plausible range for α; since the direct numerical

correspondence of the shifts and the difference in marginal means is not possible to establish for

T > 3 the plots can serve as a control check. The advantage of this approach is that the shifts and
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Figure 3.3: Treatment specific mean LDL at T = 6 as a function of α for α constant over time and
ΩYj

differences in means are both observed on the same outcome scale, which makes it easier to think

about appropriate and realistic correspondence of the shifts up to time t and differences in marginal

means at time t.

Figure 3.4 shows a contour plot of treatment effects for each pair of (α(sh. incentive), α(control)).

For (0,0) we will see effect as shown in Table 3.2. The dropout pattern-specific mean profiles in

Figure 3.1 might be interpreted as to suggest that non-ignorable dropout from control and shared

incentive is more plausible to be situated in the upper left part of the plot as coded by values

α(shared incentive) < 0 and α(control) > 0. “Movement” in this direction on the plot leaves the

treatment effect identical in direction and naturally higher in magnitude. Significance characteristic

of the treatment effect does not change in this part of the plot either. On the other hand, staying

strictly on the main diagonal can be interpreted as assuming non-ignorable but identical dropout

- outcome behavior in both treatment groups as reflected by the conditional shifts in increments.

Moving the main diagonal orthogonally by 5 mg/dL to the lower-right side of the plot we encounter

the area for which treatment effects becomes not significant. In particular, a mean shift of 5(−5)

mg/dL for each increment at t = {2, 3, 4, 5, 6} between dropouts and adherers in shared incentive
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(control) group while we keep (3.9) true in the other group will lead to treatment effect becoming not

significant. This might seem too sensitive as described by α = 5 mg/dL but we should keep in mind

“recursive shifting” that is going on behind the scenes as described in non-ignorable imputation

algorithm. There are 5 different occasions for dropout until T = 6 and a person that drops out at

time 2 will be shifted 5 times according to chosen α. If we hold the control group at α = 0 while we let

shared incentive have α = 5 we can identify in Figure 3.3 (lower, left plot) that this shift corresponds

to 20 mg/dL difference between the means of dropouts and adherers in shared incentive group. To

put this in perspective, the mean LDL values in this group dropped from around 160 mg/dL to 130

mg/dL over 15 months. This means that α = 5 implies a shift in marginal mean between dropouts

and adherers that is ≈ 66% of the mean decrease in LDL under ignorable dropout over the whole

study period. Such relative magnitude of the difference between adherers and dropouts at T = 6

can be interpreted as generous. With this in mind we can say that Figure 3.4 offers a depiction of a

generous buffer for treatment effects in Table 3.2 w.r.t. to non-ignorable dropout.

Figure 3.4: Sensitivity plot for the treatment effect as a function of α in both groups for α constant
over time
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3.4. Discussion

We described the possible sensitivity analysis approach for linear increments estimator first intro-

duced by Diggle, Farewell, and Henderson, 2007. In the lengthy discussion following this work

questions were raised what is a general condition for ignorable dropout w.r.t. this incremental strat-

egy when it comes to estimating unconditional treatment effect. As pointed out by the authors, such

transplantation of a technique from coming from stochastic processes setting, where time is ran-

dom to a setting where observation times are non-random and predetermined can be quite hard to

incorporate into the existent ignorability categories as MAR or SEQ-MAR. It is nevertheless crucial

for any responsible use of estimators that adjust for dropout to try and conceive the most reason-

able and internally most consistent way to “stress-test” our conclusions gathered by such a strategy.

To keep this internal coherence we had to restrict the class of models for expected increments to

the class for which devising such a cogent sensitivity analysis is possible.

The presented sensitivity analysis for LI within the class of linear autoregressive models offers

a sensitivity analysis option for extended SWEEP estimator (Robins et al. 1995.) as well. It

allows experts to think only about contemporaneous association between the outcome and dropout

process. Their decisions about this association will then imply the magnitude of those time shifted

associations needed for identification of the marginal mean. These implied values are congenial

(w.r.t. expectation) with the assumption of future independence given present on FC .

Our approach is restricted to the fixed δ2,1(α;Y1). Extending it to the case where δ2,1(α;Y1) is

piecewise constant within ΩYt is technically possible, but the interpretation (and/or identification)

of the estimate as the marginal (unconditional) mean would be even heuristically harder to claim

without further assumptions about simplifying the probabilistic structure of FC .

Nevertheless, our sensitivity approach relies on domain experts knowledge to the extent to which

expert alone would be comfortable about speculating. It offers a natural time respecting partition

of the expected shift in outcome to shifts in increments. The increments are then shifted only

w.r.t. contemporaneous dropout occurrence, while the rest of the shift is implicitly assumed to be

zero, which aligns with values implied for linear shifts when future independence given present

holds. This all is done while using marginal, observed dropout rates so any speculation about the

parametric form of dropout is not necessary and cannot be a source of variability of the conclusions.
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Nevertheless, there are drawbacks coming with this parameter aggregation in the form of implied

shifts. These are not informed by the domain expert and might not be true. Bias that comes from

misspecification of these shifts is attenuated by the use of observed marginal dropout proportions

and in our future work we plan to show that it’s influence on the decision about robustness of the

findings to dropout does not invalidate our approach.

Comparing in some standardized way our, and the approach by Scharfstein et al. (2014) might offer

some insight in how sensitive is the sensitivity analysis w.r.t. modeling the probability of dropout.

Relating the value of the coefficient in such a non-ignorable version of a logit model to a value

of the shift δ2,1 6= 0 for which E(Y 6 | X = 1) − E(Y 6 | X = 0) yields a comparable estimate is,

without assuming the full joint distribution for the complete data, not possible. Additionally, this

discrepancy extends to the individual level data as well. Any model used for estimating probability

of dropout in IPW estimator will not lead to extrapolating outside of observed data. On the other

side, even for δ2,1 = 0 the assumed mean model for observed ∆Yt can imply prediction for Yt

based on some value of Yt−1 among dropouts that is outside of the range of observed Yt’s. What

we can do w.r.t. correspondence between the shift in the mean at time t and the influence of the

contemporaneous outcome Yt on the log-odds scale on dropout, is a post-hoc estimation of a non-

ignorable logit model, after we impute the data according to the assumed shift δ2,1 as described for

the non-ignorable imputation algorithm.

On the other side, the “luxury” of not modeling dropout is payed by the restricted class of models

within which we define our parameter of interest. Often, justifiability of such simple parametric

assumptions w.r.t. observed data on the level of an individual study participant will be disputable.

Nevertheless, these or some other, less or more restrictive structural assumptions are indispens-

able, if one wants to preserve a balance between goals under a) b) and c) (see Section 3.1) in a

longitudinal clinical trial where influence of the dropout extends over several time points.

It will be useful for a better understanding of the sensitivity analysis for linear increments (LISA

from now on) as well as sensitivity analysis for dropout in general to describe where LISA finds its

place among the existent and established sensitivity analysis tools. A very natural choice for posi-

tioning LISA is a pattern mixture approach for sensitivity analysis for dropout described in Daniels

and Hogan, 2008. In the next chapter we will see how LISA can be perceived as an extension of
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this approach to longer sequences of observations without increasing the number of sensitivity pa-

rameters dramatically (characteristic to which approach from Daniels and Hogan, 2008 is prone to.

Under future independence the LISA parameter α maintains intuitive interpretation within Daniels

and Hogan’s pattern mixture set up as well.
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CHAPTER 4

LISA AS AN EXTENSION OF A PATTERN MIXTURE APROACH TO SENSITIVITY

ANALYSIS UNDER FUTURE INDEPENDENCE

4.1. Introduction

Daniels and Hogan, 2008 presented a general pattern mixture approach to sensitivity analysis of

the marginal treatment effect w.r.t. non-ignorable dropout in longitudinal trials. This approach, in

which one specifies fully parametric distribution for each dropout pattern separately, results in clear

partitioning of the parameters into those identifiable from observed data and those that are not. This

is a very useful feature of pattern mixture approach when one is faced with specifying a sensitivity

analysis to non-ignorable dropout. Analog mean and variance structures specified for each dropout

pattern (at each scheduled time of observation) yield natural pairs of non-identifiable and identifi-

able parameters whose differences offer themselves readily to serve as sensitivity parameters to

non-ignorable dropout. One drawback of this approach is that the number of sensitivity parameters

quickly becomes unwieldy when applied to longer sequences of observations. Reaching an overall

conclusion about the robustness of the results to non-ignorable dropout as well as conveying it in

a coherent and understandable way is not easily accomplished when there is a large number of

“levers” on which the final conclusion depends. We will show that LISA can be perceived as an

extension of Daniels and Hogan’s pattern mixture approach (DH from now on) to longer sequences

of observations, while keeping interpretability of the small number of sensitivity parameters. For

better understanding we describe the relationship between these two methods under general con-

ditions and under an assumption of future independence (see Scharfstein et al., 2014). We specify

the relationship between sensitivity parameters in one and the other approach.

4.2. Daniels and Hogan’s approach for sensitivity analysis for E(Y3 | X = 1) −

E(Y3 |X = 0)

DH take a pattern mixture approach to sensitivity analysis within a normal (distributional) structure

for 3 time points. This approach has its benefits in that it allows clear and unambiguous specifi-

cation and enumeration of unidentified parameters. We illustrate the DH approach first. Assume
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everybody is observed at t = 1 and drop out is possible at times 2 and 3. We will code the dropout

patterns as (R2 = 0), (R2 = 1, R3 = 0) and (R3 = 1). Let

Y2|Y1, R2 = 1 ∼ N
(
α

(≥2)
0 + α

(≥2)
1 Y1, τ

(≥2
2 )

)
Y2|Y1, R2 = 0 ∼ N

(
α

(1)
0 + α

(1)
1 Y1, τ

(1)
2

)
Y3|Y2, Y1, R3 = 1 ∼ N

(
β

(3)
0 + β

(3)
2 Y2 + β

(3)
1 Y1, τ

(3)
3

)
Y3|Y2, Y1, R2 = 1, R3 = 0 ∼ N

(
β

(2)
0 + β

(2)
2 Y2 + β

(2)
1 Y1, τ

(2)
3

)
Y3|Y2, Y1, R2 = 0 ∼ N

(
β

(1)
0 + β

(1)
2 Y2 + β

(1)
1 Y1, τ

(1)
3

)
(4.1)

Note that we do not differentiate the parameters at t = 1 (since no drop out can occur then, so no

need for distinguishing patterns as we will see). This normal theory set up hinges on 20 parameters

(2 for t = 1, 5 variance parameters with the rest of 13 describing the mean structure within each

drop out pattern.

4.3. Linear increments sensitivity analysis (LISA) for E(Y3 |X = 1)−E(Y3 |X = 0)

Since increment (change) and not outcome is a central modeling object in the linear increments

estimator we define LISA within the class of linear, autoregressive models. Within this class iden-

tificational potential w.r.t. identifying E(Yt |X = 1) of a model specification is equivalent for incre-

ments and outcomes. There is also a one to one relationship between coefficients of the model

ωt for E
[
∆Yt |Yt−1, Rt = 1,

]
= ωt(Yt−1 ;b∆Yt) and the model ηt,t for E

[
Yt |Yt−1, Rt = 1,

]
=

ηt,t(Yt−1 ; θt−1,t). Using iterative expectation within this class of models we can write E(Y3) as

Remember we defined in previous chapter that

E[Y3 |R3 = 0, R2 = 1, Y2, Y1] = E[Y3 |R3 = 1, Y2, Y1] + ϕ32(γ;Y2, Y1)

E[Y3 |R2 = 0, R1 = 1, Y1] = E[Y3 |R2 = 1, R1 = 1, Y1] + ϕ31(γ;Y1) (4.2)
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Within the class of linear autoregressive models we can make a correspondence between these

functions describing the shift in the mean outcome and analogous functions for increments.

E
(

∆Y3|R3 = 0, R2 = 1, Y 2

)
− E

(
∆Y3|R3 = 1, R2 = 1, Y 2

)
︸ ︷︷ ︸

δ32(α;Y1)

= ϕ32(γ;Y2, Y1)

E
(

∆Y3|R2 = 0, R1 = 1, Y 1

)
− E

(
∆Y3|R2 = 1, R1 = 1, Y 1

)
︸ ︷︷ ︸

δ31(α;Y1)

+

E
(
Y2|R2 = 0, R1 = 1, Y 1

)
− E

(
Y2|R2 = 1, R1 = 1, Y 1

)
︸ ︷︷ ︸

δ21(α;Y1)

= ϕ31(γ;Y2, Y1)

E
(

∆Y2|R2 = 0, R1 = 1, Y 1

)
− E

(
∆Y2|R2 = 1, R1 = 1, Y 1

)
︸ ︷︷ ︸

δ21(α;Y1)

= ϕ21(γ;Y1)

LISA is based on prediction. For the expected observed increment ∆Yt at each time t ∈ {2, 3} we

fit a linear autoregressive model with the full history of observed outcomes. For t = 1 ∆Y1 = Y1 per

definition and the model for the expectation includes only the intercept.

E[∆Y2 |R2 = 1, Y1] = b0∆Y2
+ b1∆Y2

Y1 = ω2

E[∆Y3 |R2 = 1, Y2, Y1] = b0∆Y3
+ b2∆Y3

Y2 + b1∆Y3
Y1 = ω3

Estimates of the coefficients from ω2 and ω3 are then used to impute the missing increment at time

t for individual i according to the recursive imputation algorithm described in Chapter 3

Notice that within LISA there is no explicit assumption about the value of E[Y3 | R2 = 0, R1 =

1, Y2, Y1] − E[Y3 | R3 = 1, Y2, Y1] which is one of the sensitivity parameters for DH approach and

corresponds to the relationship of conditional means for last and 3rd last row of (4.1).
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4.4. LISA as extension of DH to longer sequence of observations

We write out E(Y3) using the set up in (4.1)
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E(Y3) = E
(
E[Y3 | Y1]

)

= E
(
E[Y3 |R2 = 1, Y1] P (R2 = 1 | Y1) + E[Y3 |R2 = 0, Y1] P (R2 = 0 | Y1)

)

= E
(
E
[
E(Y3 |R2 = 1, Y2, Y1)

∣∣∣R2 = 1, Y1

]
P (R2 = 1 |Y1)+

E
[
E(Y3 |R2 = 0, Y2, Y1)

∣∣∣R2 = 0, Y1

]
P (R2 = 0 | Y1)

)

= E
(
E
[
E(Y3 |R3 = 1, R2 = 1, Y2, Y1) P (R3 = 1 |R2 = 1, Y2, Y1) +

E(Y3 |R3 = 0, R2 = 1, Y2, Y1) P (R3 = 0 |R2 = 1, Y2, Y1) |R2 = 1, Y1

]
×

P (R2 = 1 | Y1) +

E
[
E(Y3 |R2 = 0, Y2, Y1) |R2 = 0, Y1

]
P (R2 = 0 | Y1)

)

= E
(
E
[(
β

(3)
0 + β

(3)
2 Y2 + β

(3)
1 Y1

)
P (R3 = 1 |R2 = 1, Y2, Y1) +(

β
(2)
0 + β

(2)
2 Y2 + β

(2)
1 Y1

)
P (R3 = 0 |R2 = 1, Y2, Y1)

∣∣∣R2 = 1, Y1

]
P (R2 = 1 | Y1) +

E
[(
β

(1)
0 + β

(1)
2 Y2 + β

(1)
1 Y1

) ∣∣∣R2 = 0, Y1

]
P (R2 = 0 | Y1)

)

= β
(3)
0 P (R3 = 1, R2 = 1) +

β
(3)
2 E

(
E
[
Y2 P (R3 = 1 |R2 = 1, Y2, Y1)

∣∣∣R2 = 1, Y1

]
P (R2 = 1 | Y1)

)
+

β
(3)
1 E

(
Y1 P (R3 = 1, R2 = 1 | Y1)

)
+

β
(2)
0 P (R3 = 0, R2 = 1) +

β
(2)
2 E

(
E
[
Y2 P (R3 = 0 |R2 = 1, Y2, Y1)

∣∣∣R2 = 1, Y1

]
P (R2 = 1 | Y1)

)
+

β
(2)
1 E

(
Y1 P (R3 = 0, R2 = 1 | Y1)

)
+

β
(1)
0 P (R2 = 0) + E

([
β

(1)
2

(
α

(1)
0 + α

(1)
1 Y1

)
+ β

(1)
1 Y1

]
P (R2 = 0 | Y1)

)
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= β
(3)
0 P (R3 = 1, R2 = 1) +

β
(3)
2 E

(
E
[
Y2 P (R3 = 1 |R2 = 1, Y2, Y1)

∣∣∣R2 = 1, Y1

]
P (R2 = 1 | Y1)

)
+

β
(3)
1 E

(
Y1 P (R3 = 1, R2 = 1 | Y1)

)
+

β
(2)
0 P (R3 = 0, R2 = 1) +

β
(2)
2 E

(
E
[
Y2 P (R3 = 0 |R2 = 1, Y2, Y1)

∣∣∣R2 = 1, Y1

]
P (R2 = 1 | Y1)

)
+

β
(2)
1 E

(
Y1 P (R3 = 0, R2 = 1 | Y1)

)
+

β
(1)
0 P (R2 = 0) + β

(1)
2 α

(1)
0 P (R3 = 0)+

β
(1)
2 α

(1)
1 E

(
Y1 P (R2 = 0 | Y1)

)
+

β
(1)
1 E

(
Y1 P (R2 = 0 | Y1)

)

DH make some assumptions to limit the number of parameters in (4.1). They assume that the

variances τ2 are the same between patterns (R2 = 1) and (R2 = 0), and τ3 among (R2 = 0),

(R2 = 1, R3 = 0), and (R2 = 1, R3 = 1). Further, and more important for simplifying the expression

above, they assume the slopes to be equal as well. We write this constraint as

τ1 = τ2 = τ3

τ
(1)
2 = τ

(≥2
2 )

τ
(1)
3 = τ

(2)
3 = τ

(3)
3

α
(1)
1 = α

(≥2)
1

β
(1)
2 = β

(2)
2 = β

(3)
2

β
(1)
1 = β

(2)
1 = β

(3)
1

(4.3)
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This simplifies the final expression for E(Y3) further, so

E(Y3) = β
(3)
0 P (R3 = 1, R2 = 1) + β

(2)
0 P (R3 = 0, R2 = 1) + β

(1)
0 P (R2 = 0) +

β
(3)
2 α

(≥2)
0 + β

(3)
2

(
α

(1)
0 − α

(≥2)
0

)
P (R2 = 0) +

β
(3)
2 α

(≥2)
1 E

(
Y1

)
+ β

(3)
1 E

(
Y1

)

If we rewrite this using the fact that P (R3 = 1, R2 = 1) + P (R3 = 0, R2 = 1) + P (R2 = 0) = 1 we

have

E(Y3) = β
(3)
0 +

(
β

(2)
0 − β(3)

0

)
P (R3 = 0, R2 = 1) +

(
β

(1)
0 − β(3)

0

)
P (R2 = 0) +

β
(3)
2 α

(≥2)
0 + β

(3)
2

(
α

(1)
0 − α

(≥2)
0

)
P (R2 = 0) +

β
(3)
2 α

(≥2)
1 E

(
Y1

)
+ β

(3)
1 E

(
Y1

)
(4.4)

At this point we can relate some of the terms in (4.4) to some of the sensitivity parameters used

for LISA. β(2)
0 − β(3)

0 is equal to ϕ32(γ;Y2, Y1) = ρα while α(1)
0 − α(≥2)

0 corresponds to ϕ21(γ;Y1) =

α. These two are also parameters that non-ignorable imputation algorithm uses to impute the

values of Y2 and Y3 for individuals missing at those times. There is no analogous one-to-one

relationship between a parameter in LISA and β(1)
0 −β

(3)
0 , but there is an implied constraint between

β
(1)
0 − β

(3)
0 and parameters in LISA. We can see this after expressing ϕ31(γ;Y1) = E(Y3 |R2 =

0, Y1)− E(Y3 |R2 = 1, Y1) as a function of β(1)
0 − β(3)

0 .
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ϕ31(γ;Y1) = E(Y3 |R2 = 0, Y1)− E(Y3 |R2 = 1, Y1)

=
(
β

(1)
0 + β

(1)
2 Y2 + β

(1)
1 Y1

)
−∫

Y2

(
β

(3)
0 + β

(3)
2 Y2 + β

(3)
1 Y1

)
P (R3 = 1 |R2 = 1, Y2, Y1) +(

β
(2)
0 + β

(2)
2 Y2 + β

(2)
1 Y1

)
P (R3 = 0 |R2 = 1, Y2, Y1) dF (Y2|R2 = 1, Y1)

Using (4.3) this becomes

ϕ31(γ;Y1) = β
(1)
0 + β

(1)
2 E

(
Y2 |R2 = 0, Y1

)
+ β

(1)
1 Y1 − β(3)

0 P (R3 = 1 |R2 = 1, Y1)−

β
(2)
0 P (R3 = 0 |R2 = 1, Y1)− β(3)

2 E
(
Y2 |R2 = 1, Y1

)
− β(3)

1 Y1

= β
(1)
0 + β

(3)
2

[
E
(
Y2 |R2 = 0, Y1

)
− E

(
Y2 |R2 = 1, Y1

)]
−

β
(3)
0

(
1− P (R3 = 0 |R2 = 1, Y1)

)
− β(2)

0 P (R3 = 0 |R2 = 1, Y1)

= (β
(1)
0 − β(3)

0 ) + β
(3)
2

[
E
(
Y2 |R2 = 0, Y1

)
− E

(
Y2 |R2 = 1, Y1

)]
−

(β
(2)
0 − β(3)

0 )P (R3 = 0 |R2 = 1, Y1)

Remember that within the linear autoregressive class of models (to which DH and LISA both belong

to) it holds that b(2)
∆Y3

+ 1 = β
(3)
2 where b(2)

∆Y3
is the coefficient from an autoregressive linear model

ω3(Y2, R3 = 1 ;b∆Y3) for the expected increment ∆Y3 = Y3 − Y2 among individuals present at time

3. Further we also know from Chapter 3 that for linear autoregressive models

ϕ31(γ;Y1) = E
(

∆Y3|R2 = 0, Y1

)
− E

(
∆Y3|R2 = 1, Y1

)
︸ ︷︷ ︸

δ31(α;Y1)

+E
(
Y2|R2 = 0, Y1

)
− E

(
Y2|R2 = 1, Y1

)
︸ ︷︷ ︸

δ21(α;Y1)

Using this we can write
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ϕ31(γ;Y1) = (β
(1)
0 − β(3)

0 ) + b
(2)
∆Y3

[
E
(
Y2|R2 = 0, Y1

)
− E

(
Y2|R2 = 1, Y1

)]
−

−(β
(2)
0 − β(3)

0 )P (R3 = 0 |R2 = 1, Y1)︸ ︷︷ ︸
δ31(α;Y1)

+

[
E
(
Y2|R2 = 0, Y1

)
− E

(
Y2|R2 = 1, Y1

)]
︸ ︷︷ ︸

δ21(α;Y1)=α
(1)
0 −α

(≥2)
0

(4.5)

We can see that assuming constant, history-independent shifts for E
(
Y2|R2 = 0, Y1

)
−E

(
Y2|R2 =

1, Y1

)
= α

(1)
0 − α

(≥2)
0 , E(Y3 | R3 = 0, R2 = 1, Y2, Y1) − E(Y3 | R3 = 1, R2 = 1, Y2, Y1) = β

(2)
0 −

β
(3)
0 and E(Y3 | R2 = 0, Y2, Y1) − E(Y3 | R3 = 1, R2 = 1, Y2, Y1) = β

(1)
0 − β

(3)
0 does not imply a

constant shift δ31(α;Y1) and/or ϕ31(γ;Y1) since both are functions of P (R3 = 0 | R2 = 1, Y1). This

probability is estimable from the observed data, but neither DH approach, nor LISA specify models

for the dropout probability explicitly; therefore, we should compare LISA and DH parameters only

for the unknown true value of P (R3 = 0 | R2 = 1, Y1). Nevertheless, (4.4) and/or (4.5) depend

on (β
(1)
0 − β(3)

0 ) and we will see how LISA sets this parameter implicitly and how this choice can,

later, in the light of future independence assumption, be interpreted. We can check from (4.4) and

simulated data what LISA picks for (β
(1)
0 − β(3)

0 ). Notice also that this is not possible using (4.5),

since in this case we would have to specify a model for P (R3 = 0 | R2 = 1, Y1) which would mean

a) specifying part of the distribution of (Y3,R3) that DH and LISA do not specify (this could be an

issue in simulations; if (4.1) is used to simulate full data we would be agnostic to the correct model)

and b) specifying a “gap” model for dropout, where the immediate previous outcome is not included,

but the one before it, is. This is why we will use (4.4) in the next section to explain how to interpret

the implicit choice for (β
(1)
0 − β(3)

0 ) in LISA.

4.5. (β
(1)
0 − β

(3)
0 ) in LISA

We rewrite (4.4) as

56



E(Y3) = β
(3)
0 +

(
β

(2)
0 − β(3)

0

)
P (R3 = 0) +

β
(3)
2 α

(≥2)
0 + β

(3)
2

(
α

(1)
0 − α

(≥2)
0

)
P (R2 = 0) +

β
(3)
2 α

(≥2)
1 E

(
Y1

)
+ β

(3)
1 E

(
Y1

)
+
[(
β

(1)
0 − β(3)

0

)
−
(
β

(2)
0 − β(3)

0

)]
P (R2 = 0) (4.6)

where we only use P (R3 = 0) = P (R3 = 0, R2 = 1) + P (R2 = 0). The non-ignorable imputation

algorithm used for LISA sets the last term in the above expression to 0 (or more accurately it

assumes that (β
(1)
0 −β

(3)
0 ) = (β

(2)
0 −β

(3)
0 )). This means that in general choosing only δ21(α;Y1) and

δ32(α;Y2, Y1) is not enough, except of course in the special case when (β
(1)
0 − β

(3)
0 ) = (β

(2)
0 − β

(3)
0 ).

Bias of LISA in this case would be equal to the negative last term of (4.6). We can see that it is a

linear function of the difference
(
β

(1)
0 − β(3)

0

)
−
(
β

(2)
0 − β(3)

0

)
with the slope P (R2 = 0). We will see

why, in the case of “future independence”, we don’t have to worry about this bias and what would be

a reasonable approach to evaluate the robustness to this bias when it comes to conclusions about

the dropout recovered from LISA. If LISA preserves interpretation and conclusions remain robust,

it offers a useful extension of the DH approach to longer sequences of observations with only a few

sensitivity parameters. We will check this robustness in simulations for T=3, as well as in data from

already described cluster randomized multi-site trial evaluating the effect of financial incentives on

patients ability to lower the level of low-density lipoprotein (LDL).

4.6. Future independence

For T = 3 (3.12) implies that f(Y3|R2 = 0, Y2, Y1) = f(Y3|R2 = 1, Y2, Y1). This again has some

implications within DH pattern mixture set up (4.1). If (3.12) holds then it follows that

E(Y3 |R2 = 1, Y2, Y1) = E(Y3 |R2 = 0, Y2, Y1)
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This means that E(Y3 |R2 = 0, Y2, Y1) = E(Y3 |R2 = 1, Y2, Y1) = β
(1)
0 + β

(1)
2 Y2 + β

(1)
1 Y1. In general

it also holds that

E(Y3 |R2 = 1, Y2, Y1) = E(Y3 |R3 = 0, R2 = 1, Y2, Y1) P (R3 = 0 |R2 = 1, Y2, Y1) +

E(Y3 |R3 = 1, R2 = 1, Y2, Y1) P (R3 = 1 |R2 = 1, Y2, Y1)

=
(
β

(2)
0 + β

(2)
2 Y2 + β

(2)
1 Y1

)
P (R3 = 0 |R2 = 1, Y2, Y1) +(

β
(3)
0 + β

(3)
2 Y2 + β

(3)
1 Y1

)
P (R3 = 1 |R2 = 1, Y2, Y1)

= β
(2)
0 P (R3 = 0 |R2 = 1, Y2, Y1) + β

(3)
0 P (R3 = 1 |R2 = 1, Y2, Y1) +(

β
(2)
2 P (R3 = 0 |R2 = 1, Y2, Y1) + β

(3)
2 P (R3 = 1 |R2 = 1, Y2, Y1)

)
Y2 +(

β
(2)
1 P (R3 = 0 |R2 = 1, Y2, Y1) + β

(3)
1 P (R3 = 1 |R2 = 1, Y2, Y1)

)
Y1

Thus, with future independence and DH pattern mixture parametrization (4.1) and (4.3) we have

β
(1)
0 = β

(2)
0 P (R3 = 0 |R2 = 1, Y2, Y1) + β

(3)
0 P (R3 = 1 |R2 = 1, Y2, Y1) (4.7)

Note how the combination of DH parametrization (4.1) and (4.3) and future independence puts a

constraint on P (R3 = 0 | R2 = 1, Y2, Y1). The only values for which P (R3 = 0 | R2 = 1, Y2, Y1)

can remain unconstrained are β(1)
0 = β

(2)
0 = β

(3)
0 , otherwise (4.7) can hold only if P (R3 = 0 | R2 =

1, Y2, Y1) is a constant function of Y1 and Y2. We will continue using (4.7) but this will be useful to

keep in mind when we evaluate results from simulations.
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Then if we write out E(Y3) again we have using the above

E(Y3) = E
(
E[Y3 | Y1]

)

= E
(
E[Y3 |R2 = 1, Y1] P (R2 = 1 | Y1) + E[Y3 |R2 = 0, Y1] P (R2 = 0 | Y1)

)

= E
(
E
[
E(Y3 |R2 = 1, Y2, Y1) |R2 = 1, Y1

]
P (R2 = 1 | Y1) +

E
[
E(Y3 |R2 = 0, Y2, Y1) |R2 = 0, Y1

]
P (R2 = 0 | Y1)

)

= E
(
E
[
(β

(1)
0 + β

(1)
2 Y2 + β

(1)
1 Y1)

∣∣∣R2 = 1, Y1

]
P (R2 = 1 | Y1) +

E
[
(β

(1)
0 + β

(1)
2 Y2 + β

(1)
1 Y1)

∣∣∣R2 = 0, Y1

]
P (R2 = 0 | Y1)

)

use (4.3)

= E
((
β

(1)
0 + β

(3)
2

(
α

(≥2)
0 + α

(≥2)
1 Y1

)
+ β

(3)
1 Y1

)
P (R2 = 1 | Y1) +(

β
(1)
0 + β

(3)
2

(
α

(1)
0 + α

(≥2)
1 Y1

)
+ β

(3)
1 Y1

)
P (R2 = 0 | Y1)

)

use (4.7)

= E
([
β

(2)
0 P (R3 = 0 |R2 = 1, Y2, Y1) + β

(3)
0 P (R3 = 1 |R2 = 1, Y2, Y1)

]
P (R2 = 1 | Y1)

)
+

β3
2α

(≥2)
0 P (R2 = 1) + β3

2α
(≥2)
1 E

(
Y1 P (R2 = 1 | Y1)

)
+ β3

1E
(
Y1 P (R2 = 1 | Y1)

)
+

E
( [
β

(2)
0 P (R3 = 0 |R2 = 1, Y2, Y1) + β

(3)
0 P (R3 = 1 |R2 = 1, Y2, Y1)

]
P (R2 = 0 | Y1)︸ ︷︷ ︸

=0 since R2 = 0 AND R2 = 1 can’t be true

)
+

β3
2α

(1)
0 P (R2 = 0) + β3

2α
(≥2)
1 E

(
Y1 P (R2 = 0 | Y1)

)
+ β3

1E
(
Y1 P (R2 = 0 | Y1)

)
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= β
(2)
0 P (R3 = 0, R2 = 1) + β

(3)
0 P (R3 = 1, R2 = 1) + β3

2α
(≥2)
0

(
1− P (R2 = 0)

)
+

β3
2α

(≥2)
1 E

(
Y1

)
+ β3

1E
(
Y1

)
+ β3

2α
(1)
0 P (R2 = 0)

= β
(2)
0 P (R3 = 0, R2 = 1) + β

(3)
0 P (R3 = 1, R2 = 1) +

β3
2

(
α

(1)
0 − α

(≥2)
0

)
P (R2 = 0) + β3

2α
(≥2)
0 +

β3
2α

(≥2)
1 E

(
Y1

)
+ β

(3)
1 E

(
Y1

)

E(Y3) = β
(2)
0 P (R3 = 0 |R2 = 1)P (R2 = 1) + β

(3)
0 P (R3 = 1 |R2 = 1)P (R2 = 1) +

β
(3)
2

(
α

(1)
0 − α

(≥2)
0

)
P (R2 = 0) + β3

2α
(≥2)
0 +

β
(3)
2 α

(≥2)
1 E

(
Y1

)
+ β

(3)
1 E

(
Y1

)

Constructing such correspondence is possible only if we remain within the confines of the linear

autoregressive models for the conditional expectations. Using the fact that P (R3 = 0, R2 = 1) in

the expression for E(Y3)
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E(Y3) =
[
β

(3)
0 + (β

(2)
0 − β(3)

0 )P (R3 = 1 |R2 = 1)
]
P (R2 = 1) +

β
(3)
2

(
α

(1)
0 − α

(≥2)
0

)
P (R2 = 0) + β3

2α
(≥2)
0 +

β
(3)
2 α

(≥2)
1 E

(
Y1

)
+ β

(3)
1 E

(
Y1

)
(4.8)

You can see that compared to (4.4) the expression (4.8) has no part that depends on β(1)
0 − β(3)

0 .

So additional assumption of “future independence” given the present makes this term obsolete for

identification of E(Y3). Thus, in such a case for T = 3, the non-ignorable imputation algorithm

presented in chapter 3 identifies E(Y3).

4.7. Simulations

Generating full data for which (3.12) holds is not trivial. Heuristically speaking, we need to al-

low conditional independence and/or lack thereof between Yt and Rj , depending on the time lag

between them. Because the collection and chronological order of structural equations for such

structure are complex, we will instead generate full data using pattern mixture setup from (4.1).

For simplicity we choose intercepts µ1, α(≥2)
0 and β

(3)
0 to be zero; this way the sensitivity pa-

rameters β
(2)
0 − β

(3)
0 = δ32(α;Y2, Y1), α(1)

0 − α
(≥2)
0 = δ21(α;Y1) and β

(1)
0 − β

(3)
0 depend only on

β
(2)
0 , α(1)

0 and β
(1)
0 . These are the parameters we vary (by 1) between -5 and 5 each. Addi-

tionally, we generate data with each of 3 combinations of P (R2 = 0) and P (R3 = 0, R2 = 1)

{(0.1, 0.2), (0.2, 0.25), (0.25, 0.2)}. Slopes α(≥2)
1 , β(3)

2 and β
(3)
1 are chosen to be 1, 1, and 0.2 and

variances σ1, τ (≥2)
2 , and τ (3)

3 are set to 1, 0.25, and 0.25. We generate 100 data sets with n=1000

observations for each of 11×11×11×3 = 3993 combinations of β(2)
0 , α(1)

0 , and β(1)
0 and probabilities

of dropout. We picked variances so that a bias averaged over 100 data sets has variability small

enough to facilitate illustration.

We will use expression (4.6) as a way to illustrate the bias of LISA which comes from setting

β
(1)
0 − β(3)

0 = β
(2)
0 − β(3)

0 . Our hope is that this bias is acceptable w.r.t. the benefit of being able to
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extend DH pattern mixture sensitivity analysis using LISA to 3 or more observations. Keep also in

mind that data generated with β
(1)
0 − β(3)

0 = β
(2)
0 − β(3)

0 = 0 and any value of α(1)
0 − α(≥2)

0 and/or

P (R2 = 0) and P (R3 = 0, R2 = 1) will yield E(Y3 | R2 = 1, Y2, Y1) = E(Y3 | R2 = 0, Y2, Y1) which

is the only manifestation of future independence in the form of expectation constraint within data

generated in this way.

Figure 4.1: Relationship between the bias in β(1)
0 − β(3)

0 and β(3)
LI

Figure 4.1 shows the dependency of the LI bias on the bias in β
(1)
0 − β(3)

0 for different values of

P (R2 = 0). We plot this relationship for positive values of
(
β

(1)
0 −β

(3)
0

)
−
(
β

(2)
0 −β

(3)
0

)
only. We can

see that for T = 3 the slope of this linear relationship is captured by P (R2 = 0). Such a clear and

unambiguous relationship is possible only for T = 3. For T = 4 we need to take into consideration

that in this case we are dealing with a synergistic bias (see Appendix B.3). In general, it is possible

to perceive the case in which a bias for E(Y3) (illustrated in Figure 4.1) is equal in size but of an

opposite direction of the bias coming from setting γ
(1)
0 − γ(4)

0 = γ
(2)
0 − γ(4)

0 = γ
(3)
0 − γ(4)

0 (assume

γ’s are analog of β’s for time 4, see Appendix B.3). We would then have an unbiased estimate

of E(Y4). Even if we restrict ourselves only to those combinations for which E(Y3) is estimated

unbiasedly, it would not be possible to illustrate relationship between LI bias for T = 4 in a similar
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graph as in Figure 4.1 because we now have two sources of bias γ(1)
0 − γ(4)

0 and γ(2)
0 − γ(4)

0 instead

of one.

Figure 1 shows that even for bias β̂0
(1)
− β̂(3)

0 −
(
β

(1)
0 − β(3)

0

)
as big as 5 mg/dL and a marginal

dropout proportion at time 2 of 0.25 the resulting shift in the marginal mean won’t be bigger than

1.25. This is one advantage of using observed dropout rates, and can be interpreted as a non-

parametric bound w.r.t. dropout probability, while only conditional expected increments remain

prone to missspecification.

We should mention of course that in the case of the parameter combination that is implied by “future

independence”, LISA estimates unbiasedly E(Y3).

4.8. Real data

We saw how LISA in general “pays” for its reduction of sensitivity parameters for T = 3. In case

of real data we are interested if this bias can considerably “sway” our LISA assessment about the

gravity of the influence of non-ignorable dropout on inference. Our rationale for assessing the ro-

bustness of this decision is the following: find values of
(
β

(1)
0 − β(3)

0

)
−
(
β

(2)
0 − β(3)

0

)
that take our

LISA estimate of E(Y3) out of its 95% (bootstrap) CI. We can then evaluate what is the size of the

bias in β(1)
0 − β(3)

0 that takes our LISA estimated mean outside of the interval that we use to base

our decision about the significance of the treatment effect (remember, we decide on significance

of the treatment effect based on no overlap between 95% CI’s for the mean in the treatment and

control group). Thus, remaining within a 95% CI is an acceptable level of missestimation w.r.t. the

decision making process about the sensitivity of the findings to non-ignorable dropout. This would

mean that LISA preserves its interpretation and utility even when future independence is not true.

A modified dataset coming from a multi-center cluster-randomized controlled trial comparing three

alternative economic interventions for reducing LDL cholesterol among patients with high cardio-

vascular risk will be used to asses the robustness of LISA conclusion. We use the first, third, and

fifth observations and further modify any intermittent missingness into drop-out by leaving out any

outcome recorded after the first occasion a subject has missed. We concentrate on the group
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with shared physician-patient incentives. This leaves us with observed P (R2 = 0) = 0.14 and

P (R3 = 0, R2 = 1) = 0.06. This means that the slope for the LI bias for E(Y3) is 0.14. Average

width of the 95% CI interval for E(Y3) when β
(2)
0 − β(3)

0 = α
(1)
0 − α(≥2)

0 ∈ [−10, 10] is ≈ 7.5. This

means that for β(2)
0 − β(3)

0 = c the difference
(
β

(1)
0 − β(3)

0

)
−
(
β

(2)
0 − β(3)

0

)
necessary to take the

ÊDH(Y3) outside of 95% CI calculated for βLI
3 is 3.75/P (R2 = 0) = 3.75/0.14 ≈ 27. Figure 4.2

shows the change of ÊDH(Y3) w.r.t. β(1)
0 for 4 different values of α(1)

0 − α
(≥2)
0 = δ21.

Figure 4.2: Robustness of LISA w.r.t. DH approach in real data

As predicted the observed slope of the change is approximately equal to P (R2 = 0) = 0.14. This

means that the difference between δ32 and β(1)
0 −β

(3)
0 of 27 mg/dL is necessary to remove ÊDH(Y3)

from the 95% CI for βLI
3 . This is 2.7 times larger than the absolute value of the largest shift consid-

ered in LISA of 10 mg/dL. Having this in mind we can say that for T = 3, LISA and DH sensitivity

analysis would report same conclusion w.r.t. to the sensitivity of E(Y3) to non-ignorable dropout, if

the difference between δ32 and β(1)
0 − β(3)

0 is held within a realistic interval.

4.9. Discussion

In this paper we showed how LISA can be presented as an extension of DH pattern mixture ap-

proach to sensitivity analysis in a longitudinal clinical trial. In a general case for T = 3 we saw

how the bias coming from parameter reduction in LISA w.r.t. DH can be evaluated and its influence
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judged w.r.t. to decision about the robustness of inference w.r.t. non-ignorable dropout. With T = 3

it is possible to write out a closed form linear relationship between LI bias and bias w.r.t. β(1)
0 − β(3)

0

when data complies with DH pattern mixture distributional normality constraints. We concluded

that the advantage that LISA brings in the form of parameter reduction and clarity of representation

and interpretability of the results cannot be seriously jeopardized by the bias coming from implicit

assumptions made by non-ignorable imputation algorithm. It is realistic to expect that the decision

about robustness of the effect of economic interventions for reducing LDL cholesterol is not sensi-

tive to this type of bias.

In the case of T = 4 it is harder to define such a bias. Incremental nature of the LI estimator allows

for synergistic effects in this case when it comes to evaluating bias of LISA w.r.t. DH. It is possible

to imagine the situation in which β(1)
0 −β

(3)
0 is not equal to β(2)

0 −β
(3)
0 (which would make βLI

3 biased

for E(Y3)) but which still help, together with ϕ32 and ϕ21, implicitly set ϕ41 and ϕ42 (analogs of (4.5)

for T = 4, see Appendix B.3) to correct values. One way to get around this ambiguity is to assume

E(Y2) and E(Y3) are unbiasedly estimated by LISA and that the only bias for E(Y4) can come from

setting γ(1)
0 − γ(4)

0 = γ
(2)
0 − γ(4)

0 = γ
(3)
0 − γ(4)

0 where γ0’s are analog intercepts within extended DH

parametrization for T = 4.

In the special case of future independence we saw that the closed form for E(Y3) expressed as a

function of DH parameters does not depend on β(1)
0 −β

(3)
0 . This allows us to argue that LISA under

such assumptions cannot misspecify β(1)
0 − β(3)

0 and that accurate assumption about ϕ32(δ32) and

ϕ21(δ21) is enough to accurately make a decision about the sensitivity of the treatment effect to

non-ignorable drop out. In this case LISA solves the problem of informing parameters that reflect

asynchronous association of Yt and Rj as captured in ϕtj where j < t− 1.

LISA is a valuable addition to existent tools for sensitivity analysis w.r.t. to non-ignorable dropout

in longitudinal clinical trials. Since we are using only marginal drop out rates and are not modeling

probability of dropout, LISA could be a useful reference point to check the influence of different

models for estimating the probability of non-ignorable dropout. Above and beyond that, LISA is a

natural extension of DH framework to longer sequences of observations, while maintaining results

of the sensitivity analysis interpretable and presentable in a compact and clear format.
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CHAPTER 5

DISCUSSION

5.1. Recap

Our aim with this work was to warn against intricacies (of measure-theoretic nature) that crop up

when a technique relying on random notion of time is applied in a setting like longitudinal clinical trial

where randomness of observation times is hard to assume. This is more of a probabilistic issue,

than statistical one and it has longer reaching consequences in situations where not all the data

are observed. IIAs for inference about local characteristics of a “censored” stochastic process are

given in Commenges et al., 2008. Authors describe IIA using the concept of the Radon-Nikodym

derivative (in short this is a generalization of the concept of derivation for functions to an analog

concept for measures, it can be understood as generalized likelihood ratio). In the causal setting,

similar considerations though more rigorous from measure-theoretic aspect are given in Rø ysland,

2011 and Rø ysland, 2012 for continuous time marginal structural models (MSM). There, the author

relates this IIA to Girsanov’s change of measure. This change of measure occurs between martin-

gale measure of a hypothetical randomized trial (in the case of longitudinal data with dropout this

would be counterfactual complete data generating distribution Fc) and an observational martingale

measure (in our case this is replaced by “by dropout adulterated observed data distribution” Fo).

In settings in which randomized trial measure is absolutely continuous with respect to the obser-

vational measure one is able to define a Radon-Nikodym derivative between these two measures.

Absolute continuity between two measures is equivalent to solution of the stochastic differential

equation, defined by this Radon-Nikodym derivative, being uniformly integrable. This is some-

thing we can conclude by comparing local characteristics of the observed (factual) and unobserved

(counterfactual) outcome process. This comparison is of course in itself a hypothetical one, since

by its definition underlying hypothetical randomized trial is unobservable, and it should be perceived

only as a recipe. Such inability to devise formal tests for such a comparison of local characteristics

using only observed data is a dynamic analog of the inability to test missing at random (MAR) vs.

missing not at random (MNAR). Røysland points out that such generalized likelihood ratio process

can be interpreted as a continuous time version of weights used for inverse probability weighted

(IPW from now on) estimators in discrete time. This interpretation makes SEQ-MAR a natural anal-
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ogy to the existence of Radon-Nikodym derivative between FO and FC . The inverse probability

of observing weights serve as a type of an identification-providing sampling “bridge” between un-

observed complete data distribution FC and observed data distribution FO. Heuristically, we can

emulate sampling from a counterfactual distribution by weighting the sampling process from the ob-

served distribution correctly (in the sense of unbiased estimation of the Radon-Nikodym derivative

of the counterfactual w.r.t. observed measure). We should keep in mind that for this “bridge” to be

sensical we need a) two clearly defined “shores”, that is valid distributions (probability measures)

and b) corresponding measures need to be related by absolute continuity, or, in terms of weights,

probability of dropout needs to be estimable from the observed data. We could conclude that for

random time (or stochastic process framework), exchangeability of local characteristics (instanta-

neous change) between adherers and dropouts is enough to define when dropout is ignorable.

If we are to use a method transplanted from such a setting as an identificational assistance w.r.t.

marginal parameters (marginal mean) in a setting where observation times are not random but pre-

specified and in general known at the beginning of the study (as is the case for longitudinal clinical

trial) we need to take caution. We showed that IIA restricted only to a local change is in general

not enough to estimate/identify marginal (unconditional) parameters. In particular, demanding that

mean increments are only exchangeable w.r.t. immediate history between dropouts and adherers

would not offer us a general IIA as far reaching as necessary for identifying the marginal mean.

Instead, as we saw on the example of E-SEQ-MAR we have to preserve exchangeability of incre-

ments w.r.t. all possible “gaps” between the time of dropout and time at which we are interested

in estimating the mean. Therefore, we anchor the ignorable dropout w.r.t. LI at E-SEQ-MAR de-

scribed by T (T − 1/2) constraints for 1 ≤ j ≤ t, 2 ≤ t ≤ T . We were further able to extend

the described relationship between extended SWEEP and LI in the case of ignorable dropout, to

non-ignorable dropout in a structured way. We suggested a statistically valid way to partition the

shift in mean outcome (captured by functions ϕ’s) into a sum of shifts in increments (δ’s) that de-

pend only on a contemporaneous relationship between the outcome and the dropout processes. To

preserve the interpretability we confine our approach to linear, autoregressive ω’s and a constant

δ21(α;Y1) sensitivity parameter. Our approach offers one solution to a prominent problem of time-

shifted association between continuous outcome and the dropout process encountered inevitably

in sensitivity analysis for longitudinal data. Experts input for LISA is confined to informing those

67



parameters for which experts are realistically expected to be able to come up with the plausible

values. We define a plausible constraint on FC in the form of future independence under which ag-

gregation of the parameters as introduced by LISA does not impair the identification of the marginal

mean for any Yt t < T . We showed how LISA can be perceived as an extension of a pattern mix-

ture approach by Daniels and Hogan. If our approach is to be used instead of a classical pattern

mixture approach for longer sequences of observations we offered in chapter 4 a way to evaluate a

possible discrepancy between by LISA and DH approach when it comes to conclusions about the

robustness of the findings to non-ignorable dropout. We could conclude that bias of LISA w.r.t. DH

is a controlled one and in principle only existent when future independence cannot be assumed.

This makes LISA a useful and viable extension of [previously introduced pattern mixture paradigm

for sensitivity analysis to non-ignorable dropout in longitudinal data.

5.2. Future directions

Possible extensions and improvements of our approach are possible in few directions. Most im-

mediate and desirable ones are: allowing δ21(α;Y1) to depend on the last observed value, closed

expression for the variance of β̂LIt , defining a formal consistent way of comparing the conclusions

from LISA and method introduced in Scharfstein et al., 2014.

Often there are parts of the domain ΩYj of the clinical outcome Yj , (j ∈ {1, . . . , T}) for which the

dropout behavior is more homogenous in general as well as reflected by the introduced incremen-

tal shift. This is aligned with the floor and ceiling characteristic of clinical tests. Patients on the

extremes of the scale with very protective/harmful values of the outcome under study will show

less differential drop out behavior than those who experience same absolute difference in the mean

but in the “normal” part of the domain ΩYj . One way to reflect this clinical reality is to assume an

attenuated shift in the conditional mean within those more inertial areas of the outcome domain.

In our approach it is possible to implement a piecewise constant shift within three separate areas

of the ΩYj : c1 within the “average” part of ΩYj and c2 in each of the two margin areas, where c2 is

defined as some variable fraction of c1. Technically this is easy to implement, though in order to

claim the unconditional interpretation of the estimated mean we have to impose more constraints

on FC above and beyond future ignorability. Proving this might get technically very complex even
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on the level of a heuristic argument.

It would be very useful and practical to have a closed form expression for the variance of β̂LIt

for each value of δ21(α;Y1). We could save ourselves the trouble and time to program and run

bootstrap procedure each time we want to do implement LISA. This is memory as well as time

consuming effort that we have to implement each time. In Robins, Rotnitzky, and Zhao, 1995 a

recursive expression was given for the variance of the extended SWEEP estimator and the starting

point would be to investigate the possibilities to adapt this recursive formula to the case of non-

ignorable dropout where δ21(α;Y1) 6= 0 governs the shifts.

An analogous way to subject IPW estimator from Table 3.2 to a test of sensitivity to non-ignorable

dropout could be to use a non-ignorable version of the logit model in which coefficient next to the

outcome contemporaneous with the dropout serves as a sensitivity parameter. This is a similar,

though oversimplifying route compared to the one from Scharfstein et al., 2014. Relating the value

of that coefficient in such a non-ignorable version of a logit model to a value of the shift δ2,1 6= 0 for

which E(Y t | X = 1) − E(Y t | X = 0) yields a comparable estimate is, without assuming the full

joint distribution for the complete data, not possible. Additionally, this discrepancy extends to the

individual level data as well. Any model used for estimating probability of dropout in IPW estimator

will not lead to extrapolating outside of observed data. On the other side, even for δ2,1 = 0 the

assumed mean model for observed ∆Yt can imply prediction for Yt based on some value of Yt−1

among dropouts that is outside of the range of observed Yt’s. In principle, correspondence between

the shift in the mean at time t and the influence of the contemporaneous outcome Yt on the log-odds

scale on dropout can be established if we assume some parametric form for the joint distribution of

complete data. What we can do is a post-hoc estimation of a non-ignorable logit model, after we

impute the data according to the assumed shift δ2,1 as described for the non-ignorable imputation

algorithm.
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APPENDIX A

STOCHASTIC PROCESSES AND MODES OF DROPOUT IN LONGITUDINAL DATA

A.1. Some basic concepts from stochastic processes

A very nice historical perspective of application of martingales in survival analysis is given by Aalen

et al., 2009 while a comprehensive and more technical description of the rigorous development

of this technique can be found in Fleming and Harrington, 2011 monograph. The notation and

concepts we will use will be either directly taken from this book or will be an extension thereof.

Definition 1. A (real-valued) stochastic process is a family of random variables X = {X(t) : t ∈ Γ}

indexed by a set Γ, all defined on the same probability space (Ω,F , P )

Γ will be either [0,∞] for a continuous time stochastic process or {0, 1, 2, . . . } for a discrete time one.

For a stochastic process X, the (random) functions X(·, ω) : R+ → R,ω ∈ Ω are called the sample

paths or trajectories of X. A very important notion in our conceptual developments will be the ability

of somehow quantifying the difference in information accrual for two processes. Therefore we need

to somehow formulate the concept of information accruing over time.

Definition 2. 1. A family of sub-σ-algebras {Ft : t ≥ 0} of a σ-algebra F is called increasing

if s ≤ t implies Fs ⊂ Ft (i. e. if for s ≤ t, A ∈ Fs implies A ∈ Ft). An increasing family of

sub-σ-algebras is called a filtration.

2. When {Ft : t ≥ 0} is a filtration, the σ-algebra ∪h>0 Ft+h is usually denoted by Ft+. The

corresponding limit from the left, Ft−, is the smallest σ-algebra containing all the sets in

∪h>0 Ft−h and is written σ{∪h>0 Ft−h} or
∨
h>0 Ft−h

3. A filtration {Ft : t ≥ 0} is right-continuous if, for any t, Ft+ = Ft

4. A stochastic basis is a probability space (Ω,F , P ) equipped with a right-continuous filtration

{Ft : t ≥ 0} and is denoted by (Ω,F , {Ft : t ≥ 0}, P ).

5. A stochastic basis is called complete ifF contains any subset of a P-null set (soF) is complete

and if each Ft contains all P-null sets of F
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The most natural filtrations are histories of stochastic processes, or families with Ft = σ{X(s) :

0, s ≤ t}, the smallest σ-algebra with respect to which each of the variables X(s), 0 ≤ s ≤ t is

measurable. In this case, Ft “contains the information” generated by the process X on [0, t].

Definition 3. A stochastic process {X(t) : t ≥ 0} is adapted to a filtration if, for every t ≥ 0, X(t) is

Ft-measurable.

Any process is adapted to its history.

Conditioning on the path up to time t of a process X is

conditioning on the σ-algebra σ{X(u) : 0 ≤ u ≤ t}. We proceed to define conditional expectation

with respect to an arbitrary σ-algebra.

Definition 4. Suppose Y is a random variable on a probability space (Ω,F , P ) and let G be a

sub-σ-algebra of F . Let X be a random variable satisfying

1. X is G-measurable; and

2.
∫
B
Y dP =

∫
B
X dP for all subsets B ∈ G

The variable X is called the conditional expectation of Y given G, and is denoted by E(Y |G).

It is a standard result that E(Y |G) exists when E|Y | < ∞. Also, if W and X are two variables

satisfying (1) and (2) above, W and X are equivalent. If A ∈ F is an event, then by P (A|G) we

mean E(IA|G).

We will use following properties of conditional expectation as needed. Let (Ω,F , P ) be an arbitrary

probability space, X and Y random variables on this space, and Fs ⊂ Ft ⊂ F sub-σ-algebras

1. if Ft = {∅,Ω}, E(X|Ft) = E(X) a.s.

2. E
[
E(X|Ft)

]
= E(X).

3. If Fs ⊂ Ft, then E
[
E(X|Fs)|Ft

]
= E

[
E(X|Ft)|Fs

]
= E(X|Fs) a.s.

4. if σ{Y } ⊂ Ft (i.e. if Y is Ft-measurable) then E(XY |Ft) = Y E(X|Ft) a.s. This immediately

implies E(Y |Ft) = E(Y ) a.s.

5 Let X and Y be independent random variables, and let G = σ(X). Then E(Y |G) = E(Y ) a.s.
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If A is any collection of random variables, E(Y |A) will denote E(Y |σ(A)).

We will conclude this section with definitions of a counting process and a martingale process.

Definition 5. A counting process is a stochastic process {N(t) : t ≥ 0} adapted to a filtration

{Ft : t ≥ 0} with N(0) = 0 and N(t) < ∞ a.s., and whose paths are with probability one right-

continuous, piecewise constant, and have only jump discontinuities, with jumps of size +1.

Definition 6. Let {X(t) : t ≥ 0} be a right continuous stochastic process with left hand limits and

{Ft : t ≥ 0} a filtration, defined on a common probability space. X is called a martingale with

respect to Ft if

1. X is adapted to {Ft : t ≥ 0}

2. E|X(t)| <∞ for all t <∞

3. E{X(t+ s)|Ft} = X(t) a.s. for all s ≥ 0, t ≥ 0

If we substitute = by ≥, ≤ in (3) we get the definition of a sub-, super-martingale respectively.

A very common technique in dealing with general stochastic processes is to break them down into

separate martingale and drift terms. This is a powerful technique underlying a lot of martingale

methods in survival analysis. It is simply described in the case in which {Xt}t=0,1,... is a stochastic

process adapted to the discrete-time filtered probability space (Ω,F , {Ft}t=0,1,..., P ). If X is inte-

grable, then it is possible to decompose it into the sum of a martingale M and another process

A. The process A which starts from zero is such that At is Ft−1-measurable (predictable) for each

t ≥ 1. Due to M being a martingale we have the identity

At −At−1 = E
[
At −At−1|Ft−1

]
= E

[
Xt −Xt−1|Ft−1

]
(A.1)

The first equality follows from the fact that At is Ft−1-measurable, and the second by the martingale

characteristic of the process {Mt}t=0,1,....
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So, A is uniquely defined by

At =

t∑
k=1

E
[
Xk −Xk−1|Fk−1

]
(A.2)

and is referred to as the compensator of X. This decomposition was in fact first proven for discrete

time stochastic processes and is named Doob decomposition after Joseph L. Doob.

A.2. Positivity and traditional dropout modes: independent censoring, MAR and

SEQ-MAR

For a detailed treatment of (observed) positivity assumption we refer to Laan and Rose, 2011. Here

we will show a notational definition and offer one interpretation of it. Positivity is a condition coded

as

P (Rt = 1 |Rt−1 = 1,Wt−1) ≥ σ > 0

for t = 2, . . . , T . This is also called strong or theoretical positivity. In a finite sample one refers to

observed positivity if

P̂ (Rt = 1 |Rt−1 = 1,Wt−1) ≥ σ > 0

For IPW GEE estimators lack of observed positivity is one factor that can introduce considerable

bias even when the model for P (Rt = 1 |Rt−1 = 1,Wt−1) is correctly specified. Heuristically, posi-

tivity ensures that every subject i or more accurately, every realization of a covariate history Wt−1

that is possible to perceive under FC is possible to observe under FO. In other words any covariate

pattern has a positive probability of being observed during the whole course of a study.

The following is a formulation of the MAR assumption for longitudinal studies in which missingness

is monotone.
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P (Rt = 1 |Rt−1 = 1,WT ) = P (Rt = 1 |Rt−1 = 1,Wt−1)

Conditioning on the left hand side entails WT , which constitutes the observed and the counterfac-

tual part after the possible drop-out. Conditioning on the right hand side is done only on observ-

ables. This is what we refer to as conditioning on observables within the identifiability assumption.

The other characteristic is the non-parametric nature of the assumption. At this level the condi-

tional probability is just a conditional expectation of the indicator I{Rt=1} given appropriate sigma

algebras generated by different histories of the processes Wt and Rt. These are, per definition,

completely unconstrained, (square) integrable functional forms.

The SEQ-MAR assumption is formalized as

P (Rt = 1 |Rt−1 = 1,Wt−1, Y T ) = P (Rt = 1 |Rt−1 = 1,Wt−1)

(notice above, that we double counted/denoted {Y1, Y2, . . . , Yt−1}, once in Wt−1 and a second time

in Y T ). We can again see both characteristics of an identifiability assumption. The right hand side

conditions only on observables and at the same time the formulation leaves the functional form of

the conditional expectation (conditional probability) completely unspecified. It is perhaps useful to

point out that in a special case with explicitly monotone drop out where at each measurement time

t only the response Y is recorded without vector V, SEQ-MAR and MAR coincide.

In survival analysis the independent censoring assumption is an identifiability assumption that al-

lows valid inference on the population parameters (i.e., the intensity of an event process) using a

right censored sample. Right censoring in this case incurs a type of a selection bias in the sam-

ple. Assuming independent censoring renders data from uncensored survivors beyond time point

t adequate for a consistent estimation of the intensity of the underlying event process for each t.
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The definition of independent censoring in survival analysis is closely related to the Doob-Meyer

decomposition for submartingales in continuous time. We take the formulation of the condition

for absolutely continuous failure time from Fleming and Harrington, 2011. Let T be an absolutely

continuous failure time random variable and U the censoring variable. Define X = min(T,U),

δ = I{T≤U}, and let λ denote the hazard function for T . Define

N(t) = I{X≤T,δ=1}

NU (t) = I{X≤T,δ=0}

Ft = σ{N(u), NU (u) : 0 ≤ u ≤ t}.

Then the process M given by

M(t) = N(t)−
∫ t

0

I{X≥u}λ(u) du

is an Ft-martingale if and only if

λ(t) =
−∂
∂u P (T ≥ u, U ≥ T )|u=t

P (T ≥ t, U ≥ T )
whenever P (X > t) > 0. (A.3)

If we denote the right-hand side of (A.3) by λ#(t) then λ(t) is the underlying intensity (hazard) of

the failure time variable T while λ#(t) can be written as

−∂
∂u P (T ≥ u, U ≥ T )|u=t

P (T ≥ t, U ≥ T )
= lim
h→0

1

h

P (t ≤ T ≤ t+ h, U ≥ t)
P (T ≥ t, U ≥ t)

= lim
h→0

1

h
P (t ≤ T ≤ t+ h | T ≥ t, U ≥ t). (A.4)
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As we can see in (A.4) conditioning is on observables, i.e., those subjects still in the risk set. The

above statement is again made on a philosophical level (no functional form is assumed for λ(t)) and

in short claims that iff the net hazard λ and the crude hazard λ#(t) are the same we can render

the residual process a martingale by projecting the predictable part of the process N(t) only on

observable histories. The proof can be found in Fleming and Harrington, 2011.
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APPENDIX B

B.1. E-SEQ-MAR and LI in the light of positivity assumption

We illustrate for T = 3 the relationship between (2.5) and (2.4) in the light of the positivity assump-

tion (see Laan and Rose, 2011) within the class of linear autoregressive models. Let (2.5) hold for

T = 3

E[∆Y2 |R2 = 1, Y1] = E[∆Y2 | Y1, R1 = 1]

E[∆Y3 |R3 = 1, Y2, Y1] = E[∆Y3 | Y2, Y1, R2 = 1]

(B.1)

and let

E(Y3 | Y2, Y1, R3 = 1) = b01
∆Y3

+ (b21
∆Y3

+ 1)Y2 + b11
∆Y3

Y1

E(Y3|Y2, Y1, R2 = 1, R3 = 0) = b00
∆Y3

+ (b20
∆Y3

+ 1)Y2 + b10
∆Y3

Y1

For equivalence of (2.5) and (2.4) we are missing E(Y3 |R2 = 1, Y1) = E(Y3 |R1 = 1, Y1). Then,

E(Y3 |R2 = 1, Y1) = E
(
E(Y3 |R2 = 1, Y2, Y1) |R2 = 1, Y1

)
= E

(
b01
∆Y3

+ (b21
∆Y3

+ 1)Y2 + b11
∆Y3

Y1 |R2 = 1, Y1

)
= b01

∆Y3
+ (b21

∆Y3
+ 1)E

(
Y2 |R2 = 1, Y1

)
+ b11

∆Y3
Y1

(B.2)
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where for second equality we used second row of (B.1).

It also holds that,

E(Y3 |R1 = 1, Y1) = E(Y3 |R2 = 1, R1 = 1, Y1) P (R2 = 1 |R1 = 1, Y1) +

E(Y3 |R2 = 0, Y2, Y1) P (R2 = 0 |R1 = 1, Y1)

= E
(
E(Y3 |R2 = 1, Y2, Y1) |R2 = 1, Y1

)
P (R2 = 1 |R1 = 1, Y1) +

E
(
E(Y3 |R2 = 0, Y2, Y1) |R2 = 0, Y1

)
P (R2 = 0 |R1 = 1, Y1)

= E
(
b01
∆Y3

+ (b21
∆Y3

+ 1)Y2 + b11
∆Y3

Y1

∣∣∣R2 = 1, Y1

)
P (R2 = 1 |R1 = 1, Y1) +

E
(
b01
∆Y3

+ (b21
∆Y3

+ 1)Y2 + b11
∆Y3

Y1

∣∣∣R2 = 0, Y1

)
P (R2 = 0 |R1 = 1, Y1)

= b01
∆Y3

P (R2 = 1 |R1 = 1, Y1) + b00
∆Y3

P (R2 = 0 |R1 = 1, Y1)+

[
(b21

∆Y3
+ 1)E

(
Y2 |R2 = 1, Y1

)
P (R2 = 1 |R1 = 1, Y1)+

(b20
∆Y3

+ 1)E
(
Y2 |R2 = 0, Y1

)
P (R2 = 0 |R1 = 1, Y1)

]
+

[
b11
∆Y3

P (R2 = 1 |R1 = 1, Y1) + b10
∆Y3

P (R2 = 0 |R1 = 1, Y1)
]
Y1

(B.3)

We can discuss equality of (B.2) and (B.3) in 2 cases: when positivity

P (Ri2 = 1 |Ri1 = 1, Yi1) > 0

holds for any individual i or when the observed version of this assumption is not reflected in the

data.
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If we can assume that positivity holds in our data,

E[Yi, 2 |Ri, 1 = 1, Yi, 1] = E[Yi, 2 |Ri, 2 = 1, Ri, 2 = 1, Yi, 1]

(first row of (B.1)) is equivalent to

E[Yi, 2 |Ri, 2 = 0, Ri, 1 = 1, Yi, 1] = E[Yi, 3 |Ri, 2 = 1, Ri, 1 = 1, Yi, 1]

because

E[Yi, 2 |Ri, 1 = 1, Yi, 1] = E[Yi, 2 |Ri, 2 = 1, Ri, 1 = 1, Yi, 1] P (Ri, 2 = 1 |Ri, 1 = 1, Yi, 1)+

E[Yi, 2 |Ri, 2 = 0, Ri, 1 = 1, Yi, 1] P (Ri, 2 = 0 |Ri, 1 = 1, Yi, 1)

Thus in this case (E(Y2 |R2 = 0, Y1) = E(Y2 |R2 = 1, Y1)) we can write (B.3) as

E(Y3 |R1 = 1, Y1) = b01
∆Y3

P (R2 = 1 |R1 = 1, Y1) + b00
∆Y3

P (R2 = 0 |R1 = 1, Y1)+

[
(b21

∆Y3
+ 1)P (R2 = 1 |R1 = 1, Y1)+

(b20
∆Y3

+ 1)P (R2 = 0 |R1 = 1, Y1)
]
E
(
Y2 |R2 = 1, Y1

)
+

[
b11
∆Y3

P (R2 = 1 |R1 = 1, Y1) + b10
∆Y3

P (R2 = 0 |R1 = 1, Y1)
]
Y1

(B.4)
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Then, equality of (B.2) and (B.3) is equivalent to the equality of the coefficients

b01
∆Y3

= b00
∆Y3

b21
∆Y3

= b20
∆Y3

b11
∆Y3

= b10
∆Y3

regardless of the functional form of P (R2 = 1 | R1 = 1, Y1). This equality of the coefficients can

be perceived as one form of congeniality of implied models η22, η33 and η23. Positivity ensures

enough structure for the relationship between FC(Θc) and FO(Θo) that we are able to talk about

identification as a separate concept from specification. In this regard the positivity assumption suf-

fices for continuous longitudinal (panel) data. Analogous prerequisites, though more rigorous from

measure-theoretic aspect, are given in (Rø ysland, 2011) for continuous time marginal structural

models (MSM).

If positivity is not present in our data the equality of (B.2) and (B.3) cannot be reduced to such

“coefficientwise” equality because we cannot follow that E(Y2 |R2 = 0, Y1) = E(Y2 |R2 = 1, Y1) for

all i. Namely for those individuals without a positive probability to be observed at time 2 (P (Ri2 =

1 | Ri1 = 1, yi1) = 0), we cannot establish the analogous equivalence since Ri, 2 = 1 is a null set.

Individuals with Yi1 = yi1 have no “representative” in any of the observed data after time 2, so when

we extrapolate beyond observed data for them by using (B.1) we cannot be wrong, which is when

specifying a model becomes enough for identification. At this point congeniality of models ηt′ t for

1 ≤ t ≤ T and 1 ≤ t
′ ≤ t + 1 (as discussed in section (2.2.2)) takes the role that positivity has

w.r.t. estimators using the inverse probability of observing. Namely, positivity defines the condition

under which an unambiguous notion of a correct model for probability of observing an individual

at each time t can actually exist. Without it, we don’t have a reference model to conceptualize

the notion of correctness of any model for probability of dropout we might specify. It is known that

in addition to inflated variance IPW EE estimator can exhibit considerable bias even when true

inverse probability weights are used, if there is no observed positivity in the data (see Laan and

Rose, 2011). Since estimators like LI don’t rely on a model for dropout, congeniality of models
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chosen to make increments exchangeable between adherers and dropouts at each time has a

similar role of defining a notion of a correct outcome model. In the case when ηt′ t for 1 ≤ t ≤ T

and 1 ≤ t′ ≤ t+ 1 are congenial, existence of some/any FC(Θc) is not in question, so it is possible

to be correct or wrong w.r.t. this true but unknown distribution. If implied ηt′ t for 1 ≤ t ≤ T and

1 ≤ t
′ ≤ t + 1 are not congenial in the sense that no FC(Θc) can accommodate all the constraints

simultaneously, then we are left with all time specific constraints individually being correct, but no

single individual for which all of them can hold simultaneously. Identification through specification

becomes problematic for LI because of the inability to “skip” implicit specification of all ηt′ t for

1 ≤ t ≤ T and 1 ≤ t
′ ≤ t + 1. As we saw, for identification of E(YT |X) it suffices to specify only

T − 1 ηt′T (Yt′−1 ; θt′T ) for t
′

= T + 1, . . . , 1. When we impose T (T − 1)/2 constraints we make

congeniality, at best, equally plausible than when we deal with only T − 1 constraints.

B.2. LISA under future independence for T=3

We show that the form of the marginal mean E(Y3) under assumptions implied by non-ignorable

imputation algorithm and future independence has no term depending on E(Y3 | R2 = 0, Y2, Y1) −

E(Y3 |R3 = 1, R2 = 1, Y2, Y1). Non ignorable imputation algorithm implicitly assumes for T = 3 that

Y2|Y1, R2 = 1 ∼ N
(
b0∆Y2

+ (b1∆Y2
+ 1)Y1, σ∆Y2

)
Y2|Y1, R2 = 0 ∼ N

(
α+ b0∆Y2

+ (b1∆Y2
+ 1)Y1, σ∆Y2

)
Y3|Y2, Y1, R3 = 1 ∼ N

(
b0∆Y3

+ (b2∆Y3
+ 1)Y2 + b1∆Y3

Y1, σ∆Y3

)
Y3|Y2, Y1, R2 = 1, R3 = 0 ∼ N

(
(ρα+ b0∆Y3

) + (b2∆Y3
+ 1)Y2 + b1∆Y3

Y1, σ∆Y3

)
(B.5)

Further let

Yt⊥Rj |Yj , for 1 ≤ j < t, 3 ≤ t ≤ T . (B.6)

For T = 3 (B.6) implies that f(Y3|R2 = 0, Y2, Y1) = f(Y3|R2 = 1, Y2, Y1) (notice that this is 6=
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SEQ-MAR (see Robins, Rotnitzky, and Zhao (1995)). This again has a following implication on the

conditional expectations

E(Y3 |R2 = 1, Y2, Y1) = E(Y3 |R2 = 0, Y2, Y1)

Thus, for linear autoregressive class of models, E(∆Y3 | R2 = 0, Y2, Y1) = E(∆Y3 | R2 = 1, Y2, Y1).

In general it always holds that

E(Y3 |R2 = 1, Y2, Y1) = E(Y3 |R3 = 0, R2 = 1, Y2, Y1) P (R3 = 0 |R2 = 1, Y2, Y1) +

E(Y3 |R3 = 1, R2 = 1, Y2, Y1) P (R3 = 1 |R2 = 1, Y2, Y1)

=
(
b0∆Y3

+ (b2∆Y3
+ 1)Y2 + b1∆Y3

Y1

)
P (R3 = 0 |R2 = 1, Y2, Y1) +(

(ρα+ b0∆Y3
) + (b2∆Y3

+ 1)Y2 + b1∆Y3
Y1

)
P (R3 = 1 |R2 = 1, Y2, Y1)

= (ρα+ b0∆Y3
)P (R3 = 0 |R2 = 1, Y2, Y1) + b0∆Y3

P (R3 = 1 |R2 = 1, Y2, Y1) +

(b2∆Y3
+ 1) Y2 + b1∆Y3

Y1

Thus, with (B.5) and (B.6), b02

∆Y3
the intercept of E(∆Y3 |R2 = 0, Y2, Y1) is

b02

∆Y3
= (ρα+ b0∆Y3

)P (R3 = 0 |R2 = 1, Y2, Y1) + b0∆Y3
P (R3 = 1 |R2 = 1, Y2, Y1)

(B.7)

Again the combination of parametrization (B.5) and future independence puts a constraint on

P (R3 = 0 | R2 = 1, Y2, Y1). The only values for which P (R3 = 0 | R2 = 1, Y2, Y1) can remain

unconstrained is α = 0, otherwise (B.7) can hold only if P (R3 = 0 | R2 = 1, Y2, Y1) is a constant
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function of Y1 and Y2. Nevertheless, we can still, use implications of (B.5) and (B.7) as an heuristical

argument for redundancy of specification of E(Y3 | R2 = 0, Y2, Y1) − E(Y3 | R3 = 1, R2 = 1, Y2, Y1)

under these assumptions. Then if we write out E(Y3) we have using the above

E(Y3) = E
(
E[Y3 | Y1]

)

= E
(
E[Y3 |R2 = 1, Y1] P (R2 = 1 | Y1) + E[Y3 |R2 = 0, Y1] P (R2 = 0 | Y1)

)

= E
(
E
[
E(Y3 |R2 = 1, Y2, Y1) |R2 = 1, Y1

]
P (R2 = 1 | Y1) +

E
[
E(Y3 |R2 = 0, Y2, Y1) |R2 = 0, Y1

]
P (R2 = 0 | Y1)

)

= E
(
E
[
(b02

∆Y3
+ (b2∆Y3

+ 1)Y2 + b1∆Y3
Y1)

∣∣∣R2 = 1, Y1

]
P (R2 = 1 | Y1) +

E
[
(b02

∆Y3
+ (b2∆Y3

+ 1)Y2 + b1∆Y3
Y1)

∣∣∣R2 = 0, Y1

]
P (R2 = 0 | Y1)

)

= E
((
b0∆Y3

+ ρα P (R3 = 0 |R2 = 1, Y1) + (b2∆Y3
+ 1)

(
b0∆Y2

+ (b1∆Y2
+ 1)Y1

)
+ b1∆Y3

Y1

)
×

P (R2 = 1 | Y1) +
(
b0∆Y3

+ E
[
ρα P (R3 = 0 |R2 = 1, Y1)

∣∣∣R2 = 0, Y1

]
︸ ︷︷ ︸

=0 since R2 = 0 AND R2 = 1 can’t be simultaneously true

+

(b2∆Y3
+ 1)

(
(α+ b0∆Y2

) + (b1∆Y2
+ 1)Y1

)
+ b1∆Y3

Y1

)
P (R2 = 0 | Y1)

)

use (4.7)

= b0∆Y3
P (R2 = 1) + ραP (R3 = 0, R2 = 1) + (b2∆Y3

+ 1)b0∆Y2
P (R2 = 1)+

(b2∆Y3
+ 1)(b1∆Y2

+ 1) E
(
Y1 P (R2 = 1 | Y1)

)
+ b1∆Y3

E
(
Y1 P (R2 = 1 | Y1)

)
+

b0∆Y3
P (R2 = 0) + (b2∆Y3

+ 1)(α+ b0∆Y2
)P (R2 = 0) +

(b2∆Y3
+ 1)(b1∆Y2

+ 1) E
(
Y1 P (R2 = 0 | Y1)

)
+ b1∆Y3

E
(
Y1 P (R2 = 0 | Y1)

)

= b0∆Y3
+ ραP (R3 = 0, R2 = 1) +

(
b2∆Y3

+ 1
)
b0∆Y2

+ (b2∆Y3
+ 1)α P (R2 = 0)(

b2∆Y3
+ 1
)(
b1∆Y2

+ 1
)
E(Y1) + b1∆Y3

E(Y1)
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So we see that the marginal mean E(Y3) (within the previously mentioned heuristical confines of

this argument) is not a function of a shift between b02

∆Y3
and b0∆Y3

and that it can be expressed

exclusively as a function of observed dropout rates and parameters identifiable from observed data

and contemporaneous shifts δ21 and δ32.

B.3. LISA bias w.r.t. DH for T = 4

We write out E(Y4) as a function of marginal dropout rates and DH parameters for T = 4.

E(Y4) = γ
(4)
0 + (γ

(1)
0 − γ(4)

0 )P (R2 = 0) + (γ
(2)
0 − γ(4)

0 )P (R3 = 0, R2 = 1) +

(γ
(3)
0 − γ(4)

0 )P (R4 = 0, R3 = 1) + γ
(4)
3

(
β

(≥3)
0 + (β

(2)
0 − β(≥3)

0 ) P (R3 = 0, R2 = 1) +

(β
(1)
0 − β(≥3)

0 ) P (R2 = 0) + β
(≥3)
2 α

(≥2)
0 + β

(≥3)
2 (α

(1)
0 − α

(≥2)
0 ) P (R2 = 0) +

β
(≥3)
2 α

(≥2)
1 E(Y1) + β

(≥3)
1 E(Y1)

)
+

γ
(4)
3

(
α

(≥2)
0 + (α

(1)
0 − α

(≥2)
0 )P (R2 = 0)α

(≥2)
1 E(Y1)

)
+ γ

(4)
1 E(Y1)

Notice that the term next to γ
(4)
3 and γ

(4)
2 are E(Y3) and E(Y2). Given that these 2 are estimated

unbiasedly we could discuss bias of β4
LI that comes from setting γ(1)

0 −γ
(4)
0 = γ

(2)
0 −γ

(4)
0 = γ

(3)
0 −γ

(4)
0 .

Nevertheless, in contrast to T = 3 there are two shifts for T = 4 that are to be examined w.r.t. bias

of β4
LI .
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ϕ41 = E
(
Y2|R2 = 0, Y1

)
− E

(
Y2|R2 = 1, Y1

)
︸ ︷︷ ︸

δ21(α;Y1)

+

(β
(1)
0 − β(≥3)

0 ) + b
(2)
∆Y3

[
E
(
Y2|R2 = 0, Y1

)
− E

(
Y2|R2 = 1, Y1

)]
−

(β
(2)
0 − β(≥3)

0 )P (R3 = 0 |R2 = 1, Y1)︸ ︷︷ ︸
δ31(α;Y1)

+

(γ
(1)
0 − γ(4)

0 )+

b
(3)
∆Y4

[
(β

(1)
0 − β(≥3)

0 ) + b
(2)
∆Y3

[
E
(
Y2|R2 = 0, Y1

)
− E

(
Y2|R2 = 1, Y1

)]
−

(β
(2)
0 − β(≥3)

0 )P (R3 = 0 |R2 = 1, Y1)
]

+

(b
(3)
∆Y4

+ γ
(4)
2 )
[
E
(
Y2|R2 = 0, Y1

)
− E

(
Y2|R2 = 1, Y1

)]
−

(γ
(2)
0 − γ(4)

0 )P (R3 = 0 |R2 = 1, Y1)− (γ
(3)
0 − γ(4)

0 )P (R4 = 0, R3 = 1 |R2 = 1, Y1)

Last 5 rows above correspond to δ41.

ϕ42 = (γ
(2)
0 − γ(4)

0 ) + b
(3)
∆Y4

(β
(2)
0 − β(≥3)

0 )− (γ
(3)
0 − γ(4)

0 )P (R4 = 0 |R3 = 1, R2 = 1, Y2, Y1)︸ ︷︷ ︸
δ42

+

(β
(2)
0 − β(3)

0 )︸ ︷︷ ︸
δ32
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APPENDIX C

R-CODE

C.1. Simulations from chapter 2

library(mvtnorm)

library(rje)

library(nlme)

library(ipw)

library(survey)

library(glmnet)

library(geepack)

library(Hmisc)

library(mclust)

library(monomvn)

w<-c(0,1,2,4,6,8)

alpha<-c(-8,-6,-6,-6, -4)

alpha_pos3<-c(-5.5,-2,-3.4, 2.5, 17)

gamma<-c(0.2,0.3, 0.3, 0.5, 0.6)

nrPatients<-c(125,250,500,1000)

trueProbMis<-NULL

fu<-function(x) {x[1]+w*x[2]}

createFullData1<-function(l, sigma_0Sq, sigma_1Sq, mu_Y, sigmaEpsilonSq){

# gen U1, U2

U<-rmvnorm(n=l,mean=c(0,0), sigma=matrix(c(sigma_0Sq,0,0,sigma_1Sq),2,2))

S<-t(matrix(apply(U, 1, fu), length(w), l))

M<-matrix(nrow=l, ncol=1)

M<-cbind(M, cbind(U[,1],U[,2]))

M<-M[,-1]

mu<-matrix(nrow=l, ncol=length(w))

for(k in seq(1, l)){

mu[k,]<-mu_Y

}

#generate the U3, U4, U5, U6 so that Var(S(t))=Var(M(t))

U_rest<-rmvnorm(n=l,mean=rep(0,length(w)-2), sigma=matrix(c((w[3]ˆ2-1)*sigma_1Sq,0, 0, 0,

0,(w[4]ˆ2-w[3]ˆ2)*sigma_1Sq, 0, 0,

0,0,(w[5]ˆ2-w[4]ˆ2)*sigma_1Sq, 0,

0,0,0,(w[5]ˆ2-w[4]ˆ2)*sigma_1Sq)

,length(w)-2,length(w)-2))

# gen M1, M2, M3, M4, M5, M6

M<-t(apply(cbind(M,U_rest), 1, cumsum))

# gen epsilon errors

epsilon<-rmvnorm(n=l, mean=rep(0,length(w)), sigma=matrix(c(sigmaEpsilonSq,0,0,0,0,0,

0,sigmaEpsilonSq,0,0,0,0,

0,0,sigmaEpsilonSq,0,0,0,

0,0,0,sigmaEpsilonSq,0,0,

0,0,0,0,sigmaEpsilonSq,0,

0,0,0,0,0,sigmaEpsilonSq),length(w),length(w)))

Y_randInterceptAndSlope<-data.frame(mu+S+epsilon)

names(Y_randInterceptAndSlope)<-c("Y_S0","Y_S1","Y_S2", "Y_S3", "Y_S4")

Y_MartingaleEff<-data.frame(mu+M+epsilon)

names(Y_MartingaleEff)<-c("Y_M0","Y_M1","Y_M2","Y_M3","Y_M4")

return(cbind(Y_randInterceptAndSlope,Y_MartingaleEff, S, M))
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}

funGetInForm<-function(x){

ys<-unname(unlist(x[seq(1,length(w))]))

rs<-unname(unlist(x[seq(length(w)+1,2*length(w))]))

ms<-unname(unlist(x[seq(3*length(w)+1,4*length(w))]))

misP<-unname(unlist(c(1,x[seq(2*length(w)+2,3*length(w))])))

return(matrix(cbind(t(ys),t(rs),t(ms), t(misP)), nrow=length(w), ncol=4))

}

#function deletes values according to logit model from Diggle 2007 paper,

# logit is linear in random effect S(t) or M(t), R=1 means obs is missing

fun_miss1<-function(x){

R<-NULL

k<-1

trueProbMis<-NULL

while(k <length(w)){

prob<-as.double(expit(alpha[k]+gamma[k]*x[k]))

trueProbMis<-c(trueProbMis,prob)

R_k<-rbinom(1, 1, prob)

R<-c(R,R_k)

if(R_k){

R<-c(R,rep(1,length(w)-1-k))

k<-length(w)

} else {k<-k+1}

}

trueProbMis<-ifelse(rep(length(trueProbMis),(length(w)-1))!=(length(w)-1),

c(trueProbMis,rep(0.99, length(w)-1-length(trueProbMis))),trueProbMis)

s<-ifelse(min(which(R==1))!=Inf,min(which(R==1))+1, length(w)+1)

return(c(rep(1, length(R))-R, s, trueProbMis))

fun_miss3<-function(x){

R<-NULL

k<-1

trueProbMis<-NULL

while(k <length(w)){

prob<-unlist(0.3*(exp(alpha_pos3[k]+gamma[k]*x[k])/(1+exp(alpha_pos3[k]+gamma[k]*x[k]))))

trueProbMis<-c(trueProbMis,prob)

R_k<-rbinom(1, 1, prob)

R<-c(R,R_k)

if(R_k){

R<-c(R,rep(1,length(w)-1-k))

k<-length(w)

} else {k<-k+1}

}

trueProbMis<-ifelse(rep(length(trueProbMis),(length(w)-1))!=(length(w)-1),

c(trueProbMis,rep(0.99, length(w)-1-length(trueProbMis))),trueProbMis)

s<-ifelse(min(which(R==1))!=Inf,min(which(R==1))+1, length(w)+1)

return(c(rep(1, length(R))-R, s, trueProbMis))

}

calcStblWeights<-function(x){

weight<-cumprod(x[1:length(w)-1])/x[seq(length(w),2*(length(w)-1))]

return (weightˆ(-1))

}

i<-3

prev_Y_or_M<-matrix(c("M","S", "Y_M", "Y_S"), nrow=2, ncol=2, byrow=FALSE)

nrIterations<-1000

\newpage
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for (b in c(1,2)){

for (a in c(1,3)){

matrixResults<-matrix(nrow=1, ncol=12)

set.seed(10000)

LI_M<-NULL

LIALL_S<-NULL

LIALL_M<-NULL

SWEEP_M<-NULL

SWEEP_S<-NULL

SWEEP_M_LIALL<-NULL

SWEEP_M_LILast<-NULL

SWEEP_S_LIALL<-NULL

SWEEP_S_LILast<-NULL

SWEEP_M_last<-NULL

SWEEP_S_last<-NULL

SWEEP_S_constant_LI_Constat<-NULL

SWEEP_S_All_LI_Constat<-NULL

LI_Constant_S<-NULL

SWEEP_M_constant_LI_Constat<-NULL

SWEEP_M_All_LI_Constat<-NULL

LI_Constant_M<-NULL

LI_S<-NULL

LILast_M<-NULL

LILast_S<-NULL

Y_M_IPW<-NULL

Y_M_IPWY<-NULL

Y_S_IPW<-NULL

Y_S_IPWY<-NULL

minProb_M<-NULL

minProb_S<-NULL

medProb_M<-NULL

medProb_S<-NULL

drop_M<-NULL

drop_S<-NULL

system.time(

for(j in seq(1,nrIterations)){

# l=number of patients, sigma_0Sq=200, sigma_1Sq=15, mu_Y=c(0,0,0,0,0,0),

# sigmaEpsilonSq=100

Y<-createFullData1(nrPatients[i], 200, 15, rep(0, length(w)), 100)

Y_M<-Y[,seq(length(w)+1,2*length(w))]

Y_S<-Y[,seq(1,length(w))]

# M and S are random effects (martingale, Laird-Waare resp.)

M<-Y[,seq(3*length(w)+1,4*length(w))]

S<-Y[,seq(2*length(w)+1,3*length(w))]

# generate dropout

h<-expression(paste("R_M_AndProbs<-t(apply(",

prev_Y_or_M[1,b],

"[,-length(w)],1,fun_miss",

a, "))", sep=""))

eval(parse(text=eval(h)))

h<-expression(paste("R_S_AndProbs<-t(apply(",

prev_Y_or_M[2,b],

"[,-length(w)],1,fun_miss",

a, "))", sep=""))

eval(parse(text=eval(h)))

# add column of 1’s to the nrPatients[i]x5 R matrix

# of missingness indicators
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dat_M_temp<-cbind(Y_M, cbind(rep(1, nrPatients[i]), R_M_AndProbs), M)

dat_S_temp<-cbind(Y_S, cbind(rep(1, nrPatients[i]), R_S_AndProbs), S)

dat_S<-NULL

dat_M<-NULL

# transform data into a form suitable for glm function

for(h in seq(1,nrPatients[i])){

tem<-funGetInForm(dat_M_temp[h,])

dat_M<-rbind(dat_M,

cbind(rep(h, length(w)),

seq(1,length(w)),

tem,

c(NA, tem[,1][c(-length(w))]),

c(NA, tem[,3][c(-length(w))]),

rep(dat_M_temp[h,2*length(w)+1]))

)

}

for(h in seq(1,nrPatients[i])){

tem<-funGetInForm(dat_S_temp[h,])

dat_S<-rbind(dat_S,

cbind(rep(h, length(w)),

seq(1,length(w)),

tem,

c(NA, tem[,1][c(-length(w))]),

c(NA, tem[,3][c(-length(w))]),

rep(dat_S_temp[h,2*length(w)+1]))

)

}

dat_M<-data.frame(dat_M)

names(dat_M)<-c("pid", "obs", "y", "R","M","probMis","prevY","prevM","dropOut")

dat_M$mis<-1-dat_M$R

dat_M$obs_startZero<-dat_M$obs-1

dat_M$deltaY<-dat_M$y

dat_M$deltaY[dat_M$obs!=1]<-dat_M$deltaY[dat_M$obs!=1]-dat_M$prevY[dat_M$obs!=1]

tm<-dat_M[,c(1,2,3)]

dat_M$Y_tminus1<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 1))))

dat_M$Y_tminus2<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 2))))

dat_M$Y_tminus3<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 3))))

dat_M$Y_tminus4<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 4))))

dat_M$Y_tminus5<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 5))))

dat_S<-data.frame(dat_S)

names(dat_S)<-c("pid", "obs", "y", "R","S","probMis","prevY","prevS","dropOut")

dat_S$mis<-1-dat_S$R

dat_S$obs_startZero<-dat_S$obs-1

dat_S$deltaY<-dat_S$y

dat_S$deltaY[dat_S$obs!=1]<-dat_S$deltaY[dat_S$obs!=1]-dat_S$prevY[dat_S$obs!=1]

tm<-dat_S[,c(1,2,3)]

dat_S$Y_tminus1<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 1))))

dat_S$Y_tminus2<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 2))))

dat_S$Y_tminus3<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 3))))

dat_S$Y_tminus4<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 4))))

dat_S$Y_tminus5<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 5))))

fitMDat<-dat_M[dat_M$mis==0, c(1,2,12)]

fit_M<-lmList(deltaY˜1|obs, data=fitMDat, pool=F)

LI_M<-rbind(LI_M, cumsum(coef(fit_M)[[1]]))
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predictedLI_1<-NULL

predictedLI_2<-NULL

namPred<-c("interc", "Y_tminus1", "Y_tminus2", "Y_tminus3","Y_tminus4","Y_tminus5")

for(t in seq(1,6)){

temp<-dat_M[dat_M$mis==0 & dat_M$obs==t, c(1,2,12,13,14,15,16,17)]

if(t!=1){

predictors<-"1"

out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

gh<-matrix(nrow=nrPatients[i], ncol=1)

gh[,1]<-seq(1,nrPatients[i])

gh<-data.frame(gh)

names(gh)[1]<-"pid"

temp1<-dat_M[dat_M$dropOut>t-1 & dat_M$obs==t, c(1,2,12,13,14,15,16,17)]

gh<-merge(gh, temp1[, c(1,seq(4, 4+t-2))], all.x=TRUE)

if(length(temp1[,1])!=nrPatients[i]){gh[-temp1[,1],seq(2, t)]<-predictedLI_1[-temp1[,1],]}

d<-data.frame(cbind(rep(1, nrPatients[i]), gh[,-c(1)]))

names(d)<-namPred[seq(1,t)]

predTemp<-rep(0, nrPatients[i])

predTemp[temp[,which(names(temp)=="pid")]]<-temp[,which(names(temp)=="deltaY")]

predTemp[-temp[,which(names(temp)=="pid")]]<-

unname(predict(mod1, d)[-temp[, which(names(temp)=="pid")]])

predictedLI_2<-cbind(predictedLI_2, predictedLI_2[,t-1]+predTemp)

predictedLI_1<-t(apply(predictedLI_2, 1, rev))

} else {

mod1<-lm(deltaY˜1,data=temp)

predictedLI_1<-cbind(predictedLI_1, temp$deltaY)

predictedLI_2<-cbind(predictedLI_2, temp$deltaY)

}

}

LI_Constant_M<-rbind(LI_Constant_M, apply(predictedLI_2,2,mean))

dTemp<-data.frame(matrix(rep(0,nrPatients[i]*6*9),

nrow=nrPatients[i]*6,ncol=9, byrow=TRUE))

names(dTemp)<-c("pid","obs","y","mis",

"Y_tminus1", "Y_tminus2","Y_tminus3",

"Y_tminus4","Y_tminus5")

dTemp$pid<-dat_M$pid

dTemp$obs<-dat_M$obs

dTemp$y<-rep(0,nrPatients[i]*6)

dTemp$y[seq(1,nrPatients[i]*6,6)]<-predictedLI_2[,1]

dTemp$y[seq(2,nrPatients[i]*6,6)]<-predictedLI_2[,2]

dTemp$y[seq(3,nrPatients[i]*6,6)]<-predictedLI_2[,3]

dTemp$y[seq(4,nrPatients[i]*6,6)]<-predictedLI_2[,4]

dTemp$y[seq(5,nrPatients[i]*6,6)]<-predictedLI_2[,5]

dTemp$y[seq(6,nrPatients[i]*6,6)]<-predictedLI_2[,6]

dTemp$mis<-rep(0, nrPatients[i]*6)

tm<-dTemp[,c(1,2,3)]

dTemp$Y_tminus1<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 1))))

dTemp$Y_tminus2<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 2))))

dTemp$Y_tminus3<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 3))))

dTemp$Y_tminus4<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 4))))

dTemp$Y_tminus5<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 5))))
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SWM<-diag(length(w)+1)

for(t in seq(6,1)){

temp<-dTemp[dTemp$mis==0 & dTemp$obs==t, c(1,2,3,5,6,7,8,9)]

if(t!=1){

vtemp<-names(temp)[seq(4, 4+t-2)]

predictors<-gsub(’,’,’’,toString(c(rbind(vtemp, rep("+", t-2)))[-2*(t-1)]))

out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

h<-expression(paste("mod",t+1,"<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

SWM<-SWM%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

} else {

mod1<-lm(y˜1,data=temp)

mod2<-lm(y˜1,data=temp)

SWM<-SWM%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

}

}

SWEEP_M_All_LI_Constat<-rbind(SWEEP_M_All_LI_Constat, SWM[-1])

SWM<-diag(length(w)+1)

for(t in seq(6,1)){

temp<-dTemp[dTemp$mis==0 & dTemp$obs==t, c(1,2,3,5,6,7,8,9)]

if(t!=1){

y<-temp[,3]

x<-temp[,4]

mod1<-glm(y˜offset(I(1*x)))

#predict(mod1)

SWM<-SWM%*%t(cbind(diag(t), c(unname(mod1$coeff), 1, rep(0,t-2))))

} else {

mod1<-lm(y˜1,data=temp)

mod2<-lm(y˜1,data=temp)

SWM<-SWM%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

}

}

SWEEP_M_constant_LI_Constat<-rbind(SWEEP_M_constant_LI_Constat, SWM[-1])

predictedLI_1<-NULL

predictedLI_2<-NULL

namPred<-c("interc", "Y_tminus1", "Y_tminus2", "Y_tminus3","Y_tminus4","Y_tminus5")

for(t in seq(1,6)){

temp<-dat_M[dat_M$mis==0 & dat_M$obs==t, c(1,2,12,13,14,15,16,17)]

if(t!=1){

vtemp<-names(temp)[seq(4, 4+t-2)]

predictors<-gsub(’,’,’’,toString(c(rbind(vtemp, rep("+", t-2)))[-2*(t-1)]))

out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

gh<-matrix(nrow=nrPatients[i], ncol=1)

gh[,1]<-seq(1,nrPatients[i])

gh<-data.frame(gh)

names(gh)[1]<-"pid"

temp1<-dat_M[dat_M$dropOut>t-1 & dat_M$obs==t, c(1,2,12,13,14,15,16,17)]

gh<-merge(gh, temp1[, c(1,seq(4, 4+t-2))], all.x=TRUE)

if(length(temp1[,1])!=nrPatients[i]){gh[-temp1[,1],seq(2, t)]<-predictedLI_1[-temp1[,1],]}

d<-data.frame(cbind(rep(1, nrPatients[i]), gh[,-c(1)]))

names(d)<-namPred[seq(1,t)]

predTemp<-rep(0, nrPatients[i])
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predTemp[temp[,which(names(temp)=="pid")]]<-temp[,which(names(temp)=="deltaY")]

predTemp[-temp[,which(names(temp)=="pid")]]<-

unname(predict(mod1, d)[-temp[, which(names(temp)=="pid")]])

predictedLI_2<-cbind(predictedLI_2, predictedLI_2[,t-1]+predTemp)

predictedLI_1<-t(apply(predictedLI_2, 1, rev))

} else {

mod1<-lm(deltaY˜1,data=temp)

predictedLI_1<-cbind(predictedLI_1, temp$deltaY)

predictedLI_2<-cbind(predictedLI_2, temp$deltaY)

}

}

LIALL_M<-rbind(LIALL_M, apply(predictedLI_2,2,mean))

dTemp<-data.frame(matrix(rep(0,nrPatients[i]*6*9),

nrow=nrPatients[i]*6,ncol=9, byrow=TRUE))

names(dTemp)<-c("pid","obs","y","mis",

"Y_tminus1", "Y_tminus2","Y_tminus3",

"Y_tminus4","Y_tminus5")

dTemp$pid<-dat_M$pid

dTemp$obs<-dat_M$obs

dTemp$y<-rep(0,nrPatients[i]*6)

dTemp$y[seq(1,nrPatients[i]*6,6)]<-predictedLI_2[,1]

dTemp$y[seq(2,nrPatients[i]*6,6)]<-predictedLI_2[,2]

dTemp$y[seq(3,nrPatients[i]*6,6)]<-predictedLI_2[,3]

dTemp$y[seq(4,nrPatients[i]*6,6)]<-predictedLI_2[,4]

dTemp$y[seq(5,nrPatients[i]*6,6)]<-predictedLI_2[,5]

dTemp$y[seq(6,nrPatients[i]*6,6)]<-predictedLI_2[,6]

dTemp$mis<-rep(0, nrPatients[i]*6)

tm<-dTemp[,c(1,2,3)]

dTemp$Y_tminus1<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 1))))

dTemp$Y_tminus2<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 2))))

dTemp$Y_tminus3<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 3))))

dTemp$Y_tminus4<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 4))))

dTemp$Y_tminus5<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 5))))

SWS<-diag(length(w)+1)

for(t in seq(6,1)){

temp<-dTemp[dTemp$mis==0 & dTemp$obs==t, c(1,2,3,5,6,7,8,9)]

if(t!=1){

vtemp<-names(temp)[seq(4, 4+t-2)]

predictors<-gsub(’,’,’’,toString(c(rbind(vtemp, rep("+", t-2)))[-2*(t-1)]))

out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

h<-expression(paste("mod",t+1,"<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

SWS<-SWS%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

} else {

mod1<-lm(y˜1,data=temp)

mod2<-lm(y˜1,data=temp)

SWS<-SWS%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

}

}

SWEEP_M_LIALL<-rbind(SWEEP_M_LIALL, SWS[-1])

predictedLI_1<-NULL

predictedLI_2<-NULL

namPred<-c("interc", "Y_tminus1", "Y_tminus2", "Y_tminus3","Y_tminus4","Y_tminus5")

for(t in seq(1,6)){

temp<-dat_M[dat_M$mis==0 & dat_M$obs==t, c(1,2,12,13,14,15,16,17)]
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if(t!=1){

vtemp<-names(temp)[4]

predictors<-"Y_tminus1"

out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

gh<-matrix(nrow=nrPatients[i], ncol=1)

gh[,1]<-seq(1,nrPatients[i])

gh<-data.frame(gh)

names(gh)[1]<-"pid"

temp1<-dat_M[dat_M$dropOut>t-1 & dat_M$obs==t, c(1,2,12,13,14,15,16,17)]

gh<-merge(gh, temp1[,c(1,4)], all.x=TRUE)

if(length(temp1[,1])!=nrPatients[i]){gh[-temp1[,1],2]<-predictedLI_1[-temp1[,1],1]}

d<-data.frame(cbind(rep(1, nrPatients[i]), gh[,-c(1)]))

names(d)<-namPred[c(1,2)]

predTemp<-rep(0,nrPatients[i])

predTemp[temp[,which(names(temp)=="pid")]]<-temp[,which(names(temp)=="deltaY")]

predTemp[-temp[,which(names(temp)=="pid")]]<-

unname(predict(mod1, d)[-temp[, which(names(temp)=="pid")]])

predictedLI_2<-cbind(predictedLI_2, predictedLI_2[,t-1]+predTemp)

predictedLI_1<-t(apply(predictedLI_2, 1, rev))

} else {

mod1<-lm(deltaY˜1,data=temp)

predictedLI_1<-cbind(predictedLI_1, temp$deltaY)

predictedLI_2<-cbind(predictedLI_2, temp$deltaY)

}

}

LILast_M<-rbind(LILast_M, apply(predictedLI_2,2,mean))

dTemp<-data.frame(matrix(rep(0,nrPatients[i]*6*9),

nrow=nrPatients[i]*6,ncol=9, byrow=TRUE))

names(dTemp)<-c("pid","obs","y","mis",

"Y_tminus1", "Y_tminus2","Y_tminus3",

"Y_tminus4","Y_tminus5")

dTemp$pid<-dat_M$pid

dTemp$obs<-dat_M$obs

dTemp$y<-rep(0,nrPatients[i]*6)

dTemp$y[seq(1,nrPatients[i]*6,6)]<-predictedLI_2[,1]

dTemp$y[seq(2,nrPatients[i]*6,6)]<-predictedLI_2[,2]

dTemp$y[seq(3,nrPatients[i]*6,6)]<-predictedLI_2[,3]

dTemp$y[seq(4,nrPatients[i]*6,6)]<-predictedLI_2[,4]

dTemp$y[seq(5,nrPatients[i]*6,6)]<-predictedLI_2[,5]

dTemp$y[seq(6,nrPatients[i]*6,6)]<-predictedLI_2[,6]

dTemp$mis<-rep(0, nrPatients[i]*6)

tm<-dTemp[,c(1,2,3)]

dTemp$Y_tminus1<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 1))))

dTemp$Y_tminus2<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 2))))

dTemp$Y_tminus3<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 3))))

dTemp$Y_tminus4<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 4))))

dTemp$Y_tminus5<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 5))))

SWS<-diag(length(w)+1)

for(t in seq(6,1)){

temp<-dTemp[dTemp$mis==0 & dTemp$obs==t, c(1,2,3,5,6,7,8,9)]

if(t!=1){

vtemp<-names(temp)[4]

predictors<-"Y_tminus1"
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out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

SWS<-SWS%*%t(cbind(diag(t),c(unname(mod1$coeff), rep(0,t-2))))

} else {

mod1<-lm(y˜1,data=temp)

mod2<-lm(y˜1,data=temp)

SWS<-SWS%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

}

}

SWEEP_M_LILast<-rbind(SWEEP_M_LILast, SWS[-1])

fitSDat<-dat_S[dat_S$mis==0, c(1,2,12)]

fit_S<-lmList(deltaY˜1|obs, data=fitSDat, pool=F)

LI_S<-rbind(LI_S, cumsum(coef(fit_S)[[1]]))

predictedLI_1<-NULL

predictedLI_2<-NULL

namPred<-c("interc", "Y_tminus1", "Y_tminus2", "Y_tminus3","Y_tminus4","Y_tminus5")

for(t in seq(1,6)){

temp<-dat_S[dat_S$mis==0 & dat_S$obs==t, c(1,2,12,13,14,15,16,17)]

if(t!=1){

predictors<-"1"

out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

gh<-matrix(nrow=nrPatients[i], ncol=1)

gh[,1]<-seq(1,nrPatients[i])

gh<-data.frame(gh)

names(gh)[1]<-"pid"

temp1<-dat_S[dat_S$dropOut>t-1 & dat_S$obs==t, c(1,2,12,13,14,15,16,17)]

gh<-merge(gh, temp1[, c(1,seq(4, 4+t-2))], all.x=TRUE)

if(length(temp1[,1])!=nrPatients[i]){gh[-temp1[,1],seq(2, t)]<-predictedLI_1[-temp1[,1],]}

d<-data.frame(cbind(rep(1, nrPatients[i]), gh[,-c(1)]))

names(d)<-namPred[seq(1,t)]

predTemp<-rep(0, nrPatients[i])

predTemp[temp[,which(names(temp)=="pid")]]<-temp[,which(names(temp)=="deltaY")]

predTemp[-temp[,which(names(temp)=="pid")]]<-

unname(predict(mod1, d)[-temp[, which(names(temp)=="pid")]])

predictedLI_2<-cbind(predictedLI_2, predictedLI_2[,t-1]+predTemp)

predictedLI_1<-t(apply(predictedLI_2, 1, rev))

} else {

mod1<-lm(deltaY˜1,data=temp)

predictedLI_1<-cbind(predictedLI_1, temp$deltaY)

predictedLI_2<-cbind(predictedLI_2, temp$deltaY)

}

}

LI_Constant_S<-rbind(LI_Constant_S,apply(predictedLI_2,2,mean))

dTemp<-data.frame(matrix(rep(0,nrPatients[i]*6*9),

nrow=nrPatients[i]*6,ncol=9, byrow=TRUE))

names(dTemp)<-c("pid","obs","y","mis",

"Y_tminus1", "Y_tminus2","Y_tminus3",

"Y_tminus4","Y_tminus5")

dTemp$pid<-dat_M$pid

dTemp$obs<-dat_M$obs

dTemp$y<-rep(0,nrPatients[i]*6)

dTemp$y[seq(1,nrPatients[i]*6,6)]<-predictedLI_2[,1]
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dTemp$y[seq(2,nrPatients[i]*6,6)]<-predictedLI_2[,2]

dTemp$y[seq(3,nrPatients[i]*6,6)]<-predictedLI_2[,3]

dTemp$y[seq(4,nrPatients[i]*6,6)]<-predictedLI_2[,4]

dTemp$y[seq(5,nrPatients[i]*6,6)]<-predictedLI_2[,5]

dTemp$y[seq(6,nrPatients[i]*6,6)]<-predictedLI_2[,6]

dTemp$mis<-rep(0, nrPatients[i]*6)

tm<-dTemp[,c(1,2,3)]

dTemp$Y_tminus1<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 1))))

dTemp$Y_tminus2<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 2))))

dTemp$Y_tminus3<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 3))))

dTemp$Y_tminus4<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 4))))

dTemp$Y_tminus5<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 5))))

SWS<-diag(length(w)+1)

for(t in seq(6,1)){

temp<-dTemp[dTemp$mis==0 & dTemp$obs==t, c(1,2,3,5,6,7,8,9)]

if(t!=1){

vtemp<-names(temp)[seq(4, 4+t-2)]

predictors<-gsub(’,’,’’,toString(c(rbind(vtemp, rep("+", t-2)))[-2*(t-1)]))

out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

h<-expression(paste("mod",t+1,"<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

SWS<-SWS%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

} else {

mod1<-lm(y˜1,data=temp)

mod2<-lm(y˜1,data=temp)

SWS<-SWS%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

}

}

SWEEP_S_All_LI_Constat<-rbind(SWEEP_S_All_LI_Constat, SWS[-1])

SWS<-diag(length(w)+1)

for(t in seq(6,1)){

temp<-dTemp[dTemp$mis==0 & dTemp$obs==t, c(1,2,3,5,6,7,8,9)]

if(t!=1){

y<-temp[,3]

x<-temp[,4]

mod1<-glm(y˜offset(I(1*x)))

#predict(mod1)

SWS<-SWS%*%t(cbind(diag(t), c(unname(mod1$coeff), 1, rep(0,t-2))))

} else {

mod1<-lm(y˜1,data=temp)

mod2<-lm(y˜1,data=temp)

SWS<-SWS%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

}

}

SWEEP_S_constant_LI_Constat<-rbind(SWEEP_S_constant_LI_Constat, SWS[-1])

predictedLI_1<-NULL

predictedLI_2<-NULL

namPred<-c("interc", "Y_tminus1", "Y_tminus2", "Y_tminus3","Y_tminus4","Y_tminus5")

for(t in seq(1,6)){

temp<-dat_S[dat_S$mis==0 & dat_S$obs==t, c(1,2,12,13,14,15,16,17)]

if(t!=1){

vtemp<-names(temp)[seq(4, 4+t-2)]

predictors<-gsub(’,’,’’,toString(c(rbind(vtemp, rep("+", t-2)))[-2*(t-1)]))
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out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

gh<-matrix(nrow=nrPatients[i], ncol=1)

gh[,1]<-seq(1,nrPatients[i])

gh<-data.frame(gh)

names(gh)[1]<-"pid"

temp1<-dat_S[dat_S$dropOut>t-1 & dat_S$obs==t, c(1,2,12,13,14,15,16,17)]

gh<-merge(gh, temp1[, c(1,seq(4, 4+t-2))], all.x=TRUE)

if(length(temp1[,1])!=nrPatients[i]){gh[-temp1[,1],seq(2, t)]<-predictedLI_1[-temp1[,1],]}

d<-data.frame(cbind(rep(1, nrPatients[i]), gh[,-c(1)]))

names(d)<-namPred[seq(1,t)]

predTemp<-rep(0,nrPatients[i])

predTemp[temp[,which(names(temp)=="pid")]]<-temp[,which(names(temp)=="deltaY")]

predTemp[-temp[,which(names(temp)=="pid")]]<-

unname(predict(mod1, d)[-temp[, which(names(temp)=="pid")]])

predictedLI_2<-cbind(predictedLI_2, predictedLI_2[,t-1]+predTemp)

predictedLI_1<-t(apply(predictedLI_2, 1, rev))

} else {

mod1<-lm(deltaY˜1,data=temp)

predictedLI_1<-cbind(predictedLI_1, temp$deltaY)

predictedLI_2<-cbind(predictedLI_2, temp$deltaY)

}

}

LIALL_S<-rbind(LIALL_S,apply(predictedLI_2,2,mean))

dTemp<-data.frame(matrix(rep(0,nrPatients[i]*6*9),

nrow=nrPatients[i]*6,ncol=9, byrow=TRUE))

names(dTemp)<-c("pid","obs","y","mis",

"Y_tminus1", "Y_tminus2","Y_tminus3",

"Y_tminus4","Y_tminus5")

dTemp$pid<-dat_M$pid

dTemp$obs<-dat_M$obs

dTemp$y<-rep(0,nrPatients[i]*6)

dTemp$y[seq(1,nrPatients[i]*6,6)]<-predictedLI_2[,1]

dTemp$y[seq(2,nrPatients[i]*6,6)]<-predictedLI_2[,2]

dTemp$y[seq(3,nrPatients[i]*6,6)]<-predictedLI_2[,3]

dTemp$y[seq(4,nrPatients[i]*6,6)]<-predictedLI_2[,4]

dTemp$y[seq(5,nrPatients[i]*6,6)]<-predictedLI_2[,5]

dTemp$y[seq(6,nrPatients[i]*6,6)]<-predictedLI_2[,6]

dTemp$mis<-rep(0, nrPatients[i]*6)

tm<-dTemp[,c(1,2,3)]

dTemp$Y_tminus1<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 1))))

dTemp$Y_tminus2<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 2))))

dTemp$Y_tminus3<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 3))))

dTemp$Y_tminus4<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 4))))

dTemp$Y_tminus5<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 5))))

SWS<-diag(length(w)+1)

for(t in seq(6,1)){

temp<-dTemp[dTemp$mis==0 & dTemp$obs==t, c(1,2,3,5,6,7,8,9)]

if(t!=1){

vtemp<-names(temp)[seq(4, 4+t-2)]

predictors<-gsub(’,’,’’,toString(c(rbind(vtemp, rep("+", t-2)))[-2*(t-1)]))

out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

h<-expression(paste("mod",t+1,"<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))
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SWS<-SWS%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

} else {

mod1<-lm(y˜1,data=temp)

mod2<-lm(y˜1,data=temp)

SWS<-SWS%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

}

}

SWEEP_S_LIALL<-rbind(SWEEP_S_LIALL, SWS[-1])

predictedLI_1<-NULL

predictedLI_2<-NULL

namPred<-c("interc", "Y_tminus1", "Y_tminus2", "Y_tminus3","Y_tminus4","Y_tminus5")

for(t in seq(1,6)){

temp<-dat_S[dat_S$mis==0 & dat_S$obs==t, c(1,2,12,13,14,15,16,17)]

if(t!=1){

vtemp<-names(temp)[4]

predictors<-"Y_tminus1"

out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

gh<-matrix(nrow=nrPatients[i], ncol=1)

gh[,1]<-seq(1,nrPatients[i])

gh<-data.frame(gh)

names(gh)[1]<-"pid"

temp1<-dat_S[dat_S$dropOut>t-1 & dat_S$obs==t, c(1,2,12,13,14,15,16,17)]

gh<-merge(gh, temp1[,c(1,4)], all.x=TRUE)

if(length(temp1[,1])!=nrPatients[i]){gh[-temp1[,1], 2]<-predictedLI_1[-temp1[,1],1]}

d<-data.frame(cbind(rep(1, nrPatients[i]), gh[,-c(1)]))

names(d)<-namPred[c(1,2)]

predTemp<-rep(0,nrPatients[i])

predTemp[temp[,which(names(temp)=="pid")]]<-temp[,which(names(temp)=="deltaY")]

predTemp[-temp[,which(names(temp)=="pid")]]<-

unname(predict(mod1, d)[-temp[, which(names(temp)=="pid")]])

predictedLI_2<-cbind(predictedLI_2, predictedLI_2[,t-1]+predTemp)

predictedLI_1<-t(apply(predictedLI_2, 1, rev))

} else {

mod1<-lm(deltaY˜1,data=temp)

predictedLI_1<-cbind(predictedLI_1, temp$deltaY)

predictedLI_2<-cbind(predictedLI_2, temp$deltaY)

}

}

LILast_S<-rbind(LILast_S,apply(predictedLI_2,2,mean))

dTemp<-data.frame(matrix(rep(0,nrPatients[i]*6*9),

nrow=nrPatients[i]*6,ncol=9, byrow=TRUE))

names(dTemp)<-c("pid","obs","y","mis",

"Y_tminus1", "Y_tminus2","Y_tminus3",

"Y_tminus4","Y_tminus5")

dTemp$pid<-dat_M$pid

dTemp$obs<-dat_M$obs

dTemp$y<-rep(0,nrPatients[i]*6)

dTemp$y[seq(1,nrPatients[i]*6,6)]<-predictedLI_2[,1]

dTemp$y[seq(2,nrPatients[i]*6,6)]<-predictedLI_2[,2]

dTemp$y[seq(3,nrPatients[i]*6,6)]<-predictedLI_2[,3]

dTemp$y[seq(4,nrPatients[i]*6,6)]<-predictedLI_2[,4]

dTemp$y[seq(5,nrPatients[i]*6,6)]<-predictedLI_2[,5]

dTemp$y[seq(6,nrPatients[i]*6,6)]<-predictedLI_2[,6]

dTemp$mis<-rep(0, nrPatients[i]*6)
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tm<-dTemp[,c(1,2,3)]

dTemp$Y_tminus1<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 1))))

dTemp$Y_tminus2<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 2))))

dTemp$Y_tminus3<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 3))))

dTemp$Y_tminus4<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 4))))

dTemp$Y_tminus5<-c(unname(unlist(sapply(split(tm[,3], tm$pid),Lag, 5))))

SWS<-diag(length(w)+1)

for(t in seq(6,1)){

temp<-dTemp[dTemp$mis==0 & dTemp$obs==t, c(1,2,3,5,6,7,8,9)]

if(t!=1){

vtemp<-names(temp)[4]

predictors<-"Y_tminus1"

out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

SWS<-SWS%*%t(cbind(diag(t),c(unname(mod1$coeff), rep(0,t-2))))

} else {

mod1<-lm(y˜1,data=temp)

mod2<-lm(y˜1,data=temp)

SWS<-SWS%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

}

}

SWEEP_S_LILast<-rbind(SWEEP_S_LILast, SWS[-1])

SWS<-diag(length(w)+1)

for(t in seq(6,1)){

temp<-dat_S[dat_S$mis==0 & dat_S$obs==t, c(1,2,3,13,14,15,16,17)]

if(t!=1){

vtemp<-names(temp)[seq(4, 4+t-2)]

predictors<-gsub(’,’,’’,toString(c(rbind(vtemp, rep("+", t-2)))[-2*(t-1)]))

out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

h<-expression(paste("mod",t+1,"<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

SWS<-SWS%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

} else {

mod1<-lm(y˜1,data=temp)

mod2<-lm(y˜1,data=temp)

SWS<-SWS%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

}

}

SWEEP_S<-rbind(SWEEP_S, SWS[-1])

SWS<-diag(length(w)+1)

for(t in seq(6,1)){

temp<-dat_S[dat_S$mis==0 & dat_S$obs==t, c(1,2,3,13,14,15,16,17)]

if(t!=1){

vtemp<-names(temp)[4]

predictors<-"Y_tminus1"

out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

SWS<-SWS%*%t(cbind(diag(t),c(unname(mod1$coeff), rep(0,t-2))))

} else {

mod1<-lm(y˜1,data=temp)

mod2<-lm(y˜1,data=temp)
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SWS<-SWS%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

}

}

SWEEP_S_last<-rbind(SWEEP_S_last, SWS[-1])

SWM<-diag(length(w)+1)

for(t in seq(6,1)){

temp<-dat_M[dat_M$mis==0 & dat_M$obs==t, c(1,2,3,13,14,15,16,17)]

if(t!=1){

vtemp<-names(temp)[seq(4, 4+t-2)]

predictors<-gsub(’,’,’’,toString(c(rbind(vtemp, rep("+", t-2)))[-2*(t-1)]))

out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

h<-expression(paste("mod",t+1,"<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

SWM<-SWM%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

} else {

mod1<-lm(y˜1,data=temp)

mod2<-lm(y˜1,data=temp)

SWM<-SWM%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

}

}

SWEEP_M<-rbind(SWEEP_M, SWM[-1])

SWM<-diag(length(w)+1)

for(t in seq(6,1)){

temp<-dat_M[dat_M$mis==0 & dat_M$obs==t, c(1,2,3,13,14,15,16,17)]

if(t!=1){

vtemp<-names(temp)[4]

predictors<-"Y_tminus1"

out<-names(temp)[3]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

SWM<-SWM%*%t(cbind(diag(t),c(unname(mod1$coeff), rep(0,t-2))))

} else {

mod1<-lm(y˜1,data=temp)

mod2<-lm(y˜1,data=temp)

SWM<-SWM%*%t(cbind(diag(length(unname(mod1$coeff))),unname(mod1$coeff)))

}

}

SWEEP_M_last<-rbind(SWEEP_M_last, SWM[-1])

#IPW approach

### get required data

dat_SNo1<-dat_S[dat_S$obs!=1,]

dat_SNo1$obs_startZero<-dat_SNo1$obs_startZero-1

for (h in seq(1,nrPatients[i])){

temp<-c(0, Lag(dat_SNo1$mis[dat_SNo1$pid==h],1)[c(-1)])

dat_SNo1$prevMis[dat_SNo1$pid==h]<-temp

}

dat_MNo1<-dat_M[dat_M$obs!=1,]

dat_MNo1$obs_startZero<-dat_MNo1$obs_startZero-1

for (h in seq(1,nrPatients[i])){

temp<-c(0, Lag(dat_MNo1$mis[dat_MNo1$pid==h],1)[c(-1)])

dat_MNo1$prevMis[dat_MNo1$pid==h]<-temp

}
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lambdas_M<-NULL

lambdasY_M<-NULL

lambdas_S<-NULL

lambdasY_S<-NULL

stable<-NULL

for (h in seq(2,length(w))){

dM<-dat_MNo1[dat_MNo1$obs==h & dat_MNo1$prevMis==0,]

dS<-dat_SNo1[dat_SNo1$obs==h & dat_SNo1$prevMis==0,]

tagMSM<-0

tryCatch( ms<-glm(R˜prevY, family=binomial, data=dM),

error=function(err) tagMSM<<-1)

# weights calculated from a logit that has only the last observations as predictor

predY<-expit(cbind(rep(1,nrPatients[i]), dat_MNo1$prevY[dat_MNo1$obs==h])%*%ms$coefficients)

# true weights

pred<-1-dat_MNo1[dat_MNo1$obs==h, which(names(dat_MNo1)=="probMis")]

#save time/individualspecific weights for Martingale rand effect

lambdas_M<-cbind(lambdas_M,pred)

lambdasY_M<-cbind(lambdasY_M,predY)

tagMSM<-0

tryCatch( ms<-glm(R˜prevY, family=binomial, data=dS),

error=function(err) tagMSM<<-1)

# weights calculated from a logit that has only the last observation as predictor

# this time for Laird-Waare data

predY<-expit(cbind(rep(1,nrPatients[i]), dat_SNo1$prevY[dat_SNo1$obs==h])%*%ms$coefficients)

# true weights

pred<-1-dat_SNo1[dat_SNo1$obs==h, which(names(dat_SNo1)=="probMis")]

lambdas_S<-cbind(lambdas_S,pred)

lambdasY_S<-cbind(lambdasY_S,predY)

#stabilized weights

#stable<-c(stable, mean(d$R))

#no stabilization

stable<-c(stable,1)

}

stable<-matrix(stable, nrow=1, ncol=length(w)-1)

#stable<-matrix(missingM[j, 2:length(w)], nrow=1, ncol=5)

#stable<-matrix(rep(1,5), nrow=1, ncol=5)

lambdas_M<-cbind(lambdas_M,stable[rep(1:1, times = nrPatients[i]), ])

lambdas_S<-cbind(lambdas_S,stable[rep(1:1, times = nrPatients[i]), ])

dat_M$ipw.weights<-c(t(cbind(rep(1,nrPatients[i]),t(apply(lambdas_M, 1, calcStblWeights)))))

dat_M$ipw.weightsY<-c(t(cbind(rep(1,nrPatients[i]),t(apply(lambdasY_M, 1, calcStblWeights)))))

dat_S$ipw.weights<-c(t(cbind(rep(1,nrPatients[i]),t(apply(lambdas_S, 1, calcStblWeights)))))

dat_S$ipw.weightsY<-c(t(cbind(rep(1,nrPatients[i]),t(apply(lambdasY_S, 1, calcStblWeights)))))

YM_IPW<-NULL

YM_IPW_Y<-NULL

YS_IPW<-NULL

YS_IPW_Y<-NULL

#fit 1 ordinary glm for baseline outcome and 5 weighted glm’s using weights calculated

#above k<-6

for (k in seq(1, length(w))){

dy2<-dat_M[dat_M$obs==k & dat_M$mis==0,]

# dy2<-dat_M[dat_M$obs==k & dat_M$mis==0 & dat_M$overlap==1,]

100



# if (k!=1){

# dy2$w<-tempM$ipw.weights[which(dat_MNo1$obs==k & dat_MNo1$mis==0)]

# }

if (k==5){

minProb_M<-c(minProb_M, min(1/dy2$ipw.weights))

medProb_M<-c(medProb_M, median(1/dy2$ipw.weights))

}

if (k==1){

tagMSM<-0

tryCatch(

msm <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

data = dy2))),

error=function(err) tagMSM<<-1)

tagMSMY<-0

tryCatch(

msmY <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

data = dy2))),

error=function(err) tagMSMY<<-1)

tagMSMM<-0

tryCatch(

msmM <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

data = dy2))),

error=function(err) tagMSMM<<-1)

} else {

tagMSM<-0

tryCatch( msm <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

weights = ˜ ipw.weights,

data = dy2))),

error=function(err) tagMSM<<-1)

tagMSMY<-0

tryCatch( msmY <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

weights = ˜ ipw.weightsY,

data = dy2))),

error=function(err) tagMSMY<<-1)

tagMSMM<-0

tryCatch( msmM <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

weights = ˜ ipw.weightsM,

data = dy2))),

error=function(err) tagMSMM<<-1)

}

# save coefficents for jth iteration for YM_IPW

YM_IPW<-c(YM_IPW, ifelse(!tagMSM, unname(msm$coefficients), NA))

YM_IPW_Y<-c(YM_IPW_Y, ifelse(!tagMSMY, unname(msmY$coefficients), NA))

YM_IPW_M<-c(YM_IPW_M, ifelse(!tagMSMM, unname(msmM$coefficients), NA))

dy2<-dat_S[dat_S$obs==k & dat_S$mis==0,]

# dy2<-dat_M[dat_M$obs==k & dat_M$mis==0 & dat_M$overlap==1,]

# if (k!=1){

# dy2$w<-tempM$ipw.weights[which(dat_MNo1$obs==k & dat_MNo1$mis==0)]

# }

if (k==5){

minProb_S<-c(minProb_S, min(1/dy2$ipw.weights))

medProb_S<-c(medProb_S, median(1/dy2$ipw.weights))

}

if (k==1){

tagMSM<-0

tryCatch(

msm <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

data = dy2))),

error=function(err) tagMSM<<-1)
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tagMSMY<-0

tryCatch(

msmY <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

data = dy2))),

error=function(err) tagMSMY<<-1)

tagMSMM<-0

tryCatch(

msmM <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

data = dy2))),

error=function(err) tagMSMM<<-1)

} else {

tagMSM<-0

tryCatch( msm <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

weights = ˜ ipw.weights,

data = dy2))),

error=function(err) tagMSM<<-1)

tagMSMY<-0

tryCatch( msmY <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

weights = ˜ ipw.weightsY,

data = dy2))),

error=function(err) tagMSMY<<-1)

tagMSMM<-0

tryCatch( msmM <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

weights = ˜ ipw.weightsM,

data = dy2))),

error=function(err) tagMSMM<<-1)

}

# save coefficents for jth iteration for YM_IPW

YS_IPW<-c(YS_IPW, ifelse(!tagMSM, unname(msm$coefficients), NA))

YS_IPW_Y<-c(YS_IPW_Y, ifelse(!tagMSMY, unname(msmY$coefficients), NA))

YS_IPW_M<-c(YS_IPW_M, ifelse(!tagMSMM, unname(msmM$coefficients), NA))

}

Y_M_IPW<-rbind(Y_M_IPW,YM_IPW)

Y_M_IPWY<-rbind(Y_M_IPWY,YM_IPW_Y)

Y_M_IPWM<-rbind(Y_M_IPWM,YM_IPW_M)

Y_S_IPW<-rbind(Y_S_IPW,YS_IPW)

Y_S_IPWY<-rbind(Y_S_IPWY,YS_IPW_Y)

Y_S_IPWM<-rbind(Y_S_IPWM,YS_IPW_M)

#fit 1 ordinary glm for baseline outcome and 5 weighted glm’s using weights calculated

#above

for (k in seq(1, length(w))){

dy2<-dat_M[dat_M$obs==k & dat_M$mis==0,]

if (k==5){

minProb_M<-c(minProb_M, min(1/dy2$ipw.weights))

medProb_M<-c(medProb_M, median(1/dy2$ipw.weights))

}

if (k==1){

tagMSM<-0

tryCatch(

msm <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

data = dy2))),

error=function(err) tagMSM<<-1)

tagMSMY<-0

tryCatch(

msmY <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

data = dy2))),

error=function(err) tagMSMY<<-1)
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} else {

tagMSM<-0

tryCatch( msm <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

weights = ˜ ipw.weights,

data = dy2))),

error=function(err) tagMSM<<-1)

tagMSMY<-0

tryCatch( msmY <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

weights = ˜ ipw.weightsY,

data = dy2))),

error=function(err) tagMSMY<<-1)

}

# save coefficents for jth iteration for YM_IPW

YM_IPW<-c(YM_IPW, ifelse(!tagMSM, unname(msm$coefficients), NA))

YM_IPW_Y<-c(YM_IPW_Y, ifelse(!tagMSMY, unname(msmY$coefficients), NA))

## do all the same for Laird-Waare data

dy2<-dat_S[dat_S$obs==k & dat_S$mis==0,]

}

if (k==5){

minProb_S<-c(minProb_S, min(1/dy2$ipw.weights))

medProb_S<-c(medProb_S, median(1/dy2$ipw.weights))

}

if (k==1){

tagMSM<-0

tryCatch(

msm <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

data = dy2))),

error=function(err) tagMSM<<-1)

tagMSMY<-0

tryCatch(

msmY <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

data = dy2))),

error=function(err) tagMSMY<<-1)

} else {

tagMSM<-0

tryCatch( msm <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

weights = ˜ ipw.weights,

data = dy2))),

error=function(err) tagMSM<<-1)

tagMSMY<-0

tryCatch( msmY <- (svyglm(y ˜ 1, design = svydesign(id=˜pid,

weights = ˜ ipw.weightsY,

data = dy2))),

error=function(err) tagMSMY<<-1)

}

# save coefficents for jth iteration for YM_IPW

YS_IPW<-c(YS_IPW, ifelse(!tagMSM, unname(msm$coefficients), NA))

YS_IPW_Y<-c(YS_IPW_Y, ifelse(!tagMSMY, unname(msmY$coefficients), NA))

}

#save estimates for jth simualted sample

Y_M_IPW<-rbind(Y_M_IPW,YM_IPW)

Y_M_IPWY<-rbind(Y_M_IPWY,YM_IPW_Y)

Y_S_IPW<-rbind(Y_S_IPW,YS_IPW)

Y_S_IPWY<-rbind(Y_S_IPWY,YS_IPW_Y)
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})

matrixResults<-rbind(apply(SWEEP_M, 2, mean), apply(SWEEP_M, 2, median), apply(SWEEP_M, 2, sd),

rep(" ",length(w)),

apply(SWEEP_M_LIALL, 2, mean), apply(SWEEP_M_LIALL, 2, median), apply(SWEEP_M_LIALL, 2, sd),

rep(" ",length(w)),

apply(LIALL_M, 2, mean), apply(LIALL_M, 2, median), apply(LIALL_M, 2, sd),

rep(" ",length(w)),

apply(SWEEP_M_last, 2, mean), apply(SWEEP_M_last, 2, median), apply(SWEEP_M_last, 2, sd),

rep(" ",length(w)),

apply(SWEEP_M_LILast, 2, mean), apply(SWEEP_M_LILast, 2, median), apply(SWEEP_M_LILast, 2, sd),

rep(" ",length(w)),

apply(LILast_M, 2, mean), apply(LILast_M, 2, median), apply(LILast_M, 2, sd),

rep(" ",length(w)),

apply(SWEEP_M_constant_LI_Constat, 2, mean), apply(SWEEP_M_constant_LI_Constat, 2, median),

apply(SWEEP_M_constant_LI_Constat, 2, sd),

rep(" ",length(w)),

apply(SWEEP_M_All_LI_Constat, 2, mean), apply(SWEEP_M_All_LI_Constat, 2, median),

apply(SWEEP_M_All_LI_Constat, 2, sd),

rep(" ",length(w)),

apply(LI_Constant_M, 2, mean), apply(LI_Constant_M, 2, median), apply(LI_Constant_M, 2, sd),

rep(" ",length(w)),

apply(LI_M, 2, mean), apply(LI_M, 2, median), apply(LI_M, 2, sd),

rep(" ",length(w)),

apply(Y_M_IPW, 2, mean), apply(Y_M_IPW, 2, median), apply(Y_M_IPW, 2, sd),

rep(" ",length(w)),

apply(Y_M_IPWY, 2, mean), apply(Y_M_IPWY, 2, median), apply(Y_M_IPWY, 2, sd),

rep(" ",length(w)),

apply(SWEEP_S, 2, mean), apply(SWEEP_S, 2, median), apply(SWEEP_S, 2, sd),

rep(" ",length(w)),

apply(SWEEP_S_LIALL, 2, mean), apply(SWEEP_S_LIALL, 2, median), apply(SWEEP_S_LIALL, 2, sd),

rep(" ",length(w)),

apply(LIALL_S, 2, mean), apply(LIALL_S, 2, median), apply(LIALL_S, 2, sd),

rep(" ",length(w)),

apply(SWEEP_S_last, 2, mean), apply(SWEEP_S_last, 2, median), apply(SWEEP_S_last, 2, sd),

rep(" ",length(w)),

apply(SWEEP_S_LILast, 2, mean), apply(SWEEP_S_LILast, 2, median), apply(SWEEP_S_LILast, 2, sd),

rep(" ",length(w)),

apply(LILast_S, 2, mean), apply(LILast_S, 2, median), apply(LILast_S, 2, sd),

rep(" ",length(w)),

apply(SWEEP_S_constant_LI_Constat, 2, mean), apply(SWEEP_S_constant_LI_Constat, 2, median),

apply(SWEEP_S_constant_LI_Constat, 2, sd),

rep(" ",length(w)),

apply(SWEEP_S_All_LI_Constat, 2, mean), apply(SWEEP_S_All_LI_Constat, 2, median),

apply(SWEEP_S_All_LI_Constat, 2, sd),

rep(" ",length(w)),

apply(LI_Constant_S, 2, mean), apply(LI_Constant_S, 2, median), apply(LI_Constant_S, 2, sd),

rep(" ",length(w)),

apply(LI_S, 2, mean), apply(LI_S, 2, median), apply(LI_S, 2, sd),

rep(" ",length(w)),

apply(Y_S_IPW, 2, mean), apply(Y_S_IPW, 2, median), apply(Y_S_IPW, 2, sd),

rep(" ",length(w)),

apply(Y_S_IPWY, 2, mean), apply(Y_S_IPWY, 2, median), apply(Y_S_IPWY, 2, sd),

rep(" ",length(w)))

matrixResults<-cbind(rbind(cbind(c("Y_M",

c("","","","",

"","","","",

"","","","",
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"","","","",

"","","","",

"","","","",

"","","","",

"","","","",

"","","","",

"","","","",

"","","","",

"","", "")),

c("SWEEP", "","","",

"SWEEP_LIALL", "","","",

"LI_Pred_ALL","","","",

"SWEEP_Last", "","","",

"SWEEP_LILast", "","","",

"LI_Pred_last","","","",

"SWEEP_Const_LI_Const","","","",

"SWEEP_All_LI_Const","","","",

"LI_Pred_Const","","","",

"LI","","","",

"IPW_TrueWeights","","","",

"IPW_lastObsLogit","","",""),

c("Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","")),

cbind(c("Y_S",

c("","","","",

"","","","",

"","","","",

"","","","",

"","","","",

"","","","",

"","","","",

"","","","",

"","","","",

"","","","",

"","","","",

"","", "")),

c("SWEEP", "","","",

"SWEEP_LIALL", "","","",

"LI_Pred_ALL","","","",

"SWEEP_Last", "","","",

"SWEEP_LILast", "","","",

"LI_Pred_last","","","",

"SWEEP_Const_LI_Const","","","",

"SWEEP_All_LI_Const","","","",

"LI_Pred_Const","","","",

"LI","","","",

"IPW_TrueWeights","","","",

"IPW_lastObsLogit","","",""),

c("Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","",
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"Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","",

"Mean","Median","SD","")

)

),

matrixResults)

#set a folder to which you want to save the results for each combination of a and b parameters

setwd(’C:/Results’)

write.table(data.frame(matrixResults),

file = paste(’n_is_’, nrPatients[i],

as.character(prev_Y_or_M[1,b]),

’a_is_’,

a,

"missOn_",

prev_Y_or_M[1,b],

’.csv’, sep=’’),

sep = ",", col.names = TRUE, row.names=FALSE,

qmethod = "double")

}

}

}

C.2. Simulations from chapter 3

library(mvtnorm)

library(nlme)

library(Hmisc)

library(mclust)

library(reshape2)

library(stringi)

getCondMeans<-function(z){

z<-data.frame(z[,-c(4)])

names(z)<-c("mis","Y_t", "Y_tMinus1")

mod1<-lm(Y_t˜Y_tMinus1, data=z[z$mis==0,])

mod2<-lm(Y_t˜Y_tMinus1, data=z[z$mis==1,])

return(c(mean(predict(mod1)), mean(predict(mod2))))

}

#function used for estimating a series of values for observed sample as well as or

#each Bootstrap sample

# it receives x = set of parameters (alpha, rho, treatment group..)

# and the observed or bootstrapped sample dat_obs with dropout indicators

getCorrectedEst_wH<-function(x, dat_obs){

trArm<-x[1]

alpha<-x[2]

rho<-x[3]

adAlpha<-NULL

deltaOnLastY<-x[4]

predictedLI_1<-NULL

predictedLI_2<-NULL

meansDropOutsAdhere_marg<-NULL

fitLogitData<-NULL
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adjustedAlpha<-NULL

meansDropOutsAdhere_cond<-NULL

conditionalOR_Y_t<-NULL

twoBandsOR<-NULL

predictedMeanOfobserved<-NULL

twoBandsOR_t<-NULL

EdgeAndMiddlePortions_ALL<-NULL

EdgeAndMiddlePortions_Obs_Miss<-NULL

namPred<-c("interc", "Y_tminus1", "Y_tminus2", "Y_tminus3","Y_tminus4","Y_tminus5")

sbm<-NULL

for(t in seq(1,6)){

temp<-dat_obs[dat_obs$R==1 & dat_obs$time==t-1 & dat_obs$Arm==trArm, c(1,5,2,8,9,10,11,12,13)]

names(temp)[1]<-"pid"

if(t!=1){

temp$band<-ifelse(temp$Y_tminus1<100, 1,

ifelse(temp$Y_tminus1>170,3,2))

l<-length(dat_obs[dat_obs$time==t-1 & dat_obs$Arm==trArm, c(1)])

gh<-matrix(nrow=l, ncol=2)

gh<-dat_obs[dat_obs$time==t-1 & dat_obs$Arm==trArm, c(1,6)]

names(gh)[1]<-"pid"

gh<-merge(gh, temp[, c(1, seq(4, 4+t-1,1), length(names(temp)))], all.x=TRUE)

if(length(temp[,1])!=l){

gh[-which(gh[,1]%in%temp[,1]), seq(4, 4+t-2,1)]<-predictedLI_1[-which(gh[,1]%in%temp[,1]),seq(1, length(predictedLI_1[1,]))]

gh[-which(gh[,1]%in%temp[,1]),length(gh[1,])]<-ifelse(predictedLI_1[-which(gh[,1]%in%temp[,1]),1]<100, 1,

ifelse(predictedLI_1[-which(gh[,1]%in%temp[,1]),1]>170,3,2))

}

gh<-data.frame(gh)

BandsPresent<-unname(sapply(split(gh, gh$R), function(x){

ty<-c(0,0,0)

ty[as.numeric(rownames(table(x$band)))]<-as.numeric(rownames(table(x$band)))

return(ty)}))

SameBandsPresent<-prod(BandsPresent[,1][BandsPresent[,1]!=0]%in%BandsPresent[,2])

sbm<-c(sbm, SameBandsPresent)

#if (t==6 & prod(sbm)==0) print(x)

if (SameBandsPresent & deltaOnLastY %in% c(1,2) & length(unique(temp$band))>1) {

mod1<-lm(delta_LDL˜(1+Y_tminus1)*factor(band), data=temp)

if (prod(BandsPresent[,2][BandsPresent[,2]!=0]%in%BandsPresent[,1])){

temo<-gh[gh$R==0,]

temo$out<-seq(1, length(gh[gh$R==0,1]))

A<-unname(model.matrix(out ˜ (1+Y_tminus1)*as.factor(band), temo))

} else{

temo<-gh[gh$R==1,]

temo$out<-seq(1, length(gh[gh$R==1,1]))

B<-model.matrix(out ˜ (1+Y_tminus1)*as.factor(band), temo)

temo<-gh[gh$R==0,]

temo$out<-seq(1, length(gh[gh$R==0,1]))

if (length(unique(temo$band))>1){

C<-model.matrix(out ˜ (1+Y_tminus1)*as.factor(band), temo)

} else {C<-model.matrix(out ˜ (1+Y_tminus1), temo)

}

dj<-which(!unlist(dimnames(B)[2])%in%unlist(dimnames(C)[2]))

A<-matrix(nrow=length(gh[gh$R==0,1]), ncol=length(unlist(dimnames(B)[2])))

A[,dj]<-matrix(rep(0, length(dj)*length(gh[gh$R==0,1])), nrow=length(gh[gh$R==0,1]), ncol=length(dj))

A[,-dj]<-unname(C)

}

} else{

vtemp<-names(temp)[seq(5, 5+t-2)]

predictors<-gsub(’,’,’’,toString(c(rbind(vtemp, rep("+", t-2)))[-2*(t-1)]))

out<-names(temp)[4]

h<-expression(paste("mod1<-lm(",out,"˜",predictors, ", data=temp)", sep=""))

eval(parse(text=eval(h)))

temo<-data.frame(gh[gh$R==0, seq(4, 4+t-2)])
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temo$out<-seq(1, length(gh[gh$R==0,1]))

names(temo)[seq(1, 1+t-2)]<-vtemp

h<-expression(paste("A<-model.matrix(out˜",predictors, ", data=temo)", sep=""))

eval(parse(text=eval(h)))

}

predictedMeanOfobserved<-c(predictedMeanOfobserved, mean(predict(mod1)))

if (deltaOnLastY==1) {

adjustedAlpha<-ifelse(A[,2]<100 | A[,2]>170, alpha/4,alpha)

}

if (deltaOnLastY==2) {

adjustedAlpha<-ifelse(A[,2]<100 | A[,2]>170,

ifelse(abs(alpha)+log(abs(alpha))>0,sign(alpha)*round(log(abs(alpha)),1),alpha/2),alpha)

}

delta21<-sign(alpha)*rhoˆ(t-1)*ifelse(rep(deltaOnLastY, length(A[,2]))==2 | rep(deltaOnLastY, length(A[,2]))==1,

abs(adjustedAlpha), abs(alpha))

reSdErr<-sqrt(deviance(mod1)/df.residual(mod1))

gh[-which(gh[,1]%in%temp[,1]),3]<-A%*%unname(coef(mod1))+delta21+rnorm(length(A[,1]),mean=0, reSdErr)

predictedLI_2<-cbind(predictedLI_2, predictedLI_2[,t-1]+gh[,3])

predictedLI_1<-t(apply(predictedLI_2, 1, rev))

tempLogitEstDat<-cbind(1-dat_obs[dat_obs$time==t-1 & dat_obs$Arm==trArm, c(6)], predictedLI_1[,c(1,2)])

tempLogitEstDat<-cbind(tempLogitEstDat, ifelse(tempLogitEstDat[,2]<100 | tempLogitEstDat[,2]>170, 1, 0), t)

meansDropOutsAdhere_marg<-rbind(meansDropOutsAdhere_marg, aggregate(tempLogitEstDat[,2], by=list(tempLogitEstDat[,1]), mean)[,2])

meansDropOutsAdhere_cond<-rbind(meansDropOutsAdhere_cond, getCondMeans(tempLogitEstDat))

tempBands<-ifelse(tempLogitEstDat[,2]<100, 1,

ifelse(tempLogitEstDat[,2]>170, 3,2))

if (length(which(!c(1,2,3)%in%unique(tempBands)))==0){

EdgeAndMiddlePortions_ALL<-rbind(EdgeAndMiddlePortions_ALL, round(unname(table(tempBands)/sum(table(tempBands))), 2))

} else { temx<-ifelse(rep(which(!c(1,2,3)%in%unique(tempBands)),3)==1, c(0,round(unname(table(tempBands)/length(tempBands)),2)),

ifelse(rep(which(!c(1,2,3)%in%unique(tempBands)),3)==2, c(round(unname(table(tempBands)/length(tempBands))[1],2), 0,

round(unname(table(tempBands)/length(tempBands))[2],2)),

c(round(unname(table(tempBands)/length(tempBands))[1],2), round(unname(table(tempBands)/length(tempBands))[2],2),0)))

EdgeAndMiddlePortions_ALL<-rbind(EdgeAndMiddlePortions_ALL, temx)

}

if (length(which(!c(1,2,3)%in%unique(tempBands[tempLogitEstDat[,1]==0])))==0){

temx1<-round(unname(table(tempBands[tempLogitEstDat[,1]==0])/sum(table(tempBands[tempLogitEstDat[,1]==0]))), 2)

} else{

missProps<-which(!c(1,2,3)%in%unique(tempBands[tempLogitEstDat[,1]==0]))

temx1<-c(0,0,0)

temx1[-missProps]<-round(unname(table(tempBands[tempLogitEstDat[,1]==0])/length(tempBands[tempLogitEstDat[,1]==0])),2)

}

if (length(which(!c(1,2,3)%in%unique(tempBands[tempLogitEstDat[,1]==1])))==0){

temx2<-round(unname(table(tempBands[tempLogitEstDat[,1]==1])/sum(table(tempBands[tempLogitEstDat[,1]==1]))), 2)

} else{

missProps<-which(!c(1,2,3)%in%unique(tempBands[tempLogitEstDat[,1]==1]))

temx2<-c(0,0,0)

temx2[-missProps]<-round(unname(table(tempBands[tempLogitEstDat[,1]==1])/length(tempBands[tempLogitEstDat[,1]==1])),2)

}

EdgeAndMiddlePortions_Obs_Miss<-rbind(EdgeAndMiddlePortions_Obs_Miss, c(c(temx1), c(temx2)))

fitLogitData<-rbind(fitLogitData, tempLogitEstDat)

tempLogitEstDat<-data.frame(tempLogitEstDat)

names(tempLogitEstDat)<-c("dropInd", "Y_t", "Y_tminus1","Y_tTwo_bands")

if (alpha!=0) tempLogitEstDat[, c(2,3)]<-tempLogitEstDat[,c(2,3)]/abs(alpha)
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tag1<-0

tryCatch(mod11<-glm(dropInd˜-1+Y_t*factor(Y_tTwo_bands), data=tempLogitEstDat, family=binomial),

error= function(err){

print(paste(err))

tag1<-1

},

warning=function(w){

w_nings_TwoBands_OP<-rbind(w_nings_TwoBands_OP, c(w, paste(w)))

})

tag2<-0

h<-expression(paste("mod2<-glm(dropInd˜-1+Y_t*factor(Y_tTwo_bands) + Y_tminus1",

", data=tempLogitEstDat, family=binomial)", sep=""))

tryCatch(eval(parse(text=eval(h))),

error= function(err){

print(paste(err))

tag2<-1

},

warning=function(w){

w_nings_TwoBands_OP<-rbind(w_nings_TwoBands_OP, c(w, paste(w)))

})

if (tag1==1 | tag2==1 | !exists("mod2") | !exists("mod11")) {twoBandsOR_t<-cbind(twoBandsOR_t, c(NA, NA, NA, NA))

} else{twoBandsOR_t<-cbind(twoBandsOR_t, c(coef(mod11)[1], coef(mod11)[4], coef(mod2)[1], coef(mod2)[5]))}

} else {

mod1<-lm(delta_LDL˜1,data=temp)

predictedMeanOfobserved<-c(predictedMeanOfobserved, mean(predict(mod1)))

predictedLI_1<-cbind(predictedLI_1, temp$delta_LDL)

predictedLI_2<-cbind(predictedLI_2, temp$delta_LDL)

hgd<-ifelse(temp$delta_LDL<100, 1, ifelse(temp$delta_LDL>170, 3,2))

temx<-ifelse(rep(which(!c(1,2,3)%in%unique(hgd)),3)==1, c(0,unname(table(hgd)/length(hgd))),

ifelse(rep(which(!c(1,2,3)%in%unique(hgd)),3)==2, c(unname(table(hgd)/length(hgd))[1],

0, unname(table(hgd)/length(hgd))[2]),

c(unname(table(hgd)/length(hgd))[1], unname(table(hgd)/length(hgd))[2],0)))

EdgeAndMiddlePortions_ALL<-rbind(EdgeAndMiddlePortions_ALL, temx)

EdgeAndMiddlePortions_Obs_Miss<-rbind(EdgeAndMiddlePortions_Obs_Miss, rep(temx,2))

meansDropOutsAdhere_marg<-rbind(meansDropOutsAdhere_marg, c(mean(temp$delta_LDL), mean(temp$delta_LDL)))

meansDropOutsAdhere_cond<-rbind(meansDropOutsAdhere_cond, c(mean(temp$delta_LDL), mean(temp$delta_LDL)))

twoBandsOR_t<-cbind(twoBandsOR_t, c(1,1,1,1))

}

}

adAlpha<-rbind(adAlpha,c(alpha,ifelse(abs(alpha)+log(abs(alpha))>0, sign(alpha)*round(log(abs(alpha))),alpha/2)))

fitLogitData<-data.frame(fitLogitData)

names(fitLogitData)<-c("dropInd", "Y_t", "Y_tminus1", "Y_tTwo_bands", "time")

if (alpha!=0) fitLogitData[, c(2,3)]<- fitLogitData[,c(2,3)]/abs(alpha)

tag1<-0

tryCatch(mod12<-glm(dropInd˜-1+as.factor(time)+Y_t*factor(Y_tTwo_bands), data=fitLogitData, family=binomial),

error= function(err){

print(paste(err))

tag1<-1

},

warning=function(w){

w_nings_TwoBands_OP<-rbind(w_nings_TwoBands_OP, c(w, paste(w)))

})

tag2<-0

h<-expression(paste("mod21<-glm(dropInd˜-1+as.factor(time)+Y_t*factor(Y_tTwo_bands) + Y_tminus1",

", data=fitLogitData, family=binomial)", sep=""))

tryCatch(eval(parse(text=eval(h))),

error= function(err){

print(paste(err))

tag2<-1

},
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warning=function(w){

w_nings_TwoBands_OP<-rbind(w_nings_TwoBands_OP, c(w, paste(w)))

})

if (tag1==1 |tag2==1 | !exists("mod21")| !exists("mod12")) {twoBandsOR<-unname(t(as.matrix(c(NA, NA, NA, NA))))

} else{twoBandsOR<-unname(t(as.matrix(c(coef(mod12)[6], coef(mod12)[8],

unname(summary(mod21)$coefficients[4,4]), coef(mod21)[6], coef(mod21)[9]))))}

tag<-0

h<-expression(paste("mod13<-glm(dropInd˜Y_t + Y_tminus1", ", data=fitLogitData, family=binomial)", sep=""))

tryCatch(eval(parse(text=eval(h))),

error=function(err){

print(paste(err))

tag<-1

},

warning=function(w){

w_nings_conditional_OP<-rbind(w_nings_conditional_OP, c(w, paste(w)))

})

if(tag==1 | !exists("mod13")){

conditionalOR_Y_t<-c(conditionalOR_Y_t, NA)

} else { conditionalOR_Y_t<-unname(t(as.matrix(c(exp(coef(mod13))[2]))))}

return(cbind(apply(predictedLI_2,2,mean),

apply(predictedLI_2,2,sd),

meansDropOutsAdhere_marg,

predictedMeanOfobserved,

meansDropOutsAdhere_cond,

conditionalOR_Y_t[rep(1,6), ],

twoBandsOR[rep(1,6), ],

t(twoBandsOR_t),

EdgeAndMiddlePortions_ALL,

EdgeAndMiddlePortions_Obs_Miss,

c(sbm,1)))

}

makeLongBootData<-function(y,rep){

y<-y[order(y$Arm, y$"dropOutTime"), ]

hg<-which(y$"dropOutTime"!=Lag(y$"dropOutTime", 1) | y$"dropOutTime"!=Lag(y$"dropOutTime", -1))

temp<-matrix(c(1, hg, length(y$"dropOutTime")), ncol=2, byrow=TRUE)

jh<-apply(temp, 1, function(x){

return(sample(seq(x[1],x[2]),x[2]-x[1]+1, replace=rep))

}

)

jh<-unlist(jh)

bootObsSample<-y[jh, ]

bootObsSample<-cbind(seq(1, length(y[,1])), bootObsSample[order(bootObsSample$Participant),])

names(bootObsSample)[c(1,2)]<-c("Participant", "ParticipantTrue")

longBoot<-melt(bootObsSample[,-which(names(bootObsSample)=="dropOutTime")],

id=c("Participant", "ParticipantTrue", "Arm"))[,c(1,5,4,3,2)]

longBoot<-longBoot[order(longBoot$Participant,longBoot$Arm),]

longBoot$time<-as.integer(stri_sub(longBoot$variable, 2,2))

names(longBoot)[2]<-"LDL_dropout"

longBoot<-longBoot[,-c(which(names(longBoot)=="variable"))]

longBoot$R<-ifelse(!is.na(longBoot$LDL_dropout),1,0)

temp<-NULL

for (i in unique(longBoot$Participant)){

x<-longBoot$LDL_dropout[longBoot$Participant==i]

temp<-c(temp,c(NA,x[-6]))

}

longBoot$LDL_prev<-temp

longBoot$delta_LDL<-longBoot$LDL_dropout

longBoot$delta_LDL[longBoot$time!=0]<-longBoot$delta_LDL[longBoot$time!=0]-longBoot$LDL_prev[longBoot$time!=0]
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tm<-longBoot[,c(1,6,2)]

longBoot$Y_tminus1<-c(unname(unlist(sapply(split(tm[,3], tm$Participant),Lag, 1))))

longBoot$Y_tminus2<-c(unname(unlist(sapply(split(tm[,3], tm$Participant),Lag, 2))))

longBoot$Y_tminus3<-c(unname(unlist(sapply(split(tm[,3], tm$Participant),Lag, 3))))

longBoot$Y_tminus4<-c(unname(unlist(sapply(split(tm[,3], tm$Participant),Lag, 4))))

longBoot$Y_tminus5<-c(unname(unlist(sapply(split(tm[,3], tm$Participant),Lag, 5))))

longBoot$dropout<-c(sapply(split(longBoot[,c(1,6,7)], longBoot$Participant),

function(x){

return(rep(ifelse(length(which(x$R%in%c(0)))==0, 7,which(x$R%in%c(0))), 6))}))

return(longBoot)

}

w_nings_conditional_OP<-NULL

w_nings_marginal_OP<-NULL

w_nings_TwoBands_OP<-NULL

## read in observed once out forever out modified data for 2 groups

## 1=treatment 4= control, remember to set work. dir

## so that this dataset can be read without errors

Y_Mis<- data.frame(read.csv("WideDataForm_Modified_OnceOutForeverOut_group1_4.csv", header=T), stringsAsFactors=FALSE)

sensParamTemp<-expand.grid(c(1,4), seq(-25, 25, 0.5), c(1), c(0))

## DeltaDependsOnLast_Y is a parameter that determines if alpha depends on last observed value or

## not (we only use the part of the getCorrectedEst_wH function that assumes constant shift alpha)

names(sensParamTemp)<-c("trArm", "alpha", "rho", "DeltaDependsOnLast_Y")

sensParamTemp<-sensParamTemp[order(sensParamTemp$trArm,sensParamTemp$DeltaDependsOnLast_Y),]

rownames(sensParamTemp)<-seq(1, length(sensParamTemp[,1]))

Z<-as.list(data.frame(t(matrix(unlist(sensParamTemp), nrow=length(sensParamTemp[,1]), ncol=4, byrow=FALSE))))

#####################################################################################################################

#####################################################################################################################

#####################################################################################################################

########## this is a part of the code that runs and calculates

########## unignorable LI estimate for each value of alpha and for each treatment group for observed data Y_Mis only

############

set.seed(1000)

## write results in this folder

setwd(’C:Results’)

## run makeLongBootData function with rep=FALSE if you want to get observed data set

## run makeLongBootData function with rep=TRUE if you want to get a single bootstrap data set

t1<-makeLongBootData(Y_Mis, FALSE)

tryCatch(kj_variableModFor0<-do.call(rbind,lapply(X=Z, FUN=getCorrectedEst_wH, t1)),

error =function(err){

print(paste(err))

tag<-1

})

rownames(kj_variableModFor0)<-NULL

ds1<-sensParamTemp[rep(seq(1, length(sensParamTemp[,1])), rep(6, length(sensParamTemp[,1]))), -c(3)]

ds1<-cbind(rep(c(1,2,3,4,5,6), length(sensParamTemp[,1])),

ds1)

ds_WH<-cbind(ds1, kj_variableModFor0)

ds_WH<-data.frame(ds_OnlyPrevOutcome)
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names(ds_WH)<-c("time", "TrArm", "alpha", "OnLastY", "mean", "stErr", "meanObserved_marg","meanMissing_marg",

"PredictedMeanObserved","meanObserved_Cond", "meanMissing_Cond",

"conditionalORSingle", "logOR_main_1", "logORInteraction_1",

"pValue_Interaction", "logOR_main_2", "logORInteraction_2",

"logOR_main", "logORInteraction","logOR_main_adjForprevY",

"logORInteraction_adjForprevY", "100andLess", "100To170",

"170AndMore", "100andLessObs", "100To170Obs", "170AndMoreObs",

"100andLessMis", "100To170Mis", "170AndMoreMis", "overlapBandsObsMis")

write.table(ds_WH,

file = "FullHist_TrArm14_delta_0_Shift_25_to25_per0_5.csv",

sep = ",", col.names = TRUE, row.names=FALSE,

qmethod = "double")

#####################################################################################################################

#####################################################################################################################

#####################################################################################################################

#####################################################################################################################

#####################################################################################################################

#####################################################################################################################

########## this is a part of the code that runs possibly 10 000 times

########## it samples with replacement from Y_Mis each time and calculates for

########## each such bootstrap dataset a value of LI non-ignorable estimate

########## for each value of alpha

########## This part of the code writes out results in 10 datasets per 1000 result-sets

########## Wrning: runtime can be quite long so try measuring it for

########## some small number of iterations so you can asses the runtime for 10 000

set.seed(1000)

te2<-NULL

randseeD<-NULL

system.time(

for (s in seq(1,10000)){

oldseed <- NULL

if (exists(".Random.seed"))

oldseed <- .Random.seed

t1<-makeLongBootData(Y_Mis, TRUE)

tag<-0

### there is a series of error catching maneveurs

### if the code errors out and stops the last seed is kept

### so that it can be restarted for that set of parameters

### that it errored out for

tryCatch(kj<-do.call(rbind,lapply(X=Z, FUN=getCorrectedEst_wH, t1)),

error =function(err){

print(paste(err))

print("rbindLApllapply(X=Z, FUN=getCorrectedEst_wH, t1)")

print(s)

tag<-1

})

if (tag==1){ write.table(data.frame(tail(randseeD, 2)),

file = eval(expression(paste("SeedByError.csv",sep=""))), append=TRUE,

sep = ",", col.names = TRUE, row.names=FALSE,

qmethod = "double")

}

rownames(kj)<-NULL

ds1<-sensParamTemp[rep(seq(1, length(sensParamTemp[,1])), rep(6, length(sensParamTemp[,1]))), ]
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ds1<-cbind(rep(rep(s, 6),length(sensParamTemp[,1])),

rep(c(1,2,3,4,5,6), length(sensParamTemp[,1])),

ds1)

tag<-0

tryCatch(randseeD<-rbind(randseeD,oldseed),

error =function(err){

print(paste(err))

print("rbind(randseeD,oldseed)")

tag<-1

})

if (tag==1) {write.table(data.frame(tail(randseeD, 2)),

file = eval(expression(paste("SeedByError.csv",sep=""))), append=TRUE,

sep = ",", col.names = TRUE, row.names=FALSE,

qmethod = "double")}

tag<-0

ds_WH<-cbind(ds1, kj)

tryCatch(te2<-rbind(te2, ds_WH),

error =function(err){

print(paste(err))

print("rbind(te2, ds_WH)")

print(names(te2))

print(names(ds_WH))

print(s)

tag<-1

})

if (tag==1) { write.table(data.frame(tail(randseeD, 2)),

file = eval(expression(paste("SeedByError.csv",sep=""))), append=TRUE,

sep = ",", col.names = TRUE, row.names=FALSE,

qmethod = "double")

}

if(s%%100==0){

write.table(data.frame(randseeD),

file = eval(expression(paste("Seeds_", ((s-1)%/%1000)+1,".csv",sep=""))), append=TRUE,

sep = ",", col.names = FALSE, row.names=FALSE,

qmethod = "double")

remove(randseeD)

randseeD<-NULL

}

if (s%%1000==0){

names(te2)<-c("bootSample", "time", "TrArm", "alpha", "rho", "DeltaDependsOnLast_Y",

"mean", "stErr", "meanObserved_marg","meanMissing_marg",

"PredictedMeanObserved","meanObserved_Cond", "meanMissing_Cond",

"conditionalORSingle", "logOR_main_1", "logORInteraction_1","pValue_Interaction",

"logOR_main_2", "logORInteraction_2",

"logOR_main", "logORInteraction","logOR_main_adjForprevY",

"logORInteraction_adjForprevY", "100andLess", "100To170",

"170AndMore", "100andLessObs", "100To170Obs", "170AndMoreObs",

"100andLessMis", "100To170Mis", "170AndMoreMis", "overlapBandsObsMis")

write.table(te2,

file = eval(expression(paste("Results_", s%/%1000,".csv",sep=""))),

sep = ",", col.names = TRUE, row.names=FALSE,

qmethod = "double")

remove(te2)

te2<-NULL

}

})

remove(ls())

#######################################################################################################################

########################################################################################################################
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#######################################################################################################################

########################################################################################################################

###############################################################################################################################

##### this program makes TrEff_j.csv data sets out of Results_1, ..., Results_j, j=1,...10 datasets.

##### These data sets save all the estimates from 1000 Bootstrapped samples EACH, so TrEff_j.csv

#### collects data out of which one can make Boot CI’s that come from j*1000 bootstrapped datasets,

#### the TrEff_j datasets are used to plot the sensitivity map

################################################################################################################################

############### set folder from which Results_1, ..., Results_k are to be read

####### we need to set some global variables

####### timeOfInterest is a time from 1 to 6, depending on outcome at which time point we wish to plot

####### we set timeOfInterest, default is the last timepoint 6

####### you can decide how many bootstrap samples you want to use, seting nrSam t0 10

####### uses estimates from 10 000 bootstrap samples

timeOfInterest<-6

nrSam<-10

for (k in seq(1, nrSam)){

h<-expression(paste("Results<-data.frame(read.csv(’Results_",k, ".csv’, header=T), stringsAsFactors=FALSE)", sep=""))

system.time(eval(parse(text=eval(h))))

#see documentation in makePlotData_withBootstrap_TreatGrupMean_Miss_Obs.R

Results<-Results[Results$time==timeOfInterest, c(1,3,4,7,9,10)]

#pj<-pj[pj$time==6,]

system.time(temps<-lapply(split(Results,

list(Results$bootSample)

),

function(x){

## since we are making BOOT Ci’s for purpose of testing the effect here

## by checking if Boot Ci’ of Treatment overlaps in any way with 95% boot Ci’

## of the placebo we have to do this for each point in the alphaPlacebo X alphaTreatemnt grid

## so we make the matrix of every possible combination of alphaTreatment times alphaPlacebo

## means so mean in treatment for alpha =-15 Minus mean of LDl in placebo for alpha=10

dtem1<-cbind(expand.grid(x$alpha[x$TrArm==1],x$alpha[x$TrArm==4]),

expand.grid(x$mean[x$TrArm==1], x$mean[x$TrArm==4]))

# save this matrix in a matrix with

# first two columns are the coordinates of alphaTreat X alphaPl

# 3rd column is the treatment effect Mean in Treatment - Mean in Placebo

# 4th column is the number of the bootsample this difference corresponds to

# since we do this for every bootsample in one Results_j we will get

# 1000 differences for 1 alphaTR X alphaPl combination

dsa<-cbind(dtem1[, c(1,2)],

dtem1[,3]-dtem1[,4],

rep(1000*(k-1)+x$bootSample[1],length(dtem1[,4]))

)

return(dsa)}

)

)

###make a matrix out of the list, matrix has 1000 X |alphaTr| X |alphaPl| rows and 4 columns

system.time(temps<-do.call(rbind, temps))

## remove current Results data since we used this Results_k

remove(Results)

names(temps)<-c( "alphaTr", "alphaPl", "trEff", "boot")

## make 1 variable denoting which combination of alphaTr _ alphaPl the row is,

### we separate say 0.5 and -0.5 by "0.5_-0.5"

system.time(temps$alphaTrAlphaPl<-apply(temps[, c(1,2)], 1, function(x){return(paste(x[1], x[2], sep="_"))}))

#sort the matrix by the alphaTr and then alphaPl

temps<-temps[order(temps$alphaTr,temps$alphaPl),]

system.time(temps1<-lapply(split(temps,

list(temps$alphaTrAlphaPl)),
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function(x){

# for each combination, basically each 1000 rows in temp

# order treatment effect

#sdBoot<-sd(x$trEff)

temp<-x$trEff[order(x$trEff)]

# CIBoot_left<-temp[2]

#CIBoot_right<-temp[23]

#check if it is longer than 250, if not save all if yes save bottom/top 250

# see explanation in makePlotData_withBootstrap_TreatGrupMean_Miss_Obs.R

if (length(temp)<251){

CIBoot_left<-temp

CIBoot_right<-temp

} else {

CIBoot_left<-temp[seq(1,250)]

CIBoot_right<-temp[seq(length(temp)-249,length(temp))]

}

## save a 250 times 4 matrix, left, right values

## and 3rd and 4th is the alpha combination for which these 250 values are saved

## and save the number of BootSamples these values are coming

## from it can be 250 (most of the time)

## or less

dsa<-cbind(CIBoot_left,

CIBoot_right,

rep(x$alphaTrAlphaPl[1],length(CIBoot_right)),

rep(length(temp), length(CIBoot_right)))

return(dsa)}

))

system.time(temps1<-do.call(rbind, temps1))

system.time(temps1<-data.frame(temps1))

system.time(names(temps1)<-c("CIBoot_L", "CIBoot_R", "alphaTrAlphaPl", "SamplesNot0"))

#save these in a file

#

if (k<2){

system.time(write.table(temps1,

file = eval(expression(paste("TrEff_1.csv",sep=""))), append=TRUE,

sep = ",", col.names = TRUE, row.names=FALSE,

qmethod = "double"))

}

if (k<3){

system.time(write.table(temps1,

file = eval(expression(paste("TrEff_2.csv",sep=""))), append=TRUE,

sep = ",", col.names = TRUE, row.names=FALSE,

qmethod = "double"))

}

system.time(write.table(temps1,

file = eval(expression(paste("TrEff_10.csv",sep=""))), append=TRUE,

sep = ",", col.names = TRUE, row.names=FALSE,

qmethod = "double"))

remove(temps, temps1)

}

#######################################################################################################################

########################################################################################################################

#######################################################################################################################

########################################################################################################################

#### read in data for plotting made by the previous script program

#### we can read in data to make Boot CI’s with 1000 (TrEff_1.csv), 2000 (TrEff_2.csv)

115



#### and 10 000 (TrEff_10.csv)

#### structure of the data to read in is

#### c("CIBoot_L", "CIBoot_R", "alphaTrAlphaPl", "SamplesNot0"))

system.time(d<-data.frame(read.csv("TrEff_10.csv", header=T), stringsAsFactors=FALSE))

# separate alphaTrAlphaPl into two columns so that we can pick out only those

# combinations from 10 to -10

#

system.time(tempS<-do.call(rbind,

lapply(d$alphaTrAlphaPl,

function(x){

t<-stri_locate_first_fixed(as.character(x), "_")[1]

alphaTr_<-as.numeric(stri_sub(as.character(x), 1,t-1))

alphaPl_<-as.numeric(stri_sub(as.character(x), t+1, nchar(as.character(x))))

return(c(alphaTr_, alphaPl_))

}

)

)

)

d<-cbind(d, tempS)

remove(tempS)

names(d)[c(length(names(d))-1,length(names(d)))]<-c("alphaTr", "alphaPl")

##pick out only those from 10 to -10

d<-d[abs(d$alphaTr)<10.5 & abs(d$alphaPl)<10.5, ]

#sort lexically on alphaTralphaPl combination

d<-d[order(d$alphaTrAlphaPl), ]

### make a new alphaTralphaPl variable that only saves those 10 to -10

# because the old one will remain a factor with levels -25 25

# even if we remove values bigger than 10 and smaller than -10

system.time(d$alphaTrAlphaPl<-apply(d[, c(length(names(d))-1,length(names(d)))],

1,

function(x){

return(paste(x[1], x[2], sep="_"))

}

)

)

## set the number of Result_j datasets that was used to make the data set TrEff_j we read in

nrSam<-2

# pick out 25*nrSam from sorted left and right values from TrEff for each alphaTralphaPl combination

# this will get you 95/% Ci w.r.t. which number of Results_j datasets was used to make TrEff

system.time(BootCIS<-lapply(split(d,

list(d$alphaTrAlphaPl)),

function(x){

temp<-as.numeric(as.character(x$CIBoot_L))

temp<-temp[order(temp)]

CIBoot_left<-temp[nrSam*25]

temp<-as.numeric(as.character(x$CIBoot_R))

temp<-temp[order(temp)]

CIBoot_right<-temp[length(temp)-(nrSam*25-1)]

# make a 3 column row vector: alphaTralphaPl combination

# left value

# right value

dsa<-c(toString(x$alphaTrAlphaPl[1]),

CIBoot_left,

CIBoot_right)

return(dsa)}))
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#make a matrix out of the list: number of different alphaTralphaPl combinations X 250 rows and 3 columns

system.time(BootCIS<-do.call(rbind, BootCIS))

BootCIS<-BootCIS[!is.na(BootCIS[,2]),]

BootCIS<-data.frame(BootCIS)

#separate alphaCombinations into 2 columns

AlphaComb<-do.call(rbind, lapply(rownames(BootCIS), function(x){

t<-stri_locate_first_fixed(x, "_")[1]

alphaTr_<-as.numeric(stri_sub(x, 1,t-1))

alphaPl_<-as.numeric(stri_sub(x, t+1, nchar(x)))

return(c(alphaTr_, alphaPl_))}))

# merge with BOOT CI’s for each alphaCombination

BootCIS<-cbind(AlphaComb, BootCIS)

names(BootCIS)<-c("alphaTr", "alphaPl", "alphaCom", "CIBoot_L", "CIBoot_R")

rownames(BootCIS)<-NULL

BootCIS$CIBoot_L<-as.numeric(as.character(BootCIS$CIBoot_L))

BootCIS$CIBoot_R<-as.numeric(as.character(BootCIS$CIBoot_R))

BootCIS<-BootCIS[,-c(length(names(BootCIS))-1,length(names(BootCIS)))]

### import the mean estimate per treatment group and per alpha parameter

res<-data.frame(read.csv("FullHist_TrArm14_delta_0_Shift_25_to25_per0_5.csv.csv", header=T), stringsAsFactors=FALSE)

names(res)[3]<-"alpha_"

names(res)[4]<-"OnLastY"

names(res)[3]<-"alpha"

ds_WH<-res[res$time==6 & res$"OnLastY"%in%c(0) & res$alpha%in%seq(-10,10,0.5), c(2,3,5)]

treaEffects_combAlpha<-cbind(expand.grid(ds_WH$alpha[ds_OnlyPrevOucome$TrArm==1],ds_WH$alpha[ds_OnlyPrevOucome$TrArm==4]),

expand.grid(ds_WH$mean[ds_OnlyPrevOucome$TrArm==1], ds_WH$mean[ds_OnlyPrevOucome$TrArm==4]))

### make alphaCombination variable for the original data so that we can merge with Boot

## Ci’s with the same alphaTralphaPl combination

treaEffects_combAlpha$alphaCom<-unname(apply(treaEffects_combAlpha[, c(1,2)], 1,

function(x){return(paste(x[1], x[2], sep="_"))}))

## make treat. effect estimates for each alphas combination

treaEffects_combAlpha$effect<-treaEffects_combAlpha[,3]-treaEffects_combAlpha[,4]

## merge these with their BOOT Ci’s

BootCIS<-merge(BootCIS, treaEffects_combAlpha[, c(5,6)], by="alphaCom")

names(BootCIS)[6]<-"trEff"

### make variable that decides if the direction:

### -1 = kept significant (direction for this alphacombination is negative which means tratment lowered

### LDL more than placebo and it is also significant )

### 1 = treatment effect is opposite of the one expected placebo lowered LDL more than treatment

### and the effect is significant

### 0 = treatment effect is any direction but not significant

###

keepDirection_signif_<-ifelse(sign(BootCIS$CIBoot_L)==sign(BootCIS$CIBoot_R) & sign(BootCIS$CIBoot_L)==(-1), -1,

ifelse(sign(BootCIS$CIBoot_L)==sign(BootCIS$CIBoot_R) & sign(BootCIS$CIBoot_L)==(1),1,0))

### make intermediate data for plotting

dsa<-cbind(BootCIS[, c(2,3)], BootCIS$trEff, BootCIS[, c(4,5)], keepDirection_signif_)

dsa<-cbind(BootCIS[, c(2,3)], BootCIS[,11], BootCIS[, c(4,5)], keepDirection_signif_)

names(dsa)<-c( "alphaTr", "alphaPl", "trEff", "leftBootCI", "rightBootCI", "keepdirSign_BootCI")

##### label the direction with creating new variable aligned with the keepDirection_signif_

dsa$Direction_Boot<-ifelse(dsa$keepdirSign_BootCI==-1, "Preserved direction",
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ifelse(dsa$keepdirSign_BootCI==0, "Not significant", "Changed direction"))

plotD_Alpha_const<-dsa[which(dsa$alphaTr%in%(seq(-10,10,0.5)) & dsa$alphaPl%in%(seq(-10,10,0.5)) ),]

plotDP_Alpha_const<-dsa[which(dsa$alphaTr%in%(seq(-10,10,5)) & dsa$alphaPl%in%(seq(-10,10,5)) ),]

############################################################################################################################

#############################################################################################################################

############################################################################################################################

#############################################################################################################################

############################################################################################################################

############# Treatment effect sensitivity plot for constant shift alpha -10 to 10 per 0.5

###########################################################################################################################

#10 to -10, Boot CI

v <- ggplot(plotD_Alpha_const, aes(alphaTr,alphaPl, z=trEff))

v2<-v + #geom_point(data=plotD_Alpha_const, aes(alphaTr,alphaPl, colour=round(zval, 1),

#shape=factor(Direction)), size=2.4)+

geom_point(data=plotD_Alpha_const, aes(alphaTr,alphaPl, colour=factor(Direction_Boot),

shape=factor(Direction_Boot)), size=5.4)

v2<-v2+ stat_contour(data=plotDP_Alpha_const, size=1.5, breaks=seq(0, -16, -4), colour="black")

v2<-v2 + geom_text(aes(fontface=2), x=-9, y=2, label="-16",size=8, colour="black")+

geom_text(aes(fontface=2), x=-9, y=-6, label="-12",size=8 ) +

geom_text(aes(fontface=2), x=-9, y=-9.5, label="-8",size=8 ) +

geom_text(aes(fontface=2), x=-3.2, y=-9.5, label="-4",size=8)+

geom_text(aes(fontface=2), x=8.9, y=-9.5, label="0",size=8)+

theme_bw()+

scale_color_manual(values=c("darkorange3", "gold"),"Effect")+

scale_shape(name="Effect")+

theme(plot.title = element_text(size = rel(2)))+

xlab(expression(paste(delta[21], "( ", bar(LDL[1])," ;", bold(alpha),") Shared Incentive", sep=" "))) +

ylab(expression(paste(delta[21], "( ", bar(LDL[1])," ;", bold(alpha),") Control", sep=" ")))+

theme(legend.title = element_text(colour="black", size=20, face="bold"))+

theme(legend.text = element_text(colour="black", size=14, face="bold"))+

theme(legend.text = element_text(colour="black", size=14, face="bold"))+

theme(axis.title.x = element_text(size = 25), axis.title.y = element_text(size = 25),

axis.text = element_text(size = 20))+

labs(title = "Treatment effect (shift constant)")+

theme(plot.margin = unit(c(0.8, 0.8, 0.8, 0.8), "cm"))
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