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Abstract. In this paper, we consider the potential for reasoning about 
animations in the language of hybrid dynamical systems (i.e., systems 
with both continuous and discrete dynamics). We begin by directly ap- 
plying hybrid systems theory to animation, using a general-purpose hy- 
brid system specification tool t,o generate multi-agent animations; this 
application also illustrates that hybrid system models can provide sys- 
tematic, modular ways to incorporate low-level behavior into a design for 
higher-level behavioral modeling. We then apply the logical framework of 
hybrid systems to animation: we formally state properties of animation 
systems that may not be readily expressed in other frameworks; and we 
mechanically check a collision-avoidance property for a simple race-like 
game. This hybrid systems-oriented approach could improve our abil- 
ity to reason about virtual worlds, thus improving our ability to create 
intelligent virtual agents. 

Some properties of animation systems cannot be readily verified merely by 
watching a few graphical displays. As part of a motivating example, consider 
an animation like the following one, in which an agent's locomotion consists of 
three sequential segments. In the first segment, the agent tries to  avoid obstacles; 
it is steered by a complex non-linear system of differential equations that has 
parameters to  represent low-level attributes like aggression (how near a n  agent 
will get to  an obstacle before starting to  swerve around it). In the second segment, 
the agent is in no danger of colliding with obstacles, so it instantaneously switches 
t o  a simpler, linear course that takes it to  a final target. The third segment 
begins upon it reaching its target: No matter where in time and space that  goal 
is achieved, the agent waits precisely one second before switching to  another 
behavior, perhaps literally swelling up with pride for successfully completing 
its task. Given a set of parameter values for the non-linear steering in the first 
segment, that animation system is fully determined. For such a fully determined 
system, an absence of agent-obstacle collisions could be verified by viewing one 
animation. 

Consider now the task of verifying collision-avoidance for all the animation 
systems that could result from different sets of parameter values. It might not be 



possible to check that property simply by viewing a small number of graphical 
displays, and we could certainly not watch every resulting animation. In cases 
such as this, where we want to reason about properties that we cannot easily 
see for ourselves, we might hope to ask for mechanical assistance. The first 
step toward that goal, however, is a major one: We must know how to model 
animation systems and state relevant properties formally and precisely. Once a 
linguistic framework for modeling and specification has been selected, we can 
investigate methods to  assist us in reasoning. 

To identify a candidate framework for reasoning about animation systems, 
we return to the animation described above. It is a hybrzd dynamzcal system 
(hybrzd system, for short), a combination of continuous and discrete dynamics; 
the agent's behavior is continuous in each segment, punctuated by instantaneous, 
discrete changes in behavior as it makes transitions between segments. There is 
a formal theory of hybrid systems [2,10,27], and although that theory has been 
employed in diverse application domains, animation is not typically considered in 
the hybrid systems literature. Nonetheless, some animation systems are hybrid 
systems, and hybrid systems theory can be applied to animation. 

In this paper, we explore the potential for reasoning about animations in the 
language of hybrid systems. We begin by directly applying hybrid systems theory 
to  animation, using the hybrid system specification and simulation tool CHARON 
[7,8] to generate several animations (including one similar to  the one described 
in English above). This is a necessary preliminary; without demonstrating that 
animation systems could be modeled in the theoretical framework of hybrid 
systems, we could not use logics for hybrid systems to reason about animation. 
As part of this demonstration, we show that a hybrid system model can provide 
a systematic, modular way to incorp0rat.e sophisticated low-level behavior into 
a design for higher-level behavioral modeling. 

We then consider how logics for hybrid systems might be applied to anima- 
tions. We begin by expressing several properties that may interest animators, 
explicitly representing properties of time and reachability in space. Although 
many properties of complex hybrid syst<ems are theoretically undecidable, there 
are many significant decidable cases, and we use the verification tool HYTECH 
[21] to mechanically check a result about a simple game-like animation. 

UTe demonstrate our approach through a series of applications and experi- 
ments involving multi-agent animations with actors, targets, and obstacles [3]. 

1 Applying Hybrid Systems Theory to Multi-agent 
Animations 

The presence of systems with both continuous and discrete dynamics is not 
new in animation, but it is not always clear how these systems relate to well- 
understood hybrid system models. In contrast, we make a strong connection 
to existing hybrid systems theory by using the hybrid system tool CHARON 17, 
81 to  implement multi-agent animation systems. Because of that connection, we 



are able to investigate the use of logics for hybrid systems (see section 3.1) as a 
framework for reasoning about animation. 

We base our animations primarily on the agent-steering method presented in 
[17,18]. Below, we briefly review the tools we employed to create our animations 
and discuss some issues particular to  implementing an animation system as a 
hybrid system in CHARON. 

1.1 A Dynamical System for Agent Steering 

There have been many approaches to guiding the behavior of autonomous agents. 
Logicist, artificial intelligence-based techniques have been successfully used for 
cognitively empowered agents 1251 and animated actors [16]; perception and 
dynamics-based techniques [ l l ,  29,341 are often more readily able to  adapt to 
dynamic environments. Our particular approach to low-level agent navigation 
-the continuous component of our hybrid animation system- is based on the 
method in [17,18], a scalable, adaptive approach to  modeling autonomous agents 
in dynamic virtual environments. Like treatments of similar issues in the field of 
behavioral robotics [21], we consider only two-dimensional motion, although the 
mathematical foundations for three-dimensional navigation already exist [la]. 

Our animated worlds consist of three kinds of agents: actors ,  targe ts  that rep- 
resent actors' goals, and obstacles that actors attempt to avoid. All are graph- 
ically drawn as spheres; for our purposes, it suffices to represent an agent by 
its size, location, heading angle, and velocity.' There may be multiple actors, 
obstacles, and targets in an animation system. Further, obstacles and targets 
may be static and/or moving. These components provide a general conceptual 
palette that can be used to express a broad range of behaviors. For instance, an 
actor performing a multi-part task could be represented by its reaching a series 
of targets in sequence, each target corresponding to a component subtask. 

At the core of the mathematics underlying our animated worlds are non- 
linear at t rac tor  and repeller functions that represent the targets and obstacles 
(respectively) in the system. Another non-linear system combines their weighted 
contributions in calculating an actor's angular velocity, dynamically adapting to 
real-time changes in the environment. Together, these non-linear systems gener- 
ate natural-appearing motion, avoiding collisions and other undesirable behav- 
iors. The agent heading angle q5 is computed by a non-linear dynamical system 
of the form: 

where fi,, and fobs are the attractor and repeller functions for the system, and 
wtar and web, are their respective weights on the agent. (n is a noise term, which 
helps avoid local minima in the system.) 

The mathematical treatment in [18] admits a more complex representation of actors 
than the one we use. 



The weights themselves are determined by computing the fixed points of the 
following non-linear system: 

where the a and 7; parameters are designed to reflect conditions for the sta- 
bility of the system. Many other parameters are also concealed in the terms 
presented above. For instance, a repeller function fob, depends on parameters 
that determine how much influence that obstacle will have on an actor. 

This is only an overview of one significant part of the agent steering system. 
There is considerably more detail to the system, including applications to three- 
dimensional environments, dynamic control of forward velocity, and modeling of 
low-level personality attributes such as aggression and agility. The above pre- 
sentation, however, gives a feel for the kind of mathematics involved, suggesting 
the complexity involved in implementing it. Further, it introduces the role pa- 
rameters may play in agent behavior, a notion to which we return in section 3 
when discussing reasoning about a parameterized class of animation systems. 

1.2 Hybrid Systems and CHARON 

By definition, a hybrid system is one that combines continuous and discrete 
dynamics. Past domains of application for hybrid system models include de- 
scriptions of biological processes [4], air-traffic management systems [26,33], and 
manufacturing systems [31]. They occur frequently and naturally in many con- 
tjexts and, because of this, they have received substantial attention by both 
computer scientists and control theorists [1,2,10,27]. From a general, intuitive 
perspective, any system characterized by discrete transitions between modes of 
continuous control is a hybrid system. This includes several kinds of systems 
that emerge in animation, from physical modeling of objects in a dynamic envi- 
ronment to  agent-steering. 

There are several different formal models for hybrid systems. Net-based mod- 
els such as Constraint Nets [35], for instance, have been acknowledged in liter- 
ature on cognitive agents. We focus in particular on automata-theoretic models 
such as hybrid automata [5,28]; the various kinds of automata differ in the 
behaviors they are capable of representing. As a brief, non-technical introduc- 
tion to this perspective, we consider a hybrid automaton as having: a set of 
discrete states called control modes; a contznuous state space (a subset of Wn for 
some n); and descriptions of how the system can evolve. There are constraints 
both on the continuous evolution of the system within a control mode and on 
the discrete transitions between control modes that the system might make. A 
state of the overall system is a pair (control mode, continuous state). (For Inore 
details on the mathematics and applicatioris of hybrid automata, see [5,9,13; 
191.) Research and analysis of hybrid automata underlies practical tools such 



as CHARON [7,8] and the model checker HYTECH [21]. For this paper, we use 
CHARON to  implement animation systems and HYTECH for ~er i f ica t ion.~  

The architecture of a hybrid system in CHARON is expressed as hierarchi- 
cal agents, a model conceptually similar to hybrid automata and hierarchical 
reactive modules [6 ] .  The key features of CHARON are: 

Hierarchy.  The building block for describing the system architecture is an agent 
that  communicates with its environment via shared variables. The building 
block for describing flow of control inside an  atomic agent is a mode. A 
mode is basically a hierarchical state machine, i.e., it  may have submodes 
and transitions connecting them. CHARON allows sharzng of modes so that 
the same mode definition can be instantiated in multiple contexts. 

D i s c r e t e  u p d a t e s .  Discrete updates are specified by guarded actzons labeling 
transitions connecting the modes. Actions may call externally defined Java 
functions t o  perform complex data manipulations. 

C o n t i n u o u s  u p d a t e s .  Some of the variables in CHARON can be declared ana- 
log, and they flow continuously during continuous updates that model pas- 
sage of time. The evolution of analog variables can be constrained in three 
ways: dzflerentzal constraints (e.g., by equations such as .i = f (x ,u ) ) ,  al- 
gebrazc constraints (e.g., by equations such as y = g(x, u)), and znoarzants 
(e.g., 1x - y( 5 E )  that limit the allowed durations of flows. Such constraints 
can be declared at  different levels of t,he mode hierarchy. 

Modular features of CHARON allow succinct and structured description of 
complex systems. (Similar features are supported by t,he languages SHIFT [I41 
and STATEFLOW (see www . mathworks. com) .) Among other benefits, this mod- 
ularity provides a natural-seeming structure for developing animation systems 
with multiple levels of behavior. 

2 Creating Animations as Hybrid Systems 

Animation systems are implemented in CHARON using the key concepts noted 
in section 1 . 2 . ~  Modes are created to  represent continuous behaviors; particu- 
lar continuous dynamics (e.g., the non-linear system described in section 1.1) 
are represented as differential or algebraic constraints of a form such as diff 
{ d(ang1e) = AngleFunction (angle,. . .) ) . If constraints are necessary to  
limit the time in a particular mode, they are represented as invariants such as 
inv {~ond && ! Cond2 && distance(x, y)<=distance(x,z) ). Guarded tran- 
sitions between modes are presented in a straightforward trans from Model to 
Mode2 when Cond do Effect syntax; when the guard Cond is true, the transi- 
tion named trans is enabled, and if it is taken, statement Effect is executed 
along with the system's jump from Model t o  Mode2. The behavior of agents 

We used HYTECH for verification because, as of this writing, the model checking 
facilities for CHARON are still under development. 
A more detailed description of the CHARON language is presented in [32]. 



follows from the systems described by modes. Each atomic agent is declared t o  
begin in some mode, and it follows the behavior described there. The behavior of 
a hierarchical agent is, of course, determined by the behavior of its sub-agents. In 
this way, the underlying continuous mathematics and relations between modes 
of behavior are explicitly represented in a CHARON program. Further, the mod- 
ularity of CHARON code makes it easy to  change one aspect of a system while 
leaving others intact. 

CHARON also generates numerical simulations of hybrid systems, which we 
exploited in creating animations from CHARON system specifications. We simply 
simulated our animation systems in CHARON, then used a small translation 
routine (like a Perl script) t o  format the output of those simulations so that  a 
previously developed application (developed for research outside of the context of 
hybrid systems) could create graphical displays. Section 4 contains more details 
and sample images of the animations we generated. 

'The CHARON model of hybrid systems as hierarchical agents corresponded 
neatly t o  the high-level abstractions we considered when designing animations. In 
addition, the explicit representation of high-level (discrete) and low-level (contin- 
uous) processes made it straightforward to  implement different kinds of cognitive 
behavior or intelligence in our agents. For instance, constraints on low-level per- 
ceptual capabilities (e.g., how far can an agent "see") or underlying behavioral 
attributes (e.g., aggression) were explicitly represented in the code that  controls 
continuous behavior. Higher-level decisions to  switch modes of behavior could 
be explicitly represented by adding to  the discrete dynamics; new modes could 
represent new "states of mind." 

3 Reasoning about Animation Systems 

Some properties of games and other animation systems may not be verifiable 
by viewing a single animation. For example, one might want to  verify properties 
of all possible executions of a parameterized or non-deterministic system. Even 
within a fully determined system, properties about agents' relative speed and 
precise distance may be too difficult to  judge by eye. Indeed, merely finding a 
formal language to  express interesting properties of such systems may be non- 
trivial. 

This touches upon a motivatingobservation behind our research: nTell-known 
logics for hybrid systems are capable of expressing properties of animation sys- 
tems. In addition, there are practical model checkers -tools that can mechan- 
ically verify some properties of simple hybrid systems- that we might apply 
t,o animation systems. These model checkers have significant limitations; many 
properties are theoretically undecidable, and as a practical matter, even decid- 
able properties may only be feasibly checked in simple cases. Still, as we discuss 
in section 5, there are approaches to  reasoning about complex systems that  allow 
us t o  circumvent some undecidability barriers. 

In this section, we discuss more about logics for hybrid systems and how we 
might apply them t o  animation systems. 



3.1 M o d a l  Logic a n d  P r o p e r t i e s  of Multi-agent Animat ions  

There are many modal and temporal logics that can be used to reason about 
hybrid systems, such as C T L ,  LTL, and the p-calculus; significant research has 
been devoted to the theory and applications of these logics ([I31 and [9] are good 
surveys of recent work). For readers unfamiliar with fundamental modal logic 
operators, we provide a brief re vie^.^ 

Modal logics are used to reason about possible worlds and properties of pos- 
szbility and necessity such as "Proposition P is true in all possible worlds" or 
"Proposition P is false in some possible world." For our present application, we 
consider a "world" to be a "state of a hybrid system," and we consider a "pos- 
sible world" to be a state reachable (under the constraints on system evolution) 
from the current state of the hybrid system. 

A modal logic typically contains the standard propositional logic operators 
(negation, implication, etc.) along with various modal or temporal operators. 
For this paper, we introduce two common modal operators: 

- possibility: OP (intuitively, "It is possible that P") 
- necessity:  UP (intuitively, "It is necessary that P") 

As expected, they are duals: TDTP OP. In the context of a system execution, 
possibility and necessity also correspond to  the intuitive readings of eventually 
and always (respectively). That is, U P  means that P is necessarily true of every 
state of the entire execution; it is always true. As its dual, OP means that P is 
not always false; it is true a t  some state of the execution, i.e., eventually true. 
(From a rigorous logical standpoint, these explanations are overly simplistic, but 
they convey basic intuitions necessary for this paper.) 

Logics for hybrid systems are powerfully expressive. In additmion to modal 
operators such as q and 0, they explicitly represent time, and we may spec- 
ify that a condition be true at some particular time in an animation. We can 
also express properties of non-deterministic animation systems or parameterized 
classes of animations. We illustrate these points by presenting several example 
properties below. In each case, we formally express that the system execution E 
satisfies property P by writing E b P, and we use the notation loc(A) to  refer 
to  the location of an agent A.  

- The velocity of actor a, is never greater than that of actor a2: 
E b O(veloci2 y(a1) 5 velocity(a2)) 

There are several ways to reason about parameterized or non-deterministic sys- 
tems. In the logical formulas below, we do so by quantifying over all possible 
executions of a system. 

By no means does this section constitute a thorough introduction. There are many 
noteworthy modal logic texts available, providing differently oriented introductions 
to  the basic concepts; for example, a classic general introduction such as [23] may 
supply substantially different insights than more-directed texts such as [15]. The 
paper [13] from Davoren and Nerode may be of particular interest to  readers who 
seek an overview of logics for hybrid systems. 



Fig. 1. An image from a crowd simulation animation. The crowd of actors (light 
spheres) on the bottom half of the image are moving to a target (darker sphere) on the 
top, crossing through actors that are moving from the top of the image to a target on 
the bottom. 

- If the aggression parameter of actor a is set within the range [2,4], actor a 
reaches target t :  
( V E ) E  (aggression E [ 2 , 4 ] )  O ( l o c ( a )  = loc( t ) )  

No matter what non-deterministic choices are made, at  5 seconds into the 
animation, agent a2 is a t  least 100 units from agent a l :  
( V E ) E  b O((clock = 5 )  j distance(al,  a a )  >_ 100) 

- No matter what non-deterministic choices are made, agent a1 is at  t,arget t 
when agent a2 is not, but agent a2 eventually reaches target t :  
( V E ) E  O(loc(a1)  = loc(t)  A loc(a2) # loc(t)  A O( loc (a2)  = loc ( t ) ) )  

4 Experiments and Applications 

4.1 Multi-agent Animations 

Figures 1-4 contain images from our multi-agent animations. In this paper, ac- 
tors are the lightmest objects, obstacles are the darkest objects, and targets are 
an  intermediate gray. In the actual animations, actors, obstacles, and targets 
are distinguished by color. (CHARON-generated animations, including ones from 
which these figures were taken, may be found at  [3].) 



Fig. 2. An actor (lightest object) Fig. 3. The same actor as in Fig- 
has already swerved around a ure 2, later in the same an- 
stationary obstacle (darkest) imation, having switched to 
and is now reacting t,o avoid simpler behavior and passing 
a moving obstacle. between two obstacles. 

Figure 1 shows a frame from a crowd simulation animation in which several 
actors need to  navigate around other actors to  reach distant targets. Figures 2 
and 3 show frames from a CHARON animation similar to  the one described at  
the beginning of this paper, in which the actor's behavior is described in three 
segments. In the first segment (Figure 2), the actor avoids a static obstacle and 
a moving obstacle on the way to  a first target. It need not engage in complex 
evasive behavior as it progresses to  the second target in the second segment 
(Figure 3); it will fit between the two remaining obstacles by simply traveling in 
a straight line, so it may intelligently switch t o  a simpler system for navigation. 
That  resulting animation system thus contains a discrete transition between 
continuous dynamics and is straightforwardly represented as a hybrid system. 
Note also that if the actor did not switch to  a simpler behavior for segment two, 
it would perform unnecessary obstacle avoidance, as shown in Figure 4. Further, 
the CHARON specification of the actor's behavior is on the intuitive level of 
"reach target one, avoiding obstacles; reach target two, simply going straight; 
wait one second, then celebrate." It does not require details about the location 
in space (or time) of targets or obstacles. 

4.2 Verifying Properties 

Although there are significant undecidability barriers when reasoning about hy- 
brid systems in general, property verification is decidable for restricted classes 
of hybrid systems [9,22]. Consider, for example, systems in which each mode 
constrains every variable to constant velocity; changes in direction or velocity 
require transitions between modes. Some animation systems can be specified 



Fig. 4. Contrast with Figure 3: Here, the actor maintains the complex, obstacle- 
avoidant behavior, and winds up taking a longer route to the target. (Kote t,hat the 
moving obstacle has moved off-screen.) 

within this restricted framework, and many properties expressible in the modal 
logic framework described in section 3.1 are decidable for such systems. 

To demonstrate this, we specified the rudiments of a race-like game in the 
model checker HYTECH [21] and mechanically checked a collision-avoidance 
property. Our animation system contains three agents, two racing actors and 
one obstacle, each moving at  constant speed around a square, two-lane track. 
The  rules of the race encode that each actor (naturally) prefers to race on the 
inside lane, and must do so whenever possible. Because one racer is slower than 
the other and the obstacle is slower than both, racers may move to  the outside 
lane t o  pass slower agents, moving promptly back t o  the inside lane when they 
are done passing. 

Consider an infinite race, an endless execution of this animation system. 
Will the two racers ever collide? Although we thought we had specified collision- 
avoidant behavior, we were mistaken. By checking the states reachable by this 
animation system, HYTECH discovered a scenario in which a collision would oc- 
cur: when the faster racer is changing lanes in front of the slower racer at the 
corner  of t he  track,  as graphically represented in Figure 5. Note that Figure 5 
is not a frame from an actual animation; we did not use HYTECH to  gener- 
ate animations. A simple animation of a similar race-like game implemented in 
CHARON can be found in [3]. 

5 Conclusions and Extensions 

Hybrid continuous/discrete dynamics are commonly utilized in animations with- 
out regard for underlying hybrid systems theory. We took a different approach, 
directly applying general-purpose hybrid systems theory to  generate multi-agent 



Fig.5. A block diagram of unexpected collision behavior in a simple race game, as 
detected by HYTECH. The faster racer has passed the slower one, but the slower one 
catches up on a corner. 

animations, explicitly linking the normally disparate disciplines by demonstrat- 
ing that  some animation systems may be modeled by hybrid automatfa. Models 
of hybrid systems can simultaneously integrate and distinguish high-level and 
low-level behavior; thus, they may be natural tools for modeling intelligent vir- 
tual agents. 

Because we were within the theoretical framework of hybrid systems, we 
were also able to  specify and reason about properties of animation systems using 
expressive modal logics for hybrid systems. Although automatic verification of 
complex properties is infeasible in many cases, we did mechanically check a 
property about collisions in a race-like game animation. 

Furthermore, we need not simply abandon hope of verifying complex proper- 
ties of complex systems: There are n p p r o x i m a t z o n  techniques for verification that  
might be applicable to  animation systems. Properties such as those discussed in 
this paper are reachabil i ty  properties of animation systems, fundamentally about 
whether some proposition holds in the states reachable by an animation system. 
I t  is often impossible to  effectively reason about the exact set of reachable states 
of a complex system, but we may be able to  verify properties on an approxima- 
tion of that  set. That is, if S is the actual set of states reachable by a system, 
and we cannot decide property P on S, we might instead be able t o  overestimate 
S by a computationally simpler set S' > S on which P is decidable. Then, if 
we prove that P holds on all states in S', we know P also holds on all states in 
S. This kind of reasoning by approximation is an active area of research in the 
hybrid systems community [12,20,30], but it has not yet been explored in the 
context of animation systems. 

There is an understood connection between logic and animation: Our abil- 
ity to reason about virtual worlds is essential to our ability to  create intel- 
ligent virtual agents. This observation underlies the groundbreaking, artificial 
intelligence-based approach to cognitive modeling taken by Funge [16], which 
permits animated characters t o  simulate cognitive abilities such as perception, 
inference, and planning. Potentially, a hybrid systems-oriented approach t o  cog- 



nit,ive modeling could escape some typical AI-based restrictions. Such a cognitive 
model could follow the delineation of high-level and low-level cognitive behav- 
ior mentioned in section 2, with discrete hybrid system modes corresponding 
t o  "states of mind" and continuous mathenlatical systems representing mental 
activity; mental states of animated characters could vary in real time. It could 
also enable characters to  reason directly about t,ime, not just about endpoints 
of previously determined discrete events. In addition, it could allow the charac- 
ters' cognitive and physical systems t o  be cleanly integrated and expressed in 
the same mathematical language. It is an open question, however, whether an 
implementation of this approach to  cognitive modeling might enjoy the same 
virtues of practical applicability as Funge's system. 

Despite the clear relationship between hybrid systems theory and animation 
systems, this natural interdisciplinary interface has not been well explored. We 
do not know what models of hybrid systems might reveal about the mathematical 
structure of animation systems, or if there is any mathematical structure to  
be exploited for effective reasoning with modal logics. We do believe, however, 
that  further exploration can improve human inference about animation systems, 
extending our perspective on and vocabulary of animation. 
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