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ABSTRACT 
 

NEURAL CIRCUITS CONTROLLING CIRCADIAN RHYTHMS 

Anna King 

Amita Sehgal 

 

A central question in the circadian biology field is how ~24-hour oscillations of the molecular clock 

are translated into overt rhythms of behavior and physiology. Drosophila melanogaster is a 

powerful system that provided the first understanding of how molecular clocks are generated, and 

now the neural basis of circadian rhythms. In the Drosophila brain, there are about ~150 clock 

neurons that collectively are responsible for timekeeping. This thesis addresses how time-of-day 

signals are transmitted from the clock neurons to output circuits that drive overt rhythms. This 

work used a genetic approach to identify genes and circuits that regulate two output rhythms: 

peripheral transcriptional rhythms and brain-controlled behavioral rhythms. We showed that a 

specific group of clock neurons, LNds, and neuropeptide F signaling regulate transcriptional 

rhythms in a peripheral tissue called the fat body. We also built on previous work to map a 

multisynaptic circuit that regulates behavioral rest:activity rhythms. The rest:activity circuit 

extends from the central clock neurons, s-LNvs, through multiple neuropeptidergic output neurons 

to motor centers. The circadian output circuit we have mapped not only receives circadian (time-

of-day) signals but also signals that drive the need to sleep. This thesis provides neural bases for 

the regulation of circadian rhythms and highlights the different and intersecting circuits that 

ensure behavior and physiology occur at optimal times of day. 
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Chapter 1 : Introduction 

 

This introduction consists of two parts. The first part will cover current knowledge of molecular 

and circuit mechanisms underlying circadian clock output in the Drosophila brain. The second 

part will briefly review our understanding of how central circadian clocks control circadian rhythms 

in peripheral tissues.  

 

Part 1 : Circadian output circuits in Drosophila brain 

 

Submitted as: Anna N. King and Amita Sehgal (2018) “Molecular and circuit mechanisms 

mediating circadian clock output in the Drosophila brain.” European Journal of Neuroscience. 
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Abstract 

A central question in the circadian biology field concerns the mechanisms that translate ~24-hour 

oscillations of the molecular clock into overt rhythms. Drosophila melanogaster is a powerful 

system that provided the first understanding of how molecular clocks are generated and is now 

illuminating the neural basis of circadian behavior. The identity of ~150 clock neurons in the 

Drosophila brain and their roles in shaping circadian rhythms of locomotor activity have been 

described before. This review summarizes mechanisms that transmit time-of-day signals from the 

clock, within the clock network as well as downstream of it. We also discuss the identification of 

functional multisynaptic circuits between clock neurons and output neurons that regulate 

locomotor activity. 

 

Introduction 

Circadian (~24 hour) rhythms allow animals to anticipate daily changes in their 

environment and coordinate their behavior and physiology with time of day. These rhythms are 

generated by an internal timing mechanism, which is synchronized to environmental cycles of 

light and temperature imposed by the rotation of earth. In its simplest form, a circadian system is 

modeled with three basic components: the clock, input pathways, and output pathways. The clock 

maintains ~24-hour rhythms even in constant darkness. Input pathways synchronize the clock to 

external signals such as light. Output pathways receive and translate circadian signals from the 

clock to produce biological rhythms.  

 Much of our molecular knowledge of circadian clocks came from genetic studies in the 

fruit fly, Drosophila melanogaster. In flies, circadian rhythms are typically studied using locomotor 

activity as the output. Under a 12-hour light:12-hour dark cycle, the fly exhibits a bimodal pattern 

in locomotor activity, with activity peaks anticipating the light-to-dark (evening) and dark-to-light 

(morning) transitions. Locomotor activity rhythms are dependent on internal clocks and persist in 

constant darkness (DD), albeit with a different pattern. In DD, the fly’s locomotor activity free-runs 

with the periodicity of the endogenous clock, which is about (but usually not exactly) 24-hours, 
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such that activity each day generally occurs during the subjective day and rest occurs during the 

subjective night. Besides rest:activity rhythms, flies also exhibit rhythms in eclosion (emergence 

of adult flies from pupae), feeding, temperature preference, and sleep. Besides behavior, there 

are circadian rhythms at the cellular level, such as electrical activity of neurons, gene expression, 

and metabolic processes. A basic molecular clock mechanism regulates all output rhythms. One 

of the mysteries in circadian biology is how molecular clock oscillations are translated into diverse 

behavioral and physiological rhythms.  

Here, we review output mechanisms of the circadian clock in the Drosophila brain. We 

will start by describing the circadian clock network and the output mechanisms that occur within 

the network. Then, we will move beyond the circadian clock network and review recent work that 

identified output circuits regulating circadian rhythms of behavior and physiology.  

The circadian clock network in Drosophila brain 

The basic molecular oscillator in eukaryotes consists of transcriptional activators and 

repressors in a feedback loop. In Drosophila, the co-activator complex, CLOCK-CYCLE, drives 

transcription of the co-repressors, period (per) and timeless (tim). Accumulated PER and TIM 

proteins feed back to inhibit CLOCK-CYCLE activity. Delays are built into the basic molecular 

oscillator at multiple steps, and include post-transcriptional and post-translational mechanisms, 

which ensure 24-hr rhythms in PER and TIM expression [reviewed in (Zheng and Sehgal 2012)]. 

Oscillations in the circadian clock are self-sustained. However, the clock is usually 

synchronized to external cues through a process called entrainment, which is crucial for adaption 

to the environment [reviewed in (Yoshii, Hermann-Luibl, and Helfrich-Förster 2016)]. Light is the 

primary entrainment cue, and in flies it involves a dedicated circadian photoreceptor, 

Cryptochrome (CRY). Upon light exposure, CRY binds TIM and targets TIM for ubiquitination by 

the E3 ligase, JETLAG, and then degradation. In addition to the CRY mechanism, light-input 

circuits from the visual system to the central clock neurons are also important for light 

entrainment. 
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In the Drosophila brain, there are ~150 clock neurons subdivided into six groups based 

on neuroanatomy. The six groups of PER-TIM-expressing neurons include the large and 

small ventral lateral neurons (l-LNvs and s-LNvs), the dorsal lateral neurons (LNds), the lateral 

posterior neurons (LPN), and three groups of dorsal neurons (DN1, DN2 and DN3) (Figure 1.1) 

(M. Kaneko and Hall 2000; Charlotte Helfrich-Förster, Yoshii, et al. 2007). Clock neurons between 

and within groups use a heterogenous set of neuropeptides and neurotransmitters for signaling 

[reviewed in (Beckwith and Ceriani 2015)].   

The LNvs are comprised of two groups of neurons, s-LNvs and l-LNvs, and are 

genetically identified by expression of neuropeptide Pigment-Dispersing Factor (PDF) (Charlotte 

Helfrich-Förster 1995). There are four s-LNvs and four l-LNvs in each hemisphere of the fly brain. 

An additional pair of cells called the “5th s-LNvs” also expresses a molecular clock but is PDF-

negative. The Pdf+ LNvs hold an important role in regulating rest:activity rhythms. Flies with 

ablated or electrically silenced LNvs have arrhythmic rest:activity behavior in DD (Renn et al. 

1999; Nitabach, Blau, and Holmes 2002; Depetris-Chauvin et al. 2011), and per null mutant flies 

with per restored in LNvs display normal rest:activity rhythms in DD (Grima et al. 2004).  

Although the Pdf+ LNvs appear to have the primary role, robust rest:activity rhythms are a 

result of clock network coordination. When molecular clocks in the network are mismatched with 

one another, arrhythmicity, complex rhythms (comprised of multiple rhythmic components of 

different period lengths), or weak rest:activity rhythms emerge in the fly behavior (Yao and Shafer 

2014). The network is often simply modeled as a system of dual oscillators, where oscillators in 

Pdf+ LNvs control the morning peak of locomotor activity, and oscillators in LNds and the 5th s-

LNv control the evening peak (Grima et al. 2004; Stoleru et al. 2004; Guo et al. 2014). The LNd 

group is comprised of six neurons per hemisphere. Blocking neurotransmission from a LNd 

subset results in a large proportion of arrhythmic flies in DD (Guo et al. 2014). In addition, 

molecular clocks in a subset of LNds drive transcriptional rhythms of a set of metabolic genes in 

the fat body, a peripheral tissue analogous to adipose/liver tissue, through Neuropeptide F 

signaling (Erion et al. 2016). 
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The DN1 group is comprised of 2 anterior (DN1a) and 15 posterior (DN1p) neurons. 

DN1ps serve diverse functions as integrators of light, temperature, and circadian cues as well as 

effectors of locomotor activity, sleep, and mating. DN1s have molecular clocks that can be 

entrained to temperature (Yoshii, Hermann, and Helfrich-Förster 2010). Calcium (Ca2+) activity in 

DN1ps is also regulated by temperature (Guo et al. 2016; Yadlapalli et al. 2018). DN1ps integrate 

temperature and light information to promote robust rest:activity rhythms (L. Zhang et al. 2010; Y. 

Zhang et al. 2010) and also regulate sleep at specific times of day, through different circuits using 

either DH31 neuropeptide or glutamate signaling (Kunst et al. 2014; Guo et al. 2016). In addition, 

DN1ps mediate rhythms in male sex drive (Fujii, Emery, and Amrein 2017). 

The DN2s also have temperature-entrainable molecular clocks and regulate rhythms of 

temperature preference, namely the tendency of flies to seek different temperatures at different 

times of day (Yoshii, Hermann, and Helfrich-Förster 2010; H. Kaneko et al. 2012). A circuit for 

temperature preference at dawn has been mapped from the thermosensory anterior cells to s-

LNvs to DN2s (Tang et al. 2017). The molecular clocks in LPNs are also strongly synchronized to 

temperature cycles (Miyasako, Umezaki, and Tomioka 2007).  

Finally, glial cells in the brain also express PER and TIM (Zerr et al. 1990). Astrocytes are 

important for rest:activity rhythms, although the molecular clock in these cells is dispensable (Ng, 

Tangredi, and Jackson 2011). Glial cells are proposed to regulate outputs of clock neurons, but 

the signaling mechanisms remain to be uncovered (Ng and Jackson 2015; Herrero, Duhart, and 

Ceriani 2017). In the Drosophila blood-brain barrier (BBB), molecular clocks in glial cells drive 

circadian rhythms in BBB permeability (S. L. Zhang et al. 2018). 

PDF is an important clock output factor in the clock network 

In the clock network, pigment-dispensing factor (PDF) is an important clock output factor 

[reviewed in (Shafer and Yao 2014)]. Loss or overexpression of Pdf causes arrhythmic 

rest:activity behavior (Renn et al. 1999; Charlotte Helfrich-Förster et al. 2000), and mutations in 

the PDF receptor (PDFR) phenocopy Pdf mutants (Mertens et al. 2005; Lear, Merrill, et al. 2005; 

Hyun et al. 2005). PDFR is a G-protein coupled receptor that activates cAMP production upon 
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binding of PDF peptide. An important function of PDF/PDFR signaling is to maintain coherent and 

synchronized molecular oscillations in the clock network (Yoshii et al. 2009; Lin, Stormo, and 

Taghert 2004). All the groups of clock neurons, except the l-LNvs, express PDFR and respond to 

PDF application (Shafer et al. 2008; Im and Taghert 2010). Since PDFR in also expressed in Pdf+ 

s-LNv, PDF may feed back to cell-autonomously regulate the clock itself or output from the clock 

(Choi et al. 2012). Outside the clock network, PDFR expression is low (Im and Taghert 2010). 

PDF does signal to non-clock neurons implicated in behavior (Pírez, Christmann, and Griffith 

2013; J. Chen et al. 2016), but it is unclear whether PDF signaling in these circuits confers 

circadian timing to behavior.  

 PDF levels cycle across the day at s-LNv terminals in the dorsal protocerebrum, 

indicating that PDF may be secreted in a circadian manner (Park et al. 2000). In addition, Pdf 

mRNA levels are regulated by the molecular clock (Blau and Young 1999; Mezan et al. 2016; 

Gunawardhana and Hardin 2017). However, it is unclear whether rhythmic PDF levels or 

secretion are important for rest:activity rhythms (Kula et al. 2006). Instead, rhythmic PDF levels in 

the s-LNv terminals may be a secondary consequence of rhythmic neuronal firing or remodeling 

of the projections (discussed below). Furthermore, rhythmic PDF signaling may also occur 

through circadian-gated sensitivity to PDF in target neurons, mediated by PDFR and a small 

GTPase, Ral A (Klose et al. 2016). In summary, PDF is important for circadian rhythms, and its 

effect on circadian behavior is largely localized within the clock network. 

Glycine and glutamate mediate reciprocal inhibition between the s-LNvs and DN1ps 

 Compared to neuropeptides, less is known about fast neurotransmitters in the clock 

network. However, within the s-LNv-DN1p circuit, the inhibitory neurotransmitter, glycine, is used 

in addition to PDF (Frenkel et al. 2017). Knockdown of the glycine transporter or disrupting 

glycine synthesis in the Pdf+ LNvs lengthens the period of rest:activity rhythms, suggesting LNvs 

are glycinergic. In addition, glycine application on DN1ps reduces their firing frequency, and 

knockdown of glycine receptors subunits in the DN1ps reduces the power of rest:activity rhythms 

in flies, confirming functional glycine signaling in the s-LNv to DN1 circuit. 



7 

In the reciprocal direction, DN1ps signal to the s-LNvs through glutamate, an inhibitory 

neurotransmitter in flies (Hamasaka et al. 2007; Guo et al. 2016). A subset of the DN1ps 

expresses vesicular glutamate transporter (VGlut), and s-LNvs and LNds express the 

metabotropic glutamate receptor, mGluRA. Consistent with an inhibitory effect, glutamate 

application decreases Ca2+ in s-LNvs and LNds. Glutamate signaling is also relevant for 

behavioral rhythms—glutamate from non-LNv clock neurons is required for robust rest:activity 

rhythms and knockdown of mGluRA in Pdf+ LNvs lengthens the period of rest:activity rhythms 

(Hamasaka et al. 2007; Collins et al. 2012) 

Neuropeptides sNPF and PDF set different phases of Ca2+ rhythms in clock network 

Intercellular signaling is not only essential for synchronizing molecular clock rhythms but 

also coordinating neuronal activity rhythms in the clock network. It is thought that the molecular 

clock regulates the excitability of clock neurons, such that the neurons are more active at certain 

times of day than other times. Electrophysiological recordings from s-LNv, l-LNv, and DN1 have 

shown that the molecular clock drives these cells to be more active at dawn than at dusk (Table 

1.1) (Sheeba, Gu, et al. 2008; Cao and Nitabach 2008; Flourakis et al. 2015). Recent studies use 

genetically encoded Ca2+ sensors to perform longitudinal imaging of neuronal activity in the entire 

clock network over 24 hours, with the added advantages of obtaining more temporal information 

and precise determination of when clock neurons are most active (Liang, Holy, and Taghert 2016; 

Liang, Holy, and Taghert 2017). We review this work reported in a pair of papers by Liang, Holy, 

and Taghert. 

Intracellular calcium (Ca2+) ions are important secondary messengers for many signaling 

pathways, and Ca2+ levels rise during electrical activity in neurons. In circadian regulation, Ca2+ 

signaling is both an input and output of the molecular clock (Harrisingh et al. 2007; Ikeda 2004), 

with all groups of clock neurons displaying 24-hr Ca2+ rhythms. Despite synchrony of the 

molecular oscillator across the clock network, Ca2+ rhythms are asynchronous among the 

different groups of clock neurons (Table 1.1) (Liang, Holy, and Taghert 2016). Ca2+ peaks in clock 

neurons occur at times that match with their roles in behavior. For example, s-LNvs control 
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morning locomotor activity and have peak Ca2+ levels at dawn, and LNds control evening 

locomotor activity and have peak Ca2+ levels preceding the evening.  

How does the clock network coordinate different phases of Ca2+ rhythms? To discover 

the mechanisms, Liang et al. focused on neuropeptides, such as PDF (Liang, Holy, and Taghert 

2017). In the absence of PDF, the Ca2+ peaks in LNds and DN3s are shifted from ~CT 8 and ~CT 

16, respectively, to dawn (~CT 0). (CT or Circadian Time is the circadian time defined by an 

organism’s endogenous circadian clock in constant conditions; CT 0 corresponds to the start of 

subjective day and CT 12 to the start of subjective night). To determine if the shift in Ca2+ rhythms 

is a phase advance or delay, they applied synthetic PDF and found that Ca2+ levels decreased in 

LNds and DN3s, and importantly, the Ca2+ levels remained depressed for several hours. 

Therefore, PDF delays the Ca2+ peaks in LNds and DN3s and does so by staggering their Ca2+ 

peaks to two different times of the day. How one neuropeptide produces two different effects on 

phase is not known. The authors also determined that sNPF (short Neuropeptide F) inhibits Ca2+ 

and delays the Ca2+ peak in DN1s. sNPF in the clock network is required for rhythmic Ca2+ 

rhythms but not molecular clock oscillations in DN1s. Therefore, for certain clock neurons, circuit 

mechanisms may dominate over the cell-autonomous molecular clock in shaping Ca2+ rhythms. 

This study reported an inhibitory effect for PDF, which previously was shown to acutely 

depolarize or increase Ca2+ in cells (Mertens et al. 2005; Seluzicki et al. 2014; Vecsey, Pírez, and 

Griffith 2014). However, an important experimental difference is that Taghert and colleagues 

observed long-term effects of neuropeptides on Ca2+ levels. Neuropeptides have complex roles in 

the clock network, as they synchronize the phases of molecular clocks and Ca2+ rhythms; in 

addition, acute and long-term effects of neuropeptides on target neurons may be different. How 

neuropeptides serve diverse functions is the clock network is still not well understood but likely 

involves divergent downstream signaling mechanisms (Seluzicki et al. 2014; Duvall and Taghert 

2013). 
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Circadian regulation of structural plasticity in s-LNvs 

Circadian structural plasticity in the fly brain was first reported in the lamina, the first optic 

neuropil of the visual system [reviewed in (Górska-Andrzejak, Damulewicz, and Pyza 2015)]. In 

the lamina, many structures undergo circadian rhythms in morphological plasticity, including the 

retinal photoreceptor terminals, monopolar cells, and synapses (Weber, Kula-Eversole, and Pyza 

2009; Górska-Andrzejak et al. 2013). Circadian plasticity of these structures is complex and 

involves multiple inputs from phototransduction pathways, clock neurons, and peripheral clocks in 

glia and photoreceptor cells.  

Circadian structural plasticity has also been extensively studied in the terminal 

projections of s-LNvs in the dorsal protocerebrum. The s-LNv projections include both presynaptic 

and postsynaptic sites and are near most other clock neurons, implicating s-LNv projections as 

major sites for communication in the clock network (Charlotte Helfrich-Förster, Yoshii, et al. 2007; 

Yasuyama and Meinertzhagen 2010). In the morning, the s-LNv terminals display greater 

complexity, with more arbors, branching, and volume, than at night (M. P. Fernández, Berni, and 

Ceriani 2008; Petsakou, Sapsis, and Blau 2015). Presumably, the increased terminal complexity 

indicates more synaptic connections. Indeed, using the GRASP (GFP reconstitution across 

synaptic partners) assay, which labels synaptic contacts between two populations of neurons, 

contacts between s-LNv and their partners were found to be higher during the day than in the 

evening (Gorostiza et al. 2014; Tang et al. 2017). As such, the structural plasticity of s-LNv 

projections is a circadian output rhythm, regulated by the molecular clock and maintained in 

constant darkness (M. P. Fernández, Berni, and Ceriani 2008). 

Circadian remodeling of s-LNv projections appears to be important for behavior, since 

mutants that have comprised overt rest:activity rhythms may also have disrupted remodeling of 

the s-LNv projections. When the Pdf+ LNvs are acutely silenced, the s-LNv projections do not 

undergo circadian remodeling, and the flies display arrhythmic rest:activity behavior (Depetris-

Chauvin et al. 2011). With this manipulation, the s-LNv molecular clock still runs with a normal 24-

hr schedule, demonstrating that electrical activity is an output of the molecular clock and 
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regulates circadian remodeling of projections. The circadian remodeling of s-LNv projections is 

also regulated by cell-autonomous expression of PDF and Mmp1, a matrix metalloproteinase that 

processes PDF (Depetris-Chauvin et al. 2014). Other genes also affect rest:activity rhythms by 

dysregulating circadian remodeling of s-LNv projections, promoting either their branching or 

retraction. 

Mef2 (Myocyte enhancer factor 2) is a transcriptional factor that is expressed in all groups 

of clock neurons (Blanchard et al. 2010). Mef2 transcription is directly regulated by the CLOCK-

CYCLE transcription factor complex, and Mef2, in turn, regulates transcription of many genes, 

including Fasciclin 2 (Fas2), the Drosophila ortholog of neural cell adhesion molecule, NCAM 

(Sivachenko et al. 2013). In s-LNvs, Mef2 promotes branching of the dorsal projection, while Fas2 

promotes retraction. A clock output mechanism emerges for circadian remodeling of s-LNv 

projections: CLOCK-CYCLE → Mef2 → Fas2 → s-LNv remodeling (Sivachenko et al. 2013). 

Dysregulation of Mef2 in Pdf+ LNvs leads to decreased power of rest:activity rhythms or complex 

rhythms (Blanchard et al. 2010; Sivachenko et al. 2013). These behavioral changes are also 

correlated with altered molecular clocks in s-LNvs, suggesting Mef2 may also feedback onto the 

molecular clock (Blanchard et al. 2010).  

Rho1 is a member of the Rho family of GTPase signaling proteins and a key regulator of 

the actin cytoskeleton. Rho1 activity cycles in the s-LNv projections and is highest in the evening 

(ZT12), when the projections are most condensed, which is consistent with its role in promoting 

retraction of projections. A Rho Guanine Nucleotide Exchange Factor (GEF), Puratrophin-1-like 

(Pura), activates Rho1 by promoting its association with GTP rather than GDP. Pura transcription 

cycles in s-LNvs and may be a direct target of CLOCK. Petsakou et al. proposed that clock-

regulated Pura imposes rhythms in Rho1 activity, and the Rho-ROCK-myosin light chain (MLC) 

pathway regulates actomyosin retraction of s-LNv projections in a circadian manner. When Rho1 

is overexpressed in the Pdf+ LNv, the s-LNv projections do not branch in the morning, and flies 

have arrhythmic rest:activity behavior. At the molecular level, the s-LNv molecular clocks are 

normal, but in downstream DN1s, the molecular clocks are phase-shifted by up to 12 hours. 
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Thus, remodeling of the s-LNvs has effects on other clock neurons (Petsakou, Sapsis, and Blau 

2015).  

Clock output genes 

Less is known about the circadian output pathways that transmit timekeeping signals 

from central clock cells to other parts of the brain to produce rest:activity rhythms. An output 

component is defined as a molecule or cell population that is regulated by the circadian clock but 

is not an intrinsic part of the clock mechanism. Several output genes have been implicated in 

behavioral rhythms, including na, slo, miR-279, Nf1, wake, and ebony. Dysregulation of these 

genes disrupts behavioral rhythms in animals but does so without affecting oscillations of the 

molecular clock. Many of these clock output genes exhibit clock-dependent diurnal variation in 

expression or function. 

Na (narrow abdomen) encodes an ion channel with homology to the mammalian NALCN 

sodium leak channel, and is required broadly in the clock network for normal rest:activity rhythms 

(Lear, Lin, et al. 2005). In the posterior DN1 (DN1p) and l-LNv clock neurons, na is required for 

cycling of a sodium leak current, which contributes to oscillations in firing frequency and resting 

membrane potential (Flourakis et al. 2015). Nlf-1 (also known as Mid1) is a NA localization factor 

that is rhythmically expressed and clock-controlled. Nlf-1 is also required for robust rest:activity 

rhythms (Ghezzi et al. 2014; Flourakis et al. 2015). Together, NLF-1/NA are part of a cell-

autonomous clock output mechanism to ensure robust rhythms of neuronal activity.  

The slo (slowpoke) potassium channel was identified as an output factor, because its 

binding partner, Slob (slowpoke binding protein), is a clock-controlled gene with robust 

transcriptional rhythms (Claridge-Chang et al. 2001; McDonald and Rosbash 2001; Ceriani et al. 

2002). slo mutants are arrhythmic in constant darkness but have intact s-LNv molecular clocks. 

Instead, slo mutants have altered levels of PDF in s-LNv projections and desynchronized clocks 

in the DN1s (M. de la P. Fernández et al. 2007). slo may also have an important role outside the 

clock network, since clock neuron-specific rescue of slo only partially rescues rest:activity 
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rhythms. Furthermore, dyschronic, a factor that regulates SLO expression, is required in non-

clock neurons for rest:activity rhythms (Jepson et al. 2012). 

miR-279 is a microRNA that regulates rest:activity rhythms by targeting and 

downregulating expression of Unpaired 1 (Upd1), a ligand of the JAK/STAT pathway (Luo and 

Sehgal 2012). JAK/STAT signaling constitutes a critical pathway for development and immunity, 

but disrupting this pathway only in adulthood impairs rest:activity rhythms. miR-279 and Upd1 

were found to be required in clock neurons for rest:activity rhythms, although their cellular 

requirements were not precisely mapped. Given findings that UPD1 is a fly analog of leptin and 

expressed in the Pdf+ LNvs, UPD1 could be an output of the s-LNvs (Beshel, Dubnau, and Zhong 

2017). 

Wake (wide awake) is a clock output molecule that regulates the timing of sleep onset. 

wake mutants have a delayed sleep onset at night but normal rest:activity rhythms (S. Liu et al. 

2014). WAKE levels cycle in the l-LNvs, peaking near dusk, when they are required to promote 

sleep. Previously, the l-LNvs were shown to promote arousal and respond to inhibition by GABA 

(Sheeba, Fogle, et al. 2008; Shang, Griffith, and Rosbash 2008; Parisky et al. 2008). In l-LNvs, 

WAKE upregulates membrane localization of RDL, a GABA(A) receptor, which would inhibit the 

excitability of arousal-promoting l-LNvs. Indeed, in wake mutants, the l-LNvs show decreased 

GABA sensitivity and increased excitability (S. Liu et al. 2014). RDL also cycles in l-LNvs and is 

regulated by rhythmic degradation though the E3 ligase Fbxl4, whose transcription is clock-

controlled. As expected, Fbxl4 mutants have the opposite phenotype of wake mutants, with a 

shorter latency to sleep onset at dusk (Q. Li et al. 2017). 

Nf1 (neurofibromatosis-1) encodes a Ras-specific GTPase activating protein required for 

rest:activity rhythms (Williams et al. 2001). Nf1 mutants have increased Ras/mitogen-activated 

protein kinase (MAPK) signaling, and loss-of-function mutations in the MAPK pathway can rescue 

rest:activity rhythms in Nf1 mutants. Restoring Nf1 in clock cells does not rescue the behavioral 

deficits. Instead, Nf1 is required broadly in the brain, presumably in multiple circadian neurons 

that regulate rest:activity rhythms (Bai et al. 2018). Not only does Nf1 regulate PDF levels in the 
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s-LNv projections, it regulates Ca2+ and neuropeptide levels in circadian output neurons that are 

downstream of clock neurons (discussed below). 

Ebony encodes a β-alanyl-biogenic amine synthase that controls the levels of free 

biogenic amines. EBONY is expressed exclusively in glial cells, where it functions to regulate 

rest:activity rhythms (Suh and Jackson 2007). At least some of the glial expression of EBONY co-

localizes with PER and TIM clock proteins, suggesting that ebony is an output molecule of glial 

clock cells.  

Circadian output circuits that regulate rhythms of behavior/physiology 

The output genes described above primarily regulate the outputs of clock cells, such as 

firing or cell signaling, and none were definitively mapped to non-clock cells. Only in the last 5 

years, with advances in circuit mapping tools, we have identified multisynaptic output circuits that 

regulate circadian rhythms (Figure 1.1). These circuits consist of non-clock neurons that convey 

circadian timing information from clock neurons to sites that control behavior or physiology. 

Output neurons receive inputs from clock neurons, either directly or indirectly through another 

group of output neurons. To date, assays of output neurons have revealed cycling of 

neural/cellular activity in a clock-dependent fashion (Table 1.1). Disruption of this neuronal activity 

disrupts the output rhythm without affecting the molecular clock. Therefore, most phenotypes 

from manipulating circadian output neurons are effects on rhythmicity of rest:activity rather than 

changes in circadian period, which is an intrinsic property of the clock. However, output neurons 

could feedback onto the clock to affect periodicity. As output circuits identified thus far are 

peptidergic and neuromodulatory in nature, and possibly also redundant, their disruption tends to 

weaken the amplitude of the rest:activity rhythm and not eliminate it altogether as would loss of 

molecular clock oscillations. 

The pars intercerebralis (PI) has been proposed as a clock output region for many years. 

For one, ablation studies in cockroaches showed that the PI is required for locomotor activity 

rhythms (Nishiitsutsuji-Uwo, Petropulos, and Pittendrigh 1967; Matsui et al. 2009). Furthermore, 

in Drosophila, nearly all the circadian clock neurons, except for the l-LNvs, project to the PI 
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(Charlotte Helfrich-Förster 1995; Charlotte Helfrich-Förster, Yoshii, et al. 2007; M. Kaneko and 

Hall 2000). The PI is a major neurosecretory center with a high degree of neurochemical 

heterogeneity, as such functionally analogous to the mammalian hypothalamus (de Velasco et al. 

2007). PI neurons regulate various behaviors in flies including sleep (Foltenyi, Greenspan, and 

Newport 2007; Crocker et al. 2010), feeding (Zhan, Liu, and Zhu 2016), nutrient sensing (Dus et 

al. 2015), courtship (Terhzaz et al. 2007), and aggression (Davis et al. 2014). Thus, the PI may 

be a major output center for regulating circadian timing of behaviors.  

Our group identified populations of PI neurons relevant for circadian rhythms. Three 

different PI groups, those that express DH44 (Diuretic hormone 44), SIFa (SIFamide), or DILP2 

(Drosophila insulin-like peptide 2), synapse with DN1p clock neurons (Cavanaugh et al. 2014; 

Barber et al. 2016). The three PI groups are largely distinct from one another, with the exception 

that a pair of the Dh44+ neurons expresses low levels of DILP2 (Ohhara et al. 2018). Currently, it 

is not known whether s-LNvs or other clock neurons directly signal to the PI. Furthermore, we do 

not know the identity of the signaling molecules that mediate the DN1p to PI communication. 

DH44→Hugin: A neuropeptidergic output circuit regulates rest:activity rhythms  

The six Dh44+ neurons of the PI receive clock input through a multisynaptic circuit comprised 

of s-LNv → DN1 → Dh44+ PI (Cavanaugh et al. 2014). Activation or ablation of Dh44+ PI neurons 

reduces the power (or amplitude) of rest:activity rhythms without affecting the molecular 

oscillation of clock proteins in s-LNvs, demonstrating that Dh44+ PI neurons are output neurons 

downstream of the clock. In Dh44+ PI neurons, Ca2+ levels cycles across the 24-hr day, with peak 

activity occurring around evening and trough activity in the morning. Ca2+ cycling in Dh44+ 

neurons requires the Pdf+ LNvs, suggesting that cycling in Ca2+ levels propagates from the s-

LNvs to Dh44+ neurons (Cavey et al. 2016). In addition, the Nf1 circadian output gene cell-

autonomously regulates Ca2+ cycling in Dh44+ neurons (Bai et al. 2018).  

What about the role of the DH44 neuropeptide in rest:activity rhythms? DH44 and one of its 

receptors, DH44-R1, are required for strong rest:activity rhythms (Cavanaugh et al. 2014; King et 

al. 2017). Our group also mapped the circuit downstream of Dh44+ PI neurons to another set of 
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neuropeptidergic neurons in the subesophageal zone. Knockdown of Dh44-R1 in hugin+ neurons 

reduces the power of rest:activity rhythms. In addition, hugin and its encoded neuropeptides, 

Hugin-γ and/or Prokynin-2, are required for robust rest:activity rhythms. hugin+ neurons 

themselves display clock-dependent cycling of neuropeptide vesicle release from their axon 

termini. A subset of hugin+ neurons projects back to the PI, potentially providing feedback 

regulation, while another subset of hugin+ neurons projects to the ventral nerve cord (VNC), 

where the circuit potentially modulates motor circuits driving locomotor activity (King et al. 2017). 

For the first time, we have a minimal, linear circuit between clock neurons and output neurons 

regulating locomotor activity. 

SIFa+ PI neurons regulate rest:activity rhythms 

 In the same screen that identified Dh44+ PI neurons, the SIFa+ PI neurons were also 

found to regulate rest:activity rhythms (Cavanaugh et al. 2014). Ablation of all four SIFa+ neurons 

in the brain disrupts rest:activity rhythms but spares the s-LNv molecular clock. Loss of SIFa 

peptide itself produces a weaker effect on rest:activity rhythms than neuronal ablation, suggesting 

that other or co-neurotransmitters from SIFa+ neurons regulate rest:activity rhythms (Bai et al. 

2018). Finally, circadian phenotypes in Nf1 mutants may be due to dysregulation of SIFa+ 

neurons. In Nf1 mutants with arrhythmic rest:activity behavior, both Ca2+ levels in SIFa+ neurons 

and mRNA levels of SIFa are increased (Bai et al. 2018). 

Dilp2+ PI neurons integrate circadian timing and metabolic signals 

The fourteen Dilp2+ PI neurons and the insulin-like peptides have well-described roles in 

feeding and metabolism (Nässel et al. 2013). Similar to the Dh44+ and SIFa+ neurons, Dilp2+ 

neurons receive inputs from DN1p clock neurons (Barber et al. 2016). However, unlike their PI 

counterparts, Dilp2+ neurons do not appear to control rest:activity rhythms. Activation of Dilp2+ 

neurons in the adult fly is not sufficient to impair rest:activity rhythms (Cavanaugh et al. 2014). 

However, Dilp2+ neurons and insulin signaling may be important for development of circadian 

output circuits (Monyak et al. 2017). A set of Dilp2+ neurons project out of the brain and into the 

aorta, where circulating insulin-like peptides may be released to affect peripheral tissues, like the 
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fat body. Dilp2+ neurons and insulin signaling regulate transcriptional rhythms of sxe2, a lipase in 

the fat body (Barber et al. 2016). As circadian output neurons, Dilp2+ neurons show cycling in 

electrical activity (Barber et al. 2016). Dilp2+ neurons exhibit higher electrical activity in the 

morning compared to the night, specifically increased firing frequency and burst firing events. 

These differences in electrical activity are lost in a period null mutant, demonstrating that cycling 

of Dilp2+ neuronal activity is clock-dependent. Cycling of electrical activity in Dilp2+ neurons is in 

phase with cycling in upstream clock neurons, DN1s and LNvs (Sheeba, Gu, et al. 2008; Cao and 

Nitabach 2008; Flourakis et al. 2015). In addition to clock-regulation, firing in Dilp2+ neuron is 

regulated by feeding, since restricted feeding can shift the nighttime firing pattern of Dilp2+ 

neurons to the daytime firing pattern (Barber et al. 2016). Thus, Dilp2+ PI neurons integrate both 

circadian timing and metabolic signals.  

Leucokinin regulates rest:activity rhythms 

 Leucokinin (Lk)-expressing neurons in the lateral horn are circadian output neurons that 

regulate sleep and rest:activity rhythms (Cavey et al. 2016). Both Lk and Lk receptor (Lk-R) 

mutants have reduced power of rest:activity rhythms. s-LNv clock neurons project to Lk+ lateral 

horn neurons, and firing of Pdf+ LNv neurons indirectly inhibits Ca2+ in Lk+ lateral horn neurons. 

While the inhibitory transmitter is unknown, PDF neuropeptide appears to be involved in an 

indirect circuit between Pdf+ LNv and Lk+ lateral horn neurons. LK-R is expressed broadly in the 

brain, including the lateral horn, ellipsoid body, and fan-shaped body, which are all areas 

implicated in locomotor control. The cellular requirement of LK-R for rest:activity rhythms has not 

been mapped. However, both Lk+ and Lk-R+ neurons in the lateral horn display cycling of Ca2+ 

levels that is dependent on the molecular clock and Pdf+ LNvs. Cycling of Ca2+ levels occurs with 

opposite phases in Lk+ and Lk-R+ neurons, since LK peptide inhibits Ca2+ in Lk-R+ neurons. Lk+ 

and Lk-R+ lateral horn neurons also exhibit rhythms in excitability to carbachol, a cholinergic 

receptor agonist, that tracks with baseline Ca2+ rhythms. In summary, rhythmic neuronal activity 

can propagate to output neurons that are at least two synapses removed from clock neurons. 
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PTTH+ neurons regulate eclosion rhythms 

 Eclosion (adult emergence from pupae) occurs only once in the life of a fly, but rhythms 

of eclosion can be monitored in a population, with peaks of emerging flies typically observed 

around dawn. The prothoracic gland (PG) is an endocrine gland that produces ecdysone, the 

steroid hormone that controls molting. Eclosion rhythms are controlled by central brain clocks and 

peripheral clocks in the PG (Myers, Yu, and Sehgal 2003), but the brain clock has a dominant 

role over the PG clock (Selcho et al. 2017). The central clock transmits timing information to the 

PG clock through a s-LNv → PTTH+ neurons → PG circuit (Selcho et al. 2017). PTTH 

(prothoracicotropic hormone) is expressed in two pairs of brain neurons that receive input from s-

LNvs via short Neuropeptide F. In turn, PTTH from the brain signals onto the PG through the 

PTTH receptor, torso. Knockdown of torso in the PG disrupts eclosion rhythms but has no effect 

on adult rest:activity rhythms (Selcho et al. 2017). These works highlight that s-LNvs control 

rest:activity rhythms and eclosion rhythms through different output circuits. 

Conclusion 

The molecular mechanism of the circadian oscillator has been worked out in detail. For 

many years, we knew much less about how oscillations of molecular clock are translated into 

overt rhythms in behavior and physiology. Only recently has the field begun to identify functional 

connections within and downstream of the clock network, thus providing a neural basis for 

circadian rhythms. The primary focus of the field has been dissecting functional circuits that 

control rest:activity rhythms, and so the circuits that control other rhythmic behaviors in adult flies 

are underexplored. For all circadian circuits, clock-regulated cycling of neuronal activity appears 

to be the output mechanism for timekeeping and can propagate from clock neurons to output 

neurons along multisynaptic circuits. Longitudinal recording of neuronal activity over 24 hours 

remains a challenge in flies but will be informative for precisely studying how cycling of activity in 

circadian circuits is shaped by the molecular clock and neurotransmission.  



18 

Figure 1.1  

 

Circadian circuits in the fly brain. Top. Schematic representation of a fly brain with 

neuroanatomical locations of clock neurons (red, right hemisphere) and circadian output neurons 

(gray, left hemisphere or midline). Bilaterally represented neurons are labeled in only one of the 

hemispheres. Approximate total number of cells in the brain is indicated in parentheses. Bottom. 

Arrows represent the paths of communication between groups of circadian neurons. Circuits were 

mapped using neuronal activation and functional imaging and/or GRASP (GFP reconstitution 

across synaptic partners) methods. The neuropeptide/neurotransmitters that signal in the circuits 

were genetically identified by removing the peptide or neurotransmitter transporter in the 

presynaptic neuron and removing the receptor in the postsynaptic neuron. PDF mediates s-LNv 

communication to LNd, DN1, and LHLK (indirectly) (Leucokinin+ lateral horn). Glycine (Gly) also 

signals from s-LNv to DN1 and LNd. Short neuropeptide F (sNPF) signals in the s-LNv to PTTH 

circuit. Glutamate (Glu) signals from the DN1 to s-LNv and LNd. The molecules that signal 

between DN1 and PI neurons (DH44/SIFa/Dilp2) are unknown. DH44 neuropeptide signal from 

Dh44+ to hugin+ neurons. 
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Table 1.1  

Cycling in Circadian Circuits 

Neuronal 

group: 

Cycling: Highest 

at:  

(hours 

since 

lights-on) 

Cycles in 

constant 

darkness? 

Cycle 

lost in a 

clock 

mutant?: 

Reference 

Clock neurons  

s-LNv Electrical activity ~0 N.d. N.d. (Cao and Nitabach 

2008) 

Intracellular calcium (Ca2+) 

levels 

23-24 Yes Yes (Liang, Holy, and 

Taghert 2016) 

Complexity of projections ~0 Yes Yes (M. P. Fernández, 

Berni, and Ceriani 

2008) 

Synapse contacts ~2 Yes N.d. (Gorostiza et al. 

2014) 

Rho1 activity  ~12 Yes Yes (Petsakou, Sapsis, 

and Blau 2015) 

PDF levels in projections 0-6 Yes Yes (Park et al. 2000) 

PDF and dopamine sensitivity ~0 Yes N.d. (Klose et al. 2016) 

l-LNv Electrical activity 1-6 No (DD day 

1); Yes (DD 

day 14)  

Yes (Sheeba, Gu, et al. 

2008; Cao and 

Nitabach 2008) 

Ca2+ levels 5-6 Yes Yes (Liang, Holy, and 

Taghert 2016) 

GABA sensitivity Evening N.d. N.d. (Q. Li et al. 2017) 

LNd Ca2+ levels ~12 Yes (highest 

at CT 8-9) 

Yes (Liang, Holy, and 

Taghert 2016) 

DN1 Electrical activity 0-4 or 20-

24  

N.d. Yes (Flourakis et al. 

2015) 

Ca2+ levels 18-20 Yes Yes (Liang, Holy, and 

Taghert 2016) 

DN2 Synaptic contacts with s-LNvs 22-24 N.d. N.d. (Tang et al. 2017) 

DN3 Ca2+ levels 17-18 Yes Yes (Liang, Holy, and 

Taghert 2016) 

Circadian output neurons  

DILP2+ PI Electrical activity 0-4 No Yes (Barber et al. 2016) 

DH44+ PI Ca2+ levels 7-12 Yes Yes (Cavey et al. 2016; 

Bai et al. 2018) 

Hugin+ SEZ Neuropeptide vesicle release Night N.d. Yes (King et al. 2017) 

LK+ LH Ca2+ levels Night Yes Yes (Cavey et al. 2016) 

Carbachol sensitivity Night Yes Yes (Cavey et al. 2016) 

LK Receptor+ 

LH 

Ca2+ levels Day Yes Yes (Cavey et al. 2016) 

Carbachol sensitivity Day Yes Yes (Cavey et al. 2016) 

 

N.d. = not determined 

CT = circadian time 

DD = constant darkness 

LH = lateral horn 

PI = pars intercerebralis  

SEZ = subesophageal zone 
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Part 2 : Central clocks regulate circadian rhythms in peripheral tissues 

The circadian system is arranged in a hierarchy, where the central clock in the brain can regulate 

clocks and rhythms in peripheral tissues (Albrecht 2012). The central clock is unique, since it is 

primarily synchronized with light:dark cycles and resistant to other external cues. Although 

peripheral clocks can be self-sustained and cell autonomous (the degree of autonomy varies from 

clock to clock), they are synchronized with the central clock to ensure circadian synchrony within 

the animal. Peripheral clocks are also influenced by external cues, such as feeding, temperature, 

and behavior. In addition, in Drosophila, several tissues have photosensitive peripheral clocks 

which can directly entrain to light (Giebultowicz et al. 2000). External cues such as restricted 

feeding or jet lag can differentially phase shift peripheral clocks, leading to circadian desynchrony, 

a factor that contributes to the pathophysiology of many diseases (Roenneberg and Merrow 

2016; Damiola 2000). Not only is central clock-to-peripheral tissue signaling an important area of 

study from the human health perspective, the neural basis for peripheral circadian rhythms is 

relatively understudied. Here, I will highlight a few works that provide a mechanistic 

understanding of how the central clock influences rhythms in peripheral tissues. In general, 

endocrine signaling is an important mechanism that can mediate brain-to-periphery 

communication. Neurohormones may serve as internal timing cues that synchronize peripheral 

circadian rhythms (E Challet 2015). In addition to identifying neuroendocrine signals, several 

studies have mapped circuits between the central clock neurons and neuroendocrine centers.  

Neural clock to oenocyte clock signaling regulates pheromone rhythms 

In the first part of the introduction, I introduced a circuit through which the central clock 

communicates with the peripheral clock of the prothoracic gland to regulate eclosion rhythms in 

flies. The s-LNv clock neurons signal to PTTH+ neuroendocrine cells, which then signal directly to 

the clock in the prothoracic gland. Another peripheral tissue, oenocytes, also have molecular 

clocks influenced by central clocks. In insects, oenocytes produce cuticular hydrocarbon 

pheromones, which are important for mediating social interactions such as mating. Since PDF is 
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an important output factor of the central clock, Krupp et al. asked whether PDF signaling is 

required for oenocyte clock function (Krupp et al. 2013). They found that in Pdf mutants, the 

oenocyte clock still oscillates but runs with a period that is longer than 24 hours. Thus, PDF 

signaling acts to modulate the period of the oenocyte clock. The study also found that PDF 

signaling is required for rhythmic expression of desat1, an oenocyte-expressed enzyme involved 

in the biosynthesis of male Drosophila sex pheromones. PDF is expressed in two different groups 

of neurons, the LNv central clock neurons in the brain and abdominal ganglion neurons (AbNs) in 

the ventral nerve cord. Unlike LNvs, AbNs do not have molecular clocks. Krupp et al. found that 

PDF from both LNvs and AbNs is required for normal 24-hour oscillations of desat1. However, 

only PDF from AbNs regulates levels of male sex pheromones. Therefore, oenocyte clocks are 

regulated by both central clock neurons and non-clock neurons, with PDF neuropeptide as the 

circulating hormone communicating between the CNS and peripheral clocks in oenocytes (Krupp 

et al. 2013; Shafer and Yao 2014).   

Central clocks drive peripheral transcriptional rhythms 

Circadian clocks and transcriptional rhythms are ubiquitous throughout an animal. In 

mice, 43% of all protein coding genes show circadian rhythms in mRNA expression 

(transcriptional rhythms) in at least one tissue (R. Zhang et al. 2014). For a majority of transcripts, 

transcriptional rhythms are driven by the local tissue clock, either directly as a clock-controlled 

gene or indirectly through a clock-controlled gene regulatory mechanism (Kornmann, Schaad, 

Bujard, et al. 2007). However, there are subsets of rhythmic transcripts that are independent of 

the local tissue clock. This phenomenon is evident in the murine liver, where cycling of about 30-

90 liver genes is regulated by the central clock (brain clock) and not by the local clock 

(Kornmann, Schaad, Bujard, et al. 2007; Hughes et al. 2012). The factors that drive cycling of 

liver clock-independent genes are not known. One study found that glucocorticoid from the 

adrenal gland regulates a subset of transcriptional rhythms in the liver (Oishi et al. 2005). 

Circadian rhythm of glucocorticoids depends on adrenocorticotropic hormone from the anterior 

pituitary, which is in turn regulated by corticotropin-releasing hormone rhythms from the 
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hypothalamus (E Challet 2015). Thus, the hypothalamic-pituitary-adrenal axis could be a potential 

neuroendocrine mechanism that regulates peripheral liver rhythms. 

In flies, the fat body is a major regulator of metabolism and a functional analog of 

mammalian liver and adipose tissue (Arrese and Soulages 2010). The fat body contains a 

molecular clock that locally drives cycling of gene expression. However, about 40% of cycling 

genes in the fat body are not regulated by the fat body clock but by other factors, which may 

include signals from the central clock (Xu et al. 2011). A study from our lab followed up on sxe2, a 

rhythmically expressed fat body gene independent of the local clock (Barber et al. 2016). Instead, 

Dilp2+ neurons and insulin-like peptides from the brain are required for sxe2 cycling in the fat 

body. Earlier, I introduced Dilp2+ neurons as circadian output neurons that receive clock signals 

from DN1ps. Dilp2+ neurons project out of the brain and into the aorta, where circulating insulin-

like peptides are released to affect peripheral tissues, like the fat body. In addition to possible 

other effects, insulin-like peptides signal through the insulin receptor on the fat body to regulate 

sxe2 cycling. Thus, a circuit from DN1p central clocks to fat body tissue via Dilp2+ 

neuroendocrine cells can explain rhythmic expression of sxe2. Several other fat body clock-

independent cyclic genes remain to be studied. As the central clock has an important role in 

orchestrating peripheral rhythms (Izumo et al. 2014), it is likely that central clocks and 

neuroendocrine signals regulate several fat body genes. In Chapter 2 of this thesis, I describe 

another mechanism that links the central clock to rhythmically expressed genes, sxe1 and 

Cyp6a21, in the fat body. 
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Abstract 

Metabolic homeostasis requires coordination between circadian clocks in different tissues. Also, 

systemic signals appear to be required for some transcriptional rhythms in the mammalian liver 

and the Drosophila fat body. Here we show that free-running oscillations of the fat body clock 

require clock function in the PDF-positive cells of the fly brain. Interestingly, rhythmic expression 

of the cytochrome P450 transcripts, sex-specific enzyme 1 (sxe1) and Cyp6a21, which cycle in 

the fat body independently of the local clock, depends upon clocks in neurons expressing 

neuropeptide F (NPF). NPF signaling itself is required to drive cycling of sxe1 and Cyp6a21 in the 

fat body, and its mammalian ortholog, Npy, functions similarly to regulate cycling of cytochrome 

P450 genes in the mouse liver. These data highlight the importance of neuronal clocks for 

peripheral rhythms, particularly in a specific detoxification pathway, and identify a novel and 

conserved role for NPF/Npy in circadian rhythms.  

Introduction 

Circadian clocks constitute an endogenous timekeeping system that synchronizes 

behavior and physiology to changes in the physical environment, such as day and night, imposed 

by the 24 hour rotation of the earth (Zheng and Sehgal 2012). A coherent circadian system is 

composed of a cooperative network of tissue-specific circadian clocks, which temporally 

coordinate and compartmentalize biochemical processes in the organism (Wijnen and Young 

2006). Clock disruption is associated with numerous deleterious health consequences including 

cancer, cardiovascular disease, and metabolic disorders (Marcheva et al. 2010; Marcheva et al. 

2013; Turek et al. 2005). 

In the fruit fly, Drosophila melanogaster, the neuronal clock network is comprised of 

roughly 150 circadian neurons, which are grouped based on their anatomical location and 

function in the brain (Allada and Chung 2010). The lateral neurons include the small and large 

ventral lateral neurons (LNvs), the dorsal lateral neurons (LNds) and the lateral posterior neurons 

(LPNs). The dorsal neurons are divided into three subgroups, dorsal neurons (DN) 1, 2, and 3. 

The small LNvs (sLNvs) have traditionally been referred to as the central clock because they are 
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necessary and sufficient for rest:activity rhythms under constant conditions (Grima et al. 2004; 

Stoleru et al. 2004), but recent studies also indicate an important role for the LNds (Guo et al. 

2014). The LNvs express the neuropeptide pigment dispersing factor (PDF), which is important for 

rest:activity rhythms (Renn et al. 1999; Stoleru et al. 2005; Lin, Stormo, and Taghert 2004; Yoshii 

et al. 2009) and for the function of circadian clocks in some peripheral tissues (Myers, Yu, and 

Sehgal 2003; Krupp et al. 2013). The LNds constitute a heterogeneous group of neurons 

differentiated by the expression of peptides and receptors (G. Lee, Bahn, and Park 2006; Johard 

et al. 2009; Yao and Shafer 2014). Thus far, these peptides, which include Neuropeptide F 

(NPF), have only been implicated in behavioral rhythms (C. He et al. 2013; Hermann et al. 2012; 

Hermann-Luibl et al. 2014). 

Most physiological processes require clocks in peripheral tissues, either exclusively or in 

addition to brain clocks. For instance, a peripheral clock located in the fat body, a tissue 

analogous to mammalian liver and adipose tissue (Arrese and Soulages 2010), regulates feeding 

behavior (Xu, Zheng, and Sehgal 2008; Seay and Thummel 2011) and nutrient storage (Xu, 

Zheng, and Sehgal 2008) and drives the rhythmic expression of genes involved in metabolism, 

detoxification, innate immunity, and reproduction (Xu et al. 2011). Molecular clocks in the brain 

and fat body have different effects on metabolism, suggesting that clocks in these two tissues 

complement each other to maintain metabolic homeostasis (Xu, Zheng, and Sehgal 2008). Such 

homeostasis requires interaction between organismal clocks, but how this occurs, for example 

whether neuronal clocks regulate fat body clocks, as they do for some other tissue-specific 

clocks, is not known. In addition, the fat body clock does not regulate all circadian fat body 

transcripts. 40% of rhythmically expressed fat body transcripts are unperturbed by the absence of 

a functional fat body clock (Xu et al. 2011), suggesting these genes are controlled by rhythmic 

external factors, which could include light, food, and/or signals from clocks in other tissues 

(Wijnen et al. 2006). Likewise in the mammalian liver, where circadian gene regulation has been 

well-studied, cyclic expression of many genes persists when the liver clock is ablated (Kornmann, 

Schaad, Bujard, et al. 2007). Brain specific rescue of clock function in ClockΔ19 animals partially 

restored liver gene expression rhythms (~40%), albeit with compromised amplitude (Hughes et al. 
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2012). The specific signals that mediate this rescue, however, were not identified, although 

systemic signals that regulate peripheral clocks have been identified (Cailotto et al. 2009; 

Kornmann, Schaad, Bujard, et al. 2007; Reddy et al. 2007; Oishi et al. 2005).  

 The relative simplicity of fly neuroanatomy and physiology, the vast array of genetic tools, 

and the conservation of molecular mechanisms with mammals make the fly an ideal organism to 

dissect complex interactions between physiological systems. In this study, we found that neural 

clocks regulate circadian gene expression in the fly fat body, a peripheral metabolic tissue. We 

demonstrate that cycling of the core clock gene, period (per), requires PDF-expressing cells in 

constant darkness. Interestingly, however, clocks in the NPF-expressing subset of LNds, as well 

as NPF itself, are important for driving rhythmic expression of specific cytochrome P450 genes 

that cycle independently of the fat body clock. Lastly, we show that Npy, the mouse homolog of 

NPF, regulates transcriptional circadian output in the mouse liver. Microarray analyses reveal that 

Npy contributes to the rhythmic expression of hundreds of transcripts in the liver, including a 

subset of cytochrome P450 genes. In summary, we identified a conserved role for NPF/Npy 

neuropeptides in the circadian system in coupling neuronal clocks to transcriptional output in 

peripheral tissues in flies and mice.   
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Methods 

Fly Genetics 

Flies were grown on standard cornmeal-molasses medium and maintained at 25°C. The following 

strains were used: Iso31 (isogenic w1118 stock; (Ryder et al. 2004)), Pdf-GAL4 (Renn et al. 

1999), 911-GAL4 (InSITE Library; (del Valle Rodríguez, Didiano, and Desplan 2011)), Dvpdf-

GAL4; pdf-GAL80 (Guo et al. 2014), Clkjrk (Allada et al. 1998), and UAS-npf RNAi (Vienna 

Drosophila Resource Center #108772). The following flies were obtained from Bloomington 

Drosophila Stock Center: Npf-GAL4 (#25681), UAS-CLKΔ (#36318), UAS-CYCΔ (#36317), tub-

GAL80ts (#7018), and npfr mutant (#10747). 

 

Locomotor Activity 

The previously described Drosophila Activity Monitoring Systems (Trikinetics, Waltham, MA) were 

used to monitor rest:activity rhythms under constant conditions. Roughly 1 week old male flies 

were entrained for at least 3 days to 12 hour light: 12 hour dark cycles (LD) and then transferred 

to constant darkness for at least 7 days. Data were analyzed using ClockLab software 

(Actimetrics) and rhythmicity of individual male flies was determined for days 2-7 of DD as 

described previously (Williams et al. 2001).  

 

Adult Fat Body Collection 

Male flies (roughly 4-7 days old) were entrained to a 12:12 LD cycle at 25°C for at least 3 days 

before they were harvested. The abdominal fat body was obtained by separating the fly abdomen 

from the rest of the body and then removing all internal organs, leaving the fat body attached to 

the cuticle to be collected on dry ice for RNA extraction. For tub-Gal80ts experiments, flies were 

raised at 18°C. Control flies were kept at 18°C, while the experimental flies were shifted to 30°C, 

the restrictive temperature for Gal80ts, for at least 4 days before collection. 

 

Mice Husbandry and Liver Collection 
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Npy knockout mice were obtained from The Jackson Laboratory (004545) along with their 

background strain for controls (002448). Genotyping primers are listed on the Jackson website. 8-

12 weeks old male mice were entrained to 12:12 LD cycles and fed a standard ad lib diet. Livers 

from Npy knockouts and their background controls were collected every 4 hours starting at lights 

on (ZT0) and immediately frozen in liquid nitrogen. 3-4 male mouse livers were collected at every 

timepoint for each genotype. All procedures were approved by the University of Pennsylvania 

Institutional Animal Care and Use Committee. 

 

Real-Time Quantitative PCR and Statistical Analyses 

For each time point, fat bodies from 12 male flies were collected for RNA preparation. Total RNA 

was extracted using Trizol reagent (Life Technologies, Grand Island, NY) and purified using 

RNeasy Mini Kit (Qiagen Inc., Valencia, CA) according to manufacturer’s protocol. All RNA 

samples were treated with RNase-free DNase (Qiagen Inc.). RNA was reverse transcribed to 

generate cDNA using a High Capacity cDNA Reverse Transcription kit (Life Technologies, Grand 

Island, NY). Quantitative RT-PCR was performed on a 7900HT Fast-Real-Time PCR (Applied 

Biosystems) using SYBR Green (Life Technologies). The following primer sequences were used 

for qPCR: αtubulin (Forward 5’ CGTCTGGACCACAAGTTCGA 3’ and reverse 5’ 

CCTCCATACCCTCACCAACGT 3’), per (Forward 5’ CGTCAATCCATGGTCCCG 3’ and reverse 

5’ CCTGAAAGACGCGATGGTG 3’), Cyp4d21/sxe1 (Forward 5’ CTCCTTTGGTTTATCGCCGTT 

3’ and reverse 5’ TTATCAGCGGCTTGTAGGTGC), sxe2 (Forward 5’ 

TGCGGTACGATCTTTATACGCC 3’ and reverse 5’ CTAACTGGCCATTTCGGATTGA 3’), 

CG14934 (Forward 5’ GGAAATCACGACAATCCTCGA 3’ and reverse 5’ 

CCCAACTCCTCGCCATTATAAG 3’), Cyp6a21 (Forward 5’ GTTGTATCGGAAACCCTTCGATT 

3’ and reverse 5’ AACCTCATAGTCCTCCAGGCATT  3’), and CG117562 (Forward 

5’ACCACAGAGGTGAAACGCATCT 3’ and reverse 5’CAGCAGCAGTTCAAATACCGC 3’). 

Transcript levels were normalized to those of αtubulin to control for the total RNA content in each 

sample.  
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Kits and procedures to isolate RNA and generate cDNA from mouse livers are the same 

as described above for fly fat bodies. The following primer sequences were used for qPCR: 

Cyp2b10 (Forward 5’ GACTTTGGGATGGGAAAGAG 3’ and reverse 5’ 

CCAAACACAATGGAGCAGAT 3’), 36B4 (Forward 5’ TCCAGGCTTTGGGCATCA 3’ and reverse 

5’ CTTTATCAGCTGCACATCACTCAGA 3’), Rev-erb alpha (Forward 5’ 

GTCTCTCCGTTGGCATGTCT 3’ and reverse 5’ CCAAGTTCATGGCGCTCT 3’) and Alas1 

(PrimerBank ID 23956102a1) (Spandidos et al. 2008; Spandidos et al. 2010; Wang and Seed 

2003). Transcript levels were normalized to the housekeeping gene, 36B4. 

Significant circadian rhythmicity of transcript levels was determined using the JTK_Cycle 

algorithm (Hughes, Hogenesch, and Kornacker 2010). P values of less than 0.05 were 

considered significant. We also used two-way ANOVA for repeated measures and a Tukey’s post 

hoc test for differences across time (GraphPad Prism). P-values are reported in Table 2.2. 

 

Microarray Analysis 

Liver samples from Npy KO and wild type mice were collected every 4h over 24h (n = 2 per 

genotype and timepoint). RNA was purified as described above. Expression profiling was done at 

the Penn Molecular Profiling Facility using Mouse Gene 2.0 ST Arrays (Affymetrix, Santa Clara, 

CA, which also provided the annotation files). For extracting expression values of transcripts, raw 

CEL files were analyzed with the RMA algorithm (Irizarry et al. 2003) implemented in the affy 

package in Bioconductor in R (R 2.14.2) (Gautier et al. 2004). The newly developed MetaCycle 

(version 1.0.0; https://github.com/gangwug/MetaCycleV100.git) was used to detect circadian 

transcripts from time-series expression data in the wild type (WT) and Npy knockout (KO) groups, 

respectively. Key parameters in MetaCycle were the periodicity detection algorithms, 

JTK_CYCLE (Hughes, Hogenesch, and Kornacker 2010) and Lomb-Scargle (Glynn, Chen, and 

Mushegian 2006), the period length (set at exactly 24 hr), and the p-value integration method 

(Fisher’s method, Fisher 1956). Using MetaCycle, we calculated two new features of circadian 

transcripts, baseline expression level (bEXP) and relative amplitude (rAMP). The former one is 

defined as the average expression level of a cycling transcript within one period length, and the 
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latter one is a normalized amplitude value with bEXP. Based on analysis results from MetaCycle, 

expressed transcripts (bEXP larger than 101.6) with a p-value < 0.01 in WT and > 0.8 in the KO 

group were considered WT-specific rhythmic transcripts and shown in the heatmap. To generate 

the heatmap, expression values from replicate libraries in each group were averaged, median 

normalized by transcript, sorted by phase, and plotted as a heatmap using pheatmap in R. 
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Results 

The Central Clock Regulates the Fat Body Clock in Constant Darkness  

While some peripheral clocks in Drosophila are completely autonomous, e.g. malphigian 

tubules (Hege et al. 1997), others rely upon cell-extrinsic factors, in particular the clock in the 

brain. For example, PDF-positive LNvs are required for rhythmic expression of clock components 

in the prothoracic gland, a peripheral tissue that gates rhythmic eclosion (Myers, Yu, and Sehgal 

2003). In addition, PDF released by neurons in the abdominal ganglion is necessary to set the 

phase of the clock in oenocytes (Krupp et al. 2013), which regulate sex pheromone production 

and mating behavior (Krupp et al. 2008). We investigated whether clocks in PDF-positive LNvs 

were necessary for clock function in the abdominal fat body. The molecular clock in Drosophila 

consists of an autoregulatory loop in which the transcription factors, CLOCK (CLK) and CYCLE 

(CYC), activate expression of the genes period (per) and timeless (tim), and PER and TIM 

proteins feedback to inhibit the activity of CLK-CYC (Zheng and Sehgal 2012). To disrupt the 

molecular clock exclusively in PDF-positive cells, we used the GAL4/UAS system to express a 

dominant-negative version of the CLK transcription factor, CLKΔ. CLKΔ lacks regions of its DNA-

binding domain, preventing it from binding DNA and activating transcription of genes, including 

components of the molecular clock. However, CLKΔ can still heterodimerize with its partner, 

CYC, through its protein interaction domain (Tanoue et al. 2004). Behavioral assays of Pdf-

GAL4/UAS-CLKΔ flies showed that a majority of the flies had arrhythmic locomotor activity in 

constant darkness (DD) (Figure 2.1A and Table 2.1), confirming that CLKΔ expression in the 

LNvs disrupts circadian rhythms.  

To assess functionality of the molecular clock in fat body tissue, we measured transcript 

levels of the core clock gene per in abdominal fat bodies over the course of the day (Figure 2.1B). 

We found that circadian expression of per in the fat body was not altered in flies with a disrupted 

central clock (Pdf-GAL4/UAS-CLKΔ) under a 12-hour light: 12-hour dark (LD) cycle (Figure 2.1C). 

Unlike mammals, peripheral clocks in Drosophila can detect light, which acts as the dominant 

entrainment signal (Plautz et al. 1997; Oishi et al. 2004). Therefore, under LD conditions, light 

may directly synchronize oscillations in per transcript levels in fat body cells, masking the effects 
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of ablating the central clock. Consequently, we evaluated per rhythms in the absence of light. 

Since rhythmic gene expression dampens under constant conditions and is undetectable in the 

fat body by the sixth day of DD (Xu et al. 2011), we tested rhythmic expression of per on the 

second day in DD (DD2). per levels were rhythmic in the fat body of control flies on DD2. In 

contrast, flies expressing CLKΔ in the LNvs showed an apparent lack of per rhythms in the fat 

body (Figure 2.1D; see Discussion). This suggests that the clock in PDF-positive LNvs influences 

the peripheral fat body clock in the absence of external environmental cues.  

 

Rhythmic Expression of Fat Body Transcripts that Cycle Independently of the Local Tissue 

Clock Requires Organismal Circadian Function  

The fat body clock regulates roughly 60% of circadian genes in the fat body; the 

mechanisms that drive daily cycling of the other 40% of circadian genes in this tissue are 

unknown (Xu et al. 2011). Several potential mechanisms could explain rhythmic gene expression 

in the absence of the local tissue-specific clock, for example, light, nutrients, or clocks located in 

other tissues. As noted above, many tissues in Drosophila have photoreceptors. Therefore, in 

addition to entraining clocks to the external environment, LD cycles can drive rhythmic 

transcription via clock-independent pathways (Wijnen et al. 2006). LD cycles can even drive a 

rhythm of feeding (Xu, Zheng, and Sehgal 2008), which could lead to cyclic expression of 

metabolic genes. Nutrients are known to be strong entrainment signals in peripheral tissues; in 

fact, rhythmic or restricted feeding, even in the absence of a clock, can drive cyclic expression of 

several fat body genes (Xu et al. 2011). Another possibility is that rhythmic expression of specific 

fat body transcripts requires a clock in another tissue. 

To differentiate between light, nutrient, and clock control, we measured daily expression 

of genes that cycle independently of the fat body clock in Clkjrk mutants. Clkjrk mutants lack 

functional clocks in all tissues due to a premature stop codon that eliminates the CLK activation 

domain (Allada et al. 1998). Although Clkjrk mutants cannot sustain feeding rhythms under 

constant conditions, LD cycles can drive feeding rhythms in Clkjrk flies albeit with a delayed phase 

relative to wild type flies (Xu, Zheng, and Sehgal 2008). We predicted that transcripts driven by 



33 

light, or even nutrient intake driven by light, would oscillate in Clkjrk mutants in LD with the same 

or altered phase, while clock-dependent transcripts would not oscillate at all. The genes we 

tested were selected based on the robustness of their rhythms in the absence of the fat body 

clock (Xu et al. 2011). We found that none of these genes displayed circadian rhythms in Clkjrk 

mutants, suggesting that although these genes do not require an intact fat body clock, they do 

require an intact clock in some other tissue (Figure 2.2). In addition to the loss of rhythmic 

expression in Clkjrk mutants, there were also differences in baseline expression levels. Rhythmic 

gene expression of sex-specific enzyme 2 (sxe2), a lipase and CG17562, an oxidoreductase was 

eliminated in Clkjrk mutants to produce an intermediate level of gene expression throughout the 

day (Figure 2.2A-B). In contrast, rhythmic expression as well as overall levels of sex-specific 

enzyme 1 (sxe1), a cytochrome P450, and CG14934, a purported glucosidase involved in 

glycogen breakdown, were greatly reduced in Clkjrk mutants (Figure 2.2C-D).  

 

Clocks in NPF-Positive Neurons Drive Daily Oscillations in Expression of Fat Body 

Transcripts 

Having established that circadian expression of genes cycling independently of the fat 

body clock requires an intact molecular clock elsewhere in the organism, we sought to identity the 

specific clock population involved. We chose to focus on the regulation of sxe1 because it has the 

most robust cycling profile of all the rhythmic fat body clock-independent genes. sxe1 was named 

on the basis of its regulation by the sex determination pathway in fly heads and is enriched in the 

non-neuronal fat body tissue of males (Fujii and Amrein 2002). Early microarray studies looking 

for cycling transcripts in Drosophila heads also indicated that sxe1 is regulated by the circadian 

system (Claridge-Chang et al. 2001; McDonald and Rosbash 2001; Ceriani et al. 2002). 

However, the nature and function of the circadian control of sxe1 are unclear. sxe1 is a 

cytochrome P450 gene and implicated in xenobiotic detoxification and male courtship behavior 

(Fujii, Toyama, and Amrein 2008) and may confer cyclic regulation to either or both of these 

processes.  
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Rhythms of sxe1 expression are abolished in Clkjrk mutants in LD, and so we evaluated 

sxe1 regulation by other clocks in the presence of light cycles rather than under constant 

darkness (Figure 2.2C). Our initial discovery that PDF neurons regulate the fat body clock in 

constant darkness led us to hypothesize that these neurons may also regulate fat body clock-

independent genes. Abolishing the clock in PDF cells by expressing CLKΔ under Pdf-GAL4, 

slightly decreased sxe1 transcript levels in the abdominal fat body, but did not abolish rhythmic 

expression (Figure 2.3A). This suggests that although the PDF neurons regulate the fat body 

clock, these neurons are not the primary drivers of rhythmic sxe1 expression. 

DN1 and LNd  clusters have been implicated in the regulation of circadian behavior (L. 

Zhang et al. 2010; Y. Zhang et al. 2010; Stoleru et al. 2004; Grima et al. 2004). In fact, DN1s 

were recently shown to be part of an output circuit regulating rest:activity rhythms (Cavanaugh et 

al. 2014), and clocks in the DN1s are known to mediate other circadian behaviors, such as 

aspects of the male sex drive rhythm (Fujii and Amrein 2010). However, aside from behavioral 

rhythms, little is known about the functional significance of the DN1 and LNd
 clusters in regulating 

circadian outputs. We investigated whether rhythmic sxe1 expression requires clocks in the DN1 

cluster by using the 911-GAL4 driver to target the DN1s (Cavanaugh et al. 2014). Since 

expressing CLKΔ in the DN1s was lethal, we expressed dominant negative CYCLE, CYCΔ, in the 

DN1s and found the manipulation did not alter sxe1 rhythms or expression levels in the fat body 

(Figure 2.3B).  

The six LNds express NPF (neuropeptide F), sNPF (short neuropeptide F), and ITP (ion 

transport peptide) in different cells, with some overlap (Muraro, Pírez, and Ceriani 2013). In adult 

males, NPF is expressed in 3 out of 6 LNds, as well as a subset of the LNvs and some non-clock 

neurons in the brain (G. Lee, Bahn, and Park 2006; Hermann et al. 2012). NPF is also expressed 

in endocrine cells in the midgut, although the role of NPF in these cells is not known (Brown et al. 

1999). We first used Npf-GAL4 to target the LNds. Interestingly, we found that expressing CLKΔ 

under Npf-GAL4 severely disrupted expression of sxe1 (Figure 2.3C). This effect was not specific 

to the CLKΔ transgene, because sxe1 expression was also abolished using CYCΔ to disrupt 

clocks in NPF cells (Figure 2.3D). Since it was possible that expression of CLKΔ or CYCΔ in non-
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clock NPF cells was disrupting sxe1 expression, we sought other ways to ablate the clock in LNd 

neurons. A subset of the LNd cluster can also be targeted with the Dvpdf-GAL4 driver in 

combination with pdf-GAL80 (Guo et al. 2014). Expressing CLKΔ under Dvpdf-GAL4;pdf-GAL80 

reduced sxe1 levels throughout most of the day, particularly at ZT16, the time of peak sxe1 

expression (Figure 2.3E). The manipulation did not completely abolish rhythmic expression of 

sxe1, presumably because the Dvpdf-GAL4 driver does not target all the NPF clock neurons.  

We also assessed the circadian expression profile of another fat body clock-independent 

cytochrome P450 gene, Cyp6a21. Fat body expression of Cyp6a21 robustly cycles in wild type 

flies but rhythmic expression was dampened in Npf-GAL4/UAS-CLKΔ flies, with a relatively small 

reduction in its overall expression level (Figure 2.3F). This suggests that clocks in NPF-positive 

neurons have a broader role in regulating the expression of cytochrome P450 genes in the fat 

body. Furthermore, ablating clocks in NPF-positive cells did not alter rhythmic expression of per, 

indicating that while rhythmic transcriptional output was impaired, the fat body clock remained 

intact (Figure 2.3G). Together, these data suggest that a subset of LNds expressing NPF drive 

rhythmic expression of specific fat body genes. 

Next we tested whether overexpressing CLKΔ in NPF-positive neurons in adulthood is 

sufficient to alter circadian gene expression in the fat body. To limit the expression of CLKΔ to 

adulthood, we used flies with a tubulin-GAL80ts transgene (tub-GAL80ts) in addition to Npf-GAL4 

and CLKΔ transgenes. Tub-GAL80ts ubiquitously expresses a temperature-sensitive GAL80 

protein, which represses GAL4 activity at the permissive temperature of 18°C (McGuire et al. 

2003). All Npf-GAL4/UAS-CLKΔ; tub-GAL80ts/+ flies were raised at 18°C and upon reaching 

adulthood, control flies were kept at 18°C, while experimental flies were shifted to the restrictive 

temperature (30°C) to induce CLKΔ expression. We found that after shifting flies to 30°C, 

expression of sxe1 remained rhythmic and similar to 18°C controls, suggesting adult-specific 

clock ablation in NPF-positive neurons is either incomplete or insufficient to affect sxe1 rhythms 

(Figure 2.3H). However, this manipulation had a different effect on cyclic expression of Cyp6a21. 

Robust cycling of Cyp6a21 cycling was maintained in control flies kept at the permissive 

temperature, although the phase was shifted, perhaps due to the different temperature (18oC) 
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required for this assay. Importantly though, rhythmic expression of Cyp6a21 was dampened by 

adult-specific clock ablation in LNd neurons (Figure 2.3I). Together these data indicate that clocks 

in NPF-expressing neurons have differential effects on the expression of cycling fat body genes. 

 

NPF-NPF Receptor Axis Regulates Rhythmic Expression of sxe1 and Cyp6a21 

After identifying NPF-positive clock neurons as relevant for rhythmic gene expression in 

the fat body, we reasoned NPF itself might act as a circadian signal. Indeed, NPF was reported to 

cycle in a subset of NPF-positive neurons, including LNds and LNvs (C. He et al. 2013). NPF 

regulates a variety of behavioral processes in Drosophila including feeding (Wu et al. 2003; Wu, 

Zhao, and Shen 2005; Lingo, Zhao, and Shen 2007; Itskov and Ribeiro 2013), courtship (Kim, 

Jan, and Jan 2013), aggression (Dierick and Greenspan 2007), and sleep (Chunxia He et al. 

2013). Therefore, we asked if molecular clocks in NPF-positive neurons mediate free-running 

behavioral rhythms. We found that flies expressing CLKΔ with Npf-GAL4 as well as flies carrying 

a null mutation in nfpr, the gene encoding the receptor for NPF, display normal rhythms of 

rest:activity (Table 2.1). In contrast, Dvpdf-GAL4;pdf-GAL80 driving UAS-CLKΔ increased the 

number of arrhythmic flies and slightly lengthened the period of rhythmic flies, further indicating 

that Dvpdf-GAL4;pdf-GAL80 and Npf-GAL4 do not represent the exact same population of LNds 

(Table 2.1). These data suggest that NPF plays at best a minor role in regulating rhythmic 

locomotor behavior. However, NPF might play a role in other aspects of circadian rhythms, such 

as circadian control of energy homeostasis.  

To determine whether NPF drives rhythmic sxe1 expression in the fat body, we began by 

knocking down npf in all NPF-positive cells with RNA interference (RNAi), as npf mutants are not 

available. Driving UAS-npf RNAi under Npf-GAL4 resulted in dampened but still rhythmic sxe1 

expression (Figure 2.4A). Although this manipulation vastly reduced npf levels in fly heads 

(Figure 2.4B), it is possible that very small amounts of NPF can drive some level of cycling; 

alternatively, knockdown efficiency may have been limited in the NPF-positive clock cells. Thus 

we tested the null mutant of the sole NPF receptor in Drosophila, npfr (Garczynski et al. 2002). 

Our results show sxe1 levels do not cycle and are dramatically reduced in npfr mutants, which 
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phenocopies the daily sxe1 expression profile of flies expressing either CLKΔ or CYCΔ under 

Npf-GAL4 (Figure 2.4C). Rhythmic expression of Cyp6a21 was also lost in the fat body of npfr 

mutants (Figure 2.4D). We speculate that expressing CLKΔ under Npf-GAL4 alters the circadian 

production or release of NPF. Indeed, mRNA analysis of Npf-GAL4/UAS-CLKΔ heads showed 

that npf levels were reduced compared to controls (Figure 2.4E) while cyclic per expression, 

which arises from clock function in many different cells, was unaffected (Figure 2.4F). This result 

is consistent with reports of loss of NPF expression in LNds of Clkjrk brains (G. Lee, Bahn, and 

Park 2006). Taken together, these data suggest circadian clocks in NPF-positive cells regulate 

NPF expression to subsequently drive sxe1 and Cyp6a21 rhythms in the fat body. 

 

Npy Regulates Circadian Expression of Cytochrome P450 genes in the Mammalian Liver 

In mammals, liver-specific circadian clocks play an important role in liver physiology via 

contributions to glucose homeostasis and xenobiotic clearance (Gachon et al. 2006; Lamia, 

Storch, and Weitz 2008). Liver clock ablation in mice resembles fat body clock ablation in flies; in 

particular, ablating liver clocks eliminates rhythmic expression of most, but not all, circadian liver 

transcripts (Kornmann, Schaad, Bujard, et al. 2007). Furthermore, rescuing clock function 

specifically in the brains of ClockΔ19 mutant mice restores rhythmic expression of roughly 40% of 

circadian liver transcripts (Hughes et al. 2012). These data suggest that some circadian 

transcripts in the liver are driven by systemic signals, perhaps emanating from the master 

pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus (Mohawk, Green, and 

Takahashi 2012).  

Since we identified NPF in the regulation of circadian gene expression in the fly fat body, 

we reasoned that the mammalian homolog, Npy, might regulate circadian gene expression in the 

liver. Thus, we isolated RNA from the livers of male Npy knockout (Npy KO) mutant mice and wild 

type controls over the course of an entire day. Although there is no direct mammalian homologue 

of sxe1, we noticed that a similar P450 enzyme involved in xenobiotic detoxification, Cyp2b10, 

also continues to cycle in animals lacking functional liver clocks (Kornmann, Schaad, Bujard, et 

al. 2007). We measured Cyp2b10 levels in Npy KO and wild type mice and found that Cyp2b10 
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transcript levels did not display a circadian rhythm in Npy KOs (Figure 2.5A). However, circadian 

expression of the core clock gene Rev-erb alpha was unaffected in the livers of Npy KOs 

confirming that the liver clock is still intact (Figure 2.5B). We wondered whether other enzymes 

involved in xenobiotic detoxification are also regulated by Npy. Aminolevulinic acid synthase 1 

(Alas1), is required for P450 synthesis (Furuyama, Kaneko, and Vargas 2007) and was also 

reported to cycle in the absence of the liver clock (Kornmann, Schaad, Bujard, et al. 2007). Unlike 

Cyp2b10, circadian expression of Alas1 was unaffected in Npy KOs, suggesting that NPY does 

not regulate global rhythmic detoxification in the liver (Figure 2.5C).  

To determine the extent to which loss of Npy impacts gene expression in the liver, we 

performed genome-wide expression analysis on wild type control and Npy KO livers collected at 

4-hr intervals over a day in LD. Using the newly developed MetaCycle package (see Materials 

and Methods) and a stringent P-value cutoff of p<0.01 to detect cyclic transcripts, we found that 

289 transcripts were cyclic in controls but not in Npy KO, indicating that the oscillation of these 

transcripts is under the regulation of Npy signaling (Figure 2.5D). Furthermore, the loss of 

transcript cycling was generally not accompanied by differences in expression levels; in other 

words, the median transcript abundance in wild type animals correlated with that in Npy KO 

(Figure 2.5E). Based on our Drosophila data and also the fact that Npy regulates Cyp2b10 

expression, we speculated that Npy might have a broader role in regulating cytochrome P450 

gene expression. We examined the microarray data for cyclic P450 transcripts and found several 

of these genes were not cyclic in Npy KOs. Notably, the microarray data confirmed our qPCR 

data for Cyp2b10 and indicated that Cyp2r1, Cyp17a1, and Cyp2c70 transcripts also cycle in wild 

type but not in Npy KO liver. In contrast, Cyp3a13 and Cyp7a1 transcripts cycle robustly in both 

genotypes.  

Lastly, we compared our Npy KO data to the previously reported set of liver transcripts 

whose expression oscillates independently of the liver clock (Kornmann, Schaad, Bujard, et al. 

2007; Kornmann, Schaad, Reinke, et al. 2007). Among that set, we discovered nine additional 

liver clock-independent transcripts— Rbl2, Ddx46, Cirbp, Sqle, Ldb1, Actg1, Hmgcs1, Heca, and 

Ctgf— that require Npy for robust rhythmic expression (Table 2.3). As only a subset of liver-clock 
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independent transcripts requires Npy for oscillations, other mechanisms likely contribute to 

rhythmic expression of these genes (further discussed below). Although many genes, including 

clock genes, continued to cycle in Npy knockout livers, the overall phases and amplitudes of 

expression for cycling transcripts in Npy KO slightly differed from those in wild type (Figure 2.S1). 

Overall, we found that diverse liver circadian transcripts, including cytochrome P450 genes, are 

influenced by Npy signaling. This report is the first to describe a role for Npy in the circadian 

regulation of peripheral gene expression in mammals. 

 

Discussion 

In this report we dissect the role of neural clocks in the regulation of circadian gene 

expression in a peripheral tissue. We find that clocks in PDF-positive neurons influence cycling of 

the per clock gene in the Drosophila fat body in the absence of external cues. More importantly, 

we identify the non-cell autonomous mechanism that underlies cycling of specific fat body 

transcripts in Drosophila and specific liver transcripts in mice. We show that clocks in Drosophila 

NPF-positive neurons drive daily expression of sxe1 and Cyp6a21, fat body genes not controlled 

by the fat body clock. Likewise, mammalian Npy drives rhythmic expression of specific liver 

transcripts, indicating a conserved role of NPF/Npy in the control of peripheral circadian rhythms.  

Prior to this report, it was proposed that clocks in the brain and fat body interact, but the 

extent of the interaction and the mechanisms driving it were not identified (Xu, Zheng, and Sehgal 

2008). Our data suggest that in light:dark cycles, the central clock is not required for cycling of the 

fat body clock, although we cannot exclude an effect on the phase of cycling. However, in 

constant conditions, the clock in PDF cells influences the fat body clock, as it does the 

prothoracic gland clock. Why the central clock regulates only some peripheral clocks in the fly is 

unclear. Unlike other peripheral clocks, the fat body clock modulates behavioral rhythms, 

specifically the phase of feeding rhythms, in addition to its own physiology (Xu, Zheng, and 

Sehgal 2008; Xu et al. 2011; Seay and Thummel 2011). Thus, synchrony between clocks in the 

brain and fat body is likely essential for metabolic homeostasis.  
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The circadian system controls behavior and physiology in large part through its regulation 

of circadian gene expression (Zheng and Sehgal 2012). Tissue-specific gene expression patterns 

are thought to be generated primarily by local clocks; however, few studies have 

comprehensively evaluated rhythmic expression driven by local clocks versus external factors. A 

previous comparison of gene expression profiles of flies containing or lacking an intact fat body 

clock found that the fat body clock only regulates ~60% of all circadian fat body genes (Xu et al. 

2011). Here we report that at least some of the other 40% of circadian fat body genes are 

regulated by clocks located in other tissues. We found that disrupting clocks in NPF-positive cells 

abolished rhythmic expression of two cytochrome P450 genes, sxe1 and Cyp6a21. Since we 

specifically disrupted the molecular clock by expressing CLKΔ or CYCΔ, only NPF-positive cells 

containing circadian clock components should have been targeted (LNds). We cannot formally 

exclude the possibility that expression of CLKΔ or CYCΔ in non-clock cells or even in the gut 

(Brown et al. 1999) contributes to this phenotype; however, the effect of targeting CLKΔ to 

specific LNds with the Dvpdf driver suggests that these cells contribute to the peripheral rhythm 

phenotype. In addition, even though NPF expression has been reported in both the LNds and 

LNvs (Hermann et al. 2012), it is unlikely the LNvs regulate sxe1 rhythms, because disrupting 

clocks in PDF-positive LNvs does not abolish sxe1 oscillations. LNds can be synchronized by 

inputs from LNvs (Guo et al. 2014), but cell-autonomous entrainment mechanisms in the LNds 

may limit the influence of LNvs in light:dark cycles, which may explain why ablating clocks in LNvs 

has a small effect on sxe1 expression. Thus, we suggest that the clocks in LNds are required for 

cycling of sxe1 and Cyp6a21 expression in the fat body. 

NPF neuropeptide reportedly modulates rest:activity rhythms in Drosophila (Hermann et 

al. 2012; C. He et al. 2013). We did not detect a role for clocks in NPF cells, nor for the single 

known NPF receptor, in the regulation of rest:activity rhythms, but it is possible that other 

mechanisms are utilized. However, we show that NPF regulates the expression of circadian 

genes in the fat body. Consistent with the assertion that NPF is the relevant output for fat body 

rhythms from NPF-positive cells, we also found that flies lacking functional clocks in these cells 

display significantly reduced npf levels (Figure 2.4D). Interestingly, Lee et al. previously showed 
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that npf mRNA is absent in the LNds of adult male Clkjrk mutant brains (G. Lee, Bahn, and Park 

2006). This further supports our hypothesis that NPF is regulated by the circadian clock in LNds, 

and its release from these neurons is necessary for mRNA rhythms of specific fat body genes. 

However, the effect of NPF on the fat body is likely not direct. Some insect species release NPF 

into the hemolymph to reach other tissues, but this does not appear to be the case in Drosophila 

(Nässel and Wegener 2011). The NPF receptor may function in clock neurons in the dorsal fly 

brain (i.e. DN1s), neurons in the suboesophageal ganglion, or neurons innervating the mushroom 

body (Krashes et al. 2009; C. He et al. 2013). Alternatively, NPF could signal through recently 

identified neurons downstream of the clock network, which are part of the circadian output circuit 

driving rest:activity rhythms (Cavanaugh et al. 2014). Although much is known about the neuronal 

clock network, very little is known about the neurons and signals downstream of the clock 

network, which make up the output pathways leading to rhythms in behavior and physiology. Our 

discovery that NPF-positive clock neurons drive rhythmic gene expression in the fat body 

provides a unique opportunity to investigate the pathway(s) that convey circadian information 

from the brain to peripheral tissues.  

We report a striking parallel in the mammalian system, where the NPF ortholog, Npy, 

drives cyclic expression of specific liver genes, notably several in the cytochrome P450 pathway. 

Npy is not required for free-running rest:activity rhythms in mice, but it promotes phase shifts in 

these rhythms in response to non-photic stimuli (Yannielli and Harrington 2004; Maywood, 

Okamura, and Hastings 2002; Besing et al. 2012). Behavioral effects of Npy are likely mediated 

by its brain expression, but as Npy is also expressed in the periphery, it is possible that a 

peripheral source contributes to cycling in the liver. Regardless, Npy has a profound effect on 

circadian gene expression in the liver. 

Since NPF promotes feeding in Drosophila larvae (Wu et al. 2003; Wu, Zhao, and Shen 

2005; Lingo, Zhao, and Shen 2007) and Npy does so in mice, it is possible NPF/Npy drive cycling 

in the fat body/liver through the regulation of feeding. Feeding is known to be a potent stimulus for 

metabolic clocks, with circadian gene expression in peripheral tissues driven by restricted feeding 

cycles in both flies and mammals (Xu et al. 2011; Gill et al. 2015; Vollmers et al. 2009). However, 
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under conditions of ad lib food, feeding rhythms in flies are of low amplitude and likely insufficient 

to drive robust cycling. Consistent with this, while cyclic expression of Cyp6a21 can be driven by 

a restricted feeding paradigm, as can the clock in the fat body, cycling is more robust when this 

paradigm is conducted in wild type versus clockless animals (Xu et al. 2011), indicating that its 

regulation is not through feeding alone. Finally, time restricted feeding experiments of mice do not 

support the idea that restricted feeding drives cycling of Cyp2b10 in clockless mice, even though 

it is sufficient to maintain rhythms of many other liver genes (Vollmers et al. 2009). Thus, while 

feeding cannot be discounted as an important factor, which may contribute to the cycling of the 

genes reported here, these genes are unique in their dependence on Npy. Only a limited subset 

of liver transcripts previously shown to be independent of the liver clock require Npy for cyclic 

expression (Kornmann, Schaad, Bujard, et al. 2007). Similarly, several fly genes, for example 

sxe2 and CG17562, continue to oscillate when CLKΔ is expressed under Npf-GAL4 (data not 

shown). These results suggest there are additional mechanisms regulating circadian rhythms in 

the fat body/liver. Why would more than one mechanism exist to couple rhythmic gene 

expression in a specific peripheral tissue to other clocks? One possibility is that different 

mechanisms regulate distinct phases of circadian gene expression. Alternatively, different 

mechanisms may couple gene expression to different cell populations, processes, or behaviors.  

The functional importance of the interaction between NPF/Npy and fat body/liver genes in 

the circadian system is unclear. Cytochrome P450 genes, such as Cyp6a21, sxe1 and Cyp2b10, 

are associated with detoxification (King-Jones et al. 2006; Fujii, Toyama, and Amrein 2008), 

which is likely rhythmic, although not yet reported. Overexpression of NPFR in larvae increases 

foraging behavior as well as consumption of noxious or bitter compounds (Wu, Zhao, and Shen 

2005). Indeed, NPF/Npy signaling is generally associated with an increase in feeding (Wu et al. 

2003; Wu, Zhao, and Shen 2005; Lingo, Zhao, and Shen 2007; Beck 2006), which can lead to 

ingestion of toxic substances. Thus, coordination of feeding with expression of detoxification 

enzymes, such as sxe1, Cyp6a21 and Cyp2b10, through NPF/Npy may have evolved to promote 

survival. Large delays between consumption of noxious substances and their removal could 

affect an animal’s health; thus, the need for coordination between clocks in processing such 
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substances. Conservation of cytochrome P450 regulation from flies to mammals supports the 

idea that neural control of detoxification in the periphery promotes organismal fitness (Figure 2.6).  

In this study we exclusively evaluated males, because the initial studies reporting 

rhythmic gene expression in the presence and absence of the fat body or liver clock in flies or 

mammals respectively, were based on males (Xu et al. 2011; Kornmann, Schaad, Bujard, et al. 

2007). Interestingly, NPF/Npy and sxe1/Cyp2b10 expression is sexually dimorphic in Drosophila 

(G. Lee, Bahn, and Park 2006; Fujii, Toyama, and Amrein 2008) and mammals (Lu et al. 2013; 

Karl, Duffy, and Herzog 2008; Urban, Bauer-Dantoin, and Levine 1993), suggesting there may be 

some gender specificity to this entire pathway. The functional significance of sex-specific 

regulation is unclear, but indicates that other mechanisms could contribute to such coordination in 

females. 

This work has implications for chronopharmacology, which is based on the circadian 

timing of drug metabolism, transport, tolerance, and efficacy. Rhythmic expression of genes 

involved in drug breakdown and absorption in the liver influences drug efficacy and toxicity 

(Dallmann, Brown, and Gachon 2014), and loss of such rhythms can have long-term effects on 

health and lifespan (Gachon et al. 2006). Therefore, expression of these genes may be tightly 

coordinated to optimize drug metabolism, and speaks to the importance of controlling the timing 

of drugs that have toxic side effects. The role for Npy reported here suggests it could be a 

potential target for improving drug efficacy and toxicity. Ultimately, understanding circadian 

rhythms at a systems level, including interactions between tissues and other physiological 

systems, will be useful from biological and clinical perspectives. 
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Figure 2.1 

Oscillations of per in the fat body require an intact central clock in the absence of external 

cues. (A) Representative double-plotted activity records of individual control UAS-CLKΔ/CyO 

(left) and Pdf-GAL4/UAS-CLKΔ (right) flies over the course of 5 days in constant darkness. (B) 

Schematic of experimental design. Male flies, aged 7-10 days, were entrained for several days in 

12 hour light: 12 hour dark cycles (LD). Male flies were dissected to obtain abdominal fat bodies 

(dotted red box) either on the last day in LD or on the second day of constant darkness (DD2). 

Graphs depict mRNA levels, normalized to α−tubulin (atub), over the course of the day in the 

presence of light (LD; Zeitgeber Time, ZT) or in constant darkness (DD2; Circadian Time, CT). 

Ablating the central clock (Pdf-GAL4/UAS-CLKΔ) (red line) does not affect per rhythms in LD (C)  

but abolishes per rhythms in DD2 (D) compared to controls (blue line). Each experiment was 

repeated independently three times, and average + standard error of the mean (SEM) is reported 

for each timepoint. Significant rhythmicity was determined using JTK_cycle. Asterisk (*) adjacent 

to genotype label indicates JTK_cycle p<0.05. See Table 2.2 for JTK cycle values. 

Figure 2.1 contributions: R.E. generated data; A.N.K. and R.E analyzed data. 
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Figure 2.2 

Rhythmic expression of genes that cycle independently of the fat body clock requires 

clocks in other tissues.  

Daily oscillations of several fat body clock-independent genes were tested in male mutants 

lacking functional clocks in all tissues, Clkjrk mutants, in LD. Rhythmicity of sxe2 (A), CG17562 

(B), sxe1 (C), and CG14934 (D) is abolished in Clkjrk mutants but is intact in Iso31 wild type 

controls. All genes were normalized to α−tubulin (atub) levels. Each experiment was repeated 

independently three times. The average value for each timepoint is plotted with error bars 

denoting SEM. JTK_cycle p value <0.05 is indicated by an asterisk (*) at the time of peak 

expression. See Table 2.2 for JTK_cycle p values. ZT- Zeitgeber Time 

Figure 2.2 contributions: R.E. generated data; A.N.K. and R.E analyzed data. 
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Figure 2.3 

NPF-expressing clock neurons regulate rhythmic expression of fat body genes, sxe1 and 

Cyp6a21. (A,B) Ablating the molecular clock by expressing CLKΔ or CYCΔ in either the LNvs 

(Pdf-GAL4) (A) or DN1s (911-GAL4) (B) does not eliminate rhythmic sxe1 expression in the fat 

body. (C,D) Expressing CLKΔ (C) or CYCΔ (D) using Npf-GAL4 abolishes rhythmic sxe1 

expression in the fat body. (E) Expressing CLKΔ in a subset of LNds (Dvpdf-GAL4;Pdf-GAL80) 

also does not eliminate cycling but reduces sxe1 expression in the fat body. (F) Npf-GAL4>UAS-

CLKΔ abolishes rhythmic Cyp6a21 expression in the fat body. (G) per expression is rhythmic in 

flies expressing UAS-CLKΔ under Npf-GAL4. (H, I) CLKΔ expression in NPF cells is restricted to 

adulthood using Tub-GAL80ts. (H) sxe1 expression is not affected with adult-specific clock 

ablation in NPF cells. (I) Rhythmic Cyp6a21 expression is affected in the fat body when Npf-

GAL4>UAS-CLKΔ expression is induced in adult at 30°C. Each experiment was repeated 

independently at least twice. The average value for each timepoint is plotted with error bars 

denoting SEM. JTK_cycle p value <0.05 is indicated by an asterisk (*) next to the genotype label. 

See Table 2.2 for JTK_cycle p values. ZT- Zeitgeber Time. Figure 2.3 contributions: R.E. 

generated and analyzed data in panels A-E, F; A.N.K. generated data for panels F, H, I and 

analyzed all data. 
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Figure 2.4 

NPF is a critical circadian signal for sxe1 and Cyp6a21 rhythms in the fat body.  

(A) Knockdown of npf in all NPF-positive cells does not eliminate rhythmicity but reduces 

expression of sxe1 in the fat body at all times. (B) Analysis of npf knockdown efficiency in heads 

of Npf-GAL4/UAS-npf RNAi; DCR2 (UAS-Dicer2) flies showed a significant reduction in npf levels 

by Student’s t-test (**= p<0.001). (C,D) sxe1 and Cyp6a21 expression in the fat body are reduced 

and do not cycle in homozygous npfr mutants compared to heterozygous controls. (E) npf levels 

in the heads of Npf-GAL4/UAS-CLKΔ are reduced compared to controls (UAS-CLKΔ/+). (F) Total 

per levels are not altered in the heads of Npf-GAL4/UAS-CLKΔ compared to controls. Each 

experiment was repeated independently three times except for (B) which n=6 for each genotype. 

The average value ± SEM for each timepoint is plotted. JTK_cycle p<0.05 is indicated by an 

asterisk (*) next to the genotype label. See Table 2.2 for JTK_cycle p values. ZT- Zeitgeber Time. 

Figure 2.4 contributions: R.E. generated and analyzed data in panels A-C, E, F; A.N.K. generated 

data for panel D and analyzed all data.  
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Figure 2.5 

Npy regulates circadian expression of cytochrome P450 genes in the murine liver. (A-C) 

Quantitative PCR analysis in murine livers. Daily oscillations of Cyp2b10 expression (A) are 

abolished in Npy KOs compared to their background controls (wild type), while oscillations of the 

circadian gene, Reverb alpha (B), are unaffected. (C) Levels of another liver clock-independent 

gene, Alas1, are similar in wild type and Npy KO, suggesting Npy does not regulate its 

rhythmicity. For qPCR data, n=3-4 mice for each genotype and time point. Transcript levels were 

normalized to the housekeeping gene 36B4. (D-F) Microarray analysis was used to detect 

transcript expression in livers of Npy KO and their background controls collected over the course 

of 24 hours in LD. (D) The heatmap includes transcripts that oscillate in wild type but not in Npy 

KO liver. Data represent the average transcript abundance from n=2 samples for each genotype 
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and timepoint. Here, the MetaCycle p-value cutoff of p<0.01 was used to identify cyclic 

transcripts; p>0.8 was considered not cyclic. (E) The median expression values of the wild type-

only cyclic transcripts are not different between Npy KO and wild type. (F) Daily expression 

values of cytochrome P450 genes from microarrays. Cytochrome P450 genes Cyp2b10, Cyp2r1, 

Cyp17a1, and Cyp2c70 are cylic in wild type liver but are not cyclic in Npy KO liver. Cyp3a13 and 

Cyp7a1 cycle robustly in both wild type and Npy KO. Graphs show average ± SEM. ZT- Zeitgeber 

Time 

Figure 2.5 contributions: R.E. generated and analyzed data in panels A-C; A.N.K. generated data 

for panels D-F and analyzed all data; G.W. analyzed data for panels D-F. 
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Figure 2.6 

NPF/Npy regulate rhythmically expressed P450 enzymes in the periphery of flies and 

mammals. 

A model of brain clock regulation of peripheral cycling. Brain clocks regulate clocks in peripheral 

tissues. In Drosophila, clocks in PDF-positive neurons (LNvs) regulate the clock in the fat body. 

Similarly, in mammals, clocks in the suprachiasmatic nuclei (SCN) have been shown to regulate 

peripheral clocks such as the liver clock via autonomic innervation, glucocorticoids, body 

temperature, and feeding. In both the fat body and liver, not all circadian transcripts depend on 

the local-tissue clock. Clocks in NPF-positive LNds and NPF itself regulate circadian expression 

of cytochrome P450 enzymes in the fly fat body. The LNvs can influence other brain clocks (such 

as the LNds), but are not required for rhythms of fat body transcripts in LD as LNds may entrain 

directly to light. In mammals, Npy was previously known to be a non-photic signal involved in 

entraining the SCN. However, the SCN could also influence Npy production or release, which in 

turn drives rhythmic expression of cytochrome P450 enzymes in the liver. 

Figure 2.6 contributions: R.E. produced figure. 
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Figure 2.S1 (related to Figure 2.5) 

MetaCycle analysis of cycling liver transcripts in wild type and Npy KO. 

(A) Microarray analysis detects 2,460 and 1,330 cycling transcripts (MetaCycle p<0.05) in WT 

and Npy KO liver datasets respectively. 880 cycling transcripts are common between the two 

datasets. (B,C) Scatter plot and box plot graph the phase in Npy KO relative to WT for the 880 

genes with cycling expression patterns in both datasets. In general, the phase in Npy KO is 

delayed compared to that in WT. (D) Density plot graphs the distribution of baseline expression 

levels, bEXP (see Materials and Methods), for the 880 cycling transcripts in WT and KO datasets. 

X-axis graphs the log base 10 of bEXP value. (E) Density plot graphs the distribution of relative 

amplitudes, rAMP (see Materials and Methods), for the 880 cycling transcripts in WT and KO 

datasets. 

Figure 2.S1 contributions: A.N.K. generated and analyzed data and G.W. analyzed data. 
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Tables 

Table 2.1 

Analysis of locomotor activity rhythms in flies under DD conditions. 

Clock ablation in Pdf+ neurons (Pdf-GAL4/UAS-CLKΔ) or in LNd neurons (Dvpdf-GAL4/UAS-

CLKΔ; pdf-GAL80/+) disrupts free-running behavioral rhythms in flies. Flies with clock ablation in 

Npf+ neurons (Npf-GAL4/UAS-CLKΔ) and npfr mutants have normal free-running rhythms. 

Genotype n % Rhythmic Period FFT 

Pdf-GAL4/UAS-CLKΔ 39 36 23.51 0.04 

UAS- CLKΔ/CyO 48 90 23.71 0.06 

Npf-GAL4/UAS-CLKΔ 62 98 24.01 0.06 

UAS-CLKΔ/+ 58 100 23.70 0.05 

npfr 39 95 23.66 0.05 

npf/+ 46 100 23.44 0.11 

Dvpdf-GAL4/UAS-CLKΔ; pdf-GAL80/+ 63 68 25.51 0.06 

UAS-CLKΔ/+ 63 100 23.91 0.08 

 

Table 2.1 contributions: R.E. produced and analyzed data. 
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Table 2.2 

Analysis of cycling in gene expression with JTK_Cycle statistics and two-factor ANOVA 

test. 

All qPCR data were tested for circadian rhythmicity with JTK_cycle test and two-way ANOVA for 

repeated measures with a Tukey’s post hoc test. P-values from these tests are summarized. 

Figure Genotpye Gene Tissue 
JTK_cycle 

P-value 

Time  

P-value 

Genotype  

P-value 

TimeXGenotype 

P-value 

1C [ZT] UAS-CLK∆/+ per 
Fat Body 

(FB) 
0.0194 

< 0.0001 0.7826 0.4679 

1C 
[ZT] Pdf-Gal4/UAS-

CLK∆ 
per FB 0.0094 

      

1D [CT] UAS-CLK∆/+ per FB 0.0041 0.0313 0.665 0.0281 

1D 
[CT] Pdf-Gal4/UAS-

CLK∆ 
per FB 1 

      

                

2A Iso31 sxe2 FB 0.0014 0.0131 0.1852 0.0843 

2A Clkjrk sxe2 FB 1       

2B Iso31 CG17562 FB 0.0014 0.0223 0.6409 0.1746 

2B Clkjrk CG17562 FB 0.6945       

2C Iso31 sxe1 FB 0.002 0.0019 <0.0001 0.002 

2C Clkjrk sxe1 FB 1       

2D Iso31 CG14934 FB 0.082 0.1146 <0.0001 0.0266 

2D Clkjrk CG14934 FB 0.5429       

2E Iso31 cyp6a21 FB 0.1769 0.2791 0.9816 0.6328 

2E Clkjrk cyp6a21 FB 0.3837       

                

3A UAS-CLK∆/+ sxe1 FB 0.0007 0.0003 0.0049 0.7061 

3A Pdf-Gal4/UAS-CLK∆ sxe1 FB 9.00E-07       

3B UAS-CYC∆/+ sxe1 FB 0.0363 0.0006 0.7995 0.9592 

3B 911-Gal4/UAS-CYC∆ sxe1 FB 0.0044       

3C UAS-CLK∆/+ sxe1 FB 0.0014 0.006 <0.0001 0.0749 

3C Npf-Gal4/UAS-CLK∆ sxe1 FB 0.1969       

3D UAS-CYC∆/+ sxe1 FB 0.0029 <0.0001 <0.0001 <0.0001 

3D Npf-Gal4/UAS-CYC∆ sxe1 FB 1       

3E UAS-CLK∆/+ sxe1 FB 0.0196 0.0038 0.0017 0.5326 

3E 
Dvpdf-Gal4/UAS-

CLK∆;Pdfgal80/+ 
sxe1 FB 0.0001 

      

3F UAS-CLK∆/+ cyp6a21 FB 0.0009 <0.0001 <0.0001 0.0574 

3F Npf-Gal4/UAS-CLK∆ cyp6a21 FB 0.0259       

3G UAS-CLK∆/+ per FB 0.0568 0.0057 0.8767 0.9902 

3G Npf-Gal4/UAS-CLK∆ per FB 0.0441       

                

4A UAS-Npf RNAi/+ sxe1 FB 0.002 0.0005 <0.0001 0.1421 

4A 
Npf-Gal4/UAS-Npf 

RNAi 
sxe1 FB 0.0441 

      

4B UAS-Npf RNAi/+ cyp6a21 FB 1 0.1525 0.0085 0.9349 

4B 
Npf-Gal4/UAS-Npf 

RNAi 
cyp6a21 FB 1 

      

4BC Not analyzed with JTK npf Head -       

4CD npfr/+ sxe1 FB 0.0128 0.0008 <0.0001 0.0038 

4CD npfr sxe1 FB 0.1969       
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4DE npfr/+ cyp6a21 FB 0.0916 0.0319 <0.0001 0.4182 

4DE npfr cyp6a21 FB 0.115       

4EF UAS-CLK∆/+ npf Head 1 0.7588 <0.0001 0.846 

4EF Npf-Gal4/UAS-CLK∆ npf Head 1       

4FG UAS-CLK∆/+ per Head 0.0001 <0.0001 0.141 0.042 

4GF Npf-Gal4/UAS-CLK∆ per Head 1.19E-05       

                

5A Wild type Cyp2b10 Liver 0.001 0.0209 0.0034 0.164 

5A NPY Knockout (KO) Cyp2b10 Liver 0.051       

5B Wild type Reverbα Liver 7.46E-12 <0.0001 0.4979 0.0661 

5B NPY KO Reverbα Liver 7.17E-09       

5C Wild type Alas1 Liver 9.81E-06 0.0007 0.8476 0.8202 

5C NPY KO Alas1 Liver 0.0018       

 

Table 2.2 contributions: R.E. and A.N.K. analyzed data. 
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Table 2.3 

Cycling of liver clock-independent genes in wild type and Npy KO liver. 

Microarray and MetaCycle analysis of liver clock-independent genes in wild type (WT) and Npy 

null (KO) liver. Cycling of liver clock-independent gene expression is eliminated, phase shifted, or 

unaffected in Npy KO liver. List of liver clock-independent genes from Kornmann et al. 2007 Cold 

Spring Harbor Symposia on Quantitative Biology. Median Exp = median expression level, 

Relative Amp = amplitude of gene expression cycling. 

Liver clock-independent genes with disrupted cycling of expression in Npy KO 

Affymetrix 

transcript ID Gene 

WT 

MetaCycle 

P value 

WT 

Phase 

WT 

Median 

Exp 

WT 

Relative 

Amp 

KO 

MetaCycle 

P value 

KO 

Phase 

KO 

Median 

Exp 

KO 

Relative 

Amp 

17503756 Rbl2 0.0003 8.94 367.0 0.217 0.0753 9.20 338.7 0.132 

17287733 Ddx46 0.0007 7.77 264.2 0.229 0.1756 11.46 262.8 0.158 

17235227 Cirbp 0.0037 6.28 58.1 0.188 0.0924 7.83 54.3 0.056 

17311807 Sqle 0.0039 21.00 193.4 0.790 0.7685 9.43 229.9 0.310 

17365314 Ldb1 0.0067 10.38 234.1 0.164 0.1503 12.05 216.2 0.171 

17475360 Cyp2b10 0.0102 17.75 155.9 0.869 0.0782 0.00 85.7 0.486 

17331429 Actg1 0.0153 18.56 155.7 0.470 0.3570 1.52 124.5 0.512 

17290173 Hmgcs1 0.0230 0.50 751.5 0.687 0.1625 4.83 695.2 0.083 

17239493 Heca 0.0265 9.30 255.6 0.132 0.1921 10.93 258.6 0.086 

17232235 Ctgf 0.0331 13.18 37.9 0.364 0.9984 11.52 42.8 0.152 

 

Liver clock-independent gene with altered phase of expression in NPY KO 

Affymetrix 

transcript ID Gene 

WT 

MetaCycle 

P value 

WT 

Phase 

WT 

Median 

Exp 

WT 

Relative 

Amp 

KO 

MetaCycle 

P value 

KO 

Phase 

KO 

Median 

Exp 

KO 

Relative 

Amp 

17268729 Fbxl20 0.0001 7.66 72.8 0.338 0.0287 3.35 74.6 0.024 

 

Other liver clock-independent genes   

Affymetrix 

transcript ID Gene 

WT 

MetaCycle 

P value 

WT 

Phase 

WT 

Median 

Exp 

WT 

Relative 

Amp 

KO 

MetaCycle 

P value 

KO 

Phase 

KO 

Median 

Exp 

KO 

Relative 

Amp 
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17441490 Fbxo21 0.0000 7.47 389.4 0.528 0.0040 7.63 417.3 0.405 

17323838 Klhl24 0.0003 7.95 655.8 0.393 0.0154 7.89 733.9 0.207 

17348840 Rnf125 0.0003 1.00 1876.3 0.498 0.0003 1.00 1782.6 0.485 

17239817 Enpp3 0.0006 3.52 705.3 0.276 0.0397 2.00 691.8 0.154 

17224540 Tuba4a 0.0007 0.00 553.8 0.496 0.0041 0.00 495.7 0.311 

17397426 Ccrn4l 0.0014 13.21 67.5 0.912 0.0055 13.13 61.4 0.862 

17225506 Per2 0.0015 15.94 100.4 0.568 0.0016 18.31 95.1 0.196 

17530653 Alas1 0.0018 14.17 2348.8 0.686 0.0433 15.23 1613.2 0.791 

17322289 Calcoco1 0.0022 7.63 238.0 0.234 0.0105 7.81 212.3 0.113 

17284002 Hsp90aa1 0.0028 19.45 163.3 0.342 0.0020 20.00 170.9 0.224 

17397240 Hspa4l 0.0032 20.00 116.8 0.356 0.0060 20.00 121.8 0.386 

17455507 Hsph1 0.0077 17.26 172.2 0.596 0.0104 17.69 210.7 0.368 

17516365 Hspa8 0.0080 15.90 2249.3 0.220 0.0145 15.95 2414.1 0.138 

17362240 Stip1 0.0096 20.00 334.7 0.241 0.0104 1.71 330.8 0.210 

17514871 Chordc1 0.0152 18.03 249.2 0.297 0.0029 17.12 247.0 0.363 

17371059 March7 0.0167 7.64 108.5 0.134 0.0100 6.20 118.1 0.110 

17236003 Tcp11l2 0.0183 7.56 88.2 0.335 0.0281 5.03 107.8 0.216 

17246231 Erbb3 0.0403 6.31 741.6 0.186 0.0355 5.39 634.6 0.079 

17483546 Fus 0.0427 6.42 138.1 0.164 0.0092 8.12 120.6 0.137 

17285056 Idi1 0.0570 0.00 324.4 0.409 0.9922 7.35 327.1 0.001 

17445308 Cyp51 0.0573 0.50 245.0 0.570 0.2233 4.74 275.0 0.194 

17406908 Fdps 0.0574 5.99 381.0 0.572 0.4333 4.77 423.2 0.118 

17421972 Errfi1 0.0688 11.69 3378.1 0.240 0.6534 13.17 3415.2 0.119 

17234552 Lss 0.1491 0.50 115.3 0.607 0.3760 3.98 131.2 0.117 

17406990 Efna1 0.1893 0.50 291.1 0.248 1.0000 6.58 304.3 0.109 

17479596 Hddc3 0.2322 2.00 138.0 0.030 0.1139 8.05 139.9 0.082 

17509629 Msmo1 0.4935 16.88 472.2 0.269 1.0000 9.50 503.5 0.137 

17467799 

Tgoln1||Tgoln

2 0.7122 1.00 883.7 0.028 0.0055 0.77 922.2 0.140 

17508036 Slc25a15 0.7439 18.63 1960.6 0.054 0.7151 0.00 1816.9 0.047 

17262621 Hspa4 0.8215 0.88 731.2 0.075 0.9913 12.82 694.9 0.011 

17351465 Tubb6 0.8380 17.26 50.4 0.122 0.2040 6.99 49.2 0.066 

17383905 Slc25a25 1.0000 11.90 370.3 0.131 0.9952 12.51 309.2 0.278 

17455234 Rnf6 1.0000 10.76 95.2 0.001 0.8039 9.29 92.5 0.063 

Table 2.3 contributions: A.N.K. and G.W. analyzed data.  
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Abstract 

The mechanisms by which clock neurons in the Drosophila brain confer a ~24-hour rhythm onto 

locomotor activity are unclear, but involve the neuropeptide Diuretic hormone 44 (DH44), ortholog 

of corticotropin-releasing factor. Here, we identified DH44 receptor 1 as the relevant receptor for 

rest:activity rhythms and mapped its site of action to hugin-expressing neurons in the 

subesophageal zone (SEZ). We traced a circuit that extends from Dh44-expressing neurons in 

the pars intercerebralis (PI) through hugin+ SEZ neurons to the ventral nerve cord. Hugin 

neuropeptide, a neuromedin U ortholog, also regulates behavioral rhythms. The DH44 PI-Hugin 

SEZ circuit controls circadian locomotor activity in a daily cycle but has minimal effect on feeding 

rhythms, suggesting that the circadian drive to feed can be separated from circadian locomotion. 

These findings define a linear peptidergic circuit that links the clock to motor outputs to modulate 

circadian control of locomotor activity.     

Introduction 

Drosophila melanogaster has been instrumental for understanding the molecular and 

cellular basis of circadian clocks. At the molecular level, a transcription-translation feedback loop 

keeps the circadian clock running at a ~24-hour pace. At the cellular level, ~150 clock-expressing 

neurons in the Drosophila brain synchronize as a network to coordinate behavioral rhythms (Yao 

and Shafer 2014; Peng et al. 2003). Of these clock neurons, the ventrolateral neurons (LNvs) are 

the most important for driving locomotor activity rhythms in free-running conditions of constant 

darkness (Renn et al. 1999; Grima et al. 2004). In addition, the LNvs maintain the phase and 

amplitude of molecular oscillations among different clock neurons through neuropeptide pigment-

dispersing factor (PDF) signaling (Peng et al. 2003; Lin, Stormo, and Taghert 2004; Yoshii et al. 

2009). While we have some understanding of the signaling mechanisms within the central clock 

network that generate circadian rhythms, the mechanisms for relaying circadian timing 

information from the clock to neural circuits controlling behavior are poorly understood. 

A screen for circadian output neurons in Drosophila identified Dh44-expressing neurons 

in the pars intercerebralis (PI), a functional homolog of the mammalian hypothalamus (de Velasco 
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et al. 2007), as relevant for rest:activity rhythms (Cavanaugh et al. 2014). Dh44+ PI neurons lack 

clocks themselves but are indirectly connected to the small LNvs (sLNvs), the central pacemaker 

neurons, through DN1 (dorsal neurons) clock neurons. The DH44 neuropeptide is the fly ortholog 

of corticotropin-releasing factor (CRF) and modulates rest:activity rhythms (Cavanaugh et al. 

2014). To identify signals downstream of DH44 that regulate rest:activity rhythms, we sought to 

identify the relevant receptor and its site of action. Here, we find that a null mutation in Dh44 

receptor 1 (Dh44-R1) disrupts the amplitude of free-running rest:activity rhythms. We find that 

DH44-R1 acts in neurons expressing hugin, a neuropeptide ortholog of neuromedin U (Melcher et 

al. 2006), which also regulates rest:activity rhythms. Dh44+ PI neurons are anatomically and 

functionally connected to hugin+ neurons in the subesophageal zone, a sensorimotor control 

center in flies (McKellar 2016). hugin+ neurons display cyclic neuropeptide release that is 

controlled by the clock and have descending projections into the ventral nerve cord, where they 

potentially regulate motor circuits driving locomotion. Although Dh44-R1 and hugin modulate 

circadian locomotor activity, manipulations of the Dh44 PI-Hugin SEZ circuit have little to no effect 

on feeding rhythms. We propose that the sLNv→DN1→DH44 PI→Hugin SEZ→VNC pathway 

defines a linear circuit that modulates rest:activity rhythms. 
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Methods 

Experimental Model and Subject Details 

Drosophila lines 

Flies were maintained on cornmeal-molasses medium at 25°C. The w1118 iso31 strain was used 

as wild type. When tested as controls, UAS and GAL4 fly lines were tested as heterozygotes after 

crossing to iso31. Most of the GAL4 lines used in the screen were selected for their restricted 

expression in the brain from the Janelia Fly Light collection (Jenett et al. 2012) at the Bloomington 

Drosophila Stock Center (BDSC) and the Vienna Tiles collection (Kvon et al. 2014) at the Vienna 

Drosophila Resource Center (VDRC). See Table 3.2 for a list of the complete genotype for the 

animals used in each experiment. 

 

Method Details 

Generating Dh44-LexA driver 

Dh44-LexA was generating using the same ~2.2 kb Dh44 enhancer fragment (chr3R:9639799-

9641976 from dm6) in Dh44-GAL4 (VT039046 from VDRC). The Dh44 fragment was directionally 

cloned into a pBPLexA::p65Uw plasmid (Addgene 26231) between two attR sites using the 

Gateway TOPO cloning kit (Thermo Fisher Scientific, Inc.). Flies were generated by site-specific 

PhiC31 integration at an attP40 site (Pfeiffer et al. 2010). Despite using the same enhancer 

fragment as Dh44-GAL4, we observed that Dh44-LexA was expressed in other neurons, in 

addition to the six Dh44+ pars intercerebralis neurons. Therefore, Dh44-LexA was only used in 

experiments where anatomical analysis could exclude the spurious expression pattern. 

Transgenic fly injections were done by Rainbow Transgenic Flies, Inc. (Camarillo, CA). 

 

Generating Dh44-R1 and Dh44-R2 mutants 

Dh44-R1DsRed and Dh44-R2174 mutants were generated with the CRISPR/CAS9 system. Guide 

RNA sequences to target Dh44-R1 and Dh44-R2 were determined using a target finder 

(http://flycrispr.molbio.wisc.edu/tools). Guide RNAs were cloned into the pCFD4 plasmid (Port et 

al. 2014). For the Dh44-R1 mutation, a homology directed repair template (HDR) was also used. 
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5’ and 3’ homology arms spanning 1 Kb upstream and downstream of the desired deletion were 

cloned into the pHD-DsRed-attP plasmid (Gratz et al. 2014). Primers and guide RNA sequences 

used are listed below. Guide RNAs and HDR template were injected into vasa-Cas9 flies at 

Rainbow Transgenic Flies, Inc. Mutations were identified with PCR screening and sequencing 

(see Table 3.3 for primer sequences). To PCR identify mutations at the CRISPR target site in 

Dh44-R2, two forward primers and one reverse primer were used. One forward primer primes 

outside the CRISPR target site, referred as Primer outside (Po), and another forward primer 

overlaps the CRISPR target site, referred as Primer indel (Pi). Thus, Po amplifies from both wild 

type and mutant alleles. Pi can only amplify from the wild type allele, and any mutation will disrupt 

the binding of Pi. To PCR verify HDR insertion at Dh44-R1, one primer was targeted against a 

genomic region outside of the HDR template and the other primer was targeted against a region 

within the HDR template. Thus, a PCR product can only be produced when the HDR template 

has been integrated into the genomic Dh44-R1 locus. 

Generating UAS-t-Dh44  

t-Dh44 cDNA was chemically synthesized using optimal Drosophila codon usage and with an 

optimal Drosophila Kozak translation initiation site upstream of the start methionine (CAAA) as 

described in (Choi et al. 2009). t-Dh44 cDNA and encoded peptide sequence are as follows: 

cDNA:  

GAATT CCAAA ATGTC CGCCC TGCTC ATCTT GGCTT TGGTC GGTGC TGCAG TTGCC 
AACAA ACCCT CCCTG AGCAT CGTGA ATCCG CTAGA TGTCC TGCGT CAACG CCTGC 
TACTT GAGAT AGCCC GTCGC CAGAT GAAGG AGAAT AGCCG ACAGG TGGAG CTGAA 
TCGAG CCATC CTGAA GAACG TGGGC AACGA GCAGA AGCTC ATCAG TGAGG AGGAT 
CTGGG AAACG GAGCT GGCTT TGCTA CTCCA GTGAC ACTAG CCCTT GTGCC TGCAC 
TGTTG GCAAC CTTCT GGTCG CTCCT GTAAT CTAGA 

Peptide:  

MSALLILALVGAAVANKPSLSIVNPLDVLRQRLLLEIARRQMKENSRQVELNRAILKNVGNEQKLIS
EEDLGNGAGFATPVTLALVPALLATFWSLL 

The cDNA was cloned into pJFRC7-20XUAS-IVS plasmids using NotI and NheI, and cloned 

vectors were injected into fly strains carrying the attP40 landing site to obtain transgenic flies 

(Pfeiffer et al. 2010). 
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Behavior experiment: circadian rest:activity rhythm 

Rest:activity rhythm assays were performed with the Drosophila Activity Monitoring System 

(Trikinetics, Waltham MA) as described previously (Cavanaugh et al. 2014; Williams et al. 2001). 

Flies were entrained to a 12 h light: 12 h dark (LD) cycle for > 3 days at 25°C. ~7 d old male flies 

were individually placed into glass tubes with 5% sucrose/2% agar food and monitored in 

constant darkness (DD) for 7 d at 25°C. For TrpA1 experiments, flies were raised at 18°C. ~7 d 

old male flies were entrained to an LD cycle for 3 days at 21°C, then transferred to DD for 5 days 

at 21°C, followed by 5 days DD at 28°C. The GAL4 screen was initially performed with 8-16 flies. 

All other behavioral experiments were performed at least 2 independent times with at least 16 

flies/genotype each.  

Immunohistochemistry, GRASP, and microscopy 

Fly brains from ~4-7 d old males were dissected in phosphate-buffered saline with 0.1% Triton-X 

(PBST) and fixed in 4% formaldehyde for 20 min at room temperature. Brains were rinsed 3 x 10 

min with PBST, blocked for 60 min in 5% Normal Donkey Serum in PBST (NDST), and incubated 

in primary antibody diluted in NDST for >16 h at 4°C. Brains were rinsed 3 x 10 min in PBST, 

incubated 2 h in secondary antibody diluted in NDST, rinsed 3 x 10 min in PBST, and mounted 

with Vectashield (Vector Laboratories Inc.). Primary antibodies used are rabbit anti-GFP at 

2µg/mL (Thermo Fisher Scientific Inc. A-11122), rat anti-RFP at 1µg/mL (ChromoTek 5F8), and 

mouse anti-brp at 1:100 (Developmental Studies Hybridoma Bank nc82). Secondary antibodies 

used are FITC donkey anti-rabbit (Jackson ImmunoResearch 711-095-152), Cy3 donkey anti-rat 

(712-165-153), and Cy5 donkey anti-mouse (715-175-151) at 1:500. For GRASP experiments, 

endogenous signal without antibody labeling was imaged. Eight-bit images were acquired using a 

Leica TCS SP5 laser scanning confocal microscope with a 40x/1.3 NA or 20x/0.7 NA objective 

and a 1-μm z-step size. Maximum intensity z-projection images were generated in Fiji, a 

distribution of ImageJ software (Schindelin et al. 2012). 

P2X2 activation and calcium imaging  
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Adult male flies ~7–9 d old were anesthetized on ice and dissected in hemolymph-like saline 

(HL3) consisting of (in mM): 70 NaCl, 5 KCl, 1.5 CaCl2, 20 MgCl2, 10 NaHCO3, 5 trehalose, 115 

sucrose, 5 HEPES, pH 7.1 (Yao et al. 2012). Imaging experiments were performed using a naked 

brain preparation in a small bath of HL3 in a perfusion chamber (AutoMate Scientific Inc., 

Berkeley CA). The brain was stabilized under nylon fibers attached to a platinum wire frame. 

Solutions were perfused over the brain at a rate of ~5 mL/min with a gravity-fed ValveLink 

perfusion system (Automate Scientific Inc.). After 1 min of baseline GCaMP6s imaging, ATP was 

delivered to the chamber by switching perfusion flow from the channel containing HL3 to another 

channel containing 5 mM ATP (Sigma–Aldrich, St Louis, MO) in HL3, pH 7.1. ATP was perfused 

for 1 min. GCaMP6 calcium imaging was performed on a Leica TCS SP5 confocal microscope. 

Twelve-bit images were acquired with a 40×/0.8 water immersion objective at 256 × 256 pixel 

resolution. Z-stacks were acquired every 5 or 10 s.  

ANF-GFP 

Adult males were entrained to a LD cycle. For each time point, ventral nerve cords were 

dissected in PBST and fixed in 4% PFA/PBS for 20 m at room temperature. Tissues were 

washed 3 times in PBST, mounted in Vectashield media, and imaged on a Leica TCS SP5 

confocal microscope using identical laser power and scan settings for all samples. Eight-bit 

images were acquired using a Leica TCS SP5 laser scanning confocal microscope with a 20x/0.7 

NA objective and a 1-μm z-step size. 

Behavior experiment: locomotor activity  

The number of beam crossings (activity counts) per 30 min was measured using the Drosophila 

Activity Monitoring System. ~7 d old individual male flies were monitored for 3 d in LD and then 3 

d in DD. Locomotor activity analysis was performed 2 or 3 independent times with 16 flies per 

genotype with similar results.  
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Feeding behavior experiment: FLIC 

Feeding rhythm analysis was performed using the Fly Liquid-food Interaction Counter (FLIC) (Ro, 

Harvanek, and Pletcher 2014). Liquid food for the Dh44-R1DsRed experiments was prepared as a 

10% sucrose (w/v) solution. Liquid food for the hugin>Kir2.1 experiments was a 10% sucrose 

solution plus 45 mg/L MgCl2 · 6H2O as an additional source of ions for a more robust signal. ~2-

3 d old male flies were entrained in a LD cycle for >3 d at 25°C, then transferred to DD 25°C for 8 

d. Feeding events, measured as constant food contact for a minimum of 1 s, were monitored for 8 

d in DD.  

Quantitative reverse transcription PCR (qPCR) 

Total RNA was extracted from 3–7 d old male flies (30 heads or 5 whole bodies) using TRIzol 

reagent (Thermo Fisher Scientific Inc.). RNA was reverse transcribed to generate cDNA using a 

High Capacity cDNA Reverse Transcription kit (Thermo Fisher Scientific Inc.). qPCR was 

performed on a ViiA™ 7 Real-Time PCR System (Applied Biosystems) using SYBR Green PCR 

master mix (Thermo Fisher Scientific Inc.). Primers (5’ to 3’) for qPCR used in the study are: 

actin-F: GCGCGGTTACTCTTTCACCA; actin-R: ATGTCACGGACGATTTCACG; Dh44-F: 

GCAGGCAAATGAAGGAGAAC; Dh44-R: CCACGTTCTTCAGGATGG; Dh44-R1-F: 

CAGCACCCCCGAAAAGTACG; Dh44-R1-R: ATTAGCACCGCACAGACAGG; Dh44-R2-F: 

CCGGAACAGGGTATCAGTCG; Dh44-R2-R: AGAAGCCCTGCGTGCTTATG; hugin-F: 

ATGTGTGGTCCTAGTTATTGCAC; hugin-R: TCCCAAATCCAGTTTGCTCGT. Because the 

region targeted by the Dh44-R1 primers above was deleted in the Dh44-R1DsRed mutant, the 

following primers were used to measure mRNA levels of Dh44-R1: Dh44-R1-CRISPR-F: 

CCTGATGAGGCAAGGACTCG and Dh44-R1-CRISPR-R: AGATCTGCGACACGGAAGTG.  

Quantification and Statistical Analysis 

The statistical details of experiments can be found in the figure legends. All statistical tests were 

performed in GraphPad Prism (version 7.03). Tukey’s boxplots were generated in R (version 

3.3.1) using ggplot2 package. In the boxplots, the line inside the box indicates the median, and 

the bottom and top lines represent the 1st and 3rd quartiles (the 25th and 75th percentiles). The 
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upper whisker extends to the highest value that is within 1.5 * IQR above the 3rd quartile, where 

IQR is the inter-quartile range (the distance between the 25th and 75th percentiles). The lower 

whisker extends to the lowest value within 1.5 * IQR below the 1st quartile. Data beyond the end 

of the whiskers are outliers and plotted as points. 

Behavior experiment: circadian rest:activity rhythm 

Circadian rhythms was analyzed with ClockLab software (Actimetrics, Wilmette IL). Period and 

rhythm strength were determined for each individual fly using activity data collected from days 2–

7 of DD. Period length was determined using χ2 periodogram analysis, and relative power (or 

amplitude) of circadian rhythm  was determined using fast Fourier transform (FFT). Fly activity 

was considered rhythmic if the χ2 periodogram showed a peak above the 95% confidence 

interval and the FFT value was >0.01 (Cavanaugh et al. 2014). Data from flies that survived the 

duration of the experiments were pooled and analyzed. Behavioral data were analyzed with one-

way analysis of variance (ANOVA). Tukey’s test was used as the post hoc test in Figure 1B-E. 

Sidak’s test was used as the post hoc test in all other experiments to compare means between 

the two control genotypes (flies containing GAL4 or UAS only) and experimental genotype (flies 

containing both GAL4 and UAS). Differences between groups were considered significant if P < 

0.05 by the post hoc test. TrpA1 data were analyzed with two-way repeated-measures ANOVA 

followed by a Sidak's test. Differences in FFT power between temperatures and within a 

genotype were considered significant if P < 0.05 by Sidak’s test. 

Calcium imaging 

Image processing and fluorescence intensity measurement was performed in Fiji. A summed 

intensity Z-projection at each time point was used for analysis. StackReg plugin for Fiji was used 

to correct for xy movements over time in the projected image (Thevenaz, Ruttimann, and Unser 

1998). Regions of interest (ROIs) were manually drawn to encompass individual GCaMP-positive 

cell bodies, and mean fluorescence intensities was measured from a ROI at each time point. For 

each individual cell, fluorescence traces over time were normalized using this equation: ΔF/F = 

(Fn−F0)/F0, where Fn is the fluorescence intensity recorded at time point n, and F0 is the average 
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fluorescence value during the 30 s-baseline preceding ATP application. Maximum ΔF/F was 

calculated by subtracting the average ΔF/F in the 30 s preceding ATP delivery from the largest 

ΔF/F value during the 60 s of ATP application. Brains with cells that have unstable baselines 

were discarded from quantification. The sample sizes, including the total number of cell bodies 

and number of brains, quantified are indicated in legend. We used two-tailed Mann-Whitney U 

test (for 2 group comparison) or Kruskal-Wallis test followed by Dunn’s multiple comparison test 

(for 3 group comparison) to compare differences in maximum ΔF/F between groups. A 

responding cell was defined as a cell with a maximum ΔF/F greater than 2*SD(ΔF/F of the 

negative control group). The onset of response for a cell was defined as the time where ΔF/F 

cross a threshold corresponding to 2*SD(ΔF/F during the 30 s baseline preceding ATP). 

ANF-GFP experiments 

FIJI software was used to measure fluorescent signal in axon terminal. Background subtraction 

was performed using the “rolling ball” method, then a max intensity Z-projection was generated. 

To create a selection mask of the axons, a 1.5 pixel range Gaussian blur was applied to a Z 

projected image of the myr-RFP signal, and the threshold was adjusted to select for the brightest 

myr-RFP signal. Fluorescent artifacts, such as autofluorescent puncta in the T3 and abdominal 

segments, were removed from the mask and not measured. The mask was transferred to the 

max Z-projected images and used to measure the mean pixel intensity of the ANF-GFP and myr-

RFP signals. We also took a background signal for each ventral nerve cord. Normalized 

GFP/RFP signal was determined as (mean ANFGFP - mean background GFP) ÷ (mean myrRFP 

- mean background RFP) for each ventral nerve cord. ANF-GFP data were analyzed with two-

way ANOVA. After determining the interaction effect between time and genotype variables was 

significant (P < 0.05), Tukey’s post hoc test was used to compare the means between time points 

within a genotype. 

Behavior experiment: locomotor activity  

Each fly’s 24-h activity profile was determined from the average of 3 d of data. Locomotor activity 

profiles for each genotype were then generated from the average of 15-16 flies’ activity profiles. 
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We defined light or day activity as cumulative activity counts occurring between ZT or CT 0-11.5 

(inclusive of start and end times), dark or night activity between ZT/CT 12-23.5, evening activity 

between ZT/CT 9.5-12.5, and morning activity between ZT/CT 21.5-23.5 and 0-0.5. Statistical 

tests were done with one-way ANOVA followed by a Tukey post hoc test. Differences between 

groups were considered significant if P<0.05 by the Tukey test. Tukey’s boxplots were generated 

in R.  

Feeding behavior 

Period and rhythm strength of feeding behavior were determined from feeding events during days 

2-7 of darkness (DD) using ClockLab software. Only flies that survived the duration of the 

experiment were included in the data analysis. Period length was determined using χ2 

periodogram analysis, and ~24-hour rhythm strength was determined by subtracting the 

corresponding P = 0.01 χ2 significance value from the amplitude of the maximum period. Flies 

were categorized as rhythmic (power >10) or arrhythmic (power <10). Normalized feeding activity 

was calculated within each fly for comparison across flies and experiments. Feeding activity of a 

fly for a given 30 min period was divided by the average behavioral count of 30 min over the 

duration of the experiment. Plots of normalized feeding activity begin at day 2 of the experiment 

after flies have acclimated to the FLIC monitor enclosure. 

Quantitative reverse transcription PCR (qPCR) 

Two-tailed Welch’s t test was used to compare differences in gene expression between 

experimental and control groups. We used one-way ANOVA test and JTK_CYCLE algorithm 

(version 3) (Hughes, Hogenesch, and Kornacker 2010) to determine if there was cycling in gene 

expression. 
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Results 

DH44-R1 is the predominant DH44 receptor regulating circadian rhythms of rest:activity  

DH44 neurons as well as the peptide itself are required for normal rest:activity rhythms in 

constant darkness (Cavanaugh et al. 2014). As DH44 can signal through two G-protein coupled 

receptors, DH44-R1 and DH44-R2, we asked which receptor was necessary for rhythmic 

behavior (Johnson, Bohn, and Taghert 2004; Hector et al. 2009). Using CRISPR/CAS9-mediated 

genome editing, we generated mutant alleles of both Dh44 receptor genes, Dh44-R1DsRed and 

Dh44-R2174.  The Dh44-R1DsRed allele is a deletion of the entire protein coding region and 

replaces exons 2 to 11 with a DsRed selection marker, which decreases mRNA levels of Dh44-

R1 (Figure 3.1A and 2.S1A). Dh44-R2174 allele is a 5-base-pair deletion in exon 6 of the gene 

(Figure 3.1A). Dh44-R2174 mutants have normal levels of Dh44-R2 mRNA (Figure 3.S1A); 

however, the frameshift mutation is predicted to result in a non-functional truncated protein with 

only two transmembrane domains (Figure 3.S1B). 

We assessed circadian rhythms of locomotor activity in Dh44-R1DsRed and Dh44-R2174 

mutants under constant darkness (DD). Both Dh44-R1DsRed and Dh44-R2174 mutants displayed 

rest:activity rhythms with wild type period length (Figure 3.S1C-S1E and Table 3.1). However, the 

amplitude of the behavioral rhythm was affected in Dh44-R1DsRed mutants (Figure 3.1B), as 

assayed by fast Fourier transform (FFT) (Cavanaugh et al. 2014). Dh44-R2174 mutants were 

largely normal, although FFT analysis shows that they had modestly weaker rest:activity rhythms 

compared to control heterozygotes (Figure 3.1C). Both Dh44-R1DsRed and Dh44-R2174 failed to 

complement large chromosomal deficiencies that remove the respective genes, consistent with 

Dh44-R1DsRed and Dh44-R2174 being null alleles (Figure 3.1B-1C). To investigate the relationship 

between the two DH44 receptors, we tested the behavior of flies mutant for both receptors. 

Double heterozygotes, Dh44-R1DsRed,Dh44-R2174/+, had strong rest:activity rhythms similar to 

those of single heterozygous mutants. In contrast, flies homozygous for both mutations (Dh44-

R1DsRed,Dh44-R2174) exhibited weak rest:activity rhythms like those seen in Dh44-R1DsRed mutants 

(Figure 3.1D and S1F). Since loss of Dh44-R2 does not modify the phenotype of the Dh44-
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R1DsRed mutant, we conclude that DH44-R1 is the primary DH44 receptor regulating rest:activity 

rhythms.  

The phenotype of Dh44-R1DsRed mutants suggests a modulatory role of DH44 signaling, 

which is generally the case for peptide signaling. Indeed, while flies lacking core clock genes, 

such as period (per), are completely arrhythmic, this is not the case for mutants of PDF, the major 

neuropeptide in the clock circuit, or PDF receptor (Renn et al. 1999; Lear, Merrill, et al. 2005; 

Hyun et al. 2005; Mertens et al. 2005; Wülbeck, Grieshaber, and Helfrich-Förster 2008; Shafer 

and Taghert 2009). We found that 54% of Pdf01 mutants, but none of the per0 flies, were rhythmic 

(Table S1). Nevertheless, rest:activity rhythms of Dh44-R1DsRed flies were stronger than those of 

Pdf01 and Pdfrhan5304 mutants (Figure 3.1E), suggesting that DH44 is not the only signal 

downstream of PDF relevant for rest:activity rhythms. We examined expression levels of the 

DH44 receptors across the day, but did not see any evidence for cycling of Dh44-R1 or Dh44-R2 

mRNA (Figure 3.S1F). 

To verify a role for Dh44-R1 in neurons, we pan-neuronally knocked it down using RNA 

interference (RNAi). elav-GAL4-driven expression of two different RNAi lines reduced mRNA 

levels of Dh44-R1 to approximately 50% of the levels in controls (Figure 3.S2A-S2B). Compared 

to control flies, elav>Dh44-R1 RNAi flies showed lower amplitude of rest:activity rhythms (Figure 

3.1F). Interestingly, knockdown of Dh44-R2 also dampened rest:activity rhythms (Figure 3.1G), 

more so than the genetic mutant, perhaps because of compensation with the global knockout. 

Nevertheless, simultaneous knockdown of both receptors in neurons resulted in the same rhythm 

phenotype as knockdown of a single DH44 receptor (Figure 3.1H). These data are consistent with 

the results from genetic mutant analysis and suggest that effects of Dh44-R1 and Dh44-R2 on 

circadian rhythms are not additive or synergistic; thus, any role of DH44-R2 is not independent of 

DH44-R1. Because of the stronger phenotype of the Dh44-R1 mutant, we conclude that DH44-R1 

is the more relevant receptor for rest:activity rhythms.  
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Dh44-R1-expressing neurons regulate rest:activity rhythms 

To identify the site of DH44-R1 action relevant for rest:activity rhythms, we first examined 

expression of a Dh44-R1R21A07-GAL4 driver (which includes 3.65 kb from Dh44-R1 promoter). 

Dh44-R1R21A07-GAL4 is expressed broadly in the brain and in a pattern similar to an in situ 

characterization of Dh44-R1 mRNA expression (Figure 3.1I) (K.-M. Lee et al. 2015). RNAi-

mediated knockdown of Dh44-R1 in Dh44-R1R21A07-GAL4+ neurons reduced the strength of 

rest:activity rhythms (Figure 3.S2C-S2D), supporting the idea that the driver targets neurons that 

mediate effects of DH44-R1.  

We next determined whether activating Dh44-R1-expressing neurons is sufficient to 

degrade rest:activity rhythms. We expressed the Drosophila temperature-activated cation 

channel, TrpA1 (Pulver et al. 2009), in Dh44-R1-expressing neurons and tested rest:activity 

rhythms of individual flies at 21°C and then at 28°C. At 21°C, 93.5% of the Dh44-R1R21A07>TrpA1 

flies were rhythmic. However, after transitioning the flies to 28°C to activate TrpA1, only 31% of 

the flies were rhythmic. FFT power for Dh44-R1R21A07>TrpA1 flies also decreased after 

transitioning to 28°C (Figure 3.1J-K). Sustained activation of Dh44-R1-expressing neurons is 

sufficient to disrupt rest:activity rhythms, indicating these neurons have a role in regulating 

rest:activity rhythms. 

Effects of Dh44-R1 on rest:activity rhythms are mediated by hugin+ neurons in the SEZ  

To identify the specific neurons requiring Dh44-R1 for rest:activity rhythms, we targeted RNAi 

knockdown of Dh44-R1 to random subsets of brain cells using 168 independent GAL4s (Figure 

3.S3) (Jenett et al. 2012; Kvon et al. 2014). We found that 15 GAL4s driving Dh44-R1 RNAi 

weakened rest:activity rhythms comparable to the phenotype observed with pan-neuronal nsyb-

GAL4 or elav-GAL4 targeted knockdown (Figure 3.2A and S3). Of the GAL4 hits, three are 

regulated by Dh44-R1 genomic sequences: Dh44-R1-GAL4 (K.-M. Lee et al. 2015), R21A07-

GAL4, and R57E06-GAL4. We examined the expression of GAL4 hits in the brain and found that 

the subesophageal zone (SEZ) stood out as a region of overlap, labeled by five candidate GAL4 

drivers (Figure 3.2B). Interestingly, axons of Dh44+ PI neurons terminate in the SEZ. 
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We focused on hugin-GAL4, because its expression is restricted to about 20 hugin+ 

neurons in the SEZ (Melcher and Pankratz 2005). Hugin (hug) encodes a prepropeptide that 

produces two neuropeptides, Pyrokinin-2 and Hugin-γ, one of which (Pyrokinin-2) is homologous 

to mammalian neuromedin U (NMU) (Melcher et al. 2006). We followed up on the initial 

phenotype and found that knockdown of Dh44-R1 in hugin+ neurons weakens rest:activity 

rhythms. While only one of the two Dh44-R1 RNAi transgenes significantly reduced circadian 

rhythmicity in a wild type background, both yielded a consistent weak rhythm phenotype in a 

sensitized Dh44-R1DsRed/+ heterozygous background, suggesting incomplete knockdown in wild 

type flies (Figure 3.2C).  

To verify circadian relevance of DH44 expression in hugin+ neurons, we expressed a 

membrane-tethered form of DH44 (t-DH44) in hugin+ neurons. Membrane-tethered peptides cell-

autonomously and constitutively activate their cognate receptors, and were used previously to 

study PDF signaling in the circadian network (Choi et al. 2009; Choi et al. 2012). Expression of t-

DH44 in hugin+ neurons, weakened rest:activity rhythms (Figure 3.2D), supporting the idea that 

Dh44-R1 functions in hugin+ SEZ neurons to modulate rest:activity rhythms.  

Hugin+ neurons in the SEZ receive inputs from Dh44+ neurons in the PI 

Since the function of DH44-R1 partially maps to hugin+ neurons, we sought to determine if 

hugin+ neurons receive synaptic inputs from Dh44+ neurons (Figure 3.3A). To analyze the 

circuitry, we labeled the projections of each neuronal subset—hugin+ and Dh44+—with   

fluorescent markers: syt1-GFP to identify presynaptic membranes and Denmark to identify 

postsynaptic membranes (Y. Q. Zhang, Rodesch, and Broadie 2000; Nicolaï et al. 2010). Hugin+ 

neurons have both presynaptic and postsynaptic components within the SEZ and near the 

esophagus. Interestingly, hugin+ axon terminals also project to the PI (Figure 3.3B). Conversely, 

axons from Dh44+ PI neurons terminate within the SEZ, and Dh44+ dendritic compartments are 

located both in the PI and near the esophagus (Figure 3.3C).  

To test for synaptic connections between Dh44+ and hugin+ neurons, we used a GFP 

reconstitution across synaptic partners (GRASP) method that labels synaptic sites (Feinberg et 
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al. 2008; Y. Chen et al. 2014). We used Dh44-GAL4 to express neurexin-bound GFP fragment 1-

10 and hugin-LexA to express CD4 membrane-bound GFP fragment 11. In these flies, GRASP 

signal was observed in the SEZ, near the esophagus, and along the midline of the brain (Figure 

3.3D). To determine the polarity of the connectivity detected with GRASP and to confirm Dh44+ 

and hugin+ projections overlap in the same region, we simultaneously labeled the axons of one 

group with Rab3-GFP (Shearin et al. 2013) and the somatodendritic membrane of the other group 

using Denmark. We found that axons from Dh44+ PI neurons intersect with hugin+ dendrites near 

the esophagus and in the SEZ (Figure 3.3E). Intriguingly, hugin+ axon terminals also contact 

Dh44+ dendrites near the esophagus (Figure 3.3F). In addition, we detected a GRASP signal 

between Dh44+ and hugin+ neurons in the PI (Figure 3.3G), where hugin+ axon terminals 

contact Dh44+ neurons (Figure 3.3H). GRASP and polarity analysis indicate that Dh44+ PI and 

hugin+ SEZ neurons make extensive synaptic contacts through reciprocal projections. 

To test whether Dh44+ and hugin+ neurons are functionally connected, we expressed 

and activated ATP-gated P2X2 receptors in Dh44+ neurons while imaging Ca2+ in hugin+ 

neurons with GCaMP6m (Lima and Miesenböck 2005; T.-W. Chen et al. 2013). Addition of ATP 

to activate Dh44+ neurons increased GCaMP signal in a subset of hugin+ neurons (Figure 3.3I-

J). Some neurons showed a decreased GCaMP signal upon ATP application; however, this is 

likely an experimental artifact since we also observed decreases in the negative control group. 

We estimated the number of hugin+ neurons that responded to Dh44+ PI activation as the 

number of neurons with a GCaMP signal increase greater than 2 standard deviations from the 

mean response in the negative control. We found approximately 15% of the ~20 hugin+ neurons 

responded and increased GCaMP signal upon activation of Dh44+ PI neurons (Figure 3.3J), 

suggesting that hugin+ neurons are a heterogeneous group.  

We next asked to what extent DH44 signaling is required for the Ca2+ response in hugin+ 

neurons following Dh44+ PI activation. Thus, we performed the P2X2 and GCaMP6 imaging 

experiments in Dh44-R1DsRed mutants. We did not observe significant differences in the amplitude 

of the responses in hugin+ neurons between mutants and heterozygotes (Figure 3.3K-L), but the 
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onset of response to Dh44+ PI activation was delayed in Dh44-R1DsRed mutants (Figure 3.3M). 

Thus, the functional connection between Dh44+ PI and hugin+ SEZ is partly dependent on DH44 

signaling. It is likely that, in addition to DH44, Dh44+ neurons express other neurotransmitters 

that may signal in the circadian output circuit. Taken together, the functional and anatomical data 

are consistent with hugin+ SEZ neurons receiving inputs from Dh44+ PI neurons. 

Hugin+ neurons are circadian output neurons with descending projections into the ventral 

nerve cord 

The findings reported above suggested that hugin+ neurons regulate rest:activity rhythms. To test 

this idea, we expressed Kir2.1, an inwardly-rectifying potassium channel, with the hugin–GAL4 

driver to hyperpolarize and silence hugin-expressing neurons (Baines et al. 2001). Flies 

expressing hugin>Kir2.1 showed weaker rhythms (Figure 3.4A), and ablating hugin+ neurons 

using the proapoptotic gene reaper resulted in an even stronger phenotype (Figure 3.4A) (White, 

Tahaoglu, and Steller 1996).  

Next, we tested whether Hugin neuropeptide is the signal from hugin+ neurons that 

controls behavioral rhythms by knocking down hugin expression and assaying behavior. To test 

for efficacy of knockdown with two different RNAi transgenes against hugin, we drove their 

expression pan-neuronally with elav-GAL4, and saw >90% reduction in hugin mRNA levels 

(Figure 3.S4A). Expression of the RNAi transgenes in hugin+ neurons resulted in weaker 

rest:activity rhythms (Figure 3.4B). These data show that hugin+ neurons and Hugin 

neuropeptide modulate rest:activity rhythms.  

We also examined the projections of hugin+ neurons to identify their targets. A subset of 

the hugin+ neurons are descending neurons (Melcher and Pankratz 2005), which have cell 

bodies in the central brain and project to the ventral nerve cord (VNC), a region containing motor 

circuits responsible for locomotion (Enriquez et al. 2015). We confirmed that hugin+ neurons in 

the central brain send axonal projections to the VNC using the presynaptic marker syt1-GFP 

(Figure 3.4C). Double labeling experiments revealed that hugin+ SEZ neurons are negative for 

vglut (vesicular glutamate transporter)-GAL4, a marker for motor neurons (data not shown) (Mahr 
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and Aberle 2006). To determine whether hugin+ neurons contact vglut+ neurons in the VNC, we 

used the presynaptic marker Rab3-GFP and postsynaptic marker Denmark. hugin+ presynaptic 

terminals localize with vglut+ dendritic projections in thoracic segments T2 and T3 and the 

abdominal (A) segment of the VNC (Figure 3.4D). GRASP also revealed contacts between 

hugin+ and vglut+ neurons in the thoracic and abdominal ganglia (Figure 3.4E). We hypothesize 

that descending projections from the hugin+ neurons to the VNC signal to motor circuits. 

Neuropeptide release from hugin+ neurons is clock-regulated 

LNvs and DN1s show rhythmic electrical activity with peak spontaneous firing rates around the 

early morning (Sheeba, Gu, et al. 2008; Cao and Nitabach 2008; Flourakis et al. 2015). Dh44+ 

circadian output neurons also show rhythms of intracellular Ca2+ (Cavey et al. 2016), which is 

likely indicative of rhythmic neural activity and peptide release (Shakiryanova et al. 2005). To 

determine if peptide release is rhythmic in hugin+ neurons we used ANF-GFP, a transgenic 

neuropeptide reporter (Rao et al. 2001). We expressed UAS-ANF-GFP and UAS-myr-RFP, used 

to normalize the ANF-GFP signal, in hugin+ neurons and detected the ANF-GFP signal in cell 

bodies, the projections to the PI, and the descending projections in the VNC. As the ANF-GFP 

signal in the hugin+ projections to the VNC is most likely to reflect neuropeptide release that 

affects motor circuits, we measured ANF-GFP in these projections. We found that ANF-GFP was 

rhythmic in the descending projections, with ~33% reduction in levels from the peak at midday 

(ZT6) to the trough in the middle of the night (ZT18) (Figure 3.5). We also measured ANF-GFP 

levels in hugin+ descending projections in per01 mutants, which do not have a molecular clock, 

and found rhythms were lost, confirming that the rhythms of neuropeptide release from hugin+ 

neurons are clock-controlled. However, mRNA levels of hugin do not appear to cycle (Figure 

3.S4B).   

The DH44 PI-Hugin SEZ circuit controls locomotor rhythms without affecting feeding 

rhythms 

All the data described above assayed the strength of rhythms in constant darkness (DD), which is 

the paradigm typically used to assess internal clock function. However, clocks also modulate the 
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daily distribution of activity, which is particularly evident in a light:dark (LD) cycle. In LD cycles 

flies display morning and evening peaks of locomotor activity separated by an afternoon siesta, 

all of which are controlled by different clock neurons (Grima et al. 2004; Stoleru et al. 2004; 

Stoleru et al. 2005). However, little to nothing is known about the output circuits controlling diurnal 

behavior. To determine the contribution of DH44 signaling to the timing of diurnal behavior, we 

analyzed behavior of Dh44-R1 and Dh44-R2 mutants under standard 12:12 LD conditions. 

Compared to heterozygous flies, Dh44-R1-deficient mutants (Dh44-R1DsRed/Df) had a reduced 

evening peak of locomotor activity (Figure 3.6A). However, Dh44-R2174 mutants displayed a 

normal pattern of activity in LD (Figure 3.S5A-S5B). In DD, where the pattern typically consists of 

a single broad evening peak of activity, Dh44-R1DsRed/Df mutants showed a strong reduction of 

this peak (Figure 3.6B).  

Neuronal inactivation of hugin+ neurons with Kir2.1 expression attenuated the evening 

peak of activity in both LD and DD conditions (Figure 3.6C and 6D), recapitulating the phenotype 

of Dh44-R1-deficient mutants. We hypothesize that Dh44-R1 and hugin>Kir2.1 mutants have 

dampened clock output signals, which attenuates the evening peak in particular. Together, the 

data suggest that DH44-R1 acting in hugin+ neurons modulates circadian locomotor activity in LD 

and DD conditions.  

The role of Hugin/NMU (Melcher and Pankratz 2005; Howard et al. 2000) and DH44/CRF 

(Dus et al. 2015; Spina et al. 1996; Stengel and Taché 2014) in feeding-related behaviors raised 

the possibility that the DH44 PI-Hugin SEZ circuit affects locomotor activity rhythms indirectly by 

driving feeding. We performed continuous, long-term monitoring of fly feeding behavior using the 

Fly Liquid-Food Interaction Counter (FLIC) system (Ro, Harvanek, and Pletcher 2014) to directly 

assess whether manipulations of the DH44 PI-Hugin SEZ circuit alter fly feeding rhythms. Dh44-

R1DsRed mutants exhibited strong feeding rhythms that were indistinguishable from those of 

controls (Figure 3.6E and Figure 3.S5C). Feeding rhythms in hugin>Kir2.1 flies were also strong, 

although slightly reduced in strength compared to corresponding controls (Figure 3.6F and Figure 

3.S5C), perhaps indicating that the hugin+ cells are functionally heterogeneous and the subset 
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unresponsive to DH44 makes a minor contribution to the modulation of feeding behavior. Overall, 

these results show that the degradation of rest:activity rhythms in these flies was not secondary 

to alterations in feeding behavior. They also suggest that distinct output circuits mediate control of 

feeding and rest:activity rhythms. 

Discussion 

The neural circuits that transmit information from clock neurons to motor outputs to control 

rest:activity rhythms are poorly understood. We showed previously that Dh44+ PI cells are 

circadian output neurons indirectly connected to sLNvs, the central pacemaker neurons 

(Cavanaugh et al. 2014). Here, we identified hugin+ neurons as downstream circadian neurons 

that modulate rest:activity rhythms. Our data suggest that information flows from the clock 

network, to Dh44+ PI neurons, to hugin+ SEZ neurons, and finally to the VNC, which contains 

motor circuitry for locomotor activity (Figure 3.6G).  

While both Dh44-R1 and Dh44-R2 mutants showed some defects in their rest:activity 

rhythms, the amplitude of behavioral rhythms was significantly weaker in Dh44-R1 mutants than 

in Dh44-R2 mutants. In addition, the Dh44-R2 mutation did not modify the Dh44-R1 mutant 

phenotype, suggesting that Dh44-R1 is the predominant DH44 receptor that regulates rest:activity 

rhythms. Dh44-R1 may function both independently as well as together with Dh44-R2, which 

could explain the small circadian deficiency in Dh44-R2 mutants. To localize the neurons where 

Dh44-R1 functions to regulate rest:activity rhythms, we tested 168 GAL4 drivers and identified 15 

that weaken rest:activity rhythms when used to drive RNAi targeted to Dh44-R1 (Figure 3.2A). 

While no obvious area of expression was common to all GAL4 lines, several GAL4s target 

expression to the SEZ, specifically hugin+ neurons, suggesting that the SEZ is a major 

neuroanatomical region receiving DH44 signals. However, Dh44-R1 may be required in multiple 

groups of neurons for robust rest:activity rhythms, similar to how the collective network of clock 

neurons is required for sustaining molecular oscillations and behavioral rhythms (Yao and Shafer 

2014; Peng et al. 2003). 
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We also asked whether DH44-R1 and hugin+ neurons regulate the output of morning and 

evening peaks of activity under LD conditions. Dh44-R1 mutants have a normal morning peak, 

suggesting that the timing signal from morning oscillators in sLNvs is propagated to motor outputs 

through alternative circuits. However, the evening peak of activity is reduced. An effect of DH44 

on the evening peak of activity, which is the peak that persists in free-running conditions (Grima 

et al. 2004), is actually consistent with disrupted free-running rhythms in Dh44-R1 mutants, but it 

would require a link between Dh44+ cells and evening oscillators in dorsal lateral neurons (LNds) 

(Guo et al. 2014). This may occur through direct connections, since LNds project to the region of 

the PI (M. Kaneko and Hall 2000). Dh44+ cells may also receive evening signals from DN1s, 

which control the evening peak of activity in addition to the morning peak (Guo et al. 2016; L. 

Zhang et al. 2010; Y. Zhang et al. 2010).  

Several points about this study are worth noting: First, the pathway reported here does 

not necessarily function as a linear feedforward circuit. Hugin+ SEZ neurons not only project to 

the VNC but may also project back to the Dh44+ PI neurons. Indeed, GRASP revealed 

membrane contacts between hugin+ and Dh44+ neurons in both the PI and SEZ. Reciprocal 

connections between Dh44+ and hugin+ neurons may comprise a feedback circuit mechanism for 

propagating rhythmic signals in the output circuit. As discussed below, zebrafish orthologs of 

DH44 and Hugin are also linked in a circuit that regulates arousal, but in that case, Hugin acts 

upstream of DH44 (Chiu et al. 2016). It is possible hugin+ neurons signal to Dh44+ neurons, as 

they do in the Drosophila larval brain (Schlegel et al. 2016). Second, while we describe one 

discrete circuit, this circuit almost certainly integrates with other circuits involved in circadian 

rhythms of locomotor activity. Leucokinin (LK)-expressing neurons also regulate rest:activity 

rhythms, and the LK receptor is expressed in Dh44+ neurons (Cavey et al. 2016; Cannell et al. 

2016). Thus, LK and DH44 may comprise another interconnected circuit for rest:activity rhythms. 

Third, it is clear that circadian output circuits are modulatory rather than strictly essential, since 

loss of one neuropeptide (ie. DH44, Hugin, or LK) does not cause complete arrhythmicity but 

reduces the amplitude of rest:activity rhythms. Even PDF, a neuropeptide expressed in the LNvs, 
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is not completely essential. Consistent with previous reports of rhythms in the absence of PDF 

signaling (Wülbeck, Grieshaber, and Helfrich-Förster 2008; Shafer and Taghert 2009), we found 

that 54.3% of the Pdf-null flies are still rhythmic. However, behavioral rhythms are weaker in Pdf 

mutants than in Dh44-R1 and hugin loss of function mutants.  

Hugin is an ortholog of mammalian neuromedin U (NMU) (Melcher et al. 2006). We find 

that Drosophila Hugin regulates circadian rhythms of locomotor activity, in particular by promoting 

activity at specific times of day, which is consistent with behavioral effects of NMU-related 

peptides in vertebrates. Although not associated with changes in rhythms, nmu overexpression in 

zebrafish larvae promotes hyperactivity and inhibits sleep during both the day and night (Chiu et 

al. 2016). In addition, consistent with our fly data, nmu mutant larval and adult zebrafish are less 

active during the daytime (Chiu et al. 2016). However, Hugin/NMU may even have a conserved 

role in circadian rhythms, because NMU injections into the rat brain can shift the phase of 

locomotor activity rhythms (Nakahara et al. 2004). Moreover, cells expressing a different 

neuromedin, Neuromedin S, are important for rest:activity rhythms controlled by the mammalian 

suprachiasmatic nucleus, although the peptide itself does not appear to be relevant (I. T. Lee et 

al. 2015). 

In addition to the circadian clock, locomotor activity is regulated by various internal states, 

such as hunger and arousal, as well as environmental cues, such as light and temperature. 

These other states and inputs could modify locomotor activity through alternate circuits that 

access motor command centers in parallel to circadian output circuits. Alternatively, they could 

directly modulate circadian locomotor circuits. For example, the DH44 PI-Hugin SEZ circuit is 

located close to the esophagus in the brain and may be receptive to feeding signals. Indeed, 

Dh44+ PI neurons are proposed to function as a post-ingestive nutrient sensor (Dus et al. 2015), 

and the SEZ contains gustatory cells activated by tastants (Harris et al. 2015). We addressed 

whether manipulations of Dh44-R1 or hugin+ SEZ neurons affect the flies’ overt feeding rhythms 

and found that these were largely unaltered, suggesting that effects of the DH44 PI-Hugin SEZ 

circuit on locomotor rhythms are not mediated by an increase in hunger or food-seeking behavior. 
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Thus, while it is possible that the drive to eat contributes to rest:activity rhythms, the cellular basis 

of locomotor rhythms can be distinguished from that of feeding rhythms. Indeed, locomotor 

activity rhythms are also more robust than feeding rhythms (Xu, Zheng, and Sehgal 2008), likely 

because activity restricted to specific times of day serves many functions other than feeding.  
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Figures  

 

Figure 3.1 

DH44 receptors regulate rest:activity rhythms.  
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(A) Sequence alterations to Dh44-R1 and Dh44-R2 loci. Blue denotes the coding DNA sequence, 

and red denotes the replacement of Dh44-R1 with DsRed sequence. (B-D) Amplitude of circadian 

rest:activity rhythm under constant darkness (DD) represented by FFT power (mean±SD) for 

Dh44-R1DsRed mutants (B), Dh44-R2174 mutants (C), Dh44-R2174, Dh44-R1DsRed double mutants 

(D), and their heterozygous controls. (E) Amplitude of rest:activity rhythms in Dh44-R1DsRed 

mutants, clock output mutants (Pdf01 and Pdfrhan5304), and clock mutant (per01). For B-E, groups 

with the same letter are not significantly different from each other (P>0.05 by Tukey’s test 

following one-way ANOVA). (F-H) Amplitude of rest:activity rhythm under DD conditions 

represented by FFT power (mean±SD) for flies with RNAi-mediated knockdown of Dh44-R1 (F), 

Dh44-R2 (G), or both Dh44-R1 and Dh44-R2 (H) in all neurons. *P<0.05, **P<0.01, ***P<0.001 

by Sidak’s test following one-way ANOVA. (I) Brain with Dh44-R1R21A07-GAL4+ neurons labeled 

with nuclear GFP (green) and counterstained with nc82 (anti-bruchpilot, magenta). Scale bar, 50 

µm. (J) FFT power for rest:activity rhythms at 21°C (black) and at 28°C (red). ***P<0.00093 by 

Sidak’s test following two-way repeated measure ANOVA. (K) Representative records of 

individual fly activity in DD for 4 days at 21°C and then for 4 days at 28°C for TrpA1 activation 

(red). See also Figures 3.S1-S2 and Table 3.1. 
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Figure 3.2 

Dh44-R1 in hugin+ neurons regulates rest:activity rhythms.  

(A) Amplitude (FFT values) of circadian rest:activity rhythm in flies with different GAL4s driving 

Dh44-R1 RNAi knockdown (blue) and GAL4 genetic controls (gray and orange). 17 GAL4 lines 

that yielded the weakest rhythms by FFT analysis are shown from the GAL4 screen. Data 

summarized with Tukey’s boxplots. Gray dashed line denotes 1 SD below the average FFT value 

of the RNAi knockdown phenotype from all 168 GAL4 lines screened. (B) Images of SEZ-

localized and -proximal GAL4 hits expressing nuclear GFP (green) in the brain (scale bar 50 µm) 

and SEZ (scale bar 20 µm). Brains counterstained with nc82 (magenta). (C) Amplitude of 
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rest:activity rhythms with Dh44-R1 knocked down in hugin+ neurons in a Dh44-R1DsRed 

heterozygous background and genetic control flies under DD conditions. (D) Amplitude of 

rest:activity rhythms under DD conditions in flies expressing a transgenic tethered DH44 peptide 

in hugin+ neurons (hugin>t-Dh44). For C-D, mean±SD. *P<0.05, **P<0.01, ***P<0.001 by Sidak’s 

test following one-way ANOVA. See also Figure 3.S3. 
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Figure 3.3 

Hugin+ neurons in the SEZ receive inputs from Dh44+ PI neurons.  
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(A) Schematic of a circuit between Dh44+ neurons in the pars intercerebralis (PI) and hugin+ 

neurons in the subesophageal zone (SEZ). (B-C) Hugin-GAL4 (B) or Dh44-GAL4 (C) expressing 

presynaptic (syt1-GFP, green) and postsynaptic markers (Denmark, magenta) in the brain. (D) 

Neurexin-GRASP signal near the esophagus in a brain expressing Dh44-GAL4>UAS-neurexin-

spGFP1-10; hugin-LexA>LexAop-CD4-spGFP11. (E) Dh44+ axon terminals (green) and hugin+ 

dendrites (magenta) near the esophagus in the brain. (F) Hugin+ axon terminals (green) and 

Dh44+ dendrites (magenta) near the esophagus in the brain. (G) Neurexin-GRASP signal in the 

PI of a brain expressing Dh44-GAL4>UAS-neurexin-spGFP1-10; hugin-LexA>LexAop-CD4-

spGFP11. (H) hugin+ axon terminals (green) and Dh44+ dendrites (magenta) in the PI. Insets in 

E,F,H show 3x magnification of a single confocal section from the region indicated by the arrows. 

Scale bars, B-C: 35 µm; D,F-H: 20 µm; E: 10 µm. (I) GCaMP signal over time in hugin+ neurons 

with activation of Dh44+ cells (blue, n = 129 cells, 11 brains) or no activation (black, n = 83 cells, 

8 brains). Black bar denotes duration of ATP application. Data represented as mean+SEM. (J) 

Maximum GCaMP change (ΔF/F) in individual cells. Mean±SD. Shaded gray region indicates 

within 2 SD of the mean value for the UAS-P2X2 group. *P = 0.0119, Mann-Whitney Test, U = 

4259, Z = -2.51. (K) GCaMP signal over time in hugin+ neurons upon activation of Dh44+ cells in 

Dh44-R1DsRed/+ heterozygotes (blue, n = 99 cells, 9 brains) or Dh44-R1DsRed mutants (red, n = 

108 cells, 11 brains). Negative control is UAS-P2X2; hugin-LexA>LexAop-GCaMP6m in Dh44-

R1DsRed/+ heterozygotes (black, n = 82 cells, 7 brains). Black bar denotes duration of ATP 

application. Data represented as mean+SEM. (L) Maximum GCaMP change (ΔF/F) in individual 

cells. Mean±SD. Shaded gray region indicates within 2 SD of the mean for the negative control 

group. **P<0.005, Kruskal-Wallis test followed by Dunn’s test. (M) Onsets of response in Dh44-

R1DsRed mutants and heterozygotes. Mean±SD. *P = 0.0339, two-tailed Welch’s t test.  
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Figure 3.4 

Hugin+ neurons are circadian output neurons that project to the ventral nerve cord.  

(A) Amplitude of rest:activity rhythm in control flies and flies with hugin+ neurons silenced 

(hugin>Kir2.1) or ablated (hugin>reaper) under DD conditions. (B) Amplitude of rest:activity 

rhythms in control flies and flies with RNAi-mediated knockdown of hugin in hugin+ neurons. For 

A-B, Mean±SD. ***P<0.001 by Sidak’s test following one-way ANOVA. (C) Hugin-GAL4 

expressing postsynaptic Denmark (magenta) and presynaptic syt1-GFP (green) markers in the 

central brain and VNC. The VNC is formed of first (T1), second (T2) and third (T3) thoracic and 

abdominal ganglia (A). (D) Hugin-LexA expressing presynaptic Rab3-GFP (green) and vglut-

GAL4 expressing Denmark (magenta) markers in the VNC. (E) GRASP signal in the VNC of flies 

expressing vglut-GAL4>UAS-CD4-spGFP1-10; hugin-LexA>LexAop-CD4-spGFP11. For C-E, 

scale bars: 50 µm. 
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Figure 3.5 

Neuropeptide levels in projections of Hugin+ neurons are regulated by the circadian clock. 

(A) ANF-GFP signal in VNCs from wild type or per01 flies expressing hugin>ANF-GFP. Scale bar, 

50 µm. Close ups of the boxed regions (top) are shown in the middle and bottom rows to highlight 

the ANF-GFP and corresponding myr-RFP signals respectively. (B) Tukey’s boxplots of ANF-

GFP fluorescence levels in the entire VNC at ZT 0, 6, 12, and 18. (ZT is the Zeitgeber time, 

where ZT 0 corresponds to lights-on time and ZT 12 to lights-off time. n = 10-15 flies/timepoint 

and genotype *P<0.0359 by two-way ANOVA and Tukey’s test for comparison within genotype. 

See also Figure 3.S4. 
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Figure 3.6 

The DH44-Hugin circuit alters locomotor activity without affecting feeding.  

(A)-(B) Locomotor activity profile of Dh44-R1DsRed/Df mutants averaged over 3 days in LD (A) or 

DD (B). (C)-(D) Locomotor activity profiles of hugin>Kir2.1 flies averaged over 3 days in LD (C) or 
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DD (D). For A-D, traces (left) show activity counts/30 min (mean+SEM). Tukey’s boxplots (right) 

summarize the distribution of activity counts per day during a total 24-hr day, day (ZT or CT 0-12), 

night (ZT or CT 12-24), evening (ZT or CT 9-13), and morning (ZT or CT 21-1). n = 15-

16/genotype. (E)-(F) Normalized feeding activity in Dh44-R1DsRed/+ and Dh44-R1DsRed flies (E) and 

hugin>Kir2.1 and genetic control flies (F) in DD conditions. Period and power data summarized as 

mean+SEM. For A-F, *P<0.05, **P<0.01, ***P<0.001 by one-way ANOVA and Tukey’s test. (G) 

Model of a circadian output circuit for locomotor activity rhythms in Drosophila. The circuit 

extends from the master pacemaker sLNvs (red), through DN1 clock neurons (blue), and to 

Dh44+ PI neurons (orange). This circadian output circuit continues through hugin+ SEZ neurons 

(green) to the VNC. See also Figure 3.S5. 
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B 
Dh44-R2 WT     MADDDLRALV DSLDDASQED LAKVIANFSV DMLQRASALI GAQQGSSGGQ LQNRTLQCQQ 

Dh44-R2 174    MADDDLRALV DSLDDASQED LAKVIANFSV DMLQRASALI GAQQGSSGGQ LQNRTLQCQQ 

 

Dh44-R2 WT     QQQREEEQAS LEALASGGKR ILQCPSSFDS VLCWPRTNAG SLAVLPCFEE FKGVHYDTTD 

Dh44-R2 174    QQQREEEQAS LEALASGGKR ILQCPSSFDS VLCWPRTNAG SLAVLPCFEE FKGVHYDTTD 

 

Dh44-R2 WT     NATRFCFPNG TWDHYSDYDR CHQNSGSIPV VPDFSPNVEL PAIIYAGGYF LSFATLVVAL 

Dh44-R2 174    NATRFCFPNG TWDHYSDYDR CHQNSGSIPV VPDFSPNVEL PAIIYAGGYF LSFATLVVAL 

 

Dh44-R2 WT     IIFLSFKDLR CLRNTIHANL FLTYITSALL WILTLFLQVI TTESSQAGCI TLVIMFQYFY 

Dh44-R2 174    IIFLSFKDLR CLRNTIHANL FLTYITSALL WILTLFLQVI TTESGWLHNV GNHVSVLLPN 

 

Dh44-R2 WT     LTNFFWMFVE GLYLYTLVVQ TFSSDNISFI IYALIGWGCP AVCILVWSIA KAFAPHLENE 

Dh44-R2 174    QLFLDVCGGP LSVHAGGANI LQ*H* 

 

Dh44-R2 WT     HFNGLEIDCA WMRESHIDWI FKVPASLALL VNLVFLIRIM WVLITKLRSA HTLETRQYYK 

 

Dh44-R2 WT     ASKALLVLIP LFGITYLLVL TGPEQGISRN LFEAIRAFLI STQGFFVALF YCFLNSEVRQ 

 

Dh44-R2 WT     TLRHGFTRWR ESRNIHRNSS IKNRSTEECV ICLRPSPHTR LGSLQRYHSI DITDFV* 
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Figure 3.S1 (related to Figure 3.1) 

Characterization of Dh44-R1 and Dh44-R2 mutants.  

(A) mRNA levels for Dh44-R1, Dh44-R2, and Dh44 in whole fly tissue from Dh44-R1DsRed and 

Dh44-R2174 mutants. mRNA levels were normalized to actin and compared relative to their 

heterozygous controls. *P < 0.05 by two-tailed Welch’s t-test. qPCR data expressed as 

mean±SEM from n = 3. (B) Predicted protein sequences for Dh44-R2 wild type and Dh44-R2174 

mutant alleles. Dh44-R2174 is a frameshift mutation that changes the protein sequence (indicated 

with bold text) and results in premature stop codons (indicated with *). Hormone binding domain 

(blue) and 7-transmembrane domain (orange) are annotated from NCBI's Conserved Domain 

Database (Marchler-Bauer et al. 2015). (C-E) Representative locomotor activity records from 

individual flies in constant darkness (DD). Records are double-plotted with gray and black bars 

indicating subjective day and night, respectively. (C) Locomotor activity of Dh44-R1DsRed/+ and 

Dh44-R1DsRed mutant flies in DD. Representative activity records show examples of Dh44-R1DsRed 

homozygous mutants with strong, moderate, weak rhythms or arrhythmic behavior. (D) 

Locomotor activity of Dh44-R2174/+ and Dh44-R2174 mutant flies in DD.  (E) Locomotor activity of 

Dh44-R2174,Dh44-R1DsRed/+ and Dh44-R2174,Dh44-R1DsRed double mutant flies in DD. (F) Dh44-

R1 or Dh44-R2 mRNA levels in fly head tissue at time points across the day. One-way ANOVA 

detects no difference between time points (Dh44-R1: F5, 11 = 1.27, P = 0.343; and Dh44-R2: F5, 11 

= 0.09308, P = 0.992). JTK_Cycle (Hughes, Hogenesch, and Kornacker 2010) does not detect 

cycling (Dh44-R1: P = 0.272; and Dh44-R2: P =1). mRNA levels were normalized to actin levels. 

qPCR data expressed as mean±SEM from n = 2–3 biological replicates.  
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Figure 3.S2 (related to Figure 3.1) 

Analysis of RNAi-mediated knockdown of Dh44-R1. 

(A-B) Dh44-R1 (A) and Dh44-R2 (B) mRNA levels in whole fly tissue after knockdown of Dh44-

R1 or Dh44-R2 using tubulin-GAL4 (Tub) or elav-GAL4. mRNA levels were normalized to actin 

and compared relative to GAL4>Dicer2 control. Dh44-R1 RNAi kk knockdown with Tub-GAL4 was 

lethal. *P<0.05 by two-tailed Welch’s t-test. qPCR data expressed as mean + SEM from n = 3. 

(C) Representative activity records show knockdown flies (Dh44-R1R21A07>Dh44-R1 RNAikk) can 

have strong, moderate, or weak rhythms. Control flies (Dh44-R1R21A07>Dcr2 or +>UAS-Dh44-R1 

RNAikk) have strong rest:activity rhythms. (D) DD amplitude of rest:activity rhythms represented 

by FFT analysis in the circadian range. RNAi-mediated knockdown of Dh44-R1 in Dh44-R1-

expressing cells lowered the amplitude of rest:activity rhythms in flies (*P < 0.05, **P < 0.01, ***P 

< 0.001 by One-way ANOVA with Sidak’s multiple comparison test).
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Figure 3.S3 (related to Figure 3.2) 

A GAL4 screen with RNAi identifies cells requiring DH44-R1 for strong rest:activity 

rhythms. The mean FFT values for activity rhythms from flies carrying different GAL4 drivers 

along with UAS-Dicer2; UAS-Dh44-R1RNAi kk to knock down DH44-R1 (knockdown, dark gray) or 

the GAL4 alone (negative control, light gray). The average FFT values from all 168 GAL4 tested 

(orange), no GAL4 control (UAS-Dicer2,UAS-Dh44-R1RNAi kk; green), and pan-neuronal GAL4s 

(blue) are shown. Dashed lines denote 1 standard deviation below and above the average FFT 

from all 168 GAL4 tested. n = 8-16 flies/GAL4, except n = 190 flies for no GAL4 control.  
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Figure 3.S4 (related to Figure 3.4-3.5) 

mRNA levels of hugin do not cycle across the day. 

(A) hugin mRNA levels in whole fly tissue after knockdown of hugin using elav-GAL4 coupled with 

Dicer2 to drive RNAi expression. mRNA levels were normalized to actin and compared relative to 

elav-GAL4>Dicer2 control. *P<0.01, two-tailed Welch’s t-test. (B) Expression profiling of hugin 

mRNA levels across the day in fly head tissue. One-way ANOVA detects no difference between 

time points (F5, 10 = 0.6927, P = 0.641). JTK_Cycle does not detect significant cycling (P = 1). 

mRNA levels normalized to actin. All qPCR data expressed as mean±SEM from n = 2-3 biological 

replicates. 
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Figure 3.S5 (related to Figure 3.6) 

Analysis of locomotor activity and feeding rhythms.  

(A-B) Locomotor activity profile of Dh44-R2174 mutants averaged over 3 d in LD (A) or 3 d in DD 

(B). n=15 flies/genotype. Mean + SEM. (C) Representative plots of feeding activity for +>Kir2.1, 

hugin>+, and hugin>Kir2.1 flies (top) and Dh44-R1DsRed/+ and Dh44-R1DsRed flies (bottom) in DD. 

Behavior is double plotted with 6 days of data. Gray and black bars represent subjective day and 

night, respectively. 
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Tables 

Table 3.1  

Analysis of locomotor activity rhythms in flies under DD conditions.  

Table shows number of flies analyzed (n), percentages of rhythmic flies (% R), and length of 

circadian period in hours as mean±SEM. Bold text indicates experimental genotype.  

Genotype n % R Period (h) + SEM 

Dh44-R1DsRed/+ 44 97.7 23.63 + 0.04 

Dh44-R1DsRed 47 80.9 23.51 + 0.12 

Dh44-R2174/+ 47 100 23.75 + 0.03 

Dh44-R2174 48 95.8 23.91 + 0.03 

Dh44-R2174, Dh44-R1DsRed/+ 48 100 23.61 + 0.03 

Dh44-R2174, Dh44-R1DsRed 46 93.5 23.39 + 0.28 

Df(2R)BSC700/+ 48 100 23.63 + 0.03 

Dh44-R1DsRed/Df(2R)BSC700 47 100 23.53 + 0.05 

Df(2R)BSC305/+ 44 100 23.78 + 0.02 

Dh44-R2174/Df(2R)BSC305 45 97.8 23.56 + 0.09 

pdf01 46 54.3 22.96 + 1.05 

pdfrhan5304/Y 47 68.1 22.96 + 0.62 

per01/Y 46 0 N/A 

wild type (w1118/Y) 46 100 23.73 + 0.04 

    

elav>UAS-Dicer2 47 97.9 23.41 + 0.26 

+>UAS-Dh44-R1RNAi kk 39 100 23.67 + 0.07 

elav>UAS-Dicer2, UAS-Dh44-R1RNAi kk 30 80 23.46 + 0.12 

+>UAS-Dh44-R1RNAi TRiP/+ 45 97.8 23.45 + 0.08 

elav>UAS-Dicer2, UAS-Dh44-R1RNAi TRiP 45 88.9 23.44 + 0.13 

+>UAS-Dh44-R2RNAi TRiP 46 95.7 23.51 + 0.07 

elav>UAS-Dicer2, UAS-Dh44-R2RNAi TRiP 47 74.5 23.42 + 0.13 

+>UAS-Dh44-R2RNAi NIG 48 100 23.91 + 0.04 

elav>UAS-Dicer2, UAS-Dh44-R2RNAi NIG 47 93.6 23.93 + 0.14 

+>UAS-Dh44-R1RNAi kk, UAS-Dh44-R2RNAi NIG 40 97.5 23.82 + 0.05 

elav>Dicer2, Dh44-R1RNAi kk, Dh44-R2RNAi NIG 39 84.6 23.63 + 0.09 

    

Dh44-R1R21A07>UAS-Dicer2 31 100 23.87 + 0.06 

+>UAS-Dh44-R1RNAi kk 32 100 23.40 + 0.04 

Dh44-R1R21A07>UAS-Dicer2,UAS-Dh44-R1RNAi kk 31 96.8 23.25 + 0.07 

    

Dh44-R1R21A07>UAS-Dicer2 31 100 23.87 + 0.04 

+>UAS-Dh44-R1RNAi TRiP 31 100 23.37 + 0.06 

Dh44-R1R21A07>UAS-Dicer2, UAS-Dh44-R1RNAi TRiP 31 96.9 23.81 + 0.06 

    

+>UAS-TrpA1/+ (21°C) 31 100 23.64 + 0.09 

+>UAS-TrpA1/+ (28°C) 31 100 23.68 + 0.15 

Dh44-R1R21A07-GAL4>+ (21°C) 32 96.9 23.91 + 0.33 

Dh44-R1R21A07-GAL4>+ (28°C) 32 100 23.70 + 0.23 

Dh44-R1R21A07>UAS-TrpA1 (21°C) 31 93.5 23.70 + 0.18 

Dh44-R1R21A07>UAS-TrpA1 (28°C) 31 31 23.39 + 0.08 

    

Dh44-R1DsRed/+; hugin>UAS-Dicer2 30 100 23.53 + 0.04 

Dh44-R1DsRed/+; +>UAS-Dh44-R1RNAi kk 32 100 23.24 + 0.33 

Dh44-R1DsRed/+; hug>UAS-Dicer2,UAS-Dh44-R1RNAi kk 29 96.6 23.80 + 0.45 

Dh44-R1DsRed/+; +>UAS-Dh44-R1RNAi TRiP/+ 24 95.8 23.78 + 0.05 

Dh44-R1DsRed/+; hug>UAS-Dicer2,UAS-Dh44-R1RNAi TRiP 19 78.9 23.67 + 0.19 

    

+>UAS-t-Dh44 62 100 23.56 + 0.05 

hugin-GAL4>+ 61 100 23.58 + 0.03 

hugin>UAS-t-Dh44 60 96.8 23.50 + 0.07 
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hugin-GAL4>+ 32 100 23.64 + 0.04 

+>UAS-Kir2.1 32 100 23.47 + 0.05 

hugin>UAS-Kir2.1 31 96.8 23.39 + 0.07 

+>UAS-reaper 32 100 23.83 + 0.03 

hugin>UAS-reaper 31 90.3 23.81 + 0.06 

    

hugin>UAS-Dicer2 47 100 24.02 + 0.04 

+>UAS-huginRNAI TRiP 47 100 23.45 + 0.04 

hugin>UAS-Dicer2, UAS-huginRNAI TRiP 48 91.7 23.53 + 0.05 

+>UAS-huginRNAI GD 48 100 23.89 + 0.03 

hugin>UAS-Dicer2, UAS-huginRNAI GD 47 100 23.89 + 0.02 
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Table 3.2  

Fly genotypes used in the study. 

Figure Genotype 

Figure 3.1B w/Y; Dh44-R1DsRed/+  
w/Y; Dh44-R1DsRed/Dh44-R1DsRed 
w/Y; Df(2R)BSC700/+ 
w/Y ;Dh44-R1DsRed/Df(2R)BSC700 

Figure 3.1C w/Y; Dh44-R2174/+  
w/Y; Dh44-R2174/Dh44-R2174 
w/Y; Df(2R)BSC305/+ 
w/Y; Dh44-R2174/Df(2R)BSC305 

Figure 3.1D w/Y; Dh44-R2174,Dh44-R1DsRed/+ 
w/Y; Dh44-R2174,Dh44-R1DsRed/ Dh44-R2174,Dh44-R1DsRed 

Figure 3.1E w/Y; Dh44-R1DsRed 
w,per01/Y 
w;;pdf0 

w,pdfrhan5304/Y 
w/Y iso31 

Figure 3.1F w,elav-GAL4/Y; UAS-Dicer2/+; +/+ 
w/Y; UAS-Dh44-R1 RNAi kk/+; +/+ 
w,elav-GAL4/Y; UAS-Dicer2/UAS-Dh44-R1 RNAi kk; +/+ 
w/Y; +/+; UAS-Dh44-R1 RNAi TRiP/+ 
w,elav-GAL4/Y; UAS-Dicer2/+; UAS-Dh44-R1 RNAi TRiP/+ 

Figure 3.1G w,elav-GAL4/Y; UAS-Dicer2/+; +/+ 
w/Y; +/+; UAS-Dh44-R2 RNAi NIG/+ 
w,elav-GAL4/Y; UAS-Dicer2/+; UAS-Dh44-R2 RNAi NIG/+ 
w/Y; +/+; UAS-Dh44-R2 RNAi TRiP/+ 
w,elav-GAL4/Y; UAS-Dicer2/+; UAS-Dh44-R2 RNAi TRiP/+ 

Figure 3.1H 
 

elav-GAL4/Y; UAS-Dicer2/+; +/+ 
w/Y; UAS-Dh44-R1 RNAi kk/+; UAS-Dh44-R2 RNAi NIG/+ 
elav-GAL4/Y; UAS-Dicer2/UAS-Dh44-R1 RNAi kk; UAS-Dh44-R2 RNAi NIG/+ 

Figure 3.1I w/Y; UAS-GFP.nls/+; Dh44-R1R21A07-GAL4/+ 

Figure 3.1J-K. 
 

w/Y; +/+; Dh44-R1R21A07-GAL4/+ 
w/Y; UAS-dTrpA1/+; +/+ 
w/Y; UAS-dTrpA1/+; Dh44-R1R21A07-GAL4/+ 

Figure 3.2A w/Y; UAS-Dh44-R1 RNAi kk/+; UAS-Dicer2/+ 
w/Y; +/+; GAL4/+ or w/Y; GAL4/+; +/+ 
w/Y; UAS-Dh44-R1 RNAi kk/+; UAS-Dicer2/GAL4 or w/Y; UAS-Dh44-R1 RNAi kk/GAL4; UAS-
Dicer2/+ 

Figure 3.2B w/Y; UAS-GFP.nls/+; GAL4/+ 

Figure 3.2C w/Y; Dh44-R1DsRed/+; hug-GAL4/UAS-Dicer2 
w/Y; Dh44-R1DsRed/+,UAS-Dh44-R1 RNAi kk; UAS-Dicer2/+ 
w/Y; Dh44-R1DsRed/+,UAS-Dh44-R1 RNAi kk; hug-GAL4/UAS-Dicer2 
w/Y; Dh44-R1DsRed/+,UAS-Dicer2; UAS-Dh44-R1 RNAi TRiP/+ 
w/Y; Dh44-R1DsRed/+,UAS-Dicer2; hug-GAL4/UAS-Dh44-R1 RNAi TRiP 

Figure 3.2D w/Y; UAS-t-Dh44/+ 
w/Y; +/+; hug-GAL4/+ 
w/Y; UAS-t-Dh44/+; hug-GAL4/+ 

Figure 3.3B w/Y; UAS-Denmark,UAS-syt-GFP/+; hug-GAL4/+ 

Figure 3.3C w/Y; UAS-Denmark,UAS-syt-GFP/+; Dh44-GAL4/+ 

Figure 3.3D,G w/Y; hug-LexA/LexAop-CD4-spGFP11; Dh44-GAL4/UAS-Nrx-spGFP1-10  

Figure 3.3E. w/Y; Dh44-LexA/UAS-Denmark; hug-GAL4/LexAop-Rab3-GFP 

Figure 3.3F,H w/Y; hug-LexA/UAS-Denmark; Dh44-GAL4/LexAop-Rab3-GFP 

Figure 3.3I-J w/Y; hug-LexA/UAS-P2X2; Dh44-GAL4/LexAop-GCaMP6m-p10 
w/Y; hug-LexA/UAS-P2X2; Dh44-GAL4/LexAop-GCaMP6m-p10 
w/Y; hug-LexA/UAS-P2X2; +/LexAop-GCaMP6m-p10 

Figure 3.3K-M w/Y; Dh44-R1DsRed,UAS-P2X2/Dh44-R1DsRed,hug-LexA; Dh44-GAL4/LexAop-GCaMP6m-p10 
w/Y; Dh44-R1DsRed,UAS-P2X2/+,hug-LexA; Dh44-GAL4/LexAop-GCaMP6m-p10 
w/Y; Dh44-R1DsRed,UAS-P2X2/+,hug-LexA; +/LexAop-GCaMP6m-p10 

Figure 3.4A w/Y; +/+; hug-GAL4/+ 
w/Y; +/+; UAS-Kir2.1/+ 
w/Y; +/+; hug-GAL4/UAS-Kir2.1 
yw,UAS-reaper/Y; +/+; +/+ 
yw,UAS-reaper/Y; +/+; hug-GAL4/+ 
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Figure 3.4B w/Y; UAS-Dicer2/+; hug-GAL4/+ 
w/Y; +/+; UAS-hugin RNAi TRiP/+ 
w/Y; UAS-Dicer2/+; hug-GAL4/UAS-hugin RNAi TRiP 
w/Y; +/+; UAS-hugin RNAi GD/+ 
w/Y; UAS-Dicer2/+; hug-GAL4/UAS-hugin RNAi GD 

Figure 3.4C w/Y; UAS-Denmark,UAS-syt-GFP/+; hug-GAL4/+ 

Figure 3.4D w/Y; hug-LexA,vglut-GAL4/UAS-Denmark; LexAop-Rab3-GFP/+ 

Figure 3.4E w/Y; hug-LexA,vglut-GAL4/LexAop-CD4-spGFP11; UAS-CD4-spGFP1-10/+ 

Figure 3.5 w/Y; UAS-ANF-GFP,UAS-myr-RFP/+; hug-GAL4/+ 
w, per01/Y; UAS-ANF-GFP,UAS-myr-RFP/+; hug-GAL4/+ 

Figure 3.6A,B.  

 
w/Y; Df(2R)BSC700/+ 
w/Y;Dh44-R1DsRed/+  
w/Y;Dh44-R1DsRed/Df(2R)BSC700 

Figure 3.6C, D, 
F. 

w/Y; +/+; hug-GAL4/+ 
w/Y; +/+; UAS-Kir2.1/+ 
w/Y; +/+; hug-GAL4/UAS-Kir2.1 

Figure 3.6E w/Y;Dh44-R1DsRed/+ 
w/Y;Dh44-R1DsRed/Dh44-R1DsRed 

Figure 3.S1A w/Y; Dh44-R2174/+ 
w/Y; Dh44-R2174/Dh44-R2174 

w/Y; Dh44-R1DsRed/+ 
w/Y; Dh44-R1DsRed/Dh44-R1DsRed 

Figure 3.S1C w/Y; Dh44-R1DsRed/+ 
w/Y; Dh44-R1DsRed/Dh44-R1DsRed 

Figure 3.S1D w/Y; Dh44-R2174/+ 
w/Y; Dh44-R2174/Dh44-R2174 

Figure 3.S1E w/Y; Dh44-R2174,Dh44-R1DsRed/+ 
w/Y; Dh44-R2174,Dh44-R1DsRed/Dh44-R2174,Dh44-R1DsRed 

Figure 3.S1F w/Y iso31 

Figure 3.S2A, B w/Y; UAS-Dicer2/+; tubulin-GAL4/+ 
w/Y; UAS-Dicer2/+; tubulin-GAL4/UAS-Dh44-R2 RNAi NIG 
w/Y; UAS-Dicer2/+; tubulin-GAL4/ UAS-Dh44-R2 RNAi TRiP 
w/Y; UAS-Dicer2/+; tubulin-GAL4/ UAS-Dh44-R1 RNAi TRiP 
w,elav-GAL4/Y; UAS-Dicer2/+; +/+ 
w,elav-GAL4/Y; UAS-Dicer2/UAS-Dh44-R1 RNAi kk; +/+ 

Figure 3.S2C, D w/Y; +/+; Dh44-R1R21A07-GAL4/UAS-Dicer2 
w/Y; UAS-Dh44-R1 RNAi kk/+; UAS-Dicer2/+ 
w/Y; UAS-Dh44-R1 RNAi kk/+; Dh44-R1R21A07-GAL4/UAS-Dicer2 
w/Y; UAS-Dicer2/+; UAS-Dh44-R1 RNAi TRiP/+ 
w/Y; UAS-Dicer2/+; Dh44-R1R21A07-GAL4/UAS-Dh44-R1 RNAi TRiP 

Figure 3.S3 w/Y; UAS-Dh44-R1 RNAi kk/+; UAS-Dicer2/+ 
w/Y; +/+; GAL4/+ or w/Y; GAL4/+; +/+ 
w/Y; UAS-Dh44-R1 RNAi kk/+; UAS-Dicer2/GAL4 or w/Y; UAS-Dh44-R1 RNAi kk/GAL4; UAS-
Dicer2/+ 

Figure 3.S4A w,elav-GAL4/Y; UAS-Dicer2/+; +/+ 
w,elav-GAL4/Y; UAS-Dicer2/+; UAS-hugin RNAi TRiP/+ 
w,elav-GAL4/Y; UAS-Dicer2/+; UAS-hugin RNAi GD/+ 

Figure 3.S4B w/Y iso31 

Figure 3.S5A, B 
 

w/Y iso31 
w/Y; Dh44-R2174/+; +/+ 
w/Y; Dh44-R2174/Dh44-R2174; +/+ 

Figure 3.S5C, D w/Y; +/+; hug-GAL4/+ 
w/Y; +/+; UAS-Kir2.1/+ 
w/Y; +/+; hug-GAL4/UAS-Kir2.1 
w/Y; Dh44-R1DsRed/+ and w/Y; Dh44-R1DsRed/Dh44-R1DsRed 
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Table 3.3  

Sequences used in generating Dh44-R1 and Dh44-R2 CRISPR mutants. 

Primer Sequence 5’ → 3’ 

gRNA sequences and primers used to generate and screen Dh44-R1 and Dh44-R2 CRISPR mutations. 

gRNA to exon 6 of Dh44-R2  GATAACCACAGAGTCTAGTC AGG 

gRNA to 5’ end of Dh44-R1  GTTGTCAATTCGTAGGGAAA TGG 

gRNA to 3’ end of Dh44-R1  GGGCATTGTTGGAGCCCCGG TGG 

Cloning primers for HDR template Dh44-R1DsRed 

5’HA-Dh44-R1 Forward  CATTGCATGCGTGGAGCACCCAAGCCTTG 

5’HA-Dh44-R1 Reverse  TACTGCGGCCGCCCTACGAATTGACAACGTTC 

3’HA-Dh44-R1 Forward TATAACTAGTGGGCTCCAACAATGCCCTG   

3’HA-Dh44-R1 Reverse AGTGGCGCGCCAAAGAGCCTTTATTACGAAGGAC  

Primers for PCR verification of Dh44-R2 CRISPR mutation 

Dh44-R2 Po Forward  TCAACGAAGTTTACCTTGCCAATC 

Dh44-R2 Pi Forward GATAACCACAGAGTCTAGTCAGG 

Dh44-R2 P Reverse ATGAGGGCGTAGATAATAAAGC 

Primers for PCR verification of Dh44-R1 CRISPR mutation 

5’HA Dh44-R1 far Forward ACGAAGCCGAGCATACAGTG  

5’HA HDR Reverse CGGTCGAGGGTTCGAAATCGATAAG 

3’HA HDR Forward GTGGTTTGTCCAAACTCATC 

3’HA Dh44-R1 far Reverse GAGCGTCGGACCCAATTAGC 
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Abstract 

Sleep is controlled by homeostatic mechanisms, which regulate sleep duration and depth, and a 

circadian clock, which regulates the timing of sleep. Homeostatic sleep drive can sometimes 

override the circadian clock, such that recovery sleep after sleep deprivation can occur outside 

the normal circadian rest period. However, the mechanisms underlying this effect are not known. 

We report here that sleep-promoting dorsal fan-shaped body (dFB) neurons, an effector of a 

sleep homeostat circuit in Drosophila, are presynaptic to hugin+ neurons, which were previously 

identified as circadian output neurons that regulate locomotor activity rhythms. Sleep deprivation 

decreases activity of hugin+ neurons, which may serve to suppress circadian control and thereby 

promote recovery sleep driven by the dFB neurons. Indeed, removal of hugin+ neurons increases 

sleep-promoting effects of the dFB neurons. Trans-synaptic mapping reveals that hugin+ neurons 

feedback on to s-LNv central clock neurons, which also show decreased activity upon sleep loss. 

These findings identify a circuit-based mechanism through which sleep drive modulates the 

circadian clock to promote recovery sleep following deprivation.   

 

Introduction 

Sleep is a shared behavioral state observed in many animals (Joiner 2016; Bringmann 

2018). Sleep behavior is characterized by a period of inactivity, reduced responsiveness to the 

environment, reversibility, homeostatic rebound after sleep deprivation, and a correlated change 

in neural activity (Dubowy and Sehgal 2017). Although the function of sleep is not clear, it 

appears to be important for many processes, such as memory and learning, synaptic scaling, and 

neurodevelopment. The functions and regulation of sleep are extensively studied in model 

organisms, such as Drosophila melanogaster (Dubowy and Sehgal 2017). 

Sleep is regulated by two processes, circadian and homeostatic (Borbély et al. 2016). 

The circadian process consists of an endogenous molecular clock that, together with its 

downstream pathways, is synchronized to external day/night cycles and determines the timing of 

sleep to generate 24-hour rhythms in sleep and wake. The homeostatic process tracks sleep 
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history and generates sleep drive based on history. Sleep homeostasis can be overtly seen as an 

increase in sleep duration and depth after prolonged wakefulness. Generally, circadian and 

homeostatic processes are studied as separate pathways that regulate sleep, although they 

clearly intersect to provide optimal control of behavior. In addition, sleep homeostasis 

mechanisms can sometimes overrule clock mechanisms, such that sleep after deprivation can 

occur during normal activity periods. In rodents, there is evidence for homeostatic mechanisms 

affecting the circadian system. Sleep deprivation dampens electrical activity in the 

suprachiasmatic nucleus (SCN), the central pacemaker required for circadian rhythms of behavior 

(Deboer, Détári, and Meijer 2007), and reduces the ability of the circadian clock to phase shift by 

light (Mistlberger, Landry, and Marchant 1997; Etienne Challet et al. 2001).  

In the Drosophila brain, the circadian clock is expressed in ~150 clock neurons that are 

organized into neuroanatomical groups: small and large ventrolateral neurons (s-LNvs and l-

LNvs), dorsolateral neurons (LNds), lateral posterior neurons (LPNs), and dorsal neuron groups 

(DN1, DN2, and DN3) (Charlotte Helfrich-Förster, Shafer, et al. 2007). Synchronization of 

molecular clocks across the clock network ensures robust rest:activity rhythms, although distinct 

roles are served by different groups of clock neurons. Molecular clocks in LNvs have the primary 

role in controlling locomotor activity rhythms (C Helfrich-Förster 1998; Renn et al. 1999; Grima et 

al. 2004), and they do so partially through a circadian output circuit from s-LNvs → DN1s → 

Dh44+ neurons → hugin+ neurons. Dh44-expressing neurons in the pars intercerebralis regulate 

rest:activity rhythms, at least in part through signaling of DH44 neuropeptide to hugin-expressing 

neurons in the subesophageal zone (SEZ) (Cavanaugh et al. 2014; King et al. 2017). Dh44+ and 

hugin+ circadian output neurons do not contain clocks but display cycling in neuronal activity, 

likely under control of upstream circadian signals. Thus, intracellular Ca2+ levels in Dh44+ 

neurons vary across the day (Cavey et al. 2016; Bai et al. 2018), and hugin+ neurons display 

cyclic neuropeptide release that is controlled by the clock (King et al. 2017). Consistent with an 

origin of circadian signal, neuronal activity of clock neurons is also rhythmic, in conjunction with 

sleep and wake states (Sheeba, Gu, et al. 2008; Flourakis et al. 2015; Guo et al. 2016). In 
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addition to their critical role in the timing of sleep, some clock neurons have been implicated in 

arousal or in the control of sleep amount (Shang, Griffith, and Rosbash 2008; Parisky et al. 2008; 

Kunst et al. 2014). However, their link to the sleep circuitry is generally not understood.  

Regulation of sleep homeostasis is complex and known to involve the central complex 

and mushroom body (Joiner et al. 2006; Pitman et al. 2006; Sitaraman et al. 2015; Donlea 2017). 

Recent studies have focused on a group of sleep-promoting neurons that project to the dorsal 

fan-shaped body in the central complex (dFB neurons). Activation of dFB neurons promotes 

sleep (Donlea et al. 2011; Ueno et al. 2012), and these neurons are required for sleep rebound 

after deprivation (Qian et al. 2017). dFB neurons receive input signals from R2 ellipsoid body 

neurons, which track sleep need (S. Liu et al. 2016). As sleep pressure builds, dFB neurons 

become more electrically active (Donlea, Pimentel, and Miesenbock 2014), and induce sleep by 

inhibiting Helicon cells with the neuropeptide Allatostatin A (AstA) (Donlea et al. 2018). A subset 

of dFB neurons expressing the 5HT2b serotonin receptor is sufficient to promote sleep (Qian et 

al. 2017).  

Because little is known about the circuits linking clock neurons and sleep-regulatory 

neurons (J. Chen et al. 2016), we set out to explore the connection between sleep homeostatic 

and circadian circuits in Drosophila. We find that sleep-promoting dFB neurons are presynaptic to 

hugin+ circadian output neurons. hugin+ neurons are dispensable for determining daily sleep 

amount, but they appear to modulate sleep-promoting effects of dFB neurons, such that ablation 

of hugin+ neurons enhances sleep driven by the dFB, and activation of hugin+ neurons reduces 

recovery sleep after heat-induced nighttime sleep loss. We find that hugin+ neurons target PDF+ 

s-LNv clock neurons, and both circadian neuronal groups show decreases in intracellular Ca2+ 

levels following sleep deprivation. We propose a circuit mechanism by which a sleep homeostatic 

circuit counteracts the circadian clock through downregulating wake-promoting outputs of the 

circadian clock. 
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Methods 

Drosophila melanogaster 

Flies were maintained on cornmeal-molasses medium. For thermogenetic and trans-Tango 

experiments, flies were raised at 18°C, and all other flies were maintained at 25°C. w1118 iso31 

strain was used as the wild type strain. For sleep behavior experiments, transgenic lines were 

backcrossed into the iso31 genetic background. For controls, UAS and GAL4 fly lines were tested 

as heterozygotes after crossing to iso31. See Table 4.1 for a list of complete genotypes used in 

each experiment. The following flies were from the Bloomington Drosophila Stock Center: 23E10-

GAL4 (#49032) (Jenett et al. 2012), 23E10-LexA (#52693) (Pfeiffer et al. 2010), Hugin-GAL4 

(#58769) (Melcher and Pankratz 2005), Hugin-LexA (#52715), Dh44-GAL4 (#39347), UAS-

CD8::RFP (#32219), LexAop-Rab3::GFP (#52239) (Shearin et al. 2013), LexAop-6xmCherry-HA 

(#52271), UAS-nSyb::GFP1-10, LexAop-CD4::GFP11 (#64314), UAS-reaper (#5773) (White, 

Tahaoglu, and Steller 1996). Trans-Tango fly was a gift from G. Barnea. CaLexA fly was a gift 

from J.W. Wang. UAS-TrpA1 was a gift from L.C. Griffith. UAS-shibirets (20XUAS-IVS-

Shibire[ts1]-p10-INS) and LexAop-TrpA1 (chromosome 2) were gifts from G. Rubin (Pfeiffer, 

Truman, and Rubin 2012). LexAop-TrpA1 (chromosome 3) was a gift from S. Waddell (Burke et 

al. 2012).  

Immunohistochemistry 

For polarity labeling and CaLexA experiments, ~7 d old females raised at 25°C were used. For 

trans-Tango experiments, ~15-20 d old females raised at 18°C were used, as previously 

described (Talay et al. 2017). All fly brains were dissected in phosphate-buffered saline with 0.1% 

Triton-X (PBST) and fixed with 4% formaldehyde in PBS for 20 min at room temperature. Brains 

were rinsed 3 x 10 min with PBST, blocked in 5% Normal Goat Serum in PBST (NGST) for 60 

min, and incubated in primary antibody diluted in NGST for >16 h at 4°C. Brains were rinsed 3 x 

10 min in PBST, incubated 2 h in secondary antibody diluted in NGST, rinsed 3 x 10 min in 

PBST, and mounted with Vectashield media (Vector Laboratories Inc.). Primary antibodies used 

were: rabbit anti-GFP at 2µg/mL (Thermo Fisher Scientific Inc. A-11122), rat anti-RFP at 1µg/mL 
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(ChromoTek 5F8), mouse anti-BRP at 1:1000 (Developmental Studies Hybridoma Bank nc82), 

rat anti-HA at 1µg/mL (Roche clone 3F10), and mouse anti-PDF at 0.3µg/mL (Developmental 

Studies Hybridoma Bank c7-c). Secondary antibodies were from Thermo Fisher Scientific Inc. 

and used at 1:1000: Alexa Fluor 488 goat anti-rabbit, Alexa Fluor 555 goat anti-rat, Alexa Fluor 

647 goat anti-rat, Alexa Fluor 647 goat anti-mouse.  

nSyb-GRASP 

nSyb-GRASP flies were dissected in extracellular saline (103 mM NaCl, 3 mM KCl, 1 mM 

NaH2PO4, 4 mM MgCl2, 10 mM D-(+)-trehalose dehydrate, 10 mM D-(+)-glucose, 5 mM N-

tris(hydroxymethyl) methyl-2-aminoethane sulfonic acid, 26 mM NaHCO3, pH 7.4). Dissected 

brains were exposed to a high concentration of KCl to increase GRASP signal, as previously 

described (Macpherson et al. 2015). Dissected brains were incubated in 1 ml 70 mM KCl in saline 

three times (∼5 s per KCl incubation), alternating with 1 ml saline (~5 s per wash), and then 

transferred to 1 mL saline to incubate for 10 minutes. Brains were fixed with 4% formaldehyde in 

PBS for 20 minutes at room temperature, rinsed 3 x 10 min in PBST, and mounted with 

Vectashield media. Endogenous GRASP signal without antibody labeling was imaged.  

Confocal Microscopy 

Eight-bit images were acquired using a Leica TCS SP5 laser scanning confocal microscope with 

a 40x/1.3 NA or 20x/0.7 NA objective and a 1-μm z-step size. Maximum intensity z-projection 

images were generated in Fiji, a distribution of ImageJ software (Schindelin et al. 2012). 

Sleep Behavior Assay 

Individual ~7 d old female flies were loaded into glass tubes containing 5% sucrose and 2% agar. 

Locomotor activity was monitored with the Drosophila Activity Monitoring system (DAMS) 

(Trikinetics, Waltham, MA). Flies were monitored for sleep in a 12 h:12 h (12:12) light:dark cycle 

at 25°C for CaLexA experiments or at 21°C for thermogenetic experiments. Incubator 

temperature shifts occurred at lights-on, Zeitgeber time (ZT) 0. For mechanical sleep deprivation 

experiments, flies were loaded into the DAMS and sleep deprived during the night by shaking on 
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an adapted vortex for 2 s randomly within every 20 s interval. Sleep was defined as 5 consecutive 

min of inactivity. Sleep analysis was performed with PySolo software (Gilestro and Cirelli 2009). 

Data from flies that survived the duration of the experiments were pooled and analyzed. 

Behavioral data were analyzed with one-way analysis of variance (ANOVA) with Tukey’s test as 

the post hoc test to compare means between groups. Differences between groups were 

considered significant if P < 0.05 by the post hoc test.  

CaLexA Analysis 

Fluorescence intensity measurement was performed in Fiji. Regions of interest (ROIs) were 

manually drawn to encompass individual RFP-positive cell bodies, and mean pixel intensities of 

RFP and GFP signals were measured from the ROI. For each cell, the CaLexA-GFP/RFP signal 

(arbitrary unit, a.u.) was calculated as a ratio between the mean pixel intensities of GFP and RFP. 

For each brain, CaLexA-GFP/RFP signals from all cells were averaged and served as one 

biological replicate. Welch’s t-test was used to compare differences in CaLexA-GFP/RFP signal 

between sleep-deprived and control groups.  

Statistical Analysis 

The statistical details of experiments can be found in figure legends. All statistical tests were 

performed in R (version 3.3.1). Graphs were generated in R using ggplot2 package, except for 

sleep profiles, which were generated in Pysolo. In Tukey’s boxplots, the line inside the box 

indicates the median, and the bottom and top lines represent the 1st and 3rd quartiles. The upper 

whisker extends to the highest value that is within 1.5 * IQR above the 3rd quartile, where IQR is 

the inter-quartile range (the distance between the 25th and 75th percentiles). The lower whisker 

extends to the lowest value within 1.5 * IQR below the 1st quartile. Data beyond the end of the 

whiskers are outliers and plotted as points.  
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Results 

Sleep-promoting dFB neurons are presynaptic to hugin+ circadian output neurons 

We previously described that hugin+ subesophageal zone (SEZ) neurons innervate the 

pars intercerebralis in the most dorsal part of the brain (King et al. 2017). We also noticed that the 

hugin+ projections extend beyond the pars intercerebralis into the superior medial protocerebrum 

(SMP). The SMP is the target of many sleep-regulatory neurons, including the mushroom body 

(MB), mushroom body output neurons (MBON), dopamine neurons (DAN), and dorsal fan-shaped 

body (dFB) (Artiushin and Sehgal 2017). We focused on the dFB, since it is the best 

characterized sleep-regulatory region to date. Several GAL4 drivers target dFB neurons, but we 

focused on the ~24 sleep-promoting dFB neurons labeled with the 23E10-GAL4 driver, which we 

will refer to as 23E10+ dFB neurons (Donlea, Pimentel, and Miesenbock 2014; Pimentel et al. 

2016; Qian et al. 2017; Donlea et al. 2018).  

We doubled labeled the membranes of 23E10+ dFB neurons and hugin+ neurons and 

found that both sets of projections localized to the SMP (Figure 4.1A). In 23E10+ dFB neurons, 

expression of brp-short GFP, a nonfunctional 754-residue portion of BRP that localizes to 

presynaptic active zones (Schmid et al. 2008; Fouquet et al. 2009), labels projections in both the 

dFB and SMP (Figure 4.1B). In addition, using 23E10-LexA to express Rab3::GFP, another 

presynaptic marker, reveals 23E10+ presynaptic terminals in the dFB and SMP (Figure 4.1A). 

While previous studies reported that the presynaptic sites of dFB neurons are primarily in a single 

dorsal layer of the fan-shaped body, additional presynaptic sites are visible in the SMP in 

published images (W. Li et al. 2009; Donlea et al. 2018). However, the signal of the presynaptic 

markers is weaker in the SMP than the dFB, suggesting the presence of more presynaptic sites in 

the dFB than in the SMP. 

We also used a trans-synaptic GFP fluorescence reconstitution assay (nSyb-GRASP) to 

look for a possible synaptic connection between 23E10+ and hugin+ neurons. This system uses 

the expression of a split version of GFP, one part tethered to neuronal Synaptobrevin 

(nSyb::spGFP1-10) in the putative presynaptic cells and the complement tethered to the 



110 

membrane (CD4::spGFP11) in the putative postsynaptic neurons (Macpherson et al. 2015). Split 

GFP fragments only reconstitute at close membrane contacts, which are identified by GFP 

fluorescence (Feinberg et al. 2008). Since nSyb is trafficked to the presynaptic vesicle 

membrane, nSyb-GRASP identifies membrane contacts specifically at synapses. We first tested 

that nSyb-GRASP works by co-expressing presynaptic nSyb::spGFP1-10 and complementary 

CD4::spGFP11 in 23E10+ dFB neurons. In these flies, GFP reconstituted in both the dFB and 

SMP (Figure 4.1C left), confirming that 23E10+ dFB neurons have presynaptic sites in both these 

sites. In flies with the presynaptic nSyb::spGFP1-10 expressed in 23E10+ dFB neurons and 

complementary CD4::spGFP11 expressed in hugin+ neurons, fluorescent GFP reconstituted in 

the SMP but not in the dFB (Figure 4.1C middle). We also performed the reciprocal experiment, 

with nSyb::spGFP1-10 expressed in the hugin+ neurons and complementary CD4::spGFP11 

expressed in 23E10+ dFB neurons, but did not observe any GFP fluorescence in the brain 

(Figure 4.1C right). Also, no GFP fluorescence was also observed in brains expressing either half 

of the GRASP components and imaged under the same conditions (data not shown). These 

results suggest that 23E10+ dFB neurons are presynaptic to hugin+ neurons in the SMP. 

Disrupting activity of hugin+ neurons is not sufficient to alter sleep amount or recovery 

sleep 

The connection between 23E10+ dFB and hugin+ neurons led to the question of whether 

hugin+ neurons also regulate sleep. To test this, we expressed temperature-sensitive TrpA1 

channel in hugin+ neurons and activated them with high temperature while measuring sleep 

behavior (Pulver et al. 2009). In other experiments, we expressed temperature-sensitive shibirets, 

a dominant-negative dynamin gene, to inhibit synaptic transmission from hugin+ neurons at high 

temperature (Kitamoto 2001). As previously reported (Donlea et al. 2011; Ueno et al. 2012), 

activation of 23E10+ dFB neurons at high temperature with TrpA1 led to sleep increase (data not 

shown). We did not observe changes in sleep amount when hugin+ neurons were activated with 

TrpA1 or inhibited with shibirets (Figure 4.2A-2B). While there were no changes to sleep, 

hugin>shibirets flies were less active than control flies, as measured by number of beam 
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crossings per day, which confirms our previous findings that hugin+ neurons regulate locomotor 

activity (King et al. 2017). 

Since mechanisms that participate in baseline and sleep recovery may be different, we 

asked whether hugin+ neurons play a role in regulating sleep homeostasis. We used the same 

thermogenetic approach to activate or inhibit the hugin+ neurons, while simultaneously sleep 

depriving the flies using a mechanical method. After sleep deprivation, recovery sleep was 

monitored in the flies. We found no significant difference in recovery sleep between the 

experimental and control genotypes when hugin+ neurons were activated or inhibited. As sleep is 

a vital behavior regulated by redundant pathways, it is possible that disrupting the activity of 

hugin+ neurons alone does not affect sleep amount or homeostasis.  

Sleep deprivation decreases Ca2+ levels in hugin+ neurons 

Sleep is correlated with changes in neuronal activity in sleep-regulatory circuits, including 

the MB, dFB, and R2 ellipsoid body (Bushey, Tononi, and Cirelli 2015; Sitaraman et al. 2015; Yap 

et al. 2017; S. Liu et al. 2016). For example, sleep-promoting dFB neurons tend to be more 

electrically active after sleep deprivation, when sleep pressure is high, than dFB neurons in 

rested flies (Donlea, Pimentel, and Miesenbock 2014). If the hugin+ neurons receive signals from 

sleep-promoting dFB neurons, activity of hugin+ neurons may change with sleep pressure. To 

address this question, we measured intracellular Ca2+ levels as a readout of neuronal activity in 

hugin+ neurons using CaLexA (Calcium-dependent nuclear import of LexA) (Masuyama et al. 

2012). The CaLexA system drives expression of GFP in response to sustained increases in 

intracellular Ca2+ levels. We used hugin-GAL4 to express CaLexA-GFP transgenes and UAS-

CD8:RFP for normalizing the GFP signal. We completely deprived hugin>CaLexA-GFP,RFP flies 

of sleep for nine hours at the end of the night (ZT 15-24) and subsequently collected flies for 

CaLexA measurements (Figure 4.3A). A control group, flies of the same genotype that were not 

sleep deprived, was assayed at the same time of day as the deprived group. CaLexA-dependent 

GFP signal intensity was lower in hugin+ cell bodies in the sleep-deprived flies as compared to 

controls (Figure 4.3B-C). To rule out a general effect of sleep deprivation on Ca2+, we also tested 
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whether sleep deprivation affects Ca2+ levels in Dh44+ neurons, another group of circadian output 

neurons (Cavanaugh et al. 2014). However, the CaLexA-GFP signal in Dh44+ neurons was not 

significantly different between the sleep-deprived and control flies (Figure 4.3D). These data 

show that Ca2+ levels of hugin+ neurons is decreased following sleep deprivation, suggesting that 

the homeostat engages hugin+ neurons.  

hugin+ neurons are effectors of 23E10+ sleep-promoting dFB neurons 

If hugin+ neurons are downstream of 23E10+ sleep-promoting dFB neurons, they could 

affect the sleep-promoting output of 23E10+ neurons. To test this hypothesis, we activated 

23E10+ neurons in flies where hugin+ neurons were either ablated or simultaneously activated. 

We used the GAL4/UAS system to express the proapoptotic gene, reaper, to genetically ablate 

hugin+ neurons, and used the LexA/LexAop system to express 2 copies of TrpA1 to activate 

23E10+ dFB neurons. Thermogenetic activation of the 23E10+ neurons using the LexA/LexAop 

system (23E10-LexA>LexAop-TrpA1(2x); +>UAS-reaper in blue) led to sleep increase, especially 

at night (Figure 4.4A-B). The sleep increase was not as large as the one observed in 23E10-

GAL4>UAS-TrpA1 flies (Figure 4.4D), because we suspect 23E10-LexA is less effective than 

23E10-GAL4 as a transcriptional activator. When 23E10+ neurons were activated in flies with 

hugin+ neurons ablated (23E10-LexA>LexAop-TrpA1(2x); hugin-GAL4>UAS-reaper in red), the 

sleep gain was enhanced during the day (Figures 4.4A-B). This result is consistent with 23E10+ 

neurons promoting sleep through inhibiting hugin+ neurons. When the 23E10+ and hugin+ 

neurons were simultaneously activated using the GAL4/UAS system, there was no change to the 

sleep-promoting effects of 23E10+ dFB neurons, perhaps because 23E10+ dFB neurons can use 

other output circuits, such as the Helicon cells, to induce sleep (Donlea et al. 2018). 

In the thermogenetic sleep experiments, we also observed significant heat-induced sleep 

loss during the night, independent of 23E10+ dFB activation (Figure 4.4B right). Temperature 

reorganizes sleep behavior in flies, and the heat-induced nighttime sleep loss engages the 

homeostat, resulting in sleep increase the next day (Parisky et al. 2016). To determine if hugin+ 

neurons affect recovery sleep after heat-induced nighttime sleep loss, we maintained flies for a 
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day at 31°C (high temperature), after which they were returned to 21°C (low temperature) to 

recover sleep. Recovery sleep was determined by comparing sleep at Day 3 with Day 1, both at 

21°C. Ablation of hugin+ neurons did not affect the amount of sleep loss at 31°C or the amount of 

recovery sleep at 21°C after heat-induced sleep loss (Figure 4.4B-C). Thermogenetic activation of 

hugin+ neurons also did not affect the amount of sleep loss at 31°C, when compared to the 

controls (Figure 4.4E). However, after return to 21°C, recovery sleep was decreased in flies 

where hugin+ cells were activated with TrpA1, compared to control groups or flies with 

23E10>TrpA1 activation alone (Figure 4.4F). Despite having increased sleep during the high 

temperature, flies with activation of 23E10+ dFB neurons recovered sleep after the transition from 

high to low temperature. However, flies subjected to simultaneous activation of 23E10+ and 

hugin+ neurons showed decreased sleep recovery at 21°C, similar to that seen with hugin>TrpA1 

activation. We hypothesize that heat-induced sleep loss engages the homeostat, which normally 

inhibits activity of hugin+ circadian neurons to generate sleep drive that manifests overtly as 

recovery sleep. 

Pdf+ clock neurons are targets of hugin+ neurons 

We next sought to map neurons downstream of hugin+ neurons by using trans-Tango, a 

pan-neuronal trans-synaptic labeling system (Talay et al. 2017). In the trans-Tango method, a 

tethered ligand is expressed at the synapses of a set of genetically defined neurons. The ligand 

activates a synthetic signaling pathway in postsynaptic partners to express tdTomato fluorescent 

protein (Talay et al. 2017). Presynaptic neurons are simultaneously labeled with myr::GFP, a 

different fluorescent protein. We expressed the trans-Tango ligand in hugin+ neurons and 

observed trans-Tango-dependent signal in many brain regions, including the pars intercerebralis, 

mushroom body lobes, mushroom body calyx and pedunculus, SMP, subesophageal zone, and 

accessory medulla (Figure 4.5A). In addition, we found that hugin+ neurons have bilateral 

projections into the accessory medulla, which track with the trans-Tango signal (Figure 4.5A’’, 

magenta, arrowheads). Postsynaptic neurons in the accessory medulla were reminiscent of Pdf+ 

small ventrolateral neurons (s-LNvs), prompting us to label for PDF peptide and confirm that that 
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a subset of the postsynaptic partners observed in hugin>trans-Tango flies is PDF-positive. Pdf+ 

neurons are subdivided into the small (s-LNv) and large (l-LNv) ventrolateral neurons, each group 

containing 4-5 neurons per hemisphere. The trans-Tango-dependent signal was more intense in 

the s-LNvs than in the l-LNvs (Figure 4.5B), indicating that s-LNvs are primary targets of hugin+ 

neurons. 

Our data demonstrate a circuit that links sleep homeostasis centers to circadian clock 

neurons (23E10+ dFB → hugin+ SEZ → Pdf+ s-LNvs) and suggest a potential mechanism for 

homeostatic components to regulate outputs of the circadian clock. To test whether the activity of 

Pdf+ neurons themselves is altered with sleep deprivation, we again used the CaLexA system to 

measure Ca2+ level changes in Pdf+ neurons during sleep deprivation. With mechanical sleep 

deprivation, the CaLexA-GFP signal in both Pdf+ s-LNv and l-LNv cell bodies was lower in the 

sleep-deprived flies as compared to controls (Figure 4.6). Therefore, sleep deprivation 

suppresses an additional clock output, the activity of LNvs.  

 

Discussion 

The circadian clock and homeostat both regulate sleep, but it is not clear how the two 

processes functionally interact. We identify a circuit-based mechanism in the fly brain that links 

output arms of a sleep homeostat and the circadian clock. 23E10+ sleep-promoting dFB neurons 

signal through hugin+ circadian neurons to suppress circadian outputs and, thereby, allow for 

sleep at times when the circadian system typically promotes wake (Figure 4.6C). We also find 

that hugin+ circadian output neurons feedback to s-LNvs, the central clock neurons. Thus, a 

sleep homeostat circuit influences outputs of the circadian clock by modulating the activity of 

circadian output neurons and clock neurons. 

The circadian clock can regulate sleep by cell-intrinsically controlling the neuronal activity 

of clock neurons, such as the LNvs. The wake-promoting effect of the LNvs is light-dependent 

and largely comes from the l-LNv subset (Sheeba, Fogle, et al. 2008; Shang, Griffith, and 

Rosbash 2008; Parisky et al. 2008). While s-LNvs alone are not sufficient to promote wake, 
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downregulation of PDF receptor in s-LNvs increases sleep, suggesting PDF signaling to s-LNvs 

modulates wake-promoting effects of l-LNvs (Shang, Griffith, and Rosbash 2008; Parisky et al. 

2008). In addition, the downregulation of short Neuropeptide F signaling between s-LNvs and l-

LNvs decreases nighttime sleep (Shang et al. 2013). Notably, both s-LNvs and l-LNvs show more 

depolarized resting membrane potentials during the day than during the night, supporting the idea 

that LNvs are more active during times of increased arousal (Sheeba, Gu, et al. 2008; Cao and 

Nitabach 2008).  

Does sleep homeostasis influence the neuronal activity of LNvs, and if so, how? It was 

previously reported that sleep loss due to social enrichment is associated with an increased 

number of synapses in the LNv projections into the medulla, a brain region that processes visual 

information from the eyes (Donlea, Ramanan, and Shaw 2009). Here, we report Ca2+ levels in 

LNvs decrease with sleep deprivation, which we hypothesize dampens the wake-promoting 

effects of LNvs to allow for recovery sleep. It is possible that decreased Ca2+ levels in LNvs with 

sleep deprivation precedes synaptic downscaling that occurs with sleep recovery. While we have 

only mapped a connection from 23E10+ dFB to the LNv wake-promoting clock neurons through 

hugin+ neurons, it is likely that other sleep homeostat pathways also modulate LNvs. Notably, 

GABA and myoinhibitory peptide signal to  LNvs to regulate sleep, although the source of these 

neuromodulators is not known yet (Parisky et al. 2008; B. Y. Chung et al. 2009; Oh et al. 2014). 

We suggest that a sleep homeostat effector, 23E10+ dFB neurons, also influences 

circadian-regulated locomotor activity through hugin+ circadian output neurons. Previously, we 

showed that a circuit from s-LNvs → DN1 → Dh44+ neurons → hugin+ neurons controls 

locomotor activity rhythms. hugin+ neurons are locomotor activity-promoting, especially during 

the evening (day-to-night transition) peak of activity (Cavanaugh et al. 2014; King et al. 2017). 

Our data suggest the 23E10+ sleep-promoting dFB neurons inhibit hugin+ activity-promoting 

neurons. One, the sleep-promoting effect of 23E10+ dFB neurons is enhanced during the 

daytime when the hugin+ neurons are removed. Second, neuronal activity of hugin+ neurons is 

suppressed with sleep deprivation, while dFB neurons become more active after sleep 

deprivation (Donlea, Pimentel, and Miesenbock 2014). In our behavior experiments, we find that 
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activating hugin+ neurons during a period of heat-induced sleep loss leads to less recovery sleep. 

More experiments are required to explore this idea, but perhaps during sleep deprivation, the 

homeostat not only generates sleep drive but also actively disengages activity-promoting circuits.  

 In Drosophila, there is limited previous evidence for influences of sleep homeostatic 

mechanisms on the circadian system. As we previously introduced, in rodents, sleep deprivation 

affects circadian functions. Sleep deprivation reduces electrical activity of SCN neurons to 

approximately 60% of baseline activity, and the suppression lasts for 7 hours (Deboer, Détári, 

and Meijer 2007). We find a similar effect in flies, where neuronal activity is depressed in LNv 

central clock neurons and remained depressed even 5 hours after the deprivation ended (data 

not shown). In the rodent model, the mechanism mediating the reduced SCN activity is not clear 

but may involve serotonin signaling from the raphe dorsalis (Deboer 2018). Importantly, sleep 

deprivation does not appear to affect the core clock mechanism in the rodent SCN (Curie et al. 

2015), and in flies, sleep deprivation does not shift the phase of the rest:activity rhythm in 

freerunning conditions, suggesting that the clock is unperturbed (Hendricks et al. 2001). 

Therefore, sleep homeostasis appears to influence primarily clock outputs.  
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Figures 

 

Figure 4.1 

Sleep-promoting dFB (dorsal fan-shaped body) neurons contact hugin+ circadian output 

neurons. 

(A) Co-labeling of hugin+ neurons with membrane marker (green) and 23E10+ dFB neurons with 

RAB3::GFP, a presynaptic marker (magenta). The left image shows co-labeling of neurons in the 

whole fly brain; arrowheads indicate 23E10+ cell bodies. Superior medial protocerebrum (SMP), 

dorsal fan-shaped body (dFB), and subesophageal zone (SEZ) regions are labeled. The right 

image shows the dorsal protocerebrum, where hugin+ projections intermingle with 23E10+ 

projections in the SMP. (B) Co-labeling of hugin+ neurons with membrane marker (green) and 

23E10+ dFB neurons with BRP-shortGFP, a presynaptic marker (magenta). The left image shows 
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co-labeling of neurons in the dorsal brain. The right series of images show single confocal 

sections of the region indicated by white box, where hugin+ projections intermingle with 23E10+ 

projections in the SMP. (C) Synaptic nSyb::spGFP1-10 is expressed in presynaptic neurons and 

complementary spGFP11 expressed in putative postsynaptic neurons. GFP reconstitution occurs 

only if synaptic connectivity exists. C, Left: When both nSyb::spGFP1-10 and spGFP11 is 

expressed in 23E10+ dFB neurons, GFP reconstitution occurs in the dFB and SMP. C, Middle: 

Cyan arrowheads point to the GFP reconstitution in the SMP when nSyb::spGFP1-10 is 

expressed in 23E10+ dFB neurons and spGFP11 is expressed in hugin+ neurons. C, Right: No 

GFP reconstitution when nSyb::spGFP1-10 is expressed in hugin+ neurons and spGFP11 is 

expressed in 23E10+ dFB neurons. Scale bars, A(left): 50 µm; A(right), B, C: 25 µm. 
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Figure 4.2 

Disrupting activity of hugin+ neurons does not alter normal sleep amount or recovery after 

mechanical sleep deprivation. 

(A) Thermogenetic activation of hugin+ neurons does not alter total amount of sleep. (B) 

Thermogenetic inhibition of synaptic transmission from hugin+ neurons does not alter total 

amount of sleep. Data for hugin>+ control are shared between panels A and B. (C) Blocking 

synaptic transmission in hugin+ neurons reduces the number of beaming crossing, a measure of 

locomotor activity. (D) Thermogenetic activation or inhibition of hugin+ neurons does not alter 

sleep recovery after mechanical sleep deprivation. Experimental setup: Flies were kept at 31°C 

for the entire duration of experiment. Flies were sleep deprived (SD) by mechanical shaking 

during the nighttime on day 1 and allowed to recover during the daytime on day 2. Change in day 

sleep was based upon sleep during 12 hours of the Recovery day and 12 hours of Baseline day. 

**p<0.01 by Tukey’s test after one-way ANOVA. Circles are individual fly data points, and 

summary statistics displayed as mean + SD. 
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Figure 4.3 

Ca2+ levels of hugin+ neurons are suppressed with sleep deprivation. 

(A) Sleep profiles of hugin>CaLexA-GFP; RFP flies subjected to no sleep deprivation (Control, 

black, n = 8 flies) or 9-hr sleep deprivation (SD, red, n = 8 flies). Sleep graphed as minutes per 

30-minute bin over 21 hours. (B) Representative images show GFP reporting Ca2+ levels via 

CaLexA system and RFP normalizer signals in hugin>CaLexA-GFP; RFP fly from Control or SD 

groups. Max intensity projection images show hugin+ neurons in subesophageal zone. Scale bar, 

25 µm. (C) Tukey’s boxplot comparing relative levels of GFP signal normalized to RFP signal in 

hugin+ cell bodies from Control (n = 21 flies) and SD (n = 18 flies) groups. **p = 0.00116, Welch’s 

t-test. (D) Tukey’s boxplot comparing relative levels of GFP signal normalized to RFP signal in 

Dh44+ cell bodies from Control (n = 11 flies) and SD (n = 18 flies) groups. n.s., p = 0.818 by 

Welch’s t-test. 
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Figure 4.4 

hugin+ neurons are effectors of 23E10+ sleep-promoting dFB neurons. 

(A) 23E10+ dFB neurons activated with TrpA1 in flies with ablated hugin+ neurons using reaper. 

Sleep graphed as minutes per 30-minute bin over 3 days (A representative experiment is shown 

with n = 14 or 16 flies/genotype). Experimental setup: Baseline sleep at 21°C was monitored on 

day 1. A temperature shift from 21°C to 31°C occurred at ZT0 on day 2 to measure sleep gain 

from 23E10+ activation. A temperature shift from 31°C to 21°C occurred at ZT0 on day 3 to 
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measure sleep recovery after heat-induced nighttime sleep loss. (B) 23E10+ dFB neurons 

activated with TrpA1 in flies where hugin+ neurons were ablated using reaper. Changes in sleep 

amount between Day 1 of baseline and Day 2 of 23E10+ activation are shown. (C) 23E10+ dFB 

neurons activated with TrpA1 in flies where hugin+ neurons were ablated using reaper. Changes 

in sleep amount between Day 1 of baseline and Day 3 of recovery from heat-induced nighttime 

sleep loss are shown. (D) Simultaneous activation of 23E10+ dFB neurons and hugin+ neurons 

with TrpA1 (a representative is experiment shown with n = 11-16 flies/genotype). Experimental 

setup is as described for panel A. (E) Simultaneous activation of 23E10+ dFB neurons and 

hugin+ neurons with TrpA1. Changes in sleep amount between Day 1 of baseline and Day 2 of 

23E10+ activation are shown. (F) Simultaneous activation of 23E10+ dFB neurons and hugin+ 

neurons with TrpA1. Changes in sleep amount between Day 1 of baseline and Day 3 of recovery 

from heat-induced nighttime sleep loss are shown. For panels B, C, E, F: Means compared with 

one-way ANOVA and Tukey’s test. Means sharing the same letter are not significantly different 

from each other (P > 0.05, Tukey's test). Circles are individual fly data points, and summary 

statistics are displayed as mean + SD. 
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Figure 4.5 

hugin+ neurons target PDF-expressing clock neurons. 

(A) trans-Tango ligand is expressed in hugin+ neurons (green). trans-Tango system reveals the 

synaptic partners (magenta) of hugin+ neurons in the brain. Panel A’ image is a max intensity 

projection from the posterior side. Panel A’’ image is a max intensity projection from the anterior 

side, and arrowheads indicates postsynaptic signal that resembles the projections of PDF+ 

neurons. Neuropil counterstained with anti-BRP (blue). (B) Co-labeling of PDF peptide (green) 

and postsynaptic signal (magenta) in flies with trans-Tango ligand expressed in hugin+ neurons. 

PDF+ s-LNvs are postsynaptic to hugin+ neurons.  s-LNv, small ventrolateral neurons, l-LNv, 

large ventrolateral neurons. Scale bars, A: 50 μm; B: 15 μm.  
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Figure 4.6 

Ca2+ levels of Pdf-expressing clock neurons are suppressed with sleep deprivation. 

(A) Pdf>CaLexA-GFP; RFP flies were subjected to no sleep deprivation (Ctrl, gray) or 9-hr sleep 

deprivation (SD, red). Tukey’s boxplot compares relative levels of GFP signal normalized to RFP 

signal in cell bodies of Pdf+ large ventrolateral neurons (l-LNv) or small ventrolateral (s-LNv) from 

Control (n = 18 flies) and SD (n = 19 flies) groups. **p = 0.00910, ***p = 0.000655 by Welch’s t-

test. (B) Representative images of l-LNvs or s-LNvs from a Pdf>CaLexA-GFP; RFP fly in Control 

or SD group. Top row shows merged images of GFP signal reporting Ca2+ levels with CaLexA 

system and RFP normalizer signal. Bottom row shows “Fire” pseudocolor image of CaLexA-GFP 

signal (blue/purple=low intensity and yellow/white=high intensity). Scale bar, 10 µm applies for all 

panels. (C) Proposed model for regulation of a circadian output circuit by sleep homeostatic drive. 

23E10+ dorsal fan-shaped body (dFB) neurons are effectors of a sleep homeostatic circuit and 

C 
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promote sleep. During high sleep drive, the 23E10+ dFB neurons promote sleep and dampen the 

output activities of the circadian system through inhibiting hugin+ circadian output neurons and 

LNv clock neurons. 
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Table 4.1 

Fly genotypes used in the study. 

Figure Genotype 

Figure 4.1 w; 23E10-LexA/UAS-CD8::RFP; hugin-GAL4/LexAop-Rab3::GFP  

w; hugin-LexA/UAS-brp-short-GFP; 23E10-GAL4/LexAop-6xmCherry-HA 

w; 23E10-LexA/UAS-nSyb::GFP1-10, LexAop-CD4::GFP11; 23E10-GAL4/+ 

w; hugin-LexA/UAS-nSyb::GFP1-10, LexAop-CD4::GFP11; 23E10-GAL4/+ 

w; 23E10-LexA/UAS-nSyb::GFP1-10, LexAop-CD4::GFP11; hugin-GAL4/+ 

Figure 4.2 w; UAS-TrpA1/+; hugin-GAL4/+ 

w;; UAS-shibirets/hugin-GAL4 

Figure 4.3 w, UAS-reaper/w; 23E10-LexA/LexAop-TrpA1; hugin-GAL4/LexAop-TrpA1 

w, UAS-reaper/w; 23E10-LexA/LexAop-TrpA1; +/LexAop-TrpA1 

w, UAS-reaper/w; +/LexAop-TrpA1; hugin-GAL4/LexAop-TrpA1 

w, UAS-reaper/w; +/LexAop-TrpA1; +/LexAop-TrpA1 

w; 23E10-LexA/+; hugin-GAL4/+ 

w; 23E10-LexA/+; + 

w;; hugin-GAL4/+ 

w; UAS-TrpA1/+; hugin-GAL4/23E10-GAL4 

w; UAS-TrpA1/+; 23E10-GAL4/+ 

w; UAS-TrpA1/+; hugin-GAL4/+ 

w; UAS-TrpA1/+ 

w;; 23E10-GAL4/+ 

Figure 4.4 w; UAS-CD8::RFP, LexAop-CD8::GFP-2A-CD8::GFP/+; hugin-GAL4/UAS-mLexA-VP16-NFAT, 

LexAop-CD2::GFP 

w; UAS-CD8::RFP, LexAop-CD8::GFP-2A-CD8::GFP/+; Dh44-GAL4/UAS-mLexA-VP16-NFAT, 

LexAop-CD2::GFP 

Figure 4.5 w,UAS-myrGFP.QUAS-mtdTomato(3xHA)/w; trans-Tango/+; hugin-GAL4 

Figure 4.6 w; UAS-CD8::RFP, LexAop-CD8::GFP-2A-CD8::GFP/pdf-GAL4; UAS-mLexA-VP16-NFAT, 

LexAop-CD2::GFP/+ 
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Chapter 5 : Conclusions and Future Directions:  

My central thesis question is: “How are molecular oscillations of the clock translated into rhythms 

of behavior and physiology”. The molecular basis of circadian rhythms has been extensively 

studied, but relatively little is known about the neural basis of circadian rhythms. There is 

considerable interest in studying the neural basis of circadian rhythms in flies, given that only 

about 150 brain neurons that express molecular clocks are collectively responsible for 

timekeeping. For many years, research was primarily focused on clock neurons, and the targets 

of clock neurons were unknown. As a result, we did not understand how time-of-day information 

is transmitted from the clock network to output circuits. To address this question, I set out to 

identify genes, neurons, and circuits that are downstream of the clock network and regulate 

circadian rhythms (summarized in Figure 5.1). In my thesis work, I studied the neural basis of 

peripheral transcriptional rhythms and behavioral rhythms. 

Transcriptional rhythms in a peripheral tissue 

Circadian clocks and transcriptional rhythms are numerous and prevalent throughout the 

body. In both mammals and flies, the central clock (i.e. brain clock) is considered the primary 

clock that drives circadian rhythms and coordinates oscillations of secondary clocks in peripheral 

tissues. In flies, the central clock has a dominant role under freerunning conditions over clocks in 

the fat body or prothoracic gland (Erion et al. 2016; Selcho et al. 2017; Myers, Yu, and Sehgal 

2003). However, the central clock not only influences peripheral clocks but also peripheral output 

rhythms, such as transcription. Understanding how the central clock communicates with 

peripheral tissues is a significant question in the field. In Chapter 2, we used flies to study the 

mechanisms by which the central clock influences rhythms in peripheral tissues. This work was 

prompted by the finding that some transcriptional rhythms in the fat body depend upon clocks in 

other tissues. To identify the drivers of these fat body transcriptional rhythms that are 

independent of the local clock, we assayed for a role of brain clock neurons. We found that 

molecular clocks in LNds drive transcriptional rhythms of cytochrome P450 genes, Cyp6a21 and 
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sxe1 (as known as Cyp4d21), in the fat body. Furthermore, we found signaling of NPF, a 

neuropeptide expressed in LNd, drives transcriptional rhythms of Cyp6a21 and sxe1. Finally, we 

identified a similar mechanism in mice, where NPY (the NPF homolog) is required for rhythmic 

expression of a subset of liver genes, in particular those of the cytochrome P450 family. Our work 

is a start at addressing how central clocks influence peripheral transcriptional rhythms. It is likely 

that the brain communicates to peripheral tissue using endocrine signaling mechanisms, and 

NPF is probably not the hormone that directly signals to the peripheral tissue, since NPF+ LNds 

arborize exclusively within the brain and NPF receptors are not found in the fat body. Therefore, 

future studies are needed to identify the neuroendocrine signal between the brain and fat body, 

as well as the circuit between the LNds and the neuroendocrine center (target of NPF action).  

In addition to neural clocks, feeding influences circadian rhythms in metabolic tissues. 

Indeed, restricted feeding schedules drive cycling of some fat body genes in Drosophila and 

some liver genes in mice (Vollmers et al. 2009; Xu et al. 2011). It is possible that LNd clocks and 

NPF signaling drive behavioral rhythms of feeding, which then drive transcriptional rhythms in the 

fat body. While we have not tested if LNds are involved in feeding rhythms, feeding alone cannot 

drive the normal robust rhythmic expression of Cyp6a21 and sxe1 in the fat body. Time-restricted 

feeding does not drive Cyp6a21 cycling in clockless mutants to the extent seen in wild type flies 

(Xu et al. 2011), and flies display similar sxe1 cycling regardless of whether feeding was time-

restricted or ab libitum (Gill et al. 2015). However, the question remains unanswered: how much 

of the fat body transcriptome is shaped by feeding, the central clock, or a combination of both? 

Our work supports the idea that the circadian system is hierarchical, with the central clock 

orchestrating peripheral clocks (Albrecht 2012). We showed that the fat body clock does not rely 

upon the central clock in the presence of light:dark cycles, presumably because it has its own 

photoreceptors, but it is sensitive to the loss of the central clock under freerunning conditions. A 

similar situation occurs in mice; under freerunning conditions, the central clock is required for 

synchronous and high amplitude clock oscillations in peripheral tissues (Izumo et al. 2014). 

Notably, peripheral tissues in mammals do not express photoreceptors, so their entrainment to 
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light is driven entirely by the central clock. In addition, peripheral clocks may need to be coupled 

to the central clock so that the peripheral clock can reset to changes in behavioral rhythms. 

Because of this hierarchical system, all peripheral output rhythm, to varying extents are coupled 

to the central clock. This leads to the question: why are some cycling genes independent of the 

local clock and instead tightly coupled to the central clock? In our study, we looked at Cyp6a21 

and sxe1, which both belong to the cytochrome P450 gene family of detoxification enzymes (H. 

Chung et al. 2009). While we did not test the importance for Cyp6a21 and sxe1 cycling for 

metabolic function, we speculate that coupling of detoxification rhythms with feeding behavioral 

rhythms is advantageous, as it allows detoxification enzymes to be expressed in anticipation of 

feeding rather than as a response to feeding. Understanding how the neural circuits for metabolic 

rhythms and behavioral rhythms intersect is another future direction of study.  

Neural basis for behavioral rhythms: beyond the circadian clock network 

 In Chapter 3, I studied the neural basis of rest:activity rhythms (i.e. locomotor activity 

rhythms). Locomotor activity is the most used behavioral output to study the molecular and neural 

basis of circadian rhythms in flies. Since the identification of the clock neurons, researchers have 

speculated about the targets of clock neurons, but it was only recently that we have mapped a 

circadian output circuit. Previous work in the Sehgal lab demonstrated that Dh44+ and SIFa+ 

neurons are circadian output neurons for rest:activity rhythms. In my thesis work, I extended the 

circuit from Dh44+ neurons to hugin+ neurons and motor circuits in the ventral nerve cord. Our 

work only provides a minimal pathway, and more circuits need to be mapped to fully explain 

rhythmic rest:activity behavior. To my knowledge, our work is the first account of a continuous 

linear pathway from clock neurons to neurons involved in locomotive behavior. A first step in the 

field, the circuit that we have mapped provides a framework for future studies to address other 

questions, such as how different behavioral rhythms are coordinated at the circuit level, what 

neurotransmitters function in a circadian output circuit, what neurotransmitters and molecular 

mechanisms generate cycling of neuronal activity in a circadian output circuit, and how is cycling 
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of neuronal activity coordinated across a circadian output circuit? I explore these questions in 

more depth in the following paragraphs. 

 Locomotor activity is a robust and easy behavior to monitor, which allows us to effectively 

map circuits involved in locomotor activity rhythms. Since locomotor activity is influenced by many 

other behaviors, does the circuit we have mapped regulate timing of locomotor activity in general 

or a specific behavior? We showed that hugin+ neurons regulate locomotor activity rhythms but 

do not affect feeding/drinking bout rhythms. Is there a shared circadian output circuit for 

timekeeping, or are there rather dedicated output circuits for each behavior? Compared to 

rest:activity rhythms, relatively less is known about the neural basis of feeding rhythms or 

courtship rhythms (Xu, Zheng, and Sehgal 2008; Sakai and Ishida 2001). Courtship rhythms may 

share a similar initial circuit as locomotor activity rhythms. Male-sex drive rhythms are locomotor 

patterns of courtship that appear in co-housed female and male flies. Like solitary locomotor 

activity rhythms, male sex-driven rhythms depend on LNv and DN1 clocks in males. However, 

altering DN1s has different effects on solitary rhythms and locomotor rhythms in male sex-drive, 

suggesting that different output circuits regulate solitary locomotor activity rhythms and courtship 

rhythms (Fujii and Amrein 2010).  

Informative circuit maps require the identification of not only the neurons but also the 

neurotransmitters. Neuropeptides play a prominent role in circadian biology, and our work adds 

DH44 and Hugin to a list of neuropeptides involved in circadian behavior, which include 

Leucokinin, an output molecule for rest:activity rhythms, PTTH, an output molecule for eclosion 

rhythms, and ITP, sNPF, NPF, and PDF, molecules that synchronize the clock network (Cavey et 

al. 2016; Selcho et al. 2017; Hermann et al. 2012; Hermann-Luibl et al. 2014; Yao and Shafer 

2014). Unlike small molecule neurotransmitters, neuropeptides can signal by paracrine and 

endocrine mechanisms, both of which can affect multiple target sites. Neuropeptides also confer 

circuit flexibility and can modulate activity of neurons by affecting presynaptic and postsynaptic 

properties and intrinsic electrical properties. In addition, neuropeptides are often co-released with 

other neurotransmitters, such as bioaminergic and classical small-molecule neurotransmitters, 
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which adds additional circuit flexibility (Nusbaum, Blitz, and Marder 2017; Nässel 2018). 

However, bioaminergic and classical small-molecule neurotransmitters are not well-studied in 

Drosophila circadian output circuits. In the clock network, glutamate and glycine have been 

identified as small-molecule neurotransmitters that regulate rest:activity rhythms (Collins et al. 

2012; Hamasaka et al. 2007; Guo et al. 2016; Frenkel et al. 2017). The s-LNvs co-release PDF 

and an unknown classical neurotransmitter to promote the morning peak of locomotor activity 

(Choi et al. 2012); the s-LNv neurotransmitter may be glycine (Frenkel et al. 2017). DN1ps use 

glutamate and DH31 to influence different postsynaptic target neurons and regulate sleep (Kunst 

et al. 2014; Guo et al. 2016); although, it has not been demonstrated that a single DN1p cell co-

expresses both DH31 and glutamate. Outside the clock network, co-transmitters are likely 

expressed in peptidergic circadian output neurons but have not been investigated. Loss of Dh44 

or either DH44 receptor (Dh44-R1/Dh44-R2) does not completely phenocopy Dh44+ neuronal 

ablation. In Dh44-R1 mutants, activation of Dh44+ neurons still produces a delayed Ca2+ 

response in hugin+ neurons. These data suggest that other co-transmitters in Dh44+ neurons are 

involved in the circadian output circuit, although, it is possible the co-transmitters are other 

neuropeptides. In larva, hugin+ neurons also use acetylcholine as a key transmitter, but whether 

acetylcholine is maintained in adults is unknown (Schlegel et al. 2016). While we have identified 

multisynaptic circuits, we have yet to identify all the neurotransmitters that the circuits use to 

regulate rest:activity rhythms. 

Circuit mapping can only take us so far in explaining how rhythmic behavior is generated. 

The next steps are to determine what drives activity in the neurons of a circuit, how are signals 

processed through a circuit, and why the physiological activity of neurons is a useful correlate for 

behavior (Olsen and Wilson 2008). While the last question is challenging to address, the field 

may be able to address the first two questions. In circadian circuits, cycling of neuronal activity 

across the 24-hour day is a general output mechanism that is dependent on the circadian clock 

(reviewed in Chapter 1 and Table 1.1). Here, I broadly define neuronal activity. Neuronal activity 

can be electrical firing events but also include Ca2+ activity, cAMP activity, neuropeptide release, 



132 

response to a neurotransmitter, or structural synaptic remodeling. The output circuit that we have 

mapped appears to be no exception, and almost all known circadian output neurons exhibit 

cycling of one or more of these activities. I showed that hugin+ neurons exhibit time-of-day 

differences in neuropeptide vesicle release that is dependent on the molecular clock. Lk+ and 

Dh44+ circadian output neurons show cycling in intracellular Ca2+ levels, and Dilp2+ neurons 

have time-of-day differences in firing frequency and burst firing (Cavey et al. 2016; Barber et al. 

2016). While circadian cycling of activity has been demonstrated in output neurons, we do not 

understand how cycling is generated and maintained in output neurons. Since every clock neuron 

has a 24-hour molecular oscillator, it is assumed that the cell-autonomous clock drives cycling of 

neuronal activity (Flourakis et al. 2015), although, cycling of activity in some clock neurons may 

be shaped more by neuropeptide signaling than by the cell-autonomous clock mechanism (Liang, 

Holy, and Taghert 2017). Circadian output neurons do not have a canonical molecular clock and 

probably have cycling of activity shaped primarily through intercellular signals. Output neurons 

may also have rhythmically expressed ion channels, such as the potassium channel slowpoke, 

that regulate intrinsic currents (M. de la P. Fernández et al. 2007). Future studies will dissect the 

mechanisms that shape circadian cycles of activity in output neurons. 

Fluorescence-based activity sensors or readouts are instrumental tools for studying 

circadian cycles of activity in circuits. In the field, circadian cycling of neuronal activity is mostly 

determined by sampling time points from groups of flies (our studies included). However, I 

recognize the challenges in interpreting circadian rhythms using fluorescence-based activity 

sensors and time point sampling. First, without normalization, it is not useful to compare 

fluorescence-based readouts of activity between samples. Second, there are likely differences in 

baseline levels of activity and/or fluorescent intensity between samples, and population sampling 

can dampen any rhythm. Third, the time resolution is important for determining precise peak of 

activity cycling, and time point analyses of appropriate resolution requires a lot of work. However, 

with advances in fluorescent microscopy for live imaging, the field would benefit from performing 

24-hr continuous recording of circuit activity in a single animal (Liang, Holy, and Taghert 2016). 
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Continuous data collection addresses many of the challenges of time point sampling. In addition, 

longitudinal imaging will be useful to study the molecular or intercellular signaling mechanisms 

that generate cycling of activity in non-clock neurons. In addition, the field would may benefit from 

network-wide recording, since behavior is a result of activity in a network of neurons. In the future, 

once we have identified more circadian output circuits, we may study how cycling of neural 

activity is processed through a circuit and coordinated across a network of circadian neurons. 

Neural basis of sleep regulation: interactions between the homeostat and circadian clock 

Sleep is another area of study that benefited from the circuit-mapping approaches I 

described above. In its simple form, sleep regulation involves a clock and a homeostatic 

component (Borbély et al. 2016). Over the years, researchers have identified neurons and circuits 

for sleep regulation in the fly brain. Many if not all clock neurons regulate sleep at specific times 

of day (Sheeba, Fogle, et al. 2008; Parisky et al. 2008; Shang, Griffith, and Rosbash 2008; Guo 

et al. 2016; Kunst et al. 2014; S. Liu et al. 2014). While some studies point to possible effectors, 

the downstream circuits that mediate circadian-gated sleep effects still need to be mapped out 

(Cavanaugh et al. 2016; J. Chen et al. 2016). Cavanaugh et al. 2016 identified neurons whose 

activation effectively increases sleep during the middle of the day and night but not during the 

day-to-night transition. These time-of-day effects are clock-dependent, as a clock mutant showed 

similar increases at all times. While the clock neurons involved were not mapped, the work 

suggests that the circadian system acts upstream of the sleep-promoting neurons to prevent 

premature sleep onset in the evening, even when sleep drive is high. Chen et al. showed that 

activation of Allatostatin A+ (AstA) neurons increases sleep, and PDF from LNv clock neurons 

partially mediates the sleep-promoting effects. Expression of membrane-tethered PDF in AstA+ 

neurons slightly increases sleep. Interestingly, PDF neuropeptide in the LNv to AstA circuit is 

thought to increase sleep, but loss of PDF (in null mutants) also increases sleep (Parisky et al. 

2008). This discrepancy may be due to time-of-day specific actions of PDF and downstream PDF 

signaling mechanisms.  
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Remarkably, there has been rapid progress in mapping multisynaptic circuits that 

regulate sleep homeostasis, promote sleep and/or inhibit waking when sleep pressure is high 

(Donlea, Pimentel, and Miesenbock 2014; Donlea et al. 2018; Q. Liu et al. 2012; Ueno et al. 

2012; S. Liu et al. 2016; Haynes, Christmann, and Griffith 2015; Seidner et al. 2015; Oh et al. 

2014). Circadian and homeostatic sleep circuits have largely been studied independently, and my 

final piece of work aims to understand how the two types of circuits interact to generate 

sleep:wake cycles. 

In Chapter 3, I identified an output circuit that regulates locomotor activity rhythms, 

primarily by promoting locomotor activity during the evening. The Dh44-Hugin circuit does not 

appear to regulate baseline sleep, because ablation of Dh44+ or hugin+ neurons does not affect 

sleep amount (Cavanaugh et al. 2014). In Chapter 4, I found that hugin+ circadian output neurons 

also receive sleep homeostatic information. Sleep deprivation alters the Ca2+ levels in at least two 

nodes in the circadian output circuit: hugin+ neurons and LNv clock neurons. I hypothesize that 

the homeostatic component directly dampens the activity-promoting effects of the circadian 

output circuit. While I did not test the effect of sleep deprivation on all known circadian circuits, 

sleep deprivation does not affect the Ca2+ activity of Dh44+ circadian output neurons, suggesting 

some specificity to how sleep homeostasis modulates circadian output circuits. DN1ps are 

another node of the circadian output circuit and comprised of both sleep-promoting and activity-

promoting neurons. It would be interesting to determine if sleep deprivation affects sleep-

promoting and activity-promoting clock neurons differently.  
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Figure 5.1 

A schematic of circuits related to thesis work. Color coded circuits were identified in this 

thesis work. Green circuits: LNd clock neurons control transcriptional rhythms of cytochrome 

P450 genes, sxe1 and Cyp6a21 in the fat body through NPF signaling (Chapter 2). Orange 

circuits: hugin+ circadian output neurons regulate locomotor activity rhythms and are downstream 

of the s-LNv → DN1 → DH44+ circadian circuit. hugin+ neurons project into the ventral nerve 

cord, where they can modulate locomotor circuits (Chapter 3). Blue circuits: hugin+ neurons also 

receive signals from a group of sleep-promoting neurons (23E10+ dFB). hugin+ neurons modulate 

the sleep-promoting effects of dFB activation. hugin+ neurons also feed back to the central clock 

neurons, s-LNvs (Chapter 4). Abbreviations: dFB (dorsal fan-shaped body neurons), DH44 

(Diuretic hormone 44), DN1 (dorsal neuron group 1), LNd (dorsolateral neurons), l-LNv (large 

ventrolateral neurons), LNv (ventrolateral neurons), NPF (Neuropeptide F), s-LNv (small 

ventrolateral neurons), sxe1 (sex-specific enzyme 1, Cyp4d21). 
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