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Abstract

The recent demise of certain global unbroken symmetry generators in the
presence of a grand unified magnetic monopole leads us to consider more care-
fully the notion of charges associated with gauge symmetries. It turns out
that global transformations associated with the generators of the gauge group,
and their charges, make sense only for extended systems which are sufficiently
localized. GUT monopoles fail this criterion. Detailed consideration of the
monopole-antimonopole system helps remove paradoxes related to the chromodyon exci-
tations of a single monopole and agrees with the previous result that some, but not
all, of the states naively expected do exist, The. remaining states needed to fill
out color multiplets are spread throughout space; they are recovered as long-lived
excitations when an antimonopole is brought in from infinity.
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1. INTRODUCTION AND CONCLUSION

Four years ago, Tomaras and Dokos showed that the simplest grand
unified theory, the SU(5) model of Georgi and Glashow, admitted magnetic
wmonopoles [1]. CGrand unified monopoles ;re time-independent solutions
of the field equations, much like the monopole solutions found earlier
in simpler field theories by 't Hooft and Polyakov. They differ from
their predecessors in having about them.not just ordinary electromagnetic
magnetic fields but aléo color SU(3) magnetic fields; they are simulta-
neously electromagnetic and chromomagnetic menopoles,

't Booft-Polyakov monopoles are knoén.(in semiclassical quantization)
to possess a spectrum of excitations called dyons. These arTe states that
transform according to definite representations of the unbroken symmetry
group of the theory, electromagnetic U(l); that is to say, they are states
of definite chasrge. Thus one wuuldrexpect grand unified monopoles to be
accompanied by chromodyons, states of definite charge which also transform
according to definite representations of coloxr SU{3) [1,2}.

It has become clear in the last year that this is not the case [3,4].
Thg excitations of grand unified monopoles do not fall into representations
In the

of the color group. The reason for this is deep and surprising.

presence of a chromomagnetic monopole, it ie impossible to define the

There is no euch thing ae a glebal SU(3) transformation.fl

color group [5,6).
Our aim in this paper is to understand this phenomenon.
Our principal investigative method will be the study of a system
consisting of a widely separated moncpole and antimonopole. As we shall
see, for this system the color group is well defined and the excitations

of the system transform according to definite representations of color

SU(3). We will investigate how all this structure manages to evaporate

when the separation between the monopole and the antimonopole goes to
infinity. )

We have found this subject to be full of booby traps, and we have
been able to thread our way among them only by being very careful in
our reasoning. Unfortunately, very careful reasoning makes for very
long reading. Thus, out of mercy for the reader, we give in this
section an overview of our results, full of handwaving and unproved
asgertions. The reader who only wants an idea of our results may
read cnly this section; the reader who wants to be convinced that
our answers are correct must go on to the body of the paper.

The Overview -

We will work exclusively in a semiclassical approximation; indeed,
for much of the time, we will restrict curselves to clagsical field
theory. Thus we will say nothing about the effects of confinement,
This is appropriate [2]. There are fifteen orders of maguitude between
the grand unificatinq ecale, which determines the size of monopoles,
and the confinement scale. Canfinément is as irrelevant to the physics
we are discussing as the large-scale curvature of the universe is to
the theory of the solar system. We will also restrict ourselves to
theories of gauge fields and scalar fields only, ignoring fermioms.
Unlike confinement, fermions can have a profound effect on monopole
structure (e.g., the Callan-Rubakov effect) but we do not belleve it
is an essential one for our task of sorting out issues pertaining to
global color. 1In the same spirit, we take the vacuum angle 6 to be
ZETo. (Sge Ref. [4].)

Before we can describe our results we must define our notation.

A gauge fileld, A“, 18 a Lie-Algebrd valued vector field. The field-
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strength temsor, Fuv, is defined by
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where g is the gauge coupling conmstent. In the absence of other fields,

this obeys the Yang-Mills equations,

u = or = 0.
a”rw +8la"%F ] w

If the group is simple, these equations are derived from the Lagrange

density
1 )
] Tl‘(FquI-‘ ).

If the group is 2 product, there io one guch term for each factor.

The electric and nagnetic fields are defined in the usual way

F..=E F

o1  Eir Fiy ® BiniByr

In the case #t hand, the gauge algebra is that of SU{5), but at
distances large compared with the grand unification scale, the only

gauge fields that survive are these egsociated with the low energy

At distances

gauge algebra, that of SU(S}col . u{2)

o electroweak”

large compared to the electroweak scale, this is reduced further, to

x U(1)

color At large distances

the algebra of 5U(3) electraragnetism’

from the grand unified monopole, in an appropriately chosen gauge [2},

B Q rilgr3
where
Q= % (Qem + Ycolor)'
Of course, we can replace the color hypercharge by any equivalent member
‘of the color algebra; this is Just one possible standard form among many.
We can now explain what we mean when we say that in the presence of

a monopole, giobal color transformations do not exist. It will turn out
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to be convenient to work im temporal gauge, AB==0. In this gauge, we have
a very large algebra of celor gauge transformations:

infinitesimal color transformations at each point in space. We wish to

select out of this infinite algebra an eight dimensional algebra of global

color transformations, troncformations that act everywhere in the same way,

What does this mean? The naiural way te connect infinitesimal
transformations at two separated points is by parallel transport. (As
the wSrd "natural" signals, the bandwaving has begun. The real stuff,
which is indegendent of the possibility of parallel tranmsport, is in
Ref. [5].) One starts with the element cé the algebra at ;1, Q(?l), and
defines it at ?é by picking a path, ¥(s), going from ;i to ;2, And

integrating along the path the equation

ma &t

i
=g -
DS ~ da bQ s (Biﬂ-bg[Ai,Q]) G.
The covariant derivative in this equation ensures gauge invariance;
unforturately, it also ensures path dependence. 1If we transport § about

an infinitesical planar loop, it does not rturn to its original value:
™ -+
8 = dA[gn'B,ﬂ}.

vhere dA is the area of the loop and 8 1s the unit normal to the planpe.
However, sll is not lost. We can hope to surround the system under

study by a large sphere onm which all the gauge fields are negligible.

We can then define global color transformations on this sphere; this

will enable us to étudy the color transformation properties of the

electric flux passing through the sphere, which we might hope to link

(through Gauss's Law) with those of the system ingide the sphere. (This

is reminiscent of the way in which we study the total energy of an

isclated system in gemeral relativity.)

we can make independent
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But even this does not work if the system contains 2 magnetic
monopole. In this case, no matter how large ocur surrounding sphere,
we cannot make parallel transport path-independent, If we consider
& loop on the sgphere subtending fixed solid angle, as we enlarge the
sphere, the area of the loop increases like 12, exactly cancelling
the llr2 fall off of the magnetic field. We can only define global
trangformations for that subalgebra for which

[Q.9] = 0.
In the case at hand, this is the algebra of electromagnetic U(1) plus
the algebra of a U(2) subgroup of color SU(3).

This is the sense in which global color does not exist in the
presence of a magnetic monopole. We stress that this does not mean
that a monopole on the moon prevents us from discussing the total color
of an isclated system of quarks in the laboratory; the problem arises
only when the system under study has net color magnetic charge., Monopoles
do oot “break" color symmetry.

This exawple suggests that we gain further insight by studying a
particular system with no net color magnetic charge, a widely separated
monopole-antimonopole pair. Here there is mo problem inm defiping global
color transformations on a large sphere surrocunding the system, and; as
we shall see, the excitations of this system transform according to
definite representations of color SU(3).

We begin our analysis by showing how to continue Q(?) in from the
sphere at infinity.

Every infinitesimal symmetry transformation of a physical system
can be thought of &8s an actual physical motion, an infinitesimal ‘

evolution of the system in time. For example, consider a molecule, a

o

system of N particles interacting through two-body potentials,

L gi 32 v (E -1 ]
= asl 2 "a Ira! e azb ab a7

This system is invariant under an infinitesimal rotation,

> -
ér = e x
a a

-
T

-
where € is a unit vector. This can be thought of as defining an
-+
evolution in time, steady rotation about the e axis,

- + =+
dr /it = w e x r ,
a a

where w is the angular velocity.

Likewise, the change of a gauge field under an infinitesimal

gauge transformstion,

> - -
GA=-g ¥ 0-[20]=-p10a,
can be thought of as defining an evolution in time,

-+

BOA"-g_l Wb o (1.1)

where w is an internal-symmetry angular velocity.

But in temporal gauge, F01 = aOAi’ and this motion is consistent
with Gauss's Law if and only if DiF01 =0, i.e, if
DiDiﬂ_w 0. - (1.2)

It is this equation, of Laplacian type, that defines ) throughout all
space gilver its value at infinity.f2 {We are here ignoring the scalar
fields present in the monopole core. These make & small correction to
Eq. (1.2), which we'll take proper account of in section three.)

One advantage of thinking of things in this way is that it leads

immediately to the computation of the dyon spectrum, for the dyons are

nothing else but the result of semiclassical quantization of the motion
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defined by Eq. (1.1).

To show how this occurs, let us begin with the system of N particles
discussed above, and let us suppose that the system possesses a time-
independent solution of the equations of motion, a local minimum of V.
Then the steady rotations will be sclutions of the time-dependent
equations of motlon, to first order in w. (In higher orders, the

rotation will begin ke stretch the system.) The Lagrangilan restricted

to these motions is

L= % I m2 - congt..

where 1 is the uvsual moment of inertis,
I= g |: : ;;|2.
a=l
The angular momentum is given by
J = Iw,
and the Hemiltomian by
H= J2/ZI + const.
In semiclassical quantization, J is restricted tc integral values, and
we obtain the usual molecular rotational spectrum.
All of this carries through without elteration to & gauge theory.
If we are applying our gauge transformation to a time-independent
solution of the equations of motion, the Lagrangian becomes
L= %‘I m2‘~ const.,
where
1= -2572 J & Bad)
The conjugate is called not sngular momentum but charge,f3
Q= Iuw,
and

1 2
H a1 Q" + const.

Semiclassical quantization leads to the dyonic spectrum.

In sections three and four we apply this analysis to a monopole-
antimonopole pair separated by a large distance, R.fq Our main
results are:

{1} For the gererators of the color algebra that commute with Q,
everything is normal. ﬁﬂ is egmall except near the monopele and
antimonopele cores, and the moments of inertia are independent of R
for large R. The dyenic excitations are localized on the cores. They
are the states of definite color hypercharge described in Ref. [4]; for
5U(5) they fall into representations of U(1).

(2) For the orthogonal generators, eﬁerything is stf;nge. Eﬂ is
non-negligible over a region of size R, and the moments of inertia are
proporticnal to g_z R. The dvonic splitting is thus proportional to
gle. vanishing as R goes to infinity. Furthermere, in the vicinity of
the cores, % itself vanishes like R -, where a = v3/4 - 1/2.

These dyonic excitations have nothing to do with either the monopole
or the antimonopole. They are rather twistings (in color gpace} of the
lines of magnetic force that extend from the momnopole to the antimonopole.
That the sether between two objects should {tself be an object capable
of supporting excitations, emitting fadiation, etc. is no surprise in a
nonlinear field theory. After all, two orbiting stars will have a region
between them of time-~varying gravitational stress, which will itself
contribute to the system's gravitational radiation.

AQ R grows, these twistings extend over larger distances, but ‘
take place farther from the cores; this is how they are able to di;appaar'
from fhe spectrum in the limit of infinite R.

We have described this phenomenon in terms of dyonic excitations.

These, of course, have an equivalent degcription in terms of the classical
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motions from which the excitations are derived. Suppose some external
force sets the moncpole-antimonopole system Trotating in color space
with some fixed angular velocity. If the rotation is in a direction
that commutes with Q, an observer near cone of the cores sees something
is happening mo matter how large R is. {In particular, she sees a
nonzero color electric fileld.) But if the rotation Is in an orthogonal
direction, she sees nothing at all, because the associated §{ vanishes
in her vicinity.

We can now see what happens in a more complex system, composed of
many widely sepérated monopoles andkjggimonopoles, but still arranged
such that the net magnetic cherge is zero. In this case, the field
near each particle is a magnetic Coulomb field, but Q might be a
different element of the algebra for different particles. To find the
effect of a given infinitesimal color rotation on a given monopele, we
pust integrate Bq. (1.2) down from infinity to the neighborhood of the
monopcle. Those infinitesimal traneformations that commute with Q when
they arrive uill be allowed to penetrate the magnetic Coulomb field and
transform the corej tﬁe orthogonal ones will be stopped on the lines of
force and never reach the core.

The dyonic excitations we have been discussing'involve distortions
of color magnetic fields extending over large distances (on the order
of R), and one might think that such modes would be extremely unstable
to the emission of soft gluons. (In classical language, omne might think
that they would quickly lose their energy to non-Abelian radiation.}

In section four, we carefully study such decays. The calculation

is fraught with technical complexities, but our fundamental results can

be understood in terms of simple physical ideas.
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Suppose we have some motion of a classical system, of angular
frequency w, that radiates energy at some rate écl' The semiclassical
estimate of the decay width of the associated states is obtained by

computing the time it takes the system to radiate one gquantum of energy,

-1
w E

T~ e1"

For the moncpele-antimonopole system, by our previous analysis,

the low-lying excitations have
. w -~ EZIR.

Thus, for small 32, the wave length of the emitted radiation is
much larger than the spatial extent of the system, and a dipole ap-
proximation is justified in computing the rate of radiation.fs The

color dipole moment of the éystnn is propertional to R; thus

: 2
Ecl R.
This is multiplied by powers of g and w, which we can easily work out

“by dimensional analysis,
. 24,2
E, Rw /g™
(The reader who wants to reproduce the dimensional analysis should
remember that icl is a classical quantity; mo powers of h are allowed
in this formula.)
Putting all this together, we find
T~ g (1.3)
The dyonic excitatfons are metastable; in the 1imit of small coupling,
the width of an excitation is 0(32) times the spacing between successive

excitations.
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We have found what becomes of global color. A magnetic monopole
can only support excitations associated with coler rotations that leave
its loug range magnetic field unchanged. The unwanted excitatioms are
expelled along the lines of color magnetic force. If the lines of force
close (that is to say, if the monopole is part of an assembly with zero

total magnetic charge) the unwanted excitations hang on in a diffuse

cloud between the momopoles. If these lines extend to infinity, the

unwanted excitations disappear altogether.

The remainder of this paper giveslthe detailed arguments that lead
to the picture we heve just deceribed. Section two discusses the notion
of a nonabelian gauge charge, including some tlought experiments to
determine the color of & single chromodyon. Section three describes

the monopele-antimonopole system and section four deals with the decays

of its excitations. Section five contains further discussion and

disposes of the thought experiments.
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Il. COLOR CHARGES

Gauge symmetries pose cenceptual problems because they are not,
strictly epeaking, symmetries at all., The pure Yang-Mills lagrangian
defines a2 nonsingular classical dynamics only when its vector potentials
are interpreted as redundant, the true configuratiom space being the

(3) ,..(3)

quotient [10] ¥ =%~ /@ of three-dimensional gauge potentials on

space moduio three-dimensional gauge trausformations.f6 We can realize
systeme defined on this complicated space in terms of vector potentials

in @’(3)

1f we insist that dynamics on the latter he gauge invariant and
remember that two configurations differing by an element ofq;(s)

(henceforth called “charge rotations”) are nct really distinct. This

viewpoint 1s already familiar [11] as the method used to treat the motion of

a particle on the manifold € Pn; We avold working with the projective
space by Introducing a redundant degree of freedom to make it into the

2n+l

sphere §° 7, then demand that the action be singular with a local

invariance under the one-dimensional greup U(1). Motion along this U(1) .
is of course mot cbservable,

Technically this formulation of gauge theory can be well defined
only if space is taken to be compact, say 53. Equivalently we can
demand that &1l field configurations fall off more Tapidly than r-l,
thus eliminating the pathologies of section one from the beginning.
This requirement is no more restrictive than the fact that on compact
space the total electric charge must be zero, and it seems to be
necessary for quantization of the full theory to imtroduce a volume
cutcff of this sort [10].

Formulating our theory in tlis way seems rather a drastic step.

After all, the very motions we wish to investigate are themselves charge
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rotations. While gauge invariance per ee has vanished from the theory,
however, its vestiges remain in the detailed shape of the space

and the level sets of the energy func}innal on it. # 18 a complicated
gpace, but we will need only some of its gross features, and they are

easily deduced. In place of the notion of glebal gauge transformations
as ordinary global symmetries remaining after gauge fixing, we can
suhst;tute another: that special features of & imply collective
coordinates which describe the relation of a4 system to the rest of the
world and whoge effects resemble global gauge transformations, These
speclal features will in general exist only for sufficiently local
Bystems.

We begin with an amalogy to the spacei?(é)hg{k), where exact results
about the moduli space of the action functional are known [12]. 1In
particular, the exact two-instanton solutions in the SU(2) theory are
known to form a manifold of 13 dimensions, of which three can be
interpreted as a relative group orientation; similarly, n instantons
have 3(n-1) such coordinates. Thus even though true gauge transformations
are missing, each of the two instantons has a full SU{2) of overall
information relative to its partner. This hard mathematical result
has an easy physical interpretation for the case when the instantons
are distantly separated, as follows: There exists a gauge choice for a
single instanton in which fts fields fall as r-z, the singular gauge.
Using this choice we can find a gooé approximate two-instanton solution
simply by linearly superposing two arbitrarily-oriented single instantons,
since in the field equations the non-Abelian commutator term in the
intermediate region falls with the separation like R-‘!l and so is eventually

negligible compared to the derivative term, which fails like R_3. While
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the overazll orientation of the two-instanton configuration can be changed
by a gauge transformation, and so does not correspond to anything on the
quotient gpace, the relative orientation cannot be changed in this way
without altering the fast fall-off in the intermediate region. It
therefore corresponds to a true collective coordinate of the system.

‘Hence two-lump systems with fast field fall-off, for which linear
superposition suffices to produce approximate solutioms, are guaranteed
to have collective coordinates corresponding to the full gauge group,
and moreover the associated motions will resemble ordinary global
charge rotatiomsin the vicinity of each lump. We can extend the
analysis to the case of instantons in theories with spontaneous
symmetry breaking if we demand that the asymptotic values of the Higgs
fields match; again due to fast fall-off of Au this ylelds approximate
solutions and we have relative coordinates corresponding now to the
entire unbroken group.

When we attempt to imitate this analysis for three-dimensional
gauge theories, however, we immedistely run into the difficulty that
the gauge fields of a single monopole do not fall off rapidly encugh
to permit linear superpesition of arbitrary pairs. If however the
monopoles in question have generators of the long-range fields which
commute, then we get a configuration corresponding to each superposed
one, distinct from others with differenmt relative orientations. In
the limit of heavy monopole cores these configurations are static
approximate solutions. This is consistent with the rigorous preof
by Taubes [13} that such configuratioms are close to exact solutions
in the Bogomol'nyi-Prasad-Sommerfield limit, where no infinite mass

limit is needed to render the multimonopoles stable. We expect the
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approximate superposition method to work as well for the MM as for the MM.
If we want the MM pair to have vanishing net magnetic charge (as we do),
we must choose the long-range fields mot, just to commute, but to cancel.
This is 3 well-defined demand if we work in a gauge where each monopole
has all gauge fields either falling faster than r_l or proportional ¥o a
constant Lie algebra element, which we will call Tl. Henceforth our
. classical field configurations will alﬁays be in this gauge unless
otherwise stated, with string eingularity chosen to lie on the line
joining the cores. {In passing, we remark that this superposition
trivially meets the non-Abelian stability condition discussed in Ref. [2].)
Each member of the pair will with respect to its partner have a
set of collective coordinates smaller than the number of generators of
£he unbroken group. This is more palatable, and more accurate, than
the picture of the monopole as breaking or spoiling some ordinary global
symmetry. The motion under rotations of these coordinates can be quantized,
giving excitations whose quantum numbers we can call "charges," but they
will not resemble the weights of any representation of the unbroken group.
This is not too surprising, since even in the usual interpretation of
gauge theories the non-Abeliancharges of an individual constituent had no
gauge—invariant meaning. Nevertheless we are accustomed to saying that
the individual quarks inside a hadron are in definite cclor repressntarions.
We now need to examine such statements to see whether they can apply to
individual monopoles.

Firet of gll, on very short distance scales QCP beccmes weakly coupled,

80 that thereare point particles corresponding to the fundamental fields of
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the theory. While it makes no sense to speak of a given quark as being
red, say, still we can via deep inelastic scattering count its possible
states and deduce the Casimir of its representation. When we attempt to
carry this reasoning over to monopoles, though, we run into trouble on two
diffevent points. The wmonopole is by definition a collective excitation,
which has a large indeterminate number of gluons present on any scale
large encugh for the effective theory to make gense at all, Still it
might seem that the Casimir could be well defined, whatever its value,
since certainly a full basis of the unbroken algebra can be defined at
every point in space. If we reconsider the argument of Ref. [5],
replacing the group Aut g by the larger O(n} of orthonormal bases of the
Lie algebra g, we find no obstruction to finding a set of n charge
rotation generators orthonormal at each point. Implementing these
operators in the quantum theory and taking the sum of their squares,
we gshould get a candidate for a generalized Casimir operator. Unfor-
tunately, even if this definition were sénsible, no suchk get of operators
could be implemented in the semiclassical quantization. In order to be
smoothly defined and satisfy the matching condition of Ref. [5], at least
some of them must at spatial infinity depend on the polar angle 6, and so
correspond to classical motions of strictly infinite kinetic energy.

Next, idealizing a quark as a heavy fixed point change we can deduce
its color by considering the binding of heavy scalars in some known
representation of color, and in particular those bound states for which
the complete system has no non-Abelian electric fields at large distances.

That is, we find the color by asking how many scalars it takes to screen

it. We will return later to this point.
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Finally, we can examine a collection of quarks as their separation
is increased to infinity. Arguments of 1o€ality then lead us to expect
that then those quantum states of the whole system whose energies have a
definite limit should resemble the tensor product of the possible states
of a single quark, and so if for some remson the system is easier to

discuss than the isclated quark, we should nevertheless be able in this

wﬁy to deduce the desired properties of the latter from the former. Since

indeed we do expect the MM to be simpler than the single monobolg, it is
to -this system that we now turn. Again the problem before us is to
reconclile the spectrum of single-monopole serates described in section one

with the fact that the MM system is expected to possess overall color

excitations and hence not look like the tensor product of two representations

of U(1). Again the resolution will be that the extra color states are

delocalized, not associated with either monopole.
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IIT. THE MM SYSTEM

We wish to discuss the monopole-antimonopole system in the lowest
semiclassical approximation. Again it makes sense to treat the system
as if it were stable, ignering the motions of the lumps toward each
other. A more serious Issue is the applicability of the semiclassical
expansion itself. To lowest order it amounts to the assertion that
the gauge coupling g is chosen so small that every deformation of the
classical solution is either perfectly flat in potential energy or
infinitely steep; then quantum fluctuatione off the absolute energy
minimum will lie far from the low—energy spectrum we wish to investigate.
When some other limit is also being taken, however, such as the sepa~
ration R in our case, we must worry about the possibility that no
mattér what small fixed g we choose, as R increases eventually some
non-flat perturbations will become shallow enough for their excitations
to creep down into the low spectrum. In this case we will not be allowed
to ignore them. We will return to this point in section four.

For convenilence let us work in a toy theory, where SU(3) breaks
via an adjoint Higgs field to H = SU(2) xU(1l) divided by a discrete
subgroup. We take the Higgs everywhere proportionsl to the matrix

1 .

This model preserves the Iimportant features of the usual SU(5) GUT,
giving qualitatively the same final result. (Analysis of the realistic
cape proceeds similarly, but certain coset spaces arise in place of Lie
groups, due to the fact that some non-Abelian generators of the unbroken

group act trivially on the monopole.)
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The discugsion in section twoe now Implies that the most general
ninimum-energy MM solution, with a gseparation R much larger than the
size of the cores, will be specified by an approximate solution con-
sisting of two spherically-symmetric monopoles. The latter is in
turn specified by twoc homomorphisms of SU(2) inte the fuil gauge group,
i.e. two ordered sets of three matrices ?, T' such that

_1) Each get obeys the su(2) algebra,

L

i1) 11 = 1 ', 80 that the monopole long-range fields match, and

iit) Onlf Tl commutes with the constant matrix ¢, and it
satisfles the Dirac quantiaatiqn condition {2].

Such a pair of homomorphisms determines a point of our semjclassical
configuration space. Since such a descriptien 1s cumbersome, we now
seek a simpler parametrization of this space.

The key is the realization that the dynamical system under consideration
is already familiar from mechanics. Just as in section one a single
monopole was quantized by analogy with rigid body dynamics, so the MM
system can be viewed as two rigid wheels partially constrained to move
together by an axle. Corresponding to the two body framesinscribed on
the two wheels we have the two frames ?. ?' attached to the two monopoles
and free to move subject to (1) ~ (111) above. Just as in the case Of.
the two wheela, we will be able to separate the dynamics into an overall
motion and relative metion, and then use staﬁdard techniques [14] to
quantize the system.

For the rigid rotator, we know that the most useful description of
the configuration space is not in terms of frameé, but rather in terms
of the group S0(3) taking these frames into each other. Similarly, in

our case we begin with a "space-fixed" frame
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2 -
To = ic/2| *
- + - +*
where 0 are the Pauli matrices, and the configuration T = 1' = To.
Any motion of the system with finite kinetic energy will leave ¢ fixed.

Call the generators of these unbroken charge rotations

. 15/2

=4
]

]

and Tu(l) = TD. Of these, the latter generates the same motion as T3,
so we drop it, remembering that T3 generates the action of ordimary
electric rctafions on the lump as well as one of the su(2) motions.
4All three generaters % then act nontrivially and independently on ?D,
and in fact all choices for T which are connected to ?b by smooth paths
following the bottom of the potential well can be obtained in this way.f7
To get ;, ?' satisfying (1} - (111} above, we now define a point in
configuration space € as follows: Imbed the group SU(2} in the unbroken

gauge group in such a way that its generator T. leaves Tl £ixed.,

1 Given

(U.eize) where U € SU(2), let
T = [ad u‘em"l]"-?(J

2>

T = [ad ve~8T1 o

(3.1)

Here (Ad U)X = uxu'l, the adjoint action by the image of U under the
embedding. The definition corresponds to starting with the wheels
aligned, their axle along tﬂe X axis, then twisting them relative to
each other by 20, and finally rotating the whole system by U. While
the four generators of SU(2) xU{1l) all act nontrivially, however, there
is a global redundancy since (U,eZie) = (—U,ei(ze+ﬂ)), 80 that finally
(The fact that C' resembles the

our configuration space is C* = C/ZZZ.

unbroken group U(2) is 2 coincidence.} All told, our system hes a
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configuration space of 4 dimensions describing motion; along its minimum
of energy. Moreover this space has a Lie group structure.
At this point the reader probably feels cheated. Does mot Ref. [5]
argue that meotions such as those where ﬁ changes in time are sometimes
unacceptable, having infinite energy along the strings? Ne, that argument
took place on the sphere at infinity, which in that case contained one
monopele. The proof that in our case the U motifons really do have finite
woments of inertia, as expected, is relegated to the appendix. There we
also show that the moments of inertia for those U motions which change the
long-range gauge fields are proportional to R, the monopole separation.

As R-= we tecover the infinite moments of thelsingle monopole [1-4].

The virtue of describing configuration space as a Lie group lies din
the fact that C' now has two physically meaningful actions on itself,
corresponding to “space~-centered" and "body-centered" motions of the
wheels. By actimg on the frames with (V,eZiu) either before or after

the operations im Eq. (3.1) we get respectively the motions

(u,8) + (Uv,8+a), . space centered

(U;B) + (VU,6+1), body-centered.
These transformations factor through the 22 above, and so define actions
of C' on C'. Since the 1nf1niteaimal‘action of u(li.is in each case the
same, we will not distinguish its two types of motiom. Clearly all three
of the transformations so defined commute.

A trajectory of the system is a path (U(t), 6(t)}) on the group. Its
velocity 1s & tangent vector to the group. By symmetry, though, the
dynamically relevant velocity must be defined in a way independent of the
overall orientation of the system, so we define the body~centered angular

velocity in the Lie algebra of C' as the right-imvariant (w(t), 8(t)),
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where w(t) = ﬁ(t) U-l(t). Let its components be $=--2 Tr(%h). Then we

know that m2 3have large equal momerts of inertia I3 propertional to R,
»

1 resembles a

Just as in the wheel

We will see momentarily that the motion corresponding to w
global charge rotation near each monopole.
enalogy, therefore, the two monopoles rotate in the direction of

their long-range generatoer Tl with anpular freqﬁencies wl ié, the total
energy approaching the aum of two contributions with fixed moment of
inertié I, as R+, The total energy is thus H = E—I (wz

1 27372
1 2.2 2
2 11((m1+9) 4-(w1 8)%).

2
+w2) +

H exhibits the promised splitting.inté terms involving only w and 8.
Immediately [14] we have that quantum states are labeled by j,m,m, g, the
elgenvalues of Lz, L;pace' :ody

generators of infinitesimal motions.

e
» and M, where L and M are the quantum
J must be at least as large as

max(imj,]m'l); furthermore because of the Z_ factored from € we must

2
have q even 1ffj is integral, since otherwise the system wavefunetion

would be double-valued. The energies of these states are

E=304)/21y + 5 @)?aT-170) + ¥y,

Here 13 ~ g—zR, I1 ~ g_zngﬁT. As the distance between the monopoles
gtaus,-the spectrum of the theory thus approsches exactly that predicted
by Dokos and Tomaras, but the total mumber of states is not that of two
isolated fepresentations of color. Nor is it the same as the number
expected for twe isolated representations of U(1) of the type described
in section one.

We can see why the T3 rotations represent large diffuse excitations,
with large moments of inertia, by examining Eq. (1.2).

First, however,

wve must justify the approximation of ignoring the monopole cores and



working in the unbroken theory. Let us circumscribe ome monopole by a
ephere of radius p, with M;£T~<<p << R. Outside the sphere the full
Gauss's law condition indeed veduces to Eq. (1.2). This 1s a well-
defined Schrodinger equation on all of space for a scalar adjoiat-
representation particle outslde & monopole, and it contains but one

scale: R. If [} ot infinity has a T, component, the equation is just

1
Laplace's and ¢ 0 211 the way into the core; javalidating the ap-
proximation which neglects the Higgs fields. If however { has no Tl
component, then under the adjoint representation it splits into

eigenvectors of Ad Tl with eigcnvdlucg #). Wear the chosen pole ﬂ(;)

can be expanded in monopole harronics, the lowest of which will have

L a'%. This gives [2] on effective L' via ' (L'+l) = R{R+1) - (1)2(1/2)2,

or L' = ¥/3/4 - 3 go viz dimensional enalysis the regular solution behaves

2’
L]
1i%e (r/k)n near the pole.

The equation for r <p is compiicated, and it involves a new scale

-1 :
o . Neverthelems, it is linear, and so its solution will be homogeneous

GUT
]
in its boundary data. Thus §I inside the core is proportional to (pr)l .

and so vanishes as R+=. As promised, #othing happens to the cores when
wve rotate the system in this limit, ond we can therefore work in the
unbroken theory, where the T's disappecr cltogether. In the

wheel analogy this corresponds to replacing the wheels by point masses

at the ends of the axle, since smwall woments of inertia are being neglected.
>

-1+

Now the rotating system has an electric field B(t=0) = A(t=0) =-g "DQ.

Part of this comes directly from the motion of the lump, while part is due

to the spatial varistion of {i, If as in the appendix we mow split o
into a constant plus a function wvenishing at infinity, we see that the

latter obeys an equation with a soiirce gpread throughout a region the

size of R. In this way R can (and for dimensional reasons must) enter

I, with a positive power. Therefore, supposing the total charge wBI

3
is held fixed az R increases, then the source inside any fixed box

3

contalning one monopole decreases, meking it harder and havder for a
local observer to detect whether w313 is nonzero at all, Thus in the
classical theory the qualitative behavior of one monopole is the same
vhether or not another exists far away.

In the quantum theory some of the states will have j = |m'|,
corresponding to the classical motions with Wy = Wy = 0. These states
contain two of the objects with definite color hypercharge described
in section one, and like their classical counterparts they can be
thought of as two point sources of electric and magnetic color glowing
agQinst a dark background. Also for arbitrary ] our states look like
two point sources of abelian electric and magnetic charge; since body
Tl rotations are also U(1l) rotations, the corresponding electric charges
are proportiomal to m' *q., By analogy with the classical case, for

large R the guantum states with nonminimal 3 will be hard to distinguish

from those with j = |m'].
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IV. DECAYS OF THE MM

The interpretation of Fhe T3 motions as almost in the continuum
brings us back to the issue at the beginning of section three: what
right do we have to ignore the almest-flat continuum modes In the first
place? We have attempted to describe stationary states by charges, with
Po regard to the existence of free charged particles. Indeed, just as
the excited states of the hydrogen atom are not true stationary states,
so interaction with the gluon contimruum mzy make cur nonminimal-j states un-
stable to decay. This process is controlled by the matrix element of the
Perturbation to our system due to a gluan piane wave, which transforms
as a color triplet in the "space-centered™ frame, so we get [14] that

- ' space
Tpempemyayle

|j1,m1,mi,q1> is the product of group-theoretic
fgctors times internal matrix elements <j2.m5.q2|¢5|jl,mi-q1>~ If
these are nonzero at all, they will at least be disgonal in m' and q,
since no field in the unbroken theory ecarries abelian charge. Also,
.31'12 must be an integer sinmce the gluons are a color triplet, comsistent
with the relation between U(1) charge and evenness of 2§ noted in section
three.

A given MM state mey thus decay to its minimum-j state, shaking off
excess charge to minimize its color-electrosé‘éic energy. The lowest
state is still degenerate in m, which clearly just reflects the fact

*+bod ~
that while L 007 jg strictly along the long-range generator ebcdy, still

1

the whole system can point any direction in "space-centered” ccordimates.
Since the monopole fields are very strong as g—+0, it may even be

possible for gluon emission to proceed sc rapldly as to obliterate some

of the states we have found by making their widths greater than their

energy splittinge from the ground state. While such a phenomenon is not
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required for consistency, still it is an issue which must be resolved
before the enumeration of MM states is to be trusted. In this section
we therefore consider the decay of isorotatiomal lump excitations by
emigsion of quanta of the very same non-Abelian fields which comstitute
the lump. We will only be interested im the qualitative issues of
whether and how such radiation can occur at all, and if so whether as
g2>0 its rate can exceed the energy splitting AE = @ ~ ng’I. The reader
who is willing to accept that this does not occur may wish to skip the
anfractuous details and proceed to the end of this section. For
simplicity we will continue to work witt SU(2) color. The same sort of
treatment could also be of use in fnvestigating the decay 4 + 7N in the
Skyrme model of barvomns [15].

To treat the decay problem quantum-mechanically we could make use
of a modified collective coordinates method along the lines of Gervais
and Sakita [16]. In this language the gluons correspend to "vibrations",
to be expanded in a basis of normal modes about the static lump solution,
then quantized along with the "rotations". Typically in problems such as
arise in molecular physics we can ignore the vibrations altogether for the
lowest-order analysis of the lowest-energy states. This is because the
quantized vibration states have energies much larger than the rotation
states; indeed in field theory the former are #(1) in g while the latter
are:éﬁ{gz) [17}. Nevertheless, when the vibrations belong to a massless
continuum, their emergies can be arbitrarily small, vitiating the above
power—counting. The rotatiomal excitations may then mix with the con?inuum,
if the latter can carry the former's charge.

In the problem at hand, the emitted gluons should have an energy

equal to the isorotational level splittings AE. The actual mechanism
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responsible for their emission is found by examining the collective-
coordinates Lagrangian for terms involving the charge ("angular momentum")
on the lump and one power of the vibration, cecordinates. Terms with more
vibration cocrdinates correspond to simultanecus emission of two OT more
gluons, processes suppressed by phase-ppace factors of g due to the
smallness of AE. The appropriate term is thus the lowest-order "stretch”
term, so called because in the theory of diatomic spectra it gives the
effect of the modified moment of inertim due to the molecule's deformation.
If J is the angular momentum, I the moment of inertia, and 8I a linear
function of the vibration coordinate, thig term is contained in

2 -2

% Passy™t e 22 L -;- 7?1t (4.1)

[ XT]

In our case the term of interest is thus suppressed by two powers of the
frequency w = J/I, since the quantized values of J are integers of order one.

While the gquantum derivaticn along the above lines is straightforward
in principle, in practice it iz difficult. For our purposes,. though, we
can get an adequate estimate of the emission rate by considering instead
the analogous elassieal p;oblem, as explained in section one. The rate of
energy emission 4E/dt for & classical system rotating at frequency w,
divided by w, should be a good guide to the order Af magnitude of the
mission rate I', provided thatr m-l dE/dt turns out much amalle; than AE.
Once again we will see how stretching effects & lg Eq, (4.1) provide the
emission mechanism.

The classical problem resembles that of g dipole antenna with
periodically changing polarity in electrodymamics, but without any
external source of charge density. Rather, the source is the gauge

<2ld itself, so that a better analog to our problem is the gravitational

~adiation of two slowly orbiting black holes, a system comsisting of pure
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gravity everywhere on a space with twe points removed. An exact solution
of our problem would begin at time zero with no radiation, treat the
mcnopoles dynamically, and solve the time-dependent field equations
through time T >> R. At time T the energy flux thrcugh a shell ef radius
T would then give the initial rate of emission. Instead of this
hyperbolic, evolution problem, though, we will solve a much easier
elliptig, steady-state problem as follows: the monopoles are driven
externally by linearizing the problem about a given time-dependent
configuration. 'An ansatz for the steady-state time dependence of the
perturbation is ther made such that when inserted into the full field
equations it yields time-independent equations for the perturbation,
These equations define a well-posed elliptic houndary value problem
when supplemented by gauge~fixing and outgoing-wave conditions. The
solution far from the radiating system describes an energy flux which
gives a good account of the Initial rate of radiation in the realistic
system, much as‘in electromagnetic theory,

Specifically, we begin with the superposed MM configuration E(;) O=Tl.
As discussed in the preceding section, we may work in the effective
unbroken theory. Alsa static solution to the Yang-Mills equations
1

subject to the bdoundary conditien that monopoles be present at * 3 RZ.

We take A = 0. Next consider the uniform charge rotation A= uA where

0:
U{t) = exp[t], u= Ad U and § is an antihermitian generator of

infinitesimal charge rotations. Since T3 15 a principal axis of the

isorotator, the uniform motion 0 = w’l‘3 is a seclution of its lowest-
order Fuler equations of motion. It correspends to the quantum state

withm' +q = 0 but j=1.
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When the continuum modes are added to the system, the above moticon m2T§(¢0+5) = -G5. The § on the lhs is clearly a stretching term again,

is only an approximate solutiom. Accerdingly we write describing the change in the rotational kinetic energy due to a

distortion of the lump. By linearity we would naively expect the

e - > &+
Alx,t) = A(x,t) + u(t) alx,t)
solution to be proportiomnal to ng-l, just like the source.

Ao(i’.t) = u(t) aoa,:) (4.2) 2

To find & we need a Greem functionm inverting the operator G-+w2(T3) .

and linearize the field equations to get new equations for au. The latter

Let us now specify to the simple case where Ti act pointwise on the fields,

enjoy a gauge invariance which must be fixed bef the
gaug etore they can determine T which are in the adjoint representation, w is independent of %, G is minus

80 we choose the background field gauge 5u(uau) = 0, where 5“ 1s with
respect to A. Equivalently, we have D°a = {Q,aol + ;0, where D is with
respect to A. This gauge has the adv#ntage of being well-defined by the
slice theorem [18}.fa Solving the new field equations, we look for
radiation in the part of a which is ﬂﬁr—l). a, will indeed satisfy

a set of time-ipndependent equarions, and so can itself be taken
independent of time in the "corotating" basis of Eq. (4.2). We will
make this ansatz now for simplicity, showing later that such 2 solution
does exist.

To get started, we digress for a moment to a gimpiified problem
having many of the same features as ours. Consider a theory Gith some
collection of boson fields ¢(;) and invariant under an action of su(2).
The theory is characterized by a dimensionless coupling g such that
Li¢;g) = g—ZL(g¢;1). Suppose the theory admits a static classical
soliton ¢, (%) mot invariant under SU(2), e.g. Tyb, # 0. g will be
proportional to ghl. Consider ¢(;.t) = eth3(¢0+6) and insert into the
canonical Lagrangian L --% &2 - Vid]. Let G = 62v/6¢6¢l¢ be the small-
oscillations operator. By hypothesis 0 = V[¢0] = 6V/6¢'¢z. Then since

V 18 gauge-invariant we have V{¢} = % 5765 +-0(63).
$ - emtT3 [wz

Assuming 5=0,

2
T3(¢0+6)]. and the linearized equation of motion is

1
the Laplacian, and ¢0 « 10| in the basis spanned by the generators Ti of
0

su{2). We eeek a solution § also in this subspace, which we simply

-
identify with R. So (V2 +uw’)é = .m2¢0 = £(X). This is the reduced
Helmholtz equation, whose solutions we obtain by Green function methods

as convex linear combinations of the two functions
3 -l
8 = ;};J Cy -3 £G) e
- -1
For |x| »>> w = »>> R, this is
> -+

= =+ 3 LipEe -+
- (‘ﬂfl?t'l) 1 e+iwlxi J a’y e ¥y £(y)

= ) T plagy, (4.3)

+ -+
where £ = x/r, r = Ix[, and F is the Fourier transform of £. Were f a
source of compact gupport of diameter ~R, we would approximate F by

~

expanding eimr-y’ obtaining the usual multipole sxpansion for §.
Instead, let us take ¢0 to be one gpatial component of the magnetic

dipele vector potential, say ¢0 = § -3 =¢R/gr2)sinﬁ. This source has

such slow fall-off that its dipole moment diverges quadratically. For

a rough estimate we can repalr the multipole expansion by continuing

to expand the exponential but cutting off the space integral &t the

Bcale url of oscillations, giving
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-1 = 3 2 R
§(x) ~ —{4nr) 1 e dwr J.d yim(f';)m sine-—I;IE + (higher multipoles)
. gy

- = -2
~ =Gt T Ry el

All told, § turns out to be unexpectedly emhanced by a power of w. of
course this can alsc be seen explicitly using the exact Fourier transform
of the dipole field, but the principle is more general: if a radiation
field has a contribution which is emhanced in this way, then all contri-
butio#s from more rapidly-falling terms of the Bource can be neglected to
lowest order th w. 1In particular, that part of the source lying within a
radius ~R can be neglécted completely, sinée the magnitude of its con-
tribution will obey the naive expectation above. More general linear
differential operators than € will still have this property if they
reduce asymptotically to -Vz.

We should pause for & moment to note that the source term in the
egquation for § comes from a term proportional to one power of & in the
Lagrangian. As noted before, a radiation process caused by this source
thus corresponds to single-meson emission and proceeds steadily in the
driven classical theory. Had we found that 6(;) contained no radiation
part, we would have been obliged to abandon our ansatz § Z0 and to seek
8 solution displaying parametric resonance {19}, characterized by an
exponentially—increasing radiation part, Such a solution would correspond
to two-meson emission, which would have been relevant had the one-meson
Tate vanished,

While our steady-state solution has a radiatjon part, however, it
still is not quite correct. Calculating the Poynting vector T01 at
infinity, we find it to be zero. It is not difficult to trace the problem

back to the ansatz 6(!!1; transforming such a selution back to the non-
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rotating frame gives ﬁ(;)[Tlcoswt + Tzsinwt], which at infinity has only
standing waves. We therefore relax the ansatz to allow & a T2 component
and geek to formulate an outgoing-wave boundary condition. This is easy

in the new basis T+, T, T3 for (complexified) su{2), where I, = TliiTz.

We simply require that at infinity the solution behave as 61 T r_leiimr.
This can be rendered more precise by putting the problem in a large
spherical box B of radius L >>m-1 and replacing the outgoing-wave condition
by a totally-absorking condition on the boundary: (3/3r ;iw)dt = 0 on 3B.
To ‘complete the specification we can add to this 863/8r =0, which will
make 63 vanish everywhere. We will ignore it. Later it will be
technically vwseful to clip off f Just insgide 3B by replacing it with
f(g)x(r), where the smooth function X=0 for r > L-€, y=1 for r < L-2¢,
some gmall g. Agéin it is clear physically that this modification does
not change the radiation flux. Returning to the original Ti basls of
su(2), we thus require (5/3r + wH) 8=0, where

[o -1

M= .

d 0

This condition is real, as befits a problem which was purely real to

begin with. We will continue to use cozplex numbers whenever convenient.

The equation for § then becomes
. 1
v +u?ys =[ OJf, (4.4)

the two pieces coupled only by thé boundary condition. Rather than
attempt a solutiom to systems such as this one, we will later approximate
their asymptotic behavior using the fact that some soluticn does exiét.
Let us sketch a proof of physically cobvious assertion for the above
equation, for practice, It will make the problem look more familiar

if we first make yet another change of variables, letting a(;) = emp(r)Ms(;)’
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M ag before. The emooth function p(r) = r for r > L-&g/4, while 1t

vanishes for r <L -g/2. The boundary condition then becomes 3a/dr| = 0.
Let S = L (B), the real Hilbert spaces of square~integrable functiogz on
B with Neumann boundary conditions. We then wish to solve @a=f on this

mp(r)H

epace, wvhere now ?(:T) = f(x)x(t) X €lips off §f as before, and

D = Vz +m2(1-(?7'p)2) -ZhM('V,p)'V-u\M(V P}. @ is self-adjoint on Hand
moreover has no continuum spectrum since B is hounded.

The above transformation of variables can be symbolically replaced
by a medification of the differential operator on § from V2 + m2 to
D = Vz +m2+26(r-1.)m{, where the delte.function is understood in the

sense of

I 26 (r-L)Y(x) =J vx).
B 3B

Self-adjointness of @ on ¢ corresponds to formal self-adjointness of @
ons#", the space satisfying the outgoing-wave condition. In any case,
to show Jnvertibility it now suffices to show that @' has no null
eigenvalues, i.e, that the homogeneous problem @ '6 =0 has no nonzero
solution on 3¢'.

Thig is trivial. Setting the rhs of Eq. {4.4) zero we get a pair
of equations of SchrBdinger type for a “particle” of “energy" mz. In
the case at hand the particle ig free, and so all its scattering phase

shifts vanish. But by the outgoing-wave condition, for large L we have

1w ~iwr
81,2 % & -

must have all phase shifts differing by w. So no nonzero solution exists

respectively near r=L. This implies that 61 2

ond¥', and the original inhcmogenecus problem has exactly one solution.
This of course agrees with our physical intuition, which says that the
outgoing-wave problem corresponds to the initial behavior of a well-posed

Cauchy problem.
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The application of the foregoing analysis to gauge theories is
straightforward once gauge invariance is dealt with. 1In electrodynamics,
we car render the static field equation sz-ﬁ'-K-;, where -‘5-; =,
elliptic by imposing the gauge -V*-K=D. A solution to the resulting
simplified equation Vz}:-; will then solve the original equaticn only
if it also satisfies the gauge conditiom. Fortunately, however, with
appropriate boundary condtions the simplified equation actually contains
the gauge condition, as we see by taking its divergence. The same happy
situation prevails iIn linearized Yang-Mills theory, so that once we have
used B'E = [Q,aO] to arrive at simplified equatioms, we can then forget
all about it, demanding simply that there be only transverse outgoing
waves at infinity. The proof is simplest is we let Au(; t)} = Ku(-::,t) +

- - ™
bu(x.t), where ggain Ai = u(tm:t 0=0 b is small, and Di?ij . We

want to simplify the Yang-Mills equations uaing ﬁ-gsﬁo. Linearizing
i ive
n ]:-u gA 8
D,F,. = g[b ] + 5%, - 5,5,b
i 43 i’ 1j 3 131
- =2 o
= + - .
Zg[bi,Fij] D bj DjDibi
Using the gauge condition the simplified equations are
D:LFO:L =0
= =2 — .
- - = 5
DoFo; Zg[bi,Fij] D%y + Dyby = 0 (4.5)
We wish te recover the gauge condition from Eqs. (4.5). Taking the

covariant divergence of the second and using the first,

D JF,. . +DDF  ~2g[Db,,F .1~ {Dj,Di]GJibj) - ﬁi([ﬁj,ni}b )

0" of 075 03 371774y ]
- 5%eb + B%b, = 0
and 5
- - .
D (D'b-bo) = 0.
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The equation 521‘.‘ =0 has the unique solution f =0 if we demand that f
vanish at 88, following an argument similar to that in the appendix.
Thus Eq. (4.5) contains the gauge condifion.
The time has come to begin approzimating. Returning to the
variables a and 2, of Eq. (4.2) we see that they satisfy coupled wave
equations, ﬁo wit the Ampére and Gauss laws, We will show that to our
approximation these equations decouple and we can estimate Z and a,

separately. First of all, we can gauge away the u in Eq. (4.2),

> -1
giving A = A+;, AO = aa+g fl. Consider now the linearized Gauss law:

= ([Q,B—Ha}j ~D.a.)

Foj 120

0 = DyFy,

= B, (I.Ave ) -DPag +ala 10,11,

By the above analysis, the golution to this and the remaining simplified
Yang~Mills equations will satisfy the gauge condition, s0 to estimate a,
We also introduce the ansatz that at

- -1
large distances the solution satisfies ; ~ g ltur le Lwr

we can freely use the latter.
, &8 in the

earlier toy model, and that the leading term of @-; is independent of

the azimuthal engle ¢. Here the tilde means that we include the

dependence on g, w, and r-l; enough powers of R are implicitly present

to make up the right dimensions. Wes have then a wave equation for ap:

o=glal%a- 20105 )a,1 + [8,18,a)]1 - sy,

where we have used VA =0, Since the entire problem is azimuthally

symmetric, we can take 3 ={}, reducing the last term to -Vzao-gz[zi,lii,éﬂ]],

60
which is diagonal in color, satisfies a Poisson equation with

-1 ~1
wr .

Then 303

source dominated by the first term, and so 84y ~ 8 L 802

satisfy wave equations with source ~g'1'w2r_3. This falls off too
=1 2 =1 *ipr
e .

rapidly for the w~enhancement effect to work, so a ~ g wr

01°%02
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Turning now to the other three iinearized Yang-Mills equations, a0

will enter via F We get

a3’

DOFOj = [Q +gaU,£9,A~I—a}j -Dja()]

= IQ,IQ,A“"ﬂ]j] - {Q!Djaoj + [gaov[gvA]]-

. _ _ :
The sources for a are then the first term ~g 1w2r 2, plus others

involving a, which are all suppressed relative to it by powers of w

1]

or r-l. Since the first term falls slowly and sc is enhanced by one

power of w (as in the toy example), we see that we can ignore a,

altogether and consider the three spatial Yang-Mills equations with
=0,
%0

Fext we need D F, ., which we are to simplify using the gauge

i 4

condition. We get DiF = ﬁza term from the

i3 3 0

gauge conditiom which we can drop by an argument eimilar to the one

+2{ai,§1j], plus an a

above, All told,

2
+ 2[ai,F

0= u'ay - [9,12,2,1] + pla 1, (4.6)

3 3 1)
with boundary condit;ons of transversality, ﬁ'as(h and outgoing
transverse waves, (Blar-éwﬂ)%ﬂ =0. We have again moved to columpn-

vector notation for the adjoint representation, with

0 -1
M={1 0
0 u
- e S R ~ >
and 4 = Peg=a-$ff-a. Since we sare always interestad in 2 oaly to

- “— >
lead order in v 1, we will rephrase the boundary conditions as (8/8r +uM P ya=0.
This again defines a self-adjoint boundary-value problem 1f now we formally
subtract 2(5(r--l..)ml“qu-‘i;p from the differential operator, and go to show that a

solution exists we turn to the homogeneocus problem.
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Eq. (4.6) suffers from a string singularity on the line joining
the two monopoles. Since there is no genuine physical singularity
anywhere in the full broken gauge theory, though, we can now invoke
the w-enhancement argument and modify the equation, setting A=0
everywhere inside T =2R without disturbing the leading radiation fields.
Algo, outside 2R we can take A to be pure dipole.

"
a

Equation (4.6) splits into two pleces. 1f we denote T232-+T3 3

e
by &', then we get

0= mzi + mzzl + szl

0= "[9:[9"‘ 1.

3

in spherical coordinates these egquations and the boundary condition

1134 D ai + 2[ai.i5'

i3
joining them are independent of ¢, so ome ansatz on 2 is consistent.

The first equation is exmactly that of the toy model, and its homogeneous
version is the free Schrodinger equation. The second is not free, but
In terms of x',

becomes so for smasll g, as we see by rescaling %' =wx.

we have

0w —mz[Ts,[T3,a5]] + mzv'zgi

- wglAGw %) T 4 VeRw xa) 2a], 4, @RI
But R and ; are bounded by powera of r-l, go the second line is suppressed
relative to the first by one power of g. For small enough g, then, it
will again be impossible for this system to have the phase. shifts -
required by the boundary condition, and the trivial solution will be
unique.
+

Using Eq. (4.3), we have a; agsymptotically as some convex linear

combination of the functions
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Ruw ~ -2
* [lmrg] em’r ¢ + H(x ,mz).

We have used the Fourier transformation F(i) = -mz'ixﬁlgkz of the dipele
vector potential. The a equation can be shown to have a comserved
*nrobability density" Tr(a‘T)-;' whose comnservation law requires that
have equal amounts of eiimr

at infinity. Combining this with the

-

22
-+

boundary condition and the form of ay shows that all components of ;

have radiation parts with magnitude bounded by Rw/gr. This has the

appropriate units, end it verifies the remaining ansatz on ;.

~

Now we can estimate the Poynting vector § = Tr E:;ﬁ as
242
5 - FELJ g,
gr
The rate of energy loss divided by w corresponds to the quantum emissiom
3 2
rate and equals T ~ sz /gz. Using AE=w and ® ~g /R we at last obtain

T/AE ~ 8>

in agreement with Eq. (1.3). In the weak-ecoupling limit, them, the
isorotator states found % section three are practically stable; our
prediction for the specirum is not invalidated by inclusion of the
cont inuum.

The gquantum M system for any finite separation R thur has discrete
metastable color states not reflected in the temsor product of the states
available to a single (anti-)monopole. This is no paradox. After all,
the same is}true of two hydrogen atoms, which can have relative orbital
angular momentum states in addition to their internal states. In each
case the extra discrete states come not from thin air but from the continuum
of gluon states (respectively momentum eigenstates) available. In each

case for large R localized measurements are unable to detect whether the
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extra states are excited, and sv as R+® they effectively disappear,

removing any contradiction with locality and the spectrum of a single

system. In no sense can the extra states be thought of as new excitations

of the individual constituents.
Had the analysis uncovered extra metastable states whose splittings
and lifetimes did not depend on R, we would have been in trouble.
These could have been excited by an incident gluon wavepacket much
smaller than the entire system, and se we would have been forced to
interpret them as unexpected new excitations of one of the monopoles,
Finally, we must consider the pomadbility of normalizable near-zero
wodes for large R. In the wheel amalogy these correspond to flexing
modes of the axle as it becomes very long and flimsy, A closer look
at the analogy shows, however, that at the saﬁe time the two wheels are

geparately picking up infinite moments of inertia perpendicular to E?Gdy,

This is because the only exact zero modes of a single monopole not already

accounted for are non-normalizable (at least in the BPS limit [7]}. Thus

these motions are classically ne more observable close to one monopole
than were the w2,3 motions, In the quantum theory this corresponds to
the statement that a measurement taken on any fixed time scale can as
R+= use 2 set of approximate emergy afgenstates in ;\;hich 'rl is fixed,
even for nonminimal j or excited near-zero modes. The error incurred in
this way will be smaller than the uncertainty error of a finite-time

Esggurement,
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¥. DYON SCREENING

How that we are at last sure of what a chromodyon looks like, we
can veturn te the remaining coler test of section two, the binding of
nonrelativistic test charges to a chromodyon. This is a direct
generalization of the Abelian monopole problem [6,2,20]. We take the
dyon to be a fixed classical background field, the test charge to be
in theVS Tepresentation of SU(5). Since a hosonilc particle will not
reach intc the dyon core, we can work in & two~patch unitary gauge
with no referénce whatever to the underlying GUT, save for the relation
between triality and electric charge. If we let the antihermitian
matrix

@=-7| 0
1

be the SU(3) plece of the matrix representing 13, then the particle

wavefuncticn solves
{ 1 32 + 40" ngz
ey ‘— o ig - .

Evidently the scalar potential does mot affect the invariance of this
-+
system under rotatioms generated by i = -1?1:D -iQ‘;/r, and s0 we can

dizgonalize the problem in Lz, L,» and Q', In a sector with iQ' =} we

3
get the usual radial equation with centrifugal term {2(£+1}~A2]/2mr2 and
potential Angzjr; Test particles with A=0 will therefore not see the
long-range part of the dyon at all, while those with A#0 can bind if n
has the right sign. The possibility of such binding is an important

gqualitative difference from the case of ordimary monopoles, For such

& bound state the total electric field of the dyon-plus-particle at long

distances can be obtained by linear superposition; since dyon and particle

have ' charges n and %'respectively, 2n particles can screem the electric



field completely. The particles' mutual color interactions can be
ignored due to the overwhelming magnetic field forcing them to 1ine up.

We can repeat the aréument with Feat charges in other color repre-
sentations. Again all that matters ore the Q' charges. Colored particles
can screen chromodyons, but not in any way which let us infer that the
latter have definite color. Fully-screened states with no long-range
electric fields exist, though they still cannot be called color singlets.

This exhausts the proposed color tests. The chromodyons canmot be
said to have definite color.

Before éqncluding there are some remarks about confinement to be
made. An MH system with j=0 can exist by itself in the full theory so
long a5 R is less then the confinement scale. As R is 1ndreased, however,
1f q#0 the energy of the system will increase in the cuétomary linear way.
Eventually a superheavy charged vector boson will be exchanged, reducing
q. In pure gauge theory, then, isolated chromodyons are not expected to
exist. If colored matter particler are present, however, we have seen
that they can sereer the color electric'field. Single chromodyons ean
then exist and engage with strong-cross‘aectiuns in a full variety of
charge-exchange processes unavailable to ordinary monopoles, much as do
ordinary neutral atoms. A

Life without global color is not so bad a2fter all. In the absence
of monopoles the view presented here of the role of global gauge symmetries
reduces to the usual one, while in thelr presence it gives us a consistent
picture of their low-lying states. When heavy scalar quarks are present
the chromodyons bind them in just the expected way. The case of 1igﬁt

spinor quarks {is of course another matter.
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APPENDIX

We are to show that the moment of inertia I, for the Mf system at

finite separation R is finite and bounded below by a function pProportional

to g-zn. As explained in section one, questions about this moment of
inertia are questions about solutions 9(;) to Eq. {1.2) which at infinity
approach 13. Or more properly to the equation

@?ewhp -0 (a.1)
in the full broken Yang-Mills-Higgs theory [3]. Here D ig the adjoint
representation covariant derivative with Tespect to the monopole gauge
field A(X), end ¥ = [$,9] where ¢} fa the adjoint Higgs fleld. If
the static temporal-gauge configuration (K,¢) is set into uniform
rotation using the generator ﬂ(;), the result will satisfy Causs's law.
The other field equations are of no concern here; (K,¢) need not satisfy

them. The kinetic energy of the rotating system is then

ol

22 i

ELR] = %f @z hex,n? + Zn?) =1

‘g, (A.2)
where the subscripts refer to the L2 norm using the invariant inner
product on the Lie algebra g.

As In the text we choose K(;). ¢(§) to be the linear superposition
of two fundamental monopoles in a theoiy vhere SU(3) breaks to U(2).
~We can write this solution with no eingularities if we divide space into
five regions as in Figure {la). 1In the shaded Teglons we use the gauge
where ¢ points radially in 1ntern§i space, while in I, Ii, IT we use
the Wu-Yang gauges [20], where ¢ points in a constant direction. By a
'gauée transformation we can cover space differently as in Figure (1b).
Now a single patch takes care of the entire region at infinity, Outside

the cores ¢ approaches the constant v® exponentially, where v ~ HGUT and

=2
Splitting § orthogonally into stab ®® (the rest), we have that the

components of K in the second factor vanish exponentially rapidly
away from the cores. Examining (A.1) we see the same iz true for §l.
(Incidentally, Eqs. (A.1), (4.2) are gauge-covariant and completely

insensitive to our chopping-up of space.)

8ince the lower bound is easier to obtain than the existence of
a finite-energy solution, we begin by showing the former given the
latter. 1Let Q(;) = ﬁ(;) + n(;) where § = T3 outside r =2R, In this

region { essentially satisfies Eq. (1.2), i.e.
Ezn = —-ﬁzﬁ, n+*0 as r+«, (A.3)

Let us momentarily teke n'=0, so (A.3) is not satisfied. Then

= 51
EIf}] 25

lﬁﬁni (A.4)

2 (const.)J [_]1_2_]2 1 +0(R/r)]d3r
oR|gr

g2

for any a >2, Taking large emough o yields the desired bound.

{ =] -
2 (const.){""g-] ot + o,

Now we correct for nonzero 1. First we show that n falls at least
- -2
as fast as r 1, a property of the Greem function D © in (A.3) which is

almost obvious, since ) "approaches ¥V at infinity._ Rewrite (A.3) as
+ = +> > =
v2 = —2g1A,9n1 - 5214, (4,431 ]

and solve on {r 2 2R} with prescribed boundary data at r = 2R, zero

data at infinity. This gives terms of the form,



by

3
f dy i = d3 A 1
~ i;-;f Tgiz () + j I?T% ng¥ [—i:g—J + (surface term).

Each term converges, even after one power of ];’-1 has been taken
outside the integrals., Thus we have n- r_l. Equation (A.4) now
involves & + ;n Both terms are 0(1'-2), but they cannot cancel,
since the first has a curl to this order while the second does not.
So E[f)] is still bounded as above. Since the boundary data on r = 24
were irrelevant to the proof, we gee that indeed the bound on 13 is
completely due to the excitations of the long-range fields.

We must now prove existence for fhe exact Eq. (A.1). We will be
fairly careful here since the result ie'éentral to our argument, and
since it may mot be clear at first that there really 1s no difficulty
witt strings and other singularities. Our strategy 1s to let Q={Hn
egain and show that the differential operator acting on n is invertible
on an appropriate space of functions. The trick will be to turm the
problem into another in the calculus of variations, then use standard
methods [21,22). The program succeeds because (A.1) is a smooth
elliptic problem.

We begin with the remark that polarizing ghe quadratic form E[Q]

yields an imner product on the space r‘pf.functiogs 2, namely

<u.v>M = <3u,3v>2 + <Hu,Hv>2,

with associated seminorm lu“: = 2E{u]. The Kato and Sobolev

inequalities [21} give

e 2

respectively, showing that

6

ﬁlu[” 2 Z (const.) 'u

I.EH really 18 a norm. Next let th
be the norm completion of Fo. the functions of compact support. th

is a Hilbert space; it is here that we will pose our variational problem,
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We note that “ﬁk{ < =, regardless of whether § ig actually in atk.
This iz the step that failg for a single monopole.

Let F[n] = E[@4n]. We must show that F is defined on J!a, where it
is differentiable, strictly convex, and subject to a coercive lower
bound. That is, ¥ looks like & smooth convex bowl which turns up at
its edges. By the calculus of variations F will achieve a unique local
awinimum at ﬁ, which will be a critical point. The precise theorems are
in ref. [21]. Settimg the directional derivatives 6cF[r_1] =0, all g,
and using the -nondegeneracy of the metric then shows that ﬁ-#ﬁ satisfies

the differential equation (A.1). Now

1 2.1 2 =
== = +
Fin] = 3 HS’EL +5 "“EH Q0>
<1 2
3 Qe+
by the Schwarz inequality. F is therefore defined on Jeh. Since ¥ is
just a (shifted) norm, it is strictly convex and satisfies a coercive

bound .

Finally we need differentiability of F. This means that

8 FInl = 21n & [F(+eD) -F()] € B
[4 e+0

is defined for all z,n G.fu, and for every fixed n gives a bounded

- linear functional. We have GC?IH} "<§'+n,C>Ha which is finite and

defines a bounded linear functional by the Schwarz inequality.

~By the calculus of variations, then, ¥ has a unique local minimum
ﬁ Egma, which 1s a critical point. We saw above that ﬁ vanishes at
infinicy, so ﬂ'-§-+ﬁ satisfies the boundary condition. The smoothness
of ﬁ is a question of elliptic regularity which we will not consider

here.



48—

Footnotes
A partial history of these statements goes as followé. For mcnopoles
in the Bogomul’nyi-Prasad-Sommerfield limit, E. Weinberg computed the
dimension of the moduli space [7]. He found rhat not enough normalizable 4,
zero modes exist about the fundamental SU{5) monopole solution to

correspond to all the color generators naively expected to act aon-

trivially on it. Later Abouelsaced, in the course of an investigation
into the collective-coordinates quantization of the monopole's dyonic
degrees of freedom, discovered that under very general circumstances
certain motions along the minimum of the system's potential well were
unacceptable as collective coordinates [3]. Both of these analy;es
¢learly show that the source of the preblem s the slow fall-off of
the monopole's non~Abelian flelds, as [—i’ with distance. Abcuelsacod
concluded that there weré no chromodyons whatever.

Subsequently Nelson concluded that indeed some chromedyons exist,

but not enough to form complete color multiplets [4). This result
was rendered intelligible when Nelson and Manohar proved that no
complete set of smooth global color transformations could be defined
on a sphere containing a wmonopete [S], o fact fndependently noted by
Balachandran et al. [6]. Since memspole number can always be
represented by a surface integral over the sphere at infinicy [8],
the problem is again a pathology of a soliton sector with slow field

-

fall-off. Finally, Abouelsacod [3} discussed the MN systen.
Abouelsacod [3] showed that this condition must be imposed on 2 in

order to calculate correctly the moment of inertia in temporal gauge.
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Throughout this paper "charge" will always refer to such angular
momenta, not te the Integral of any sort of Noether charge density.
The latter notiocn is well known to be tricky f9].

In doing this, we ignore the attractive force between the monopole
and antimonopole, which prevents the pair from being a time-
independent solutdion of the equation of motion. Ir is reasonable
to neglect this force for very large R, or very heavy moncpoles;
however, if one is worried about i, ig is fairly easy to fiddle
the theory to introduce new interactions or external forces that
cancel it out altogether.

Ore of the reasons why this analysls 1is unconvincing by itself is

that the relevant multipole moments of the system all diverge. We

will see that nevertheless only the dipole properties of the system

contribute to the radiation to lowest order inm g

Actually, the irreducible comnections modulo all but the center of &,
We will not use these fine points.

Actually, for more complicated groups we must be more careful. See
Ref. [7]. The problem does not arise for our case, mor for SU(35).
It also enables us to split cleanly the interesting effects in 2
from the suppressed effects in a,s which is why we risk confusing
the reader by adopting it for the balance ef this section. All the
effects of nontrivial solutions to Eq. (1.2} are now pushed into

ags which will be seen to be irrelevant to the radiation problem.
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Figure Capticn
Figares 1{a,b): Two simgularity-free atlases for the MM system. The
Higgs points in a constant direction outside the shaded

regions. See the second of Refs. [3).
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