
Simulation-Based Graph Similarity?

Oleg Sokolsky, Sampath Kannan, and Insup Lee

Department of Computer and Information Science
University of Pennsylvania

{sokolsky,kannan,lee}@cis.upenn.edu

Abstract. We present symmetric and asymmetric similarity measures
for labeled directed rooted graphs that are inspired by the simulation
and bisimulation relations on labeled transition systems. Computation
of the similarity measures has close connections to discounted Markov
decision processes in the asymmetric case and to perfect-information
stochastic games in the symmetric case. For the symmetric case, we also
give a polynomial-time algorithm that approximates the similarity to any
desired precision.

1 Introduction

The motivation for this work comes from the need for rapid detection of new com-
puter viruses. The proliferation of virus development kits that can be downloaded
from the Internet has dramatically lowered the entry threshold for virus devel-
opers [16]. What used to require considerable skill and substantial knowledge
can now be accomplished by a relatively inexperienced hacker. As a result, large
numbers of new virus programs appear every week. They are different enough
from known viruses that conventional signature-based techniques become inef-
fective. Yet, since these viruses are developed using the same development kits,
they share distinctive similarities with known representatives of viruses devel-
oped using the same kit. The classification of viruses into families is an attempt
to capture such similarity.

The starting point of this work was the question of how the similarity between
viruses of the same family can be captured and quantified. Our approach to
similarity is behavioral, by which we mean that similar virus programs should
be able to perform similar actions, arranged in similar ways. In order to make
this intuition precise, we define a similarity metric on control flow graphs of
programs. Control flow graphs, which can be defined either at the object code
level or at the level of high-level programming language, are directed graphs,
whose nodes and possibly edges are labeled with code fragments. There is also a
dedicated initial node. Such labeled rooted graphs are often formalized as labeled
transition systems (LTS).

One notion commonly used for semantic comparison for LTSs is simulation.
The simulation relation defined on pairs of LTS nodes captures whether one node

? Research has been supported in part by the ONR MURI N00014-04-1-0735 and ARO
DAAD19-01-1-0473.

simulates the other, or not. Intuitively, a node s1 in an LTS G1 simulates a node
t1 in another LTS G2 if any outgoing edge of t1 → t2 labeled by, say, a can be
matched by an edge s1 → s2, also labeled by a, in such a way that s2 simulates
t2. A symmetric version of the simulation relation is known as bisimulation.

For the purpose of comparing control flow graphs of similar programs, we
need to generalize the simulation relation into a function that captures how
well one control flow graph simulates another. The first step in defining such a
function is to introduce local similarity between graph nodes and edges. Local
similarity functions define how well the label of a node matches the label of
another node, and how well the label of an edge matches the label of another
edge. The definition of local similarity functions depends on the nature of the
labels of nodes and edges of the graphs. The labels may be viewed as symbols in
a given alphabet, variable-length strings over a fixed alphabet, or have a more
complicated structure such as, for example, assembly-language instructions or
short fragments of assembly-language code. Different local similarity functions
are appropriate in each of these situations. For the purpose of this paper, we
assume that local similarity functions are given to us, and abstract away the
nature of the graph labels.

In designing the similarity measure, we also need to decide whether we are
pursuing an aggregate or extremal measures. In extremal measures, the computed
value is based on the closest (or the most distant) match between components in
the graph. Aggregate measures take into consideration matches from all paths.
We argue that extremal measures can lead to counterintuitive results, where a
single unmatched component yields a very low similarity value for two otherwise
quite similar graphs. The advantage of extremal measures, on the other hand,
is that they allow us to easily obtain distance metrics that obey the triangle
inequality: the distance between two graphs does not exceed the sum of distances
between each of the graphs and an arbitrary third graph. In general, it is useful
to work with distance metrics. In our case, however, we do not necessarily need a
distance metric. Our goal is to raise an alarm when a graph of the new program
is similar enough to a known malicious program to warrant a closer inspection.
If the program is found to be close to two quite different malicious programs, so
much the better.

Guided by this motivation, we present new aggregate similarity measures
that generalize simulation and bisimulation. We call these measures quantita-
tive simulation and bisimulation. The contribution of this paper is a collection
of algorithms for computing quantitative simulation and bisimulation on finite
graphs. The algorithms rely on techniques similar to the ones used for the anal-
ysis of Markov decision processes and perfect-information stochastic games. Of
particular practical importance are polynomial-time approximation algorithms
for quantitative simulation and bisimulation.

Related work. In [6], several metrics have been proposed for quantitative tran-
sition systems, which are labeled with tuples of numbers instead of more con-
ventional symbolic labels. The introduced measures are extremal and have the
advantage of relatively low computational complexity. Similar metrics for la-

beled Markov processes have been considered in [8] as means of approximating
bisimulation relations. In both cases, quantitative information is present in the
transition system and serves as the basis for the metric. In our case, however,
transition systems do not contain quantitative information.

Existing work on graph similarity has been applied mostly in pattern recog-
nition and data mining contexts. In these domains, graphs can have rich struc-
tures, but little associated semantics with graphs nodes and edges. In our case,
however, similarity is rooted in graph labels and the structure is less important
and serves only to capture relationships between labels. The idea that similarity
between two graphs can be computed as a fixed point of local similarities prop-
agated through the transition relation has appeared in [2, 10], but was treated
in an ad hoc fashion.

a)
 b)
 c)
a

a

a

a
b
 b

b

b

c

c

c

Fig. 1. Different notions of graph similarity

Most other existing graph similarity measures can be grouped into two cate-
gories [14]. Cost-based distance measures (also known as edit distances) are based
on the number of modifications that are needed to transform one graph into the
other. On the other hand, feature-based distance measures, for example [13],
rely on extracting a set of structural features (such as vertex degrees) from the
graphs and comparing vectors of features. For our purposes, both kinds of mea-
sures have the disadvantage that they are purely structural, while the measures
we are proposing utilize significant amount of semantic information contained
in the graph and its labels. To see the difference between our approach and the
approach based on edit distances, consider the graphs is Figure 1. Graphs a) and
b) have very small edit distance (high similarity): one needs only to swap two
of the labels to make the graphs identical. However, if similarity between a and
c is small, we would consider these graphs to be quite different as they admit
different executions. Conversely, graphs a) and c) are quite different structurally,
but they are, in fact, bisimilar and thus should be considered identical for our
purposes.

Algorithmic techniques studied in this paper are similar to the approaches
used in solving perfect-information quantitative stochastic games [4].

Structure of the paper. The rest of the paper is organized as follows. In Sec-
tion 2 we briefly consider an extremal simulation-like measure and discuss its
disadvantages. In Sections 3 and 4, we define strong and weak versions of an
aggregate measure called quantitative simulation, discuss its properties and in-

troduce an approach to compute quantitative simulation that is based on linear
programming. Section 5 introduces quantitative bisimulation, which is a sym-
metric version of quantitative simulation. Computing quantitative bisimulation
turns out to be naturally related to finding the value of an appropriately de-
fined infinite stochastic game and has a number of interesting connections to
the recent work such as [4]. Finally, we offer a polynomial-time procedure to
approximate quantitative bisimulation to any desired precision.

2 Extremal Quantitative Simulation

Preliminaries. A labeled transition system (LTS) is a labeled directed graph
G = 〈S,L, T, s0〉, where S is a set of states, L is a set of labels, T ⊆ S ×L × S
is a transition relation, and s0 ∈ S is the initial state. As usual, we denote
(s1, a, s2) ∈ T as s1

a→s2. In addition, assume two similarity functions: a node
similarity function N : S × S → [0, 1], and label similarity function L : L ×
L → [0, 1]. We assume that each node and each label is perfectly similar to
itself: N(s, s) = L(l, l) = 1, and that the similarity functions are symmetric:
N(s1, s2) = N(s2, s1) and L(a, b) = L(b, a).

Definition 1. Extremal quantitative simulation (mq-simulation, for short) is a
function Q : S×S → [0, 1], such that for all states s1, s2, the following condition
holds:

Q(s1, s2) =

{

N(s1, s2) if ∀a, s1

a

6→
N(s1, s2) ·

Q

s1

a
→s′

1

max
s2

b
→s′

2

L(a, b) · Q(s′1, s
′

2) otherwise (1)

If Q(s1, s2) = n, we say that s2 simulates s1 up to n. If we have two LTSs,
G1 and G2 with initial states s1

0 and s2
0, respectively, we say that G2 simulates

G1 up to n if Q(s1
0, s

2
0) = n.

As a motivation for this definition, consider the case when the node similarity
function does not distinguish nodes, that is, ∀s1, s2 ∈ S, N(s1, s2) = 1 and the
label similarity function is binary, that is, L(l1, l2) = 1 if l1 = l2 and 0 otherwise.
In this case, we recover the traditional definition for simulation relation - on
labeled transition systems: s1 - s2 iff s2 simulates s1 up to 1.

s
1

s
2
 s
3

s
4
 s
5

t
1

t
2

t
3
 t
4

a
 a

a

b

b

c

c

Fig. 2. Example of quantitative similarity

Example. Consider the classical example from the (bi)simulation literature,
shown in Figure 2. It is well-known that t1 simulates s1, but not vice versa. Let us
assume, however, that b and c are not completely dissimilar. Let L(b, c) = 0.5.
With the definition above, we have that Q(s1, t1) = 1, which is not surpris-
ing because t1 simulates s1. In the reverse direction, we have that Q(t2, s2) =
Q(t2, s3) = 0.5. This is because s2 (and, similarly, s3) matches one transition
of t2 perfectly and the other by 0.5, the product of this yields 0.5. Finally,
Q(t1, s1) = 0.5.

Fixpoint characterization of mq-simulation. Consider the set of tuples Q =
{Qi,j} with i, j ∈ 1 . . . |S| and every Qi,j ∈ [0, 1]. Equipped with the opera-
tions of pointwise minimum and maximum, the set forms a complete lattice.

Consider the function f : Q → Q, which is the simultaneous application
of Equation (1) for all i, j. The function is monotonic. By the Tarski-Knaster
theorem, a fixed point of f exists, and is an mq-simulation.

Discussion. The attractive feature of mq-simulation is that it is an immediate
generalization of the classical simulation relation to the domain of reals. However,
it does not make a good measure for LTS similarity, because it can produce quite
counterintuitive results. Consider the following two examples.

One problem of quantitative simulation is that it assigns too much impor-
tance to “eventual dissimilarity.” Consider, for example, the LTSs

s1
a1→s2

a2→ . . . sn−1
an−1→ sn and t1

b1→t2
b2→ . . . tn−1

bn−1→ tn. (2)

Let L(ai, bi) = 1, except for the last pair, where L(an−1, bn−1) = 0, and N(si, ti) =
1 for all i, j. Intuitively, one would expect to see these LTSs rather similar, be-
cause the dissimilarity is far down the road. However, Q(s1, t1) = 0.

The second problem is that mq-simulation is too strict in combining alterna-

tives. Consider two star-shaped LTSs constructed as follows: s0
ai→si and t0

bi→ti.
Again, let all nodes be similar and let labels be pairwise similar L(ai, bi) = 1 for
all i except i = n. In all other cases, that is, i 6= j or i = j = n, L(ai, bj) = 0.
Again, our intuition suggests that these LTSs should be considered similar since
all but one branches are matched perfectly. Still, Q(s1, t1) = 0.

Analysis of these two problems suggest that perhaps a more useful definition
would be a function, additive both in terms of different branches leaving the
same state and in terms of number of states along a path. To address the first
problem, this function should give more weight to close states and progressively
less weight to more distant states. It is important, however, to ensure that the
similarity measure remains bounded over long paths and for states with large
branching factors. The next section will be devoted to defining such a function.

3 Weighted Quantitative Simulation

3.1 Similarity on Paths

We begin by comparing states in paths of an LTS, and then generalize the
obtained notion of similarity to LTSs in general.

In order to overcome the problems with the mq-simulation, we introduce
a parameter p that describes the relative importance of local similarity vs.

“step similarity.” Consider two edges in an LTS: s0
a→s1 and t0

b→t1. Similar-
ity between s0 and t0 based on these two edges can be defined to be (1 − p) ·
N(s0, t0) + p · L(a, b) · N(s1, t1). Consider now two paths of the same length,

s0
a1→s1

a2→s2
a3→ . . . sn and t0

b1→t1
b2→t2

b3→ . . . tn. We can extend the similarity be-
tween s0 and t0 to recursively consider paths instead of single edges as follows:
Q(s0, t0) = (1 − p) · N(s0, t0) + p · L(a1, b1) · Q(s1, t1). Unfolding the recursive
expression, we obtain that, for the paths of length n, the similarity between the
paths is

Q(s0, t0) =

n
∑

i=0

(1 − p) · pi · N(si, ti) ·
i

∏

k=1

L(ak, bk), (3)

with the convention that the product over an empty set is 1.
The value of the similarity between two paths is bounded from above by the

similarity of two identical traces. Since all node and edge similarity functions
yield 1 in this case, it is clear that the similarity between two identical infinite
paths is 1.

Consider again the LTSs of (2). The effect of dissimilarity after n steps is
now negligible for large n: Q(s1, t1) = 1 − 2−n for p = 1/2.

3.2 Graph Similarity

Definition 2. For a parameter 0 < p < 1, p-weighted quantitative simulation
(q-simulation) is a function Q : S×S → [0, 1], such that for all states s1, s2, the
following condition holds:

Qp(s1, s2) =

{

N(s1, s2) if ∀a, s1

a

6→
(1 − p) · N(s1, s2) + p

n
·

P

s1

a
→s′

1

max
s2

b
→s′

2

L(a, b) · Qp(s
′

1, s
′

2) otherwise,

(4)
where n is the number of transitions leaving s1.

Consider the same example of Figure 2. Let p = 1/2. Here we again have
Q 1

2

(s1, t1) = 1. Indeed, Q 1

2

(s2, t2) = (1 − p) + p · Q 1

2

(s4, t3) = 1 (as well as

Q 1

2

(s3, t2)), and Q 1

2

(s1, t1) = (1 − p) + p · 1
2 · (Q 1

2

(s2, t2) + Q 1

2

(s3, t2)) = 1.

In the reverse direction, Q 1

2

(t2, s2) = (1 − p) + p · 1
2 · (1 + 1

2) = 7
8 . Finally,

Q 1

2

(t1, s1) = (1 − p) + p · Q 1

2

(t2, s2) = 15
16 . The number is much higher than for

the mq-simulation, because here considerable weight is given to node similarity,

which in this case does not make any distinction between nodes and only drives
the similarity up.

We now show two important properties of q-simulation. Proofs of these prop-
erties use the functional T (Q)(s1, s2) derived from (4). That is, let Q be the set
of functions Q : S × S → [0, 1]. T : Q → Q is defined as

T (Q(s1, s2)) =

8

<

:

N(s1, s2) if ∀a, s1

a

6→
(1 − p) · N(s1, s2) + p

n
·

P

s1

a
→s′

1

max
s2

b
→s′

2

L(a, b) · Q(s′1, s
′

2) otherwise,

The following theorem shows that q-simulation is well-defined:

Theorem 1. Equation (4) has a unique solution.

Proof (Sketch): We reduce the problem of computing q-simulation to the problem
of optimal control in discrete event systems, studied in [1]. Given an LTS G, we
construct the dynamical system

xi+1 = f(xi, ci, wi),

where the next state xi+1 depends on the current state xi, the current control
input ci, and random disturbance wi. The state space is given by pairs of graph
nodes, x ∈ S × S. Control inputs ci ∈ C(x) are state-dependent. Given the cur-

rent state xi = (s1, s2), C(x) = {s2
b→s′2}. That is, control inputs represent the

choice of transition in the simulating state. Disturbance wi ∈ W (x) = {s1
a→s′1},

on the other hand, represents the choice of transition in the simulated state.
Fixing a control strategy, that is, the sequence of control inputs, yields a ran-
dom trajectory x0, x1, The value of a given trajectory is given according
to (3). The optimal control problem for the given dynamical system is to de-
termine the maximum expected value over the set of possible control strategies.
For uniformly distributed disturbances, independently chosen in each step, this
maximum expected value coincides with 4. The proof then closely follows [1],
p. 182ff, which shows that the control problem – albeit for a different but also
monotonic value function – has a unique solution. We show that the functional
T (Q) is a contraction mapping over the space of functions Q : S × S → [0, 1],
measured by the distance function d(Q, Q′) = maxx∈S×S |Q(x)−Q′(x)|. Since T
is a contraction mapping, it has a unique fixed point by the Banach’s theorem,
and the fixed point coincides with Qp. 2

A more direct proof in the style of Theorem 3 is also possible; however, the
proof we chose here points to a clear connection with an established approach.
The next theorem shows that q-simulation generalizes the simulation relation:

Theorem 2. Let N(s1, s2) = 1 for all s1, s2, and L(a, b) = 1 iff a = b, and 0
otherwise. Then s1 - s2 iff Qp(s1, s2) = 1 for any 0 < p < 1.

Proof: (⇒) We proceed by contradiction. Assume that s1 - s2 but Qp(s1, s2) 6=
1. Consider the function Q+ : S × S → [0, 1], such that Q+(s1, s2) = 1 if
s1 - s2 and Q+(s1, s2) = Qp(s1, s2) otherwise. Clearly, Qp < Q+ in the lattice

of functions S × S → [0, 1]. Consider the functional T (Q) defined above. It is
clear that when s1 - s2, T (Q+)(s1, s2) = Q+(s1, s2), because the maximum
value over the transitions of s2 in Equation (4) will always be 1. It is also easy
to see that, for any s1 and s2, T (Q+)(s1, s2) ≥ Q+(s1, s2). By repeating this
argument, we see that T n(Q+)(s1, s2) ≥ Q+(s1, s2). Since T has a unique fixed
point by Theorem 1, the sequence T n converges to the fixed point of T , which
is Qp. Thus we have Qp < Q+ ≤ Qp, which is a contradiction. (⇐) Consider
relation R ⊆ S × S such that (s1, s2) ∈ R ⇔ Qp(s1, s2) = 1. We show that R
is a simulation relation. The case when s1 does not have outgoing transitions is
obvious. Otherwise, for each transition s1

a→s′1, max
s2

b→s′

2

L(a, b) ·Qp(s
′

1, s
′

2) = 1,

which is possible only if a = b and Qp(s
′

1, s
′

2) = 1, that is, (s′1, s
′

2) ∈ R. 2

3.3 Computing Weighted Quantitative Simulation

Given an LTS G and functions N and L, we transform (4) into an instance of the
linear programming problem in the following way. For every two states si, sj , we

introduce a variable Qi,j . For every edge e = si
a→sk and state sj , we introduce

a variable Xe,j . The objective function minimizes the sum of all variables:

min
∑

i,j∈S

Qi,j +
∑

e∈T,sj∈S

Xe,j .

We represent the relationship between variables using the following constraints:

0 ≤ Qi,j ≤ 1, 0 ≤ Xe,j ≤ 1 for all i, j, and e. For m such that sj
b→sm, Xe,j ≥

L(a, b) · Qk,m. Finally, for all i, j,

Qi,j = (1 − p) · N(si, sj) +
∑

e∈si

a→sk

p

n
Xe,j

By Theorem 1, this linear programming problem has a unique solution, so
that Qi,j = Qp(si, sj).

4 Weak Weighted Quantitative Simulation

A deficiency of q-simulation as defined by Equation 4 is that it requires the
graphs to unfold synchronously - that is, every step of one graph has to be

matched by a similar step of another graph. Consider two paths s1
a→s2

b→s3
c→ . . .

and t1
a→t2

a′

→t3
b→t4

c→ The paths are identical, except for the insertion of an
a′-step in the second path. If L(a′, b) = 0, the similarity of the two paths will be
very low, despite the fact that almost every step in the paths can be matched to
a step in the other path in the same order. Intuitively, the role of the inserted
step should be heavily discounted.

We can compare graph similarity to the well-known notion of string similarity,
known as the string alignment problem, widely used in biological sequence analy-
sis. We consider a particular dynamic-programming formulation of this problem

that serves as the basis for the Needleman-Wunsch alignment algorithm [12]. We
assume a similarity score between elements of the alphabets of the two strings.
Consider strings s1 = as′1 and s2 = bs′2. The optimal alignment score of s1

and s2, denoted F (s1, s2), is computed as the maximum of F (s′1, s
′

2) + s(a, b),
F (as′1, s

′

2)− d, and F (s′1, bs
′

2)− d. Here, s(a, b) is the similarity score of a and b,
and d is the gap penalty.

We want to introduce a similar notion – that “skipping a step” is permis-
sible but carries a penalty – into the q-simulation framework and define weak
q-simulation. We remind the reader, that the classical definition of the weak
simulation relation, a transition of the simulated state labeled with the action
a can be matched by a finite sequence of transitions from the simulating state,
exactly one of which is labeled with a and the rest are labeled with a special
internal action τ1. The intuition for our definition comes from the fact that, in
the binary world, classical weak (bi)simulation is strong (bi)simulation applied
to the τ -closed transition system, in which every such sequence of transitions is
represented by a single transition.

It is tempting to use this intuition directly. Consider a special “skip” action
ε 6∈ L. Suppose we construct the ε-closure of G. Since ε is a new action, the
closure amounts to adding a self-loop transition labeled ε to every state in G.
The edge similarity function L(a, ε) = L(ε, a) serves as the label-sensitive “gap
penalty”. Treating ε differently than any other action, we require that L(ε, ε) = 0.
This precludes the pathological case when both states stutter and yet similarity
increases. We can then use the same equation (4) to define weak q-simulation
using the extended transition relation instead of T .

Although such simple solution gives a very intuitive definition, it is easy to
see that this is not the definition we want. We lose a desirable property that q-
simulation reduces to classical simulation in the binary case. Indeed, according
to the definition above, a state will not be weakly q-similar to itself! To see
this, consider a deadlocked state. Its weak q-similarity to itself would be 1 − p
instead of 1. The source of this problem is that equation (4) is including the
stuttering step in computing the average of matches. To fix this problem, we use
the following definition.

Definition 3. A (weighted) weak quantitative simulation is a function QW :
S × S → [0, 1], such that for all s1, s2, the following condition holds:

QW (s1, s2) =

{

N(s1, s2) if ∀a, s1

a

6→
(1 − p) · N(s1, s2) + max(W1, W2) otherwise,

(5)

where
W1 = max

s2

b→s′

2

L(b, ε) · QW (s1, s
′

2)

W2 = p
n
·
∑

s1

a→s′

1

max(max
s2

b→s′

2

(L(a, b) · QW (s′1, s
′

2)), L(a, ε) · QW (s′1, s2)),

1 Note that “skipping a step” is more similar to stuttering than to executing an
internal step. Therefore, our weak q-simulation is closer in spirit to stuttering
(bi)simulation [3, 11] than to classical weak (bi)simulation.

and n is the number of transitions leaving s1.

Weak q-simulation can be computed using a slightly modified linear pro-
gramming problem from the previous section.

5 Quantitative Bisimulation

A natural extension of the q-simulation idea is to define a symmetric similarity
function. That is, for all states s1 and s2, B(s1, s2) = B(s2, s1). It is natural to
think of this function as quantitative bisimulation (q-bisimulation). We construct
such a function by taking the minimum of the asymmetric one-step similarities
between two states.

Definition 4. Given the graph G = 〈S,L, T 〉, the (p-weighted) quantitative
bisimulation is the function Bp : S × S → [0, 1], defined as

Bp(s1, s2) = min(Bl
p(s1, s2), B

r
p(s1, s2)),

where Bl
p, B

r
p are left and right similarities, respectively, are defined as

Bl
p(s1, s2) =

{

N(s1, s2) if ∀a, s1

a

6→
(1 − p) · N(s1, s2) + W (s1, s2) otherwise

Br
p(s1, s2) =

{

N(s2, s1) if ∀b, s2

b

6→
(1 − p) · N(s2, s1) + W (s2, s1) otherwise,

where W (s, t) = p

n
· ∑

s
a→s′

max
t

b→t′
L(a, b) · Bp(s

′, t′)

Similarly to q-simulation, q-bisimulation can be considered in the strong as
well as the weak form by constructing a symmetric version of Definition 3.

5.1 Computing Quantitative Bisimulation

We can reduce the problem of computing strong quantitative bisimulation to
the problem of computing the value of a stochastic game with extended payoffs
and Büchi winning condition. Such games are extensions of simple stochastic
games [9, 5] to include value derived from infinite runs.

A stochastic game with payoffs is a graph B = 〈V, E, N, L〉, where V is a set
of vertices partitioned into three subsets Vmin, Vmax, and Vavg , E ⊆ V ×V is the
transition relation, N : V → [0, 1] is the node payoff function, and L : E → [0, 1]

is the edge payoff function. We use v1
l→v2 to denote L(v1 → v2) = l.

Given a graph G = 〈S,L, T 〉, we construct B(G) as follows. We introduce two
parameters, λ, δ ∈ (0, 1), to define edge payoffs and game values to match the
discounting structure of q-bisimulation. We set λ = 3

√
p and δ = 1− p. For each

pair of states si, sj ∈ S, we introduce vertices vb
ij , v

t
ij ∈ Vmin, vs

ij ∈ Vavg , and,
for each edge e : si → sk, vm

ej ∈ Vmax. The edges in B are introduced according
to the following rules:

– vb
ij

1→vs
ij , vb

ij

1→vs
ji;

– vt
ij

λ2

→vt
ij ;

– for each edge e : si
a→sk, vs

ij

1→vm
ej ;

– for each sn such that sj
b→sn, vm

ej

L(a,b)→ vb
kn.

– if si does not have outgoing transitions, then vs
ij

λ→vt
ij for every sj .

– if sj does not have outgoing transitions, then vm
ej

0→vt
ij for every e : si

a→sk.

For every si, sj ∈ S and e ∈ T , N(vb
ij) = N(vt

ij) = N(si, sj), N(vs
ij) = N(vm

ej) =
0.

The game has two players, one of which selects the transitions at the max
vertices, while the other selects the transitions at the min vertices. The choice
of a transition by a player is given by a strategy of the player. We consider only
pure memoryless strategies, in which the choice depends only on the current
vertex and not on the history of the game. Such a strategy for the max player
is represented by a function σ : Vmax → V (respectively, π : Vmin → V for the
min player). The choices at a vertex v ∈ Vavg are made randomly according to
a uniform distribution over the successors of v.

Given strategies σ, π and a starting vertex v, a play wσ,π
v is an infinite random

path through the game graph, in which steps from the min and max vertices
comply with the strategies.

The Büchi winning condition for this game is defined as follows. A play is a
winning play for player min if it contains an infinite number of the vertices from
Vmin. It is easy to see from the construction of the game graph that every play
is a winning play for player min.

The discounted payoff of a play wv0
= v0

l1→v1
l2→ . . . for a discount factor λ

and a scaling factor δ is defined as

Q(wv) = δ ·
∞
∑

i=0

λi · N(vi) ·
i

∏

k=1

lk. (6)

The value of the game for an initial state v and given strategies σ, π is given as
the expected payoff of wσ,π

v . Strategies σo, πo are called optimal for v if wσo,πo
v =

minπ maxσ wσ,π
v The optimal value of the game B(G) for a node v, denoted B(v),

is the value of the play wσo ,πo
v yielded by the optimal strategies.

Considering the structure of the game graph, we conclude that relations
between optimal values of the nodes are as shown in Figure 3. Putting these
equations together, we can see that the value of a node vb

i,j is the q-bisimulation
Bp(si, sj).

It is well known that there exist optimal pure memoryless strategies for both
players for similar payoffs. By using techniques similar to [4], we can show that
there are optimal pure memoryless strategies in our case as well. Thus the value
of the game can be computed, since there are finitely many pure memoryless
strategies. Several approaches for computing game values exist [7, 4], with com-
plexity no more than exponential in the size of the game graph. Since, in our

B(vt
ij) = δ · N(vt

ij) ·
P

∞

i=0
λi · (λ2)i = δ · N(vt

ij) ·
1

1−λ3 = N(vt
ij)

B(vm
ej) = 0 if vm

ej→vt
ij

B(vm
ej) = λ · max

vm
ijk

ln→vb
nk

(lk · B(vb
k)) otherwise

B(vs
ij) = λ2 · B(vt

ij) if vs
ij→vt

ij

B(vs
ij) = λ · avg

vs
ij
→vm

ej
Q(vm

ej) otherwise

B(vb
ij) = δ · N(vs

ij) + λ · min
vb

ij
→vs

k

B(vs
k)

Fig. 3. Relationships between optimal values in graph nodes

case, the game graph B(G) is polynomial in the size of G (O(|G|3), to be precise),
the complexity of computing q-bisimulation is also no worse than exponential in
the size of G.

1

2

3

4
 5
 6

a

b

c
 d

v
b

14

v
s

14

v
m

(12)4

v
m

(1
3)4

v
m

(45)1
v
s

41

v
b

25

v
b

35
 v
s

53

v
s

35

v
s

52

v
s

25

v
m

(56)2

v
m

(
56)3

v
t
25

v
t
35

1

1

1

1

1
 1

1

1

1

0

0

1

1

1/3

1/3

1/4

1/4

1/4

1/4

1/2

1/2

Fig. 4. Game graph construction

To illustrate how the game graph construction works, consider the example
in Figure 4. Let L(a, c) = 1/3, L(b, c) = 1/4, and p = 1/8. Let N(s, t) = 1 for
all nodes s, t. Consider, for example, nodes 2 and 5. Bl(2, 5) = 1 since node 2
is deadlocked, while Br(2, 5) = 7/8 since node 2 cannot match the transition
of node 5, and B(2, 5) = 7/8. Accordingly, B(vb

25) = δ + λ · min(λ2, 0) = 7/8.
Similarly, Bl(1, 4) = (1 − p) + p · 1/2 · (L(a, c) · B(2, 5) + L(b, c) · B(3, 5) and
Br(1, 4) = (1 − p) + p · max(L(c, a) · B(2, 5), L(c, b) · B(3, 5). Game steps that
correspond to the computation of Bl(1, 4) and Br(1, 4) shown as block and
dashed arrows, respectively. Note that a path from vb

ij to vb
i′j′ is always three

steps long. Thus, discounting during a game is applied three times, where it is
applied once in the definition of q-bisimulation. This observation explains the
relationship between p and λ.

5.2 Approximating quantitative bisimulation

In many cases, it is not necessary to compute the precise value of q-bisimulation,
especially considering that the node and edge similarity functions are likely to
be heuristic estimates. It may be sufficient to know whether it exceeds a certain
threshold value. It is therefore useful to have a polynomial algorithm to compute
an approximation of q-bisimulation up to a required degree of accuracy.

Given the game B(G), we compute an approximation of q-bisimulation for all
states of G as follows. For a chosen n, we make n copies of B(G), B(0),. . . ,B(n−1).
The copy of a node v in B(i) is denoted v(i). We connect these copies into a single

graph by replacing every edge vm(i) l→vb(i) (i > 0) with vm(i) l→vb(i−1). All nodes

vt(i) and all incident edges are removed. In B(0), we keep only the nodes v
b(0)
ij

and remove all other nodes and edges. As a result, we have an acyclic graph B+.
We assign initial values to terminal nodes of B+ as follows: (1) every node v(0)

is assigned δ · N(v); (2) every node vm(i) is assigned 0; (3) every node vs(i) is
assigned N(v). With this initialization, we can compute the values for all nodes
in a bottom-up fashion according to the formulas in Figure 3, in time linear in
the size of the resulting graph. Let the value of a node v(i) computed in this
fashion be denoted B+(v(i)). It is easy to see that B+(v(i)) ≤ B(v). Indeed,
q · N(v) ≤ B(v) by definition, thus B+(v(0)) ≤ B(v). For all other i, the result
follows by the monotonicity of the functional defining B.

Theorem 3. For any n and any node v in B(G), B(v) − B+(v(n)) ≤ λn.

Proof: The proof proceeds by induction on the copy number. The base case is
immediate, since for any node v, B(v), B+(v(0)) ∈ [0, 1], thus B(v)−B+(v(0)) ≤
λ0 = 1. Suppose now that for some i and every node v, B(v)−B+(v(i−1)) ≤ λi−1.
Consider a node vm(i). If it is a terminal node, its initial value is equal to B(v).
Otherwise,

B(vs) − B+(vs(i)) = max

vs
lm→vb

m

λ · lm · B(vb
m) − max

vs
lk→vb

k

λ · lk · B+(vb(i−1)).

Here, we have to consider two cases. Either k = m, that is, the same strategy is
chosen by the original and the approximated computation. In that case, clearly,

B(vs) − B+(vs(i)) = λ · lm · (B(vb
m) − B+(vb(i−1)

m)) ≤
λ · (B(vb

m) − B+(vb(i−1)
m)) ≤ λ · λ(i−1) = λi.

Otherwise,

lm · B(vb
m) − lk · B+(v

b(i−1)
k) ≤ lm · B(vb

m) − lm · B+(vb(i−1)
m),

since B+(v
b(i−1)
k) ≥ B+(v

b(i−1)
m), and the result follows by the same argument as

above. For a node vs(i) the result is immediate, since the calculation computes
the average of the values in vm(i), covered by the case above. Finally, for a node

vb(i), the argument is similar to the first case. The node has two successor nodes,
and the computed value is based on the minimum value of the two successors.
As above, the interesting case is the one where the exact and the approximate
values come from different successors. Let the successors of vb be vs

1 and vs
2,

considered in the previous case. Without loss of generality, let us assume that

B(vs
1) ≤ B(vs

2) and B+(v
s(i)
1) ≥ B+(v

s(i)
2). We then have

B(vb) − B+(vb(i)) = λ · (B(vs
1) − B+(v

s(i)
2)) ≤ λ · (B(vs

2) − B+(v
s(i)
2)) ≤ λi.

2

6 Conclusions and future work

We have presented aggregate similarity measures for labeled transition systems.
The asymmetric similarity measure, called q-simulation, is well aligned with our
original motivation for this work, which involved asymmetric comparisons: a
control-flow graph of a new program would compared to well-known representa-
tives of virus families. In general, a symmetric similarity measure may be more
useful. Such a symmetric measure, called q-bisimulation, is also more complex
to compute. However, for both measures, the more practical approach is to com-
pute an approximate value. Such value, which can be made arbitrarily close to
the exact value, can be obtained in time polynomial in the graph size.

A prototype tool for computing q-simulation using the approach of Section
3.3, has been implemented using the lp solve tool as a back-end, and applied
to the samples from the Virus Source Code Database [18]. The tool operates
on control-flow graphs in the VCG format produced by the GCC compiler. Our
initial experiments demonstrated the need for the weak q-simulation, which is
currently being implemented. Out current work concentrates on further experi-
mental evaluation. A matter of practical importance is the choice of the param-
eters of the function: the weight p and, for weak similarity, the gap penalty. We
are considering machine learning approaches for determining parameter values.

An interesting direction of future work is to identify areas of very high sim-
ilarity within graphs, instead of trying to compare the graphs in their entirety.
This would allow us to draw the user’s attention to programs that have com-
mon parts along with substantially different parts. An example of such programs
would be viruses that exploit different vulnerabilities but have the same payload.
The relationship between these two graph similarity approaches would be rem-
iniscent of the relationship between global [12] and local [15] string alignment
in bioinformatics. Another important direction is to modify the definition of q-
simulation to obtain a distance metric, which will make it appealing in various
applications, particularly, in bioinformatics.

Although the original motivation for this work comes from the goal to iden-
tify potential virus programs from their similarity to known virus family repre-
sentatives, quantitative simulation and bisimulation have many other potential
applications. Work on such applications in the domains of bioinformatics and
literature citation databases is already under way [17].

Acknowledgments. We are grateful to Lyle Ungar and Ted Sandler for many
fruitful discussions on further applications of q-simulation.

References

1. D. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Inc., 1987.

2. V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren. A
measure of similarity between graph vertices: Applications to synonym extraction
and web searching. SIAM Review, 46(4):647–666, 2004.

3. M. C. Browne, E. M. Clarke, and O. Grümberg. Characterizing finite Kripke
structures in propositional temporal logic. Theoretical Computer Science, 59(1–
2):115–131, 1988.

4. K. Chatterjee, M. Jurdziński, and T. Henzinger. Quantitative stochastic parity
games. In SODA ’04: Proceedings of the 15th annual ACM-SIAM Symposium on
Discrete Algorithms, pages 121–130, 2004.

5. A. Condon. The complexity of stochastic games. Information and Computation,
96(2):203–224, 1992.

6. L. de Alfaro, M. Faella, and M. Stoelinga. Linear and branching metrics for quan-
titative transition systems. In ICALP ’04: 31st International Colloquium on Au-
tomata, Languages, and Programming, volume 3142 of LNCS, pages 97–109, 2004.

7. L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games.
Journal of Computer and System Sciences, 68:374–397, 2004.

8. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled
Markov processes. Theoretical Computer Science, 318(3):323–354, 2004.

9. J. A. Filar. Ordered field property for stochastic games when the player who
controls transitions changes from state to state. Journal of Optiraization Theory
and Applications, 34:503–515, 1981.

10. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In Proceedings of 18th

ICDE, 2002.
11. K. Namjoshi. A simple characterization of stuttering bisimulation. In Proceedings

of the 17th Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 284–296, 1997.

12. S. Needleman and C. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology, 48:443–453, 1970.

13. A. Papadopoulos and Y. Manolopoulos. Structure-based similarity search with
graph histograms. In Proceedings International DEXA Workshop on Similarity
Search (IWOSS), Florence, Italy, pages 174–178, 1999.

14. A. Sanfeliu and K. Fu. A distance measure between attributed relational graphs
for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics,
SMC-13(3):353–362, 1983.

15. T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, 147:195–197, 1981.

16. P. Szor. The Art of Computer Virus Research and Defense. Addison Wesley
Professional, 2005.

17. L. Ungar and T. Sandler, Sept. 2005. Personal communication.
18. Virus source code database. http://www.totallygeek.com/vscdb/.

