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ABSTRACT
802.11 wireless mesh networks are ubiquitous, but suffer from se-
vere performance degradations due to poor synergy between the
802.11 CSMA MAC protocol and higher layers. Several solutions
have been proposed that either involve significant modifications to
the 802.11 MAC or legacy higher layer protocols, or rely on 802.11
MAC models seeded with off-line measurements performed during
network downtime.

We introduce a technique for online optimization of 802.11 wire-
less mesh networks using rate control at the network layer. The
technique is based on a lightweight model that characterizes the
feasible rates region of an operational 802.11 wireless mesh net-
work. Unlike existing 802.11 modeling approaches, the parameters
of this model can be estimated online, incur minimal overhead and
can be realized using standard probing mechanisms at the network
layer. Using analysis and extensive measurements over a wireless
mesh network testbed, we validate the assumptions on which the
model is built, and explain the principles behind the choice and esti-
mation of its parameters. The benefits of the model and its solution
in terms of fairness, throughput and stability are demonstrated op-
erationally for a range of multi-hop topologies and configurations.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network Archi-
tecture and Design—Wireless communication; C.4 [Performance
of Systems]: [Modeling techniques]

General Terms
Algorithms, Experimentation, Measurement, Performance
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1. INTRODUCTION
802.11 wireless mesh networks deployed in urban and rural ar-

eas around the globe enable low cost wireless Internet access and
emerging wireless community applications. Despite their widespread
use, these networks are plagued by well-known performance prob-
lems such as lack of predictability, unfairness or even complete
starvation. These problems are due to poor synergy between the
802.11 MAC protocol and higher layers of the protocol stack. Sev-
eral solutions have been proposed but most require modifications
to either the 802.11 MAC protocol or higher layer legacy protocols
such as TCP.

In this paper, we advocate a solution that uses end-to-end, op-
timization based rate control at thenetwork layer. Network layer
rate control is attractive because it does not require modifications
to legacy protocols and can be readily incorporated in today’s de-
ployments using traffic shapers and rate limiters that are widely
available. Furthermore, an optimization framework makes it pos-
sible to dynamically control rates, which enables city operators to
run mesh networks at maximum efficiency, or in the near future lets
users of community meshes harmoniously co-exist by running de-
centralized optimization mechanisms. Despite these benefits, such
a solution has not been used in existing mesh network deployments.
This is in part because when rate control is applied, it is imple-
mented using static rate limiters and ad hoc rules of thumb, which
most often result in network under-utilization. This is what we seek
to remedy.

The key challenge in optimizing the performance of an 802.11
mesh network through rate control, is the efficient and accurate es-
timation of the feasibility region, i.e., the rates that can be simulta-
neously sustained by the network at a given time. There are three
dimensions to realizing such an estimation. First, it should be ac-
curate so as to neither severely over-utilize or under-utilize the net-
work. Second, it should have a simple representation that can be
easily incorporated in an optimization procedure. Third, it should
be performed online, i.e., during network operation. Clearly, it may
not be feasible to perfectly meet all these requirements in a real-
world wireless mesh network, and trade-offs are unavoidable. Ex-
isting approaches [17, 21] are based on detailed models of 802.11
and focus on accuracy at the cost of significant complexity when
it comes to incorporating them in optimization procedures, e.g.,
non-linear representations. They also typically rely on extended
measurement periods during network downtime [20, 21, 25, 30].

Our approach to tackling the problem is multi-pronged.
We first introduce a model that represents the 802.11 feasibil-

ity region using as parameters the extreme points of a convex hull.
This representation provides a simple characterization of the feasi-



bility region that can be readily incorporated into a simple convex
optimization procedures that supports a wide range of throughput
and fairness objectives. In addition, the use of extreme points by-
passes the “exhaustive” exploration of the feasibility region typ-
ically required by more detailed 802.11 models. Using analysis
and extensive measurements in a wireless mesh testbed, we pro-
vide a structured validation of the model over progressively com-
plex network configurations. We articulate the assumptions behind
the choices of extreme points combinations, identify limitations of
the model, and demonstrate that, although it does not capture the
full details of the operation of the 802.11 MAC, it provides in prac-
tice a reasonable approximation of the feasibility region.

We then introduce a technique for online computation of the
model parameters. The computations rely on a simple interfer-
ence model and estimation of link capacities, obtained as maximum
UDP throughputs when links transmit alone in backlogged mode.
Since links are unlikely to operate in this mode during network op-
eration, we introduce a light-weight technique to solve this capac-
ity estimation problem. The technique is based on network layer
broadcast probes, and requiresO(N) measurements takenduring
network operation, whereN is the number of nodes. We show that
the technique achieves good accuracy and can operate efficiently at
a time scale of a few minutes.

Finally, we demonstrate the benefits and validity of the model
by incorporating it into an optimization framework capable of real-
izing various fairness and efficiency objectives. The realization of
these objectives is validated experimentally, while also establishing
their relatively low computational overhead. Our results demon-
strate that online optimization-based network layer rate control in
mesh networks is feasible at a time scale of a few minutes, and that
it can help eliminate a number of common performance problems
in such networks, e.g., avoid starvation and enforce fairness objec-
tives without sacrificing much throughput.

2. RELATED WORK
There is a large body of literature on 802.11 modeling and wire-

less optimization. We focus on two categories most relevant to our
work.

802.11 throughput prediction. Several models exist for inter-
ference estimation and throughput prediction in 802.11 multi-hop
networks. Most of them are based on [4], which captures the effect
of IEEE 802.11 binary exponential backoff in single-hop networks,
and on [6], which captures the effect of carrier sensing in multi-
hop networks. These models vary in the accuracy with which they
model interference (either based purely on geometry [7, 14, 15, 18]
or seeded with actual measurements [20, 21, 25, 30]), and their
prediction power (single-hop throughput prediction [15, 18, 20, 23,
25, 30] or multi-hop throughput prediction [14, 21]).

The above models are hard to apply in operational multi-hop
802.11 networks for two reasons. First, many of the models do not
provide closed form expressions for throughput. Therefore, to pre-
dict optimal multi-hop throughput in such networks, one must ex-
haustively search through the feasible rate region defined by these
models. This search can become prohibitively expensive as the
number of flows increases. One exception is the simplified model
of [21], which characterizes feasibility using non-linear constraints
at the potential cost of reduced accuracy. Second, all existing mea-
surement based models (including [21]) require a separate mea-
surement phase where all links are activated backlogged in spe-
cific patterns (individual node activations in [20, 25, 30] and pair-
wise link activations in [21, 23]). As a result, [20, 25, 30] re-
quire O(N2) and [21, 23] requiresO(L2) measurements (for an
L-link network), and each such measurement typically lasts sev-

eral seconds to collect sufficient statistics. In practice, this imposes
extended downtime and complicates network operation with addi-
tional signaling mechanisms to switch between measurement and
regular operation. We note that recently, Ahmedet al., introduced
a technique to significantly reduce the time of these measurements
in client-AP WLANs [2], but it requires extensive firmware modifi-
cations and is not applicable to multi-hop wireless mesh networks.

Relative to these works, we advance measurement-based through-
put optimization in multi-hop wireless networks towards online op-
eration.

Optimization and congestion control. Several works have ap-
plied utility maximization optimization frameworks to multi-hop
wireless networks [9, 11, 34, 37]. They yield analytical perfor-
mance bounds and distributed algorithms that achieve the optimal
solution. However, they assume simplified interference models and
MAC protocols like TDMA [9, 37], ALOHA [34], or CDMA [11],
for which, unlike 802.11 CSMA MAC, closed-form expressions
exist that can be incorporated in an optimization formulation.

Several solutions have also been proposed to the problems that
exist between 802.11 and higher layers, e.g., replacing 802.11 with
a TDMA MAC protocol [27, 32]. Alternatively, congestion con-
trol approaches have been proposed that operate on top of a CSMA
MAC protocol. Rangwalaet al. propose congestion control mech-
anisms at the transport layer [28], Xuet al. [36] use active queue
management based on local wireless neighborhood information,
and [3, 26, 31] suggest using back-pressure to perform congestion
control. All these approaches improve throughput and fairness, but
do not allow the specification of well-defined throughput/fairness
objectives. Furthermore, most still require changes to either 802.11
MAC [3, 27, 31, 32] or to TCP itself [3, 28, 31].

In contrast, we seek to optimize performance without modifica-
tions to the 802.11 MAC or the transport layer. Our approach can
be implemented on off-the-shelf 802.11 hardware using simple net-
work layer measurements and traffic shapers that are widely avail-
able. It is independent of the other layers and can potentially be
used with any MAC layer or transport layer mechanism. By iden-
tifying feasible rates, our approach enhances co-operation between
the 802.11 MAC and the transport layer. Its rate control operates
at a longer time scale than congestion control and masks imperfec-
tions of the 802.11 MAC that appear at the transport layer. Fur-
thermore, it can shape traffic to achieve well-defined utility-based
throughput/fairness objectives and provide flow isolation.

3. MODEL AND APPROACH
In this section, we first define the feasible rates region of an

802.11 multi-hop wireless network and then introduce a model to
estimate it.

3.1 Feasibility Region Definition
The 802.11 MAC protocol can be viewed as a functionf that

maps link input ratesx (representing traffic load) to link output
ratesy (representing throughput) over a time periodT : y = f (T )(x).
Whenx is unconstrained and nodes are allowed to transmit at the
nominal radio bandwidth, the output rate of each link is generally
less than its input rate due to collisions, interferences, or poor chan-
nel conditions. These manifest themselves either as MAC backoffs
and retransmission delays or as network layer packet losses.

In this paper, we explore the problem ofconstraining x to a
vectorxc, by rate-limiting each link in the network, such that the
output rateyl of each linkl is equal to its input rate, modulo the
inevitable network layer packet losspl induced only by channel er-
rors. If it were possible to do this, the output rate on each linkl
would be related to its input rate asyl = xc

l × (1 − pl). The set of



c[2]=(0,c22)

c[3]=(c31,c32)
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Figure 1: Example of feasibility region estimation by the convex
model for L=2 links and K=4 extreme points.

output rate vectorsy that result from input ratesxc defines afea-
sible rate region 1 for 802.11. Intuitively, when channel conditions
are such that 802.11 MAC operations (power control, retransmis-
sions or adaptation of modulation data rate) are sufficient to recover
most channel errors,yl ≈ xc

l for all l.
Computing the entire feasibility region of an operational wire-

less network is a formidable task. As mentioned earlier, previ-
ous approaches focus on modeling the detailed operation of 802.11
but cannot support online operation because they require measure-
ments during network downtime. We consider a model that cap-
tures the boundary of the feasibility region with a set of parameters
that can be estimated online. We model the feasibility region by a
convex polytope. Each pointc = (c1, ..., cL) in the convex hull
(boundary) of the polytope is determined as linear combination of
K extreme pointsc[k] = (ck1, ..., ckL) as follows:

c =
K

X

k=1

αkc[k] (1)

K
X

k=1

αk = 1 (2)

αk ≥ 0, k = 1, ..., K (3)

The model estimates as feasible any set of output ratesy = (y1, ..., yL)
that lies inside the polytope, including the convex hull.

To understand how this model captures feasibility and interfer-
ence consider the two-link scenario of Figure 1, where the feasibil-
ity region is characterized by four extreme points. The two primary
extreme pointsc[1] = (c11, 0) andc[2] = (0, c22) correspond to
the maximum output rates when each link transmits alone. If the
two links do not interfere when they transmit simultaneously, the
set of feasible rates is bounded by the rectangular “Independent
region”. If the links interfere but are scheduled in a mutually ex-
clusive manner, the feasible rate region is represented by the “Time
sharing” region, where the sum of normalized output rates does not
exceed unity (y1/c1 + y2/c2 ≤ 1). The two secondary extreme
pointsc[3] andc[4] capture partial interference when the two links
transmit simultaneously.

The model is attractive mainly for two reasons. First, it is simple
and parsimonious:K parameters (extreme pointsc[k]) are suffi-
cient to characterize the feasibility region. Second, it consists of
linear constraints. This allows network optimization using stan-
dard convex optimization techniques that also lend themselves to
decentralized solutions.
1Also termedstability region in the control-theoretic literature.

We note that TDMA or time-sharing CDMA networks can be
characterized by convex feasibility region where the extreme points
are readily provided by SINR formulas. However, it is not evident
how such a model can be applied to the 802.11 CSMA MAC pro-
tocol. Applying this model to a real-world 802.11 network requires
addressing two challenges: (i) defining extreme points for adequate
characterization of the feasibility region (ii) computing these ex-
treme points during network operation, in a non-intrusive manner.

3.2 Extreme Points Computation
Computing extreme points calls for applying input rates that yield

output rates on the boundary of the feasibility region, and for per-
forming such measurement repeatedly to accommodate the time-
varying nature of wireless link quality and interference patterns.

Sinceprimary extreme points correspond to output rates when
links transmit alone at maximum input rate, they are defined as the
maximum UDP throughput when a link transmits in isolation in
backlogged mode. This simple definition belies significant com-
putational challenges, since during network operation links hardly
ever transmit alone or in backlogged mode. Section 5 introduces an
online capacity estimation procedure to compute primary extreme
points.

Secondary extreme points are challenging in both their defini-
tion and computation. One approach is to schedule all combina-
tions of links transmitting and backlogged, and use the resulting
output rates as secondary extreme points. Although this does not
necessarily guarantee output rates at the boundary of the feasibility
region, our experiments have shown that it works well in practice.
On the other hand, it requiresO(2L) measurements and a sepa-
rate measurement phase during network downtime. Hence, it is not
amenable to online computation.

Our approach to characterizing secondary extreme points is to
compute them based on combining primary extreme points with an
interference model. The interference model relies on two simpli-
fying assumptions. First, it assumes pair-wise interference, where
interference between two links is independent from the interfer-
ence of other links. Second, it assumes binary interference, where
two links are either mutually exclusive or do not interfere. For the
two-dimensional configuration of Figure 1, this binary interference
model maps to the Time Sharing (in the case of interference) and
Independent Regions (in the case of no interference).

The identification of binary interference patterns across links is
derived from a conflict graph, where each vertex corresponds to a
unidirectional link and each edge identifies interference between
the two links that correspond to its endpoint vertices. The indepen-
dent sets of the conflict graph indicate sets of links that can transmit
simultaneously without interference. The secondary extreme points
are constructed based on the maximal independent sets of the con-
flict graph, with the latter computed using a fast maximal clique
enumeration algorithm [22] run on the complement of the conflict
graph. Each maximal independent setm is represented by a 0-1
L × 1 vectorv[m] where non-zero elements denote the links of
this independent set. Each vectorv[m] is mapped to a secondary
extreme pointc(2)[m] by multiplying it by anL×L diagonal ma-
trix C(1), where each column corresponds to a primary extreme
pointc(1)[k]:

c
(2)[m] = C

(1)
v[m], m = 1, .., M (4)

whereM is the number of maximal independent sets in the conflict
graph. Thus, Eq. (4) replaces the unit entries ofv[m] with the
capacities of the corresponding links.



3.3 Discussion
Our model is clearly an approximation and relies on assumptions

that do not fully capture the real-world complexity of 802.11 mesh
networks and could lead to inefficiencies. First, the feasibility re-
gion of 802.11 is known [5, 7, 17, 18] to not be necessarily convex.
Further, the assumption of pair-wise and binary interference used
to compute extreme points is clearly an approximation.

For example, [24] provides experimental evidences that 802.11
interference is not binary and [20, 25, 30] further validated this
by providing accurate throughput predictions using non-binary in-
terference models. Similarly, [18] demonstrates non-convexity for
various topologies using models and simulations. Interestingly though,
we have observed that in most cases the feasibility region in [18]
can be adequately captured by a convex envelope.

In general, it is not obvious that the model’s convexity assump-
tion will translate in poor accuracy when estimating the feasibility
region, and we are not aware of analytical or experimental studies
quantifying this inaccuracy. The pair-wise interference assumption
was successfully used in recent 802.11 models [18, 21, 23]. The bi-
nary interference assumption has been shown in [20, 24, 25, 30] to
affect accuracy, but the validity of this conclusion across different
binary interference models is unclear.

4. MODEL VALIDATION
In this section, we experimentally validate our assumptions and

the accuracy of the model’s throughput estimates. Since our focus
is on assessing the model’s accuracy, we do not concern ourselves
with feasibility considerations for on-line measurements. Specif-
ically, we measure directly maxUDP throughput and rely on an
approach for capturing pair-wise binary interference patterns that
doesn’t lend itself to an on-line solution. Section 5 discusses how
to overcome these limitations in an operational setting. Next, we
introduce the testbed before proceeding with our experimental val-
idation, first on two-link topologies and then on larger topologies
with multiple links and multi-hop flows.

4.1 Wireless Mesh Testbed
Our 18-node mesh network testbed (Figure 2) spans a parking

lot and multiple floors of three multi-story office buildings. It con-
sists of both indoor and outdoor links, thus providing a rich vari-
ety of wireless conditions. Each node is equipped with an Atheros
802.11a/b/g AR5212 mini-PCI wireless interface connected to an
external omni-directional 5 dBi antenna. Each wireless interface is
controlled by the Madwifi driver (v. 0.9.4) running on Linux ker-
nel v.2.6.18. All cards are configured in the ad-hoc demo mode.
In all experiments we use 802.11g with RTS/CTS disabled and the
transmit power is fixed to 19dBm for all nodes. We use iperf2 to
generate and measure traffic in the mesh network. We present val-
idation results for 1 Mb/s and 11 Mb/s data rates, with modulation
data rate adaptation disabled. The validation results with data rate
adaptation enabled were similar. However, the maxUDP through-
put estimation problem (addressed in Section 5) is much more chal-
lenging in this case and is a topic of further investigation. It should
be noted that data rate adaptation has not been incorporated in any
of the existing models for multi-hop 802.11 networks.

4.2 Binary LIR Interference Model
The Link Interference Ratio (LIR) is a metric that measures inter-

ference between link pairs in CSMA networks [24]. LIR is defined
as follows:

LIR =
c31 + c32

c11 + c22
(5)

2http://sourceforge.net/projects/iperf

Figure 2: Wireless mesh network testbed.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

LIR

F
ra

ct
io

n 
of

 te
st

ed
 li

nk
 p

ai
rs

 

 

11Mbps
1Mbps

Figure 3: CDF of LIRs of several link pairs in the testbed at
1 Mb/s and 11 Mb/s data rates.

wherec11, c22 and c31, c32 are UDP throughputs when the links
are backlogged and transmit individually and simultaneously, re-
spectively.LIR = 1 indicates no interferences, with lower LIR’s
indicating a higher degree of interference.

Figure 3 depicts the CDF of LIRs at 1 Mb/s and 11 Mb/s data
rates for 141 link pairs in our testbed. For both data rates, sev-
eral LIR values are between 0.5 and 1, which indicates non-binary
interference, but most of them are either below 0.7 or above 0.95

We therefore use a binary interference model based on an LIR
threshold. Links withLIR > 0.95 are classified as “non-interfering”
and their feasibility region is given by the “Independent region” de-
fined by their primary extreme points(c11, 0) and(0, c22) and the
secondary extreme point(c11, c22). Otherwise, links are classified
as “interfering” and their feasibility region is the “Time sharing
region” defined only by the primary extreme points(c11, 0) and
(0, c22).

The use of a high LIR threshold is expected to accurately capture
non-interfering link pairs. As a result, we next focus on interfering
link pairs.

4.3 Validating Link Pairs Characterization
We evaluate the ability of the maxUDP/binary LIR model to

characterize the feasibility region in several configurations of in-
terfering link pairs. This is an important validation step since pair-
wise link interference has been successfully used as a building block
for modeling larger topologies [18, 21, 23]. In Section 6 we use
pairwise link interference to construct the feasibility region and op-
timize the performance of networks with multi-hop flows.

4.3.1 Methodology
Topology Classes.We categorize interfering links into three topol-
ogy classes [16]. In a Carrier Sense (CS) topology, the two trans-



mitters can sense each other. In the Information Asymmetry (IA)
topology the transmitters cannot sense each other butone receiver
can sense the other link’s transmitter. In a Near Far (NF) topology,
the transmitters cannot sense each other, but each receiver can sense
the other link’s transmitter. These topology classes yield different
LIRs and different bandwidth sharing properties.
Experiments. We compute the feasibility region of several inter-
fering link pairs from the CS, IA or NF topology classes. For each
link pair we consider various configurations where the links use
the same data rates ((1,1) Mb/s and (11,11) Mb/s) or different data
rates (1,11) Mb/s. Some configurations with bad channel condi-
tions yield UDP packet losses, as MAC retransmissions fail to mask
channel losses.

For each configuration, we perform ten back-to-back iterations,
each consisting of two phases. In the first phase each link trans-
mits alone in backlogged mode for 30s and its UDP throughput
and UDP packet loss ratepl are recorded. These maximum UDP
throughputs form the primary extreme points(c11, 0) and(0, c22)
of the estimated feasibility region (Figure 1). In the second phase,
we apply several pairs of input ratesxl (30s each) within the “In-
dependent region” defined by these two points (see Figure 1). The
output ratesyl are marked asfeasible if they are within2% of
(1 − pl) × xl for both links.

In order to properly validate our model, we needed to fully char-
acterize the feasibility region of each link pair. This in turn required
a large number of experiments (input rates) that took time to per-
form. In order to minimize discrepancies caused by changes in the
feasibility region over the duration of the experiments, we sought
to minimize external variability factors. As a result all experiments
took place during nights and weekends, and sniffers were used to
limit operation to periods of low activity on the testbed. We also
excluded iterations of any experiment where measured maximum
UDP throughputs and UDP losses were5% below the average.
Metrics. We evaluate the model’s accuracy on interfering link pairs
usingfalse positives (FPs) andfalse negatives (FNs). FPs measure
overestimates, where output rates(y1, y2) are estimated feasible by
the model but measured as infeasible during the experiment. FNs
measure underestimates, where the output rates are estimated infea-
sible by the model but measured as feasible during the experiment.
Ideally, both FPs and FNs should be kept to a minimum.

4.3.2 Results
Figure 4 summarizes the FPs and FNs for all two-link config-

urations identified as interfering, when maxUDP throughputsc11,
c22 are used as link capacities. Accuracy varies across configura-
tions, but the approach produces only 94 FPs out of 3026 points
tested across all configurations, thus ensuring conservative predic-
tions and rates that remain inside the feasibility region. Things are
more variable for FNs. There are very few FNs under CS config-
urations, which means that the approach accurately characterizes
the feasibility region. This holds across data rate combinations and
different channel conditions with and without UDP packet losses.
The main reason is that mutual carrier sensing forces the links to
operate close to the time sharing region.

The number of FNs is higher in IA and NF configurations. The
source of inaccuracies is the capture effect present in those scenar-
ios. Since the two links are not coordinated through carrier sensing,
they transmit in parallel and transmissions overlap at the receivers.
When capture occurs, the receivers can decode several packets de-
spite the overlapping transmissions. Hence, both links transmit
successfully and the actual feasibility region rises above the time
sharing line. An extreme example of this inefficiency is shown
in Figure 5 where the time sharing region predicted by the model
missed approximately 40% of the feasibility region.
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Figure 4: FP and FN mean errors (with max and min observed
values) for all interfering two-link configurations.
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Figure 5: Extreme example of fraction of the feasibility region
missed by the two primary extreme points model in an IA topol-
ogy at 1 Mb/s data rate. Most of this region was recovered using
a 3-point model with LIR point (c31, c32) as third secondary ex-
treme point.

This inefficiency could be addressed by adding as a third sec-
ondary extreme point, the backlogged UDP throughputs(c31, c32)
when the two links transmit simultaneously. Figure 5 shows that
this third point recovered most of the lost fraction of the feasibility
region. We applied this three-point model to all tested configura-
tions and it eliminated almost all FNs while increasing by 3 % the
false positives in the IA and NF configurations in Figure 4. Despite
its excellent accuracy, the three-point model is not amenable to
online computations–it would requireO(L2) measurements where
links are scheduled to transmit alone and in pairs during a separate
measurement phase. However, as we see next, it can serve as a ref-
erence to derive the error incurred because of the maxUDP/binary
LIR interference assumption.

4.4 MaxUDP/Binary LIR Error Computation
The previous experiments show that a model which uses the

maxUDP throughput of individual links as primary extreme points
and a binary interference rule based on an LIR threshold of 0.95
to classify links as non-interfering, can provide a reasonable yet at
times conservative estimate of the feasibility region. Given these
findings, it is of interest to assess whether the choice of an LIR
threshold of 0.95 is the most appropriate, and more generally the
extent of the errors committed by the model in practical settings.
We thus seek to develop a more principled understanding of the
type and magnitude of errors associated with the model and dif-



c[2]=(0,c22)

c[3]=(c31,c32)

c[1]=(c11,0)

(c11,c22)

y1

y2

y2 = - y1 + LIR(c11+c22)

A1 A2

Figure 6: Computation of FP and FN errors of binary LIR
model. Each LIR value corresponds to several points(c31, c32)
forming the dotted line. A higher LIR value corresponds to a
parallel line toward the (c11, c22).

ferent choices of LIR thresholds. For that purpose, we rely on the
additional finding that emerged from our experiments regarding the
relative accuracy of a three-point convex model using the simulta-
neously backlogged throughputs(c31, c32) as secondary extreme
point. Specifically, although such a three-point model is not prac-
tical when considering online measurements, it accurately captures
the feasible region even in instances of high capture. As a result, we
use this model as a starting point to develop a better understanding
of the impact of the LIR threshold selection on our proposed binary
interference model, and more generally estimate its expected error
as a function of link characteristics.

Consider Figure 6 that depicts the feasibility region of a two link
configuration. The two primary extreme pointsc[1] = (c11, 0)
andc[2] = (0, c22) delineate the time-sharing region (region A1),
as well as the boundaries of the independent region through the
point (c11, c22) and the corresponding fine-dotted lines. The sec-
ondary extreme pointc[3] = (c31, c32) shows the throughput that
can be realized when both links are simultaneously backlogged, to-
gether with the additional feasibility region (regionA2) when using
the three-point model. The binary model selects as its estimate of
the feasibility region either the time-sharing region (regionA1) or
the independent region (fine-dotted rectangle) based on the position
relative to the LIR threshold of the measured LIR value associated
with c[3]. In other words, if the LIR value associated withc[3] is
less than the LIR threshold, then the two links are assumed to in-
terfere, and their feasibility region is taken to be the time-sharing
region. In contrast, if the LIR value associated withc[3] is greater
than the LIR threshold, then the two links are considered as non-
interfering and their feasibility region is taken to be the independent
region. In the first case, there should be no FPs, but FNs will occur
for all throughput combinations inA2, i.e.,the FN error is equal to

A2

A1+A2
. Conversely, in the second case there are no FNs, but FPs

are recorded for all throughput combinations in the complement of
A1 ⊕ A2 to the rectangular independent region,i.e.,the FP error in
this case is equal toc11c22−(A1+A2)

A1+A2
.

From Figure 6, we see that a high LIR value corresponds to
shifting the secondary extreme pointc[3] “upwards” to the cor-
ner point(c11, c22) of the independent region. This is why a large
LIR threshold ensures a small region for FPs, but a correspondingly
large FN area when the LIR falls just below the threshold. Figure 6
also shows that whenc[1] 6= c[2], the LIR value alone does not
fully specify the magnitude of the possible error that depend on the
actual combination of throughputs,c31 andc32, observed in real-
izing the LIR value (all points on the thick dotted line of Figure 6

yield the same LIR value but different areas3 A2). Nevertheless,
the representation of Figure 6 allows us to compute the magnitude
of the overall (FN and FP) error when using the proposed binary
LIR model with a given threshold and for an observed distribu-
tion of link LIRs. Specifically, using the LIR distribution of Fig-
ure 3, the expected FP error was 2% and the expected FN error for
LIRth = 0.95 was only 13.3%. This is much lower than the FN
error of 40% reported fo the “extreme” example of Figure 5. We
evaluated other LIR thresholds and found that a value of 0.95 of-
fers a reasonable compromise between FN and FP errors for this
particular LIR distribution. More generally, the methodology cap-
tured in Figure 6 provides a systematic approach to both select an
appropriate LIR threshold and estimate the error of the binary LIR
model given an LIR distribution in the mesh network.

4.5 Network Validation
We now validate the model’s accuracy in more complex config-

urations in our mesh network testbed. In this case, it is impossible
to sample the entire feasibility region as we did for the case of link
pairs. Instead, we use an optimization framework (detailed in Sec-
tion 6) to generate test input rate vectors that hit the boundary of the
feasibility region. More specifically, the test input rates are com-
puted based on the proportionally fair4 output rates of the feasibility
region estimated by our model.

Methodology. We use ten network configurations that include
different combinations of data rates at 1 Mb/s and 11 Mb/s. Each
configuration has up to six simultaneous interfering multi-hop flows
and a maximum route length of four hops. Routes are initialized us-
ing the ETT metric [24] and remain fixed for the duration of each
experiment.

Each experiment runs for ten iterations, with each iteration con-
sisting of two phases. The first phase estimates feasibility region. It
first measures the maxUDP throughputscll, UDP packet lossespl

and the LIRs for all the links used in the configuration. Then, based
on thecll values of primary extreme points and a binary LIR inter-
ference model with threshold 0.95, it constructs the conflict graph
and secondary extreme points using the procedure in Section 3.2.

The second phase computes and injects the test input rates. First,
it computes the proportional fair output ratesys. Then, it deter-
mines the test input rates asxs = ys/(1 − ps). The path lossps

is estimated based on the measured link loss ratespl in the paths
as1 −

Q

l∈s(1 − pl). Then, the second phase tests both the esti-
mated input rate vectorsxs and several scaled-up versions. Scaling
factors of 1.1, 1.2, and 1.5 are used to test for possible instances
of underestimates. This scaling searches for the feasibility region
boundary in the direction of the proportional fair rate vectorsxs.

Results.The model over-estimates if any of the achieved through-
puts when applying the test input ratesxs, is less than the cor-
responding estimated output rate. In other words, the estimated
output ratesys are not feasible. The model under-estimates if the
output ratesys were feasible but could be scaled-up by some factor
without violating feasibility.

Over-estimation results are summarized in Figure 7, which shows
a scatter plot of the estimated output ratesys versus achieved through-
puts using the data from all tested configurations. Most points are

3Whenc[1] = c[2], it is easy to show that all possible realizations
of the LIR yield the same FN and FP error areas.
4The maximum aggregate throughput objective would tend to cre-
ate test points close to the primary extreme points. On the other
hand, max-min fair points would tend to lie in the interior of the
true feasibility region. We selected the proportional fairness ob-
jective that provides a trade-off between maximum utilization and
fairness.
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Figure 7: Model over-estimation performance. Points on the
(y=x) line indicate output rates correctly estimated as feasible.

concentrated on the upper line (y = x), which indicates perfect esti-
mation. The maximum error was 38% and only 10 points fall below
the lower line (y = 0.8x), which indicates the 20% error region.

Under-estimation results are summarized in Figure 8. Figure 8(a)
presents the CDF of the ratio of achieved throughput over estimated
output rate for all scaling factors. Feasible points are on the right-
hand side of the figure and close to unity. As the scaling factor
increases, the estimation error also increases, as indicated by the
progressive shift to the left of the scaled CDFs. This provides evi-
dence that the model is not producing significant under-estimates,
i.e., in most instances the scaled estimated output rates are not fea-
sible.
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Figure 8: Model under-estimation performance. (a) CDF of ra-
tio of achieved throughput over estimated output rate for vari-
ous scaling factors. (b) CDF of ratio of scaled over non-scaled
achieved throughput.

To better quantify the magnitude of the gap that exists between
the capacity predicted by the model and the maximum feasible
value, we compare achieved throughput with and without scaling.
If by scaling the input rate the achieved throughput increases, then

the estimate produced by the model left some capacity unused. Fig-
ure 8(b) plots the CDF of the ratio of highest achieved throughput
when scaling over the achieved throughput without scaling. The
model under-estimates capacity by about 20% in the worst case
and around 10% on average. This seems a reasonable price to pay
for the model’s simplicity, which, as we show next, is instrumental
in developing a practical on-line solution.

5. ONLINE APPROXIMATIONS
The previous section showed that maxUDP throughput combined

with a binary LIR interference model yields an adequate approxi-
mation of the feasibility region in practice. In this section, we show
how this approximation can be realized using online measurements.
Sections 5.1 through 5.4 present and evaluate a light-weight tech-
nique for online estimation of maxUDP throughput. Next, Sec-
tion 5.5 presents and evaluates a two-hop interference model that
approximates the binary LIR interference model.

5.1 Online Capacity Estimation
MaxUDP throughput captures the inherent quality of each link

when transmitting alone in backlogged mode. However, in an oper-
ational network direct measurement of this quantity are not feasible
because links transmit neither alone nor backlogged. An additional
challenge is to estimate this quantity using measurements at the
network layer without access or modifications to lower layers of
the protocol stack.

Our solution has two components. First, we use a capacity rep-
resentation that relates maxUDP throughput to the packet loss rate
experienced by the MAC protocol. The packet loss rate is measured
online using network-layer broadcast probes which incur low over-
head. However, when interference is present this packet loss rate
includes losses due to both channel errors and collisions. Hence,
we design a channel loss rate estimator which filters out collisions
and recovers the channel loss rate used in the capacity representa-
tion formula. We evaluate the estimation accuracy of our approach
and compare it to AdHoc Probe [10], a tool that has been proposed
to estimate path capacity in multi-hop wireless networks.

5.2 Link capacity representation
We express the maxUDP throughputT of each link as a function

of the channel loss ratepl, as follows:

T =
P

tidle + ttx

(6)

whereP is the UDP payload size andtidle andttx are the average
idle and transmission times, respectively, approximated as follows:

ttx =
P + H

(1 − pETX
l )Tnom

whereH is the UDP header size andTnom the nominal through-
put. ETX equals1/(1 − pl) and is the expected number of MAC
retransmissions assuming independent losses with probabilitypl.

tidle =



F (1, ⌊ETX⌋ − 1), if ETX < m

(F (1, m − 1) + σ (⌊ETX⌋−m)(Wm−1)
2

), otherwise

whereσ is the 802.11 slot duration,W0 andWm, the minimum and
maximum contention window size, respectively,m is the backoff
stage where the contention window size becomes maximum, and

F (a, b) = σ
Pb

i=a
2iW0−1

2
is the total average backoff time be-

tween backoff stagesa andb.
All quantities in Eq. (6) are either known in advance or depend

onpl. Tnom can be computed given 802.11 MAC parameters, data



packet size and data rate based on [19].W0 andWm andm are
given by the 802.11 specification. The headerH and the packet
payloadP are also known, and ETX depends onpl.

The packet loss ratepl is measured by a probing system that uses
network layer broadcast packets. Broadcast packets are not subject
to MAC retransmissions and reflect the packet loss rate experienced
by the MAC protocol. The packet loss ratepl is computed as1 −
(1−pDATA)(1−pACK). pDATA andpACK are DATA and ACK
packet loss rates, respectively. These rates are measured as fraction
of lost DATA and ACK broadcast probes over a probing window.
The broadcast probes emulating DATA and ACK are sent at the data
rate and packet size of the DATA and ACK packets, respectively.

During network operation, packet losses are due to both channel
errors and collisions and the measured loss ratespDATA andpACK

will be higher than if the links transmitted alone. In order to use the
maxUDP throughput representation, we must be able to distinguish
collisions from channel errors and use Eq. (6) with apl computed
from the estimated channel loss rates ofpDATA andpACK . There-
fore, the problem of online maxUDP throughput estimation trans-
lates to the problem of separating channel losses from collisions.
Previous solutions to this problem [29, 35] have been designed for
client-AP WLAN traffic scenarios or require low-level access to
firmware. Next, we present a technique that applies to multi-hop
wireless mesh networks and relies only on the loss pattern of the
network layer broadcast probes.

5.3 Channel Loss Rate Estimator
Our technique is based on three previous experimental observa-

tions for 802.11-based mesh networks in both city-wide [1] and
long-distance rural deployments [8]: (i) collision losses are inde-
pendent from channel losses, hence packet loss increases due to
collisions (ii) collisions create bursty loss patterns, and (iii) for the
majority of links, losses occur independently when collisions and
interference are not present. Extensive experiments on our testbed
(not shown due to lack of space) have confirmed these observations.

During network operation, the estimator runs continuously at the
receiver of each link and is based on the loss patterns observed
during each probing windowS. The receiver computes the packet
loss ratep by dividing the number of received probe packets by the
total probe packetsS sent during the probing window. In general
p includes both collisions and channel errors. The problem is to
recover the channel loss ratepch (i.e., the fraction of lost packets
due to channel losses), fromp.

The main idea is to scan the probing window with smaller sliding
windows, each of sizeW , to identify segments that contain only
channel losses. The sliding windows scan the probing window with
steps of one probe. This providesS − W + 1 starting positions
within the probing window. For thei-th step, the packet loss rate is
computed asn(W )

i /W , wheren
(W )
i is the number of lost packets

(“errors”) in the sliding window. For each window sizeW , the
channel loss ratep(W )

ch is then set to the minimum of these packet
loss rate estimates:

p
(W )
ch

=
1

W
min(n

(W )
1 , ..., n

(W )
(S−W+1)

), W = Wmin, ..., S (7)

The minimum window parameterWmin corresponds to the coars-
est estimation of loss rate and we set it to 10 samples.

WhichW provides the best estimate of the channel loss ratepch?
A very smallW may capture very few losses and therefore under-
estimate the channel error rate; a very largeW may capture both
channel and collision losses and therefore over-estimate. For small
W , the estimatep(W )

ch is smaller thanp because some windows see
too few losses (are not long enough to accurately “average out”
channel losses). Then,p

(W )
ch increases withW until it reaches the
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Figure 9: Examples of the two cases of the channel loss rate
estimator. The measured loss rate p (horizontal line) and true
channel loss rate (dotted horizontal line) were measured in two
sequential experiments with and without interference, respec-
tively.

measured packet loss ratep for W = S (p(S)
ch = p ). Based on this

observation, we design our filter around two cases.
Case 1: If p

(W )
ch increases steeply and reachesp fast, this is a

strong indication thatpch is close top. In addition, reaching and
staying at a loss rate fast is an indication of uniform packet losses.
The reason is that a smallW already captures all losses observed in
the probing window. We use a median criterion to identify this case.
If p

(W )
ch exceeds0.99p beforeW = S/2 thenpch is estimated asp.

Figure 9(a) shows an example of this case for a link in our testbed.
Case 2:When the median criterion does not hold,pch is lower

thanp. We approximate the sequencep
(W )
ch by a logarithmic curve

of the formf(w) = a ln(w) + b for w in [Wmin, S]. We then
find the pointw∗, wheref(w) has maximum curvature. This is the
point after which the curve no longer continues to rapidly rise and
instead follows either a steady state or slow rise. Then, the optimal
window size is selected asW ∗ = ⌊w∗⌋ and the channel loss rate is

estimated aspch = p
(W∗)
ch . Figure 9(b) shows an example of a link

in our testbed, where the logarithimc fit estimation is applied.

Evaluation of channel loss rate estimator. We evaluate
the channel estimator’s accuracy and the time scale over which
the accuracy is maintained. We run experiments in our testbed,
each consisting of two phases. In the first phase the nodes broad-
cast probes alone in backlogged mode and measure channel loss
ratepch (ground truth). In the second phase they broadcast probes
simultaneously and measure packet loss rate (p) subject to inter-
ference. The estimator is also applied during the second phase.
We used a probing period 0.5s and a probing windowS = 1280
probes. All results have been aggregated over several traffic sce-
narios with 40 links at 1Mb/s and 11Mb/s, resulting in over 1000
measurements.
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Figure 10: Channel loss rate estimation accuracy across 40
links at 1 Mb/s and 11 Mb/s and probing period of 0.5 s.

Figure 10(a) presents the CDF for the estimation error of the
channel loss rate for a probing window ofS = 1280 probes (640s).
The technique achieves high estimation accuracy of keeping the
error below 5% for 70% of all runs and providing a Root Mean
Square Error (RMSE) of 0.0497. Figure 10(b) shows that the RMSE
is slightly increased to 6% as the probing window size decreases
until S = 200 probes (100s). This demonstrates the robustness of
this technique for different probing window sizes and its ability to
estimate capacity at a time scale of a few minutes.

5.4 Capacity estimation performance
We evaluate the accuracy of the capacity estimation technique

and compare it to Ad Hoc Probe, a tool proposed in [10] to estimate
capacity of multi-hop wireless paths. Ad Hoc Probe sends several
packet pairs and estimates capacity as the inverse of the minimum
dispersion (spacing) between the packets of each packet pair.

We run two-phase experiments on 30 links at 1 Mb/s and 11 Mb/s
in our testbed. Each experiment is run on a single link and consists
of two phases. During the first phase, we set the link to trans-
mit backlogged and measure the maxUDP throughput. During the
second phase, we activate the probing system and send simulta-
neously 200 broadcast probes of our capacity estimator (probing
period 0.5 s) and 200 unicast packet-pairs of Ad Hoc Probe in the
presence of interfering background traffic. Figure 11 shows that
AdHoc probe consistently fails to predict maxUDP throughput, re-
sulting in extremely high estimation error in some cases. On the
other hand, our capacity estimator yields low error (RMSE=12%)
and is independent of background traffic.

Ad Hoc Probe is not appropriate for link maxUDP throughput
estimation for the following reasons. First, in absence of interfer-
ence it estimates a higher value closer to the nominal throughput.
This is because Ad Hoc Probe estimations are based on minimum
dispersion (delay) estimates which don’t take into account the in-
herent link channel losses. Second, in the presence of interferences
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Figure 11: MaxUDP throughput and estimated capacity by
our technique and Ad Hoc Probe, all normalized over nomi-
nal throughput for 23 links transmitting at 1 Mb/s or 11 Mb/s
in our testbed.

the minimum delay filter will filter out congestion but again will
not account for losses.

5.5 Two-hop Interference Model
We use a two-hop pair-wise binary interference model, where

each link interferes with all links adjacent to its node endpoints
and all the links adjacent to their one-hop neighbors. This inter-
ference model was also used in the congestion control protocol
of [28] and can be easily used during network operation. We eval-
uate the two-hop approximation using as reference the binary LIR
interference model which was shown to perform well in Section
4. Figure 12(a) presents the CDF of prediction error in the exper-
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Figure 12: Binary LIR vs. two-hop interference model. As in
Section 4.5, we evaluate for (a) over-estimation by looking at
the estimation feasibility and (b) underestimation by looking at
the RMSE of estimation for different scaling factors.

iments of Section 4.5 using binary LIR and two-hop interference
models and measured maxUDP throughput as link capacities. The
two-hop model yields low error, and hence provides a realizable



solution. Fig. 12(b) compares the RMSE of the two interference
models for scaled input rates. The RMSE is increased for both
models when scaling the input rates, showing that they are both
near-optimal in terms of total network capacity. We conclude that
the two-hop model provides an excellent approximation of the bi-
nary LIR model.

6. ONLINE OPTIMIZATION
In this section, we implement an optimization framework that in-

corporates the model, and we evaluate its online performance with
TCP traffic in our testbed.

6.1 Implementation
Our decentralized implementation of the optimization framework

usesClick [12] and consists of the following modules.
Routing module. Routes, neighborhood information and chan-

nel loss rate estimates are disseminated using theSrcr routing pro-
tocol that comes withClick. This information is used by each node
to update itsSrcr topology database, compute routes using Dijk-
stra’s routing algorithm with ETT [13] as link metric, and execute
the optimization algorithm in the optimizer module. Our only mod-
ification to Srcr was the addition of channel loss rate estimates to
the route updates.

Capacity estimation module. Capacity estimation is executed
continuously at each node and is implemented using theClick prob-
ing system, which sends periodically broadcast probes at data rate
and size equal to the ones of DATA packets and broadcast probes
equal to the ACK packet size at 1 Mb/s data rate, to measure loss
rates of DATA packets and ACK packets, respectively. As detailed
in Section 5, for each link of a node, the capacity estimation mod-
ule estimates the corresponding DATA and ACK channel loss rates,
combines them into an estimated channel loss rate, which is then
used in Eq. (6) to compute the link capacity.

Optimizer module. This module takes as input the channel loss
rates, neighborhood relationships, and the routing matrixR coming
from the routing module, and outputs a set of target output rates
y = (y1, ..., yS) for the network. First, it computes the extreme
pointsc[k] = (ck1, ..., ckL) using the procedure of Section 3.2.
Then, it uses the routing matrix and extreme points in the following
convex optimization problem:

Maximize
S

X

s=1

U(ys)

subject to:
S

X

s=1

Rl,sys ≤

K
X

k=1

αkckl, l = 1, ..., L

K
X

k=1

αk = 1 αk ≥ 0, k = 1, ..., K

whereS is the number of flows,Rl,s are binary routing variables
indicating whether flows is routed through linkl. In the above
formulation, the network routing matrix translates the multi-hop
flow rates to link rates that lie in the feasibility region, created by
the primary extreme points and the pair-wise interference model
based on the procedure in subsection 3.2.

The utility functionU(·) is given by:

U(ys) =

(

y1−α

s

1−α
, if α 6= 1

log (ys), otherwise

which is a well-known family that provides a wide range of ob-
jectives that trade-off fairness and throughput. Given the network
output rate vectory = (y1, ..., yS), the module selects the subset
of ratesys for which it is a source and generates the correspond-

ing input rates, asxs = ys/(1− ps). The path lossps is estimated
based on the channel loss ratespl in the paths as1−

Q

l∈s(1−pl).
Rate control module.This module usesClick BandwidthShaper

element to rate limit the flows according to the optimized ratesxs.

Rate Control Time Scale. The time scale at which rate control
is adjusted depends on the capacity estimation interval (determined
by the probing window size and period), and the optimizer module
computation time.

The capacity estimation interval is constrained by the network
layer probing system. Probing frequency should be low enough
(every 0.5 s in our system) to keep the overhead low, but enough
probes should be used to ensure sufficient accuracy. As illustrated
in Figure 10(b), stable channel loss rates and hence capacity es-
timates can be obtained using a probing window size that corre-
sponds to few minutes (100s to 640s). In all the experiments, a
probing period of 0.5s and a probing window size of S=200 probes
were used.

The optimizer module computation time consists of the time to
compute the extreme points of the feasibility region, and the time
to solve the optimization problem. The extreme points computation
uses the maximal clique enumeration algorithm of [22]. According
to [22], the algorithm can in practice compute about 100,000 max-
imal cliques per second if the graph is sparse, with linear increase
in computation time as density increases. The worst-case scenario
in our testbed was a conflict graph which resulted in 200 extreme
points, computed in less than 10 ms. The convex optimization prob-
lem was solved with Matlab, which in this scenario terminated in
less than 3 s.

In our system, the bottleneck is therefore the capacity estimation
module.

6.2 Evaluation
The previous sections have shown that the optimization frame-

work should enable precise (rate) control of UDP traffic to realize
specific throughput objectives. We now turn to potentially more re-
alistic scenarios involving TCP traffic, where interactions between
TCP and rate control may affect the overall outcome. We also scale
down the computed optimal rate of each TCP flow by a small fac-
tor to provide air time for TCP ACKs in the reverse direction. As
in [21], this factor is(1− A+H

A+H+D
), whereA, H andD are IP/TCP

header, TCP ACK and TCP payload sizes, respectively.
We evaluate the performance of the optimization framework in

terms of aggregate throughput, fairness (captured by Jain’s Fair-
ness Index (JFI)), and ability to isolate TCP flows. Flow isolation
is quantified by a feasibility metric and a stability metric. The fea-
sibility metric is the ratio of achieved TCP throughput over the op-
timized rate limit. The stability metric measures variations in the
TCP throughput measurements of each flow across different exper-
iments in the same configuration. It is defined as the ratio of the
difference between throughput measurement and their mean over
this mean. If all TCP flows achieve the optimized rates and show
little variation, then they have been perfectly isolated.

All scenarios are run in two phases. In the first phase, rate control
is disabled, while enabling the measurements in the probing system
and dissemination of packet losses. In the second phase, the routes
are fixed and rate control is enabled. We compare TCP throughput
with rate control disabled (TCP-noRC) and enabled (TCP-RC). We
use TCP-RC with two objectives: Maximum aggregate throughput
(TCP-Max) and proportional fairness (TCP-Prop).

6.3 Results
We first study a simple TCP starving scenario in mesh networks,

which involves one 2-hop and one 1-hop TCP flow transmitting
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Figure 13: Performance of two-flow upstream TCP starvation
scenario in our testbed with and without rate control at 1 Mb/s
data rate. Bars plots are mean values. Error bars are max and
min values.

upstream over a 2-hop path to a gateway node [33]. Figure 13 sum-
marizes the results for such a scenario running with link speeds of
1 Mb/s in our testbed. TCP-noRC achieves similar distribution as
TCP-Max, hence achieving close to maximum aggregate through-
put. However, it starves the 2-hop TCP flow, because TCP ACKs
(coming in the reverse direction) are lost due to collisions with TCP
data packets [33]. TCP-Prop addresses starvation by increasing
the throughput of the starving flow at some expense in aggregate
throughput. We explore this further in Figure 14. We also observe
that rate control helps isolate the two flows. In both TCP-Max and
TCP-Prop, TCP flows achieve low variability.

Figure 14 presents results for several multi-hop, multi-flow con-
figurations with link rates of both 1 Mb/s and 11 Mb/s in our testbed.

Figure 14(a) shows the CDF of the ratio of aggregate TCP with
rate control over aggregate TCP-noRC for all tested scenarios. TCP-
Max achieves up to 45% more aggregate throughput, indicating that
it outperforms TCP-noRC when throughput maximization is the
objective. TCP-Prop achieves over 80% of TCP-noRC aggregate
throughput in 80% of the scenarios, indicating that the aggregate
throughput penalty is not high. Also according to Figure 14(b),
TCP-Prop improves fairness over TCP-noRC.

Figure 14(c) shows that 70% of the TCP flows achieve above
90% of their optimized rate limits and are considered feasible for
practical purposes. The remaining 30% achieve a lower fraction,
which for a few even drops down to 35% or their optimized rate
target. This problem is not due to TCP ACK and TCP data col-
lisions because the optimized rates already provide air time to the
ACKs. Upon closer inspection of the data, we found that the reason
is excessive losses (higher than 80%) on intermediate links of each
path that cannot be masked by the 802.11 MAC protocol retrans-
missions. Rate control cannot help TCP in this case.

Figure 14(d) shows good stability when RC is applied: for 70%
of the flows, the throughputs across different experiments on the
same scenario deviate by less than 10% from the mean. These mea-
surements correspond to the feasible flows of Figure 14(c). Under
noRC, only 40% of the links achieve such stability.

7. CONCLUSIONS AND FUTURE WORK
We have addressed a pressing performance problem in 802.11

mesh networks using optimization-based rate control at the net-
work layer. At the heart of our technique is a model that (i) can
adequately characterize the 802.11 feasibility region in real-world
mesh networks (ii) can be used in convex optimizations that support
a wide range of objectives (iii) can have its parameters estimated
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Figure 14: TCP performance with and without rate control
across several multi-hop/multi-flow scenarios at 1 Mb/s and
11 Mb/s data rates in our testbed.

online using light-weight measurements at the network layer. We
provided a structured validation of this model and incorporated it in
an optimization framework in a wireless mesh testbed, demonstrat-
ing that such an approach can be implemented and operate at a time
scale of a few minutes, during network operation. We showed that
this framework can achieve predictable throughput, it can provide a
wide range of optimization objectives that trade off throughput and
fairness and can isolate TCP flows increasing their stability. On
the other hand, rate control cannot help TCP flows when links in
the path have high channel error losses. This problem can be ad-
dressed either by removing such links using the routing protocol or
by increasing the MAC retransmission limit.

There are several directions in which we plan to extend this work,
above and beyond a more comprehensive investigation of how the
approach performs when 802.11 rate adaptation is turned on. Of
particular interest is to incorporate routing as part of the optimiza-
tion problem. This clearly increases complexity but may afford sig-
nificant benefits in both increasing overall throughput and avoiding
links with high channel error rates that decrease TCP performance.
Additionally, while our capacity and loss rate estimators appear ro-
bust, we need to test them over a broader range of topologies and
environments. Exploring filtering techniques used to detect sharp
state transitions, e.g., as median filters for image edge detection,
may prove useful, including in dealing with 802.11 data rate adap-
tation mechanisms.
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