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Stereo-Based Environment Scanning
for Immersive Telepresence
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Abstract—The processing power and network bandwidth
required for true immersive telepresence applications are only
now beginning to be available. We draw from our experience
developing stereo based tele-immersion prototypes to present the
main issues arising when building these systems. Tele-immersion
is a new medium that enables a user to share a virtual space
with remote participants. The user is immersed in a rendered
three-dimensional (3-D) world that is transmitted from a remote
site. To acquire this 3-D description, we apply binocular and
trinocular stereo techniques which provide a view-independent
scene description. Slow processing cycles or long network latencies
interfere with the users’ ability to communicate, so the dense
stereo range data must be computed and transmitted at high frame
rates. Moreover, reconstructed 3-D views of the remote scene
must be as accurate as possible to achieve a sense of presence.
We address both issues of speed and accuracy using a variety of
techniques including the power of supercomputing clusters and
a method for combining motion and stereo in order to increase
speed and robustness. We present the latest prototype acquiring
a room-size environment in real time using a supercomputing
cluster, and we discuss its strengths and current weaknesses.

Index Terms—Stereo vision, tele-immersion, telepresence, teras-
cale computing.

I. INTRODUCTION

H IGH-SPEED desktop computers, digital cameras, and In-
ternet2 connections are making collaboration via immer-

sive telepresence a real possibility. The missing link is currently
the techniques to extract, transmit, and render the information
from sensors at a remote sight such that the local user has the
compelling sense of “being there.” Over the past six years, re-
searchers in the GRASP Laboratory at the University of Penn-
sylvania have worked with the National Tele-immersion Initia-
tive [1] to provide real-time three-dimensional (3-D) stereo re-
constructions of remote collaborators for immersive telepres-
ence systems. In this paper, we report our progress on the most
important aspect of tele-immersion: the ability to acquire dy-
namic 3-D scenes in real time.
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Any form of telepresence needs to convey information about
a remote place to the local user, in an immediate and compelling
manner. Both real-time update and visual quality are necessary
conditions for effective remote collaboration. A remote scene
has to be acquired in real time with as much real-world detail
as possible. The need for using real images has been widely
recognized in computer graphics, and image-based rendering is
now an established area in vision and graphics.

For tele-immersion, we decided to follow a view-independent
scene acquisition approach in order to decouple the rendering
rate from the acquisition rate and network delays. View inde-
pendence allows us to transmit the same 3-D model to many
participants in a virtual meeting place, providing each immer-
sive display with a model to rerender as the viewer moves within
her augmented display. We have chosen to use dense normalized
correlation stereo to capture 3-D data in order to provide dense
and accurate view-independent models for rendering in the im-
mersive display. A true, detailed 3-D model is also important for
interaction with objects in the 3-D space.

In our extensive experience with tele-immersion prototypes,
we have explored many aspects of capturing desktop and
room-size environments using dense correlation stereo. Issues
from calibrating many cameras in a large volume to how to
place cameras for best accuracy in reconstruction arise in con-
structing working systems. We have also explored many of the
possible speed–quality tradeoffs for stereo-based environment
scanning including quantitative comparison to ground truth
data for many aspects of our systems [2], [3].

Obviously, in this age of ever increasing CPU speed, one
way to improve the speed of depth acquisition is to apply
more cycles. Our latest prototype does exactly this, utilizing
the power of the Pittsburg Supercomputing Center (PSC)
to achieve room-size reconstructions from many 640 480
images at high frame rates. Another avenue we are exploring,
in order to improve the temporal performance of reconstruction
on an image sequence, is to take advantage of temporal coher-
ence. Since the same objects tend to be visible from frame to
frame—background walls and furniture stay static—we can
use knowledge from earlier frames when processing new ones.
However, as usual, there is a complicated tradeoff between
the calculation we add for disparity segmentation and motion
estimation, and the advantages of predicting disparity ranges
for simplifying the stereo correspondence problem.

This paper summarizes the evolution of an immersive telep-
resence system and presents the highlights of today’s version.
The main contribution of our approach to the state of the art is
in the combination of following points.
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• It is the first integrated 3-D remote telepresence system
comprising geographically distributed image acquisition,
3-D computation, and display.

• It is the first stereo system that works in a wide area
without any background subtraction, implemented in real
time using a supercomputer.

• We propose a temporal prediction process which de-
creases disparity search range on segmented image
regions for faster stereo correspondence.

The remainder of the paper is organized as follows: We con-
tinue this section with an overview of telepresence, underlying
challenges in acquisition, and related systems. In Section II, we
review the evolution of our working tele-immersion prototypes.
In Section III, we present the details of our stereo algorithm. In
Section IV, we describe an experimental evaluation focusing on
the effects of kernel size and view misregistration. In Section V,
we propose prediction and motion-depth modeling to optimize
the disparity range search.

A. Telepresence Systems

Telepresence systems can generally be viewed as composed
of three parts: a capture system to record and represent the in-
formation from the remote site, a network transmission system,
and a display system to make the local user feel as if she were
somehow present in the remote scene. These three parts become
even more challenging if we require telepresence to be immer-
sive, which means to create the illusion of being in an environ-
ment different than the viewer’s true physical surroundings.

The first question is, how do we capture representations of the
remote scene that are adequate for the task of creating a believ-
able remote presence? We have chosen view-independent 3-D
acquisition with correlation-based stereo because it is fast and
noninvasive. The representation has to be view-independent so
that rendering can be decoupled and thus asynchronous to acqui-
sition. A second advantage of view independence is that an ac-
quired 3-D representation can be broadcast to several receivers.
In contrast, a view-dependent approach requires either sending
all images to the remote site where the novel view is computed
or computing views locally and transmitting them. In the latter
case, receiving feedback about the user’s head position through
the network would cause an unmitigated latency.

There are two alternative approaches in remote immersion
technologies we did not follow. The first involves video con-
ferencing in the large: surround projection of two-dimensional
(2-D) panoramic images. This requires only a correct alignment
of several views, but lacks the sense of depth and practically for-
bids any 3-D interaction with virtual/real objects. The second
technology [4] uses 3-D graphical descriptions of the remote
participants (avatars). This is just another view of the model-free
versus model-based extrema in the 3-D description of scenes or
the bottom-up versus top-down controversy. Assuming that we
have to deal with persons, human models might be applied [5]
combined with image-based rendering, but everything in a scene
has to be scanned prior to a telepresence session and fine de-
tail is still missing. Of course, errors in model-based approaches
take the form of outlier poses of the avatar, as opposed to outlier
depth points or holes in stereo.

The networking aspects of telepresence systems are just be-
ginning to be defined. If there is communication and interaction
involved, then latency is the most critical issue. Bandwidth af-
fects the frame arrival rate. If a lossy protocol is applied, we
need techniques to recover from losses, both on the way from
the cameras to the computing resources as well as on the way
from the computing resources to the display. If compression is
applied, then again we need a special image compression on the
way from the camera to the computer which minimizes deci-
mation in stereo matching, and another 3-D compression on the
way to the display.

Finally, regardless of the speed and quality of the data arriving
at the display side, if the local user’s viewing environment is not
updated smoothly and quickly enough by the rendering tech-
nologies, she will find even static data jarring to watch. The dis-
play system must evoke a compelling sense of presence, this
involves real-time head tracking and fast rendering of the 3-D
scene according to the viewer’s head position. In tele-immer-
sion [6], the display used is a spatially augmented display and
not a head-mounted display (HMD), and the rendered compo-
nents are not prestored perfect virtual objects, but real range
data acquired online. In addition, these data are transmitted over
the network before being displayed. It is important that the ren-
dering speed be higher than the acquisition speed so that user’s
viewpoint changes have a guaranteed refresh response on the
screen.

A technically challenging issue is that, for true bidirectional
communication, the capture and display sides of the system
must be collocated. Immersive displays currently have low light
conditions which make the acquisition of quality images from
CCD cameras difficult. Further, the viewer must typically wear
polarized or shutter glasses and possibly a head tracking de-
vice which does not give him a particularly natural appearance.
From the display point of view, inserting many cameras around
the display tends to detract from the compelling 3-D percept.
Moving cameras to less obtrusive positions causes their view-
points to be unaccommodating for reconstruction. To date, we
have not constructed true duplex telecubicles.

The final and most important question for telepresence sys-
tems is “what defines the sense of presence for users?” Can we
make a telepresence system that is as effective as “being there”?
This is more of a psychological question than a technical one,
but understanding factors that evoke the human perception of
presence would allow us to focus our technical resources more
effectively. The prototypes we describe here offer the first op-
portunity to perform meaningful psychophysical experiments in
order to discover what can make telepresence effective.

B. Related Work

We have divided our discussion of related work into systems
and algorithms. The most similar immersive telepresence
system is the 3-D video-conferencing system developed under
the European 5th Framework Programme’s VIRTUE project
[7]. Its current version captures a scene with four cameras
mounted around a display. After foreground detection and
rectification, a block and pixel hierarchic algorithm computes
a disparity map while a special depth-segmentation algorithm
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runs for the user’s hands. At the display side, novel views
of remote conference participants are synthesized. The next
closest as a system is the Coliseum telepresence system [8]
which produces synthetic views using five streams based on
a variation of the visual hull method [9]. One of the earliest
successful efforts is the Virtualized Reality system at Carnegie
Mellon University (CMU) [10], [11]. This was first based on
multibaseline dense depth map computation on a specialized
architecture. More recent versions [12] are based on visual hull
computation using silhouette carving. Its commercial version,
manufactured by Zaxel, is used in a real-world teleconfer-
encing system [13] overlaying remote participants on HMDs
for augmented reality collaboration.

In the systems category, we should also mention the first com-
mercial real-time stereo vision products: the triclops and digi-
clops by Pointgrey Research, the Small Vision System by Videre
Design, Tyzx Inc.’s DeepSea based systems, as well as the Ko-
matsu FZ930 system [14]. These systems are not, however, as-
sociated with any telepresence application. With respect to mul-
ticamera systems, similar to the latest version of our tele-immer-
sion system, we refer the reader to CMU’s newest 3-D room [12]
as well as to the view-dependent visual hull system at MIT [9],
the Keck laboratory at the University of Maryland [15], and the
Argus system at Duke University [16].

Stereo vision has a very long tradition and the interest in fast
and dense depth maps has increased recently due to the ease
of acquiring video-rate stereo sequences with inexpensive cam-
eras. A recent paper by Scharstein and Szeliski [17] provides
an excellent taxonomy of binocular vision systems and a sys-
tematic comparative evaluation on benchmark image pairs. Fur-
ther evaluations with emphasis on matching metrics and discon-
tinuities, respectively, can be found in [18]–[20]. Among the
area-based correlation approaches, the most closely related to
our system is Sara’s work [21], the classic real-time implemen-
tation of trinocular stereo [22], [23], and the recent improve-
ments on correlation stereo by Hirschmuller et al. [24]. Re-
garding trinocular stereo vision systems, we refer to the recently
reported trinocular systems based on dynamic programming in
[25] and [26].

C. Challenges in 3-D Acquisition Through Stereo

In the last section, we described the systems challenges for
immersive telepresence. Here we focus on the methodological
challenges in the problem we address: environment scanning
using multiple cameras. It is important to note that there are also
active methods of scanning using laser cameras or systems en-
hanced with structured light. Laser cameras are still very expen-
sive and structured light systems are still immature for motion
and arbitrary texture. Nevertheless, the performance of passive
techniques like ours can be improved with projection of unstruc-
tured light to complement missing natural texture on surfaces.

When using multiple cameras, we have two choices of the
working domain. We can choose either pairs/triples and obtain
depth views from each such cluster or we can work volumet-
rically where the final result is a set of voxel occupancies.
While stereo methods rely on matching, volumetric methods
can reduce matching to photo-consistency or even just use
silhouettes. To date, we have used combinations of pairs/triples

in order to guarantee real-time responsiveness and keep the
system scalable in the number of depth views. As is widely
known, stereo is based on correspondence. The number of pos-
sible correspondence assignments without any assumption is
exponential. There are two main challenges here: nonexistence
of correspondence in case of half-occlusions or specularities
and nonuniqueness in case of homogeneous (infinite solutions)
or periodic (finite countable solutions) texture.

All existing real-time stereo methods are greedy algorithms
which choose the “best” correspondence by considering some
finite neighborhood, but they never backtrack to correct a depth
value. The match is established by maximizing a correlation
metric, with a subsequent selection of the best match. Overly
strict selection criteria can result in holes (no valid match)
which are larger than areas with no texture or very loose criteria
can create multiple outliers (wrong matches). Confidence in
our similarity metric is significantly increased if we increase
the size of the correlation kernel, but this creates erroneous
results at half-occlusions, in particular when one of the two
areas in an occlusion does not have significant structure. The
most recent prototype resolves some of the outlier problems
by using large correlation kernels in a binocular algorithm.
Our current system constructs multiple depth views, and we
apply strict selection criteria because we anticipate that holes
at occlusions will be filled by neighboring depth views.

This merging of views brings us to the problem of registra-
tion of multiple depth views to a common coordinate frame.
Calibration of many cameras in a large space is a challenging
task. When using a reference object for calibration, registration
error grows with distance from the reference object. This means
that while two depth views are fused correctly when the recon-
structed points are close at the location of the reference object
during calibration, there is a drift between them when the 3-D
points are far from that location. The only remedy for misregis-
tration is a unique volumetric search space, which is part of our
ongoing research.

II. EVOLUTION OF TELE-IMMERSION PROTOTYPES

Since our group at the University of Pennsylvania joined the
National Tele-immersion Initiative (NTII), we have participated
in the development of several tele-immersion prototypes. NTII
was conceived by Advanced Network and Services with the ex-
pectation that immersive telepresence applications could be a
driving application for the capacity of Internet2.

The first working networked tele-immersion prototype (tele-
cubicle) that computed 3-D stereo reconstructions, transmitted
them via TCP/IP, and rendered them in a stereoscopic display
was demonstrated in May of 1999. The rig is illustrated in
Fig. 1(a) and included a pair of Sony XC77R cameras (center),
and a computer monitor (CRT) capable of generating stereo
views for shutter glasses. Computation was provided by a pair
of Pentium 450 PCs, one driving the stereoscopic display and
the other capturing image pairs and generating stereo depth
maps. Binocular correlation stereo was used to generate a cloud
of depth points, which could optionally be triangulated using
Jonathan Shewhuk’s Triangle code [27]. A rotated triangulated
depth view is illustrated in Fig. 1(b).
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Fig. 1. (a) First networked prototype used shutter glasses and a monitor for stereoscopic viewing. (b) Binocular stereo depth maps were triangulated and rendered.

Fig. 2. Traffic peaks into the research triangle on May 2000 demo dates.

Fig. 3. Working prototypes from May and October 2000. (a) In May, the University of Pennsylvania and advanced network and services each transmitted five
simultaneous trinocular depth streams to the University of North Carolina Chapel Hill. (b) In October, 3-D interaction and synthetic objects were added to the
collaborative environment.

The next milestone in the tele-immersion project occurred
in May 2000 at a major collaborative demonstration among
Advanced Network and Services in Armonk, New York, the
University of North Carolina (UNC), Chapel Hill, and the
GRASP Lab at the University of Pennsylvania. The major
innovations for stereo environment scanning were a change
from binocular to trinocular correspondence, using a suite of
seven Sony DFW-V500 1394 cameras combined in overlapping
triples, background subtraction and parallelization of the stereo
implementation for quad-processor Dell servers. Naturally, the
shear volume of computation and data for transmission was
greatly increased. We achieved our goal of driving Internet2
bandwidth as demonstrated by the plot of traffic into the
Research Triangle on the dates of our demo and rehearsals
(see Fig. 2).

The demo scenario involved transmission of five simulta-
neous 3-D views per temporal frame from both Advanced and
GRASP. These were combined in the sophisticated immersive
display provided by UNC. This included two large display
screens, one for Armonk and one for Philadelphia, each with
a pair of projectors providing differently polarized left–right
stereoscopic views. A High-Ball [28] head tracker provided
the viewer’s head position so 3-D views could be rerendered
correctly for the user’s viewpoint. The display is illustrated
in Fig. 3(a). The camera rig is illustrated in Fig. 5(a) and an
example temporal frame is in Fig. 4. The cameras were ar-
ranged at uniform height in an arc in front of the user. Although
the correlation metric remained the same, new methods for
rectifying the triple as two independent pairs and combining
the correlation scores for the current depth estimate were
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Fig. 4. Seven camera views.

Fig. 5. Seven-camera rig and combined rendered 3-D views.

TABLE I
PERFORMANCE STATISTICS FOR VERSIONS OF THE TELE-IMMERSION SYSTEM

introduced [29]. A combined rendering of the depth views
generated from the images in Fig. 4 is illustrated in Fig. 5(b).

In October of 2000, the next important augmentation of the
tele-immersion prototype was demonstrated. Van Dam and his
colleagues from Brown University integrated 3-D interaction
with the UNC display system [30]. Users could use a magnetic
pointer to manipulate and create synthetic objects in the shared
3-D space. This scenario is illustrated in Fig. 3(b). The stereo
system, with which we are mainly concerned in this paper, re-
mained largely the same except that a simple prediction scheme
was added where the disparity search was limited to a restricted
range centered about the computed disparity for the last frame.
Although this seems like a minor alteration, it had a significant
impact on the cycle time of the stereo calculation (see Table I).
By just updating the hardware, the same system was running at
8 fps in August 2002.

The latest collaboration with the UNC and the PSC, funded by
the National Science Foundation (NSF), boosted our computa-
tion capabilities and gave us the opportunity to be the first to try
a room-size real-time reconstruction. The associated increase in
the number of input streams as well as in disparity range was a
real computational challenge. To make computations as parallel
as possible, we temporarily returned to the binocular version.
However, this increased the presence of outliers and, thus, the
kernel size was drastically increased from 5 5 to 31 31. The

effects of kernel size on reconstruction are discussed in Sec-
tion IV-B.

In November 2002, we achieved a real-time demonstration
of the full cycle at the Supercomputing Conference 2002 in
Baltimore. The terascale computing system at the PSC is an
HP Alphaserver cluster comprising 750 four-processor compute
nodes. Since the PSC is at a remote location, we established one
of the first applications where sensing, computation, and display
are at three different sites but coupled in real time. To tackle the
transmission constraints, an initial implementation contains a
video server transmitting TCP/IP video streams and a reliable
UDP transmission of the depth maps from the computation to
the display site as shown in Fig. 6. This reliable UDP trans-
mission is implemented by a protocol specifically designed for
this application, called RUDP. This protocol was designed by
the UNC group and provides reliable data transmission required
by the application without any congestion control, thereby pro-
viding better throughput than TCP. The camera cluster and a
snapshot of the rendered scene are shown in Fig. 7.

The massively parallel architecture operates on images four
times the size of those used in previous systems (640 480
versus 320 240). Increasing the correlation window size
from 5 5 to 31 31 increased computation approximately 36
times. However, we used binocular instead of trinocular stereo
so the overhead of matching has been reduced. Overall, the
new system requires at least 72 times more computation. Since
we do not perform background subtraction, it also adds a factor
of 3–4 in complexity.

The correlation window size is the main parameter affecting
performance. We ran a series of tests to verify the performance
and the scalability of the system. The performance of the
real-time system with networked input of video and network
output of 3-D streams is constrained by many external factors
which could cause a bottleneck. Hence, for performance
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Fig. 6. Images are acquired with a cluster of IEEE-1394 cameras, processed by a a computational engine to provide the 3-D description, transmitted, and displayed
immersively.

Fig. 7. 30 of the 55 displayed cameras are used in (a) the November 2002 supercomputing conference demonstration and (b) the acquired scene computed at PSC
is displayed immersively.

analysis of the parallel algorithm, we switched to file-based i/o.
The image streams were read from a disk and we measured the
time for image distribution on the cluster, image analysis, and
3-D data gathering from various cluster nodes which contribute
to total processing time.

The reconstruction algorithm broadcasts the image to be pro-
cessed on a particular node in its entirety. Hence, as the number
of nodes used for the particular stream increases, so does the
broadcast time, as seen in Fig. 8(a). Each processor performs
stereo matching on a small strip of the entire image. This is the
lowest level of parallelization. The greater the number of proces-
sors, the fewer the number of pixels each processor processes.
Fig. 8(b) shows the speedup obtained for the “process frame”
routine which performs image rectification, stereo matching,
and the reconstruction of the 3-D points. We show the pro-
cessing time for seven different correlation window sizes. The
reconstructed 3-D points have to be re-assembled as different
parts of the images are reconstructed on different nodes. This
gather operation speeds up with number of processors used, due
to the smaller amount of data to be gathered from each node.

Based on the above studies, we have observed that the algo-
rithm scales very efficiently with an increasing number of pro-
cessors per stream. The program is parallelized in such a way
so that all streams are synchronized when acquiring the next
frame, but each runs independently thereafter to process its as-
signed image region. Hence, individual processor performance
is unaffected. Each stream of images has the same parameters
and, thus, execution time is almost the same.

Fig. 9 shows the bandwidth usage for the run during the
Bandwidth Challenge at SC2002. The frame rate of up to 8 fps
and the data rate over 500 Mb/s observed were achieved with
image transmission over TCP. 1080 processors operating on
nine binocular streams (120 per stream) were employed for the
stereo reconstruction at PSC.

When using multiple cameras on a dynamic scene, synchro-
nization has to be addressed on multiple levels. At the level
of camera shuttering, it is solved by triggering the cameras
from the parallel port of a server machine. The output of the
IEEE-1394 cameras is synchronized with a special box from
Point Grey Research and time-stamped so that both subse-
quent levels of computing and display can be synchronized in
software.

III. STEREO-BASED ENVIRONMENT SCANNING

The stereo algorithm we use is a classic area-based correla-
tion approach. These methods compute dense 3-D information,
which allows extraction of higher order surface descriptions.
Our system has evolved over several generations as described
in Section II, but it continues to operate on a static set of cam-
eras which are fixed and strongly calibrated.

The current versions use clusters of IEEE-1394 cameras
combined in triads for the calculation of trinocular or binoc-
ular stereo. Computation is parallelized so that bands or
even scanlines of the images are processed independently on
multiprocessor systems. The general parallel structure of the
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Fig. 8. (a) The time (ms) required to broadcast images to each node increases
as the number of processors increases. (b) Total processing time (s) versus
number of processors. Each plot corresponds to a different kernel size.

system is illustrated in Fig. 10. All of the images are grabbed
simultaneously to facilitate combination of the resulting depth
maps at the display side. Each processor rectifies, possibly
background subtracts, matches, and reconstructs points in its
corresponding image band. When all processors associated with
a depth view have finished processing, the texture and depth
map are transmitted to a remote renderer. The depth is encoded
as two or three unsigned color image planes of texture, plus
one unsigned short image plane where values have been
scaled into unsigned short. Background subtraction has been
omitted in the most recent versions of the prototype. It may
have a role to play, however, in computationally less powerful
settings, allowing full reconstruction of static background to be
calculated only occasionally.

A. Binocular and Trinocular Matching

In our efforts to maintain speed and quality in dense stereo
depth maps, we have examined a number of correlation corre-
spondence techniques. In particular, we have focused on sum
of absolute differences (SAD), because of the speed provided
by hardware specific operations, and modified normalized cross

correlation (MNCC), which we have found produces overall su-
perior depth maps. In the end, we concluded that the quality of
the depth maps was more important to our system and, thus,
all of our prototype systems use MNCC. The reconstruction al-
gorithm begins by grabbing images from two or three strongly
calibrated cameras. The system rectifies the images so that their
epipolar lines lie along the horizontal image rows to simplify
the correspondence search.

The MNCC metric has the form

(1)

where and are the left and right rectified images over the
selected correlation windows. For each pixel in the left
image, the metric above produces a correlation profile
where disparity ranges over acceptable integer values. Se-
lected matches are maxima (for MNCC) in this profile.

The trinocular epipolar constraint is a well-known technique
to refine or verify correspondences and improve the quality of
stereo range data. It is based on the fact that, for a hypothesized
match in a pair of images, there is a unique location
we can predict in the third camera image where we expect to
find evidence of the same world point [31]. A hypothesis is cor-
rect if the epipolar lines for the original point and the hy-
pothesized match , intersect in the third camera image.
The most common scheme for exploiting this constraint is to
arrange the camera triple in a right angle, allowing matching
along the rows and columns of the reference image [32]–[35].
Our May 2000 telecubicle configuration, illustrated in Fig. 5(a),
was designed to “surround” the user with cameras. The logis-
tics of synchronously capturing and transmitting IEEE-1394 im-
ages among multiple computer servers forced us to limit the
number of cameras while attempting to cover as much of the
scene as possible by arranging the cameras in a single arc and
using overlapping triples (as opposed to common “L”-shaped
camera arrangements). This configuration does not allow us to
arrange or rectify triples of camera image planes such that they
are coplanar, and therefore it is more expensive for us to exploit
the trinocular constraint. For example, in an L-shaped config-
uration with a central reference camera, the upper image can
be rectified to column-align with the reference image while si-
multaneously the right image is row-aligned. This makes the
process of testing correspondences in the third (upper) image
much simpler than the lookup table (LUT) and linear approxi-
mation schemes we describe below.

Following Okutomi and Kanade’s observation [36], we opti-
mize over the sum of correlation values with respect to the true
depth value rather than disparity. Essentially we treat the camera
triple as two independent stereo pairs and

. In general, any disparity for the reference pair
represents a surface of constant depth (with respect to that pair)
in the world, however, for the left pair this surface in-
volves a range of distances and therefore disparities.

In previous work [29], we explored two approaches to ex-
ploiting the trinocular constraint in surround camera configura-
tions. The first method we used precomputed correlation images
for ranges of disparity in the left camera pair, and then the com-
puted correlation for each tested was added to that
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Fig. 9. Bandwidth for tele-immersion usage on November 19, 2002, at the supercomputing conference.

Fig. 10. Parallelized system.

precomputed for the corresponding . This results in
large correlation LUTs for the left image pair.

The second method was an attempt to avoid large LUTs by
independently finding the best extrema in the correlation sur-
faces for both image pairs. These sorted hypotheses were then
cross checked to determine whether a common depth point gave
rise to the scores for any pair. Valid hypothesis pairs with the
best score were retained. This method required less LUT space,
but had considerable added overhead to maintain the sorted hy-
potheses.

When revising our system design to parallelize and improve
its speed, we discovered that by using foreground segmentation
we need consider only one half to one third of the pixels in the
reference image . This makes it feasible to calculate the en-
tire correlation profile for each pixel one at a time. To calculate
the sum of correlation scores, we precompute an LUT of the
location in corresponding the current pixel in (based
on the right–left rectification relationship). As we calculate the
correlation score , we look up the corre-
sponding and compute , then calculate the cor-
relation score . We select the disparity
which optimizes

The algorithm has been described in detail in [3] and [37].

IV. EXPERIMENTAL EVALUATION

The speed of our systems is relatively straightforward to mea-
sure (see Table I), although the causes of lags in captured camera
frames or network transmission are not always easy to deduce.
We have frequently referred to the quality of reconstructions as
the second essential factor for the compelling sense of presence
demanded in tele-immersion systems. The accuracy of stereo
reconstructions is much more difficult to measure. In previous
work [2], [3], we have used registered laser range data and stereo
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Fig. 11. (a)–(c) Trinocular image data registered to (b) laser data.

Fig. 12. Smoothing of the NN error histogram with increasing mask size (N � N ).

reconstructions of the same object (Fig. 11) to evaluate the ac-
curacy of our systems.

The two most significant concerns regarding the quality of
output of the wide-area stereo algorithm are identified to be the
accuracy of disparity computation at depth discontinuities, and
the registration errors observed when merging reconstruction
results from multiple stereo pairs or triplets.

A. Global Effects of Kernel Size

Most recently we have examined the consequences of the
large mask sizes used in the current prototype on the accuracy
of our reconstructions. Using our registered dataset, a nearest
neighbor (NN) error metric (each reconstructed point is as-
signed an error equal to the distance to the nearest registered
laser data point) was computed for reconstructions using mask
sizes of 5 5, 7 7, 16 16, 32 32 and 64 64. Fig. 12
illustrates the diffusing effect of increasing mask dimension
on the error histogram. We can see the effect of large masks on
the reconstructed data in Fig. 13. The disparity map is much
smoother for , and outliers are significantly reduced,
but there is also a change in shape from Fig. 13(c) to (d). We
can also observe the flattened halo (boundary overreach) at
the boundary of Fig. 13(b), caused by smoothing across the
occlusion boundary.

When selecting kernel size, we have observed that we obtain
a more pleasing result for large-size kernels than smaller ones.
That is, end users are less disturbed by a result that includes
minor distortion and artifacts at occlusion boundaries than a re-
sult that includes holes and outliers. A reason for this is that out-
liers look like dust or confetti floating in the scene and prevent
an observer from clearly perceiving the form of reconstructed
objects.

Fig. 13. Disparity maps and rotated reconstructions forN = 7 andN = 32.

B. Effects of Kernel Size on Discontinuities

Inaccuracies in the disparity map computed by the algorithm
are mainly observed at image regions corresponding to depth
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Fig. 14. (a), (b) Rectified stereo pair and derived disparity maps for kernel sizes (c) 11 and (d) 31. In the disparity maps, the dashed line marks the location of
the depth discontinuity due to the foreground surface and was manually estimated.

discontinuities. This inaccuracy depends on the size of the
kernel. When a small kernel size is used, erroneous pixel cor-
respondences introduce holes and noise in the disparity image
and, consequently, gaps and outliers in the reconstruction. In
contrast, when the kernel size is increased, more pixel corre-
spondences are established and the disparity image is smoother
at depth discontinuities, however the estimated disparity is
usually inaccurate in such image regions. More specifically,
a spurious border is observed around such discontinuities, a
phenomenon that is referred to as “boundary overreach” in
the literature. The width of this border is approximately half
the diameter of the correlation mask. The error of the depth
estimation within this border is quite systematic: typically, the
depth of the foreground surface (of the depth discontinuity)
is assigned to the pixels within this border, while these pixels
arise from the background surface.

In Fig. 14, the above cases are shown through the reconstruc-
tion of a simple scene. This scene contains a flat, checkerboard-
textured surface, at a frontoparallel posture relative to the cam-
eras. The size of each square was 50 50 mm . In Fig. 14(d)
the boundary overreach phenomenon is illustrated by marking
the true location of the discontinuity. It can be clearly seen that
the border (seen around the dashed lines) is assigned disparity
values that correspond to the depth of the foreground surface,
while these pixels belong to the background.

One way to filter pixels that are included in such artifacts is
to perform a “left–right consistency” (LRC) check [38], that is,
to require that is (approximately) equal to

and vice versa (for and ), where
is the stereo pair and is the estimated disparity

value at at image coordinates , . The disparity profiles of
Fig. 15 illustrate the behavior of the algorithm near discontinu-
ities for the same test object as in Fig. 14. Small kernel sizes in-
crease the occurrence of holes and outliers, while larger kernels

increase the boundary overreach. Last, we observe that the LRC
filtering method exhibits an over-censoring behavior, as it re-
jects more than the erroneously reconstructed pixels [Fig. 15(b)
and (d)]. In this particular example, it is clear that pixels within

have been wrongly rejected, since the whole
foreground surface is fully visible to both cameras and, thus,
the miscorrespondence of these pixels does not originate from
an occlusion (see Fig. 14).

Another approach to refining the disparity map is to apply a
median filter to suppress outliers, which typically occur as high
spatial frequency noise. In Fig. 16, different modes of operation
of the algorithm presented above are demonstrated.

The introduction of the LRC filtering method does not double
the computational cost of the algorithm, because when esti-
mating the disparities in one direction (e.g., from left to right)
the kernel correlations are recorded and utilized when scanning
in the opposite direction. This can be verified by the measure-
ments presented in Table II, where the execution times of the
standard mode of operation and the one including LRC are com-
pared. To obtain these measurements, the execution times on
each processor were independently recorded over 20 frames of
input and then averaged.

The output of the LRC filtering process provides a more con-
servative result in terms of characterizing reconstructed pixels
as erroneous, however, it drastically reduces spurious matches
in the output. In particular, the matches eliminated in these re-
gions include background points that are occluded in one image
and visible in the other. There is no true match for these points
in the occluded view, so correspondences tend to be different in
the two images and hence filtered out by LRC. In addition, the
LRC method filters spurious matches due to a lack of texture
or texture periodicity. It ought to be noted that other approaches
to the boundary overreach problem exist in the literature [24],
[39]. Their parallel implementation is not as straightforward as
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Fig. 15. Disparity profiles across a scanline (200/480) of the stereo pair shown in Fig. 14. The top graphs show the profile along the entire scanline, while the
bottom ones focus on the discontinuity, which occurs at x � 167. In these latter graphs, the vertical dashed line marks the true location of the discontinuity in the
image, which was manually estimated. In the right column, graphs were constructed after applying the LRC filtering method. All disparities are presented with
respect to the right image of the stereo pair. Graph legends indicate kernel sizes.

Fig. 16. Stereo pair and generated disparity maps demonstrating the effects of LRC and median filtering. Columns, from left to right: (a), (d) stereo pair, (b) raw
algorithm output and (e) application of LRC, and (c) application of median filter and (f) application of LRC and median filter (bottom). The median filtering mask
was 7� 7 pixels, and disparities are presented with respect to the right image of the stereo pair. The dashed lines are the same as in Fig. 14.

that of LRC and their evaluation and potential integration into
our system is included in future plans. Finally, the introduction
of the median operator significantly suppresses the presence of
outliers in the result and can be used to fill minor holes in the
disparity image.

C. Registration Error

When combining reconstruction results obtained from mul-
tiple stereo image pairs, a “registration error” can be observed.

This error refers to the fact that independent, but calibrated and
registered, reconstructions of the same world point are not well
aligned. It is mainly encountered as the variance of the coor-
dinate of different reconstructions of a world point. The graphs
in Fig. 17 illustrate the problem. They were obtained by plot-
ting the data from the following experiment: six cameras were
used to create three binocular views. Views were equidistant and
loosely aligned, with each one yielding an independent recon-
struction of a commonly observed scene. The scene contained
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TABLE II
MEASUREMENTS OF EXECUTION TIME ON A SUPERCOMPUTER, AT PSC,

SHOWING THAT THE APPLICATION OF LRC FILTERING IMPOSES A VERY SMALL

ADDITIONAL COMPUTATIONAL COST. THE TABULATED VALUES REFER TO THE

MEAN AVERAGE EXECUTION TIME REQUIRED TO PROCESS ONE FRAME OF

INPUT. UNIT TIME IN THE SECOND AND THIRD COLUMN IS IN SECONDS AND IN

THE FOURTH COLUMN IS IN MILLISECONDS

the test object of Fig. 14 which was placed at a total of six dif-
ferent positions, thus yielding equal variants of the scene, which
were all reconstructed. The surface was always positioned so
that it was approximately frontoparallel to the central view and
translated at different distances along the direction normal to the
baseline of the central view (the axis). Camera calibration was
performed using the Matlab Calibration Toolbox by Bouguet. In
the graphs, the reconstructed points across 10 mm of the axis
are plotted for the three views, with each graph corresponding to
a different position of the test object. Points at the top left of each
graph represent points on the background surface, which was
approximately stable across the different variants of the scene.
The points at the bottom right represent points on the object sur-
face.

A general observation is that the registration error is propor-
tional to the distance from the cameras, producing the system-
atic ordering of world points across depth illustrated in the ex-
ample. The usual predicted error in depth is proportional to the
depth of the point squared, which would cause reconstructions
of the same world points to be randomly positioned, if the pre-
dicted error were the only component of the observed misregis-
tration. Thus, a component of misregistration is calibration error
as well. As we also mention in the conclusion, misregistration
can be alleviated if we use a common search range like a vol-
umetric domain for all views. In this case, calibration errors do
not show as double phantoms but as inaccuracies in the voxel
level.

V. PREDICTION AND MODELING

In less compute-intensive settings, a possible approach to im-
proving temporal performance for stereo is to exploit the fact
that scenes do not change radically from frame to frame. The
simplest form of prediction, based on the temporal coherence of
our image streams, is to assume that nothing changes. In other
words, predict that the last observed disparity will be the next
observed disparity. Our current prototypes limit their disparity
search at each timestep to a fixed range about the last observed
disparity. This breaks down when the subject moves in front of
a distant background, but it is a powerful assumption for all but

the boundary pixels about the subject. Occlusion boundary is-
sues in dense stereo tend to make these pixels more problematic,
independent of motion.

Once again addressing the tradeoff of speed and accuracy, can
we exploit temporal coherence to a greater degree using more
sophisticated motion-based prediction techniques? The cost of
computing dense optical flow is high, so can we apply it judi-
ciously and still improve speed without sacrificing quality?

A. Predicting Disparity Windows

We base our approach on the assumption that there are smooth
surface patches in the scene that will move coherently as people
or objects in the environment move. To identify these surface
patches we use a simple flood-fill technique to segment the dis-
parity map into regions of similar disparity. Disparities within a
region are either limited to fall within a small fixed range of the
original seed pixel ( ), or a disparity
gradient limit is applied so that the region is grown until all of the
boundary pixels exceed this limit ( ). The
segmented regions are represented by their bounding upper-left,
lower-right image locations and thus are effectively treated as
overlapping rectangular windows.

In order to predict the location of a particular window at
the next time step, we use a single optical flow calculation per
window in the left (reference) image sequence to estimate its
motion. We can use the disparity range for each window to lo-
cate its corresponding window in the right (nonreference) image
and calculate the image motion for the right image. This allows
us to predict a disparity range and image location for the sur-
face represented by the disparity window at the next timestep.
We can then perform a region-based correlation on a limited dis-
parity range for each predicted window location.

Our method for integrating disparity segmentation and optical
flow for disparity prediction can be summarized in the following
steps.

Step 1) Bootstrap by calculating a full disparity map for the
first stereo pair of the sequence.

Step 2) Use flood fill to segment the disparity map into rect-
angular windows containing a narrow range of dis-
parities.

Step 3) Calculate optical flow per window for left and right
smoothed, rectified image sequences of intervening
frames.

Step 4) Adjust disparity window positions and disparity
ranges according to estimated flow.

Step 5) Search windows for correspondence using assigned
disparity range, selecting “best” correlation value
over all windows and disparities associated with
each pixel location.

Step 6) Go to Step 2).

1) Flood-Fill Segmentation: It is more common to use flow
fields to provide coarse segmentation than to use similar dis-
parity [40], [41], but our existing stereo system provides dense
disparity maps, whereas most fast optical flow techniques pro-
vide relatively sparse flow values. Restricting the change in dis-
parity per window essentially divides the underlying surfaces
into patches where depth is nearly constant or smoothly varying.
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Fig. 17. Registration of reconstructions, simultaneously obtained from three different views. In the graphs, plotted are lateral views of six reconstructions obtained
from the motion of a planar foreground surface translating along the Z axis against a, partially occluded, wavy background surface (a curtain). Positive direction
of the Z axis is toward the central cameras. In the graphs, pixels reconstructed from the center view are plotted in black, pixels from the left view in dark gray, and
pixels from the right view in light gray.

Any efficient region growing method could be applied to
cluster the disparities into regions. We have chosen to use flood
fill or seed fill [42, pp. 137–141], a simple polygon filling
algorithm from computer graphics. We have implemented
a scanline version which pops a seed pixel location inside
a region to be filled, then finds the right and left connected
boundary pixels on the current scan line, “filling” those pixels
between. Pixels in the same range in the lines above and
below are then examined. The rightmost pixel in any unfilled,
nonboundary span on these lines in this range is pushed on the
seed stack and the loop is repeated. When the stack is empty
the region is filled.

We have modified this process slightly so that the boundary
is defined by a condition on the current pixel disparity ,
with respect to other disparities in the region ( ).
We start with a mask of valid disparity locations in the dis-
parity image possibly including a background segmentation to
eliminate static background pixels. For our purposes, filling is
marking locations in the mask which have been included in

some disparity region, and updating the upper left and lower
right pixel coordinates of the current window bounding box.
When there are no more pixels adjacent to the current region
which fall within the disparity constraint for the region, the next
unfilled pixel from the mask is used to seed a new window. Once
all of the pixel locations in the mask are set the segmentation is
complete.

The disparity map for pair 59 of our test image sequence is
illustrated in Fig. 18, along with the rectified reference image
and disparity windows extracted by the flood-fill segmentation
using the disparity gradient constraint ( ). Twenty-two
regions were extracted, with mean width disparity range of
seven pixels. We maintain only rectangular image windows
rather than a convex hull or more complicated structure,
because it is generally faster to apply operations to a larger
rectangular window than to manage a more complicated region
structure. A window can cover pixels which are not connected
to the current region being filled (for example a rectangular
bounding box for an “L”-shaped region will cover many pixels
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Fig. 18. Disparity windows. (a) Rectified image. (b) Full disparity map. (c) Extracted windows. (d) Pixels labeled with their assigned window.

that are not explicitly in the disparity range) and therefore the
windows extracted overlap. This is an advantage when change
in disparity signals a depth discontinuity, because if a previ-
ously occluded region becomes visible from behind another
surface, the region will be tested for both disparity ranges.

As a final step, small regions ( ) are at-
tributed to noise and deleted. Nearby or overlapping windows
are merged when the corner locations bounding window ex-
panded by a threshold NEARWIN, fall within window , and
the difference between the region mean disparities satisfies

where and are the set of pixels in two disparity regions,
with and elements, respectively.

2) Flow per Window: Optical flow calculations approxi-
mate the motion field of objects moving relative to the cameras,
based on the familiar image brightness constancy equation:

, where is the image brightness and ,
, and are the partial derivatives of with respect to , ,

and , and is the image velocity. We use a standard
local weighted least-square algorithm [43], [44] to calculate
values for based on minimizing

for the pixels in the current window . We do not apply an
affine flow assumption because of the increased complexity of
solving for six parameters rather than just two components of
image velocity [45].

For each disparity window, we assume the motion field is
constant across the region and calculate a single value for
the center pixel. Only one optical flow value is estimated per

window. Fig. 19 shows the comparison between flow estimates
for 5 5 windows across the full image and values computed
for our segmented windows (depicted by the same vector at each
window location) for the left image sequence frames 60–64.

For each window represented by its upper left and lower
right corner locations , we
adjust its location according to our estimated flow for the
right and left images. We must also adjust the disparity range

for each window as follows:

Optical flow calculations can sometimes yield poor results, for
example, when the subject moves along the depth axis, so we
actually expand the windows and disparity range according to
the computed motion rather than moving them. Our observation
has been that, for normal motion of a subject in the workspace,
motion estimates are relatively good.

3) Windowed Correspondence: Window-based correspon-
dence proceeds much as described for the full image, except
for the necessary manipulation of windows. Calculation of
MNCC using (1) allows overall calculation of the terms ,

, and and on a once-per-image pair basis.
For , however,
and the product must be recalculated for each
disparity tested. In the case of our disparity windows, each
window can be of arbitrary size, but the disparity range to be
checked will be shorter. Because our images are rectified to
align the epipolar lines with the scanlines, the windows will
have the same coordinates in the right and left images. Given
the disparity range, we can extract the desired window from
the right image given . Correlation matching and
assigning valid matches to the disparity volume proceeds as
described for the full image method.
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Fig. 19. Flow fields computed for (a) full image and (b) segmented windows (left frames 60–64). (c) Full correspondence disparity map. (d) Regional
correspondence disparity map.

B. Computational Complexity

Fig. 19 illustrates the full correspondence versus regional cor-
respondence maps. The regional map is somewhat sparser but it
required 42% less calculation to generate. Generally for a refer-
ence image with valid pixels (possibly or some set of
foreground pixels) let us consider the operation of convolving
with a mask of size . We currently do the same per pair
calculations , , and for the full and
regional matching, so we will discount these in our comparison.
The term over ( ) disparities requires

multiplications for the full image case, and
multiplications for the set of

extracted windows , where has dimensions .
Similarly, calculating will require
versus multiplications. We have
to weigh this savings in the covariance calculation against the
smoothing and least-squares calculation per window of the op-
tical flow prediction process.

For temporal estimates over images in a sequence, we have
to smooth and calculate derivatives for the images in the se-
quence in , , and . This calculation requires
multiplications for each of two (right and left) image sequences.
Solving , using, for example, QR decomposition and
back substitution, requires approximately flops
per window.

Finally, for the flood-fill segmentation, each pixel may be
visited up to four times (once when considering each of its
neighbors), but probably much fewer. The only calculations per-
formed are comparisons to update the window corners and dis-
parity range as well as a running sum of the pixel values in each
region. The cost is small compared to full image correlations,
so we will disregard it here.

The regional correspondence will be faster if the following
comparison is true:

(2)

For example, for the disparity frame in Fig. 19(c) and (d), a
rough estimate of the relative complexity of a background sub-
tracted full correspondence versus disparity windows combined
with background subtraction yields .
This difference on paper was not as striking in the online system,
however, we believe that the extracted regions and their motion
tell us something useful about the structure of the scene. In the
future, we hope to exploit this structure to understand activity
in the scene.

VI. CONCLUSION

We have presented the evolution of a scene acquisition
system for tele-immersion. From the beginning, we have
focused on near real-time systems which are view-independent
so that they can facilitate a rendering speed independent of the
acquisition and transmission frame rate and latency. We have
also examined techniques to exploit the temporal coherence of
stereo sequences, by using prediction to restrict disparity search
ranges. Over a number of years we have developed a sequence
of binocular and trinocular stereo reconstruction systems,
steadily increasing the number of cameras and processors ex-
ploited. Today, the most important contribution of our work is
wide area acquisition where everything in the scene is captured
and thus is “foreground.” The resulting increase in number of
cameras, input resolution, and disparity range motivated us
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to use massive parallelization and produce a truly distributed
sensing-computing-display system for tele-immersion.

In the immediate future, we are addressing the problems of
occlusion and misregistration. In a wide surround distribution
of cameras, there is no clear definition of occlusion like the
definition of half-occlusion in stereo. Views producing outliers
or holes at half-occlusions should be corrected by other views.
Such a fusion process necessitates a good confidence metric. To
avoid fusion, we will pursue a volumetric approach (see [46]
for thorough treatment) where we deal with a unique disparity
space for all cameras, but then visibility becomes a problem:
which views should be used for photoconsistency or to com-
pute correlation? Parallelization of a volumetric approach be-
comes a challenging problem with many more interconnections
between mutually independent input streams. A volumetric ap-
proach would also treat symmetrically the problem of misregis-
tration due to calibration errors by blurring the estimated voxels
instead of duplicating depth maps. However, wide-area calibra-
tion remains a challenge.

Collocating large immersive displays with cameras for en-
vironment scanning in order to provide duplex communication
presents further technological challenges. It requires addressing
the problem of rendering the scene from viewpoints far from
the viewpoints where the input streams were captured for re-
construction. In a collocated display-camera system, it is nat-
ural to ask for localization of face and body parts so that head
tracking as well as gesture recognition will be accomplished
without wearing devices. Full duplex communication will also
enable the start of human performance experiments where we
will be able to study the question of whether specific collabora-
tion tasks can be better addressed with tele-immersion than with
plain or even large-scale videoconferencing.

ACKNOWLEDGMENT

The authors would like to thank J. Lanier, H. Fuchs, and
A. van Dam for the wonderful collaboration in the National
Tele-immersion Initiative as well as H. Towles and the entire
UNC team for their contribution to the November 2002 demon-
stration. They also thank R. Sara and G. Kamberova for the ini-
tial offline implementation of tele-immersion at the University
of Pennsylvania.

REFERENCES

[1] J. Lanier, “Virtually there,” Scientific Amer., pp. 66–75, Apr. 2001.
[2] J. Mulligan, V. Isler, and K. Daniilidis, “Performance evaluation of

stereo for tele-presence,” in Proc. 8th IEEE Int. Conf. Computer Vision
(ICCV’01), vol. 2, Vancouver, BC, Canada, July 2001, pp. 558–565.

[3] , “Trinocular stereo: A real-time algorithm and its evaluation,” Int.
J. Comput. Vis., vol. 47, no. 1/2/3, pp. 51–61, 2002.

[4] J. Leigh, A. Johnson, M. Brown, D. Sandin, and T. DeFanti, “Visual-
ization in teleimmersive environments,” Computer, vol. 32, no. 12, pp.
66–73, 1999.

[5] A. Hilton, D. Beresford, T. Gentils, R. Smith, W. Sun, and J. Illingworth,
“Whole-body modeling of people from multi-view images to populate
virtual worlds,” Int. J. Comput Graphics, vol. 16, no. 7, pp. 411–436,
2000.

[6] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs, “The
office of the future: A unified approach to image-based modeling and
spatially immersive displays,” in Proc. ACM SIGGRAPH, 1998, pp.
179–188.

[7] P. Kauff and O. Schreer, “An immersive 3-D video-conferencing system
using shared virtual team user environments,” in Proc. ACM Conf. Col-
laborative Virtual Environments, 2002.

[8] H. Baker, D. Tanguay, I. Sobel, D. Gelb, M. Gross, W. Culbertson, and
T. Malzbender, “The coliseum immersive teleconferencing system,” in
Proc. Int. Workshop Immersive Telepresence, Juan-les-Pins, France,
Dec. 6, 2002.

[9] W. Matusik, C. Buheler, R. Raskar, S. Gortler, and L. McMillan, “Image-
based visual hulls,” in Proc. ACM SIGGRAPH, 2000, pp. 369–374.

[10] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka, “A stereo en-
gine for video-rate dense depth mapping and its new applications,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Fran-
sisco, CA, June 18–20, 1996, pp. 196–202.

[11] P. Narayanan, P. Rander, and T. Kanade, “Constructing virtual worlds
using dense stereo,” in Proc. Int. Conf. Computer Vision, 1998, pp. 3–10.

[12] G. Cheung, T. Kanade, J. Bouguet, and M. Holler, “A real time system
for robust 3-D voxel reconstruction of human motions,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, Hilton Head Island,
SC, June 13–15, 2000, pp. 714–720.

[13] M. Billinghurst, A. Cheok, S. Prince, and H. Kato, “Projects in vr: Real
world teleconferencing,” IEEE Comput. Graph. Applicat., vol. 22, pp.
11–13, 2002.

[14] T. Naemura, J. Tago, and H. Harashima, “Real-time video based mod-
eling and rendering of 3d scenes,” IEEE Computer Graph. Applicat.,
vol. 22, pp. 66–73, 2002.

[15] P. Baker and Y. Aloimonos, “Complete calibration of a multi-camera
network,” in Proc. IEEE Workshop Omnidirectional Vision, Hilton Head
Island, SC, June 12, 2000.

[16] D. Brady, R. Stack, S. Feller, L. F. E. Cull, D. Kammeyer, and R. Brady,
“Information flow in streaming 3-D video,” in Three-Dimensional Video
and Display Devices and Systems: SPIE PRESS, 2000, vol. CR76.

[17] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” Int. J. Comput. Vis., vol.
47, no. 1/2/3, pp. 7–42, 2002.

[18] J. Banks and P. Corke, “Quantitative evaluation of matching methods
and validity measures,” Int. J. Robot. Res., vol. 20, pp. 512–532, 2001.

[19] R. Sara and R. Bajcsy, “On occluding contour artifacts in stereo vision,”
in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Puerto
Rico, June 17–19, 1997, pp. 852–857.

[20] G. Egnal and R. Wildes, “Detecting binocular half-occlusions: Empirical
comparisons of five approaches,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 22, 2002.

[21] R. Sara, “Finding the largest unambiguous component of stereo
matching,” in Proc. 7th Eur. Conf. Computer Vision, 2002, pp.
900–914.

[22] O. Faugeras et al., “Real Time Correlation-Based Stereo: Algorithm, Im-
plementation, and Applications,” INRIA, Sophia Antipolis, Tech. Rep.
2013, 1993.

[23] L. Matthies, “Stereo vision for planetary rovers: Stochastic modeling to
near real-time implementation,” Int. J. Comput. Vis., vol. 8, pp. 71–91,
1992.

[24] H. Hirschmuller, P. Innocent, and J. Garibaldi, “Real-time correlation
based stereo with reduced border errors,” Int. J. Comput. Vis., vol. 47,
pp. 229–246, 2002.

[25] M. Agrawal and L. Davis, “Trinocular stereo using shortest path and the
ordering constraint,” Int. J. Comput. Vis., vol. 47, pp. 43–50, 2002.

[26] C. Buehler, S. Gortler, M. Cohen, and L. McMillan, “Minimal surfaces
for stereo,” in Proc. 7th Eur. Conf. Computer Vision, Copenhagen, Den-
mark, 2002, pp. 885–899.

[27] J. R. Shewchuk, “Triangle: Engineering a 2D quality mesh generator
and delaunay triangulator,” in Applied Computational Geometry: To-
ward Geometric Engineering, M. C. Lin and D. Manocha, Eds. Berlin,
Germany: Springer-Verlag, 1996, vol. 1148, Lecture Notes in Computer
Science, pp. 203–222.

[28] G. Welch and G. Bishop, “Scaat: Incremental tracking with incomplete
information,” in Proc. ACM SIGGRAPH, Los Angeles, CA, 1997, pp.
333–344.

[29] J. Mulligan and K. Daniilidis, “Trinocular stereo for nonparallel configu-
rations,” in Proc. 15th Int. Conf. Pattern Recognition, Barcelona, Spain,
Sept. 2000, pp. 567–570.

[30] H. Towles, W.-C Chen, R. Yang, S.-U Kum, H. Fuchs, N. Kelshikar,
J. Mulligan, K. Daniilidis, L. Bolden, B. Zelesnik, A. Sadagic, and J.
Lanier, “3-D tele-collaboration over internet2,” in Proc. Int. Workshop
Immersive Telepresence, Juan-les-Pins, France, Dec. 6, 2002.

[31] U. Dhond and J. Aggrawal, “Structure from stereo: A review,” IEEE
Trans. Syst., Man, Cybernet., vol. 19, pp. 1489–1510, 1989.



320 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 3, MARCH 2004

[32] Y. Ohta, M. Watanabe, and K. Ikeda, “Improving depth map by
right-angled trinocular stereo,” in Proc. 8th Int. Conf.Pattern Recogni-
tion (ICPR’86), vol. I, Paris, France, Oct. 1986, pp. 519–521.

[33] N. Ayache, Artificial Vision for Mobile Robots: Stereo Vision and Mul-
tisensory Perception. Cambridge, MA: MIT Press, 1991.

[34] O. Faugeras, Three-Dimensional Computer Vision: A Geometric View-
point. Cambridge, MA: MIT Press, 1993.

[35] D. Murray and J. Little, “Using real-time stereo vision for mobile robot
navigation,” Auton. Robots, vol. 8, no. 2, pp. 161–171, 2000.

[36] M. Okutomi and T. Kanade, “A multiple-baseline stereo,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 15, pp. 353–363, Apr. 1993.

[37] J. Mulligan and K. Daniilidis, “View-independent scene acquisition for
tele-presence,” in Proc. IEEE and ACM Int. Symp. Augmented Reality,
Munich, Germany, Oct. 2000, pp. 105–108.

[38] P. Fua, “A parallel stereo algorithm that produces dense maps and pre-
serves image features,” Machine Vis. Applicat., vol. 6, pp. 35–49, 1993.

[39] M. Okutomi, Y. Katayama, and S. Oka, “A simple stereo algorithm to
recover precise object boundaries and smooth surfaces,” Int. J. Comput.
Vis., vol. 47, no. 1/2/3, pp. 261–273, 2002.

[40] M. Irani, B. Rousso, and S. Peleg, “Computing occluding transparent
motions,” Int. J. Comput. Vis., vol. 12, no. 1, pp. 5–16, Jan. 1994.

[41] F. Meyer and P. Bouthemy, “Region-based tracking in an image se-
quence,” in Proc. 2nd Eur. Conf. Computer Vision, vol. 588, Lecture
Notes in Computer Science, G. Sini, Ed., Santa Margherita Ligure, Italy,
May 1992, pp. 476–484.

[42] D. F. Rogers, Procedural Elements for Computer Graphics, 2nd
ed. Boston, MA: WCB/McGraw-Hill, 1998.

[43] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proc. 7th Int. Joint Conf.
Artificial Intelligence (IJCAI’81), Vancouver, BC, Canada, 1981, pp.
674–679.

[44] E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vi-
sion. Upper Saddle River, NJ: Prentice-Hall, 1998.

[45] S. S. Beauchemin and J. L. Barron, “The computation of optical flow,”
ACM Comput. Surveys, vol. 27, no. 3, pp. 433–467, 1995.

[46] G. Slabaugh, B. Culbertson, T. Malzbender, M. Livingston, I. Sobel,
M. Stevens, and R. Schafer, “A collection of methods for volumetric
reconstruction of visual scenes,” Int. J. Comput. Vis., 2003, submitted
for publication.

Jane Mulligan received the B.S. degree in computer
science from Acadia University and the M.S.
and Ph.D. degrees in compuer science from the
University of British Columbia, Vancouver, BC,
Canada.

She is an Assistant Professor with the Computer
Science Department, University of Colorado at
Boulder. Prior to joining the University of Colorado
at Boulder, she was a Postdoctoral Fellow with the
GRASP Laboratory, University of Pennsylvania,
Philadelphia. Her current research interests include

extracting human models in telepresence settings and environment scanning
from mobile robotic platforms.

Xenophon Zabulis received the M.S. degree in com-
puter science and the Ph.D. degree from the Univer-
sity of Crete in 1998 and 2001, respectively.

He is a Postdoctoral Fellow working with Kostas
Daniilidis at the Computer and Information Science
Department, University of Pennsylvania, Philadel-
phia, and affiliated with the interdisciplinary GRASP
laboratory at the same institution. He is currently
involved with multiple-view scene acquisition for
tele-immersion. Prior to his current appointment,
he was a Postdoctoral Fellow with the Institute for

Research in Cognitive Science, University of Pennsylvania, working in the
understanding of human binocular vision. His research interests include visual
information retrieval by content as well as computational aspects of human
and multiple-view vision.

Nikhil Kelshikar received the M.S. degree in com-
puter science from the University of South Florida.

He is a Research Associate working with Kostas
Daniilidis at the Computer and Information Science
Department, University of Pennsylvania, Philadel-
phia and is affiliated with the GRASP Laboratory. He
is currently working on multicamera reconstruction
for tele-immersion.

Kostas Daniilidis (S’90–M’92) received the M.S.
degree in electrical engineering from the National
Technical University of Athens, Athens, Greece, in
1986 and the Ph.D. degree in computer science from
the University of Karlsruhe, Karlsruhe, Germany, in
1992.

He is Assistant Professor of Computer and
Information Science, University of Pennsylvania,
Philadelphia, affiliated with the interdisciplinary
GRASP laboratory. Prior to his current appointment
he was with the Cognitive Systems Group, Uni-

versity of Kiel. Currently, his research centers on omnidirectional vision and
vision techniques for tele-immersion and augmented reality.

Prof. Daniilidis was the recipient of the 2001 Motor Company Award for the
Best Penn Engineering Faculty Advisor. He was the chair of the IEEE Workshop
on Omnidirectional Vision 2000. He is the co-chair of the computer vision TC
of the Robotics and Automation Society and has been reviewing for the main
journals, conferences, and funding panels in computer vision.


