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MUTUAL FUND SURVIVORSHIP

ABSTRACT

This paper provides a comprehensive study of survivorship issues using the mutual fund data set of
Carhart (1997). We demonstrate theoretically that when funds disappear primarily because of poor
performance over several years, the average performance bias induced by survivor conditioning
typically increases in the sample period length. This result is empirically relevant because Brown
and Goetzmann (1995) find that funds disappear for exactly this reason. In the data, we find the
annual bias increases from 0.07% for one-year samples to 1% for samples longer than fifteen years.
We find empirically that survivor conditioning weakens evidence of performance persistence, as
theory would suggest when survival depends on several years of past performance. Finally, we
explain how survivor conditioning affects the relation between performance and fund characteristics
and illustrate the effect empirically.



Fund disappearance, or attrition, affects almost every study of mutual funds, hedge funds, or
pension funds. Many commercial data sets include only funds currently in operation. Test
methodologies often require funds to survive a minimum time period to be included in the analysis.
These forms of survivor-only conditioning can bias test results. This paper offers a theoretical and
empirical analysis of the biases introduced by conditioning on survival. We study the effect of
survivor conditioning on: (1) estimates of average performance, (2) tests of performance persistence,
and (3) cross-sectional estimates of the relation between performance and fund attributes. In each
case, the empirical results are consistent with the predictions of the theory.

Our database is virtually identical to the CRSP mutual fund data base, covering all known
diversified equity mutual funds monthly from January 1962 to December 1995. Our paper is the first
to use this data set to measure the effects of survivor conditioning on common mutual fund tests.
Conditioning on survival can substantially alter the inferences from empirical tests, but the effects
vary across the type of test, the form of survivor conditioning, and the sample period. Because
survivor conditioning is relevant for many data sets and tests, the analysis in this paper has potential
applications in other areas of financial economics.

To fix terminology, a single-period survival rule means that a fund with current period
performance less than some threshold disappears at the end of the period, while a multi-period
survival rule means that a fund disappears if its past n-period performance is less than some
threshold. Some of the important theoretical insights about survivor biases pertain to a single-period
rule (see, for example, Brown, Goetzmann, Ibbotson and Ross, 1992) . However, our theoretical
work and that of others indicate that the effects of survivor conditioning depend critically on the

nature of the survival rule in effect (see, for example, Brown, Goetzmann, Ibbotson and Ross, 1992
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and Carpenter and Lynch, 1999). Evidence that lagged performance predicts survival, even in the
presence of the most recent year’s performance, suggest a multi-period survival rule for U.S. mutual
funds (see Brown and Goetzmann, 1995).

Our paper contains several new results. We begin with the theoretical and empirical effects
of survivor conditioning on estimates of average performance. We show that while a single-period
survival criterion implies a constant survivor bias in estimates of average performance, a multi-
period survival criterion typically causes survivor bias to increase in the sample length, though at an
ever decreasing rate. Empirically, we find that the bias in annual performance is increasing in the
sample length and is approximately 1% for subsets of our data longer than fifteen years.
Theoretically, we explain why the bias in average performance need not always increase in the
sample length, even with a multi-period survival rule.

We next examine empirically the impact of survivor conditioning on persistence tests, and
find that the conditioning attenuates performance persistence relative to the full sample. This result
could be anticipated theoretically given the multi-period nature of the industry’s survival rule (see
Brown, Goetzmann, Ibbotson and Ross, 1992, Grinblatt and Titman, 1989, and Carpenter and Lynch,
1999). However, our paper is the first to demonstrate the result empirically.'

Finally, we explain how survivor conditioning can affect the cross-sectional relations
obtained between fund performance and fund characteristics. In particular, for the cross-sectional
relation to be biased in a survivor-only sample, the fund characteristic in question must be related
to the survivor bias in performance. We estimate the slope coefficient biases for commonly-used
fund characteristics, find that the magnitude of these biases can be large, and show that their

directions are consistent with intuition. We estimate the Heckman (1976, 1979) two-step correction
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for incidental truncation, and find that model misspecification may be a serious concern when
attempting to use this procedure to control for the survivor biases.

Several recent papers have constructed mutual fund databases that attempt to control for
survivor biases. Elton, Gruber and Blake (1996) follow the cohort of funds listed in Wiesenberger’s
1977 volume from 1976 until 1993, constructing complete return histories up to the date of merger
for funds with assets greater than $15 million. Brown and Goetzmann (1995) use annual returns
from 1977 to 1988 estimated from Wiesenberger’s | nvestment Companies, while Malkiel (1995) uses
quarterly returns from 1971 to 1991, obtained from Lipper Analytical Services.?

Section 1 describes methodology and the data. Section 2 considers the effects on average
performance measures of requiring the sample funds to survive to the end of the sample period.
Section 3 studies the effects of survivor conditioning on persistence measures, while section 4

examines the impact of survivor conditioning on cross-sectional regressions. Section 5 concludes.

1. Methodology and Data

A Aggregation method

Since a mutual fund sample is a panel data set, a method of aggregation across funds and time
must be chosen. One approach is to pool all of the time-series and cross-section observations. Due
to significant recent growth in the number of funds, this method skews results towards relations in
the final few years of the sample. A second approach calculates statistics on the individual funds,
then averages cross-sectionally. This approach gives the same weight to all funds irrespective of
history length. Thus, dates at the end of the sample and funds with relatively few years of returns

get more weight than in the first approach. A third approach calculates statistics cross-sectionally
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for each time period and then averages these estimates through time. This approach gives less
weight to observations that occur on dates with many other observations, which seems reasonable
given that the contemporaneous fund performances are likely to be correlated. We rely primarily on
this third approach for aggregation.
B. Performance measurement

We employ two measures of performance. The first measure, group-adjusted performance,
is the fund return minus the equal-weight average return on all funds with the same objective in that
period. The different fund objectives are aggressive growth, growth and income, and long-term
growth. When funds change objectives, they move to a new group.” The second performance
measure is the time-series regression intercept, or alpha, from the 4-factor model of Carhart (1997).
The 4-factor model uses Fama and French’s (1993) 3 factors plus an additional factor capturing

Jegadeesh and Titman’s (1993) one-year momentum anomaly. The model is
r® = o + b RMRF() + s SMB(t) + h HML(t) + p, PRLYR(t) + e(t) (1)

where r, is the return of asset i in excess of the one-month T-bill return, RMRF is the excess return
on a value-weighted aggregate market proxy, and SMB, HML, and PR1YR are returns on value-
weighted, zero-investment, factor-mimicking portfolios for size, book-to-market equity, and one-year
momentum in stock returns. We use the 4-factor model in an effort to adjust fund performance for
well-known regularities in stock returns. It would also be interesting to assess performance using
a conditional model like Ferson and Schadt (1996), but we leave this to future work.
C. Survivor conditioning

It is important to recognize that the survival criterion in effect for the industry interacts with

the survivor conditioning in a sample to generate survivor biases in test statistics. In empirical work,
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the researcher is stuck with the market’s survival criterion, but may have considerable control over
the survivor conditioning imposed on the sample. Two forms of survivor conditioning are
particularly important for mutual fund research. End-of-sample conditioning includes only the funds
extant at the end of the sample period. Look-ahead conditioning requires funds to survive some
minimum length of time after a reference date, known as the look-ahead period.* End-of-sample
conditioning is usually a property of the data set, whereas look-ahead conditioning is typically
imposed by the test methodology. An example of end-of-sample conditioning is Morningstar
OnDisc, which reports performance since January 1976, but only for funds still existing at the end
of the sample period. An example of look-ahead conditioning is the common performance
persistence test methodology that regresses future n-period performance on a measure of past
performance: the test conditions on survival for n periods beyond the evaluation date. In fact, some
degree of look-ahead conditioning is inherent in any test of performance persistence. Since the
imposition of a minimum survival period is often unavoidable, an important issue is how the
resulting bias varies with the nature of the survival rule in effect for the industry.
D. Database

Our database covers all known diversified equity mutual funds monthly from January 1962
to December 1995, excluding sector funds, international funds, and balanced funds. We obtain data
on surviving and nonsurviving funds from a variety of sources (see Carhart, 1997, for details). The
sample includes a total of 2,071 diversified equity funds, 1,346 of them still operating as of
December 31, 1995. We partition the sample into three primary investment objectives using
Wiesenberger and ICDI classifications: aggressive growth, growth and income, and long-term

growth.
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The data set includes monthly returns and annual attributes. Return series do not include
final partial-month returns on merged funds as in Elton, Gruber, and Blake (1996). Of the 725
nonsurviving funds, we obtain the date of merger, liquidation, or reorganization for 475. Within the
sample of funds with known termination dates, the return series end within one week of the
termination date for 330 funds. Of the remaining 145 funds, 32 do not include the final partial- or
full-month return, 20 do not include the final two- to three-month return, 81 do not include the final
four- to twelve-month return, and 12 funds are missing more than one year’s returns. Of the 250
nonsurviving funds without exact termination dates, we do not observe any returns on 53 funds,
often because they are too small to appear in any published sources.’
E. Summary statistics

The average annual fund attrition rate from 1962 to 1995 is 3.6%, with a standard deviation
of 2.4%. Of the total 3.6%, 2.2% per year disappear due to merger and 1.0% disappear because of
liquidation.® In the subsamples grouped by investment objective, aggressive growth funds perish at
an annual rate of 4.5%, which is statistically significantly larger than the analogous rates of 2.9% for
long-term growth funds and 3.3% for growth-and income funds. About 58% of all defunct funds
disappear because of merger and 36% disappear due to liquidation. A further 2% vanish through
other self-selected means, usually at the fund manager’s request for removal, and the remainder
depart for unknown reasons or are dropped from the sample by the database manager, not the fund
itself.

Table 1 compares the performance of surviving and nonsurviving funds. Not surprisingly,
nonsurviving funds exhibit considerably poorer performance than surviving funds. The cross-

sectional average monthly performance estimates are the cross-sectional averages of the group-
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adjusted returns and 4-factor alphas of individual funds, estimated from the complete time series of
their returns. By these measures, nonsurviving funds underperform survivors by about 4% per year.
Liquidated funds exhibit the worst relative performance.

Table 1 also gives 4-factor model estimates for equal-weighted portfolios of funds.
Nonsurviving funds remain in the equal-weighted average until they disappear.” The alphas for the
portfolios are close to the average of the individual alphas of the funds in the portfolios, suggesting
that the results are not sensitive to the method of aggregation. The performances of the portfolios
of survivors and nonsurvivors are considerably different. Survivors achieve abnormal performance
of -0.07% per month while nonsurvivors earn -0.33%. The difference between estimates of
performance using survivors only and estimates using the complete sample is 0.08% per month.
From the 4-factor loadings, we infer that relative to nonsurvivors, surviving funds have a less
negative exposure to high book-to-market stocks, less positive exposure to small stocks, and similar

exposures to the market and to the momentum factor.

2. Survivor Bias Effects on Estimates of Average Performance
A. Theory
For convenience, we call the periods years, though they could be any length of time. An m-
year survival rule causes funds at least m years old to disappear through liquidation or merger if the
sum of their returns over the preceding m years falls below a threshold . Returns could be any
measure of performance. We assume that fund returns are cross-sectionally and intertemporally
independent and identically distributed with mean p.* Let g >0 be the annual growth rate of the

number of funds in the mutual fund industry.’
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Let k be the length of the sample period of interest and let T be its ending date. By
assumption, b, g, 1, and the variance of fund return are all independent of k. Consider the sample
of all funds that have returns in the sample period and that are still in existence at time 7, including
new funds over the period. By construction, this sample imposes end-of-sample conditioning and
includes funds with fewer than & years of performance. The estimate of average performance for an
equal-weighted portfolio ﬁ,{ is the time-series average of the yearly equal-weighted cross-sectional
mean returns of these funds. We are interested in characterizing the behavior of ﬁ,f as a function
of k.

Proposition 1. Ifa single-year survival rule causes fund disappearance (i.e., m=1), the annual end-of-
sample bias in the average performance estimate is independent of the length of the sample period,
k.

Proof: Inany year of any sample period, the bias in the estimate of average performance of surviving

funds is
E[RIR>b] - p )
which is independent of k. Q.E.D.

Now suppose a multi-year survival rule determines fund survival (i.e., m>1). Each of the
funds that survive through time 7' survives performance cuts from the time it is m-years old until time

T. Let C, be the conditioning statement associated with the time # performance cut:

C,=[(Y R)Y>b], 3)

T=t-m+1
and let x; denote the survival probability after year ¢ conditional on survival in previous years:
x. =priC |C ., C._, >0

pr {C}, i=0 (4
=1, i<0.

Let p,; be the expected one-year return conditioned on having survived a set of j+1 consecutive
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performance cuts with the last cut occurring i-1 years after the return:
ujJEE[Rt+1*i|Cl‘*j""’Cl‘]' (5)

We define a cut whose return window includes the given return as a direct cut; otherwise, we have
an indirect cut. If M only involves indirect cuts, it must be equal to p. With an m-year survival
rule, there are m direct cuts for R, which occur at times ¢ through (¢+m-1): C, ...,C,,,.,. All other cuts
are indirect with respect to R,. For example, the time-(z+m-1) cut is direct with respect to R,, because
it is applied to the sum of R, through R,., ,, which is a return window that overlaps with R,. In
contrast, the time-(#+m) cut is indirect with respect to R,, because it is applied to the sum of R,
through R,.,,, which is a return window that does not overlap with R,

It might seem that indirect cuts should not affect a conditional mean return, but this is not the

case. For example, even though R and C,_, areindependent, E[R|C,_,,

C|] isnotequal to E[R|C ],
because of the dependence between C, and C, ;. Nevertheless, imposing an additional direct cut
tends to have a much greater effect on the conditional mean than imposing an additional cut that is
indirect. Intuition suggests that the conditional mean of R, is increasing in the number of direct cuts.
This intuition implies a survivor-biased k-year sample mean ﬁ,f that is increasing in & when the
survival rule uses more than one year of returns.

To illustrate why, let’s consider a two-year survival rule. With m=2, the conditioning
statement associated with the time-z performance cutbecomes: C, = [R,_,+R, > b]. For simplicity,
suppose that the expected 1-year return conditioned on having survived a set of performance cuts
depends only on the number of direct cuts. Let pu, and p, be the expected 1-year return conditional
on one and two direct cuts respectively. Since intuition indicates that the conditional mean 1-year

return is increasing in the number of direct cuts, we assume that p < p, <p,.
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With end-of-sample conditioning, the mean year-7 return of 1-year-old funds is always the
unconditional mean of p since those funds are too young at the end of the sample to be subject to any
cut. In earlier years, the mean return of the 1-year-old funds is the conditional mean return with one
direct cut, u,, since a fund’s first return can only be subjected to one cut. Similarly, the mean year-T
return of all older funds is also y,, since a fund’s last return in the sample can be subjected to at most
one cut. In earlier years, the returns of funds older than 1 year at the time are subjected to two direct
cuts, and so their mean return is ,.

Let utT be the cross-sectional mean year-f return of funds that survive through time 7. The
cross-sectional mean year-7 return of funds that survive through time-7'is a weighted average of the

mean year-7 return for 1-year-old funds, p, and the mean year-7 return for older funds, p,:
T AT AT
Hp = Wip e+ (1 - W) (6)

where ij is the fraction of funds that are j years old at time # in the set of time-T7 survivors (after
the time-T7 cut) that have a year-f return. For year ¢ < T, the cross-sectional mean fund return of
funds that survive through time 7 is a weighted average of the mean return for 1-year-old funds, p,,

and the mean return for older funds, p,:
T AT A T
He = Wiy + (1 -0 1y (7

Since the conditional one-year mean return is increasing in the number of direct cuts (u <,
<u,), the cross-sectional mean fund return with end-of-sample conditioning is lower for the last year
(7) than for the next to last year. Moreover, if the fraction of one-year-olds is constant over time
(i.e., wli = 1, forall #), the cross-sectional mean fund return with end-of-sample conditioning is the
same for all years but the last. Consequently, the survivor-biased estimate of average performance
across the k-year sample ending at 7, ﬁkT, is increasing in k. The impact of the lower time-7" cross-

sectional mean on the time-series average becomes smaller as k increases.
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While not generally true, the fraction of one-year olds in the sample of time-7 survivors will
be the same in all years if the probability of surviving a cut is the same irrespective of the number
of cuts already survived (i.e., x; = x for all i>0) and if the mutual fund industry is in steady-state
growth. Letting W, be the fraction of funds with a time-f return that are age j at time ¢, we say that
the mutual fund industry is in steady-state growth, given its growth rate g, if the age distribution is
the same each year: i.e., W, = W, for all j and any ¢ and 1. To see why the assumptions of a steady
state and a constant survival probability imply a constant fraction of one-year-olds, first note that
with the industry in a steady state, the time-¢ age distribution conditional on survival through  is the
same for all #. Second, note that with the probability of surviving a cut always the same, the time-¢
distribution of one-year-olds and older funds is the same conditional on survival through ¢ or through
any later date (i.e, v?/f , = W, forall >7). The reason is that both groups leave the sample at the
exact same rate per year, (1-x), from time-(#+1) onward. Together, these results imply that the time-¢
age distribution conditional on survival through 7" must be the same for all 7, as required.

The following proposition shows that this intuition generalizes to m-year survival rules with
arbitrary m > 2.
Proposition 2: If an m-year survival rule causes fund disappearance, m>1, and
1) the conditional mean y, ; only depends on and is strictly increasing in its number of direct

cuts: for all (i,/) pairs, p, ;= u, where t € {1,2,...m} is the number of direct cuts involved in

B 5 and, p<p<p,<..<p;
2) the probability of surviving a cut is the same irrespective of the number of cuts already

survived: x; = x for any i>0;

3) the mutual fund industry is in a steady state: W, = W for all j and any ¢ and T;
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then the end-of-sample bias in the average performance estimate ﬁl is increasing in the length of
the sample period, k.
Proof: Appendix A.

Moving back in time from T, the cross-sectional mean increases for the first myears, at which
point it reaches a steady-state value. The mmeans at the end of the sample can be expected to be
lower since these returns are subjected to fewer direct cuts. As Kincreases, the greater weight on the
steady-state means increases the sample average. This mechanism for delivering the result is a
generalization of the m=2 case discussed above.

Since none of the three assumptions holds in general, it is possible to construct examples in
which the sample mean is not increasing in the sample length.'® Although direct cuts are generally
expected to increase the conditional mean of R, indirect cuts can reduce this conditional mean.
Roughly speaking, when direct cuts to R have already been applied, the lower part of the
distribution of R, has already been eliminated. Imposing incremental indirect cuts to R can then
eliminate return paths that involve mainly good realizations of R, reducing its conditional mean.

Another complication is that funds of different ages may disappear at different rates, causing
the weights of the different aged cohorts to change over time.  Recalling that
x =pr {C, | C_,...., C_},it makes sense that X is changing as i goes from 0 to m-1 since each
additional cut overlaps with C,. However, X, also varies as a function of i for i>m-1, because of the
interaction of the cuts C_,,...,C,__ with the cutsC,___,....C_,.

Finally, if the assumption of a steady state is relaxed, the cross-sectional mean may start
declining in k for k sufficiently large, since the earliest years have only young funds whose early-year

returns have few direct cuts. Thus, ﬁl may be hump-shaped as a function of K, rather than
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increasing.

More generally, the nature of the bias depends on the distribution of funds at the start of the
sample. The construction of the sample is also important. Here we focus on the effects of end-of-
sample conditioning for a sample that adds new funds as returns become available. Alternatively,
the sample may follow a set of funds in existence at a point in time, as in Elton, Gruber and Blake
(1996), and impose end-of-sample conditioning. The end-of-sample biases will be different for this
sample because the cross-sectional distribution of funds will differ. For example, with fewer young
funds, average fund volatility might be lower, leading to smaller survivor biases.

B. Calibration

Intuition developed in the previous subsection suggests that end-of-sample conditioning
creates a bias in average performance that is increasing in the sample length. This effect follows
from the fact that a return near the end of the survivor-only sample is conditioned on fewer direct
cuts than other returns in the sample. However, the previous subsection also describes some
counterintuitive effects of increasing the length of the sample period. To illustrate how the
Proposition 2 effect typically dominates the counterintuitive effects in a more realistic setting, we
generate a mutual fund history designed to match the U.S. mutual fund industry.

For each me {1, 2, 3,4, 5, 10} we simulate values for the conditional means My and the
survival rates X, assuming that returns R, are normally distributed with mean zero and standard
deviation 5%. We set the growth rate in the industry equal to 5.5% to match the growth rate in the
data. The choice of the critical return value b determines the average attrition rate for the sample.
We choose this critical level in one of two ways. Panel A of Table 6 allows b to vary across min

such a way as to maintain a sample average attrition rate of 3.5%, the average annual attrition rate
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in the data. Panels B and C fix b/\/m at -9.06%, which makes the sample average attrition rate for
the case m= 1 equal to 3.5%. For larger values of m, this choice of b leads to lower sample average
attrition rates.

We make two assumptions about the starting composition of the industry. Panels A and B
assume that all funds are myears old at time 1 which implies that the sample starts m-1 years after
the industry. Panel C assumes that all funds are one year old at time 1, which implies that the sample
and the industry start at the same time.

For a given subperiod length of k in the 34-year history, we compute average performance
measures for survivor-only samples using the simulated conditional mean returns and attrition rates.
In particular, when mis greater than 1, we do not impose conditions 1) or 2) of Proposition 2 but
rather let the simulations determine the conditional means and survival probabilities. Finally, for
each k, we average the performance estimate across all possible subperiods of length k. Table 2
reports this average (in percent) for k=1, 2, 3, 4, 5, 10, and 30, and the change in this average (in
basis points) for kK going from 30 to 31, 31 to 32, 32 to 33 and 33 to 34.

Consistent with Proposition 1, all three panels show that the survivorship bias in the average
performance is constant across K for m= 1. Turning to the cases with m>1, the first two panels of
Table 2, which have only m-year-olds at time 1, show that the bias uniformly increases in sample
period length k for m> 1. In contrast, Panel C only has one-year-olds at time 1, and the intuition
described earlier causes the sample average as a function of K to start declining for k close to 34.
However, even in this extreme case in which the sample starts with all one-year-olds, the largest
decline for a one-year increase in K is only 0.04 basis points. Thus, we conclude that the

counterintuitive effects of increasing the sample period length discussed in the previous subsection
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are not likely to play an important role in realistic settings like the U.S. mutual fund industry.
C. Evidence

We now examine the relation between average performance bias and sample period length
in the data. Brown and Goetzmann (1995) find that past annual performance out to at least 3 lags
affects fund survival, though in a more complicated fashion than the multi-period rule described in
subsection 3.A. above. The calibration results suggest that the Proposition 2 effect is likely to
outweigh the counterintuitive effects in realistic settings. Nevertheless, we would like to assess
whether the calibration results still apply qualitatively to the U.S. mutual fund industry, despite the
additional complexity of the empirical survival rule. We would also like to measure the magnitude
of the bias in average performance, as a function of the sample length. We find that the empirical
relation between the bias and the sample length is strong and positive, as the calibration results
suggest.

We consider all the possible samples with end-of-sample conditioning that might be
assembled from our database over the 1962 to 1995 period. For example, a researcher might
assemble a five-year sample in 1972 or a ten-year sample in 1985. For each sample period length
k, we consider all the possible (usually overlapping) annual return samples, and estimate the bias in
average annual group-adjusted return induced by including only survivors. We report the average
end-of-sample bias across all possible k-year samples. We also calculate correlation-adjusted
standard errors assuming that the survivor bias in annual sample equal-weighted return is
independent and identically distributed."

Table 3 shows that the survivor bias increases in the sample length. For a survivor-biased

sample of only one year, the bias in average return is only 0.07%, whereas the bias is 0.37% per year
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for survivor-biased samples of five years. For samples greater than fifteen years, the hypothesis that
survivor bias is 1% per year is not rejected. So consistent with the calibration results in the previous
subsection, the bias is an increasing concave function of sample length that is virtually flat at
sufficiently long sample lengths. Figure 1 plots the survivor bias as a function of the sample length.
For time periods of fifteen years or longer, 1% is probably a good approximation of the bias in mean

annual performance estimates introduced by end-of-sample conditioning.

3. Survivor and L ook-Ahead Bias Effects on Estimates of Persistencein Performance

A Theory

Persistence is defined as a positive relation between performance in an initial ranking period
and a subsequent evaluation period. Brown, Goetzmann, Ibbotson and Ross (1992) show that if
mutual fund returns are independently distributed with the same mean but differing variances, and
if a single-period survival rule causes fund disappearance, then tests on surviving samples show
spurious persistence. Conditional on making the ranking-period cut, higher volatility funds have
higher means. In a sample of survivors, the same high volatility funds tend to win in the subsequent
evaluation period. Brown, et al. (1992) also demonstrate a spurious reversal effect. In the absence
of cross-sectional dispersion in volatility and in the presence of a multi-period survival rule,
survivorship bias causes spurious reversals instead of persistence in performance. A multi-period
survival rule removes loser-losers in greater proportion than winner-losers, loser-winners, or winner-
winners, leaving the sample more heavily weighted toward reversers. Grinblatt and Titman (1992)
make a similar argument. Carpenter and Lynch (1999) study these effects when both cross-sectional

dispersion in fund volatility and a multi-period survival rule are present. They find that although the
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spurious persistence effect stemming from cross-sectional dispersion in volatility is always at work,
the reversal effect tends to dominate when the multiple-period survival rule is in force. Which of
the various effects dominates in the data depends on the nature of real survival rules and the degree
of cross-sectional dispersion in volatility.

B. Evidence

This section studies the effect of end-of-period and look-ahead bias on the persistence tests
of Hendricks, Patel and Zeckhauser (1993) and Carhart (1997) in our sample of U.S. mutual funds.
Annually, we form ten equal-weighted portfolios of mutual funds sorted on either lagged return or
lagged 4-factor alpha. We hold the portfolios for one year, then re-form them. This yields a time-
series of monthly returns on each portfolio from 1962 to 1995 less the initial performance estimation
period. The performance measures are one-year return, five-year return, and three-year estimates of
alpha from the 4-factor model. Funds disappearing during the ranking period are not used to
determine the performance deciles, but if a fund disappears during the evaluation period, its returns
are included in the decile performance averages right up until the time the fund disappears. At that
point, its decile portfolio is re-weighted equally across the remaining funds.

Panel A of Table 4 reports tests of persistence in fund returns and 4-factor alphas for three
different samples. The “full” sample includes all returns on disappearing funds in our database.
Consistent with Carhart (1997), the full sample portfolios demonstrate strong persistence in mean
return, most of which is explained by the 4-factor model. The end-of-sample-biased portfolios show
less persistence. Spreads in mean return and 4-factor model performance shrink considerably
relative to the full sample, and the statistical significance diminishes as well.'? The look-ahead

biased sample requires that funds survive a look-ahead period after portfolio formation that is equal
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in length to the ranking period. That is, the lagged one-year results include only funds surviving a
full year after sorting on the previous year’s return, and the lagged five-year sample requires survival
for an additional five years after sorting." Using the look-ahead biased sample changes the inference
relative to the full sample only for the five-year returns-sorted portfolios, the longest look-ahead
period.

Finally, we undertake Hendricks, Patel and Zeckhauser’s (1996) test for spurious persistence
due to survivorship. The HPZ J-shape t-statistic is the t-statistic on the linear term of a quadratic
regression of the evaluation period portfolio rank on the ranking period portfolio rank. Under the
hypothesis that performance persists spuriously due to survivorship, the HPZ J-shape t-statistic
should be reliably negative. However, Carpenter and Lynch (1999) present simulation evidence that
the HPZ J-shape t-statistic is rarely reliably positive unless performance is truly persistent. We find
that the HPZ J-shape t-statistics are all positive and often significant in our survivor-biased samples.

Myers (2001) finds that persistence in pension fund performance is attributable to differences
in fund returns across fund styles rather than within a style. To investigate this possibility for mutual
funds, Panel B of Table 4 repeats the tests of Panel A using group-adjusted returns instead of raw
returns to measure evaluation-period performance. We include 4-factor alphas for group adjusted-
returns to capture some of the elements of fund style that grouping by fund objective might miss.'*
In general, the evaluation period’s decile spreads for both the group-adjusted returns and their 4-
factor alphas are of magnitudes similar to those for the raw returns and their 4-factor alphas,
respectively. This suggests that the persistence in raw returns and their four-factor alphas reflects
more than just differences in fund style.

To summarize, both the end-of-sample and look-ahead conditioning reduce the degree of
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persistence regardless of whether the performance measure is group-adjusted or not. The downward
bias in the persistence measures induced by survivor conditioning is consistent with the theory, given
the multi-period nature of the survival rule documented by Brown and Goetzmann (1995). Since
fund performance exhibits persistence in all three samples, our results provide further evidence that

the performance of U.S. mutual funds is truly persistent.

4. Effectsof Survivor Biason Cross-Section Tests

A Theory and Evidence

Survivor-only conditioning can affect estimates of the cross-sectional relations between fund
performance and fund characteristics, but only when the fund characteristics in question are related
to the survivor bias in performance. The direction and magnitude of the characteristic’s impact on
the performance bias determine the direction and magnitude of the slope coefficient bias in the cross-
sectional regression. If the survivor bias in performance is positively related to the fund
characteristic, the characteristic’s slope coefficient in the cross-sectional regression also possesses
positive bias in the survivor-only sample. Conversely, if the performance bias is negatively related
to the characteristic, the slope coefficient is downward biased. The biases in cross-sectional
regressions introduced by survivor conditioning are an example of sample selection, or incidental
truncation, which has been the subject of an enormous recent literature, both theoretical and
applied."

To illustrate the problem, we run pooled time-series, cross-sectional regressions of annual
group-adjusted returns (as defined in section 1) on five explanatory variables: net expense ratio,

relative turnover, lagged relative total net assets (TNA), lagged maximum load fees, and lagged
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annual group-adjusted returns. The fund’s relative TNA at the end of t is the fund’s TNA divided
by the average TNA of all other funds on that date. The fund’s relative turnover is its modified
turnover over the average modified turnover of all funds that year.'® The fund’s maximum load fee
in year t is the sum of maximum front-end, back-end and deferred sales charges in that year.

We run two sets of regressions. In the first set, there is one simple regression per explanatory
variable, whereas in the second set, the five explanatory variables are taken together in a multiple
regression. Within each set, we run two regressions. The first regression uses the “full” sample and
is a Seemingly Unrelated Regressions model (SUR). The full sample uses all available returns prior
to a fund’s disappearance. A fund’s year-y+1 return is deemed available if we observe its TNA,
expense ratio and sales loads in year y. Since a fund does not typically have a full-year return in its
year of disappearance, it is not possible to run an OLS regression with full-year return as the
dependent variable and still include all available monthly returns. Instead, the SUR model consists
of twelve regressions with the twelve separate monthly returns in fund-year y+1 as the dependent
variables. For each independent variable, we sum the coefficients across the twelve regressions to
get a full sample slope coefficient for annual return as the dependent variable.

By contrast, the second regression uses the “5-year look-ahead” sample and uses the fund’s
annual y+1 group-adjusted return as the dependent variable. The 5-year look-ahead sample includes
only the available year-y+ 1 returns of funds that did not disappear in years y+1 through y+5. The
second regression is OLS.

The slope coefficients from the simple regressions on each explanatory variable are in the
first two columns of Table 5 while the slope coefficients from the multiple regression are in the fifth

and sixth columns. T-statistics for significant differences from zero are below the coefficients."’
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The full sample results indicate a coefficient on the contemporaneous expense ratio which is
insignificantly different from -1 in both the simple and multiple regressions. This result indicates
a 1:1 tradeoff between performance and expenses (i.e., more expensive funds do not perform better,
they are just more expensive). Consistent with the persistence results in the previous section, the
coefficient on lagged group-adjusted return is significantly positive in both regressions for the full
sample. Most other coefficients are either insignificant or not robust across the two specifications.
For example, the positive and significant simple relation between lagged fund size and group-
adjusted returns disappears in the multiple regression.

With regard to the effects of survivor conditioning, Table 5 shows that the regression
coefficients from the 5-year look-ahead sample are very different from those obtained using the full
sample. For example, the simple regression slope on relative TNA goes from being positive and
significant in the full sample to negative and insignificant in the 5-year look-ahead sample. The
multiple regression slope on expense ratio declines from -1.150 to -0.440 going from the full to the
5-year look-ahead sample. While this slope is significantly different from 0 but not -1 in the full
sample, the converse is true in the survivor-only sample.

For a given fund characteristic, the direction and magnitude of the bias in the slope
coefficient is determined by the correlation of the characteristic with the survivor bias in
performance. The results of a probit analysis described in Appendix B can be used to infer the
correlation. From Table 6, we see that the probability of disappearance during years y+ 1 through y+5
is negatively related to fund size at the end of y, holding other fund characteristics fixed. This
suggests that the survivor bias in performance is likely to be decreasing in fund size. This implies

a negative survivor bias in the slope coefficient on fund size, which is exactly what Table 5 shows.
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A similar argument explains the positive survivor bias in the coefficient on net expense ratio.
B. Heckit Correction

Heckman (1976, 1979) develops a correction for incidental truncation that has been used in
a variety of applications. It has become a standard technique to adjust for sample selection. We
would like to assess its ability to correct for the effects of survivor conditioning in the cross-sectional
regressions. To this end, we run a third regression which uses the “5-year look-ahead” sample and
uses the fund’s annual y+1 group-adjusted return as the dependent variable. This regression
implements the two-stage “Heckit” procedure by adding, as an additional regressor, the inverse Mills
ratio, commonly denoted A. The inverse Mills ratio is obtained from a probit model that predicts
disappearance in years y+1 through y+5 using variables available at the end of year y. Details of the
probit are contained in Appendix B. Since we have the full sample, we can assess the ability of the
Heckit estimator to correct for survivor biases in the sample with 5-year look-ahead conditioning.

The cross-sectional regression results using the Heckit procedure are also reported in Table
5. The Heckit procedure generally moves both the point estimates and significance levels toward
those for the full sample in the multiple regression, but not in the simple regressions. An explanation
for this finding requires an examination of the loadings on A. Conditioning on fund characteristics
available at the end of year y, we expect a fund’s return in year y+1 to be positively correlated with
the fund’s probability of survival in years y+1 to y+5. Consequently, theory tells us that the
coefficient on A is positive. But while the loading on A is positive and significant in the multiple
regression, it is negative in all but one of the simple regressions, the exception being the one with
lagged group-adjusted return as the independent variable.

Now the Heckit A is negatively related to the probit’s predicted survival probability. Since
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the probit results in Table 6 indicate that lagged group-adjusted return is an important predictor of
5-year survival, it follows that Heckit A is negatively related to lagged performance. From Table 4,
lagged performance is strongly positively related to current performance. Consequently, the negative
relation between lagged performance and A may cause cross-sectional regressions that omit lagged
performance to load negatively on A. Thus, the simple regressions that do not include lagged
performance suffer from an omitted variable problem. Our results suggest that such misspecification
may be a serious concern when attempting to use the Heckit procedure to control for survivor biases

in cross-sectional regressions.

5. Summary and Conclusions

Evidence suggests that funds disappear following poor multi-year performance. Using
Carhart’s (1997) sample of U.S. mutual funds, we demonstrate both analytically and empirically that
this survival rule typically causes the bias in estimates of average annual performance to increase in
the sample length. At the same time, our results provide a warning that the nature of the biases
imparted can be complicated. In our sample, the bias is economically small at 0.07% for one-year
samples, but a significantly larger 1% for samples longer than fifteen years. In tests of mutual fund
performance persistence, conditioning on survival weakens the evidence of persistence. This result
is again consistent with the evidence of a multi-period survival rule in effect for the U.S. mutual fund
industry.

We also explain how the relation between performance and fund characteristics can be
affected by the use of a survivor-only sample and show that the magnitudes of the biases in the slope

coefficients are large for fund size, expenses, turnover and load fees in our sample. Many areas of
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finance run cross-sectional regressions with performance as the independent variable. The use of
a survivor-only sample may seriously bias such regressions. For example, researchers often relate
cross-country differences in equity-market performance to cross-country differences in equity-market
characteristics. Our analysis suggests that data unavailability for failed equity markets can have
important ramifications for such comparisons, particularly if the characteristics in question are
related to survival.

Researchers forced to use survivor-only samples need to consider carefully the likely impact
of using such samples on the test statistics of interest. It would seem that finance researchers are
often in this position. For example, Goetzmann and Jorion (1999) document how equity market
disappearance is conditioned upon a downward drift in performance over time, which suggests that
survivor biases are likely to be a problem for empirical studies using international data. Our work
suggests that both the nature of the survival rule and the sample period length are likely to be

important when attempting to characterize survivorship biases.
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APPENDIX A
Proof of Proposition 2:
First, notice that only funds that are at least t years old at T have a return at time T+1-t.

Therefore,

J T
_E V\\/j,T ut,j—m
_ =t

T
T ®
T
2 W
j=t
where J is the age of the oldest funds alive at T. As 7t increases, increasingly younger cohorts are
omitted from the summation.

Start with a k-period sample ending at time T . Its survivor-biased mean is ﬁl To see the
effect of lengthening the sample period, we could either add a year to the end of the sample period
and compare ﬁl to ﬁl:ll , or else add a year to the beginning of the sample period and compare ﬁl to
ELI . With the fund industry in a steady-state, these are equivalent and so for expositional

convenience, we consider the case of adding a year to the beginning of the sample period.

Assumptions 2) and 3) allow us to write WJTT in the following way:

T T 1)t _
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9
T x |/ L ©)
= Wit 1+g J, 1I=m.

Substituting this expression into (8) and exploiting assumption 1) gives the following expressions

for the cross-sectional survivorship-biased mean for time T+1-1:
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fort=1,2, ..., m1; and,

WTTLTE Z ( 'X ]J) (11)

for > m-1. Under the assumption that the ,; are increasing in I, it follows from (10) that uLl IS
increasing in t fort =1, 2, ..., m. Moreover, equation (11) shows that uLl _, 1s constant for T >m.

Thus, ﬁz must be increasing in K for all k.

Q.E.D.
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APPENDIX B
Details of the Heckit Probit.

For each year y, we collect all funds alive at the end of that year and set SURV equal to zero
if the fund disappears in years y+1 through y+5. Otherwise, SURV is set equal to one. To predict
the value of SURV, we use variables that describe relative fund size, management pricing, past
performance, new money flow, and factor loadings. We include the relative TNA of the fund at the
end of y since the fixed costs of running a fund suggest a smaller probability of survival as the
relative TNA of the fund declines. We also include the fund’s group-adjusted return for years y-4
to y to capture the effects of past performance and the same lags of the fund’s relative net flow to
capture the effects of relative net new investment. The fund’s relative net flow in year t is the fund’s
net flow minus the average net flow for other funds that year. To avoid throwing out funds that
disappear within five years of inception, we set both of these to zero for lag L if one of them does
not exist for this lag, and set the indicator variable MISS(y-L) to one. Otherwise, we set MISS(y-L)
to zero. Management pricing is represented by the fund’s net expense ratio in year y, and the fund’s
maximum load fee. Coefficients from the four-factor regression of equation (1) are also included
as predictive variables since Table 1 suggests that four-factor loadings differ across survivors and
nonsurvivors, at least on the SMB and HML factors. The regression is run over the five years ending
with the end of y-1, and requires at least 30 observations. If there are not 30 observations then the
coefficients are set to zero, and the variable CMISS(y-1), which is otherwise zero, is set to one. The

probit results are reported in Table 6.
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ENDNOTES

1. Myers (2001) finds this empirically for pension funds.

2. Myers (1999) and Coggin and Trzcinka (2000) examine survivor biases associated with
U.S. pension funds. Myers (1999) finds that end-of-sample conditioning reduces persistence

measurcs.

3. Brown and Goetzmann (1997) document that some funds game their stated objectives to
improve their relative performance, so we reconstruct the annual series of stated objectives to
remove short-term objective “flips.” In our data set, the change in benchmark increases prior-
year’s group-adjusted performance an average of only 0.61% (t-statistic of 1.63), considerably

less than the 9.8% reported by Brown and Goetzmann.

4. End-of-sample conditioning can be thought of as look-ahead conditioning with longer

look-ahead periods for earlier reference dates.

5. Since mergers and liquidations need shareholder approval, these reorganizations require
at least several months to complete. Thus, missing final returns probably do not differ
substantially from the prior observed returns on these funds. The evidence from Elton, Gruber
and Blake’s (1996) sample supports this conclusion: Marty Gruber, in a personal
communication, indicates that the final partial-month return on merged funds does not
significantly differ from the average nonsurvivor’s return. Of greater concern is the 250 funds
without exact termination dates, particularly the 53 without any return data. Since these 53 are
likely non-survivors, the lack of any return data imparts a survivorship bias to the measures
obtained for the full sample. As a consequence, comparisons of the full sample to the survivor-

only sample are likely to understate the effects of survivor-only conditioning for the U.S. mutual
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fund industry.

6. By contrast, Elton, Gruber, and Blake (1996) find an attrition rate of only 2.3% in their
sample. However, Elton et al. (1996) study only a single cohort of funds, so each year’s sample

requires funds to have survived some time in the past.

7. We obtain only annual returns on many nonsurvivors. Excluding these funds from our
monthly portfolio returns upwardly biases performance estimates. To mitigate this potential bias,
we compare the average annual return on all funds to those with only monthly returns. If they
differ for any year, we add one-twelfth of this difference equally to all months of that year (using
continuously compounded returns.) The difference in mean annual return is typically less than

0.20%.

8. The “group-adjusted” measure employed above exhibits cross-correlations by
construction. However, if the sizes of the groups are large enough, these cross-correlations are

likely to be small.

9. The analysis in this section continues to hold for negative growth rates. A negative
growth rate means new funds arrive more slowly than existing funds disappear. At the extreme,
no new funds enter the industry, and the industry growth rate is at a minimum determined by the
attrition rates. To avoid violating this lower bound, we assume the growth rate here is non-

negative.

10.  An appendix is available from the authors that constructs examples in which the sample

mean is not increasing in the sample length.

11.  We assume the database is compiled one year after the last year of the database which

simplifies the categorization of survivors and nonsurvivors. The standard error of the survivor
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bias for a sample period of length k is calculated as ( = ! . ] ( 2 ( L) + T—2(n—1)) ‘d(R),
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where T is the number of years in the database, n=Kif k <

std(R) is the standard deviation of the survivor bias in annual sample equal-weighted return.

12.  Myers (2001) finds this in pension funds, too.

13. This is the bias simulated by Brown, Goetzmann, Ibbotson and Ross (1992).

14. A group-adjusted return can be regarded as the return on a zero-investment portfolio that
is long the fund and short the group.

15. A good summary of recent theoretical work addressing incidental truncation can be found
in Greene (2000). An important finance application is the event study literature since many firm

events are discretionary (see, for example, Prabhala, 1997).

16.  Turnover is the minimum of purchases and sales divided by average TNA, while our
modified turnover measure adds one half of the absolute value of our flow variable to turnover.
Our flow variable is similar to Sirri and Tufano’s (1998) flow measure except that it adjusts the
numerator for TNA changes due to merger, and it uses average monthly assets instead of
beginning assets in the denominator. We use average monthly assets in the denominator so that

small, rapidly growing funds are not outliers.

17.  For the SUR model, the t-statistic is derived from the Wald statistic for the hypothesis
that the summed-up coefficient equals zero. By taking into account cross-regression correlation,
the SUR is accounting for autocorrelations in monthly fund return within the year when

calculating the Wald statistic.
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Tablel

Performance of surviving and nonsurviving mutual funds

Survivors are those funds still operating December 31, 1995 and nonsurvivors are funds disappearing before this date. Cross-sectional average
monthly performance is the cross-sectional average of the performance estimates of individual funds based on the complete time series of their
returns. Group-adjusted performance is the difference between a fund's return and the average return on all other funds with the same declared
fund objective. 4-Factor alpha is the intercept from a time-series regression of a fund's excess returns on the 4-factor model factor-mimicking

portfolios over the fund's complete history. The four factors are RMRF, SMB, and HML Fama and French's (1993) market proxy and

factor-mimicking portfolios for size and book-to-market equity, and PRLYR, a factor-mimicking portfolio for one-year return momentum. The
right-hand panel contains 4-factor model estimates for portfolios of funds, with t-statistics in parentheses.

Number  Cross-sectional average 4-Factor model estimates for equal-weighted mutual fund portfolios
of funds  monthly performance
Group- 4-Factor Loadings on Adjusted
adjusted  alpha Alpha RMRF VB HML PRIYR  R-square
All funds 2,071 -0.03% -0.14% -0.15% 0.89 0.33 -0.06 0.09 0.978
(-4.17) (105.65) (25.66) (-4.36) (9.09)
Survivors 1,346 0.10% -0.03% -0.07% 0.90 0.29 -0.05 0.09 0.984
(-2.34) (117.57) (26.21) (-4.62) (10.87)
Nonsurvivors 725 -0.26% -0.34% -0.33% 0.88 0.37 -0.07 0.09 0.966
(-7.42) (74.96) (21.05) (-3.11) (6.30)
Survivors - all funds 0.13% 0.11% 0.08% 0.00 -0.04 0.01 0.00 0.208
(6.52) (0.59) (-9.14) (2.85) (0.05)
Nonsurvivors by reason
Merged with another fund 417 -0.19% -0.29%
Liquidated 258 -0.45% -0.54%
Other, self-selected 14 -0.18% -0.28%
Other, not self-selected 36 0.03% NA




Table2
Survivor biasin average performance as a function of the sample period length: Calibration to the U.S. mutual fund industry

For each m-year attrition rule, me {1, 2, 3, 4, 5, 10}, and each subperiod of length k years in the 34-year history, we compute average
performance measures for survivor-only samples using simulated conditional mean returns and attrition rates. We assume that annual fund
returns are normally distributed with mean zero and standard deviation 5%. We set the growth rate in the industry equal to 5.5% to match the
growth rate in the data. Then, for each given sample period length k, we average the performance estimates across all possible subperiods of
length k. This average is reported for k=1, 2, 3, 4, 5, 10, and 30, while the change in this average is reported for k going from 30 to 31, from 31
to 32, from 32 to 33 and from 33 to 34.

Panel A: Mutual fund industry consists entirely of mryear-olds at time 1. Scaled cutoff b/ \/ﬁ varies with M to maintain a sample attrition rate of 3.5%.

m Bias (in percent) for sample length of: Change in bias (in basis points) from b/\/ﬁ Death
increasing sample length from: rate (in
1 2 3 4 5 10 30 30to31 31to32 32t033 33to34 percent)
1 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.00 0.00 0.00 0.00 -9.06 3.5
2 0.29 0.42 0.45 0.47 0.48 0.50 0.51 0.03 0.03 0.04 0.09 -8.45 3.5
3 0.24 0.35 0.45 0.49 0.51 0.55 0.58 0.06 0.06 0.09 0.19 -7.80 3.5
4 0.22 0.30 0.39 0.48 0.51 0.58 0.63 0.09 0.10 0.15 0.29 -7.18 3.5
5 0.20 0.27 0.34 0.41 0.50 0.60 0.66 0.12 0.14 0.21 0.39 -6.59 3.5

10 0.14 0.18 0.21 0.25 0.29 0.53 0.73 0.35 0.40 0.52 0.91 -4.03 3.5




Table 2 - continued

Panel B: Mutual fund industry consists entirely of m-year-olds at time 1. Scaled cutoff b/ \/ﬁ is fixed and sets the attrition rate for m=1 to 3.5%.

m Bias (in percent) for sample length of: Change in bias (in basis points) from b/\/ﬁ Death
increasing sample length from: rate (in
1 2 3 4 5 10 30 30to31 31to32 32to33 33to34 percent)
1 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.00 0.00 0.00 0.00 -9.06 3.5
2 0.23 0.34 0.37 0.38 0.39 0.41 0.42 0.02 0.02 0.03 0.07 -9.06 2.7
3 0.16 0.23 0.31 0.33 0.35 0.38 0.40 0.04 0.04 0.06 0.12 -9.06 22
4 0.12 0.17 0.22 0.28 0.30 0.34 0.37 0.06 0.06 0.09 0.15 -9.06 1.8
5 0.10 0.14 0.17 0.21 0.25 0.31 0.34 0.07 0.09 0.11 0.17 -9.06 1.5
10  0.05 0.06 0.07 0.09 0.10 0.18 0.25 0.15 0.16 0.18 0.23 -9.06 0.8

Panel C: Mutual fund industry consists entirely of 1-year-olds at time 1. Scaled cutoff b/\/ﬁ’] is fixed and sets the attrition rate for m=1 to 3.5%.

m Bias (in percent) for sample length of: Change in bias (in basis points) from b/\/ﬁ Death
increasing sample length from: rate (in
1 2 3 4 5 10 30 30to31 31to32 32to33 33to34 percent)
1 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.00 0.00 0.00 0.00 -9.06 35
2 0.23 0.34 0.37 0.38 0.39 0.41 0.42 0.01 0.00 -0.02 -0.04 -9.06 2.7
3 0.15 0.23 0.30 0.33 0.34 0.38 0.40 0.02 0.01 -0.01 -0.03 -9.06 2.1
4 0.11 0.16 0.21 0.27 0.29 0.34 0.37 0.03 0.01 0.01 -0.02 -9.06 1.6
5 0.09 0.12 0.16 0.20 0.25 0.30 0.34 0.04 0.03 0.02 -0.00 -9.06 1.3

10 0.03 0.05 0.06 0.07 0.09 0.17 0.24 0.09 0.08 0.07 0.05 -9.06 0.6




Table3
Estimates of survivor biasin average performance as a function of the mutual fund sample period length

Mean annual group-adjusted return estimates from a survivor-biased sample and from a complete sample and the implied survivor bias. The

table averages all possible biased and unbiased samples of a given sample period length that might be assembled from our database over the 1962
to 1995 period. Survivor bias is the difference between the mean annual group-adjusted return estimates in the two samples. A fund’s group-
adjusted return for a month is its total return that month minus the equal-weighted average return of funds with the same objective. The table also
reports correlation-adjusted standard errors in the estimate of survivor bias, assuming independent and identically distributed annual returns.

Mean annual return estimate

Sample period Number Survivor-biased Unbiased Survivor Standard
length (years) of samples sample sample bias error

1 34 0.31% 0.24% 0.07% 0.02%

5 30 0.59% 0.21% 0.37% 0.06%
10 25 0.78% 0.12% 0.66% 0.09%
15 20 0.93% 0.08% 0.85% 0.12%
20 15 1.02% 0.08% 0.94% 0.14%
25 10 1.19% 0.12% 0.99% 0.14%
30 5 1.25% 0.21% 1.04% 0.13%

34 1 1.30% 0.24% 1.06% 0.12%




Table4
The effects of survivorship on persistencetests

Persistence measures for full, end-of-sample conditioned, and look-ahead conditioned samples. Mutual funds are sorted on January 1 each year
into decile portfolios based on a lagged performance measure. The performance measures are 1-year return, 5-year return and 4-factor alpha
measured over the prior 3 years. The portfolios are equal-weighted monthly so the weights are readjusted whenever a fund disappears. Funds
with the highest lagged performance measure comprise decile 1 and funds with the lowest comprise decile 10. The Spearman nonparametric test
measures the correlation in rank ordering of post-formation portfolio performance measures. Here, the null hypothesis is that the performance
measures are randomly ordered. The HPZ J-shape t-statistic is the t-statistic for the linear term in a quadratic regression of post-formation rank
on pre-formation rank. A reliably negative t-statistic is consistent with spurious performance persistence due to survivorship. In Panel A,
holding-period returns are total returns. In Panel B, holding-period returns are group-adjusted: from each fund return we subtract the average
return of its type (e.g. Aggressive Growth) that month.

Panel A: Returns

Decile 1-10 spread Monthly 4-factor model alphas

Mean monthly Decile 1-10 Spearman test HPZ J-shape
Portfolio sorting variable return t-stat Decile 1 Decile 10 spread t-stat p-value t-stat
Full sample
1-Year returns 0.63% 4.52 -0.13% -0.37% 0.24% 1.79 0.148
5-Year returns 0.23% 2.09 -0.10% -0.34% 0.24% 2.06 0.025
3-Year 4-factor alpha 0.36% 5.04 -0.01% -0.36% 0.36% 4.60 0.000
End-of-sample conditioned sample
1-Year returns 0.52% 3.93 -0.05% -0.15% 0.10% 0.84 0.204 1.74
5-Year returns 0.18% 1.85 -0.07% -0.19% 0.12% 1.15 0.027 1.48
3-Year 4-factor alpha 0.19% 2.66 0.01% -0.17% 0.18% 2.30 0.000 2.40
L ook-ahead conditioned sample
1-Year returns 0.62% 4.44 -0.14% -0.36% 0.21% 1.60 0.174 1.76
5-Year returns 0.20% 1.84 -0.11% -0.29% 0.17% 1.34 0.052 0.38

3-Year 4-factor alpha 0.34% 4.73 0.00% -0.34% 0.33% 4.07 0.000 1.80




Table4 - continued

Panel B: Group-adjusted returns

Decile 1-10 spread

Monthly 4-factor model alphas for group-adjusted returns

Mean monthly

group-adjusted Decile 1-10 Spearman test
Portfolio sorting variable return t-stat Decile 1 Decile 10 spread t-stat p-value
Full sample
1-Year returns 0.66% 6.27 0.07% -0.29% 0.36% 3.71 0.002
5-Year returns 0.29% 3.95 0.07% -0.20% 0.27% 3.69 0.000
3-Year 4-factor alpha 0.31% 5.23 0.17% -0.20% 0.37% 5.90 0.000
End-of-sample conditioned sample
1-Year returns 0.48% 5.50 0.14% -0.04% 0.18% 2.38 0.077
5-Year returns 0.21% 3.34 0.12% -0.03% 0.15% 2.36 0.000
3-Year 4-factor alpha 0.20% 3.96 0.20% -0.04% 0.24% 4.54 0.037
L ook-ahead conditioned sample
1-Year returns 0.60% 5.89 0.07% -0.24% 0.31% 3.33 0.003
5-Year returns 0.22% 2.81 0.10% -0.06% 0.16% 2.15 0.000
3-Year 4-factor alpha 0.28% 4.39 0.19% -0.15% 0.34% 5.21 0.002




Table5
The effects of survivorship on cross-section regressions

Simpleregressions. For each of five explanatory variables we run three pooled cross-sectional, time-series
regressions in which the dependent variable is a fund’s group-adjusted return in year y+ 1, with y+ 1 ranging from
1966 though 1991. Group-adjusted return is return minus the average return of funds with the same objective. The
first regression uses the “full” sample and is a Seemingly Unrelated Regression. The “full” sample includes any
non-missing return for which we also observe the value of the indicated explanatory variable together with the
fund’s total net assets (TNA), expense ratio, and sales loads, if any, in year y. The independent variable is listed in
the first column, and the dependent variables are the twelve separate monthly group-adjusted returns in year y+1,
excluding months with missing returns. The values reported are the sums of the twelve slope coefficients, and the t-
statistic derived from the Wald test that the slopes sum to zero is reported below. The second and third regressions
use the “5-year look-ahead” sample and use the fund’s annual y+1 return as the dependent variable. The “5-year
look-ahead” sample includes a fund’s year-y+ 1 return if the fund did not disappear in years y+ 1 through y+5 and if
its total net assets, expense ratio, and sales loads in year Yy are available. The second regression is OLS. The third
regression is the same as the second except we include the A-function from the two-stage Heckman-correction
procedure, Heckit, using the second probit model of Table 5. This probit model predicts disappearance in years y+1
through y+5 using group-adjusted return and relative flow in years y-4 through y, multiple regression coefficients on
the four factors of Carhart (1997), and expense ratio, sales loads, and relative TNA iny. In years when lagged
return, lagged flow, or Carhart factor coefficients are unavailable, these variables are set to zero and a dummy
variable indicates the data are missing. The coefficient on A is reported in the subsequent column. The three
regressions use the following explanatory variables: the expense ratio in year y+1, the relative turnover in year y+1,
the relative TNA at the end of year y, the maximum load in year y, and the group-adjusted return in year y.

Turnover is the minimum of purchases and sales divided by average TNA and relative turnover is a fund’s modified
turnover over the average modified turnover of all funds that year. Relative TNA is the fund’s TNA divided by the
average TNA of all funds that year. The maximum load is the sum of maximum front-end, back-end and deferred
sales charges. The t-statistics are below the coefficient estimates.

Multipleregressions: Each of three sets of simple regressions described above is arranged into a multiple
regression, with the five explanatory variables entering independently. The Selected Heckit regression also includes
the A-function from the probit; its coefficient is at the bottom. The t-statistics are below the coefficient estimates.

Simpleregressions Multiple regressions

Full S-year look-ahead Full S-year look-ahead
Independent variables SUR OLS Heckit HeckitA ~ SUR OLS Heckit

slope slope slope slope slope slope
Net expense ratio (y+1) -1.142  -0.850 -0.715 -0.012 -1.150  -0.440  -0.708

-11.41 595 -4.52 -2.01 -8.13 -1.75 -2.68

Relative turnover (y+1)/100  0.036  0.436 0.469 -0.013 0.110 0.407 0.388

0.47 3.20 3.41 -1.80 1.24 291 2.78
Relative TNA (y)/100 0.046 -0.003  -0.129  -0.035 -0.002  -0.039  0.015
1.92 -0.07 -3.42 -5.88 -0.10 -1.02 0.37
Maximum load (y)/100 0.020 0.011 0.017 -0.027 -0.034  -0.020  -0.044
1.03 0.42 0.65 -4.92 -1.64 -0.72 -1.50
Group-adjusted return(y) 0.169 0.170 0.170 0.001 0.147 0.150 0.165
20.44 15.60 14.79 0.15 16.48 12.27 12.62
Multiple regression Heckit A 0.029

3.27




Table6
Probit model of fund survival: Survival through the next fiveyears

Estimates of a probit model that predicts survival in years y+1 through y+5, for y from 1965 to 1990. A
positive coefficient on a variable indicates that the probability of survival goes up as that variable goes up.
The probit employs the following predictive variables: relative total net assets (TNA) at the end of year y,
group-adjusted returns in years Y through y-4, relative net flow in years Yy through y-4, net expense ratio in
year Y, maximum load in year Y, the coefficients from regressing fund returns on the four factors of Carhart
(1997) over the five years ending with y-1, and the dummy variables MISS(y), ..., MISS(y-4), and CMISS
(y-1). A fund’srelative TNA at the end of tis its TNA divided by the average TNA of all other funds on that
date. Its group-adjusted return in year t is its year-t return minus the return of other funds with the same
stated objective. Its relative net flow in year t is net new investment in the fund minus the average net new
investment in other funds that year, while its maximum load is the sum of the maximum front-end, back-end
and deferred sales charges in t. If there is insufficient data in year t to calculate either group-adjusted return
or relative net flow then both variables are set to zero and MISS(t) is set to one. Otherwise, MISS(t) is zero.
We require 30 observations for the Carhart four-factor regression and if there are not enough observations
then the coefficients are set to zero and CMISS(y-1), which is otherwise zero, is set to one. The number of
observations in the probit is 10704. The only requirements for a fund’s year Y to be included in the probit
are that relative total net assets at the end of Y, net expense ratio in year y and maximum load in year Yy be
available for that fund. P-values for significant difference from zero are to the right.

Independent variable Coefficient p-value
Intercept 1.113 <0.0001
Relative TNA (Y) 0.440 <0.0001
Group-adjusted return (Y) 1.800 <0.0001
Group-adjusted return (y-1) 1.271 <0.0001
Group-adjusted return (y-2) 1.044 <0.0001
Group-adjusted return (y-3) 0.713 0.0007
Group-adjusted return (y-4) 0.697 0.0017
Relative net flow (Y) 0.389 <0.0001
Relative net flow (y-1) 0.293 0.0048
Relative net flow (y-2) 0.212 0.0015
Relative net flow (y-3) -0.005 0.8094
Relative Net Flow (y-4) 0.032 0.6212
MISS (y) -0.359 <0.0001
MISS (y-1) -0.103 0.0749
MISS (y-2) -0.212 <0.0001
MISS (y-3) -0.351 <0.0001
MISS (y-4) -0.074 0.1590
Net expense ratio () -4.819 0.0009
Maximum load () -0.029 <0.0001
Coefficient on RMRF: b(y-1) 0.243 0.0089
Coefficient on SMB: S(y-1) -0.103 0.0686
Coefficient on HML: h(y-1) 0.182 0.0021
Coefficient on PR1LYR: p(y-1) -0.132 0.2341

CMISS (y-1) -0.269 0.0024




FIGURE LEGEND

Figurel

Survivor biasasa function of the sample period length

The figure plots the bias in average annual return estimates, introduced by conditioning on fund
survival to the end of the sample period, as a function of the length of the sample period. The
bias is the average over all possible sample periods of a given length that might be assembled
from our database over the 1962-1995 period. The dotted lines represent two-standard error

boundaries in the average bias.



Biasin average annual group-adjusted return

Figure 1. Survivor Biasin Average Performance asa Function of the
Sample Time Length

1.40%

1.20%

1.00% -

0.80% -

0.40% -

0.20% -

0.00%

5 10 15 20 25 30

Time length of sample (years)

35




