From Operational Semantics to
Abstract Machines:
Preliminary Results

MS-CIS-90-21
LINC LAB 168

John Hannan
Dale Miller

Department of Computer and Information Science
School of Engineering and Applied Science
University of Pennsylvania
Philadelphia, PA 19104

April 1990

From Operational Semantics to Abstract Machines:
preliminary results*

John Hannan and Dale Miller!

Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104-6389 USA

Abstract

The operational semantics of functional programming languages is frequently presented using inference
rules within simple meta-logics. Such presentations of semantics can be high-level and perspicuous since
meta-logics often handle numerous syntactic details in a declarative fashion. This is particularly true of
the meta-logic we consider here, which includes simply typed A-terms, quantification at higher types, and
B-conversion. Evaluation of functional programming languages is also often presented using low-level
descriptions based on abstract machines: simple term rewriting systems in which few high-level features
are present. In this paper, we illustrate how a high-level description of evaluation using inference rules can
be systematically transformed into a low-level abstract machine by removing dependencies on high-level
features of the meta-logic until the resulting inference rules are so simple that they can be immediately
identified as specifying an abstract machine. In particular, we present in detail the transformation of
two inference rules specifying call-by-name evaluation of the untyped A-calculus into the Krivine ma-
chine, a stack-based abstract machine that implements such evaluation. The initial specification uses the
meta-logic’s S-conversion to perform substitutions. The resulting machine uses de Bruijn numerals and
closures instead of formal substitution. We also comment on a similar construction of a simplified SECD
machine implementing call-by-value evaluation. This approach to abstract machine construction provides
a semantics-directed method for motivating, proving correct, and extending such abstract machines.

*To appear in the Proceedings of the 1990 ACM Conference on Lisp and Functional Programming.

tBoth authors have been supported in part by grants ONR N00014-88-K-0633, NSF CCR-87-05596, and DARPA N00014-85-K-
0018.

1 Introduction

Operational semantics provides a simple, high-level and elegant means of specifying interpreters for
programming languages [13]. Abstract machines provide an intermediate representation of a language im-
plementation that facilitates portability, code optimizations and native machine code generation [2]. In this
paper we demonstrate how to take specifications of evaluators in the high-level, flexible style of operational
semantics and derive, through simple and formally justifiable steps, abstract machines that implement that
evaluator. While providing a direct proof of the correctness of derived abstract machines, derivations also
provide guidance for extending such machines and illustrate relationships among various abstract machines.

The work in this paper can be seen as a counterpart to work in semantics-directed compiler generation
based on denotational semantics and attribute grammars [11]. The goal in those settings is to provide methods
for constructing provably correct, low-level implementations of programming languages starting from high-
level semantic descriptions of the languages. The idea of transforming interpreters is not new [12, 16, 18].
In the setting here an interpreter is given as a set of inference rules and evaluation is described by proof
construction in a fixed meta-logic. Transforming interpreters is a process of transforming the inference rules
specifying an interpreter using techniques such as fold/unfold and partial evaluation [8]. Our approach is more
goal directed than some of these efforts as we have abstract machines as our target implementation. These
abstract machines are specified as term rewriting systems and the connection between operational semantics
and abstract machines is established by defining a restricted class of operational semantic specifications that
have a simple translation to term rewriting systems. Thus our entire translation from operational semantics
to abstract machines can be presented using a single meta-logic.

Our meta-logic and others related to it (such as the Logical Framework (LF) [7] and the Calculus of
Constructions (CC) [3]) have been investigated by several researchers recently as specification languages
for functional programming systems [1, 6] and for logics [5, 17]. This logic provides a flexible domain
for specifying relations on simple functional programs since such programs can be represented as terms (in
several different ways) in this meta-language. In this paper we focus on various evaluation relations, that
is, binary relations that relate a functional program with its value (under some assumption of the evaluation
strategy). Sets of inference rules will be used to axiomatize such evaluation predicates.

This paper is organized as follows. In Section 2 we give a general definition of abstract machines
and present the meta-logic in which we specify operational semantics. We then define a class of proof
systems in that logic that correspond trivially to abstract machines. Sections 3 and 4 provide an extended
example of transforming a high-level specification of call-by-name evaluation of the untyped A-calculus into
a specification of an abstract machine. Section 3 presents a translation from an operational semantics using
quantification over simply typed A-terms to one using strictly first-order quantification. Section 4 presents
a translation from this first-order specification into the class of proof systems defined in Section 2. The
resulting proof system is equivalent to the Krivine machine [4]. We briefly comment on how the derivation
can be modified to yield other evaluators. We conclude in Section 5.

2 Abstract Machines and Operational Semantics

Abstract machines have been effectively used as intermediate or low-level architectures suitable for
supporting serious implementations of a wide variety of programming languages, including imperative, func-
tional and logic programming languages. As these classes of languages differ widely in their foundations,
the machines tailored to a particular class exhibit little resemblance to machines for other classes. Therefore,
we do not attempt to characterize all such machines with a single definition. We focus instead on a class
of abstract machines designed for implementing A-calculus based functional programming languages. Even
here, we need to be more specific, as these implementations can be split roughly into two classes, according
to their treatment of substitution [4]:

e Graph reduction machines, in which substitution is performed by attaching terms (graphs) to the
appropriate leaves. The G-machine [10] is a sophisticated example of this class;

o Environment machines, in which substitution is performed by updating an environment that is kept
separate from the program. The SECD machine is the archetypical example of this class.

We focus on the latter class in the remainder of this paper.

2.1 Abstract Evaluation Systems

Many of the environment-based abstract machines have common aspects and similar structures and we
define here the formal notion of Abstract Evaluation System (AES) that captures and abstracts some of this
commonality. We define an AES in terms of a term rewriting system (TRS). We assume some familiarity
with rewriting systems, its terminology and the notion of computation in a rewriting system [9]. Recall that
a TRS is a pair (X,R) such that ¥ is a signature and R is a set of directed equations {l; — r; }ies Wwith
li,ri € Tx(X) and V(r;) C V(I;). Here, Tx(X) denotes the set of first-order terms with constants from X
and free variables from X, and V(t) denotes the set of free variables occurring in ¢. We shall restrict our
attention to first-order systems, i.e., ¥ is a first-order signature, though this is not essential.

DEFINITION 2.1 An Abstract Evaluation System is a quadruple (X£,R,7o,S) such that (X,R U {ro})

is a term rewriting system and S C R.

We are interested only in rewriting sequences that begin with 7o and terminate with some rule from S.
Furthermore, if s——¢ is a step in a sequence with r € R U {ro} then s — ¢ must be an instance of ,
i.e., rewrite steps must occur at the outermost level (no embedded rewritings). Rule rg can be understood
as “loading” the machine to an initial state given an input program and the rules S denote the successful
termination of the machine and can be understood as “unloading” the machine and producing the answer or
final value. Note that a computation sequence starting with ry may terminate in an unsuccessful state, i.e.,
the last step in the sequence is an instance of some rule not in S.

3

M = (nl M nil)
(E MN §) = (E M {E,N}:S)
(E WM X:S5) = (X:E M S)
({E',M}:E 0 S) => (E' M S)
(X:E n+1 §) = (E n S)
(E M nl) > {E,\M }
M = nil nil M ::nil nil)
(S E (MN):C D)y = (S E M:N:ap:C D)
(S E M ::C D)y = ({E,\M}:S E c D)
(S X:E n+1:C D)y = (S E n:C D)
(S X:E 0::C D)y = (X:S E o D)
X:{E',2M}:S E ap::.C D)y = (nil X:E' M:nil (S,E,C)::D)
(X:S E nl (S',E',C'):D) = (X::S' E’ ol D)
(X:S E nil nil) = X
FIGURE 1

The Krivine machine (top) and SECD machine

The SECD machine [14] and Krivine machine [4] are both AESs and variants of these are given in
Figure 1. The syntax for A-terms uses de Bruijn notation with " (infix) and A\ as the constructors for
application and abstraction, respectively. The constants #il and :: are the machines’ list constructors and
{E,M} denotes the closure of term M with environment E. The first rule given for each machine is the
“load” rule or ry of their AES description. The last rule given for each is a single “unload” rule. The

remaining rules are state transformation rules, each one moving the machine through a computation step.

A state in the Krivine machine is a triple (E,C,S) in which E is an environment, C is a single term
to be evaluated and S is a stack of arguments. A state in the SECD machine is a quadruple (S,E,C,D)
in which S is a stack of computed values, E is an environment (here just a list of terms), C is a list of
commands (terms to be evaluated) and D is a dump or saved state. Although Landin’s original description
of the SECD machine uses variables names, our use of de Bruijn numerals does not change the essential
mechanism of that machine.

In certain situations, it might be very sensible to have a more restricted definition of AES. In particular,
adding the conditions that no left-hand side of a rewrite rule can have repeated variables would make
implementing an AES simpler since it would not require a costly “runtime” equality check to be certain that
the duplicated variables are instantiated to the same term. Also requiring an AES to be deterministic, that
is, such that no two rewrite rules can be used on the same term, is also sensible, especially in the context
of modelling evaluation of functional programs. We note that all the examples presented in this paper do, in
fact, satisfy both of these additional restrictions.

2.2 -~ A Meta-Logic

We briefly describe here the logic in which we shall present specifications of operational semantics as sets
of inference rules. The terms of the logic are the simply typed A-terms over given finite sets of base types
and constants (particular to each application). The atomic propositions of our meta-logic will be constructed
from a finite set of n-ary predicate symbols, each with a given type. In our examples below, propositions
are either atomic or universally quantified atoms, say (VxA) where, in this paper, x is either of first or
second-order type. To manipulate such propositions the meta-logic comes equipped with inference rules for
universal introduction and S7-convertibility. A specification of an operational semantics is a collection of
inference figures whose conclusion is an atomic formula. Axioms are considered as inference rules with no
premises. A proof in this language will be understood in the standard sense of proofs in natural deduction.

Collections of inference rules can often be directly implemented. The language TYPOL of the CENTAUR
system [13], used to specify operational semantics similar to the style presented here, can be compiled into
Prolog. The first-order Hom clauses of Prolog, however, are not strong enough to directly implement our
inference rules due to the lack of simply typed terms and universal quantification. A suitable extension of
Prolog, for example AProlog [15], does directly implement such inference rules. All the examples presented
here have been implemented and tested in AProlog.

2.3 AES as Inference Rules

As just mentioned, techniques from logic programming can be used to implement evaluators axiom-
atized in this logic. Since the meta-logic (viewed as a logic programming language) incorporates many
features, such as (7-conversion, backtracking, recursion, unification, and meta-variables, it is easy to write
perspicuous specifications of evaluation. These high-level aspects of the meta-logic, however, distinguish
such specifications of evaluation from lower-level “abstract machines” in which very few of these high-level
devices are available. It is possible, however, to write abstract machines with this meta-logic by making
certain that the axiomatization of evaluation predicates is particularly simple; that is, they are first-order, do
not have branching inference rules, and make very limited use of variables.

DEFINITION 2.2 A set of proof rules T is AES-defining if there are two binary predicate symbols
D,q (not necessarily distinct) such that

(i) every axiom is of the form (p s t) with V(t) C V(s) for some terms s,t;

(ii) there is a distinguished inference rule of the form

ptV)
(gsV)

with V(t) C V(s) for some terms s,t and variable V not free in s ort;

(iii) every other inference rule is of the form

(ptV)
psV)

with V(t) C V(s) for some terms s,t and variable V not free in s ort.

From a given AES-defining proof system Z it is straightforward to construct an equivalent AES (X,R,7o,S)
such that for all terms s,¢, Z I (g s t) if and only if s—%s' 255" "t for some r € S and some terms
s’,s". The arrow — denotes zero or more rewritings using R-rules.

Not surprisingly, most formalizations of operational semantics are not AES-defining proof systems. They
can fail to satisfy the requirements of AES-defining proof systems in a number of ways. For example:

(i) they contain inference rules with multiple formulas in their premises;

(ii) they contain inference rules of the form
(r'eVv)
(rsV)

in which either r or r’ is distinct from p;
(iii) they contain rules which have variables in the premise that do not also occur in the consequent; or
(iv) they contain inference rules that are not over a binary predicate or of the form

(pty)
psz)

in which y and z are not the same variable.

We can easily rectify the former two cases via general methods, i.e., we can transform proof systems satisfying
cases (i) or (ii) into equivalent proof systems in which these cases have been eliminated. The latter two
cases, however, are more problematic and no single method appears universally applicable. The goal of
the remainder of this paper is to demonstrate how a series of non-AES-defining proof systems that specify
functional evaluation can be transformed into equivalent AES-defining ones.

6

3 Relating Substitutions and Closures

Untyped A-terms can be represented using the two constants, abs : (i —i)—i and app : i—i—i, that
can be thought of as denoting the familiar functions that relate a space (here, the type i) with its function
space. For example, the / combinator, Ax.x, is represented at the meta-level as the typed term (abs Ax.x)
while the S combinator, Ax Ay Az ((xz)(yz)) is represented at the meta-level as the typed term

(abs Ax(abs Xy(abs Az(app (app x z) (app y 2)))))-

Object-level applications are encoded using the meta-level constant app and object-level abstraction is en-
coded using the meta-level constant abs along with a use of meta-level abstraction.
The two inference rules below provide a very immediate specification of call-by-name evaluation in

which values are A-terms in weak-head normal form.

eval M (abs R) eval RN)V

eval (abs M) (abs M) eval (app M N)V

(Capital letters denote meta-level variables.) Both inference rules contain variables of the functional type
i—i. If we call this collection of rules £, then we have £ I (eval s t) iff ¢ encodes the weak-head normal
form (whnf) of the untyped A-term encoded by s.

These inference rules are a very high-level specification of evaluation in several senses. In this section
we shall focus on two of these aspects, namely, the use of meta-level 3-conversion to automatically do
substitution of terms for bound variables and the use of A-terms instead of simpler first-order terms in the
meta-language. To prepare for a change in the representation of object-level untyped A-terms, we introduce
the two predicates isabs and isapp that determine whether or not their arguments are object-level abstractions
or application. Explicitly naming these operations is valuable since their function is performed differently
once closures and deBruijn’s notation are introduced. This change can then be isolated to these predicates.
We shall also isolate the f-redex in the second inference rule with an explicit use of an apply predicate.
This is useful since we need to remove this G-redex. The resulting inference system is

isapp AM N eval M Q apply N Q P eval PV isabs M
eval AV evalM M
isabs (abs M) isapp (apgp M NYM N apply N (absR) (RN)

Clearly this proof systems proves the same eval-atoms as the simplier one above.

To change the representation of object-level A-terms into first-order terms, we need to remove the oc-
currence of §-conversion implicit in the above proof system. We shall do this by introducing a constant
clo : i—(i—i)—i that “names” (-redexes and pemmitting our encodings of terms to contain occurrences of
this constant. The intended meaning of a term containing clo is the A-term that results from replacing all
subterms of the form (clo t Ax.s) by ((Ax.s)¢) and normalizing. By properties of substitution, it follows
that the intended meanings of (clo t (app sy s2)) and (app (clo t s1) (clo t s3)) are the same, as are the
intended meanings of (clo t Ax(abs Ay.r)) and (abs Ay(clo t Ax.r))) (here, x and y are distinct variables
that may be free in the term 7 but not free in the term ¢).

Terms denoting untyped A-terms may now have the structure (in 37-normal form)
(1) (clo to Mxo(...(clo tn Mxns)...)) (n>0)

in which s is either (app s; s2) (for some s,,s2) or (abs t) (for some t) or one of the bound variables
Xg,...,X,. As terms are now more complex, specifying evaluation of terms requires more involved inference
rules. For example, rules for isabs and isapp must now also determine whether terms of the form () denote
an abs or gpp. Since the term s in (f) can be a bound variable x;, we introduce the isvar predicate to test
for that condition and to return the term ¢ that corresponds to that bound variable. Given this motivation for
introducing and treating the constant clo, it is an easy matter to show that the rules listed in Figure 2 prove
the same eval-atoms as the previous set of inference rules (modulo the meaning of clo).

If these inference rules are read from bottom to top, the universal quantifier can be seen as introducing

a new eigenvariable to play the role of the bound variable of the A-abstraction that it instantiates. Consider,
for example, proving the formula

isvar nil (clo to Mxo(...(clo t, Ax, 5)...)) t.
If this atomic formula has a proof, that proof must also contain a subproof for the formula
isvar ((Cnytn) i: -+~ 12 (Coyto) i mil) s' t

in which s’ is the result of replacing the bound variables xy, . . . ,x, with the (distinct) eigenvariables cq, . . . ,Cp,
respectively. The proof of this latter formula arises essentially from determining which eigenvariable is s’
and then checking that ¢ is the term associated with it.

The above collection of inference rules successfully avoids performing substitution of terms for bound
variables by making use of a closure-like structure. These rules still depend on using \-abstraction and
universal quantification at the meta-level. We are now in a position to remove this dependency.

Let § denote the first-order term that results from representing the meta-term s using deBruijn’s syntax.
Writing the A-term (clo o Axg(...(clo t, Axp s)...)) using this first-order syntax, we obtain the term

8

isapp AM N eval M R apply NR P eval PV
eval AV

isabs M isvar nilM T eval TV
evalM M eval M V

Vx (isabs (M x))
isabs (clo N M)

isabs (abs M)

Va (isapp (Ax) (M x) (N x))

isapp (app M N) M N isapp (clo T A) (clo T M) (clo T N)

Vx (isvar ((x,T)=L) (R x) V) . 3 isvar LX T
isvar L (clo T R) V isvar (X, T):L) X T isvar (Y,8):L)X T

Vx (apply N (R x) (S x))

apply N (abs R) (clo N R) apply N (clo T R) (clo T S)

FIGURE 2
Evaluation with “higher-order” closures

(clo’ £y (...(clo’ 1, §)...)) in which a variable index i in s denotes a variable to be replaced by the
term ¢,_;. (Here, clo’ treats its second argument as an abstraction by modifying offsets of variables.)
Adopting the syntax for terms presented in Section 2, the above term could be represented instead simply as

{ta:ita—1::- - - utounil s }. For example, the term
(clo (abs dx x) Au(clo (abs Ax(absXy.y)) Av(app v u)))

would be encoded as simply {AA0::A0::nil, 0" 1}. This second syntax has several advantages over the one
using clo or clo’. First, it involves first-order constants only. Second, simple pattern matching can determine
if a term embedded in a closure is an abstraction or application or variable index; recursing down a series
of clo’s is no longer needed. Third, the reversing of closures involved in proving isvar is not needed and
the auxiliary list argument to isvar can be dropped. Finally, this syntax also makes it natural to identify the
term s with {nil,s} and {¢, {¢::nil,s}} with {¢::¢,5}. Given this change in the representation of terms, we
can easily rewrite our inference rules to the following set of rules.

isabs M isvar M T eval TV isapp AMN eval MR apply NRP eval PV
eval M M evalM V eval AV

isvar {L,n} T
isvar {X::L,n+1} T

isabs {L,\M} isapp {LLM'N} {L,M} {L,N} isvar {T::L,0} T

apply N {L,\M} {N:L,M}

Assuming that we are only interested in proving eval-atoms, these clauses can be simplified, using fold/unfold
transformations, to the inference rules below, which we call &. They are further transformed in the next
section.

eval {LM} {L',\M"} eval {{L,N}:L' M’} V

eval {L,\ M} {L, M} eval {LM'N} V

eval X V eval {L,n} V
eval {X::L,0} V eval {X:L,n+1} V

4 From Inference System to AES

We now need to convert the inference rules in £o to an AES-defining set of inference rules to obtain
an abstract machine for computing the call-by-name semantics for untyped A-terms. The proof rules in &g
fail to be AES-defining for at least two reasons. First, the proof system is not “linear”; that is, the rule
for application requires proofs to have a branching structure. Second, the rule for application also has two
variables, M’ and L’, in the premise that are not in the conclusion. The former problem has a general solution
in that branching inference systems can uniformly be converted into non-branching systems. This process
is described immediately below. The latter problem seems to have no general solution. The bulk of this
section describes a series of transformations to address that problem.

We first describe how to eliminate the branching of the inference rules. Let £ be a set of inference
rules whose premises contain only atomic formulas (that is, no universally quantified atoms). Such a set of
inference rules can be replaced by inference rules in which multiple premises are added to a stack of atomic

10

formulas to be proved. Using this stack eliminates branching in the inference rules and also imposes the
order in which atomic formula will be proved. The choice of this order is important since it makes later
transformations possible (see Proposition 4.5).

DEFINITION 4.1 Let £ be a proof system whose premises contain only atomic formulas and let prove
be some one-place predicate. Define £* to be the proof system consisting of the following axiom and

inference rules:

(i) (prove nil) € £*;

prove Ay AnG
prove Ag::G

(ii) ifAl—;q'.é"— € & forn > 0 then € & for variable G not free in any A;.
0

The proof systems £ and £* are related by the following proposition.

PROPOSITION 4.2 Let £ be a proof system whose premises contain only atomic formulas. Then for
any atomic formulas ay,as,...,a,

Ela; forl1<i<n iff &*rprove aj::ay::---::a,:nil.

The proof is a straightforward induction on the structure of proofs. Notice that for atomic a we have £ - a
iff £ I prove a::nil.

Thus any proof system (involving only atomic formulas) can be converted to a proof system in which
all proof trees are straight lines. In so doing, some of the non-determinism implicit in £ is given up in £*.
Using this transformation we can move from £, into £, given as:

prove G
prove (eval {L,A\M} {L,\M })::G

prove nil (1.1) (1.2)

prove (eval {L,M} {L',\M'})::(eval {{L,N}:L'.M'} V):G .
prove (eval {LLM'N} V)::G (1.3)

prove (eval X V)::G (1.4) prove (eval {L,n} V)::G
prove (eval {X:L,0} V)::G ' prove (eval {X:L,n+1} V):G

(1.5)

LEMMA 4.3 For all atomic formula a, Eg V- a iff £, + prove a::nil .

11

The proof follows immediately from Proposition 4.2.

A useful transformation on proof systems involves considering partial instantiations of an inference rule.
Clearly we can always add (to a proof system) instances of a rule already in the system. Furthermore, if
we can show that a given set of instances (of the same rule) is exhaustive, then we can also eliminate the
original rule. For this reason and because lists are either nil or constructed from ::, rule (1.2) can be replaced
by the two inference rules:

prove nil
prove (eval {L, M} {L, M }):nil

prove A:G
prove (eval {L,2M} {L,AM }):A:G

(1.2a) (1.26)

Notice that the premise of 1.2a is always trivially provable. Note further that rules 1.2b, 1.3, 1.4 and 1.5 all
have premises whose list arguments are non-znil and hence instances of 1.1 cannot occur immediately above
instances of these rules. Thus instances of 1.1 can only occur immediately above instances of 1.2a as noted
above and if we fold 1.1 and 1.2a we get the axiom

(prove (eval {L,AM} {L,\M })::nil)

and then we no longer need rule 1.1 for non-trivial proofs. Then taking rules 1.2a, 1.2b, 1.3, 1.4 and 1.5
(relabeling them as shown) yields £4:

- prove A:G
prove (eval {L,AM} {L,A\M })::nil (2.1) prove (eval {L M} (L, M 1)AG (2.2)

prove (eval {L.M} {L',\M'})::(eval {{L,N}::L',M'} V)::G
prove (eval {L, M'N} V)G
prove (eval X V)::G
prove (eval {X:L,0} V):G

(2.3)

prove (eval {L,n} V):G
prove (eval {X:L,n+1} V):G

(2.4) (2.5)

LEMMA 4.4 For alls,t, &1 | (prove (eval s t):nil) iff £, & (prove (eval s t):nil).
Note that £; and £, are not precisely equivalent since £ + (prove nil) but &£, f (prove nil). However we
are not interested in this case: we are only interested in atomic prove statements that contain a non-empty

stack.

12

The premise of rule (2.3) contains two occurrences of each of the two meta-level variables L' and M’
which do not occur in the conclusion. This use of meta-level variables must be removed to approximate
more closely an AES-defining proof system. There is some redundancy of information in a stack of provable
eval-atoms and by exploiting this fact we can eliminate one set of occurrences of L’ and M’. The following
proposition explicitly describes this redundancy.

PROPOSITION 4.5 Let II be an £; proof of (prove a:nil) and let (prove ay:: - - - :anu:nil), forn > 2,
be a node in this proof. Then for alli =1,...,n—1, a; has the form (eval s {{,At}) and a4+ has the

form (eval {s'::{,t} v) for some terms s,s',{,t, and v.

PROOF. Assume that the proposition does not hold. Let prove ay::- - - ::a,::nil be the node in II closest to
the root that does not have the desired form. Since n # 1, this atom is the premise of some inference rule.
That inference rule must be (2.3) since the conclusion of any other inference rule applied to that formula
would also not have the desired form. If the inference rule was (2.3), then the first two atoms, a; and ag,
do have the required form. Hence, some pair in a,:: - - - ::a,::nil must not have the required form and again
the conclusion of this inference rule does not have the require form, contradicting the assumption. O

Thus, every instance of the inference rule (2.2) in an £, proof of prove a::nil is also an instance of

prove (eval {{L;,M,}:LM} V):G
prove (eval {L, M} {L,AM })::(eval {{L,M,}:L,M} V)G ~

This inference rule could therefore replace (2.2). The structural information of Proposition 4.5 can be used
in a more interesting fashion: we can now modify £, to get the proof system £3 so that atomic formulas of
the form

prove (eval ¢y {€1,Mt1}) = (eval {ca::fy,t1} {€2,At2}) -+~ 2 (eval {cpn:bpn_1,tn—1} {ln, Atn}) :: il
in £, are replaced by nodes of the form
prove (eval ¢y {£1,7t1}) =z (eval’ ¢y {€2,Mt2}) 2 -+ 22 (eval' cn {€n, Mn}) :: nil

in £3 proofs. Here, the new constant eval’ is used to show that a variant of eval is intended: while the
proposition (eval s t) states that s evaluates to ¢, the proposition (eval’ s t) occurring in the context

(eval s' {€,2t'})::(eval’ s t):: - - - nil

states that {s::{,¢'} evaluates to z. The proof system 3 is presented below.

13

prove (eval {L, M} {L,\M })::nil (3.1)

prove (eval {{L1,M1} LM} V):G (3.2)
prove (eval {L,AM} {L, M })::(eval’ {L,,M1} V):G ’

prove (eval {L M} {L',\M'})::(eval’ {LN} V):G
prove (eval {LLM'N} V):G

(3.3)

prove (eval X V)::G

prove (eval {L,n} V):

G

prove (eval {X-L,0} VG %

prove (eval {X:L,n+1} V)G

(3.5)

LEMMA 4.6 For all s,t, £, & (prove (eval s t)::nil) iff £3 & (prove (eval s t)::nil).

The correctness of £3 follows from Proposition 4.5 and the discussion above.

The next transformation is a simple reorganization of data structures that exploits

tween a list-of-pairs and a pair-of-lists. The constants eval and eval’ can be viewed as pairing constructor
(pairing a term with a value). The predicate prove takes a list of such pairs. An equivalent formulation uses

the binary predicate prove’ that takes a pair of lists. The explicit pairing constructors
this way. This is done in the proof system £4:

the isomorphism be-

can be eliminated in

prove’ {L, M} :nil {L, M} :nil (4.1)

prove’ {{Ly,M1}:L M}:S V:T
prove' {L,2M }::{L{,M1}::S {L,\M }::V T

(4.2)

prove’ {L,M}::{L,N }::S {L',\M"}:V:T
prove’ {LLM'N}::S VT

(4.3)

prove' X::S VT prove’ {L.n}:S V:T

prove' {X:L,0}:S VT (44) prove' {X::L ,n+1}:S V:

7 (45)

14

Given the motivation for £4 above and the fact that the syntactic distinction between the constructors
eval and eval’ is not relevant, the following is immediate.

LEMMA 4.7 For all s,t, E5 + (prove (eval s t)::nil) iff £4 & (prove’ s:nil t:nil).

Recall that an AES-defining system must have an “output variable” as part of the atomic formula being
proved. This variable is “set” by the axioms and is preserved by all the other inference rules. Towards such
a structure for our rules, we provide the following trivial proposition:

PROPOSITION 4.8 For any s,t if Il is an £4-proof of (prove’ s::nil t::nil) then the leaf node of I is
(prove’ t::nil t::nil).

PROOF. We prove the following slightly stronger statement that implies the proposition: If I is an £4-

proof of (prove’ s::nil t::nil) then every node of II is an instance of (prove'Y Vy::-.-::V,::t::nil) for some
n>0.
Assume the statement does not hold and let (prove’ sy::---:nil ty::-- - uity::t’::nil) be the node in II closest

to the root that does not have the desired form. Since the root node of II has the desired form, this formula
must be the premise of some inference rule (4.2 - 4.5). But upon inspection of each of these rules it follows
that the conclusion of this rule must also not have the desired form, contradicting the assumption. O

We now introduce a third argument to prove’, modifying the one £, axiom to identify this new argument
with the “final” value ¢ from the second argument z::nil and modifying the remaining inference rules to
preserve the value of this argument. The resulting proof system, called £, replaces prove’ with the new
predicate prove” of three arguments.

prove” {L,\M}:=nil {L,\M}:nil {L,\M} (5.1)

prove” {{L;,M }:L,M}:S VT Z
prove” {L,AM }::{Ly,M;}::S {L,\M}::V:T Z

(5.2)

prove” {L.M}:{L,N}:S {L',\M'}:V:TZ
prove” {LM'N}:S VT Z

(5.3)

prove” {L,n}:S V:T
prove” {X:L,n+1}:S V:

(5.4)

VA
= (55)

z

15

LEMMA 4.9 For all s,t, E4 & (prove’ s:nil t:nil) iff £5 & (prove” s::nil t:nil t).

The proof follows immediately from Proposition 4.8.
Now, &5 is not an AES-defining system only because in rule 5.3 the variables L' and M’ occur in the

premise but not in the conclusion. Consider simplifying the inference rules of £5 by replacing each inference
rule of the form

(prove” t] t; ti) . (prove’ t] tl)

(prove” t; t; t3) (prove” t, t3)
is a new binary predicate. This kind of generalization is complementary to the instantiation
transformations that we applied earlier. Let this resulting system be £g:

where prove'’

prove” {{L'N}:L,M}:S Z
prove” {L, M }::{L',N}:S Z

prove” {L,AM}:nil {L,AM} (6.1) (6.2)

prove” {L.M}:{L,N}:S Z
prove” {LM'N}:S Z

(6.3)

prove'' X::S Z
prove {X:L,0}:S Z

prove” {L,n}:S Z
prove” {X:L,n4+1}:S Z

(6.4)

(6.5)

Observe that by eliminating the second argument of prove” we do not introduce any inference rules with
variables that occur only in the premise. (In fact, we eliminate the one case remaining in £5.) Furthermore,
observe that in the atomic formulas occurring in the premise of each £ inference rule, every variable
occurring in the second argument of prove” occurs nowhere else in the premise. Thus this second argument
is, in some sense, independent of the other arguments in premise formulas. Observe also that in any £5-
provable formula the first and second arguments are always lists of the same length and the second argument
is always of the form {£;, Asy } :: {€3, As2} ::- - - ::nil. Then for any £5-provable formula if the first and third
arguments of this formula match the corresponding schema arguments in the premise of an inference rule,
then the second argument must also match its corresponding schema in the premise of the rule.

LEMMA 4.10 For all s,t, £5 & (prove” s::nil t::nil t) iff E¢ & (prove™ s:nil t).

PROOF. The proof in the forward direction is immediate: given a proof in £5 simply delete the second
argument of all atomic formulas and change prove” to prove”'. So we just need to show the reverse direction.

16

We prove the following, slightly more general, statement: For all ¢,,v, if £ F (prove™ ¢, v) then there
exists some {; such that £5 + (prove” ¢, {3 v). The proof proceeds by induction on the height 4 of an
£ e-pI'OOf 1I.

base: For h = 1, II must be of the form
(prove™ {€,Xs}znil {€,)s})
and for £2 = {¢, A\s} we can construct the corresponding &5 proof II":

(prove” {€,As}unil {€,As} il {€,)s}).

step: Assume the statement holds for proofs of height 2 > 1 and let II be a proof of height A+1. Then it
is of the form

M

prove"” £ v
for some £,v and some proof II; of height A, with root (prove” ¢; v) for some ¢,. By the induction
hypothesis we can construct the £5 proof II} corresponding to II; such that the root of II] is of the form
(prove” ¢y £y v) for some £3. Let the last inference rule of II be some instance of 6.i (for 2 < i < 5). We
must show that we can construct an &5 proof (prove” ¢ ¢’ v) (for some ¢') by applying an instance of rule
5.i to the root of II}. For this we must only show that £; can match with the schema given as the second
argument to prove” in the premise of rule 5.i. But this follows from the observations made above regarding
the independence of this schema. ¢ is then just the instantiation of the second argument in the conclusion
of 5.i. O

Now we have the main result of this section:

THEOREM 4.11 For all s,t, Eo & (eval s t) iff Eg + (prove™ s:nil t).

The proof follows from linking together all the lemmas in this section.
Notice that £¢ is simply an AES-defining proof system for the Krivine machine if we add the following

“load” rule:
prove" A:nil Z
krivine A Z

This version of the machine stores the three elements of the state (environment L, term M, stack S) using

just the one stack {L,M}:S, ie., the environment and term form the top element of stack. Extending
the operational semantics to include recursion and various constants is easily incorporated into the above
transformations.

We can apply the techniques demonstrated in this section and the previous one to the following proof
system specifying call-by-value evaluation, in which values are again A-terms in weak-head normal form.

17

M = (nil {nil ;M } ::nil)
(S {E,MN)}:C) = (S {E;M}{E,N}:uap:C)
(S {E,\sM}:C) => ({E,M}:S C)
(S {X:E,n+1}:C) = (S {E,n}:C)
(S {X:E,0}:C) = (X:S C)
X:{E',\M }:S ap:C) = (S {X:E'M}:C)
(X:S nil) = X

FIGURE 3

A simplified SECD Machine

eval M (abs R) eval N S eval RS)V
eval (app M N)V

eval (abs M) (abs M)

While several different derivations starting from these two rules are possible, we have constructed a “dump-
less” SECD machine based on them, as specified by the AES in Figure 3. The constant ap corresponds to
a nullary constructor eval” obtained via methods similar to the introduction of eval’ above, but in this case
all the arguments to eval” can be inferred from their context and so they can be eliminated. This simplified
machine avoids using a dump because the terms and their associated environments are maintained explicitly
as closures. (While the SECD stores the entire state on the dump, the only required information is the old
environment and the code associated with it.) Comparing this machine with the SECD machine given in
Figure 1, there is a one-to-one correspondence between the rules except for the two rules that manipulate
the dump of the SECD.

5 Conclusion

Abstract machines provide an important stage in the efficient implementation of functional languages but
the construction of such machines and the implementation of high-level languages in them have previously
received little attention as formal operations. We have provided some initial direction for performing these
tasks by establishing a connection between operational semantics as proof systems and abstract machines.
While our approach does not supply fully automatic methods for constructing abstract machines from proof

18

systems it does provide insight into the mechanisms of such machines and direction for extending them.
Additionally, our work serves to fill the gap among efforts in semantics-directed compiler generation, where
previous work has focused primarily on using denotational and algebraic semantics and attribute grammars.
Indeed, our work is closely related to semantic evaluation using attribute grammars and some of the classifi-
cations of attribute grammars (e.g., well-defined, non-circular, etc.) may suggest corresponding classifications
of proof systems that can be transformed into AES-defining ones.

References

[1] R. Burstall and Furio Honsell. A natural deduction treatment of operational semantics. In Foundations
of Software Technology and Theoretical Computer Science, pages 250-269, Springer-Verlag LNCS, Vol.
338, 1988.

[2] L. Cardelli. Compiling a functional language. In 1984 Symposium on LISP and Functional Programming,
pages 208-217, ACM, 1984,

[3] T. Coquand and G. Huet. The calculus of constructions. Information and Computation, 76(2/3):95-120,
1988.

[4] P.-L. Curien. The Ap-calculus: An Abstract Framework for Environment Machines. Technical Report,
LIENS, 1988.

[5] A. Felty. Specifying and Implementing Theorem Provers in a Higher-Order Logic Programming Lan-
guage. PhD thesis, University of Pennsylvania, 1989.

[6] J. Hannan and D. Miller. A meta-logic for functional programming. In H. Abramson and M. Rogers,
editors, Meta-Programming in Logic Programming, chapter 24, pages 453-476, MIT Press, 1989.

[7]1 R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Symposium on Logic in
Computer Science, pages 194-204, 1987.

[8] L. Hascoét. Partial evaluation with inference rules. New Generation Computing, 6(2-3):187-209, 1988.

[9] G. Huet and D. Oppen. Equations and rewrite rules: a survey. In R. Book, editor, Formal Language
Theory: Perspectives and Open Problems, pages 349-405, Academic Press, 1980.

[10] T. Johnsson. Compiling Lazy Functional Languages. PhD thesis, Chalmers University of Technology,
1987.

[11] N. Jones, editor. Semantics-Directed Compiler Generation. Volume 94 of Lecture Notes in Computer
Science, Springer-Verlag, 1980.

[12] N. Jones, P. Sestoft, and H. Sgndergaard. An experiment in partial evaluation: the generation of
a compiler generator. In Proceedings of the First International Conference on Rewriting Techniques,
pages 124-140, Springer-Verlag LNCS, Vol. 202, 1985.

[13] G. Kahn. Natural semantics. In Proceedings of the Symposium on Theoretical Aspects of Computer
Science, pages 22-39, Springer-Verlag LNCS, Vol. 247, 1987.

19

[14] P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6(5):308-320, 1964.

[15] G. Nadathur and D. Miller. An overview of AProlog. In K. Bowen and R. Kowalski, editors, Fifth
International Conference and Symposium on Logic Programming, MIT Press, 1988.

[16] F. Pagan. Converting interpreters into compilers. Software—Practice and Experience, 18(6):509-527,
1988.

[17] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of Automated Reasoning,
5:363-397, September 1989.

[18] M. Wand. From interpreter to compiler: a representational derivation. In H. Ganzinger and N. D. Jones,
editors, Programs as Data Objects, pages 306324, Springer-Verlag LNCS, Vol. 217, 1984.

20

