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ABSTRACT

GRAIN BOUNDARY MOBILITY TENSOR AND TOPOLOGICAL PHASE

TRANSITIONS

Kongtao Chen

David J. Srolovitz

The grain boundary (GB) mobility relates the GB velocity to the driving force. While the

GB velocity is normally associated with motion of the GB normal to the GB plane, there

is often a tangential motion of one grain with respect to the other across a GB; i.e., the

GB velocity is a vector. Grain boundary motion can be driven by a chemical potential

that jumps across a GB or by shear applied parallel to the GB plane; the driving force has

three components. Hence, the GB mobility must be a tensor (the off-diagonal components

indicate shear coupling). Recent molecular dynamics (MD) and experimental studies show

that the GB mobility may abruptly jump, smoothly increase, decrease, remain constant or

show multiple peaks with increasing temperature. Performing MD simulations on symmetric

tilt GBs in copper, we demonstrate that all six components of the GB mobility tensor are

non-zero (the mobility tensor is symmetric, as required by Onsager). We demonstrate that

some of these mobility components increase with temperature while, surprisingly, others

decrease. We develop a disconnection dynamics-based statistical model that suggests that

GB mobilities follow an Arrhenius relation with respect to temperature T below a critical

temperature Tc and decrease as 1/T above it. Tc is related to the operative disconnection

modes and their energetics. We implement this model in a kinetic Monte Carlo (kMC);

the results capture all of these observed temperature dependencies and are shown to be in

quantitative agreement with each other and direct MD simulations of GB migration for a

set of specific GBs. We demonstrate that the abrupt change in GB mobility results from

a Kosterlitz-Thouless (KT) topological phase transition. This phase transition corresponds

to the screening of the long-range interactions between (and unbinding of) disconnections.
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This phase transition also leads to abrupt change in GB sliding and roughening. We analyze

this KT transition through mean-field theory, renormalization group methods, and kMC

simulation. Finally, we examine the impact of the generalization of the mobility and KT

transition for grain growth and superplasticity.
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CHAPTER 1 : Introduction

1.1. Grain Boundary Kinetics

Our current understanding of microstructural evolution in polycrystalline materials is based

primarily on our understanding of how grain boundaries (GBs) move. Grain boundary mo-

tion is central to a wide range of microstructure evolution processes, including normal grain

growth, abnormal grain growth, grain growth stagnation, primary recrystallization, super-

plasticity, and sintering. These processes may be driven by different factors, e.g., stress,

injection of defects from within the grains, capillarity (surface tension), and differences in

defect densities or elastic energy (across the GB).

The most important dynamical property for the evolution of polycrystalline microstructures

(e.g., grain growth, recrystallization) is the GB mobility. Normally, we describe GB dynam-

ics as overdamped, where the GB mobility is defined (Turnbull, 1951) as the ratio of the GB

velocity v to the thermodynamic driving force (per area) F in the limit of infinitesimal driv-

ing force, M = limF→0 v/F . Grain boundary mobility has been measured in many different

metals (e.g., Zn (Li et al., 1953), Pb (Rutter and Aust, 1965), Al (Hu and Rath, 1972),

Au (Grünwald and Haessner, 1970; Molodov et al., 1995), Cu (Viswanathan and Bauer,

1973), Fe-Si (Lejček et al., 1994; Furtkamp et al., 1998), Bi (Molodov et al., 1998)) and

ceramics (e.g., alumina (Powers and Glaeser, 1998)) and as a function of several variables

(e.g., temperature, bicrystallography, solute concentration) in bicrystal experiments with

different types of driving forces (e.g., stress (Li et al., 1953), curvature (Hu and Rath, 1972;

Grünwald and Haessner, 1970; Molodov et al., 1995; Viswanathan and Bauer, 1973; Lejček

et al., 1994; Furtkamp et al., 1998), magnetic field (Molodov et al., 1998)), as summarized in

(Gottstein and Shvindlerman, 2009). More recently, molecular dynamics (MD) simulations

have been employed to study GB mobilities in bicrystals as a function of many of the same

variables (Upmanyu et al., 1999; Zhang et al., 2004, 2005; Janssens et al., 2006; Olmsted

et al., 2009; Zhou and Mohles, 2011; Song and Hoyt, 2012; Homer et al., 2014; Rahman

et al., 2014; Priedeman et al., 2017) and driving forces (Upmanyu et al., 1999; Zhang et al.,

1



2005) (as well as driving forces only accessible in simulations (Janssens et al., 2006)). Olm-

sted and colleagues (Olmsted et al., 2009; Homer et al., 2014) systematically studied the

mobility of 388 GBs (different macroscopic, bicrystallographic degrees of freedom) in Ni as

a function of temperature.

Grain boundary migration may also be driven by the application of a shear across the GB

plane. Shear coupling refers to the motion of GBs driven by shear across the GB plane

or, equivalently, the displacement of one grain relative to the other during GB migration.

While shear coupling was first observed more than 60 years ago (Li et al., 1953; Bainbridge

et al., 1954; Biscondi and Goux, 1968), interest in this topic has grown considerably in the

past decade. Shear coupling has been reported in both metals (e.g., Al (Biscondi and Goux,

1968; Fukutomi et al., 1991; Winning et al., 2001, 2002; Winning and Rollett, 2005), Zn

(Li et al., 1953; Bainbridge et al., 1954)) and ceramics (e.g., cubic zirconia (Yoshida et al.,

2004)). Grain boundary sliding is, in some sense, the absence of shear coupling (shear

across the GB produces no migration). Grain boundary sliding has been observed in a wide

range of polycrystalline systems (e.g., see Sheikh-Ali et al. (2003)). These experimental

observations of shear coupling and GB sliding have been reproduced in a wide-range of

atomic-scale simulations (e.g., see Molteni et al. (1996, 1997); Hamilton and Foiles (2002);

Chen and Kalonji (1992); Shiga and Shinoda (2004); Chandra and Dang (1999); Haslam

et al. (2003); Sansoz and Molinari (2005); Cahn et al. (2006); Thomas et al. (2017); Chen

et al. (2019)). The importance of shear coupling in microstructure evolution is illustrated in

experimental observations of stress-assisted grain growth in nanocrystalline metals (Gianola

et al., 2006; Rupert et al., 2009).

Recent studies (Cahn et al., 2006; Thomas et al., 2017; Han et al., 2018; Chen et al., 2019)

suggest that, because of shear coupling, GB mobility depends on the origin of the driv-

ing force for GB migration (stress versus jumps in chemical potential across a GB). This

dependence contradicts the widely accepted notion that GB mobility is an intrinsic GB

property (independent of the source of the driving force). However, if GB mobility depends
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on the nature of the driving force, the notion of GB mobility should be expanded. The

shear-coupling factor (ratio of GB sliding and migration rates) also depends on the nature

of the driving force (Chen et al., 2019). Hence, GB motion is associated with three orthog-

onal displacements (and velocities): GB migration (perpendicular to the GB plane) and

translations of one grain with respect to the other (in two directions tangent to the GB

plane). Accordingly, there are three generalized forces (per unit area) associated with these

motions (variations of the free energy with respect to three displacements). Assuming that

the displacements associated with the GB motion are overdamped (an excellent approxima-

tion since GB velocities are small compared with all speeds of sound), the proportionality

constant between the velocity and force vectors should therefore be a 3× 3 mobility tensor,

M. If we establish a coordinate system such that the GB normal is parallel to the e1-axis,

then M11 is the traditional GB (migration) mobility, M1j (j 6= 1) components describe

shear coupling, and Mij (i, j 6= 1) describe GB sliding. Since Mij/M11 is often not small,

ignoring these non-traditional mobility tensor components (i.e., replacing M with the scalar

MGB = M11) can be inappropriate. Also note that the individual components of M may

have different temperature dependences.

Since the most widely employed approach for controlling the rate (and often the nature) of

microstructure evolution is through variation of temperature T (i.e., annealing), the tem-

perature dependence of GB mobility is important for many applications. The temperature

dependence of GB mobility has been measured for a wide range of materials both experi-

mentally (Aust and Rutter, 1959a,b; Rutter and Aust, 1965; Gottstein and Shvindlerman,

2009) and via atomistic simulations (Homer et al., 2014; Rahman et al., 2014; Janssens

et al., 2006; Zhang et al., 2004; Priedeman et al., 2017; Zhang et al., 2005; Olmsted et al.,

2009; Zhou and Mohles, 2011; Song and Hoyt, 2012; Upmanyu et al., 1999; Schönfelder

et al., 2005). The quoted references focused on the measurement of the mobility of nom-

inally flat GBs in bicrystals of elemental metals rather than GBs in microstructures (i.e.,

averaging over many GBs or influenced by GB junctions). The temperature dependence of

GB mobility is commonly fit to an Arrhenius relation M11 = M0e
−Q/kBT , where Q is an
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activation energy, the prefactor M0 is a constant, and kB is the Boltzmann constant. This

Arrhenius relation provides a good fit to many of the M vs. T experimental data. However,

GB mobilities extracted from atomistic simulations in pure systems show a wide variety of

T -dependences (Homer et al., 2014; Olmsted et al., 2009; Schönfelder et al., 2005). Homer

et al. (Homer et al., 2014) performed a series of MD simulations of GB migration in Ni

for a large number of bicrystallographically different GBs. While nearly half of these GBs

showed mobilities that they characterized as Arrhenius over some range of temperature,

they also observed several cases for which the GB mobility (i) decreased with increasing

T (so called anti-thermal behavior), (ii) was nearly T independent, (iii) exhibited maxima

and/or minima with respect to T , and (iv) was nearly zero at low T and then increased

rapidly over a small T -range. The existence of such diversity in GB mobility M(T ) within a

single material challenges our current understanding of and ability to predict GB mobility.

Grain boundary migration occurs through the motion of line defects (i.e., disconnections),

that are constrained to lie within the GB and are characterized by both a Burgers vector b

and a step height h that are determined by the underlying GB bicrystallography (Hirth and

Balluffi, 1973; Pond and Bollmann, 1979; King and Smith, 1980; Balluffi et al., 1982; Hirth

et al., 2006, 2007; Cahn et al., 2006; Thomas et al., 2017; Han et al., 2018; Hadian et al.,

2018; Chen et al., 2019, 2020a,b,c). Therefore, GB migration (resulting from step motion

along the GB) and lateral grain translation (motion of one grain relative to the other across

the GB, resulting from dislocation migration along the GB) are coupled (e.g., see Cahn

et al. (2006); Han et al. (2018); Chen et al. (2019)). Both atomistic simulation (Rajabzadeh

et al., 2013b; Khater et al., 2012; Combe et al., 2016; Hadian et al., 2018) and electron

microscopy (Legros et al., 2008; Mompiou et al., 2009; Rajabzadeh et al., 2013a) studies

have directly observed GB migration through the formation and migration of disconnections

along GBs. The motion of disconnections of different modes, characterized by different

(bm, hm) (m is the index for mode) allowed by the bicrystallography, can conspire to affect

GB motion. This suggests a possible source for some of the complexity in the observed

GB kinetics (e.g., temperature and driving force dependence of GB mobility and coupling
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factor) (Thomas et al., 2017; Han et al., 2018; Chen et al., 2019).

Disconnections may be introduced into GBs via homogeneous or heterogeneous nucleation

and/or by the decomposition of lattice dislocations. In this discussion, we focus on homoge-

neous nucleation since, as in phase transformations, heterogeneities often simply rescale the

homogeneous nucleation energies. Disconnection nucleation and migration may be driven

either through a jump in chemical potential across the GB or by a mechanical stress. Shear

stresses drive disconnection migration in much the same way that they drive the motion

of lattice dislocations (as described by the Peach-Koehler equation). Chemical potential

jumps drive disconnection motion through the motion of atoms across the GB (at steps)

from the low to high chemical potential grains. Since shear stress τ couples (is conjugate)

to b and chemical potential jump ψ couples (is conjugate) to h, the nucleation barrier for

a pair of disconnections of mode (b, h) depends on both.

Like most material properties, GB properties are functions of temperature and may change

abruptly at temperatures corresponding to phase transitions. Such GB phase transitions

may explain the existence of critical temperatures at which abrupt changes in the nature

of several physical phenomena occur, including grain growth stagnation (Holm and Foiles,

2010) and superplasticity (Edington et al., 1976).

Several types of GB phase transitions are discussed in the literature. These include thermo-

dynamic phase transitions such as GB structural transitions or faceting/defaceting transi-

tions (which are first-order) (Cantwell et al., 2014; Frolov et al., 2013; Meiners et al., 2020),

roughening transitions (divergence in the height-height correlation function) which may

be continuous (Rottman, 1986), and improper transitions where the GB transforms from

solid-like to glass-like (Zhang et al., 2009). In this dissertation, we discuss a new class of fun-

damentally different GB phase transitions. We identify a GB topological phase transition of

a type of the class originally discussed by Kosterlitiz and Thouless (Kosterlitz and Thouless,

1973). Such topological transitions may be thought of as defect binding/unbinding transi-

tions. Disconnections (like dislocations) are topological defects, as seen through a Burgers
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circuit analysis (Han et al., 2018).

Below the topological or Kosterlitz-Thouless (KT) transition temperature TKT, the interac-

tion between disconnections is long-range, decaying as the inverse of their separation. The

formation and migration of disconnections are severely restricted and GB mobility tends to

be small (with important exceptions). On the other hand, above TKT, the long-range elas-

tic field of disconnections is effectively screened. Hence, the KT transition may be viewed

as a screening (or sliding) transition, where the screening parameter (diaelastic constant)

diverges at TKT. The KT transition leads to abrupt changes in GB migration mobility,

roughness, sliding coefficient, etc.

1.2. Thesis Overview

The work described in this thesis investigates GB mobility, shear coupling, topological phase

transition, and their implications on grain growth. Parts of this thesis were adapted from

Chen et al. (2019, 2020a,b,c), where K. Chen, J. Han, X. Pan, and D.J. Srolovitz designed

research, performed research, and wrote the paper; K. Chen performed simulations and

analyzed data.

Chapter 2 studies the temperature and driving force dependence of GB shear coupling factor.

Shear coupling implies that all GB migration necessarily creates mechanical stresses/strains

and is a key component to the evolution of all polycrystalline microstructures. We present

MD simulation data and theoretical analyses that demonstrate that GB shear coupling

is not an intrinsic GB property, but rather strongly depends on the type and magnitude

of the driving force for migration and temperature. We resolve this apparent paradox by

proposing a microscopic theory for GB migration that is based upon a statistical ensemble

of line defects (disconnections) that are constrained to lie in the GB. Comparison with the

MD results for several GBs provides quantitative validation of the theory of shear coupling

factor as a function of stress, chemical potential jump and temperature. This chapter was

adapted from Chen et al. (2019), where K. Chen, J. Han, S.L. Thomas, and D.J. Srolovitz

designed research, performed research, and wrote the paper; K. Chen performed simulations
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and analyzed data.

Chapter 3 proposes the concept of GB mobility tensor. GB mobility relates GB velocity to

the driving force. While the GB velocity is normally associated with the motion of the GB

normal to the GB plane, there is often a tangential motion of one grain with respect to the

other across a GB; i.e., GB velocity is a vector. Grain boundary motion can be driven by

a jump in chemical potential across a GB or by shear applied parallel to the GB plane; the

driving force has three components. Hence, GB mobility must be a tensor (the off-diagonal

components indicate shear coupling). Performing MD simulations on a symmetric tilt GB in

copper, we demonstrate that all six components of the GB mobility tensor are non-zero (the

mobility tensor is symmetric, as required by Onsager). We demonstrate that some of these

mobility components increase with temperature while, surprisingly, others decrease. We

develop a disconnection dynamics-based statistical model that suggests that GB mobilities

follow an Arrhenius relation with respect to temperature T below a critical temperature

Tc and decrease as 1/T above it. Tc is related to the operative disconnection mode(s) and

its (their) energetics. For any GB, which disconnection modes dominate depends on the

nature of the driving force and the mobility component of interest. Finally, we examine the

impact of the generalization of the mobility for applications in classical capillarity driven

grain growth. We demonstrate that stress generation during GB migration (shear coupling)

necessarily slows grain growth and reduces GB mobility in polycrystals. This chapter was

adapted from Chen et al. (2020a), where K. Chen, J. Han, X. Pan, and D.J. Srolovitz

designed research, performed research, and wrote the paper; K. Chen contributed new

analytic tools; K. Chen and J. Han analyzed data.

Chapter 4 studies the temperature dependence of GB mobility. The GB mobility relates

GB velocity to the thermodynamic driving forces and is central to our understanding of

microstructure evolution in polycrystals. Recent MD and experimental studies have shown

that the temperature dependence of GB mobility is much more varied than is commonly

thought. Grain boundary mobility may increase, decrease, remain constant or show multiple
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peaks with increasing temperature. We propose a mechanistic model for GB migration,

based on the formation and migration of line defects (disconnection) within the GB. We

implement this model in a kinetic Monte Carlo and statistical mechanics framework; the

results capture all of these observed temperature dependencies and are shown to be in

quantitative agreement with each other and direct MD simulations of GB migration for a

set of specific GBs. Examination of the dependence of GB mobility on disconnection mode

and temperature provides new insight into how GBs migrate in polycrystalline materials.

This chapter was adapted from Chen et al. (2020b), where K. Chen, J. Han, and D.J.

Srolovitz designed research, performed research, and wrote the paper; K. Chen performed

simulations and analyzed data.

Chapter 5 proposes a topological phase transition of disconnections in GB. The formation

and migration of disconnections (line defects constrained to the GB plane with both dislo-

cation and step character) control many of the kinetic and dynamical properties of GBs and

the polycrystalline materials of which they are central constituents. We demonstrate that

GBs undergo a finite-temperature, dynamical, topological phase transition of the KT type.

The phase transition corresponds to the screening of the long-range interactions between

(and unbinding of) disconnections. This phase transition leads to abrupt change in GB

mobility, GB sliding, and roughening. We analyze this KT transition through mean-field

theory, renormalization group methods, and kinetic Monte Carlo simulation and examine

how this transition affects microstructure-scale phenomena such as grain growth stagna-

tion, abnormal grain growth and superplasticity. This chapter was adapted from Chen

et al. (2020c), where K. Chen, J. Han, and D.J. Srolovitz designed research, performed

research, and wrote the paper; K. Chen performed simulations and analyzed data.
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CHAPTER 2 : Grain Boundary Shear Coupling

This chapter was adapted from Chen et al. (2019), where K. Chen, J. Han, S.L. Thomas,

and D.J. Srolovitz designed research, performed research, and wrote the paper; K. Chen

performed simulations and analyzed data.

Grain boundary (GB) motion is central to a wide range of microstructure evolution pro-

cesses, including normal grain growth, abnormal grain growth, primary recrystallization,

and sintering. These processes may be driven by different factors; e.g., stress, injection

of defects from within the grains, capillarity (surface tension), and differences in defect

densities or elastic energy (across the GB). Shear coupling refers to the motion of GBs

driven by shear across the GB plane or, equivalently, the displacement of one grain relative

to the other during GB migration. While shear coupling was first observed over 60 years

ago (Li et al., 1953; Bainbridge et al., 1954; Biscondi and Goux, 1968), interest in this

topic has grown considerably in the past decade. Shear coupling has been reported in both

metals (e.g., Al (Biscondi and Goux, 1968; Fukutomi et al., 1991; Winning et al., 2001,

2002; Winning and Rollett, 2005), Zn (Li et al., 1953; Bainbridge et al., 1954)) and ceram-

ics (e.g., cubic zirconia (Yoshida et al., 2004)). Grain boundary sliding is, in some sense,

the absence of shear coupling (shear across the grain boundary produces no migration).

Grain boundary sliding has been observed in a wide range of polycrystalline systems (e.g.,

see Sheikh-Ali et al. (2003)). These experimental observations of shear coupling and grain

boundary sliding have been reproduced in a wide-range of atomic-scale simulations (e.g.,

see Molteni et al. (1996, 1997); Hamilton and Foiles (2002); Chen and Kalonji (1992); Shiga

and Shinoda (2004); Chandra and Dang (1999); Haslam et al. (2003); Sansoz and Molinari

(2005); Cahn et al. (2006); Thomas et al. (2017)).

The shear coupling factor β = v||/v⊥ is the ratio of the shear rate across the GB (v||) to

the normal (migration) velocity of the GB (v⊥). Interestingly, there are many examples in

which molecular dynamics (MD) simulations of shear coupling under a fixed shear strain
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rate (Cahn et al., 2006) and those performed based on a synthetic driving force (Homer

et al., 2013) show very different values of β for the same grain boundary. (A synthetic

driving force is a simulation method for producing a jump in chemical potential across a GB;

physically, such jumps may result from the capillarity/Gibbs-Thompson effect, differences

in defect densities, and differences in elastic strain energy differences associated with elastic

anisotropy.) Additionally, both simulations (Cahn et al., 2006) and experiments (Gorkaya

et al., 2010) demonstrate that β is often temperature dependent; i.e., in some cases, β →∞

at high temperature - GB sliding. In this paper, we examine how β varies with the type of

driving force, the magnitude of the driving force, and temperature. In particular, we perform

MD simulation of GB motion driven by an applied shear stress, an applied shear strain rate

(the more widely used), and a jump in chemical potential across the GB for different driving

force magnitudes and temperature for several crystallographically distinct GBs. In short,

we find that β varies with all three of these factors (type and magnitude of the driving force

and temperature). We propose an approach to understand these observations based upon

the microscopic mechanism of GB migration, i.e., disconnection motion (Han et al., 2018),

as well as the competition between different disconnection modes (Thomas et al., 2017).

Based on this approach, we make quantitative predictions of how shear coupling varies with

both the type and magnitude of the driving force and with temperature and validate these

predictions against our MD results.

2.1. Simulation Method

The mechanical deformation of a polycrystal, whether under stress or strain-control, re-

sults in non-uniform stresses and strains within the sample. Strain-controlled and stress-

controlled loading can lead to very different deformation behavior. In computer modeling

and theoretical treatments of the reaction of grain boundaries to mechanical deformation,

the loading is most commonly applied under fixed strain-rate conditions (Cahn et al., 2006).

Bicrystal shear coupling experiments are most commonly performed under fixed stress (Ru-

pert et al., 2009). In the present study, we investigate the difference in shear coupling

associated with fixed stress and fixed strain rate loading. Constant stress simulations are
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more easily analyzed in a statistical mechanics framework (see below) than their constant

strain rate counterparts.

Figure 1: The periodic simulation cell containing two equivalent symmetric tilt GBs shown
in red (periodicity only shown in the x- and z-directions). The tilt axis is parallel to z and
the GB plane is nominally x-z.

We perform MD simulations of several symmetric tilt GBs in copper within the Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS) (Plimpton, 1995) using peri-

odic boundary conditions and a copper EAM interatomic potential (Mishin et al., 2001).

In particular, we examine symmetric tilt GBs with tilt axis [hkl], and GB plane (mno);

i.e., Σ5[001](310), Σ13[001](510), Σ37[001](750) and the Σ7[111](123̄). The simulation cell,

shown in Fig. 1, is periodic in all directions, where a pair of nominally flat, parallel GBs have

normal y and the tilt axis is parallel to z. For a [hkl](mno) GB, our periodic unit cells has di-

mensions w = anw
√
m2 + n2 + o2 (x−direction), v = anv

√
(ko− ln)2 + (lm− ho)2 + (hn− km)2

(y−direction) and L = anL
√
h2 + k2 + l2 (z−direction), where a is the cubic cell lattice pa-

rameter, nL = 3, and nw and nx are integers chosen to make w ∼ 25 nm and v ∼ 100,

respectively.

We construct GBs by fixing the misorientation of the two crystals and the GB plane and

minimize the energy with respect to atomic coordinates and the relative translations of the

upper grain relative to the lower grain parallel to the GB plane. We then rescale all atomic

coordinates in accordance with temperature-dependent lattice constant prior to simulations

at any temperature. Before applying a driving force, we equilibrate the bicrystal system at

the temperature of interest for 0.2 ns.
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A constant shear stress σxy is applied, while the other elastic fields satisfy: σyz = σyy = 0

and εxx = εzz = εxz = 0. We also perform MD simulation in exactly the same simulation

cells at fixed shear strain rate ε̇xy together with σyz = σyy = 0 and εxx = εzz = εxz = 0.

Additional MD simulations are performed in which GB migration is driven by a jump in

chemical potential ψ (= ψ+ − ψ−, where ψ± indicate the chemical potential above/below

the GB) across the GB while keeping σyz = σyy = 0 and εxx = εzz = εxz = 0 (i.e., a

synthetic driving force (Janssens et al., 2006)). All simulations are 7 ns in duration at

temperatures in the 600 − 1300 K range. (Note: we employ larger driving forces for the

Σ13(510) GB than the others because the mobility of this boundary is considerably lower

than the others.) The GB position is determined as the maximum in the x−y layer-averaged

centro-symmetry parameter (Kelchner et al., 1998) in the direction normal to the GB plane

using the visualization package OVITO (Stukowski, 2010). The shear coupling factor β for

the two GBs in the simulation cell are measured separately from the ratio of the translation

rate of the grains parallel to the GB to that of the normal velocity of the mean GB plane.

The top and bottom of the error bars in all of the β plots below indicate the values for each

of the two GBs in the MD simulations. (The standard deviation of β is half the difference

of these two measurements.)

2.2. Mechanically-Driven Shear Coupling

Figure 2 shows the inverse shear coupling factor β−1 versus temperature for shear stress

(σxy = τ) driven migration of three symmetric tilt grain boundaries. In all cases, |β−1|

decreases with increasing temperature. While this decrease is particular evident for the

Σ5(310) and Σ13(510) GBs, the Σ37(750) is nearly temperature independent until very

near the melting point (Tm = 1327 K for this interatomic potential (Mishin et al., 2001)).

This tendency is consistent with earlier simulations in fixed strain rate-driven shear cou-

pling (e.g., see Cahn et al. (2006)). The decrease in |β−1| with increasing temperature is

consistent with the widely known increase in the grain boundary sliding rate with increasing

temperature (Cahn et al., 2006).

Figure 3 shows the inverse shear coupling factor β−1 versus temperature for fixed shear
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strain rate ε̇xy driven migration of the same three symmetric tilt grain boundaries, where

the open circles are from (Cahn et al., 2006) and the diamonds are from the present work.

Since the simulation cell size was not given explicitly in (Cahn et al., 2006), we estimate the

shear rate employed based on the bicrystal size (7 nm - in the direction normal to the GB

plane) from the figures (Cahn et al., 2006) and the given shear velocity; i.e., ε̇xy ∼ 108/s.

Our simulation cell was approximately ten times larger and the shear strain rate is ∼ an

order of magnitude smaller (our simulation cell also was periodic in the direction normal to

the GB plane and contained two GBs. When applying constant strain rate ε̇xy, we shear

the simulation cell at a constant rate while (Cahn et al., 2006) apply constant velocities

to atoms in the top and bottom regime of the simulation cell. The two data sets for the

same (510) GB show similar tendencies although the lower strain rate data exhibits smaller

Figure 2: Temperature dependence of the inverse shear coupling factor β−1 for shear stress-
driven migration of three [001] symmetric tilt grain boundaries, Σ5(310), Σ13(510), and
Σ37(750). The circles indicate the mean value of β−1 for two GBs (the individual values
of β−1 are the top and bottom of the error bars which are not visible when their difference
is smaller than the size of the circle). The continuous curves are from the fits to Eq. (2.2)
and (2.3) for each GB.
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Figure 3: The temperature dependence of the inverse coupling factor β−1 is different under
constant stress and strain rate. Constant stress MD data and diamond symbol constant
train rate data are averaged over 2 GBs. The open circles correspond to the constant strain
rate (fixed end boundary condition) MD data from (Cahn et al., 2006). The open diamond
symbols show constant strain rate simulation results under periodic boundary conditions.
The horizontal black dashed lines indicate the values of β−1 for T → 0.

values of β−1 than those at larger strain rate.

Figure 4: Coupling factor versus shear stress for the Σ7[111](123̄) symmetric tilt GB. The
data points are represent the mean for 2 GBs. The continuous curve is the best fit parabola
to these data, as suggested by Eq. (2.4).
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Figure 3 also shows a comparison between the shear coupling factors obtained under con-

stant stress and constant strain rate conditions. The stress-driven migration simulations

were performed using the same simulation cell size and periodic boundary conditions as in

our fixed strain rate simulations. These data show that the absolute value of the inverse

coupling factor |β−1| is larger for the fixed strain rate simulations than for the fixed stress

simulations for the (310) and (510) GBs (since β−1 for the (750) GB is nearly temperature-

independent, no conclusions can be drawn from this GB). In addition, in almost every

case, the variation of the slope of the absolute value of the inverse coupling factor with

temperature (∂|β−1|/∂T ) is larger for the fixed stress simulations than for the fixed strain

rate simulations. The fact that β varies with temperature implies that the amount of GB

sliding associated with GB migration varies with temperature. This implies that in a con-

stant applied strain rate case, the steady-state shear stress is temperature dependent. And,

correspondingly, in a constant applied shear stress case, the strain rate is a function of tem-

perature. The fact that constant stress and constant strain rate loading give different results

is not surprising in light of the differences in stress-strain response under different loading

conditions during plastic deformation. A quantitative model describing the dependence of

the shear coupling factor on both temperature and the magnitude of the mechanical loading

is presented below.

Figure 4 shows that at low temperature, the coupling factor β for the Σ7[111](123̄) sym-

metric tilt GB is controlled by GB geometry and is independent of mechanical load; but

the coupling factor β is a function of the magnitude of shear stress at high temperature.

2.3. Chemical Potential Jump-Driven Shear Coupling

Shear coupling may also occur during GB migration when it is induced by non-mechanical

driving forces. Following Janssens et al. (Janssens et al., 2006), we simulate GB migration

driven by a jump in chemical potential across the GB, ψ, under periodic boundary condi-

tions where the entire simulation cell may shear to maintain zero-net shear stress. Figure

5 shows the temperature dependence of the shear coupling factor for this driving force for

the same three GBs discussed above. For the Σ13(510) GB, β decreases with increasing
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temperature, while for the Σ5(310) and Σ37(750) GBs, the coupling factor is nearly tem-

perature independent. This is in stark contrast with β(T ) for the mechanically-driven GB

migration results in Fig. 2, especially for the Σ5(310) and Σ13(510) GB cases (we provide

a direct comparison in Fig. 7).

Figure 5: Temperature dependence of the coupling factor β for three GBs driven by a
constant chemical potential jump under zero net shear stress conditions. The continuous
curves are fits of the data to Eqs. (2.2) and (2.3) for each GB.

Figure 6 shows that at low temperature, the coupling factor β for the Σ7[111](123̄) sym-

metric tilt GB is controlled by GB geometry and is independent of chemical potential jump;

but the coupling factor β is a function of the magnitude of the chemical potential jump at

high temperature (this effect is particularly striking for this GB). While larger driving force

leads to larger magnitude coupling factors |β| under mechanical driving forces (see Fig. 4),

larger chemical potential jump-driving forces lead to smaller magnitude coupling factors

|β|. A quantitative model describing the dependence of the shear coupling factor on both

temperature and the magnitude of the chemical potential jump is presented below.
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Figure 6: Coupling factor versus chemical potential jump for the Σ7[111](123̄) symmetric
tilt GB. The data points represent the mean for 2 GBs. The continuous curve is the best
fit parabola to these data, as suggested per Eq. (2.5).

Figure 7 shows a direct comparison of the shear coupling factors for different types of driving

forces; i.e., shear stress and chemical potential jump. (We plot this on a logarithmic-scale,

ln(1 + |β|) vs. T, to fit all of these data on one plot.) For the Σ5(310) GB, the stress

and chemical potential jump coupling factor data are very different at both low and high

temperature; this difference grows with increasing temperature. For the Σ13(510) GB, the

values of β for the two types of driving forces are the same at low temperature but diverge

at higher temperature. On the other hand, for the Σ37(750) GB, the values of β for the

two types of driving forces are nearly the same and temperature independent. We present

a microscopic mechanism-based analysis for the mode selection below.

2.4. Statistical Disconnection Model

Disconnections are line defects within an interface that are both dislocations and steps,

characterized by a Burgers vector b and step height h, respectively. For a given GB,

permissible combinations (modes) of (b, h) are completely determined by the bicrystallog-

raphy (Han et al., 2018). While pure step modes (b = 0, h 6= 0) and pure dislocation modes

(b 6= 0, h = 0) may exist, these never correspond to both small b = |b| and |h|. GBs

migrate through the formation and migration of disconnections. Therefore, grain boundary

migration (resulting from step motion along the GB) and lateral grain translation (motion

of one grain relative to the other across the GB, resulting from dislocation migration along
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the GB) are coupled (e.g., see Cahn et al. (2006); Han et al. (2018)). Disconnection mi-

gration may be driven either through a jump in chemical potential across the GB or by a

mechanical stress. Shear stresses drive disconnection migration in much the same way that

they drive the motion of lattice dislocations (as described by the Peach-Koehler equation).

Chemical potential jumps drive disconnection motion through the motion of atoms across

the GB (at steps) from the low to high chemical potential grains.

Since shear stress τ couples (is conjugate) to b and chemical potential jump ψ couples (is

conjugate) to h, the nucleation barrier for a pair of disconnections of mode (b, h) depends

on both. Following the detailed discussion of disconnection nucleation in (Han et al., 2018)

(for the case of a straight dislocation dipole in an isotropic and periodic system), we write

Figure 7: Temperature dependence of the coupling factor β for constant stress and chemical
potential jump driving forces. The data are plotted on a logarithmic scale to fit the data
meaningfully on one plot. The continuous curves are fits to the constant stress and chemical
potential jump data as per Eqs. (2.2) and (2.3) for each GB. Curves are from fitting A and
B from Eqs. (2.2) and (2.3) for each GB.

18



the disconnection nucleation barrier as

q = (Ab2 +B|h|)L− bSτ + hSψ, (2.1)

where A = −2G
[
(1− ν cos2 α)/4π(1− ν)

]
ln [sin (πr/w)] and B = 2γ. b is the magnitude

of the Burgers vector that is conjugate to shear stress τ , γ is the GB energy (per unit area),

G and ν are the shear modulus and Poisson’s ratio, α is the angle between the Burgers

vector and the disconnection line direction, and r is the disconnection core size. In the

periodic unit cell employed in the MD simulations, L is the cell dimension parallel to the

nominally straight disconnection lines, w is the cell dimension in the direction orthogonal

to the disconnection line, and S = Lw is the nominal GB area. A describes the energy

required to form a pair of dislocations and separate them to a distance of half the periodic

unit cell (w/2) (Hirth and Lothe, 1982) and B describes the energy required to form a pair

of steps (Han et al., 2018).

Equation (2.1) suggests that mode selection depends on both the magnitude AND type of

driving force (stress or chemical potential jump). Large stresses favor modes of large |b|

and small |h|, while large chemical potential jumps favor modes of small |b| and large h

(especially the pure step mode with b = 0), resulting in different coupling factors β in these

cases; the larger the driving force, the stronger this effect.

Since the disconnection nucleation barrier in Eq. (2.1) depends on b and h, we should ex-

pect that different disconnection modes will have different nucleation rates. This effect may

be captured via Boltzmann statistics (Thomas et al., 2017). In this way, we describe the ef-

fective shear coupling factor by weighting the coupling factors associated with disconnection
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modes i (βi = bi/hi) by their Boltzmann factors

β =

∑
i bie

− Qi
kBT sinh (biτ−hiψ)S

kBT∑
i hie

− Qi
kBT sinh (biτ−hiψ)S

kBT

=

∑
i bie

− Qi
kBT (biτ − hiψ)∑

i hie
− Qi

kBT (biτ − hiψ)

+O(
(bτ − hψ)S

kBT
)2,

(2.2)

where the summation is over all crystallographically possible disconnection modes, kBT is

the thermal energy and Qi is intrinsic disconnection nucleation barrier for the ith discon-

nection mode (i.e., Qi = q in the absence of a driving force)

Qi
L

= Ab2i +B|hi|. (2.3)

At low temperature, only the disconnection mode with the lowest barrier is activated,

while at high temperature, many modes are activated, resulting in β being a function of

temperature.

2.4.1. Temperature and Driving Force Type

Before comparing the disconnection model prediction of β with the MD simulation results,

we note that the expressions for A and B following Eq. (2.1) represent continuum model

descriptions of fundamentally atomic-level and bonding-dependent quantities (related to

disconnection core structures). As such, we treat A and B as parameters to be determined

by fitting to the simulation data and defer the assessment of how well the analytical ex-

pressions for A and B work. We perform nonlinear fits of Eqs. (2.2) and (2.3) to the β

data in Figs. 2 (stress driving force) and 5 (chemical potential driving force). To do this,

we consider all of the disconnection modes (although we include ∼ 10, 000 different modes

for each GB, in practice only the lowest few modes are important) for the Σ5[001](310),

Σ13[001](510), and Σ37[001](750) symmetric tilt GBs (see Han et al. (2018) for a description

of how to enumerate all possible disconnection modes). The results of this fitting procedure

are shown as the continuous curves in Figs. 2 and 5 and in Table 1. Overall, we see that
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Eqs. (2.2) and (2.3) are in good agreement with the MD results for both driving forces as

a function of temperature. The predicted temperature dependence is especially remarkable

giving the simplicity of the Boltzmann weighting of the different disconnection modes; even

better agreement should be possible with inclusion of correlation effects, e.g., through the

use of kinetic Monte Carlo approaches.

Table 1: Fitting parameters A and B in Eq. (2.3) for the data in Figs. 2 and 5. γ is the
GB energy for this potential at 0 K (Mishin et al., 2001). bi, hi, and βi are the Burgers
vector, step height, and coupling factor of disconnection mode with the ith lowest barrier
(see Eq. (2.3) and the analytical expressions for the parameters). B and γ are in J/m2

and A is in GPa. b1, b2, h1, and h2 are in cubic lattice constant units (a0 = 0.36 nm). F
identifies the driving force type.

GB F A B 2γ b1 h1 β1 b2 h2 β2

(310)
τ 13 0.39

1.9
1√
10

− 1√
10

−1 1√
10

3√
40

2
3

ψ 58 0.39 0 5√
40

0 − 1√
10

1√
10

−1

(510)
τ 50 0.38

1.9
1√
26

5√
104

2
5

1√
26

− 4√
26

−1
4

ψ 94 0.25 1√
26

5√
104

2
5 0 13√

104
0

(750)
τ 36 0.53

1.5
1√
74

− 3√
74

−1
3

2√
74

− 6√
74

−1
3

ψ 36 0.53 − 1√
74

3√
74

−1
3 − 2√

74
6√
74

−1
3

The values of the parameters A and B are of similar magnitude for all three GBs and for

both driving forces. In fact, the non-linear fitting procedure employed showed many shallow

minima, many of which give fits to the temperature-dependence of β of similar quality. This

suggests that the predictions for β based on Eqs. (2.2) and (2.3) are robust (insensitive to

which GB in a material, how the GB is driven, ...).

Further examination of Table 1 shows while the values of B obtained by fitting the constant

stress and constant chemical potential jump data show little variation (the average difference

is less than 15% of the mean value), the value of A is more sensitive to the type of driving

force (average error 65%). The value of A depends on dislocation core size r and r roughly

scales with Burgers vector b (Hirth and Lothe, 1982). Stress-driven GB dynamics favors
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disconnections of large Burgers vector |b| while GB migration driven by a chemical potential

jump favors disconnections of small |b|. In fact, Table 1 shows that the value of A obtained

with stress-driven GBs is less than or equal to that obtained when migration is driven by a

chemical potential jump - as expected based on this argument. Since the two disconnections

with the lowest nucleation barriers for the (750) GB have the same value of β, the effective

coupling factor is insensitive to both temperature and driving force (see Table 1 and Figs.

2 and 5).

The analytical expression for A (following Eq. (2.1)) depends on the core size r. Inserting

elastic constant data for Cu and using our fitted values of A (Table 1) suggest that 10−4 <

r < 1 nm. This result shows that the expression for A is not unreasonable (and that this

is not a good way to determine core size). On the other hand, the analytical expression

for B (following Eq. (2.1)) is simple and does not depend on disconnection mode: B = 2γ

(Hirth and Lothe, 1982; Han et al., 2018). Comparison of the values of B from the fitting

and 2γ from our atomistic (energy minimization) simulations shows that while the two are

within an order of magnitude of one another, the agreement is not outstanding. Hence, the

analytical expressions for A and B should be viewed as order of magnitude estimates only.

Moreover, if the driving force is too large to linearize Eq.(2.2), fitting A and B using the

linearized expression will not be accurate.

Table 1 also gives the disconnection modes corresponding to the two lowest intrinsic nucle-

ation barriers (see Eq. (2.3)) under the two types of driving forces. Note that since the

fitted values of A and B may depend on the type of driving force, so may the lowest intrinsic

nucleation barrier modes. The disconnections with the lowest intrinsic barriers (b1, h1) are

the same for both types of driving forces for the (510) and (750) GBs, but for the (310)

GB the lowest intrinsic barrier mode is different for the stress and chemical potential jump

driving forces. For the second lowest intrinsic barrier mode (b2, h2), only the (750) GB

chooses the same mode for both types of driving force. In general, GB migration under a

stress driving force favors disconnection modes with larger |b| and smaller |h| than those
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under a chemical potential jump driving force and vice-versa.

The temperature dependent coupling factors for the (310), (510) and (750) GBs for stress

and chemical potential jump-driven migration (Figs. 2 and 5) may be directly compared in

Fig. 7. β for the (750) boundary is remarkably temperature independent (compared with

the other GBs) and insensitive to the nature of the driving force. The origin of both effects

may be understood by reference to Table 1. For this GB, the coupling factors for the two

lowest disconnection nucleation barrier modes are identical (β1 = β2 = −1/3). The fact that

the lowest barrier mode β1 is the same for both driving force types implies that the coupling

factor for both types of driving force will be identical at low temperature. The fact that the

second lowest barrier mode β2 is the same as β1 implies that raising the temperature has

little effect on β. In fact, the temperature at which we expect to see significant deviations

of β from its low temperature value is determined by the difference in barriers between the

lowest barrier mode and the next mode with a different value of β. For this GB, the next

lowest barrier mode with a different value of β is the fourth lowest (β4). Since this barrier

is much larger than that of β1, the effective β deviates from its low temperature value only

near the melting point. Finally, since the two lowest disconnection barriers are the same

for both types of driving forces, β is independent of driving force type till very close to the

melting point.

For the (510) GB, the coupling factors for the lowest disconnection nucleation barrier mode

β1 are identical for both types of driving force. Like for the (750) GB, this implies that as

T → 0, the effective coupling factor for both driving force types are the same. However, as

the temperature increases, Fig. 7 shows that the coupling factors for the different driving

force types diverge. Table 1 shows that the second lowest barrier modes differ from the

lowest barrier modes - this explains why β is temperature-dependent. Table 1 also shows

that the second lowest barrier modes are different for different types of driving force - this

explains why the β(T ) curves diverge at intermediate and high temperature.

β(T ) for the (310) GB exhibits remarkable differences compared with the (750) and (510)
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GBs (see Fig. 7). For this GB, in the low temperature limit (T → 0) β depends on the type

of driving force. The behavior as T → 0 is even more clear based on the continuous curves

in Fig. 7 which are from Eq. (2.2). This may be explained by the fact the coupling factor

corresponding to the lowest barrier mode β1 is different for the two types of driving forces

(see Table 1); for T → 0, Eq. (2.2) shows that β → β1. Examination of the second lowest

barrier modes (Table 1) shows that the difference between the first and second lowest barrier

modes for the chemical potential jump-driving force is smaller (1) than that for the stress

driving force (2.5). This explains why the temperature dependence of β for stress-driven

migration is stronger than that for chemical potential-driven migration.

2.4.2. Driving Force Magnitude

Although in most studies of the coupling factor it is implicitly assumed that β is insensitive

to the magnitude of the driving force, the results in Figs. 4 and 6 indicate that this is not

true. Equation (2.2) shows that β depends on driving force. Therefore, expanding β to

third order for small driving forces (i.e., bSτ/kBT � 1 or hSψ/kBT � 1), we find that

β = Cττ2 + βτ0 (2.4)

β = Cψψ2 + βψ0 , (2.5)

where βx0 is the zero driving force limit of β for driving force of type x (the justification

for Eqs. (2.4) and (2.5) and the analytical expression of constants Cx and βx0 are given

explicitly in the Appendix). This suggests that the assumption that β is independent of the

magnitude of the driving force is valid to first order in the driving force. Examination of the

MD simulation results shown in Figs. 4 and 6 demonstrate that Eqs. (2.4) and (2.5) provide

an excellent fit to the data. At low temperature T � Tc, C
x → 0, where Tc = (Q2−Q1)/kB

and Qi is the ith lowest disconnection nucleation barrier.

As discussed above, stress-driven shear coupling and chemical potential jump-driven shear

coupling may have different coupling factors β at small driving forces. While this conclusion

is general, it fails (i.e., βτ0 = βψ0 ) when (1) the temperature is low and (2) βψ0 6= 0 (i.e., the
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lowest barrier mode does not correspond to a pure step). This is consistent with all of the

MD results in Fig. 7 given the lowest barrier modes shown in Table 1.

The fact that β depends on the magnitude of the driving force explains why β is different

under constant stress and constant strain rate loading (see Fig. 3). In the spirit of the

derivation of the thermodynamic Maxwell relations (Blundell and Blundell, 2010), we can

write

∂β

∂T

∣∣∣
Ḋ

=
∂β

∂T

∣∣∣
τ

+
∂β

∂τ

∣∣∣
T

∂τ

∂T

∣∣∣
Ḋ
, (2.6)

where Ḋ is the relative displacement rate of the two grains meeting at the GB (the shear

strain rate is Ḋ/v). We note that (∂τ/∂T )|Ḋ is non-zero since the shear stress depends on

β at fixed displacement rate (and, τ decreases with increasing T ). Hence, (∂β/∂T )|Ḋ 6=

(∂β/∂T )|τ simply because (∂β/∂τ)|T is non-zero.

2.5. Conclusions

While grain boundary migration often appears complex, we demonstrated that much of this

complexity may be resolved by consideration of the underlying mechanisms by which GBs

migrate. The difference between experimentally measured shear coupling factors β (the

quantity that relates GB migration to the relative translation of the grains) and geometric

predictions (Mompiou et al., 2009) can be explained within this framework. We present

molecular dynamics results that demonstrate that the temperature-dependence of the grain

boundary shear coupling factor β depends on whether the grain boundary is driven by

differences (jumps) in chemical potential across the GB, stress, or strain rate. β is also

observed to be a function of the magnitude of the driving force. These variations in β can

be very large (orders of magnitude) and even lead to changes in sign.

We propose a simple model that quantitatively predicts these variations. Our model is

based on the statistical mechanics of disconnection (line defects in the GBs characterized

by a Burgers vector and step height) nucleation. After all crystallographically-permissible

disconnection modes are predicted for any specific GB, our disconnection nucleation model

determines the relative nucleation barriers for each and statistical mechanics determines
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the relative rates of formation of each. We apply this theoretical construct to the four

GBs examined in our MD simulations and predict which disconnections are most impor-

tant for each GB and type of driving force (as well as their relative importance). With

this information, we directly predict the shear coupling factor as a function of tempera-

ture, driving force (type and magnitude), and bicrystallography. These predictions are in

excellent quantitative agreement with all of the MD simulation results.

Although it is difficult to identify individual disconnections at high temperature in the MD

simulations (and experiments), the disconnection model should be applicable over a wide

range of temperature because it rests on bicrystallography rather than any thermodynamic

property of the GB structure or the details of the disconnection structure. Since disconnec-

tions are topological defects, they are present whether the GB is sharp or rough. While GB

sliding may be viewed on a macroscopic level as a failure of ideal shear coupling, it does

not imply a failure of the disconnection model. Rather, GB sliding is a direct consequence

of the the presence and motion of disconnections with multiple modes.

Although the present work explicitly focused on GB dynamics in bicrystals, shear coupling

constrained by multiple grains (and triple junctions) is a key feature of microstructure evo-

lution in polycrystals (including grain size coarsening, grain rotation, stress generation, etc

(Thomas et al., 2017)). Disconnections of one mode, moving along GBs in polycrystals,

will pile-up at triple junctions, creating back stresses that will prevent macroscopic GB

migration. Continued GB (and triple junction) migration requires the participation of dis-

connections of other modes to ensure that the total Burgers vector is zero at the triple

junction (Han et al., 2018). The current work presents a statistical mechanics-based ap-

proach that provides the basis for explaining how multiple disconnection modes conspire to

move GBs and triple junctions together.
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CHAPTER 3 : Grain Boundary Mobility Tensor

This chapter was adapted from Chen et al. (2020a), where K. Chen, J. Han, X. Pan,

and D.J. Srolovitz designed research, performed research, and wrote the paper; K. Chen

contributed new analytic tools; K. Chen and J. Han analyzed data

Chapter 2 suggests that GB mobility depends on the origin of the driving force for GB mi-

gration (stress versus jumps in chemical potential across a GB) because of shear coupling.

This dependence contradicts the widely accepted notion that GB mobility is an intrinsic GB

property (independent of the source of the driving force). However, if the GB mobility does

depend on the nature of the driving force, the notion of a GB mobility should be expanded.

The shear-coupling factor (ratio of GB sliding and migration rates) also depends on the

nature of the driving force (Chen et al., 2019). Hence, GB motion is associated with three

orthogonal displacements (and velocities): GB migration (perpendicular to the GB plane)

and translations of one grain with respect to the other (in two directions tangent to the GB

plane). Accordingly, there are three generalized forces (per unit area) associated with these

motions (variations of the free energy with respect to three displacements). Assuming that

the displacements associated with the GB motion are overdamped (an excellent approxima-

tion since GB velocities are small compared with all speeds of sound), the proportionality

constant between the velocity and force vectors should therefore be a 3× 3 mobility tensor,

M. If we establish a coordinate system such that the GB normal is parallel to the e1-axis,

then M11 is the traditional GB (migration) mobility, M1j (j 6= 1) components describe

shear coupling, and Mij (i, j 6= 1) describe GB sliding. Since Mij/M11 is often not small,

ignoring these non-traditional mobility tensor components (i.e., replacing M with the scalar

MGB = M11) can be inappropriate. Also note that the individual components of M may

have different temperature dependences.

Here, we employ molecular dynamics (MD) simulations to examine the individual compo-

nents of the GB mobility tensor M and their temperature dependences for a Σ7 [111] (123̄)
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GB in face centered cubic (FCC) copper. We focus on this relatively simple low-Σ symmet-

ric tilt GB as an example to demonstrate the main effects/principles (additional MD data,

not reported here, suggests that the same conclusions apply broadly). We then develop

a general statistical disconnection-based analytical model to understand the temperature

dependence of the GB mobility tensor M.

3.1. Generalized GB Kinetics

Consider the bicrystal schematic in Fig. 8, where the GB separates Grains A and B. The

normal displacement of the GB (i.e., the GB migration distance) is u1 in the x1-direction.

The displacements of Grain A with respect to Grain B along two orthogonal directions in the

GB plane (x2 and x3) are u2 and u3, respectively. Thus, we define a generalized displacement

u = (u1, u2, u3) with a corresponding generalized velocity v = u̇. The generalized driving

force conjugate to the generalized velocity is F = −∂G/∂u, where G is the free energy per

area of the GB. The first component of F is F1 = −∂G/∂u1 = ψ, which is the jump of

chemical potential (free energy density) across the GB. The second and third components

of F are F2 = σ12 ≡ τ2 and F3 = σ13 ≡ τ3, which are shear stresses along the x2- and

x3-directions in the GB plane. The GB mobility tensor, relating v and F, i.e.,

v = MF (3.1)

is a second-rank tensor; more explicitly,


v1

v2

v3

 =


M11 M12 M13

M21 M22 M23

M31 M32 M33




ψ

τ2

τ3

 . (3.2)

Since GB kinetics are overdamped, GB motion is consistent with the maximum energy

dissipation rate and, as required by the Onsager relation (Onsager, 1931), the GB mobility

tensor M should be symmetric and positive definite (see below).

The shear-coupling factor (the ratio of the shear velocity to the GB migration velocity)
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Grain A

Grain B

u1u2

u3

GB

x1

x2

x3

L2

L1

L3

Figure 8: Bicrystal simulation cell with a symmetric tilt GB (shaded yellow). The tilt axis
is parallel to x3 and the GB plane is nominally x2-x3. The cell is periodic in the x2- and
x3-directions and a thin, rigid perfect crystal layer is added to the top and bottom surfaces
which may displace freely.
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has two components βk = vk/v1 corresponding to orthogonal shear directions. This factor

can be obtained by measuring v1 and vk under an applied shear stress τk; according to

Eq. (3.2), such a factor is βk = Mkk/M1k. βk can also be determined by measuring v1

and vk when GB migration is driven by a jump in the chemical potential across the GB

ψ (e.g., a synthetic driving force such as often employed in MD simulations or associated

with capillarity); the factor measured in this way is βk = M1k/M11. Coupling factors βk

measured in these two manners are naturally different (Chen et al., 2019) (see Appendix).

3.2. Simulation Methods

We performed MD simulations using the Large-scale Atomic/Molecular Massively Parallel

Simulator (LAMMPS) (Plimpton, 1995) and a copper embedded-atom-method potential

(Mishin et al., 2001) for several different GBs (Chen et al., 2019). While these simulations

(Chen et al., 2019) show qualitatively similar results, we focus on one particular GB in this

paper; i.e., the Σ7 [111] (123̄) symmetric tilt GB. In these simulations the tilt axis is parallel

to the x3-direction and the cell dimensions are L1 ∼ 100 nm, L2 and L3 ∼ 5 nm.

We construct GBs by fixing the misorientation of the two grains and minimizing the en-

ergy with respect to atomic coordinates and the relative translations of the upper grain

relative to the lower grain. We then rescale all atomic coordinates in accordance with the

temperature-appropriate lattice constant prior to beginning the MD simulations. Before

applying a driving force, we equilibrate the bicrystal system at the temperature of interest

for 0.2 ns. In the simulations of stress-driven GB migration, we apply a constant shear

stress τ2 or τ3 by imposing forces on the top and bottom surfaces of F2 or F3. Additional

MD simulations are performed in which GB migration is driven by a jump in the chemical

potential ψ; i.e., an additional energy density ±ψ/2 was added to the atoms in Grains A

and B, respectively (i.e., a synthetic driving force (Janssens et al., 2006)). Much larger

driving forces were employed to drive GB motion using applied shear stresses as compared

with chemical potential jumps in order to obtain reliable mobility measurements (as seen

below, the mobilities obtained for small and large driving forces are consistent). All simu-

lations were run for 7 ns at temperatures in the 600-1300 K range at fixed number of atoms
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Figure 9: Temperature dependences of the GB mobility components (a) M11, (b) M22, (c)
M33, (d) M12, (e) M13, and (f) M23 (error bars indicate the range of the simulation results).
The data points represent the MD results and the dashed lines are fits of these data to Eq.
(3.5) for a single disconnection mode. For the off-diagonal components of Mij (i 6= j), two
sets of data points (blue circles and red squares) are shown corresponding to Mij and Mji;
the Onsager relation suggests that these two sets of data are equivalent.

and temperature (Nosé-Hoover thermostat on all but the fixed-atoms). The GB position is

defined as the x1 position where the layer-averaged centro-symmetry parameter (Stukowski,

2010) is maximum (Kelchner et al., 1998). The GB migration velocity is the normal velocity

of the mean GB plane. The “error” bars in the GB mobility data depict the values obtained

from two identical simulations.

3.3. Simulation Results

Figure 9 shows the temperature dependence of each of the GB mobility components Mij .

The magnitudes of these components can vary by several orders; M11 > M1i > M22 > M33.

The temperature dependences of these GB mobility components also differ widely. The

components which involve the displacement along the tilt axis (M31, M32 and M33) increase

rapidly with increasing temperature (see Figs. 9c, e and f), while the other components

(M11, M12 and M22) decrease with increasing temperature (see Figs. 9a, b and d).
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The observation that the diagonal components M11 and M22 decrease with increasing tem-

perature seems counterintuitive. But, such situations are, in fact, not unusual; in the MD

data set of 388 distinct GBs, Olmsted et al. (2009); Homer et al. (2014) reported such

behavior for many GBs (they call this anti-thermal behavior). The origin of this surprising

temperature dependence of several GB mobility components is discussed below.

Examination of Figs. 9d, e and f clearly demonstrates that M12 = M21, M13 = M31 and

M23 = M32, as required by the Onsager reciprocal relation (Onsager, 1931). Coupling

does not only exist between GB migration and shear but also between shears in different

directions; i.e., a shear stress in one direction may produce shear displacement along the

orthogonal direction, i.e., in general, M23 6= 0. Note that in the symmetric tilt GB example

which we focus on in this report, M23 is small compared with the other mobility components.

3.4. Statistical Disconnection Model

GB motion is accomplished through the glide of line defects (i.e., disconnections) along the

GB (Han et al., 2018); such disconnection mechanism has been directly supported by the

in-situ experimental observation of GB migration in polycrystals by Legros and colleagues

(Legros et al., 2008; Mompiou et al., 2009; Rajabzadeh et al., 2013a). Disconnections are

constrained to lie within the GB and are characterized by a Burgers vector b (dislocation

character) and a step height h (step character); both of these are translation vectors of

the displacement shift complete (DSC) lattice(Sutton and Balluffi, 1995; Han et al., 2018).

For each GB with a particular bicrystallography, there are multiple disconnection modes

(bm, hm) (Han et al., 2018) (the subscript denotes one of the disconnection modes allowed

by the bicrystallography).

Disconnections may be introduced into GBs via homogeneous or heterogeneous nucleation

and/or by the decomposition of lattice dislocations. In this discussion, we focus on homo-

geneous nucleation since, as in phase transformations, heterogeneities often simply rescale

the homogeneous nucleation energies. Since disconnection formation and migration may

be driven by different types of driving force which couple to the disconnection (bm, hm),
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the disconnection dipole formation energy depends on the disconnection mode. Following

earlier discussions of disconnection formation/nucleation (Han et al., 2018; Thomas et al.,

2017; Chen et al., 2019), we can write the disconnection formation barrier as

E∗ = Q−W ≡ (Ab2 +B|h|+ C)L−H · FL2/2, (3.3)

where Q is the formation barrier without a driving force, W is the work done by the driving

force, H ≡ (h, b2, b3)T , and L = L2 = L3. The constants may be estimated (Han et al.,

2018) as A = −2µ
[
(1− ν cos2 α)/4π(1− ν)

]
ln sin (πr0/L) and B = 2γ, where γ is the

step energy, µ is the shear modulus, ν is the Poisson’s ratio, α is the angle between the

Burgers vector and the disconnection line direction, and r0 is the disconnection core size.

A describes the energy required to form a dislocation pair and separate it to a distance

of half the periodic unit cell L/2 (Han et al., 2018) and B describes the energy required

to form a pair of steps (Thomas et al., 2017; Han et al., 2018; Chen et al., 2019). C

represents the disconnection migration barrier which depends on the GB structure and

bonding character; this is dominated by core-level phenomena and may be determined via

calculations on the atomic scale (Combe et al., 2016). We emphasize that in our approach,

we view a flat GB as reference configuration and curvature is directly represented by a

distribution of step/disconnection (pairs) along the reference GB. While a macroscopically

curved GB is appropriately viewed as flat on the scale of MD simulations (except for nano-

grained microstructures), we still capture this macro-curvature driving force as a jump of

chemical potential (i.e., ψ as a component of F); this is consistent with the classical Gibbs-

Thomson effect where GB curvature induces a pressure driving force on a GB - driving

force and chemical potential jump are simply two equivalent approaches for describing the

thermodynamics of GB curvature-induced GB migration.

Since the disconnection formation barrier (Eq. (3.3)) depends on both b and h, discon-

nections of different modes have different formation rates. We implicitly assume that the

GB velocity is disconnection formation-controlled (i.e., the disconnection formation barrier
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is large compared with the migration barrier) and describe the temperature dependence of

the disconnection formation rates based upon Boltzmann statistics (Thomas et al., 2017;

Chen et al., 2019) (this is not always a good assumption (Combe et al., 2016)). Hence,

the GB velocity is obtained by superimposing contributions from different disconnection

modes, weighted by their Boltzmann factors:

v = 2f0

∑
m

H(m)e−Q
(m)/kBT sinh

(
H(m) · FL2

2kBT

)

≈

(
f0L

2

kBT

∑
m

H(m) ⊗H(m)e−Q
(m)/kBT

)
F, (3.4)

where f0 is the attempt frequency, the superscript m denotes the mth disconnection mode,

and the expression in the second line of Eq. (3.4) is an expansion to leading order in FL2/T .

Therefore, the GB mobility tensor is

M =
f0L

2

kBT

∑
m

H(m) ⊗H(m)e−Q
(m)/kBT . (3.5)

Eq. (3.5) guarantees that M = MT , the determinant |M| > 0, the diagonal components

M11, M22 and M33 are each positive, and generally Mij 6= 0. We also note that because

of the temperature-dependent prefactor and the summation over modes, Mij is, in general,

non-Arrhenius. If only one mode is active, Mij will reach maximum at T = Tc ≡ Q(1)/kB.

For T < Tc, Mij will be nearly Arrhenius, while for T > Tc, the temperature dependence of

Mij is dominated by the prefactor 1/T . This suggests that Mij may decrease with increasing

temperature for T > Tc.

Since the [111] tilt axis is a close-packed direction in our material (FCC copper), the modes

with Burgers vector b parallel to the tilt axis (x3) tend to have much larger values of |b|

and, thus, larger Q (see Eq. (3.3)) than the modes with b perpendicular to the tilt axis (x2).

The large difference in Q between the shears in the directions parallel and perpendicular to

the tilt axis makes the investigated temperature range (600-1300 K) smaller than Tc for the

former and larger than Tc for the latter. This results in qualitatively different temperature
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dependences of the mobility components M3i (i = 1, 2, 3) and Mjk (j, k = 1, 2). For M3i

(shearing in x3), T < Tc such that M3i(T ) is nearly Arrhenius; in qualitatively agreement

with the MD results (Figs. 9c, e and f). For Mjk (shearing in x1 or x2), T > Tc such

that Mjk(T ) scales approximately as 1/T ; in qualitatively agreement with the MD results

(Figs. 9a, b and d).

The dashed lines in Fig. 9 show fits to the MD data using a single-mode expression (i.e., the

first term in Eq. (3.5)) for Mi3 (i = 1, 2, 3) and a two-mode expression (i.e., the first two

terms in Eq. (3.5)) for Mij (i, j = 1, 2). The parameters obtained by fitting are listed in

Table 2. We find that the mobility components which involve sliding along the tilt axis, i.e.,

Mi3 (i = 1, 2, 3), are associated with large activation energies (i.e., Q(1) ∼ 2 eV in Table 2)

in comparison with the activation energies of the other mobility components. This implies

that the temperature dependence of these components is dominated by the exponential

factor in Eq. (3.5) (i.e., Arrhenius) and these are well-fitted by the single-mode expression

(see Figs. 9c, e and f). However, for the other mobility components, i.e., Mij (i, j = 1, 2),

the activation energy of the first mode is negligible (i.e., Q(1) ∼ 0 eV in Table 2) such that

the temperature dependence is dominated by the 1/T pre-factor in Eq. (3.5). For these

components, a second mode is required to capture the high-temperature behavior. The

activation energy for the second mode is, of course, larger than that of the first mode (i.e.,

Table 2: Activation energy Q(m) and pre-exponential c
(m)
ij ≡ f0L

2H
(m)
i H

(m)
j /kB for the mth

mode for the mobility componentMij , obtained by fitting Eq. (3.5) to the data in Fig. 9. The
fit was performed assuming a single-mode expression for Mi3 (i = 1, 2, 3) and a two-mode
expression for Mij (i, j = 1, 2). The pre-exponential normalization is c0 = 1 K m s−1 MPa−1.
The symbols “–” in the last two rows indicate that a single-mode model was sufficient (no
two-mode fitting was performed).

M11 M12 M13 M22 M23 M33

ln(c
(1)
ij /c0) 7.5 6.2 31 4.7 15 25

Q(1) (eV) ∼ 0 ∼ 0 2.8 ∼ 0 1.2 2.1

ln(c
(2)
ij /c0) 8.8 8.3 – 5.9 – –

Q(2) (eV) 0.2 0.2 – 0.2 – –
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Q(2) > Q(1) for M11, M12 and M22 in Table 2).
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Figure 10: Numerical results for (a) square of the mean grain size R2 vs. time t and (b) the
shear stress τ vs. time t at 1000 K (blue), 1100 K (green) and 1200 K (red). The solid and
dotted lines are for the case of n = 12 and 4, respectively (n is the number of edges of a
grain in a 2D microstructure). The insets show the time evolutions for much longer times.
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3.5. Discussion

The classical kinetic equation for describing capillarity-driven GB migration is v⊥ = mψ =

mγκ, where γ is the GB energy and κ is the mean curvature of the GB plane. This

description naturally led to a description of the growth of individual n-sided grains in a 2D

polycrystal (i.e., the von Neumann-Mullins relation (Von Neumann, 1952; Mullins, 1956)):

Ṙ = mgγ/R, where R is the grain size, g = n/6−1 is a factor accounting for grain topology,

and we approximated the rate of change of the area of a grain as RṘ. Integration leads to

one of the classic laws for grain growth: R2 − R2
0 = 2mgγt, where R0 is the initial grain

size. If we incorporate the tensor character of the mobility, what are the consequences for

grain growth?

For the case of the growth/shrinking of a grain in a 2D polycrystal, Eq. (3.1) can be

simplified as  Ṙ

−τ̇R/µ

 =

 M11 M12

M12 M22


 gγ/R

τ

 . (3.6)

−τ̇R/µ is the shear across the grain boundary assuming a linear elastic constitutive relation

(Thomas et al., 2017). The numerical results are shown in Fig. 10. The numerical values of

the terms in the mobility tensor are those extracted from the MD simulations. As expected,

12-sided grains grow while 4-sided grains shrink. At late times R2 is a linear function of

t and grain growth is parabolic. However, at early times R2 is not a linear function and

grain growth is not parabolic (see Fig. 10a). Figure 10b shows that the grain growth is

accompanied by the development of internal stress; for growing grains this slowly decays

with increasing grain size while for shrinking grains it diverges as the grain size tends to

zero. If GB migration and shear are not coupled, i.e., M12 = 0, then R2 − R2
0 = 2M11gγt

and, obviously, no stress develops; this is classical grain growth.

Eq. (3.6) shows that as R → ∞, R2 − R2
0 = 2m̃gγt, where the effective mobility m̃ =

|M|/M22 = M11 −M2
12/M22. Since M is positive definite, m̃ is necessarily positive. Also,

since m̃ < M11, we see that the development of GB migration induced internal stresses
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always inhibit grain growth/shrinkage; the apparent GB mobility measured in polycrystals

will be smaller than that measured in bicrystals. We also note that m̃ does not necessarily

increase with increasing temperature (so-called “thermal” GB migration in Olmsted et al.

(2009); Homer et al. (2014)). While in the large set of GBs examined by MD (Olmsted

et al., 2009; Homer et al., 2014), thermal GB behavior was more common than anti-thermal

behavior, we note that both possibilities exist here depending on the relative magnitudes of

dM11/dT and d(M2
12/M22)/dT . While the relationship of m̃ vs. T tends to be increasingly

thermal with increasing T (shear coupling is less effective at higher T ), there have been

experimental observations of anti-thermal behavior in grain growth at low temperature

(Rheinheimer and Hoffmann, 2015).

While this analysis focused on 2D grain growth (the topological nature of the von Neumann-

Mullins result makes this case simple), extensions to higher dimension are straightforward

(MacPherson and Srolovitz, 2007) (see Appendix).

3.6. Conclusion

Since GB migration and GB sliding are, in general, coupled, we have extended the notion

of the GB velocity-driving force relation applied throughout the field to account for both

this coupling and the inter-relation between the different types of GB motion (migration

and sliding). The natural extension is from a scalar velocity-mobility-driving force relation

to one in which the velocity and forces may be thought of as vectors and the mobility as a

second rank tensor. The kinetic equation suggests the definition of a GB mobility tensor,

M. The diagonal components of M correspond to the conventional GB mobility and GB

sliding coefficient (or the inverse of a GB viscosity). The off-diagonal components of M

reflect coupling between GB migration and GB sliding. We determined the full GB mobility

tensor and its temperature dependence for a Σ7 [111] (123̄) symmetric tilt GB in copper

via molecular dynamics simulations. Surprisingly, we found that some components of M

increase with temperature while others decrease. We were able to explain this temperature

dependence as well as several general properties of the mobility tensor based upon analysis

of a disconnection model. These results were then applied to analyze the effect of shear
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coupling on grain growth. In particular, we showed that the effective GB migration mobility

will be smaller than that expected based upon bicrystal experiments as a result of stress

generation during grain growth in polycrystalline systems.
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CHAPTER 4 : Temperature Dependence of Grain Boundary Mobility

This chapter was adapted from Chen et al. (2020b), where K. Chen, J. Han, and D.J.

Srolovitz designed research, performed research, and wrote the paper; K. Chen performed

simulations and analyzed data.

Chapter 3 proposes the concept of GB mobility tensor M. In this chapter, we focus on

M ≡M11, the component of the mobility tensor that couples the normal components of the

GB velocity and driving force (i.e., here, M is a scalar). Since the most widely employed

approach for controlling the rate (and often the nature) of microstructure evolution is

through variation of temperature T (i.e., annealing), this study focuses on the temperature

dependence of the GB mobility.

The temperature dependence of grain boundary mobility has been measured for a wide

range of materials both experimentally (Aust and Rutter, 1959a,b; Rutter and Aust, 1965;

Gottstein and Shvindlerman, 2009) and via atomistic simulations (Homer et al., 2014; Rah-

man et al., 2014; Janssens et al., 2006; Zhang et al., 2004; Priedeman et al., 2017; Zhang

et al., 2005; Olmsted et al., 2009; Zhou and Mohles, 2011; Song and Hoyt, 2012; Upmanyu

et al., 1999; Schönfelder et al., 2005). The quoted references focused on the measure-

ment of the mobility of nominally flat GBs in bicrystals of elemental metals rather than

GBs in microstructures (i.e., averaging over many GBs or influenced by GB junctions).

The temperature-dependence of the GB mobility is commonly fit to an Arrhenius relation

M = M0e
−Q/kBT , where Q is an activation energy, the prefactor M0 is a constant, and kB

is the Boltzmann constant. This Arrhenius relation provides a good fit to many of the M

vs. T experimental data. However, GB mobilities extracted from atomistic simulations in

pure systems show a wide variety of T -dependences (Homer et al., 2014; Olmsted et al.,

2009; Schönfelder et al., 2005). Homer et al. (Homer et al., 2014) performed a series of

MD simulations of GB migration in Ni for a large number of bicrystallographically different

GBs. While nearly half of these GBs showed mobilities that they characterized as Arrhenius
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over some range of temperature, they also observed several/many cases for which the GB

mobility (i) decreased with increasing T (so called anti-thermal behavior), (ii) was nearly T

independent, (iii) exhibit maxima and/or minima with respect to T , and (iv) is nearly zero

at low T and then increases rapidly over a small T -range. The existence of such diversity

in GB mobility M(T ) within a single material challenges our current understanding of and

ability to predict GB mobility.

Recent studies suggest that GB migration occurs through the motion of line defects (i.e.,

disconnections), that are constrained to lie within the GB and are characterized by both

a Burgers vector b and a step height h that are determined by the underlying GB bicrys-

tallography (Hirth and Balluffi, 1973; Pond and Bollmann, 1979; King and Smith, 1980;

Balluffi et al., 1982; Hirth et al., 2006, 2007; Cahn et al., 2006; Thomas et al., 2017; Han

et al., 2018; Hadian et al., 2018; Chen et al., 2019). Both atomistic simulation (Rajabzadeh

et al., 2013b; Khater et al., 2012; Combe et al., 2016; Hadian et al., 2018) and electron

microscopy (Legros et al., 2008; Mompiou et al., 2009; Rajabzadeh et al., 2013a) studies

have directly observed GB migration through the formation and migration of disconnec-

tions along GBs. The motion of disconnections of different modes, characterized by different

(bm, hm) (m is the index for mode) allowed by the bicrystallography, can conspire to affect

GB motion. This suggests a possible source for some of the complexity in the observed

temperature dependence of GB mobility (Thomas et al., 2017; Han et al., 2018; Chen et al.,

2019).

In this paper, we explore the T -dependence of GB mobility based upon kinetic Monte Carlo

(kMC) and molecular dynamics (MD) simulations of GB migration. We then propose an

analytical model to describe many of the observed forms of the temperature dependences

of GB mobility.
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4.1. Kinetic Monte Carlo Simulations

4.1.1. Model

Here, we describe the motion of a GB in terms of the formation and migration of discon-

nections, as illustrated in Fig. 11. This model describes a quasi-2D bicrystal, containing a

quasi-1D tilt GB. The tilt axis of the GB is along the e1-axis and the GB normal is e3 (see

Fig. 11a). By “quasi”, we imply that the bicrystal structure is uniform along the e1-axis

(i.e., the model is thin in the e1-direction). Periodic boundary conditions are applied in

both the e1- and the e2-axes. The GB is discretized into N lattice sites along the e2-axis.

The state of the ith lattice site (1 ≤ i ≤ N) on the GB is denoted by (ui, zi), where ui is

the relative (tangential) displacement of the upper grain with respect to the lower one (i.e.,

eigen-shear) in the e2 direction and zi is the position of the GB plane in the e3-direction

at GB-site i. Formation of a ± disconnection pair of mode m, (bm, hm) and (−bm,−hm),

at site i corresponds to the following change: (ui, zi) → (ui + bm, zi + hm), as illustrated

in Fig. 11b. The evolution of the state of the GB is described by {(ui(t), zi(t))} for all

GB sites i. Disconnection motion is represented as transitions in the GB states on a series

of sites. For example, referring to Fig. 11b, if the right disconnection “>” glides to the

right by one lattice site (a distance δ), the state of site (i+ 1) changes from (ui+1, zi+1) to

(ui+1 + bm, zi+1 + hm).

Under a driving force, the GB lattice site states shown in Fig. 11 will evolve. In the kMC

simulations described here, we focus on a driving force associated with a difference (or jump)

in the chemical potential across the GB, denoted by ψ. ψ can represent driving forces

of different physical origins. For example, ψ can represent a capillary force (curvature),

the difference in strain energy between two differently oriented grains in a bicrystal with

anisotropic elastic constants subject to a non-shear stress (Washburn and Parker, 1952) or

the effects of an applied magnetic field in a material with orientation-dependent magnetic

susceptibility (Günster et al., 2013). In atomistic simulations, ψ is often modeled using

the synthetic driving force method (Janssens et al., 2006). GB migration can be driven by
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Figure 11: (a) Quasi-1D lattice model description of a tilt GB. The state of lattice site i
is (ui, zi). (b) The GB state after nucleation of a pair of disconnections of mode m (i.e.,
(bm, hm) and (−bm,−hm)) at site i).
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other types of driving forces, such as a shear stress parallel to the GB plane τ . However, in

most experiments (Hu and Rath, 1972; Grünwald and Haessner, 1970; Molodov et al., 1995;

Viswanathan and Bauer, 1973; Lejček et al., 1994; Furtkamp et al., 1998; Molodov et al.,

1998) and atomistic simulations (Olmsted et al., 2009; Homer et al., 2014), GB mobility is

measured based upon chemical potential jump driving forces ψ (e.g., curvature-driven GB

motion) (Gottstein and Shvindlerman, 2009).

4.1.2. Algorithm

In this section, we describe the kinetic Monte Carlo (kMC) algorithm we employ to simulate

GB migration under a chemical potential jump driving force ψ.

The first step is to determine the Burgers vector and step height for each disconnection

mode m (bm, hm), the energy landscape and the work done by the external driving force

WE
m ≡ −ψhmδ, where δ is the periodicity of the local energy landscape along the GB which

we associate with width of the GB site. We initialize the model by assuming that the GB

is disconnection-free along ui = 0, zi = 0 (for i = 1, · · · , N) at time t = 0. Then, the kMC

simulation proceeds as follows.

(i) List the energy barriers for all possible transition events. The energy change associated

with the formation of a disconnection pair of mode m at site i ∆ES is (see Fig. 12):

∆Eim =
1

2
∆ES

im + E∗m

=
1

2

(
∆Ec

im +W I
im +WE

m

)
+ E∗m, (4.1)

where ∆ES
im is the total energy change associated with forming the disconnection

dipole, E∗m is the disconnection glide barrier and WE
m is the work done by the driving

force (chemical potential jump). ∆Ec is the formation energy of two disconnection
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cores:

∆Ec
im = γ

[ ∣∣z+
i − zi−1

∣∣+
∣∣zi+1 − z+

i

∣∣
− |zi − zi−1| − |zi+1 − zi|

]
+ ζK

[ (
u+
i − ui−1

)2
+
(
ui+1 − u+

i

)2
− (ui − ui−1)2 − (ui+1 − ui)2

]
, (4.2)

where the first term is associated with the increased GB area (steps) and the sec-

ond is an estimate of the core energy associated with the disconnection Burgers vec-

tors(Thomas et al., 2017; Han et al., 2018; Chen et al., 2019, 2020a) δ. Here, γ is the

GB energy associated with the step face, K = µ/4π(1 − ν) (µ is the shear modulus

and ν is the Poisson’s ratio), and ζ is a constant. W I is the contribution to the work

done in forming a disconnection pair associated with the internal stress field τi at site

i from all other disconnections in the systems (this is the Peach-Koehler (PK) force):

W I
im = −τibmδ +

2πKb2m
N

cot
( π

2N

)
. (4.3)

The second term in this expression is associated with the expansion of the discon-

nection dipole from size 0 to δ = L/N (i.e., the elastic interaction between the two

disconnections in the dipole. Equation (4.1) can best be understood by reference to

Fig. 12.

(ii) Compile a list of the rates of all possible transitions. The transition rate associated

with the formation of a mode m disconnection dipole at site i is

λim = ω exp

(
−∆Eimw

kBT

)
, (4.4)

where ω is an attempt frequency and w is the thickness of the bicrystal in direction

e1. Note, disconnection migration is simply the formation of a disconnection dipole
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adjacent to an existing disconnection. The “activity” of the system is the rate at

which any transition occurs, Λ =
∑

m

∑
i λim.

(iii) Randomly choose an event in accordance with the probability pim = λim/Λ. The

detailed procedure is as follows. List all events in an array and index each event by j

(i.e., a combination (i,m)): {p1, · · · , pj , · · · }. Generate a random number χ ∈ (0, 1]. If

j′ is the minimum index such that χ ≤
∑j′

j=1 pj , then execute event j′ (corresponding

to (i′,m′)).

(iv) Advance the clock t := t + ∆t, where ∆t = Λ−1 ln(η−1) and η ∈ (0, 1] is a random

number.

(v) Update the state of site i′ as ui′ := ui′ + bm′ , zi′ := zi′ + hm′ and the stress at each

site in the system (i = 1, · · · , N) as

τi := τi+
2πKbm′

Nδ

{
cot

[
π

N

(
i′ − i− 1

2

)]
− cot

[
π

N

(
i′ − i+

1

2

)]}
. (4.5)

(vi) Return to Step (i).

(Derivations of Eqs. (4.3) and (4.5) are provided in Appendix)

To perform a simulation, we choose a GB (i.e., including specifying the bicrystallography-

allowed (bm, hm) and their associated energies), a temperature and a driving force ψ. Each

kMC simulation is run for 106 (variable time) steps and measure a statistically-averaged,

steady-state GB migration velocity v. The GB mobility at this temperature is determined

from M = v/ψ for ψ sufficiently small that v ∝ ψ. Such simulations are repeated over a

range of temperatures to determine M(T ) for the chosen GB.

Two sets of kMC simulations were performed using different disconnection parameter sets.

(i) The first set of simulations were performed to investigate the contributions of different
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Figure 12: Schematic of the energy barrier associated with a single transition associated
with the formation of a pair of disconnections of mode m at site i.

types of disconnections on M(T ). For these simulations, we employ reduced (dimen-

sionless) quantities, labeled by “∼”: h̃ = h/δ, b̃ = b/δ, γ̃ = γ/(2πKδ), ψ̃ = ψ/(2πK),

τ̃ = τ/(2πK), T̃ = kBT/(2πKδ
2w), Ẽ = E/(2πKδ2), t̃ = tω, and M̃ = 2πKM/(δω).

This representation reduces the number of parameters in the simulations (e.g., by

scaling out δ, ω and K). For these simulations, we choose γ̃ = 1, ψ̃ = 1, ζ = 2π, and

Ẽ∗m = 0.1γ̃(|b̃m|+ |h̃m|).

(ii) The second set of kMC simulations are performed using parameters determined from

atomistic calculations for Σ17 [100] (035) and Σ25 [100] (034) symmetric tilt GBs in Al

(using the embedded-atom-method potential from Mishin et al. (1999)), as described

in Section 4.3. The admissible disconnection modes {(bm, hm)} for these boundaries

are as described in Han et al. (2018); Chen et al. (2019).

In all of the simulations reported here, we employed N = 100 and the site width δ equal to

the coincidence-site-lattice (CSL) cell in the direction parallel to the GB.
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4.1.3. Results

Figure 13 shows the temperature dependence of the reduced GB mobility M̃(T̃ ) obtained

from the first set of kMC simulations. Several cases are investigated in order to understand

the effects of the type of the operative disconnection(s) (bm, hm) and a single versus multiple

operative disconnections.

In the first set of kMC simulations, we focus on a single operative disconnection type that

corresponds to a pure-step (b̃1, h̃1) = (0, 1). The results are shown in Fig. 13a. Starting

from low T , the GB mobility increases quickly with temperature and then decays slowly at

high T . At low T , GB mobility is well described by an Arrhenius relationship ln M̃ ∼ −1/T̃ ,

while at high T it decays as M̃ ∼ 1/T̃ ; both of these relations are indicated by the two

dotted green curves in Fig. 13a).

In the second kMC simulation, we focus on a single operative disconnection that has both

finite Burgers vector and step height, (b̃1, h̃1) = (1, 1). These kMC results are shown in

Fig. 13b. The presence of a finite Burgers vector lowers the GB mobility relative to the

pure step case. Like in the first kMC simulation, the GB mobility M̃(T̃ ) increases at low

T and then decays at high T . Two major differences are that the maximum mobility has

decreased by more than a factor of two and that instead of rising rapidly from T̃ = 0, the

GB mobility remains nearly zero until a critical temperature before its initial rise (cf. (the

(b̃1, h̃1) = (0, 1) case in Fig. 13a).

Three additional kMC simulations shown are performed, corresponding to two operative

disconnection modes. In all cases, the first mode is the pure step disconnection (b̃1, h̃1) =

(0, 1), while the second has both finite step height and Burgers vector; i.e., (b̃2, h̃2) = (1, 1),

(2, 2), and (3, 3) (see Figs. 13c,d,e, respectively). Comparison of these three, 2-mode cases

show a much wider range of behavior than in the single mode cases.

While the 2-mode (b̃1, h̃1) = (0, 1), (b̃2, h̃2) = (1, 1) case (Fig. 13c) resembles that for the

pure step mode case in Fig. 13a, the highest mobility in the 2-mode case exceeds that in the
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pure step case by nearly 50% and that of the finite Burgers vector and step height case of

Fig. 13b by nearly 300%. Figure 13c compares this 2-mode case ((b̃1, h̃1) = (0, 1), (b̃2, h̃2) =

(1, 1)) with the superposition of the mobilities of the two 1-modes cases ((b̃1, h̃1) = (0, 1) in

Fig. 13a and (b̃2, h̃2) = (1, 1) in Fig. 13b). The mobility in the 2-mode case is approximated

as the sum of those for the two 1-mode cases.

The 2-mode cases with (b̃2, h̃2) = (2, 2) and (b̃2, h̃2) = (3, 3) both decay at large temperature,

like in the other cases, but also exhibit clear minima at intermediate temperatures and

maxima at both high and low temperature. The minimum is deeper for the (b̃2, h̃2) = (3, 3)

mode than for the (b̃2, h̃2) = (2, 2) mode.

4.2. Statistical Disconnection Model

4.2.1. Model

In this section, we develop an expression for the GB mobility

M =
dv

dψ

∣∣∣∣
ψ=0

(4.6)

via a statistical analysis of the formation and migration (glide) of disconnections of one

or more modes and compare with the kMC results. The first step is predicting the GB

migration velocity v as a function of ψ. For consistency with the kMC simulations, we

focus on the quasi-1D GB model of Fig. 11.

We begin by considering GB migration in terms of the formation and glide of a single

disconnection mode (b, h) (we omit the subscript “m” for a one mode case) on an infinitely

long, thermally equilibrated GB under the influence of a driving force ψ. Without a driving

force, the GB is characterized by equal densities of positive and negative disconnection pairs.

Since the numbers of positive and negative steps are equal, these disconnections do not

contribute to net GB migration. When a driving force is applied, extra disconnection pairs

of the appropriate sign (positive or negative) form along the GB, with an average spacing

between disconnection pairs L (to be determined). For simplicity, focus on a periodic

distribution of such pairs (as in Fig. 11b); unlike in the kMC model, here we consider a
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continuous (rather than discrete) GB and L is a temperature-dependent correlation (rather

than fixed) length. Under the influence of driving force ψ, the two disconnections in each

pair glide apart. Once the separation between disconnection pairs reaches L, they annihilate

with disconnections from neighboring pairs; at this point, the GB becomes flat again, but

has migrated a distance h.

4.2.2. Energetics

The energy change as a function of the separation of the disconnections in a pair by a dis-

tance R is illustrated in Fig. 14. The red curve shows that the formation of a disconnection

pair (separated by the disconnection core size r0 in one period) requires energy Ec; this is

the disconnection core energy. Each disconnection interacts elastically with all other dis-

connections (including the other disconnection of the same pair and their periodic images).

To separate a pair of disconnections by distance R against the elastic Peach-Koehler force

requires work W I(R); this is represented by the curved portion of red line in Fig. 14. Ex-

pansion of the disconnection dipole against the external driving force ψ also requires work

WE(R); this is denoted by the green line in Fig. 14b. In addition, there is a set of energy

barriers E∗ resulted from the atomic-scale (Peierls) potential that each disconnection must

cross as it migrates. Hence, the total change in energy versus disconnection pair separation

R is

E(R) = ES(R) + EG(R) = Ec +W I(R) +WE(R) + EG(R)

=


(
2γ|h|+ 2ζKb2

)
+ 2Kb2 ln

∣∣∣∣ sin(πR/L)

sin(πr0/L)

∣∣∣∣− ψhR+ EG(R), r0 ≤ R ≤ L− r0

0, otherwise

,

(4.7)

where ES is the energy of the stable/metastable states (corresponding to the red curves in

Fig. 14), Ec ≡ 2γ|h| + 2ζKb2 is an estimate of the disconnection core energy and EG(R)

describes the periodic glide barriers which we approximate as E∗[1− cos(2πR/δ)]/2. Equa-

tion (4.7) describes the blue curve in Fig. 14.
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The free energy associated with formation of the disconnection pair should also include

the configurational entropy. In our model, L is the average spacing between disconnection

pairs; hence, δ/L is the equilibrium concentration of disconnections:

δ

L
= exp

(
− Ec

kBT/w

)
. (4.8)

(See Appendix for more details.) The configurational entropy (per length) is then

S =
kB

δw
[L lnL− δ ln δ − (L− δ) ln(L− δ)]

≈ kB

w
ln

(
eL

δ

)
=
kB

w
+ Ec/T, (4.9)

where the last line applies for (δ/L)→ 0 and we applied Eq. (4.8). Finally, the free energy

(per length) as a function of disconnection separation R may be written as

F (R) = E(R)− TS

= W I(R) +WE(R) + EG(R)− kBT/w, (4.10)

where the individual terms are as per Eq. (4.7). Recall that the quantities F , E, S, W I, WE,

E∗, Ec and L are dependent on disconnection mode such that in the multi-disconnection

mode case, each should have a subscript m.

4.2.3. Kinetics

We estimate the GB velocity as the ratio of the step height to the sum of the disconnection

(pair) nucleation time tnm and the time required for the disconnections to migrate tgm the

distance required for annihilation L:

v =
∑
m

hm
tnm + tgm

. (4.11)

The most important assumption implied by Eq. (4.11) lies in the summation over all modes.

We implicitly make the approximation that disconnection interactions only occur between
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disconnections of the same mode (of course, this is not true). In order to assess this

approximation we compare kMC results in Fig. 13c, where the red curve shows the GB

mobility obtained by adding the velocities of two, single mode kMC simulations (i.e., (b̃, h̃) =

(0, 1) and (1, 1)) and the black curve shows the same two modes operating together in one

kMC simulation. While the agreement is not perfect, it is very good indicating that this is

a reasonable approximation.

We now derive expressions for tnm and tgm in Eq. (4.11). For each mode (temporarily dropping

mode index m), the free energy barrier for disconnection pair nucleation is ∆F = F (R‡),

where R‡ = R‡(ψ) is the driving force-dependent critical separation (i.e., where F is a

maximum). From Eqs. (4.7) and (4.10),

∆F = 2Kb2 ln

[
sin(πR‡/L)

sin(πr0/L)

]
− ψhR‡ + E∗ − kBT/w. (4.12)

Expanding ∆F about ψ = 0 (recall that R‡ is a function of ψ) and retaining the first order

term, we find that R‡ = L/2 +O(ψ) and

∆F = Ee + E∗ − kBT/w − ψhL/2 +O(ψ2), (4.13)

where Ee ≡W I(R = L/2) = −2Kb2 ln[sin(πδ/2L)] represents the contribution of the long-

range elastic interactions between disconnections (obviously, for a pure step mode b = 0,

Ee = 0). The nucleation time is then

tn =
1

r+ − r−

=

{
ω exp

[
−∆F (h)

kBT/w

]
− ω exp

[
−∆F (−h)

kBT/w

]}−1

=
1

2eω
exp

(
Ee + E∗

kBT/w

)
csch

(
ψhL

2kBT/w

)
, (4.14)

where r+ and r− represent the rates for GB migration by h and −h, respectively, and

e = exp(1) is Euler’s number.
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The energy barrier for disconnection glide over the atomic-scale barriers (i.e., the amplitude

of the blue curve in Fig. 14) is E∗ − ψhδ/2. The rate of crossing one such barrier is

r± = ω exp[−(E∗ ∓ ψhδ/2)w/kBT ]. Within a period L, the number of such glide barriers

that must be overcome is L/2δ, such that the time required for disconnections to glide to

annihilation is

tg =
L/2δ

r+ − r−
=

L

4δω
exp

(
E∗w

kBT

)
csch

(
ψhδw

2kBT

)
. (4.15)

Again, recall that tn and tg in Eqs. (4.14) and (4.15) depend on disconnection mode such

that tn, tg, Ee, E∗, h, b and L should be assigned a disconnection mode index (subscript)

m.

Substituting Eqs. (4.14) and (4.15) into Eq. (4.11), we obtain an expression for the GB

velocity v. Then, based on the definition Eq. (4.6), the GB mobility is

M =
2ωδw

kBT

∑
m

h2
m exp

(
−E

∗
m + Ec

m

kBT/w

)
1 +

2

e
exp

(
Ee
m − 2Ec

m

kBT/w

) . (4.16)

Equation (4.16) is applied to predict the temperature dependence of the GB mobility for

each of the kMC simulation cases in Section 4.1.3. Compare the theoretical prediction (blue

dashed curves) and the kMC simulation results (solid black curves) in Fig. 13. Overall, the

theoretical predictions from Eq. (4.16) capture the major trends in the kMC simulation

data for all cases. These include

(i) the increase in mobility with increasing temperature at low T (Arrhenius behavior),

(ii) the decrease in mobility with increasing temperature at high T (anti-thermal behav-

ior),

(iii) the presence of a single mobility peak for the single disconnection mode cases,

(iv) the presence of a single or a double peak (and a corresponding minimum) in the
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mobility for the multi-mode cases, and

(v) the trends in the magnitude of the mobility between different disconnection mode

cases.

While the statistical disconnection theory reproduces the major trends in the temperature

dependence of the mobility, this theory is only semi-quantitative. This may be attributed

to several approximations in the theory. These are (1) not including interactions between

disconnections of different modes, (2) assuming the same attempt frequency ω in the ex-

pressions for both of all modes tnm and tgm, and (3) the functional form of Eq. (4.11). Writing

the denominator in Eq. (4.11) as the sum of tnm and tgm yields the correct solutions in the

tnm � tgm and tnm � tgm limits, but is only approximate between these limits. This causes

the deviation of the mobility peak in the pure step case (Fig. 13a), where tnm ∼ t
g
m.

4.2.4. Trends in M(T )

We examine several of the main features of the temperature dependence of the mobility

based on the statistical disconnection model.

In the high temperature limit, each term in the summation of Eq. (4.16) will have the form

h2
m exp(−|hm|), which converges rapidly to zero with increasing hm (or m). This suggests

that at high temperature the summation can be truncated; yielding a constant. This then

implies that M ∼ 1/T in the high temperature limit.

In the low temperature limit (T → 0), each term in the summation in Eq. (4.16) is

(eh2
m/2) exp[−(E∗m+Ee

m−Ec
m)/(kBT/w)] for Ee

m > 2Ec
m and h2

m exp[−(E∗m+Ec
m)/(kBT/w)]

for Ee
m < 2Ec

m. In other words, each term in the summation in Eq. (4.16) is of the form

(Amh
2
m/kBT ) exp(−Qm/kBT ), where Am and Qm are positive constants (the detailed forms

of which depend on the relative magnitudes of Ee
m, Ec

m and E∗m). This implies that the GB
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mobility has the form

lnM = ln
∑
m

Amh
2
m

kBT
exp

(
− Qm
kBT

)
≈ ln

[
A1h

2
1

kBT
exp

(
− Q1

kBT

)]
≈ − Q1

kBT
[1 +O(T lnT )] as T → 0. (4.17)

If the m = 1 disconnection mode corresponds to the minimum Qm amongst all the modes,

we need only consider this mode in the summation (Eq. (4.17), second line). Equation (4.17)

implies that, as T → 0, the GB mobility is Arrhenius (Eq. (4.17), last line).

When Eem � Ecm (e.g., for a pure step),

M =
2ωδw

kBT

∑
m

h2
m exp

(
− Qm
kBT

)
, (4.18)

over a wide temperature range (Qm = (E∗m + Ec
m)w). Figure 15 shows the temperature

dependence of the GB mobility in this limit in classical Arrhenius coordinates. For a single

mode (black dotted curve), the GB mobility increases and then decreases with increasing

temperature (the mobility exhibits a maximum with respect to temperature). At low tem-

perature, the mobility is Arrhenius, but decreases with increasing T at high temperature -

this is the so-called anti-thermal behavior (Homer et al., 2014). The temperature at which

this behavior switches is roughly given by dM/dT = 0 or T c = Q1/kB using Eq. (4.18).

Similar conclusions apply when Eem � Ecm .

We now examine why there is a local minimum in the M(T ) kMC data for some multi-

disconnection mode simulations (Fig. 13d,e). Consider two disconnection modes, m = 1

and 2 in Eq. (4.18) as indicated by the solid red (h2/h1 = 3) and blue dashed (h2/h1 = 2)

curves in Fig. 15. When Q2 � Q1, the critical temperature (corresponding to m = 2)

occurs at a much higher temperature than for the the m = 1 mode. This implies that

there may be a local minimum in the M vs. T data, provided that the two peaks are of
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sufficient height. That is, a local minimum exists for Q2 � Q1 if and only if h2/h1 > e

(see Eq. (4.18)). This is in qualitative agreement with the kMC results in Fig. 13, where

a local minimum exists when h2/h1 ≥ 2 and gets deeper as h2/h1 increases. The critical

ratio h2/h1 for the kMC simulations is lower than e mainly because interaction between

disconnections of different modes is ignored in the analytical theory. As a specific example,

consider the Σ25 [100] (034) STGB examined in the MD simulations of Homer et al. (2014),

where h2/h1 = 25/7 > e such that M(T ) should exhibit a local minimum (provided it

occurs below the melting point); indeed, this is consistent with the MD data where a local

minimum is observed for this GB in Ni, but not in Al. We suspect that the GB mobility in

Al too would show a local minimum, if it did not melt first (note, the melting point of Ni

is nearly twice that of Al).

4.3. Parameters for Specific Grain Boundaries and Comparison with MD

While the kMC simulations described in Section 4.1 employed parameters chosen to inves-

tigate the general features of the temperature dependence of GB mobility, the kMC can

also be applied to simulate the motion of a specific GB in a real material – provided the

appropriate GB parameters are available. Here, we develop a parameters set for the Σ17

[100] (035) and Σ25 [100] (034) STGBs in EAM Al (Mishin et al., 1999), perform kMC

simulations for these two specific GBs, and compare the GB mobility thus obtained with

molecular dynamics results. (We focus on Al here since we have an extensive set of GB

energy barrier data for Al from another unpublished study.)

The parameters required for the kMC simulations are K, γ, ζ, δ, ω, {bm, hm} and {E∗m}. For

any coincidence-site-lattice GB of particular bicrystallography, {bm, hm} can be determined

based on the GB geometry (Han et al., 2018). The parameters K, γ, ζ and δ can be

determined from ES
m vs. R with ψ = 0 (see the red curve in Fig. 14), which we determine

via molecular static for each disconnection mode for each GB. For each mode, we constructed

a series of configurations where a pair of disconnections were separated by different distance

R. Then, we minimized the energy of each of the prepared configurations and obtained a set

of metastable states. The results are plotted in Figs. 16a1 (Σ17) and 16b1 (Σ25); each data
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Table 3: Parameters for two symmetric tilt GBs in EAM (Mishin et al., 1999) Al. a0 =
0.405 nm is the lattice constant, adsc is the size of a DSC lattice cell, m is the index of
disconnection mode, bm, hm and E∗m are the corresponding Burgers vector, step height, and
glide barrier, Am and Bm are fitting parameters (see Eq. (4.19)), K ≡ µ/[4π(1− ν)] (µ and
ν are the shear modulus and Poisson’s ratio), γ is the step energy , δ0 is the effective core
size (r0 is the core size), δ is the spacing between lattice point in the quasi-1D lattice model,
and ζ scales the contribution of the core energy (Eq. (4.7)). The range of K = µ/[4π(1−ν)]
corresponds to different crystal orientations and the anisotropic elastic constants are from
Mishin et al. (1999). The Σ17 [100] step energy is estimated from

√
2γs − γ0 (Han et al.,

2018), where γs = 0.4861 J/m2 for the (014) and γ0 = 0.4657 J/m2 for the (035) STGB in
EAM Al. The Σ25 [100] step energy estimates employ γs = 0.4707 J/m2 for the (017) and
γ0 = 0.3872 J/m2 for the (034) STGB. γ0 and γs are from Han et al. (2017).
m bm/adsc hm/adsc Am (eV/nm) Bm (eV/nm) E∗m (eV/nm) K (eV/nm3) γ (eV/nm2) πδ0/L πδ/L ζ r0/δ

Σ17 [100] (035) with adsc = a0/
√

34

1 0 8.5 1.07570 0 1.24444

20.1013 1.0656 0.28513 0.31416 −1.903 0.134
2 1 −2 0.47855 0.18376 0.19753

3 1 6.5 1.39769 0.12727 1.11111

4 2 −4 1.56834 0.79501 0.29876

Estimates 20.34-24.53 1.3844

Σ25 [100] (034) with adsc = a0/
√

25

1 0 12.5 3.25669 0 0.99012

19.2861 1.6282 0.06038 0.15708 −1.044 0.135

2 1 −3.5 0.79239 0.24639 0.42222

3 1 9 3.21678 0.2472 1.14568

4 2 5.5 4.54659 0.95765 1.17778

5 3 2 6.89744 2.30333 1.20741

Estimates 20.34-24.53 1.7383

point corresponds to a metastable state after energy minimization. Based on the molecular

statics data of each mode, we extract the parameters, as described below.

(i) Fit ES
m vs. R to

ES
m(R) = Am +Bm ln sin[π(R/L+ cm)], (4.19)

where Am, Bm and cm are the fitting parameters. The fitted curves are plotted in

Figs. 16a1,b1. Comparing Eqs. (4.19) and (4.7), we see Bm = 2Kb2m. K is obtained

by fitting {Bm} and {b2m} (for all modes).

(ii) Comparing Eqs. (4.19) and (4.7), we see that

Am = 2γ|hm| −Bm ln
[
e−ζ sin(πr0/L)

]
. (4.20)
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(We assume that r0 is the same for all modes.) We denote Cm1 ≡ 2|hm|, Cm2 ≡ −Bm,

X1 ≡ γ and X2 ≡ ln
[
e−ζ sin(πr0/L)

]
. Then, Eq. (4.20) becomes

Cm1X1 + Cm2X2 = Am or CX = A. (4.21)

We obtainX1 andX2 by fitting Eq. (4.21) to the {Cm1, Cm2, Am} ≡ {2|hm|,−Bm, Am}

data. Minimization of ‖CX−A‖ gives X = (CTC)−1(CTA). From this, we find the

step energy γ = X1.

(iii) Defining sin(πδ0/L) ≡ e−ζ sin(πr0/L) = eX2 (δ0 is the effective disconnection core

size), we obtain δ0 from πδ0/L = arcsin eX2 . However, the kMC simulations require

ζ and δ. As discussed above, these parameters are related by ζ + 2 = ln(ζ/ζ0); as

long as this relationship is satisfied the lattice model and continuum theory will be

consistent (see Appendix). In practice, we choose δ as the size of a CSL cell, such

that ζ = ln(δ/δ0)− 2.

We obtained the parameter E∗m for each mode from atomistic data obtained using the

nudged-elastic-band (NEB) method (Jonsson et al., 1998; Henkelman and Jónsson, 2000).

To do this, we first chose two neighboring states corresponding to the minimum energy

configurations near the top of the profile (see the blue curve in Fig. 14a); these correspond

to the initial and final states in the NEB calculations. The NEB method finds the minimum

energy path (reaction coordinates) associated with the transition from the initial (reaction

coordinate 0) to the final (reaction coordinate 1) states. These data are shown in Figs. 16a2

(Σ17) and 16b2 (Σ25) for several of the lowest energy disconnection modes. Then, E∗ is

the energy difference between the maxima and zero for each curve in Fig. 16.

The parameters obtained by fitting the molecular statics and NEB results for the two GBs

are summarized in Table 3. The elastic modulus K obtained from fitting is close to the

expected value for a perfect crystal. The excess energy associated with the introduction

of a step can be estimated as γ =
√

2γs − γ0 (Han et al., 2018), where γ0 is the energy of
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the flat GB and γs is the energy of a GB with inclination of 45◦. The value of γ obtained

by fitting is consistent with this estimated value. Hence, the fitting based on Eq. (4.19) is

reasonable. While ζ < 0 in Table 3 seems counter-intuitive, we recall that ζ is the scaling

factor for the core energy only if the chosen core size δ/2 is the real disconnection core size.

Since we fix δ as the size of a CSL cell (probably too large), this core energy has no physical

meaning. Rather, we choose the core energy parameter and core size self-consistently, as in

classical dislocation theory.

With these atomistically-determined parameters (summarized in Table 3), we performed

kMC simulations for the Σ17 [100] (035) and Σ25 [100] (034) STGBs in EAM Al and de-

termined the GB mobility vs. temperature (see the black solid circles in Fig. 17). To

test our kMC approach, we also determine the GB mobility as a function of tempera-

ture from MD simulations of GB migration (synthetic driving force) using the Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS) (Plimpton, 1995) and the same

interatomic potentials (as used to determine the kMC parameters). Note that since the kMC

model (and theory) are quasi-1D, we performed the bicrystal MD simulations using a simu-

lation cell that is very small in the direction parallel to the tilt axis (w ∼ 1.2 nm). The other

two cell dimensions are ∼ 20 nm (parallel to the tilt axis) and ∼ 100 nm (orthogonal to

the GB plane). All simulations (see Chen et al. (2019) for more details) were run for 3.5 ns

and ψ = 10 MPa at fixed number of atoms and temperature. The GB position is defined

as the x3 position where the layer-averaged centro-symmetry parameter (Stukowski, 2010)

is maximum (Kelchner et al., 1998). The GB migration velocity is the normal velocity of

the mean GB plane. The MD results are shown as the hollow blue squares in Fig. 17.

Figure 17 shows that our MD and kMC simulation results are in relatively good agreement

with each other (note, the attempt frequency ω in the kMC was not determined from our

atomistic simulations – but chosen to yield the best fit to the data). The deviation of

the MD data from the kMC and theory in Fig. 17a at 600K is not systematic; the actual

deviation may be larger than the error bars which were calculated from two sets of data
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points. Figure 17 also shows (red dashed curve) M(T ) based upon the disconnection theory

(Eq. (4.16) with the same parameters as for the kMC). The statistical disconnection model

reproduces both the kMC and MD results. We note that while the MD simulations involve

the fewest assumptions in the prediction of the GB mobility and its temperature dependence,

it is also the most computationally costly and impractical at low temperature when the GB

mobility is not fast. On the other hand, accurate kMC and theoretical predictions of M(T )

require determination of the fundamental parameters (such as the energy landscape for

the motion of disconnections) - these too can require substantial computational resources

(albeit much less than the MD simulations for systematic investigations). (Although the

example presented in Figure 17 does not show anti-thermal behavior because of the low

melting point of Al, performing additional MD simulations and NEB calculations for Ni or

other higher melting point materials should show anti-thermal behavior, based on our kMC

results.) The greatest advantage of both the kMC and statistical disconnection theory lies

in their utility for systematic investigation of GB migration physics.

4.4. Discussion and Conclusions

The aim of this paper is to provide a mechanistic understanding of the diverse forms of

the temperature dependence of the grain-boundary (GB) mobility that were previously

reported based upon MD simulations and experiments. Several forms of this temperature

dependence have been particularly perplexing, in light of the established theories of how

GBs migrate (particularly, “anti-thermal” behavior where the GB mobility decreases with

increasing temperature).

This paper provides two approaches for understanding M(T ) based upon a disconnection-

based mechanism for GB migration: a kinetic Monte Carlo implementation and a statistical

disconnection theory. The main idea employed here is that GB migration occurs via the

formation and glide of disconnections along the GB; while disconnection dynamics depends

on both the disconnection dislocation vector and step character (b, h), GB migration itself

takes place through the motion of the step-component of the disconnection motion. We

investigate how different disconnection modes give rise to different GB mobilities and how
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the simultaneous migration of different disconnection modes explains some of the richness

of the temperature dependence of the GB mobility.

One of the main results of the present work is that the temperature dependence of the

GB mobility is related to the fundamentally different disconnection dynamics at low and

high temperature. In general, GB migration controlled by a single disconnection mode will

lead to an Arrhenius T -dependent mobility at low temperature and a mobility at high T

that is inversely proportional to temperature. Depending on the disconnection migration

energy landscape, the high temperature regime may not be observed (i.e., if the transition

temperature is higher than the melting temperature. The transition between the low and

high temperature regimes occurs at different temperatures in different GBs within one

material and in different materials for the same GB bicrystallography. The transition or

critical temperature can be estimated as Q1/kB, where Q1 is the activation energy for the

most easily activated disconnection mode. It is the high temperature behavior, where the

GB mobility scales inversely with temperature that is responsible for the reported “anti-

thermal” behavior. Both the kMC and theory capture this behavior.

GB migration may also be affected by the activation of multiple disconnection modes; this

depends on the relative formation and migration energy of the lowest energy disconnection

modes. Activation of two disconnections, can give rise to GB mobilities versus temper-

ature that exhibit two maxima and a local minimum (as seen in the kMC, theory and

experiments).

While our main focus has been to understand the mechanistic origin of the factors that

affect the temperature of the GB mobility, we also predict M(T ) for two specific grain

boundaries in aluminum. To do this, we performed a series of static relaxation calculations

for these two GBs as well as nudged elastic band calculations to determine the energy

landscape associated with disconnection motion in a material described using an EAM

interatomic potential. These calculations provided the parameterization for both the kMC

and statistical disconnection dynamics theory. We then compared the kMC and theory with
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a series of molecular dynamics simulations of the migration of these GBs. The MD, kMC

and theory are all in good agreement. This implies that both the kMC and theory can be

used to qualitatively predict GB migration behavior. While such parameterization of the

kMC and theory via atomistic calculations is time consuming, the computational burden

is much lower than the full MD simulations when the goal is systematic prediction (e.g.,

T -dependence, bicrystallography-dependence, ...).

Although we have discussed the existence of different temperature regimes for the GB

mobility and different forms of M(T ) as more disconnection modes are activated, we note

that there are additional physical phenomena that may have a profound effect on the GB

mobility. Perhaps, the most important of these, not included here, are GB structural

phase transitions (also known as complexion transitions (Cantwell et al., 2014)). While GB

structural phase transitions relate to the underlying structure of (even) flat GBs without

disconnections, the varied temperature dependence of the GB mobility discussed here is

the result of GB dynamics related to disconnection motion. Disconnection dynamics can

also give rise to finite temperature phase transitions as well, but such transitions do not

(necessarily) change the structure of the underlying GB itself.
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Reduced temperature T = kBT/(2Kδ2w) 

R
e

d
u

c
e

d
 G

B
 m

o
b

il
it

y
 M

=
 2

K
M

/(
δ
ω

)

~

~ 0.0

0.2

0.4

(a) (0, 1) (b) (1, 1)

(e) (0, 1) & (3, 3)

0 4 8 12

(a)+(b)

(c) (0, 1) & (1, 1)

(d) (0, 1) & (2, 2)

0 4 8 12

0.0

0.2

0.4

M ~ 1/T
~ ~

lnM ~ -1/T
~ ~

Figure 13: kMC simulation results for the (reduced) temperature dependence of the (re-
duced) GB mobility. The label above each figure indicates the operative disconnection
modes: (b̃1, h̃1) and, if there is another mode, (b̃2, h̃2) (recall that h̃ = h/δ and b̃ = b/δ). The
kMC simulation correspond to: (a) a single pure-step disconnection mode – (b̃1, h̃1) = (0, 1);
(b) a single mode – (b̃1, h̃1) = (1, 1); (c) two modes – (b̃1, h̃1) = (0, 1) and (b̃2, h̃2) = (1, 1);
(d) two modes – (b̃1, h̃1) = (0, 1) and (b̃2, h̃2) = (2, 2); and (e) two modes – (b̃1, h̃1) = (0, 1)
and (b̃2, h̃2) = (3, 3). In each figure, the kMC results are represented by solid black squares;
the solid black lines connecting the kMC data points are drawn as guides to the eye. The
blue dashed lines are obtained from the analytical model, i.e., Eq. (4.16). (c) also shows a
comparison between the two-mode model (solid black squares) and the sum of the reduced
mobilities for the two 1-mode simulations corresponding to the same two modes, individu-
ally, as shown in (a) and (b) (hollow red circles). This comparison demonstrates that the
mobility in the 2-mode case can be approximated as the sum of those for the two 1-mode
cases. The green dotted line in (a) indicates the relationships ln M̃ = −1/T̃ and the red
dotted line indicates M̃ = 1/T̃ .
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66



0.2

0.1

0.0

(a) Σ17

400 500 700600

0.2

0.1

0.0

(b) Σ25

M
(m

 M
P

a
-1

s
-1

)

T (K)

MD

kMC

Theory

Figure 17: Temperature dependence of GB mobility obtained by MD simulations (blue
hollow squares), kMC simulations (black solid circles) and disconnection theory (red dashed
lines) for (a) Σ17 [100] (035) and (b) Σ25 [100] (034) STGBs in EAM Al. The error bars in
the MD data represent the mobilities obtained in two MD simulations and the hollow, blue
squares represent their mean.

67



CHAPTER 5 : Grain Boundary Topological Phase Transitions

This chapter was adapted from Chen et al. (2020c), where K. Chen, J. Han, and D.J.

Srolovitz designed research, performed research, and wrote the paper; K. Chen performed

simulations and analyzed data.

Chapter 4 discusses GB mobility as a continuous function of temperature, but GB mobility,

like most material properties, may change abruptly at temperatures corresponding to phase

transitions. Such GB phase transitions may explain the existence of critical temperatures

at which abrupt changes occur in the nature of several physical phenomena, including grain

growth stagnation (Holm and Foiles, 2010) and superplasticity (Edington et al., 1976).

There are several types of GB phase transitions discussed in the literature. These in-

clude thermodynamic phase transitions such as complexion/GB structural transitions or

faceting/defaceting transitions (which are first-order) (Cantwell et al., 2014; Frolov et al.,

2013; Meiners et al., 2020), roughening transitions (divergence in the height-height correla-

tion function) which may be continuous (Rottman, 1986), and improper transitions where

the GB transforms from solid-like to glass-like (Zhang et al., 2009). In this paper, we

discuss a new class of fundamentally different GB phase transitions. We identify a GB

topological phase transition of a type of the class originally discussed by Kosterlitiz and

Thouless (Kosterlitz and Thouless, 1973). Such topological transitions may be thought of as

defect binding/unbinding transitions. The most important type of defects for GB dynamics

are disconnections (Han et al., 2018). Disconnections are line defects, constrained to lie

within the GB and characterized by both Burgers vector b and step height h. The set of

possible disconnection modes {b, h} is set by GB bicrystallography. Disconnections (like

dislocations) are topological defects, as seen through a Burgers circuit analysis (Han et al.,

2018).

Below the topological or Kosterlitz-Thouless (KT) transition temperature TKT, the interac-

tion between disconnections is long-range, decaying as the inverse of their separation. The
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formation and migration of disconnections are severely restricted and GB mobility tends to

be small (with important exceptions). On the other hand, above TKT, the long-range elas-

tic field of disconnections is effectively screened. Hence, the KT transition may be viewed

as a screening (or sliding) transition, where the screening parameter (diaelastic constant)

diverges at TKT. The KT transition leads to abrupt changes in the GB migration mobility,

roughness, sliding coefficient, etc.

While the KT transition leads to GB roughening, this transition fundamentally differs from

the roughening transition widely discussed in the literature (Rottman, 1986). While this

classic roughening phase transition is topological, the steps that control it have no long-range

elastic interactions and are not topological defects (nonlocal imperfections corresponding to

singularities in an order parameter characterizing a broken symmetry (Irvine et al., 2013)).

On the other hand, the dislocation nature of disconnections implies that disconnections

are fundamentally topological defects. Hence, the KT transition discussed in this paper

corresponds to the screening of long-range elastic interactions, while the classical roughen-

ing transition arises from topologically stable configurations of steps (without long-range

interactions).

We analyze the KT transition first through mean-field theory, then apply renormalization

group analysis to accurately predict the main features of this transition by formal extension

to the thermodynamic limit (i.e., infinite length scales). The results are confirmed through

a series of kinetic Monte Carlo (kMC) simulations. Our analysis shows that the Kosterlitz-

Thouless (KT) transition temperature depends on the driving force for GB motion. For

example, in curvature-driven grain growth, we find that at a fixed temperature, large grains

are more likely to be below TKT (low mobility) and small grains above it (high mobility).

This is a possible explanation of why grain growth in pure materials often stagnates at

large grain size and superplasticity is generally restricted to small grain sizes and high

temperatures. We confirm these results by comparing our renormalization group prediction

of the grain size at which grain growth stagnation occurs with simulation data from the
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literature (Holm and Foiles, 2010).

5.1. Disconnection Topological Transitions

We describe the migration of GBs in terms of the motion of disconnections. Motion of dis-

connections leads to both GB migration (step motion) and shear across the GB (dislocation

motion). We demonstrate that an abrupt change in GB behavior may result from an abrupt

change in how disconnections interact; this is a topological phase transition.

We first consider the case of a dislocation in a two-dimensional (2d) elastic medium (x-y

plane) interacting with dislocation dipoles, following the general approach originally de-

scribed by Kosterlitz and Thouless (Kosterlitz and Thouless, 1973). Here, we assume that

the Burgers vectors are parallel to the x-axis: b = bx̂. The elastic interaction energy of

a test dislocation and another dislocation varies as the logarithm of their separation and

the interaction force is minus the gradient of this energy with respect to test dislocation

displacement (i.e., decaying as the inverse of their separation). When multiple dislocations

are present, the total force on the test dislocation is simply the sum of the forces from each

of these. The divergence of the force on the test dislocation (of unit b) at r, f(r) is propor-

tional to the Burgers vector distribution around the test dislocation ρ(r): ∇·〈f〉 = 4πKρ(r),

where ρ(r) is the Burgers vector density and the constant K ≡ µ/[4π(1−ν)] (µ and ν are the

elastic shear modulus and Poisson ratio). (Angular brackets 〈...〉 denote the time average

of a fluctuating quantity.) Dislocation dipoles in the material polarize (dislocations in the

dipole separate) under the action of a (Peach-Koehler) force (Sutton and Balluffi, 1995).

The (polarized) dipole moment is
∫
〈p〉dr =

∫
rρ(r)dr, where p is the instantaneous dipole

moment density. The distribution of polarized dipoles exert a force on the test dislocation:

〈fp〉 = −4πK〈p〉. The total force on the test dislocation is the sum of the applied force f

and that associated with the induced dipoles: 〈ft〉 = f + 〈fp〉 = f − 4πK〈p〉. The dipole

moment is induced by the total force, 〈p〉 = χ〈ft〉 (to leading order in the force), where, in

analogy to electrostatics, we define the susceptibility (tensor) as χ ≡ (∂〈p〉/∂〈ft〉)|〈ft〉=0.

The total force on the test dislocation can then be expressed as the external force screened
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by the induced dipoles 〈ft〉 = f/ε, where ε is the diaelastic constant (akin to the dielectric

constant in electrostatics). The diaelastic constant describes the strength of the screening

of the applied force by the induced dislocation dipoles: εI = I + 4πKχ (I is the identity

matrix).

5.1.1. Disconnections on Grain Boundaries

We now apply this approach to disconnections on a nominally flat GB which, in this 2d

model, is the line y = 0. In this case, the Burgers vector density is ρ(x, y) = ρ(x)/δ,

where δ is the disconnection core size. The external applied force on the test dislocation

(with unit b) is equal to the applied (shear) stress τ parallel to b, f = τ . In this case,

ε = 1+4πKχ, where χ is the the xx component of the susceptibility tensor. The distribution

of the dislocation dipole moment associated with all dipoles with separation smaller than r is

〈p(r, x)〉 =
∫ r
δ 〈br

′〉n(r′, x) dr′, where 〈br′〉 is the moment of a dipole of separation r′ and n(r′)

is the number of dipoles with separation in [r′, r′+dr′] per unit length between x and x+dx.

Since we assume that the GB is uniform, we can drop the explicit dependence on x and write

the susceptibility as χ(r) = (∂〈p〉/∂f)|f=0 =
∫ r
δ α(r′)n(r′) dr′ (α(r′) ≡ (∂〈br′〉/∂τ)|τ=0 is

the dipole polarizability). The diaelastic constant, then, becomes

ε(r) = 1 + 4πK

∫ r

δ
α(r′)n(r′) dr′. (5.1)

We evaluate the dipole polarizability and dipole number density n(r) by assuming that the

dipoles are in thermal equilibrium (Maxwell-Boltzmann distribution) as in the Debye-Hückel

approximation for charged fluids. The polarizability is

α(r) =
∂

∂τ

∑
b′=±b b

′re−β(Ec−τb′r)∑
b′=±b e

−β(Ec−τb′r)

∣∣∣∣∣
τ=0

= βb2r2, (5.2)

where Ec is the disconnection core energy (per unit length), w is the width of the system

in the direction parallel to the disconnection line and β ≡ w/kBT . The number density of
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dipoles of separation [r, r + dr] is

n(r) = δ−3e−β[2Ec+V (r)−(ψh+τb)r], (5.3)

where ψ is the chemical potential jump across the GB (Janssens et al., 2006), and the elastic

interaction energy (per unit length) of the two disconnections in a dipole (separation r) is

V (r) = 2Kb2
∫ r

δ

dr′

r′ε(r′)
. (5.4)

This completes the derivation except for the determination of the dialectic constant ε(r),

which can be determined through the self-consistent solution of Eqs. (5.1) - (5.4). It is useful

to define the following dimensionless (reduced) quantities: the reduced length l ≡ ln (r/δ),

the reduced inverse diaelastic constant g ≡ βKb2/ε(r), and the reduced dipole density

f ≡
√
r3n(r). These substitutions reduce four coupled equations to just two:



dg−1

dl
= 4πf2

d ln f

dl
=

3

2
− g +

1

2
β(ψh+ τb)r

. (5.5)

In the limit that r → δ (i.e., l = 0 ), we find that g(0) = βKb2 and ln f(0) = β[(ψh+ τb)δ−

2Ec]/2.

5.1.2. Topological Phase Transition

Here, we examine the topological phase transition that occurs for disconnections on a GB

that is associated with the screening of the disconnection fields. We do this first via a simple

mean-field analysis (designed to provide qualitative, physical understanding) and then via

a more rigorous renormalization group approach.

As above, consider a bicrystal in 2d containing a flat 1d GB, as depicted in Fig. 18; the
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Figure 18: (a) Disconnection dipoles on a 1d GB in 2d. δ, r, L and S denote the disconnec-
tion core size, the separation of the disconnections in a disconnection dipole, the average
distance between the disconnection dipoles and the system size in the x-direction, respec-
tively. (b) The states of the system at i before and after disconnection dipole nucleation
are (ui, yi) and (ui + bm, yi + hm), respectively, for a pair of disconnections of mode m at
location i.

tilt axis is in z and the nominal GB normal is in y. We focus on a thermally equilibrated

GB; incorporating the formation and annihilation of disconnection dipoles (Fig. 18a). The

separation between the two disconnections in a dipole is r, the average distance between

disconnection dipoles is L, and the size (length) of the GB is S. Since this model does not

describe the GB structure on the atomic-scale, it cannot describe premelting.

For simplicity, we assume that there is only one type of disconnection dipole on the GB, i.e.,

disconnection mode (±b,±h). If b = 0 (pure-step mode), the free energy change associated

with disconnection dipole formation on a flat GB is F = 2Ec− kBT ln(S/δ) < 0 as S →∞,

since the disconnection core energy Ec is independent of GB size S (Thomas et al., 2017;
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Han et al., 2018; Chen et al., 2019) and the configurational entropy is proportional to

ln(S/δ). This suggests that an infinitely large, 1d GB is rough at all T > 0 K (i.e., the

roughening transition temperature is 0 K). If the GB is of finite size or where the GB is 2d,

the roughening temperature is finite (Swendsen, 1977). If b 6= 0, however, both entropy and

disconnection elastic energy are proportional to ln(S/δ); this suggests that there will be a

critical temperature above which the entropy term dominates the free energy such that the

roughening transition temperature is finite (in all dimensions).

The effect of non-zero b can be understood as follows. At low T , disconnections exist as

closely bound dipoles; while at high T the ratio of the separation between disconnections in a

dipole to the spacing between dipoles is no longer small, such that the disconnection dipoles

mix or, alternatively, the dipoles are unbound. Based on this idea, we can distinguish the

low-T from high-T regimes based on whether 〈r2/L2〉 � 1 or � 1, respectively.

The energy of a disconnection dipole has the form U(r) = 2Ec + V (r), where the elastic

potential energy is V (r) = 2Kb2 ln(r/δ). We first assume that the equilibrium disconnec-

tion dipole density 1/L is low; i.e., Ec � kBT . The ensemble average (square of the)

disconnection separation in dipoles is

〈r2〉 =

∫∞
δ r2e−βU(r)dr∫∞
δ e−βU(r)dr

= δ2

(
2βKb2 − 1

2βKb2 − 3

)
. (5.6)

The average number of dipoles in length L can be obtained by the grand-canonical ensemble

average:

〈N〉 =

∑∞
N=0NZNPN∑∞
N=0ZNPN

= ZP +O(Z2),

where Z ≡ e−2βEc and

P ≡ 1

δ2

∫ L

0
dx

∫ ∞
δ

e−βV (r)dr =
L/δ

2βKb2 − 1
.
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The average disconnection dipole density 〈1/L〉 is obtained by setting 〈N〉 = 1:

〈
1

L

〉
=

(
1

δ

)
e−2βEc

2βKb2 − 1
. (5.7)

From Eqs. (5.6) and (5.7), we find

〈
r2

L2

〉
=

e−4βEc

(2βKb2 − 3)(2βKb2 − 1)
. (5.8)

This demonstrates that a critical temperature TKT for which 〈r2/L2〉 → ∞:

TKT = 2Kb2w/3kB. (5.9)

TKT is the Kosterlitz-Thouless transition temperature. For T < TKT, the disconnections

are bound pairs; i.e., disconnections exist as dipoles bound together by elastic interactions.

However, for T > TKT the disconnections are unbound; i.e., each disconnection is free to

move independently - not bound to any other disconnection.

The GB roughness, as characterized by the standard deviation of the GB profile σy scales as

〈r2/L2〉
1
4 and diverges at TKT (in 1D GB TKT is also the roughening transition temperature).

This is discussed in more detail in Appendix, demonstrated in our kMC simulations (below),

and observed in MD simulations (Olmsted et al., 2007).

The mean-field theory reveals that the long-range elastic interaction between disconnec-

tions may result in the disconnection binding-unbinding (or pairing-unpairing) transition.

However, mean-field analysis rarely provides accurate predictions of the phenomenon near

a phase transition (and thus fails to predict TKT accurately). This problem can often be

overcome by application of renormalization group methods. Following the spirit of renor-

malization group approaches for dislocations (Kosterlitz and Thouless, 1973; Khantha et al.,

1994), we look for numerical solutions of Eq. (5.5) to obtain f(l) and g(l).

Any set of physical parameters/driving forces (K, b, h, Ec, T , ψ and τ) correspond to
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Figure 19: Renormalization flows obtained by numerical solution of Eq. (5.5) with
ψ = τ = 0 and different initial conditions (g(0), f(0)). The arrows denote directions of
increasing length scale l (coarse-graining). The red curve is the critical manifold. The flows
in the shaded region converge to (g > 1.5, f = 0) as l→∞, while the flows in the unshaded
region converge to (g = 0, f →∞). The blue curve corresponds to (g(0, T ), f(0, T )) where
the temperature T increases from bottom right to top left; the material and GB parame-
ters are those used for the one-mode kMC simulation. The Kosterlitz-Thouless transition
temperature corresponds to the point where the red and blue curves cross.

different initial conditions (g(0), f(0)) in the solution of Eq. (5.5); starting from each

particular initial condition there is a flow in (g(l), f(l)) as l varies from 0 to ∞ (since l is a

length scale, this is coarse-graining that takes the system to the thermodynamic limit). This

is depicted in Fig. 19 for different (g(0), f(0)). Figure 19 shows that there are two types of

fixed points as l→∞: (i) a “superfluid phase” (g = 0, f →∞), where screening diminishes

dislocation interactions (i.e., ε→∞) such that there are many unbound disconnection (i.e.,

r3n → ∞) and the GB is rough, and (ii) an “insulating phase” (g > 1.5, f = 0), where

screening is limited (ε < 2Kb2w/3kBT as r →∞), few unbound disconnections exist (r3n→

0) and the GB is flat. There is a critical manifold (red curve) in Fig. 19; flows above the

critical manifold converge to type (i) fixed points (unbound disconnection/rough GB phase),

while flows below this manifold converge to type (ii) fixed points (bound disconnection/flat

GB phase).
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The KT transition temperature can be determined numerically. For a particular GB,
(
g(l =

0, T ), f(l = 0, T )
)

is a parametric curve; temperature T is the parameter (the blue curve

in Fig. 19). The point where the red and blue curves cross (Fig. 19) corresponds to TKT.

Formally, this temperature can also be determined from the condition that f is scale-

invariant:

TKT =
[
2Kb2ε−1(rc)− (ψh+ τb)rc

]
w/3kB, (5.10)

where rc is the average disconnection separation in the dipoles at TKT (ε(rc) must be

determined numerically). Eq. (5.10) is consistent with the mean-field result Eq. (5.9)

(ε(rc) = 1) in the sparse disconnection (Ec � Kb2w) and small driving force limits. When

multiple disconnection modes are present, TKT is dominated by the disconnection mode

with the smallest TKT.

Since the KT transition is associated with the screening of the long-range elastic interactions

between disconnections and since disconnection motion is the underlying mechanism of GB

migration, the KT transition should lead to a discontinuity in the temperature dependence

of the GB mobility. When T < TKT, the activation energy for GB migration Q includes

both the disconnection glide barrier E∗ and the large scale barrier associated with elastic

interactions (Han et al., 2018; Chen et al., 2019, 2020a,b); when T > TKT, the elastic barrier

is effectively screened. Hence, increasing T through TKT leads to an abrupt decrease in the

activation energy for GB migration Q; the slope of the GB mobility versus temperature

curve should increase abruptly upon heating through TKT. Such an abrupt increase in the

GB mobility slope versus T is observed at TKT in the kMC simulations shown below.

Similar results were observed in the molecular dynamics (MD) simulations. Homer et

al. (Homer et al., 2014) observed that the slope of the mobility versus temperature of the

Ni Σ39 [111] (752) symmetrical tilt GB changed abruptly at a finite T . For this GB,

b = a0/
√

26 and h = 3a0/
√

78 (a0 is the lattice constant)(Han et al., 2018). With this input

and the GB energy γ ≈ 0.5 J/m2, thickness w = 7.5a0, K = 9 GPa (assuming rc ∼ w/2 is

the largest disconnection distance in this periodic cell), we find that ε = 7.6 from Fig. 19.
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and (Eq. (5.10)) TKT ≈ 800 K. So, the theoretical prediction of the temperature where an

abrupt change of the activation energy for GB mobility is about 800 K, which is close to the

MD result under ψ = 0.025 eV. (Homer et al., 2014) The MD results of Homer et al. (Homer

et al., 2014) also showed that the activation energy for GB migration Q is an approximately

linear function of the “roughening temperature”, TKT. We(Chen et al., 2020b) previously

showed that the activation energy for GB migration Q varies linearly with Kb2 and Eq.

(5.10) shows that Kb2 is proportional to TKT; hence, Q is a linear function of TKT as

observed in MD. Based on their MD simulations, Olmsted et al. (Olmsted et al., 2007)

observed that at low temperatures and small driving forces, GBs migrate in a start-stop

fashion, while at high temperatures/large driving forces, GBs migrate continuously. This

may be understood by noting that below the KT transition (T < TKT, which is driving

force dependent), disconnection nucleation barriers are high thus disconnection nucleation

time is much longer than migration time, while above the transition, nucleation (barriers)

times are relatively short (disconnection screening effect) and are comparable with/smaller

than migration times(Chen et al., 2020b).

5.2. Kinetic Monte Carlo Simulations

Here, we compare the theoretical analysis with the results of disconnection-based kinetic

Monte Carlo (kMC) simulations. Figure 18b shows the basic model employed in our kinetic

Monte Carlo (kMC) simulations (the GB tilt axis and nominal GB normal are in z and

y and the system is periodic in x). The GB is discretized into N lattice sites along x.

The state of GB site i (1 ≤ i ≤ N) is denoted by (ui(t), yi(t)), where ui is the relative

(tangential) displacement of the upper grain with respect to the lower one (in x) and yi

is the position (in y) of the GB at site i. Formation of a pair of disconnections of mode

m (±bm,±hm) at i corresponds to (ui, yi) → (ui + bm, yi + hm), as illustrated in Fig. 18b.

At each kMC time step, we randomly choose from all possible events, weighted by their

relative rates (for more details, see Chapter 4 and Chen et al. (2020b)).

For simplicity, we employ reduced variables: γ̃ = γ/2πKδ, h̃ = h/δ, b̃ = b/δ, ỹ = y/δ,

t̃ = tω, M̃ = 2πKM/ωδ, T̃ = kBT/2πKδ
2w, ψ̃ = ψ/2πK, and τ̃ = τ/2πK. In this section,
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we drop the “tilde” for simplicity of notation. We report kMC results for two simulation

cases: (i) a pure step mode, h = 1 and (ii) a single disconnection mode, b = 1 and h = 1.

For the parameters used in the kMC simulations, the renormalization group analysis (Fig. 19)

predicts TKT = 0.1 for the single disconnection mode kMC and TKT = 0 for the pure-step

simulations. The roughening transition (σy →∞ and spatial correlation length →∞) and

screening/sliding transition (ε → ∞) occur at the same temperature TKT for the case of a

GB in a 2d bicrystal.

Figures 20a,b show the standard deviations of the GB profile σy =
√
〈y2〉 − 〈y〉2, obtained

from the kMC simulations. We recall that the roughening transition occurs at T = 0 for

pure steps in 2d; this is consistent with Fig. 20a for which the roughness varies smoothly

with temperature across the entire simulation temperature range. On the other hand,

introduction of a finite disconnection b (see Fig. 20b) effectively suppresses roughening at

low T (. TKT). At low T the roughness is nearly size-independent; this suggests the presence

of very short-range correlations in the GB profile at low T . (The spatial correlation length

ξ is the length scale over which the two-point correlation between the heights of different

points on the surface decays with their separation.) Above TKT, σy increases rapidly with

T and a strong size effect (larger roughening in larger systems) is observed. The presence

of the near linear dependence of roughness on temperature and a strong size dependence

above TKT is reminiscent of the roughening behavior in the pure step case (Fig. 20a) at

T > 0. These are signatures of a finite-T transition.

In finite-b systems, the standard deviation of the shear σu =
√
〈u2〉 − 〈u〉2 (see the insets in

Figs. 20b) show similar behavior as the GB profile roughening.The abrupt change in “shear

roughening” suggests that shear roughening is also a characteristic of the disconnection KT

transition TKT. (In 3d, the GB profile and shear roughening need not occur at the same

T .)

Equilibrium fluctuations in the GB profile provide direct evidence of the GB roughening
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Figure 20: (a)-(b) show the GB roughness σy vs. T for the (a) pure step and (b) single
mode with b 6= 0; the insets in (b) is the standard deviations of shear σu vs. temperature
T . (c)-(d) show the average of the (square of the) magnitude of the Fourier transform (k is
a wave vector) of the equilibrium GB profile y(x), 〈|y(k)|2〉, for several temperatures (see
the legend) for the (c) pure step and (d) single mode with b 6= 0. (e) shows the correlation
length ξ(T ) (obtained from fitting ξ = AT/(kd + ξ−d) for each temperature to the kMC
data in (c)-(d); the horizontal dashed line (at ξ = 150) is the kMC simulation cell period
(in x). (f)-(g) show ln(MT ) vs. 1/T (Chen et al., 2020a), where M is the GB mobility for
the (f) pure step and (g) single mode cases. The vertical gray lines label T = 0.1 in (b),
and (g), and T = 0.14 in (e).
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transition. We expand the GB profile in a Fourier series, y(x, t) =
∑

k y(k, t)eikx and

measure the equilibrium static GB profile spectrum 〈|y(k)|2〉, where 〈·〉 represents a time

average. Liao et al. (Liao et al., 2018) demonstrated that for pure steps, this spectrum

should be described by

〈|y(k)|2〉 = T/[NΓ(k2 + ξ−2)], (5.11)

where ξ is the correlation length and Γ is the dimensionless GB stiffness. For disconnection

with non-zero b (Karma et al., 2012),

〈|y(k)|2〉 = T/[NB2(k1 + ξ−1)], (5.12)

where B ≡ b/h is the shear coupling factor. As in Liao et al. (2018), a correlation length

ξ is introduced as a wavelength cutoff. The KT transition theory suggests that ξ →∞ for

T > TKT (Liao et al., 2018).

Figures 20c-d show the spectra obtained from the kMC simulations. These results indeed

demonstrate that 〈|y(k)|2〉 ∝ T , consistent with Eqs. (5.11) and (5.12). The kMC data for

each temperature were fitted to the function AT/(kd+ ξ−d), where A, d and the correlation

length ξ are the fitting parameters (d and ξ are functions of T ). For b = 0 (Fig. 20c),

d ≈ 2, while when b 6= 0 (Figs. 20d), d ≈ 1; consistent with Eqs. (5.11) and (5.12). The

correlation length ξ obtained by the fitting at each temperature is shown in Fig. 20e. Since

our kMC simulation were performed using a finite width GB (N = 150), we consider the GB

roughened when ξ > 150. (Since ξ diverges above TKT, it is not possible to obtain accurate

measurements of ξ above TKT.) Using this operational definition, we find that when b = 0

the GB is rough at all temperatures, but only rough at T ≥ 0.14 ≈ TKT for b 6= 0.

The small difference between the theoretical prediction (TKT = 0.1) and the simulation

result (TKT = 0.14) may be attributable to the finite GB width in the simulations and

approximations in Eqs. (5.11) and (5.12).

The GB mobility may be related(Trautt et al., 2006) to fluctuations in the mean GB position
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ȳ: M = Nȳ2(∆t)/2∆tT , where ∆t is the time interval used in the calculation of the time

correlation ȳ. Figures 20f, g show the GB mobilities versus temperature from the kMC

simulations. When the operative disconnection mode is a pure step mode (Fig. 20f), the

GB mobility behaves in a quasi-Arrhenius fashion; ln(MT ) ∝ −Q/T (Chen et al., 2020a),

where the activation energy Q (i.e., slope of ln(MT ) vs. 1/T ) is roughly temperature-

independent (Q is not exactly temperature-independent since this quasi-Arrhenius relation

is inapplicable in cases where the disconnection nucleation time and migration time are

comparable; see Chen et al. (2020b) for details). When b 6= 0 (Fig. 20g), the activation

energy Q (slope) changes abruptly at T ≈ TKT. This is because at T > TKT, the elastic

fields of the disconnections are effectively screened such that the elastic contribution to

the activation energy of disconnection formation is zero. The temperature at which the

activation energy for mobility changes (b 6= 0) coincides with an abrupt change in both σy

and/or σu (Fig. 20b), i.e., TKT.

The kMC simulations demonstrate that, when the activated disconnection mode has non-

zero b, a finite temperature dynamic phase transition occurs in the GB (provided melting

does not occur first). Examination of the standard deviations of the GB profile σy and

the equilibrium GB fluctuation spectrum 〈|y(k)|2〉 suggests that such a phase transition

corresponds to the GB roughening transition. The simultaneous transitions in the behav-

ior of the standard deviations of the GB shear σx, the divergence of correlation length ξ

above critical temperature and the temperature dependence of GB mobility suggest that

the roughening transition is a Kosterlitz-Thouless, topological phase transition. The kMC

simulation results suggest that the abrupt changes in the temperature dependencies of σy,

σx, 〈|y(k)|2〉 and M provides clear evidence of a transition temperature for GB dynamics

with b 6= 0 disconnections (see Fig. 20) at a temperature consistent with the KT transition

temperature TKT predicted by the renormalization group theory, T = 0.1 (Section 5.1). In

other words, finite b disconnection-mediated KT transitions can result in both GB rough-

ening and changes in GB migration behavior.
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5.3. Grain Growth Stagnation

Grain growth stagnation is widely observed in both experiments (Barmak et al., 2006) and

MD simulations (Holm and Foiles, 2010). Holm and Foiles suggested that this stagnation

is associated with the GB roughening transition (Holm and Foiles, 2010). Here, we argue

that this behavior is better described in terms of the GB KT transition.

The driving force for grain growth is the reduction of the energy of the GB network in

a polycrystal. In classical analyses of normal grain growth, we assume the GB energy is

isotropic and GB migration is overdamped. This means that the GB velocity is proportional

to its mean curvature H (i.e., mean curvature flow). The chemical potential jump across the

GB is ψ = γH and the mean curvature scales (on average) as the inverse of the grain size,

D; ψ decreases as D increases. Eq. (5.10) shows that decreasing ψ (increasing grain size

D) implies an increasing KT transition temperature, TKT(D). Therefore, during isothermal

grain growth, the increase in the mean grain size results in fewer and fewer mobile grains

(i.e., those with TKT(D) < T ). This may lead to grain growth stagnation.

The inverse of the critical grain size is

D−1
KT =

(
1

ε(rc)
− 3kBT

2Kb2w

)
Kb2

rcγh
. (5.13)

Holm and Foiles observed grain growth stagnation at different temperatures in Monte Carlo

simulations of polycrystals (Holm and Foiles, 2010); their data (points in Fig. 21) shows

that inverse mean grain size at which stagnation occurs D−1
s varies with temperature T

in an approximately linear function of T ; as predicted here, Eq. (5.13). When the grain

size exceeds DKT, the grain will stop growing or shrinking. Eq. (5.13) suggests that, grain

growth continues when T ≥ 2Kb2w/3εkB ≡ Tc (DKT →∞).

For nickel (assuming b, h, w and rc are of the order of one lattice constant, ε ≈ 1, and

γ ≈ 1 J/m2), we find that Tc ∼ 18000 K, which is much higher than the melting point.

This implies that grain growth in polycrystalline nickel should always stagnate at a finite

83



0.4 0.6 0.8 1.0
0.0

0.4

0.8

T/Tm

D
0
/D

s

Figure 21: Temperature dependence of stagnated grain size Ds from mesoscale MC simula-
tions (data points) from Holm and Foiles (2010) and a linear fit from Eq. (5.13). D0 and
Tm are the initial grain size and melting point, respectively.

grain size, as observed in MD simulations (Holm and Foiles, 2010). Tc may be decreased

substantially by the application of a mechanical load.

Since DKT varies grain-to-grain in a polycrystal, some GBs will show very small mobilities

while others will remain mobile. As noted by Holm et al. (Holm et al., 2003), this suggests

that abnormal grain growth may readily occur prior to overall grain growth stagnation.

The GB mobility is a tensor, linking both GB shear coupling and migration (Chen et al.,

2020a). While the GB migration mobility shows a rapid increase at TKT, the GB sliding

coefficient will also increase rapidly at the KT transition temperature. This suggests the

existence of a GB sliding transition; consistent with the widespread observations of the

onset of superplasticity at small grain sizes or high temperature (Edington et al., 1976) and

intergranular fracture at large grain size and low temperature in many materials (Dowling,

1999).
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Table 4: Transition temperatures for thermodynamic GB roughening and sliding and where
abrupt changes in GB mobilities are expected for pure step (b = 0), pure dislocation
(h = 0), a single disconnection mode (b, h), and multiple disconnection modes (bm, hm). A
“-” and “0” indicate no transition and a transition temperature at 0 K. The subscripts and
superscripts indicate dimensionality (2d/3d) and pure step (S), pure dislocation (D), single
disconnection (1), and multiple disconnection (M) modes. M11, M12 and M22 represent
mobilities associated with pure GB migration, shear coupling, and sliding, respectively
(Chen et al., 2020a). For multiple disconnection modes, entries only represent the lowest
temperature of abrupt mobility changes.

Pure Step Pure Dislocation 1 Disconnection Mode Multiple Disconnection Modes
2d 3d 2d 3d 2d 3d 2d 3d

Roughening 0 TS3 - - T 1
2 T 1

3 0 TM3r
Sliding - - TD2 TD3 T 1

2 T 1
3 TM2 TM3s

Mobility
M11 - TS3 - - T 1

2 T 1
3 TM2 min(TM3r , T

M
3s )

M12 - - - - T 1
2 T 1

3 TM2 TM3s
M22 - - TD2 TD3 T 1

2 T 1
3 TM2 TM3s

5.4. Discussion

The theoretical analysis presented above demonstrates that GBs undergo a finite-temperature,

Kosterlitz-Thouless, topological phase transition. The topological phase transition implies

a transition from smooth to rough GBs, a transition from nearly immobile to highly mobile

GBs, and a transition from non-sliding to readily sliding GBs. Because disconnections have

dislocation, in addition to step, characters, this transition is topological in nature. While

the step character is associated with the rapid change in GB mobility and GB roughening,

the dislocation character is associated with the onset of GB sliding at TKT.

The nature of the dynamic phase transition at GBs depends on disconnection character

{b, h} and dimensionality (2d or 3d), as summarized in Table 4. For a pure step (b = 0),

the transition occurs at T = 0 in 2d and at finite T in 3d (Swendsen, 1977). Since this

disconnection has b = 0, such a transition leads to roughening and an increase in the GB

migration mobility, but not to sliding. For a pure dislocation (h = 0), the transition occurs

at finite temperature in both 2d and 3d. Since this disconnection has no associated step,

such a transition leads to GB sliding, but not roughening. For GB dynamics with a single

disconnection mode (finite b and h), the phase transition leads to roughening, sliding, and

a change in all types of mobilities at the same finite temperature T = TKT = T 1
d .
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While we do not explicitly consider multiple disconnection modes here, we expect that (i)

the GB roughening will occur at T = 0 in 2d and at finite temperature (TM3r ) in 3d (since

pure step modes are always possible) and (ii) a sliding transition at finite temperature in

both 2d (TM2s ) and 3d (TM3s ). In the multi-mode case, the mobilities will change abruptly at

the topological transitions associated with both the thermodynamic roughening and sliding

transitions. In 2d, the GB sliding transition temperature is associated with the smallest,

nonzero Burgers vector. Above this temperature, all elastic interactions are screened (ε→

∞) and no additional KT transitions will occur. Thus there is only one sliding transition in

2d; even when multiple disconnection modes are active. In 3d, two sliding transitions are

possible since not all b are parallel (i.e., the GB is two-dimensional).

Several researchers have demonstrated that grain growth in pure materials often stagnates

at a finite grain size (Holm and Foiles, 2010); stagnation is also seen as a pre-requisite to

abnormal grain growth (a small set of grains grow to be much larger than the mean grain

size) (Holm et al., 2003). Both stagnation and abnormal grain growth may further or hinder

achievement of targeted material properties. The presented observations suggest that grain

growth stagnation is associated with the difficulty of disconnection formation/migration

below the GB transition temperature (T < TKT; see Eq. 5.13 and Fig. 20). This is clear in

our 2d simulations, where the GB mobility increases rapidly above TKT (Fig. 20g) whereas

the roughening temperature is 0 K (cf. Fig. 20a; the 2d multi-mode cases in Table 4.)

Ample evidences (experiments, simulations and theories) demonstrate that many aspects

of GB dynamics are associated with the formation and motion of disconnections (Han

et al., 2018). We presented mean-field and renormalization group theory results and kinetic

Monte Carlo evidence for a finite-temperature, disconnection unbinding phase transition

(of the Kosterlitz-Thouless type) in GBs. This disconnection unbinding phase transition is

characterized by a finite-temperature transition in GB migration, roughening and sliding.

Associated with these are abrupt changes in the activation energies for the mobilities as-

sociated with GB migration and GB sliding at TKT. These results provided a unified view
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of widely-observed feature of grain growth stagnation, abnormal grain, and superplasticity.

Finally, we note that while other types of GB phase transitions (e.g., first-order structural

phase transitions) may occur and affect GB properties, the disconnection-based KT tran-

sition theory gives a unified vision of a wide range of physical phenomena and testable

predictions of how these depend on both temperature and grain size.
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CHAPTER 6 : Final Remarks

Since GB migration and GB sliding are coupled, we extend the notion of the GB velocity-

driving force relation applied throughout the field to account for both this coupling and

the inter-relation between the different types of GB motion (migration and sliding). The

natural extension is from a scalar velocity-mobility-driving force relation to one in which

the velocity and forces may be thought of as vectors and the mobility as a second rank

tensor. The kinetic equation suggests the definition of a GB mobility tensor, M. We deter-

mine the full GB mobility tensor and its temperature dependence for symmetric tilt GBs in

copper via molecular dynamics (MD) simulations. We are able to explain this temperature

dependence, as well as several general properties of the mobility tensor, based upon anal-

ysis of a disconnection model. To explain all the complicated temperature dependence of

mobility observed in MD and experiments, we develop both analytical statistical mechanics

models and disconnection-based kMC simulations. These analytical models, kMC, and MD

quantitatively agree with each other. Shear coupling factors, as ratios between components

of the mobility tensor, naturally depend on the type, direction and magnitude of driving

force and temperature. In particular, we show that the effective GB migration mobility

will be smaller than that expected based upon bicrystal experiments as a result of stress

generation during grain growth in polycrystalline systems.

We also presented mean-field and renormalization group theory results and kinetic Monte

Carlo evidence for a finite-temperature, disconnection unbinding phase transition (of the

Kosterlitz-Thouless type) in GBs. This disconnection unbinding phase transition is charac-

terized by a finite-temperature transition in GB migration, roughening and sliding. Asso-

ciated with these are abrupt changes in the activation energies for the mobilities associated

with GB migration and GB sliding at TKT. These results provide a unified view of widely

observed features of grain growth stagnation, abnormal grain, and superplasticity.

With an eye to the future, extending our research to more complicated GB systems, e.g.,
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polycrystals, asymmetric mixed GBs, or disconnection loops on GBs, is visible:

Disconnection Loops All presented disconnection models are for parallel disconnection

lines on GBs, and extending our model for disconnection loops on GBs is of practical

interest. The dislocation loop-based kMC simulations and KT transition theory are

feasible.

General GBs Current work on shear coupling focuses on symmetric tilt GBs. Developing

similar theory and MD simulations for general (asymmetric or mixed) GBs, where

little research exists, is interesting.

Triple Junctions We mostly study the temperature dependence of GB mobility in bicrys-

tals by MD and kMC simulations, but GBs in polycrystals may show different behavior

due to triple junctions. Extending our analytical theory and kMC simulations to study

triple junction mobility in polycrystals is feasible.

Dislocation-GB Interaction Understanding whether and how fast dislocations transmit

across GBs is important. When a lattice dislocation is absorbed by a GB, this disloca-

tion may interact with GB disconnections, affecting dislocation transmission barriers.

Visualization of Disconnections Developing an automatic method to identify discon-

nections on GBs from the outputs of MD simulations is useful. This may be achievable

by describing atomistic environments by SOAP (Smooth Overlap of Atomic Positions)

descriptors (Bartok et al., 2013) and then performing machine learning to classify

atoms as bulk atoms, GB atoms, or disconnection atoms.
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APPENDIX

A.1. The Parameters Cx and βx0

We can expand the shear coupling factor β for stress-driven GB migration (Eq. (2.2) in the

main text)

β =

∑
i bie

− Qi
kBT sinh (biτ−hiψ)S

kBT∑
i hie

− Qi
kBT sinh (biτ−hiψ)S

kBT

(A.1)

at high temperature to third order in bSτ/kBT . This yields β = Cττ2 + βτ0 , where

Cτ =

S2

6k2BT
2 (
∑

i e
− Qi

kBT b4i −
∑

i e
− Qi

kBT b2i
∑

i e
− Qi

kBT hib
3
i∑

i e
− Qi

kBT hibi

)

∑
i e
− Qi

kBT hibi

(A.2)

βτ0 =

∑
i e
− Qi

kBT b2i∑
i e
− Qi

kBT hibi

. (A.3)

Similarly, expanding Eq. (A.1) at high temperature to third order in hSψ/kBT yields β =

Cψψ2 + βψ0 , where

Cψ =

S2

6k2BT
2 (
∑

i e
− Qi

kBT h3
i bi −

∑
i e
− Qi

kBT hibi
∑

i e
− Qi

kBT h4i∑
i e
− Qi

kBT h2i

)

∑
i e
− Qi

kBT h2
i

(A.4)

βψ0 =

∑
i e
− Qi

kBT hibi∑
i e
− Qi

kBT h2
i

. (A.5)

At relatively low temperature (bτS � kBT � Q, hψS � kBT ), Cx → 0. This implies that

at low temperature, the shear-coupling factor is determined by the lowest barrier mode and

is insensitive to magnitude of driving force.
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A.2. Limiting Behavior for Shear Coupling Factor

The driving force affects the shear-coupling factor β by tilting the energy landscape thereby

lowering disconnection nucleation barriers. While large stresses favor disconnection modes

of (relatively) large Burgers vector and small step height, large chemical potential jumps

favor modes of (relatively) small Burgers vector and large step height (especially pure step

modes where b = 0). This implies different values of β for different driving forces. More

specifically, under an applied stress, |β| tends to be larger than under a chemical potential

jump. Even in the small driving force limit, β depends on the type of driving force; except

in special cases, e.g., at low temperature and finite β. When the stress-driving force is large

(τ →∞), GB sliding occurs (β →∞); this is because stress favors modes of large Burgers

vector and negligible step height. On the other hand, when the chemical potential jump

driving force is large (ψ →∞), the GB migrates without coupling (β → 0); this is because

chemical potential jumps favor modes of negligible Burgers vector and large step height.

Even at high temperatures, GBs migrate by the nucleation and motion of disconnec-

tions (Han et al., 2018), each with a specific Burgers vector (leading to grain translation)

and step height (leading to GB migration). In the high temperature limit (T →∞), many

disconnections modes are activated simultaneously. Hence, chemical potential jump-driven

GB migration occurs with no net grain translation (β → 0) because disconnections with

the same sign of h but opposite signs of b are nucleated such that the average b = 0. Sim-

ilarly, when driven by stress at high temperature, grain boundaries slide (β →∞) because

disconnections with the same sign of b = 0 but opposite signs of h are nucleated such that

the average h = 0.

A.3. Enumeration of Modes

Following the approach outlined in (Han et al., 2018), we present a simplified method to

enumerate all crystallographically possible disconnection modes (b, h) for [001](m,n, 0)GBs
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(0 < n < m, and n+m is even). First, we define

d̃y = 2m (A.6)

d̃z = 2n (A.7)

d̃GB = n2 +m2 (A.8)

d̃ = 2 (A.9)

d̃1L =
k2d̃GB − 2d̃y

d̃z
(A.10)

ay =
a

2
√
n2 +m2

, (A.11)

where a is the lattice parameter and k2 is the smallest positive integer to make d̃1L an even

number. We further define

d∗ =
d̃

[d̃GB, d̃1L]
(A.12)

d∗GB =
d̃GB

[d̃GB, d̃1L]
(A.13)

d∗1L =
d̃1L

[d̃GB, d̃1L]
(A.14)

h̃0 = d∗d
∗Φ(d∗GB)−1
1L mod d∗GB (A.15)

where [x, y] is the greatest common divisor of x and y and Φ(x) is the Euler’s totient

function. Then, all crystallographically possible (b, h) whose Burger’s vector is parallel to

the y-axis are

bq = (0, ayqd̃, 0) (A.16)

hqj = ay(qh̃0 + jd∗GB), (A.17)

where q and j are arbitrary integers.
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A.4. Coupling Factor in the Framework of Mobility Tensor

The coupling factor β depends on the direction of the tangential displacement of one grain

relative to the other, k, and the nature of the driving force

βk =
vk
v1

=
Mk1ψ +Mk2τ2 +Mk3τ3

M11ψ +M12τ2 +M13τ3
. (A.18)

The temperature (T ) dependence of the coupling factor (β) for the Σ7 [111] (123̄) GB in

copper is shown in Fig. 22 based on the mobility data in Fig. 9 of the main text. Below

1000 K, β2 is nearly constant and β3 ∼ 0, suggesting that single mode behavior dominates

in this temperature range. Above 1000 K, β increases with temperature, suggesting that

multiple disconnection modes are active.

A.5. Grain Growth in 3- and d-dimensions

The von Neumann-Mullins law was previously generalized from 2 to d-dimensions (MacPher-

son and Srolovitz, 2007). Following that approach, we may write the rate of growth of a

grain in d-dimensions as

Ṙ = mgγ/R (A.19)

and

g ≡ C
[
Hd−2(Dd−2)

6Hd−2(Dd)
− 1

]
, (A.20)

where Dd refers to the grain of interest in d-dimensions, Dd−2 is the (d − 2)-dimensional

feature of the domain Dd (e.g. vertices in 2D and edges in 3D), Hd−2 is the Hadwiger

(d − 2)-measure from geometric probability and the constant C depends on the detailed

grain shape (see MacPherson and Srolovitz (2007); Klain and Rota (1997)).
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Figure 22: The temperature (T ) dependence of the coupling factor (β) for the Σ7 [111]
(123̄) GB in copper obtained from the MD simulation data reported in Fig. 9 of the main
text.

In d-dimensions, the general kinetic equation is



Ṙ

−τ̇2R/µ

...

−τ̇dR/µ


=



M11 M12 · · · M1d

M21 M22 · · · M2d

...
...

. . .
...

Md1 Md2 · · · Mdd





gγ/R

τ2

...

τd


. (A.21)

In the R→∞ limit, the solution to this equation is

R2 −R2
0 = 2(d− 1)m̃gγt (A.22)
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and

m̃ =
|M|
M∗11

=
[
(M−1)11

]−1
, (A.23)

where M∗ is the adjugate of M. Eq. (A.23) indicates that for a long time grain growth

always follows the parabolic law. But, instead of the commonly used mobility M11, the

effective GB mobility should be [(M−1)11]−1.

The corresponding evolution of the shear stress τi is, in the long time limit,

τi =
(d− 1)gγM∗1i

M∗11R
=

(d− 1)gγ(M−1)1i

(M−1)11R
. (A.24)

This equation demonstrates that at long time the stress decays as 1/R or t−1/2; how-

ever, this stress can be significant during typical grain growth experiments (especially in

nanocrystalline materials).

In 3-dimensions, these equations reduce to

R2 −R2
0 = 4m̃gγt (A.25)

with

g ≡ C
(
E

6L
− 1

)
, (A.26)

where L is the mean width of the grain and E is the total length of all triple lines around

the grain and where m̃ is the same as in Eq. A.23. The corresponding evolution of the shear

stress τi is, in the long time limit,

τi =
2gγM∗1i
M∗11R

=
2gγ(M−1)1i

(M−1)11R
. (A.27)

A.6. The Elastic Energy and Stress in the Kinetic Monte Carlo Simulations

In this section, we provide more details associated with the derivation of Eqs. (4.3) and

(4.5) of the main text. Consider an array of disconnections with Burgers vector b = be2
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and line direction e1 in the coordinate system of Fig. 11 of the main text. Because the

system is periodic with periodicity L, there is an infinite set of disconnections at positions

x2 = nL (n is an integer). Then, the shear stress anywhere in space associated with this

array of disconnections is

τ(x2, x3) = τ0 sin(2πX2) [cosh(2πX3)− cos(2πX2)− 2πX3 sinh(2πX3)] , (A.28)

where

τ0 ≡ −
2πKb

L

1

[cosh(2πX3)− cos(2πX2)]2
, (A.29)

and X2 ≡ x2/L and X3 ≡ x3/L. The shear stress at the disconnection at x2 (and x3 = 0)

associated with all the periodic image disconnections at x′2 + nL is

τ(x2, 0) =
2πKb

L
cot
[π
L

(x′2 − x2)
]
. (A.30)

Associated with each site i in the lattice is a displacement of the grain above this site

relative to the grain below it, ui (see Fig. 11 of the main text). The displacement difference

between sites i and i + 1 is simply the Burgers vector of the disconnection residing at the

midpoint between these two sites. Then, according to Eq. (A.30), for a given distribution

of displacements {ui}, the shear stress at site j is

τj =
2πK

L

N∑
l=1

(ul − ul−1) cot

[
π

N

(
l − 1

2
− j
)]

, (A.31)

where we let u0 = uN (i.e., the system is periodic) and the summation is over all sites in

the simulation cell.

If the state of the ith site undergoes the transition: ui → ui + b ≡ u+
i , how does the stress

field evolve? Consider the stress at arbitrary site j before and after the transition at site i.
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Before the transition, the stress at site j is (i.e., we rearrange Eq. (A.31)):

τ
(0)
j =

2πK

L

{
N∑

l 6=i,i+1

(ul − ul−1) cot

[
π

N

(
l − 1

2
− j
)]

+ (ui − ui−1) cot

[
π

N

(
i− 1

2
− j
)]

+ (ui+1 − ui) cot

[
π

N

(
i+

1

2
− j
)]}

, (A.32)

where the superscript “(0)” indicates the state of the system before the transition. After

the transition, Eq. (A.32) becomes

τ
(1)
j =

2πK

L

{
N∑

l 6=i,i+1

(ul − ul−1) cot

[
π

N

(
l − 1

2
− j
)]

+ (u+
i − ui−1) cot

[
π

N

(
i− 1

2
− j
)]

+ (ui+1 − u+
i ) cot

[
π

N

(
i+

1

2
− j
)]}

= τ
(0)
j +

2πKb

L

{
cot

[
π

N

(
i− 1

2
− j
)]
− cot

[
π

N

(
i+

1

2
− j
)]}

. (A.33)

This is exactly Eq. (4.5) in the main text which suggests how the stress on each site will

be updated after the occurrence of a transition event.

The stress at site i in the unit cell associated with this transition arises from all of the

periodic images of site i; i.e.,

τ
(1)
i = τ

(0)
i −

4πKb

L
cot
( π

2N

)
, (A.34)

where we have simply substituted j = i in Eq. (A.33). The energy change of the system

when there is a state transition at site i site is the product of the stress field at site i and

the change in displacement there (i.e., virtual work). There are no other contributions from

other sites, since site i is the only site for which the displacement changed (by b). The work

done in the transition at site i (u+
i ) is equivalent to displacing the disconnection across the
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width of site i (δ); i.e.,

W I = −
∫ xi+δ/2

xi−δ/2
τi(x)bdx ≈ −

(τ
(1)
i + τ

(0)
i )δ

2
b = −τ (0)

i bδ +
2πKb2δ

L
cot
( π

2N

)
. (A.35)

Here, the displacement of the disconnection is in x = x2 and the middle expression is based

upon a discrete approximation to the integral (i.e., trapezoidal rule). This is exactly Eq.

(4.3) in the main text.

A.7. Configurational Entropy and Equilibrium Disconnection Concentration

In this section, we evaluate the configurational entropy and free energy associated with

the distribution of disconnections and the equilibrium disconnection density, as quoted in

the main text. Assume that only disconnections of one mode are activated along a grain

boundary (GB). For simplicity, we assume that these disconnections are associated with

evenly spaced disconnection dipoles with a dipole separation, L. If the system is discretized

into N sites and the number of disconnection dipoles is n, the configurational entropy (per

unit thickness) is

S = kBw
−1 [N lnN − n lnn− (N − n) ln(N − n)] (A.36)

= kBw
−1N

[
ln

(
N

N − n

)
− n

N
ln

(
n

N − n

)]
(A.37)

= kBw
−1N

[
ln

(
1

1− δ/L

)
− δ

L
ln

(
δ/L

1− δ/L

)]
, (A.38)

where we have employed Stirling’s approximation and set n/N = δ/L. The corresponding

free energy (per unit thickness) is

F = E − TS = nEc − kBTw
−1 [N lnN − n lnn− (N − n) ln(N − n)] , (A.39)

where Ec = 2γ|h| + 2ζKb2 is the energy for form a disconnection dipole on one site (i.e.,

the energy associated with disconnection cores). The equilibrium number of disconnections
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is found from:

0 =

(
dF

dn

)
N

= Ec + kBTw
−1 ln

(
n

N − n

)
⇒ n

N − n
= exp

(
− Ec

kBT/w

)
. (A.40)

Hence, the equilibrium separation between disconnection dipoles is

L

δ
= 1 + exp

(
Ec

kBT/w

)
(A.41)

or, equivalently, the equilibrium disconnection dipole concentration is

δ

L
=

[
1 + exp

(
Ec

kBT/w

)]−1

. (A.42)

In the low-temperature limit (i.e., exp[Ec/(kBT/w)]� 1), we find

δ

L
= exp

(
− Ec

kBT/w

)
. (A.43)

This is Eq. (8) in the main text.

We estimate the error by replacing the actual disconnection density with its low temperature

limit by focussing on the highest accessible temperature, i.e., the melting point. We also

ignore the disconnection core energy relative to the entropic contribution in the free energy

and choose reasonable parameter values, |h| ∼ 1 Å and w = 10 Å. Consider three typical

metals: (i) Ni, γ = 0.4 J/m2 and Tm = 1565 K; (ii) Al, γ = 0.2 J/m2 and Tm = 939 K;

and (iii) Cu, γ = 0.3 J/m2 and Tm = 1350 K. The melting points were determined for

the EAM potentials: Foiles-Hoyt Ni (Foiles and Hoyt, 2006), Ercolessi-Adams Al (Ercolesi

and Adams, 1994), and Mishin Cu (Mishin et al., 2001). The GB energies are conservative

estimates of the energies of high-angle GBs obtained by Holm et al. (Holm et al., 2010)

using same set of EAM potentials For these three metals, the error associated with our low

temperature approximation (i.e., omitting the “1” in Eq. (A.42)) is only 2-4%.

At equilibrium, the configurational entropy per unit thickness and in a period (the period
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is L) is

S = kBw
−1L

δ

[
ln

(
1

1− δ/L

)
− δ

L
ln

(
δ/L

1− δ/L

)]
(A.44)

= kBw
−1

[
L

δ
ln

(
1

1− δ/L

)
− ln

(
δ/L

1− δ/L

)]
≈ kBw

−1

[
1− ln

(
δ

L

)
+O

(
δ

L

)]
≈ kBw

−1 ln

(
eL

δ

)
≈ kBw

−1 +
Ec

T
. (A.45)

The approximations in the second line in this equation were to let δ/L→ 0 and to employ

Eq. (A.43) in place of Eq. (A.42). Multiplying both sides of Eq. A.44 by T yields Eq. (9)

in the text.

A.8. Consistency between Lattice Model and Continuum Theory

Consider the formation of a disconnection dipole on an infinitely large, otherwise flat GB.

In classical continuum dislocation theory (Hirth and Lothe, 1982), the energy of a pair of

dislocations ±b separated by R is

∆ES(R) = 2ζKb2 + 2Kb2 ln

(
R

r0

)
, (A.46)

where the first term is the dislocation core energy where the dimensionless parameter ζ

and the dislocation core size is r0 should be chosen self-consistently. We can rewrite this

equation as

∆ES(R) = 2Kb2 ln

(
R

δ0

)
, (A.47)

where δ0 ≡ r0e
−ζ is the effective core size. Hence, there is only one parameter δ0, rather

than two (ζ and r0) in the continuum theory. However, in the lattice model employed in

the kMC simulations here, ζ is required, along with the spacing between lattice sites δ; i.e.,

the lattice model has two parameters, ζ and δ. However, we can define the relationship

betweenζ and δ to be consistent with the continuum theory, as described below.

Consider the formation of a disconnection pair in an initially disconnection-free GB of

infinite extent. The change in energy of the system on the formation of a disconnection
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pair (within the lattice model) may be described by reference to Fig. (23). Further, we

assume that the GB is initially stress free: τ
(0)
i = 0 and set the zero of energy to be that

of the disconnection-free GB (Fig. (23)a). In the discrete model, the transition (ui, zi) →

(ui + b, zi − h) corresponds to the formation of a pair of disconnections separated by δ

(Fig. (23)b). The stress at site i produced by the formation of this disconnection dipole is

τ
(1)
i = −2Kb

δ/2
− 2K(−b)
−δ/2

= −8Kb/δ. (A.48)

This corresponds to the motion of a disconnection across site i (i.e., a distance δ - as

described in Section A.7). The associated work is found from Eq. (A.35):

W I = −τibδ = 4Kb2. (A.49)

Following Eq. (4.1) in the main text, the change of the total energy associated with the

change of state due to the transition depicted in Fig. 23 is

∆ES
lattice = ∆Ec +W I +WE = (2γ|h|+ 2ζKb2) + 4Kb2 + 0 = 2γ|h|+ 2Kb2(ζ + 2). (A.50)

Now, consider the change of energy associated with the formation of a disconnection dipole

based on the continuum theory, is as given in Eq. (A.47). For a disconnection pair separation

of δ, this change in energy is

∆ES
continuum = 2γ|h|+ 2Kb2 ln(δ/δ0). (A.51)

The lattice and continuum models yield the same disconnection dipole formation energy

provided that ∆ES
lattice = ∆ES

continuum. Inserting Eqs. (A.50) and (A.51) into this equality

implies

ζ + 2 = ln(δ/δ0). (A.52)
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Figure 23: Lattice-model description of the formation of a disconnection pair (dipole),
(b,−h) and (−b, h), on site i.

Hence, the lattice and continuum models are consistent provided that ζ and δ satisfy

Eq. (A.52).

A.9. Grain Boundary Roughness

Consider a (1d) tilt grain boundary (GB) separating a pair of (2d) grains. In this situation,

disconnections nucleate and migrate along the x-axis. For simplicity, we assume that there

is only one disconnection mode (b, h) activated on the GB. When a disconnection pair

nucleates, a hypothetical “string” is defined between them. The length of the string is the

separation of the two disconnections r. The sign of the string is the same as the sign of h.

We assume that at position x, the number of positive strings is v+(x), and the number of

negative strings is v−(x); thus, the GB height at x is y(x) = h[v+(x)− v−(x)] and the total

string number is v(x) = v+(x) + v−(x).

Assume that when the GB is at equilibrium at a particular temperature, n is constant at

any point along the GB and at any time. At an arbitrary point, there are n strings; the
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probability for them being positive is 1/2, i.e.,

〈v+〉 =
v

2
. (A.53)

The average squared number of positive strings is

〈v2
+〉 =

v∑
i=0

i2P (v+ = i) =
v∑
i=0

i2

2v

(
n

i

)
=

v∑
i=0

i2

2v
v!

i!(v − i)!
=
v2 + v

4
. (A.54)

According to the definition of GB roughness, the squared roughness is

σ2
y = 〈y2〉 = h2〈(v+ − v−)2〉

= h2〈(2v+ − v)2〉 = h2〈4v2
+ + v2 − 4v+v〉

= h2
(
4〈v2

+〉+ v2 − 4v〈v+〉
)

= h2v. (A.55)

So, the GB roughness is proportional to the total number of strings per point (i.e., the

string density).

Assume that there are many disconnection dipoles on the GB, with separation r and the

distance between dipoles L. Then, the density of disconnection dipoles is 〈L〉−1. Each pair

contributes a string of length 〈r〉. Thus, the average total string number at one point is

〈v〉 =
S

〈L〉
〈r〉
S

=
〈r〉
〈L〉
≈
〈
r2

L2

〉1/2

=
e−2βEc

(2βKb2 − 3)(2βK2 − 1)
, (A.56)

where S is the total length of the 1d GB. So, v and thus σ2
y diverge at the critical temperature

TKT = 2Kb2/3kB. (A.57)

Hence, for a 1d GB, roughening transition occurs at TKT, i.e., the KT transition tempera-

ture.

When T < TKT, both r and L are finite and as long as S � r and l, the roughness should be
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nearly size-independent. When TKT < T < 3TKT, however, r →∞ and the finite size effect

is strong. In this case, the average string length contributed from each pair is S instead of

〈r〉 in a finite size simulation. Replacing 〈r〉 with S in Eq.(A.55) and (A.56), we have

σ2
y =

Sh2e−2βEc

δ(2βKb2 − 1)
∝ S. (A.58)

When T > 3TKT, 〈L〉 < δ. This introduces another size effect such that 〈L〉 should be

replaced with δ in Eq.(A.55) and (A.56),

σ2
y =

Sh2

δ
∝ S. (A.59)
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1994. Grain boundary migration in Σ=5 bicrystals of an Fe-3alloy. Interface Science,
1(3):187–199.

Li, C. H., E. H. Edwards, J. Washburn, and E. R. Parker
1953. Stress-induced movement of crystal boundaries. Acta Metallurgica, 1(2):223–229.

Liao, M., X. Xiao, S. T. Chui, and Y. Han
2018. Grain-Boundary Roughening in Colloidal Crystals. Physical Review X, 8(2).

MacPherson, R. D. and D. J. Srolovitz
2007. The von Neumann relation generalized to coarsening of three-dimensional mi-
crostructures. Nature, 446(7139):1053–1055.

Meiners, T., T. Frolov, R. E. Rudd, G. Dehm, and C. H. Liebscher
2020. Observations of grain-boundary phase transformations in an elemental metal. Na-
ture, 579(7799):375–378.

Mishin, Y., D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos
1999. Interatomic potentials for monoatomic metals from experimental data and ab initio

109



calculations. Physical Review B - Condensed Matter and Materials Physics, 59(5):3393–
3407.

Mishin, Y., M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress
2001. Structural stability and lattice defects in copper: Ab initio, tight-binding, and
embedded-atom calculations. Physical Review B, 63(22):224106.

Molodov, D. A., U. Czubayko, G. Gottstein, and L. S. Shvindlerman
1995. Mobility of 111 tilt grain boundaries in the vicinity of the special misorientation
Σ=7 in bicrystals of pure aluminium. Scripta Metallurgica et Materiala, 32(4):529–534.

Molodov, D. A., G. Gottstein, F. Heringhaus, and L. S. Shvindlerman
1998. True absolute grain boundary mobility: Motion of specific planar boundaries in
Bi-bicrystals under magnetic driving forces. Acta Materialia, 46(16):5627–5632.

Molteni, C., G. P. Francis, M. C. Payne, and V. Heine
1996. First Principles Simulation of Grain Boundary Sliding. Physical Review Letters,
76(8):1284–1287.

Molteni, C., N. Marzari, M. C. Payne, and V. Heine
1997. Sliding Mechanisms in Aluminum Grain Boundaries. Physical Review Letters,
79(5):869–872.

Mompiou, F., D. Caillard, and M. Legros
2009. Grain boundary shear-migration coupling-I. In situ TEM straining experiments in
Al polycrystals. Acta Materialia, 57(7):2198–2209.

Mullins, W. W.
1956. Two-dimensional motion of idealized grain boundaries. Journal of Applied Physics,
27(8):900–904.

Olmsted, D. L., S. M. Foiles, and E. A. Holm
2007. Grain boundary interface roughening transition and its effect on grain boundary
mobility for non-faceting boundaries. Scripta Materialia, 57(12):1161–1164.

Olmsted, D. L., E. A. Holm, and S. M. Foiles
2009. Survey of computed grain boundary properties in face-centered cubic metals—II:
Grain boundary mobility. Acta Materialia, 57(13):3704–3713.

Onsager, L.
1931. Reciprocal relations in irreversible processes. I. Physical Review, 37(4):405–426.

Plimpton, S. J.
1995. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Com-
putational Physics, 117(1):1–19.

Pond, R. C. and W. Bollmann
1979. The Symmetry and Interfacial Structure of Bicrystals. Philosophical Transactions

110



of the Royal Society A: Mathematical, Physical and Engineering Sciences, 292(1395):449–
472.

Powers, J. D. and A. M. Glaeser
1998. Grain boundary migration in ceramics. Interface Science, 6(1-2):23–39.

Priedeman, J. L., D. L. Olmsted, and E. R. Homer
2017. The role of crystallography and the mechanisms associated with migration of
incoherent twin grain boundaries. Acta Materialia, 131:553–563.

Rahman, M., H. Zurob, and J. Hoyt
2014. A comprehensive molecular dynamics study of low-angle grain boundary mobility
in a pure aluminum system. Acta Materialia, 74:39–48.

Rajabzadeh, A., M. Legros, N. Combe, F. Mompiou, and D. A. Molodov
2013a. Evidence of grain boundary dislocation step motion associated to shear-coupled
grain boundary migration. Philosophical Magazine, 93(10-12):1299–1316.

Rajabzadeh, A., F. Mompiou, M. Legros, and N. Combe
2013b. Elementary mechanisms of shear-coupled grain boundary migration. Physical
Review Letters, 110(26):265507.

Rheinheimer, W. and M. J. Hoffmann
2015. Non-Arrhenius behavior of grain growth in strontium titanate: New evidence for a
structural transition of grain boundaries. Scripta Materialia, 101:68–71.

Rottman, C.
1986. Roughening of low-angle grain boundaries. Physical Review Letters, 57(6):735–738.

Rupert, T. J., D. S. Gianola, Y. Gan, and K. J. Hemker
2009. Experimental observations of stress-driven grain boundary migration. Science (New
York, N.Y.), 326(5960):1686–90.

Rutter, J. and K. Aust
1965. Migration of 100 tilt grain boundaries in high purity lead. Acta Metallurgica,
13(3):181–186.

Sansoz, F. and J. F. Molinari
2005. Mechanical behavior of Σ tilt grain boundaries in nanoscale Cu and Al: A quasi-
continuum study. Acta Materialia, 53(7):1931–1944.

Schönfelder, B., G. Gottstein, and L. S. Shvindlerman
2005. Comparative study of grain-boundary migration and grain-boundary self-diffusion
of [0 0 1] twist-grain boundaries in copper by atomistic simulations. Acta Materialia,
53(6):1597–1609.

Sheikh-Ali, A. D., J. A. Szpunar, and H. Garmestani

111



2003. Stimulation and Suppression of Grain Boundary Sliding by Intragranular Slip in
Zinc Bicrystals. Interface Science, 11(4):439–450.

Shiga, M. and W. Shinoda
2004. Stress-assisted grain boundary sliding and migration at finite temperature: A
molecular dynamics study. Physical Review B, 70(5):054102.

Song, H. and J. Hoyt
2012. A molecular dynamics simulation study of the velocities, mobility and activation
energy of an austenite–ferrite interface in pure Fe. Acta Materialia, 60(10):4328–4335.

Stukowski, A.
2010. Visualization and analysis of atomistic simulation data with OVITO-the Open
Visualization Tool. Modelling and Simulation in Materials Science and Engineering,
18(1):015012.

Sutton, A. P. and R. W. Balluffi
1995. Interfaces in Crystalline Materials.

Swendsen, R. H.
1977. Roughening transition in the solid-on-solid model. Physical Review B, 15(2):689–
692.

Thomas, S. L., K. Chen, J. Han, P. K. Purohit, and D. J. Srolovitz
2017. Reconciling grain growth and shear-coupled grain boundary migration. Nature
Communications, 8(1):1–12.

Trautt, Z. T., M. Upmanyu, and A. Karma
2006. Interface mobility from interface random walk. Science, 314(5799):632–635.

Turnbull, D.
1951. Theory of Grain Boundary Migration Rates. JOM, 3(8):661–665.

Upmanyu, M., D. Srolovitz, L. Shvindlerman, and G. Gottstein
1999. Misorientation dependence of intrinsic grain boundary mobility: simulation and
experiment. Acta Materialia, 47(14):3901–3914.

Viswanathan, R. and C. L. Bauer
1973. Kinetics of grain boundary migration in copper bicrystals with [001] rotation axes.
Acta Metallurgica, 21(8):1099–1109.

Von Neumann, J.
1952. Discussion: shape of metal grains. In Metal Interfaces, C. Herring, ed., Pp. 108–
110.

Washburn, J. and E. R. Parker
1952. Kinking in Zinc Single-Crystal Tension Specimens. JOM, 4(10):1076–1078.

112



Winning, M., G. Gottstein, and L. Shvindlerman
2001. Stress induced grain boundary motion. Acta Materialia, 49(2):211–219.

Winning, M., G. Gottstein, and L. Shvindlerman
2002. On the mechanisms of grain boundary migration. Acta Materialia, 50(2):353–363.

Winning, M. and A. D. Rollett
2005. Transition between low and high angle grain boundaries. Acta Materialia,
53(10):2901–2907.

Yoshida, H., K. Yokoyama, N. Shibata, Y. Ikuhara, and T. Sakuma
2004. High-temperature grain boundary sliding behavior and grain boundary energy in
cubic zirconia bicrystals. Acta Materialia, 52(8):2349–2357.

Zhang, H., M. Mendelev, and D. Srolovitz
2004. Computer simulation of the elastically driven migration of a flat grain boundary.
Acta Materialia, 52(9):2569–2576.

Zhang, H., M. I. Mendelev, and D. J. Srolovitz
2005. Mobility of 5 tilt grain boundaries: Inclination dependence. Scripta Materialia,
52(12):1193–1198.

Zhang, H., D. J. Srolovitz, J. F. Douglas, and J. A. Warren
2009. Grain boundaries exhibit the dynamics of glass-forming liquids. Proceedings of the
National Academy of Sciences of the United States of America, 106(19):7735–7740.

Zhou, J. and V. Mohles
2011. Towards realistic molecular dynamics simulations of grain boundary mobility. Acta
Materialia, 59(15):5997–6006.

113


