
A Framework for Reasoning about Animation
Systems

Eric Aaron, Dimitris Metaxas, Franjo IvanEiC, and Oleg Sokolsky

Department of Computer and Information Science
University Of Pennsylvania

200 South 33rd Street
Philadelphia, PA USA 19104-6389

{eaaron, dnm)Qgraphics.cis.upenn.edu, {ivancic, sokolsky)Osaul.cis.upenn.edu

Abstract. In this paper, we consider the potential for reasoning about
animations in the language of hybrid dynamical systems (i.e., systems
with both continuous and discrete dynamics). We begin by directly ap-
plying hybrid systems theory to animation, using a general-purpose hy-
brid system specification tool t,o generate multi-agent animations; this
application also illustrates that hybrid system models can provide sys-
tematic, modular ways to incorporate low-level behavior into a design for
higher-level behavioral modeling. We then apply the logical framework of
hybrid systems to animation: we formally state properties of animation
systems that may not be readily expressed in other frameworks; and we
mechanically check a collision-avoidance property for a simple race-like
game. This hybrid systems-oriented approach could improve our abil-
ity to reason about virtual worlds, thus improving our ability to create
intelligent virtual agents.

Some properties of animation systems cannot be readily verified merely by
watching a few graphical displays. As part of a motivating example, consider
an animation like the following one, in which an agent's locomotion consists of
three sequential segments. In the first segment, the agent tries to avoid obstacles;
it is steered by a complex non-linear system of differential equations that has
parameters to represent low-level attributes like aggression (how near a n agent
will get to an obstacle before starting to swerve around it). In the second segment,
the agent is in no danger of colliding with obstacles, so it instantaneously switches
t o a simpler, linear course that takes it to a final target. The third segment
begins upon it reaching its target: No matter where in time and space that goal
is achieved, the agent waits precisely one second before switching to another
behavior, perhaps literally swelling up with pride for successfully completing
its task. Given a set of parameter values for the non-linear steering in the first
segment, that animation system is fully determined. For such a fully determined
system, an absence of agent-obstacle collisions could be verified by viewing one
animation.

Consider now the task of verifying collision-avoidance for all the animation
systems that could result from different sets of parameter values. It might not be

possible to check that property simply by viewing a small number of graphical
displays, and we could certainly not watch every resulting animation. In cases
such as this, where we want to reason about properties that we cannot easily
see for ourselves, we might hope to ask for mechanical assistance. The first
step toward that goal, however, is a major one: We must know how to model
animation systems and state relevant properties formally and precisely. Once a
linguistic framework for modeling and specification has been selected, we can
investigate methods to assist us in reasoning.

To identify a candidate framework for reasoning about animation systems,
we return to the animation described above. It is a hybrzd dynamzcal system
(hybrzd system, for short), a combination of continuous and discrete dynamics;
the agent's behavior is continuous in each segment, punctuated by instantaneous,
discrete changes in behavior as it makes transitions between segments. There is
a formal theory of hybrid systems [2,10,27], and although that theory has been
employed in diverse application domains, animation is not typically considered in
the hybrid systems literature. Nonetheless, some animation systems are hybrid
systems, and hybrid systems theory can be applied to animation.

In this paper, we explore the potential for reasoning about animations in the
language of hybrid systems. We begin by directly applying hybrid systems theory
to animation, using the hybrid system specification and simulation tool CHARON
[7,8] to generate several animations (including one similar to the one described
in English above). This is a necessary preliminary; without demonstrating that
animation systems could be modeled in the theoretical framework of hybrid
systems, we could not use logics for hybrid systems to reason about animation.
As part of this demonstration, we show that a hybrid system model can provide
a systematic, modular way to incorp0rat.e sophisticated low-level behavior into
a design for higher-level behavioral modeling.

We then consider how logics for hybrid systems might be applied to anima-
tions. We begin by expressing several properties that may interest animators,
explicitly representing properties of time and reachability in space. Although
many properties of complex hybrid syst<ems are theoretically undecidable, there
are many significant decidable cases, and we use the verification tool HYTECH
[21] to mechanically check a result about a simple game-like animation.

UTe demonstrate our approach through a series of applications and experi-
ments involving multi-agent animations with actors, targets, and obstacles [3].

1 Applying Hybrid Systems Theory to Multi-agent
Animations

The presence of systems with both continuous and discrete dynamics is not
new in animation, but it is not always clear how these systems relate to well-
understood hybrid system models. In contrast, we make a strong connection
to existing hybrid systems theory by using the hybrid system tool CHARON 17,
81 to implement multi-agent animation systems. Because of that connection, we

are able to investigate the use of logics for hybrid systems (see section 3.1) as a
framework for reasoning about animation.

We base our animations primarily on the agent-steering method presented in
[17,18]. Below, we briefly review the tools we employed to create our animations
and discuss some issues particular to implementing an animation system as a
hybrid system in CHARON.

1.1 A Dynamical System for Agent Steering

There have been many approaches to guiding the behavior of autonomous agents.
Logicist, artificial intelligence-based techniques have been successfully used for
cognitively empowered agents 1251 and animated actors [16]; perception and
dynamics-based techniques [l l , 29,341 are often more readily able to adapt to
dynamic environments. Our particular approach to low-level agent navigation
-the continuous component of our hybrid animation system- is based on the
method in [17,18], a scalable, adaptive approach to modeling autonomous agents
in dynamic virtual environments. Like treatments of similar issues in the field of
behavioral robotics [21], we consider only two-dimensional motion, although the
mathematical foundations for three-dimensional navigation already exist [la].

Our animated worlds consist of three kinds of agents: actors , targe ts that rep-
resent actors' goals, and obstacles that actors attempt to avoid. All are graph-
ically drawn as spheres; for our purposes, it suffices to represent an agent by
its size, location, heading angle, and velocity.' There may be multiple actors,
obstacles, and targets in an animation system. Further, obstacles and targets
may be static and/or moving. These components provide a general conceptual
palette that can be used to express a broad range of behaviors. For instance, an
actor performing a multi-part task could be represented by its reaching a series
of targets in sequence, each target corresponding to a component subtask.

At the core of the mathematics underlying our animated worlds are non-
linear at t rac tor and repeller functions that represent the targets and obstacles
(respectively) in the system. Another non-linear system combines their weighted
contributions in calculating an actor's angular velocity, dynamically adapting to
real-time changes in the environment. Together, these non-linear systems gener-
ate natural-appearing motion, avoiding collisions and other undesirable behav-
iors. The agent heading angle q5 is computed by a non-linear dynamical system
of the form:

where fi,, and fobs are the attractor and repeller functions for the system, and
wtar and web, are their respective weights on the agent. (n is a noise term, which
helps avoid local minima in the system.)

The mathematical treatment in [18] admits a more complex representation of actors
than the one we use.

The weights themselves are determined by computing the fixed points of the
following non-linear system:

where the a and 7; parameters are designed to reflect conditions for the sta-
bility of the system. Many other parameters are also concealed in the terms
presented above. For instance, a repeller function fob, depends on parameters
that determine how much influence that obstacle will have on an actor.

This is only an overview of one significant part of the agent steering system.
There is considerably more detail to the system, including applications to three-
dimensional environments, dynamic control of forward velocity, and modeling of
low-level personality attributes such as aggression and agility. The above pre-
sentation, however, gives a feel for the kind of mathematics involved, suggesting
the complexity involved in implementing it. Further, it introduces the role pa-
rameters may play in agent behavior, a notion to which we return in section 3
when discussing reasoning about a parameterized class of animation systems.

1.2 Hybrid Systems and CHARON

By definition, a hybrid system is one that combines continuous and discrete
dynamics. Past domains of application for hybrid system models include de-
scriptions of biological processes [4], air-traffic management systems [26,33], and
manufacturing systems [31]. They occur frequently and naturally in many con-
tjexts and, because of this, they have received substantial attention by both
computer scientists and control theorists [1,2,10,27]. From a general, intuitive
perspective, any system characterized by discrete transitions between modes of
continuous control is a hybrid system. This includes several kinds of systems
that emerge in animation, from physical modeling of objects in a dynamic envi-
ronment to agent-steering.

There are several different formal models for hybrid systems. Net-based mod-
els such as Constraint Nets [35], for instance, have been acknowledged in liter-
ature on cognitive agents. We focus in particular on automata-theoretic models
such as hybrid automata [5,28]; the various kinds of automata differ in the
behaviors they are capable of representing. As a brief, non-technical introduc-
tion to this perspective, we consider a hybrid automaton as having: a set of
discrete states called control modes; a contznuous state space (a subset of Wn for
some n); and descriptions of how the system can evolve. There are constraints
both on the continuous evolution of the system within a control mode and on
the discrete transitions between control modes that the system might make. A
state of the overall system is a pair (control mode, continuous state). (For Inore
details on the mathematics and applicatioris of hybrid automata, see [5,9,13;
191.) Research and analysis of hybrid automata underlies practical tools such

as CHARON [7,8] and the model checker HYTECH [21]. For this paper, we use
CHARON to implement animation systems and HYTECH for ~er i f ica t ion.~

The architecture of a hybrid system in CHARON is expressed as hierarchi-
cal agents, a model conceptually similar to hybrid automata and hierarchical
reactive modules [6] . The key features of CHARON are:

Hierarchy. The building block for describing the system architecture is an agent
that communicates with its environment via shared variables. The building
block for describing flow of control inside an atomic agent is a mode. A
mode is basically a hierarchical state machine, i.e., it may have submodes
and transitions connecting them. CHARON allows sharzng of modes so that
the same mode definition can be instantiated in multiple contexts.

D i s c r e t e u p d a t e s . Discrete updates are specified by guarded actzons labeling
transitions connecting the modes. Actions may call externally defined Java
functions t o perform complex data manipulations.

C o n t i n u o u s u p d a t e s . Some of the variables in CHARON can be declared ana-
log, and they flow continuously during continuous updates that model pas-
sage of time. The evolution of analog variables can be constrained in three
ways: dzflerentzal constraints (e.g., by equations such as .i = f (x ,u)) , al-
gebrazc constraints (e.g., by equations such as y = g(x, u)), and znoarzants
(e.g., 1x - y(5 E) that limit the allowed durations of flows. Such constraints
can be declared at different levels of t,he mode hierarchy.

Modular features of CHARON allow succinct and structured description of
complex systems. (Similar features are supported by t,he languages SHIFT [I41
and STATEFLOW (see www . mathworks. com) .) Among other benefits, this mod-
ularity provides a natural-seeming structure for developing animation systems
with multiple levels of behavior.

2 Creating Animations as Hybrid Systems

Animation systems are implemented in CHARON using the key concepts noted
in section 1 . 2 . ~ Modes are created to represent continuous behaviors; particu-
lar continuous dynamics (e.g., the non-linear system described in section 1.1)
are represented as differential or algebraic constraints of a form such as diff
{ d(ang1e) = AngleFunction (angle,. . .)) . If constraints are necessary to
limit the time in a particular mode, they are represented as invariants such as
inv {~ond && ! Cond2 && distance(x, y)<=distance(x,z)). Guarded tran-
sitions between modes are presented in a straightforward trans from Model to
Mode2 when Cond do Effect syntax; when the guard Cond is true, the transi-
tion named trans is enabled, and if it is taken, statement Effect is executed
along with the system's jump from Model t o Mode2. The behavior of agents

We used HYTECH for verification because, as of this writing, the model checking
facilities for CHARON are still under development.
A more detailed description of the CHARON language is presented in [32].

follows from the systems described by modes. Each atomic agent is declared t o
begin in some mode, and it follows the behavior described there. The behavior of
a hierarchical agent is, of course, determined by the behavior of its sub-agents. In
this way, the underlying continuous mathematics and relations between modes
of behavior are explicitly represented in a CHARON program. Further, the mod-
ularity of CHARON code makes it easy to change one aspect of a system while
leaving others intact.

CHARON also generates numerical simulations of hybrid systems, which we
exploited in creating animations from CHARON system specifications. We simply
simulated our animation systems in CHARON, then used a small translation
routine (like a Perl script) t o format the output of those simulations so that a
previously developed application (developed for research outside of the context of
hybrid systems) could create graphical displays. Section 4 contains more details
and sample images of the animations we generated.

'The CHARON model of hybrid systems as hierarchical agents corresponded
neatly t o the high-level abstractions we considered when designing animations. In
addition, the explicit representation of high-level (discrete) and low-level (contin-
uous) processes made it straightforward to implement different kinds of cognitive
behavior or intelligence in our agents. For instance, constraints on low-level per-
ceptual capabilities (e.g., how far can an agent "see") or underlying behavioral
attributes (e.g., aggression) were explicitly represented in the code that controls
continuous behavior. Higher-level decisions to switch modes of behavior could
be explicitly represented by adding to the discrete dynamics; new modes could
represent new "states of mind."

3 Reasoning about Animation Systems

Some properties of games and other animation systems may not be verifiable
by viewing a single animation. For example, one might want to verify properties
of all possible executions of a parameterized or non-deterministic system. Even
within a fully determined system, properties about agents' relative speed and
precise distance may be too difficult to judge by eye. Indeed, merely finding a
formal language to express interesting properties of such systems may be non-
trivial.

This touches upon a motivatingobservation behind our research: nTell-known
logics for hybrid systems are capable of expressing properties of animation sys-
tems. In addition, there are practical model checkers -tools that can mechan-
ically verify some properties of simple hybrid systems- that we might apply
t,o animation systems. These model checkers have significant limitations; many
properties are theoretically undecidable, and as a practical matter, even decid-
able properties may only be feasibly checked in simple cases. Still, as we discuss
in section 5, there are approaches to reasoning about complex systems that allow
us t o circumvent some undecidability barriers.

In this section, we discuss more about logics for hybrid systems and how we
might apply them t o animation systems.

3.1 M o d a l Logic a n d P r o p e r t i e s of Multi-agent Animat ions

There are many modal and temporal logics that can be used to reason about
hybrid systems, such as C T L , LTL, and the p-calculus; significant research has
been devoted to the theory and applications of these logics ([I31 and [9] are good
surveys of recent work). For readers unfamiliar with fundamental modal logic
operators, we provide a brief re vie^.^

Modal logics are used to reason about possible worlds and properties of pos-
szbility and necessity such as "Proposition P is true in all possible worlds" or
"Proposition P is false in some possible world." For our present application, we
consider a "world" to be a "state of a hybrid system," and we consider a "pos-
sible world" to be a state reachable (under the constraints on system evolution)
from the current state of the hybrid system.

A modal logic typically contains the standard propositional logic operators
(negation, implication, etc.) along with various modal or temporal operators.
For this paper, we introduce two common modal operators:

- possibility: OP (intuitively, "It is possible that P")
- necessity: UP (intuitively, "It is necessary that P")

As expected, they are duals: TDTP OP. In the context of a system execution,
possibility and necessity also correspond to the intuitive readings of eventually
and always (respectively). That is, U P means that P is necessarily true of every
state of the entire execution; it is always true. As its dual, OP means that P is
not always false; it is true a t some state of the execution, i.e., eventually true.
(From a rigorous logical standpoint, these explanations are overly simplistic, but
they convey basic intuitions necessary for this paper.)

Logics for hybrid systems are powerfully expressive. In additmion to modal
operators such as q and 0, they explicitly represent time, and we may spec-
ify that a condition be true at some particular time in an animation. We can
also express properties of non-deterministic animation systems or parameterized
classes of animations. We illustrate these points by presenting several example
properties below. In each case, we formally express that the system execution E
satisfies property P by writing E b P, and we use the notation loc(A) to refer
to the location of an agent A.

- The velocity of actor a, is never greater than that of actor a2:
E b O(veloci2 y(a1) 5 velocity(a2))

There are several ways to reason about parameterized or non-deterministic sys-
tems. In the logical formulas below, we do so by quantifying over all possible
executions of a system.

By no means does this section constitute a thorough introduction. There are many
noteworthy modal logic texts available, providing differently oriented introductions
to the basic concepts; for example, a classic general introduction such as [23] may
supply substantially different insights than more-directed texts such as [15]. The
paper [13] from Davoren and Nerode may be of particular interest to readers who
seek an overview of logics for hybrid systems.

Fig. 1. An image from a crowd simulation animation. The crowd of actors (light
spheres) on the bottom half of the image are moving to a target (darker sphere) on the
top, crossing through actors that are moving from the top of the image to a target on
the bottom.

- If the aggression parameter of actor a is set within the range [2,4], actor a
reaches target t :
(V E) E (aggression E [2 , 4]) O (l o c (a) = loc(t))

No matter what non-deterministic choices are made, at 5 seconds into the
animation, agent a2 is a t least 100 units from agent a l :
(V E) E b O((clock = 5) j distance(al, a a) >_ 100)

- No matter what non-deterministic choices are made, agent a1 is at t,arget t
when agent a2 is not, but agent a2 eventually reaches target t :
(V E) E O(loc(a1) = loc(t) A loc(a2) # loc(t) A O(loc (a2) = loc (t)))

4 Experiments and Applications

4.1 Multi-agent Animations

Figures 1-4 contain images from our multi-agent animations. In this paper, ac-
tors are the lightmest objects, obstacles are the darkest objects, and targets are
an intermediate gray. In the actual animations, actors, obstacles, and targets
are distinguished by color. (CHARON-generated animations, including ones from
which these figures were taken, may be found at [3].)

Fig. 2. An actor (lightest object) Fig. 3. The same actor as in Fig-
has already swerved around a ure 2, later in the same an-
stationary obstacle (darkest) imation, having switched to
and is now reacting t,o avoid simpler behavior and passing
a moving obstacle. between two obstacles.

Figure 1 shows a frame from a crowd simulation animation in which several
actors need to navigate around other actors to reach distant targets. Figures 2
and 3 show frames from a CHARON animation similar to the one described at
the beginning of this paper, in which the actor's behavior is described in three
segments. In the first segment (Figure 2), the actor avoids a static obstacle and
a moving obstacle on the way to a first target. It need not engage in complex
evasive behavior as it progresses to the second target in the second segment
(Figure 3); it will fit between the two remaining obstacles by simply traveling in
a straight line, so it may intelligently switch t o a simpler system for navigation.
That resulting animation system thus contains a discrete transition between
continuous dynamics and is straightforwardly represented as a hybrid system.
Note also that if the actor did not switch to a simpler behavior for segment two,
it would perform unnecessary obstacle avoidance, as shown in Figure 4. Further,
the CHARON specification of the actor's behavior is on the intuitive level of
"reach target one, avoiding obstacles; reach target two, simply going straight;
wait one second, then celebrate." It does not require details about the location
in space (or time) of targets or obstacles.

4.2 Verifying Properties

Although there are significant undecidability barriers when reasoning about hy-
brid systems in general, property verification is decidable for restricted classes
of hybrid systems [9,22]. Consider, for example, systems in which each mode
constrains every variable to constant velocity; changes in direction or velocity
require transitions between modes. Some animation systems can be specified

Fig. 4. Contrast with Figure 3: Here, the actor maintains the complex, obstacle-
avoidant behavior, and winds up taking a longer route to the target. (Kote t,hat the
moving obstacle has moved off-screen.)

within this restricted framework, and many properties expressible in the modal
logic framework described in section 3.1 are decidable for such systems.

To demonstrate this, we specified the rudiments of a race-like game in the
model checker HYTECH [21] and mechanically checked a collision-avoidance
property. Our animation system contains three agents, two racing actors and
one obstacle, each moving at constant speed around a square, two-lane track.
The rules of the race encode that each actor (naturally) prefers to race on the
inside lane, and must do so whenever possible. Because one racer is slower than
the other and the obstacle is slower than both, racers may move to the outside
lane t o pass slower agents, moving promptly back t o the inside lane when they
are done passing.

Consider an infinite race, an endless execution of this animation system.
Will the two racers ever collide? Although we thought we had specified collision-
avoidant behavior, we were mistaken. By checking the states reachable by this
animation system, HYTECH discovered a scenario in which a collision would oc-
cur: when the faster racer is changing lanes in front of the slower racer at the
corner of t he track, as graphically represented in Figure 5. Note that Figure 5
is not a frame from an actual animation; we did not use HYTECH to gener-
ate animations. A simple animation of a similar race-like game implemented in
CHARON can be found in [3].

5 Conclusions and Extensions

Hybrid continuous/discrete dynamics are commonly utilized in animations with-
out regard for underlying hybrid systems theory. We took a different approach,
directly applying general-purpose hybrid systems theory to generate multi-agent

Fig.5. A block diagram of unexpected collision behavior in a simple race game, as
detected by HYTECH. The faster racer has passed the slower one, but the slower one
catches up on a corner.

animations, explicitly linking the normally disparate disciplines by demonstrat-
ing that some animation systems may be modeled by hybrid automatfa. Models
of hybrid systems can simultaneously integrate and distinguish high-level and
low-level behavior; thus, they may be natural tools for modeling intelligent vir-
tual agents.

Because we were within the theoretical framework of hybrid systems, we
were also able to specify and reason about properties of animation systems using
expressive modal logics for hybrid systems. Although automatic verification of
complex properties is infeasible in many cases, we did mechanically check a
property about collisions in a race-like game animation.

Furthermore, we need not simply abandon hope of verifying complex proper-
ties of complex systems: There are n p p r o x i m a t z o n techniques for verification that
might be applicable to animation systems. Properties such as those discussed in
this paper are reachabil i ty properties of animation systems, fundamentally about
whether some proposition holds in the states reachable by an animation system.
I t is often impossible to effectively reason about the exact set of reachable states
of a complex system, but we may be able to verify properties on an approxima-
tion of that set. That is, if S is the actual set of states reachable by a system,
and we cannot decide property P on S, we might instead be able t o overestimate
S by a computationally simpler set S' > S on which P is decidable. Then, if
we prove that P holds on all states in S', we know P also holds on all states in
S. This kind of reasoning by approximation is an active area of research in the
hybrid systems community [12,20,30], but it has not yet been explored in the
context of animation systems.

There is an understood connection between logic and animation: Our abil-
ity to reason about virtual worlds is essential to our ability to create intel-
ligent virtual agents. This observation underlies the groundbreaking, artificial
intelligence-based approach to cognitive modeling taken by Funge [16], which
permits animated characters t o simulate cognitive abilities such as perception,
inference, and planning. Potentially, a hybrid systems-oriented approach t o cog-

nit,ive modeling could escape some typical AI-based restrictions. Such a cognitive
model could follow the delineation of high-level and low-level cognitive behav-
ior mentioned in section 2, with discrete hybrid system modes corresponding
t o "states of mind" and continuous mathenlatical systems representing mental
activity; mental states of animated characters could vary in real time. It could
also enable characters to reason directly about t,ime, not just about endpoints
of previously determined discrete events. In addition, it could allow the charac-
ters' cognitive and physical systems t o be cleanly integrated and expressed in
the same mathematical language. It is an open question, however, whether an
implementation of this approach to cognitive modeling might enjoy the same
virtues of practical applicability as Funge's system.

Despite the clear relationship between hybrid systems theory and animation
systems, this natural interdisciplinary interface has not been well explored. We
do not know what models of hybrid systems might reveal about the mathematical
structure of animation systems, or if there is any mathematical structure to
be exploited for effective reasoning with modal logics. We do believe, however,
that further exploration can improve human inference about animation systems,
extending our perspective on and vocabulary of animation.

Acknowledgments

We thank Siome Goldenstein for his advice and technical assistance. We also
thank Thao Dang, Jan Allbeck, and Norm Badler for helpful discussions. This
research was supported in part by NSF grant NSF-SBR 8920230.

References

1. IEEE Transactions on Automatic Control, Special Issue on Hybrid Systems, 43(4),
April 1998.

2. Proceedangs of the IEEE, 88, July 2000.
3. E. Aaron, F. IvanEid, and S. Goldenstein. CHARON-generated animations. Avail-

able at http://www.cis.upenn.edu/~eaaron/IVAOl~animations.html.
4. R. Alur, C. Belta, F. IvanEid, V. Kumar, M. Mintz, G.J. Pappas, H. Rubin, and

J . Schug. Hybrid modeling and simulation of biomolecular networks. In Hybrid
Systems: Computation and Control, volume 2034 of Lecture Notes In Computer
Science. Springer Verlag, April 2001.

5. R. Alur, C. Courcoubetis, P;. IIalbwachs, T.A. Henzinger, P.H. Ho, X. Nicolin,
A. Olivero. J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3-34, 1995.

6 . R. Alur and R Grosu. hlodular refinement of hierarchic reactive machines. In
Proceedings of the 27th Annual ACM Symposium on Principles of Programming
Languages, 2000.

7. R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specification of hybrid
systems in CHAROK. In N. Lynch and B. H. Krogh, editors, Hybrid Systems
: Cornputatoon and Control, volume 1790 of Lecture Notes in Computer Science.
Springer Verlag, 2000.

8. R. Alur, R. Grosu, I. Lee, and 0. Sokolsky. Compositional refinement for hierar-
chical hybrid systems. In Hybrid Systems : Computation and Control, volume 2034
of Lecture Notes in Computer Science. pages 33-48. Springer Verlag, 2001.

9. R. Alur, T . Henzinger, G. Lafferriere, and G. Pappas. Discrete abstractions of
hybrid systems. Proceedings of the IEEE, 88:971-984, July 2000.

10. R. Alur, T.A. Henzinger, and E.D. Sontag, editors. Hybrid Systems 111, volume
1066 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

11. David Brogan, Ronald Metoyer, and Jessica Hodgins. Dynamically simulated
characters in virtual environments. IEEE Computer Graphics and Applications,
18(5):59-69, Sep/Oct 1998.

12. T. Dang and 0 . Maler. Reachability analysis via face lifting. In T. Henzinger
and S. Sastry, editors, Hybrid Systems : Computation and Control, volume 1386 of
Lecture Notes in Computer Science, pages 96-109. Springer Verlag, Berlin, 1998.

13. J. Davoren and A. Nerode. Logics for hybrid systems. Proceedings of the IEEE,
88:985-1010, July 2000.

14. A. Deshpande, A. Gollu, and L. Semenzato. Shift programming language and
run-time systems for dynamic networks of hybrid automata. Technical report,
University of California at Berkeley, 1997.

15. R. Fagin, J . Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, 1995.

16. J . Funge. A I for Games and Animation. A K Peters, 1999.
17. S. Goldenstein, E. Large, and D. Metaxas. Kon-linear dynamical system approach

to behavior modeling. The Visual Computer, 15:349-369, 1999.
18. Siome Goldenstein, Menelaos Karavelas, ' ~ i m i t r i s Met axas, Leonidas Guibas, and

Ambarish Goswami. Scalable dynamical systems for multi-agent steering and sim-
ulation. In Proceedings of the IEEE Conference in Robotics and Automataon, May
2001. to appear.

19. T.A. Henzinger. The theory of hybrid automata. [n Proceedings of the 11th Annual
Symposium on Logic in Computer Science, pages 278-292. I E E E Computer Society
Press, 1996.

20. T.A. Henzinger and P.-H. Ho. A note on abstract-interpretation strategies for
hybrid automata. In P. Antsaklis, A. iierode, W. Kohn, and S. Sastry, editors, Hy-
brid Systems 11, Lecture Notes in Computer Science 999, pages 252-264. Springer-
Verlag, 1995.

21. T.A. Henzinger, P.-H. KO, and H. W-ong-Toi. A user guide to HYTECH. In
E. Brinksma, W.R. Cleaveland, K.G. Larsen, T. Margaria, and B. Steffen, editors,
TACAS 95: Tools and Algorithms for the Construction and Analysis of Systems,
volume 1019 of Lecture Notes in Computer Science 1019, pages 41-71. Springer-
Verlag, 1995.

22. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What's decidable about
hybrid automata? Journal of Computer and System Sciences, 57:94-124, 1998.

23. G.E. Hughes and M.J. Cresswell. .An Introduction to Jfodcal Logic. Mehuen and
Co., New York, 1968.

24. E. Large, H. Christensen, and R. Bajcsy. Scaling the dynamic approach to path
planning and control: Competition among behavioral constraints. International
Journal of Robotics Research, 18(1):37-58, 1999.

25. H. Levesque and F. Pirri, editors. Logical Foundations for Cognitive Agents: Con-
tributions in Honor of Ray Reiter. Springer, 1999.

26. J. Lygeros, G. J. Pappas, and S. Sastry. An approach to the verification of the
Center-TRACOIT Automation System. In T. Henzinger and S. Sastry, editors,

Hybrid Systems : Computation and Control, volume 1386 of Lecture Notes in Com-
puter Science, pages 289-304. Springer Verlag, Berlin, 1998.

27. Ii. Lynch and B. H. Krogh, editors. Hybrid Systems : Computation and Control,
volume 1790 of Lecture Notes in Computer Science. Springer-Verlag, 2000.

28. N. Lynch, R. Segala, F. Vaandrager, and H.B. Weinberg. Hybrid I/O automata.
In Hybrid Systems 111, volume 1066 of Lecture Notes in Computer Science, pages
496-510. Springer-Verlag, 1996.

29. H. Koser, 0. Renault, D. Thalmann, and N. Thalmann. Iyavigation for digital
actors based on synthetic vision, memory and learning. Computer and Graphics,
1995.

30. G. J . Pappas and S. Sastry. Towards continuous abstractions of dynamical and
control systems. In P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors,
Hybrid Systems IV, volume 1273 of Lecture Notes in Computer Science, pages
329-341. Springer Verlag, Berlin, Germany, 1997.

31. D. Pepyne and C. Cassandras. Hybrid systems in manufacturing. Proceedings of
the IEEE, 88:1108-1123, July 2000.

32. 0. Sokolsky, Y. Hur, R. Grosu, and E. Aaron. CHARON Language
Manual, Version 0.6. University of Pennsylvania, 2000. Available at
http://www.cis.upenn.edu/mobies/charon/CHARONmanual.ps.

33. C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for air traffic manage-
ment : A study in muti-agent hybrid systems. IEEE Transactions on Automatic
Control, 43(4):509-521, April 1998.

34. X. Tu and D. Terzopoulos. Artificial fishes: Physics, locomotion, perception, be-
havior. In Proc. of SIGGRAPH '94, pages 43-50, 1994.

35. Y. Zhang and A. Mackworth. Constraint nets: A semantic model for hybrid dy-
namic systems. Theoretical Computer Science, 138(1):211-239, 1995.

