
From Operational Semantics to  
Abstract Machines: 
Preliminary Results 

MS-CIS-90-21 
LINC LAB 168 

John Hannan 
Dale Miller 

Department of Computer and Information Science 
School of Engineering and Applied Science 

University of Pennsylvania 
Philadelphia, PA 19104 

April 1990 



From Operational Semantics to Abstract Machines: 
preliminary results* 

John Hannan and Dale Miller1 

Department of Computer and Information Science 
University of Pennsylvania 

Philadelphia, PA 19 104-6389 USA 

Abstract 

The operational semantics of functional programming languages is frequently presented using inference 
rules within simple meta-logics. Such presentations of semantics can be high-level and perspicuous since 
meta-logics often handle numerous syntactic details in a declarative fashion. This is particularly true of 
the meta-logic we consider here, which includes simply typed A-terms, quantification at higher types, and 
p-conversion. Evaluation of functional programming languages is also often presented using low-level 
descriptions based on abstract machines: simple term rewriting systems in which few high-level features 
are present. In this paper, we illustrate how a high-level description of evaluation using inference rules can 
be systematically transformed into a low-level abstract machine by removing dependencies on high-level 
features of the meta-logic until the resulting inference rules are so simple that they can be immediately 
identified as specifying an abstract machine. In particular, we present in detail the transformation of 
two inference rules specifying call-by-name evaluation of the untyped ,\-calculus into the Krivine ma- 
chine, a stack-based abstract machine that implements such evaluation. The initial specification uses the 
meta-logic's p-conversion to perform substitutions. The resulting machine uses de Bruijn numerals and 
closures instead of formal substitution. We also comment on a similar construction of a simplified SECD 
machine implementing call-by-value evaluation. This approach to abstract machine construction provides 
a semanticsdirected method for motivating, proving correct, and extending such abstract machines. 

'To appear in the Proceedings of the 1990 ACM Conference on Lisp and Functional Programming. 
+ ~ o t h  authors have been supported in part by grants ONR N00014-88-K-0633, NSF CCR-87-05596, and DARPA N00014-85-K- 
0018. 



1 Introduction 

Operational semantics provides a simple, high-level and elegant means of specifying interpreters for 

programming languages [13]. Abstract machines provide an intermediate representation of a language im- 

plementation that facilitates portability, code optimizations and native machine code generation [2]. In this 

paper we demonstrate how to take specifications of evaluators in the high-level, flexible style of operational 

semantics and derive, through simple and formally justifiable steps, abstract machines that implement that 

evaluator. While providing a direct proof of the correctness of derived abstract machines, derivations also 

provide guidance for extending such machines and illustrate relationships among various abstract machines. 

The work in this paper can be seen as a counterpart to work in semantics-directed compiler generation 

based on denotational semantics and attribute grammars [l 11. The goal in those settings is to provide methods 

for constructing provably correct, low-level implementations of programming languages starting from high- 

level semantic descriptions of the languages, The idea of transforming interpreters is not new [12, 16, 181. 

In the setting here an interpreter is given as a set of inference rules and evaluation is described by proof 

construction in a fixed meta-logic. Transforming interpreters is a process of transforming the inference rules 

specifying an interpreter using techniques such as foldhnfold and partial evaluation [8]. Our approach is more 

goal directed than some of these efforts as we have abstract machines as our target implementation. These 

abstract machines are specified as term rewriting systems and the connection between operational semantics 

and abstract machines is established by defining a restricted class of operational semantic specifications that 

have a simple translation to term rewriting systems. Thus our entire translation from operational semantics 

to abstract machines can be presented using a single meta-logic. 

Our meta-logic and others related to it (such as the Logical Framework (LF) [7] and the Calculus of 

Constructions (CC) [3]) have been investigated by several researchers recently as specification languages 

for functional programming systems [I, 61 and for logics [5, 171. This logic provides a flexible domain 

for specifying relations on simple functional programs since such programs can be represented as terms (in 

several different ways) in this meta-language. In this paper we focus on various evaluation relations, that 

is, binary relations that relate a functional program with its value (under some assumption of the evaluation 

strategy). Sets of inference rules will be used to axiomatize such evaluation predicates. 

This paper is organized as follows. In Section 2 we give a general definition of abstract machines 

and present the meta-logic in which we specify operational semantics. We then define a class of proof 

systems in that logic that correspond trivially to abstract machines. Sections 3 and 4 provide an extended 

example of transforming a high-level specification of call-by-name evaluation of the untyped A-calculus into 

a specification of an abstract machine. Section 3 presents a translation from an operational semantics using 

quantification over simply typed A-terms to one using strictly first-order quantification. Section 4 presents 

a translation from this first-order specification into the class of proof systems defined in Section 2. The 

resulting proof system is equivalent to the Krivine machine [4]. We briefly comment on how the derivation 

can be modified to yield other evaluators. We conclude in Section 5. 



2 Abstract Machines and Operational Semai~t tics 

Abstract machines have been effectively used as intermediate or low-level architectures suitable for 

supporting serious implementations of a wide variety of programming languages, including imperative, func- 

tional and logic programming languages. As these classes of languages differ widely in their foundations, 

the machines tailored to a particular class exhibit little resemblance to machines for other classes. Therefore, 

we do not attempt to characterize all such machines with a single definition. We focus instead on a class 

of abstract machines designed for implementing A-calculus based functional programming languages. Even 

here, we need to be more specific, as these implementations can be split roughly into two classes, according 

to their treatment of substitution [4]: 

Graph reduction machines, in which substitution is performed by attaching terms (graphs) to the 

appropriate leaves. The G-machine [lo] is a sophisticated example of this class; 

Environment machines, in which substitution is performed by updating an environment that is kept 

separate from the program. The SECD machine is the archetypical example of this class. 

We focus on the latter class in the remainder of this paper. 

2.1 Abstract Evaluation Systems 

Many of the environment-based abstract machines have common aspects and similar structures and we 

define here the formal notion of Abstract Evaluation System (AES) that captures and abstracts some of this 

commonality. We define an AES in terms of a term rewriting system (TRS). We assume some familiarity 

with rewriting systems, its terminology and the notion of computation in a rewriting system [9]. Recall that 

a TRS is a pair ( C , R )  such that C is a signature and R is a set of directed equations {li + T ~ } ~ ~ ~  with 

li,ri E Tc(X)  and V(r i )  C V(1i). Here, Tc(X)  denotes the set of first-order terms with constants from C 

and free variables from X,  and V ( t )  denotes the set of free variables occurring in t .  We shall restrict our 

attention to first-order systems, i.e., C is a first-order signature, though this is not essential. 

DEFINITION 2.1 An Abstract Evaluation System is a quadruple ( C ,  R ,  ro ,S)  such that (C, R U { ro ) )  

is a term rewriting system and S R .  

We are interested only in rewriting sequences that begin with ro and terminate with some rule from S. 

Furthermore, if s-'-tt is a step in a sequence with r E R U {ro}  then s + t must be an instance of r ,  

i.e., rewrite steps must occur at the outermost level (no embedded rewritings). Rule ro can be understood 

as "loading" the machine to an initial state given an input program and the rules S denote the successful 

termination of the machine and can be understood as "unloading" the machine and producing the answer or 

final value. Note that a computation sequence starting with ro may terminate in an unsuccessful state, i.e., 

the last step in the sequence is an instance of some rule not in S. 



M + ( nil M nil) 

( E W N  S ) + (  E  M { E , N }  : : S )  

( E AM X : S )  j (X::E M s )  
( { E 1 , M } : : E  0 S )  + ( E '  M s )  
( X::E n+l S )  + ( E n  s) 

( E AM nil) e- { E , M }  

M * ( nil nil M ::nil nil ) 

( S  E  (MAN)::C D )  + ( S  E  M :.N::ap::C D 1 
( S  E  M : : C  D )  + ( { E , M } : S  E  C D 

( S  X::E n+l::C D )  =+ ( S  E  n::C D 

( S  X::E O::C 01 * ( X:S E C L' 1 
(X:: {El ,  AM) : S  E  ap::C D )  * ( nil X: :E1  M::nil ( S , E , C ) : : D )  

( X::S E  nil ( , E 1 C ) : : D )  e- ( X::S1  E' C  ' D 

( X::S E nil nil )  e- X  

FIGURE 1 
The Krivine machine (top) and SECD machine 

The SECD machine [14] and Krivine machine [4] are both AESs and variants of these are given in 

Figure 1. The syntax for A-terms uses de Bruijn notation with * (infix) and A as the constructors for 

application and abstraction, respectively. The constants nil and :: are the machines' list constructors and 

{ E ,  M} denotes the closure of term M with environment E. The first rule given for each machine is the 

"load" rule or ro of their AES description. The last rule given for each is a single "unload" rule. The 

remaining rules are state transformation rules, each one moving the machine through a computation step. 

A state in the Krivine machine is a triple ( E ,  C  ,S) in which E is an environment, C is a single term 

to be evaluated and S is a stack of arguments. A state in the SECD machine is a quadruple (S , E  ,C ,D ) 
in which S is a stack of computed values, E is an environment (here just a list of terms), C is a list of 

commands (terms to be evaluated) and D is a dump or saved state. Although Landin's original description 

of the SECD machine uses variables names, our use of de Bruijn numerals does not change the essential 

mechanism of that machine. 



In certain situations, it might be very sensible to have a more restricted definition of AES. In particular, 

adding the conditions that no left-hand side of a rewrite rule can have repeated variables would make 

implementing an AES simpler since it would not require a costly "runtime" equality check to be certain that 

the duplicated variables are instantiated to the same term. Also requiring an AES to be deterministic, that 

is, such that no two rewrite rules can be used on the same term, is also sensible, especially in the context 

of modelling evaluation of functional programs. We note that all the examples presented in this paper do, in 

fact, satisfy both of these additional restrictions. 

2.2 A Meta-Logic 

We briefly describe here the logic in which we shall present specifications of operational semantics as sets 

of inference rules. The terms of the logic are the simply typed X-terms over given finite sets of base types 

and constants (particular to each application). The atomic propositions of our meta-logic will be constructed 

from a finite set of n-ary predicate symbols, each with a given type. In our examples below, propositions 

are either atomic or universally quantified atoms, say ( V x A )  where, in this paper, x is either of first or 

second-order type. To manipulate such propositions the meta-logic comes equipped with inference rules for 

universal introduction and ,077-convertibility. A specification of an operational semantics is a collection of 

inference figures whose conclusion is an atomic formula. Axioms are considered as inference rules with no 

premises. A proof in this language will be understood in the standard sense of proofs in natural deduction. 

Collections of inference rules can often be directly implemented. The language TYPOL of the CENTAUR 

system [13], used to specify operational semantics similar to the style presented here, can be compiled into 

Prolog. The first-order Horn clauses of Prolog, however, are not strong enough to directly implement our 

inference rules due to the lack of simply typed terms and universal quantification. A suitable extension of 

Prolog, for example XProlog 1151, does directly implement such inference rules. All the examples presented 

here have been implemented and tested in XProlog. 

2.3 AES as Inference Rules 

As just mentioned, techniques from logic programming can be used to implement evaluators axiom- 

atized in this logic. Since the meta-logic (viewed as a logic programming language) incorporates many 

features, such as ,0q-conversion, backtracking, recursion, unification, and meta-variables, it is easy to write 

perspicuous specifications of evaluation. These high-level aspects of the meta-logic, however, distinguish 

such specifications of evaluation from lower-level "abstract machines" in which very few of these high-level 

devices are available. It is possible, however, to write abstract machines with this meta-logic by making 

certain that the axiomatization of evaluation predicates is particularly simple; that is, they are first-order, do 

not have branching inference rules, and make very limited use of variables. 



DEFINITION 2.2 A set of proof rules Z is AES-defining if there are two binary predicate symbols 

p , q  (not necessarily distinct) such that 

(i) every axiom is of the form (p s  t )  with V ( t  ) C V ( s  ) for some terms s , t  ; 

(ii) there is a distinguished inference rule of the form 

(P t  V )  
(4 s  V )  

with V ( t )  C_ V ( s )  for some terms s , t  and variable V  not free in s or t ;  

(iii) every other inference rule is of the form 

with V ( t  ) E V (s  ) for some terms s  , t  and variable V  not free in s or t  . 

From a given AES-defining proof system Z it is straightforward to construct an equivalent AES (C, R ,  ro, S ) 
such that for all terms s ,  t ,  Z I- ( q  s  t )  if and only if s%s'&sI1&t for some r E S and some terms 

s ' , ~ ' ~ .  The arrow 5 denotes zero or more rewritings using R-rules. 

Not surprisingly, most formalizations of operational semantics are not AES-defining proof systems. They 

can fail to satisfy the requirements of AES-defining proof systems in a number of ways. For example: 

(i) they contain inference rules with multiple formulas in their premises; 

(ii) they contain inference rules of the form 

in which either r or r' is distinct from p; 

(iii) they contain rules which have variables in the premise that do not also occur in the consequent; or 

(iv) they contain inference rules that are not over a binary predicate or of the form 

in which y and z are not the same variable. 

We can easily rectify the former two cases via general methods, i.e., we can transform proof systems satisfying 

cases ( i )  or ( i i )  into equivalent proof systems in which these cases have been eliminated. The latter two 

cases, however, are more problematic and no single method appears universally applicable. The goal of 

the remainder of this paper is to demonstrate how a series of non-AES-defining proof systems that specify 

functional evaluation can be transformed into equivalent AES-defining ones. 



3 Relating Substitutions and Closures 

Untyped A-terms can be represented using the two constants, abs : (i+i)+i and app : i+ i  4 ,  that 

can be thought of as denoting the familiar functions that relate a space (here, the type i) with its function 

space. For example, the I combinator, Axx, is represented at the meta-level as  the typed term (abs Axx) 

while the S combinator, Ax Ay Az ( (xz  )(yz )) is represented at the meta-level as the typed term 

Object-level applications are encoded using the meta-level constant app and object-level abstraction is en- 

coded using the meta-level constant abs along with a use of meta-level abstraction. 

The two inference rules below provide a very immediate specification of call-by-name evaluation in 

which values are A-terms in weak-head normal form. 

eval (abs M ) (abs M ) eval M (abs R)  eval (R N )  V 
eval (app M N ) V 

(Capital letters denote meta-level variables.) Both inference rules contain variables of the functional type 

i - t i .  If we call this collection of rules &, then we have E t (eval s t )  iff t encodes the weak-head normal 

form (whnf) of the untyped A-term encoded by s .  

These inference rules are a very high-level specification of evaluation in several senses. In this section 

we shall focus on two of these aspects, namely, the use of meta-level P-conversion to automatically do 

substitution of terms for bound variables and the use of A-terms instead of simpler first-order terms in the 

meta-language. To prepare for a change in the representation of object-level untyped A-terms, we introduce 

the two predicates isabs and isapp that determine whether or not their arguments are object-level abstractions 

or application. Explicitly naming these operations is valuable since their function is performed differently 

once closures and deBruijn's notation are introduced. This change can then be isolated to these predicates. 

We shall also isolate the P-redex in the second inference rule with an explicit use of an apply predicate. 

This is useful since we need to remove this P-redex. The resulting inference system is 

isapp A M N eval M Q apply N Q p eval P V isabs M 
eval A V eval M M 

isabs (abs M )  isapp (app M N )  M N apply N (abs R )  (R N )  



Clearly this proof systems proves the same eval-atoms as the simplier one above. 

To change the representation of object-level A-terms into first-order terms, we need to remove the oc- 

currence of p-conversion implicit in the above proof system. We shall do this by introducing a constant 

clo : i+(i+i)+i that "names" P-redexes and permitting our encodings of terms to contain occurrences of 

this constant. The intended meaning of a term containing clo is the A-term that results from replacing all 

subterms of the form (clo t Xx.s) by ((Xx.s) t )  and normalizing. By properties of substitution, it follows 

that the intended meanings of (clo t (app sl s2)) and (app (clo t sl)  (clo t s2)) are the same, as are the 

intended meanings of (clo t Xx(abs Ay.r)) and (abs Ay(c1o t Xx.r))) (here, x and y are distinct variables 

that may be free in the term r but not free in the term t). 

Terms denoting untyped A-terms may now have the structure (in pq-normal form) 

(t) (clo to ho ( .  . . (clo t, h, s )  . . .)) (n  > 0) 

in which s is either (app sl s2) (for some sl, s2) or (abs t) (for some t )  or one of the bound variables 

xo, . . . ,x,. As terms are now more complex, specifying evaluation of terms requires more involved inference 

rules. For example, rules for isabs and isapp must now also determine whether terms of the form (t) denote 

an abs or app. Since the term s in ( 5 )  can be a bound variable Xi, we introduce the isvar predicate to test 

for that condition and to return the term ti that corresponds to that bound variable. Given this motivation for 

introducing and treating the cpnstant clo, it is an easy matter to show that the rules listed in Figure 2 prove 

the same eval-atoms as the previous set of inference rules (modulo the meaning of clo). 

If these inference rules are read from bottom to top, the universal quantifier can be seen as introducing 

a new eigenvariable to play the role of the bound variable of the A-abstraction that it instantiates. Consider, 

for example, proving the formula 

isvar nil (clo to Axo(. . . (clo t, Xn, s )  . . .)) t. 
If this atomic formula has a proof, that proof must also contain a subproof for the formula 

isvar ((c,,t,) :: . . :: (co,to) :: nil) sf t 

in which s t  is the result of replacing the bound variables G, . . . ,x, with the (distinct) eigenvariables co, . . . , c,, 

respectively. The proof of this latter formula arises essentially from determining which eigenvariable is st 

and then checking that t is the term associated with it. 

The above collection of inference rules successfully avoids performing substitution of terms for bound 

variables by making use of a closure-like structure. These rules still depend on using A-abstraction and 

universal quantification at the meta-level. We are now in a position to remove this dependency. 

Let 3 denote the first-order term that results from representing the meta-term s using deBruijnYs syntax. 

Writing the A-term (clo to Axo(. . . (clo t, X.x, s )  . . .)) using this first-order syntax, we obtain the term 



isapp A M N eval M R U P P ~  N R P eval P V 

isabs M 
eval M M 

isabs (abs M ) 

isapp (app M N ) M N 

eval A V 

isvar nil M T eval T V 
eval M V 

Vx (isabs ( M  x ) )  
isabs (clo N M )  

v x  (isapp (A  x ) (M x 1 (N x 1) 
isapp (clo T A )  (clo T M )  (clo T N )  

Vx (isvar ( (x ,T) : :L)  (R  x )  V )  imar L X T  
isvar ( ( X , T ) : L )  X T 

isvar L (clo T R )  V isvar ( ( Y ,  S )::L) X T 

apply N (abs R )  (clo N R )  b'x (apply N (R  x )  (S x ) )  
apply N (clo T R )  (clo T S )  

FIGURE 2 
Evaluation with "higher-order" closures 

(clo' & (. . . (clo' & 8 ) .  . .)) in which a variable index i in s denotes a variable to be replaced by the 

term t,-i. (Here, clot treats its second argument as an abstraction by modifying offsets of variables.) 

Adopting the syntax for terms presented in Section 2, the above term could be represented instead simply as 

{tn::tn-I::.--::to::nil,s). For example, the term 

(clo (abs Ax x )  Xu(c1o (abs Xx(absXy .y )) Xv (app v u ) ) )  

would be encoded as simply {XXO::XO::nil, O *  1). This second syntax has several advantages over the one 

using clo or clo'. First, it involves first-order constants only. Second, simple pattern matching can determine 

if a term embedded in a closure is an abstraction or application or variable index; recursing down a series 

of clo's is no longer needed. Third, the reversing of closures involved in proving isvar is not needed and 

the auxiliary list argunlent to isvar can be dropped. Finally, this syntax also makes it natural to identify the 

term s with {nil, s }  and {t, {t ::nil, s ) }  with { t : : t ,  s ) .  Given this change in the representation of terms, we 

can easily rewrite our inference rules to the following set of rules. 



isabs M isvar M T eval T V isapp A M N eval M R apply N R P eval P V 
eval M M eval M V eval A V 

isvar { L ,  n )  T 
isabs { L , A M )  isapp {L ,MAN)  { L , M )  { L , N )  i s v a r { T : : L , O ) T  isvar { X : L , n + l )  T 

apply N { L , A M )  { N : : L , M )  

Assuming that we are only interested in proving eval -atoms, these clauses can be simplified, using fold/unfold 

transformations, to the inference rules below, which we call Co. They are further transformed in the next 

section. 

eval { L , A M )  { L , M )  
eval { L , M )  {L1,AM') eval { { L , N ) : : L 1 , M 1 )  V 

eval { L , M A N )  V 

eval X V eval { L , n )  V 
eval { X : L , O )  V eval { X : : L , n + l )  V 

4 From Inference System to AES 

We now need to convert the inference rules in Co to an AES-defining set of inference rules to obtain 

an abstract machine for computing the call-by-name semantics for untyped A-terms. The proof rules in f o  
fail to be AES-defining for at least two reasons. First, the proof system is not "linear"; that is, the rule 

for application requires proofs to have a branching structure. Second, the rule for application also has two 

variables, M' and L', in the premise that are not in the conclusion. The former problem has a general solution 

in that branching inference systems can uniformly be converted into non-branching systems. This process 

is described immediately below. The latter problem seems to have no general solution. The bulk of this 

section describes a series of transformations to address that problem. 

We first describe how to eliminate the branching of the inference rules. Let & be a set of inference 

rules whose premises contain only atomic formulas (that is, no universally quantified atoms). Such a set of 

inference rules can be replaced by inference rules in which multiple premises are added to a stack of atomic 



formulas to be proved. Using this stack eliminates branching in the inference rules and also imposes the 

order in which atomic formula will be proved. The choice of this order is important since it makes later 

transformations possible (see Proposition 4.5). 

DEFINITION 4.1 Let & be a proof system whose premises contain only atomic formulas and let prove 

be some one-place predicate. Define &* to  be the proof system consisting of the following axiom and 

inference rules: 

(i) (prove nil) E &* ; 

(ii) if A1 - . -An  
prove A1:: me- :A , : :G 

E & f o r n  2 0 then E E* for variable G not free in any Ai.  
Ao prove Ao::G 

The proof systems & and &* are related by the following proposition. 

PROPOSITION 4.2 Let & be a proof system whose premises contain only atomic formulas. Then for 

any atomic formulas a l ,  az, . . . ,an 

E I- ai for 1 5 i 5 n iff &* k prove al::a2::. . .::a,::nil. 

The proof is a straightforward induction on the structure of proofs. Notice that for atomic a we have & I- a 

iff I* k prove a::nil. 

Thus any proof system (involving only atomic formulas) can be converted to a proof system in which 

all proof trees are straight lines. In so doing, some of the non-determinism implicit in & is given up in &*. 

Using this transformation we can move from Co into El given as: 

prove G 
prove nil (1.1) 

prove (eval {L,AM} {L,XM})::G (1.2) 

prove (eval {L,  M )  {L', M' ) ) : : (eva l  { { L , N }  :L1 ,M' )  V) : :G 
prove (eval {L,MAN} V )::G Q.3) 

prove (eval X V )::G 
(1.4) 

prove (eval {L ,n}  V )::G 
prove (eval {X:L, 0) V) : :G  prove (eval {X::L,n+l} V ) : :G  (1-5) 

LEMMA 4.3 For all atomic formula a ,  Co t- a iff El I- prove a::nil . 

11 



The proof follows immediately from Proposition 4.2. 

A useful transformation on proof systems involves considering partial instantiations of an inference rule. 

Clearly we can always add (to a proof system) instances of a rule already in the system. Furthermore, if 

we can show that a given set of instances (of the same rule) is exhaustive, then we can also eliminate the 

original rule. For this reason and because lists are either nil or constructed from ::, rule (1.2) can be replaced 

by the two inference rules: 

prove nil prove A::G 
( l a 2 ' )  prove (eval {L ,  X M  {L,  AM 1 1 : ~ : : ~  (1.2b) 

prove (eval {L ,  X M  ) {L, XM )) ::nil 

Notice that the premise of 1.2a is always trivially provable. Note further that rules 1.2b, 1.3, 1.4 and 1.5 all 

have premises whose list arguments are non-nil and hence instances of 1.1 cannot occur immediately above 

instances of these rules. Thus instances of 1.1 can only occur immediately above instances of 1.2a as noted 

above and if we fold 1.1 and 1.2a we get the axiom 

@rove (eval {L, XM ) {L, X M  )) ::nil) 

and then we no longer need rule 1.1 for non-trivial proofs. Then taking rules 1.2a, 1.2b, 1.3, 1.4 and 1.5 

(relabeling them as shown) yields E2: 

prove A::G 
prove (eval {L,  X M  ) {L, X M  ))::nil (2.1) prove (eval {L ,AM)  { L , M ) ) : A : : G  (2.2) 

prove (eval { L , M )  {L',XM1))::(eval { {L ,N)  :L ' ,M1) V) : :G 
prove (eval {L,  MAN ) V )::G (2.3) 

prove (eval X V )::G 
(2.4) 

prove (eval {L, n )  V )::G 
prove (eval {X:L, 0) V )::G prove (eval {X::L, n + l )  V ) : : G  (2.5) 

LEMMA 4.4 For all s , t ,  El k (prove (evaf s t)::nil) iff &:! 1- (prove (eval s t)::nil) .  

Note that El and E z  are not precisely equivalent since t- (prove nil) but E2 Y (prove nil). However we 

are not interested in this case: we are only interested in atomic prove statements that contain a non-empty 

stack. 



The premise of rule (2.3) contains two occurrences of each of the two meta-level variables L' and M' 

which do not occur in the conclusion. This use of meta-level variables must be removed to approximate 

more closely an AES-defining proof system. There is some redundancy of information in a stack of provable 

eval-atoms and by exploiting this fact we can eliminate one set of occurrences of L' and M'. The following 

proposition explicitly describes this redundancy. 

PROPOSITION 4.5 Let TI be an £2 proof o f  @rove a::nil) and let @rove al:: ... ::a,::nil), for n 2 2, 

be a node in this proof. Then for all i = 1 , .  . . ,n -1, ai has the form (eval s { l ,  At)) and ai+l has the 

form (eval {s1::! , t )  v )  for some terms s , s l , ! , t ,  and v .  

PROOF. Assume that the proposition does not hold. Let prove a l : :  - . - ::an ::nil be the node in I1 closest to 

the root that does not have the desired form. Since n # 1, this atom is the premise of some inference rule. 

That inference rule must be (2.3) since the conclusion of any other inference rule applied to that formula 

would also not have the desired form. If the inference rule was (2.3), then the first two atoms, a1 and a2, 

do have the required form. Hence, some pair in a2:: . . . ::an::nil must not have the required form and again 

the conclusion of this inference rule does not have the require form, contradicting the assumption. 

Thus, every instance of the inference rule (2.2) in an C 2  proof of prove a::nil is also an instance of 

prove (eval { {L l ,Ml ) : :L ,M)  V): :G 
prove (eval {L,XM} {L,AM))::(eval { { L l , M l ) : L , M )  V): :G ' 

This inference rule could therefore replace (2.2). The structural information of Proposition 4.5 can be used 

in a more interesting fashion: we can now modify f 2  to get the proof system C 3  SO that atomic formulas of 

the form 

prove (eval cl { e l ,  Atl)) :: (eval {c2: : l l ,  t l )  {12, At2)) :: - - :: (eval {cn tn - l )  {t ,  , Atn )) :: nil 

in £2 are replaced by nodes of the form 

prove (eval cl { e l ,  Atl)) :: (eval' c2 {12, At2)) :: . :: (eval' cn {en, At,)) :: nil 

in f 3  proofs. Here, the new constant eval' is used to show that a variant of eval is intended: while the 

proposition (eval s t )  states that s evaluates to t ,  the proposition (eval' s t )  occumng in the context 

(eval s' { t ,  Xt'))::(evall s t ) : :  . - ::nil 

states that {s::1, t1)  evaluates to t .  The proof system f 3  is presented below. 
















