
A P C Chase

Lucian Popa and Val Tannen

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

A PC Chase

Lucian Popa Val Tannen *

University of Pennsylvania

Abstract

PC stands for path-conjunctive, the name of a class of queries and dependencies that we define over complex
values with dictionaries. This class includes the relational conjunctive queries and embedded dependencies, as
well as many interesting examples of complex value and oodb queries and integrity constraints. We show that
some important classical results on containment, dependency implication, and chasing extend and generalize
to this class.

1 Introduction

We are interested in distributed, mediator-based systems [Wie92] with multiple layers of nodes implementing
mediated views (unmaterialized or only partially materialized) that integrate heterogenous data sources. Most of
the queries that flow between the nodes of such a system are generated automatically by composition with views
and decomposition among multiple sources. Unoptimized, this process quickly snowballs queries into forms with
superfluous joins and would not exploit intra- and inter-data source integrity constraints. Exploiting integrity
constraints (so-called semantic optimization) plays a crucial role in oodbs [CD92] and in integrating heterogenous
data sources [CGMH+94, QR95, LSK951. Fortunately, relational database theory has studied intensively issues
such as minimizing # of joins and using constraints for certain classes of queries and dependencies [Mai83, U1189,
AHV951.

In this paper we extend and generalize some basic results about conjunctive queries and embedded depen-
dencies from the relational model to complex values and dictionaries (finite functions), the latter allowing the
representation of oodb schemas and queries. This is done by representing queries and constraints (dependen-
cies) in CoDi a language and equational theory that combines a treatment of dictionaries with our previous
work [BBW92, BNTW95, LT97] on collections and aggregates using the theory of monads. While here we
focus on set-related queries, we show elsewhere that the (full) CoDi collection, aggregation and dictionary
primitives suffices for implementing the quasi-totality of ODMG/ODL/OQL [Cat96]. Using boolean aggregates,
CoDi can represent dependencies as equalities between boolean-valued queries. An important property of our
approach, one that we hope to exploit in relation to rule-based optimization as in [CZ96], is that optimizing
under dependencies or deriving other dependencies can be done within the equational theory by rewriting with
the dependencies themselves.

Overview The types, expressions, and basic equational laws of CoDi are introduced in section 2. (Appendix A
contains the rest of the axiomatization of the equational theory.) In section 3 we show how to represent in CoDi
relational conjunctive queries (with equality) [CM77, ASU791 embedded dependencies, which are the multi-
relation and un-typed versions of Fagin's embedded implicational dependencies [FagSZ], and the chase [ABU79,
MMS79, BV84bl. This suggests the definition in section 4 of a general notion of chase by rewriting, which connects
dependencies to query equivalence (and therefore containment via intersection). We show also that implication of
certain boolean-valued aggregate queries can be reduced to equivalences and comparison of certain number-valued

'Contact author. Address: University of Pennsylvania, Department of Computer and Information Science, 200 South 33rd Street,
Philadelphia, PA 19104, Tel: (215)898-2665, Fax: (215)898-0587, Email: valQcis .upenn. edu

lFrorn "collections and dictionaries"
2'LAn OQL interface to the K2 system", by J . Crabtree, S. Harker, and V. Tannen, forthcoming.

aggregate queries can be derived from equivalences, and that both can sometimes be proved by chasing. In the
same section we discuss composing dependencies with views. In section 5 we offer examples of dependencies and
equivalences beyond the relational model on which we use the generalized rewriting chase defined earlier. One
example has an interesting notion of inverse relationship between a class and a relation that validates a significant
optimization. Another captures the relationship between a relation and a dictionary representing a secondary
index on it. Our main results are in section 6. We exhibit a class of queries and dependencies on complex
values with dictionaries called path-conjunctive (PC queries and embedded PC dependencies (EPCDs)) for which
the methods illustrated in earlier sections earlier are complete, and in certain cases decidable. Theorem 6.7
and corollary 6.8 extend and generalize the containment decidability/NP result of [CM77]. Theorem 6.11 and
corollary 6.14 extend and generalize the corresponding results on the chase in [BV84b]. (We also extend and
generalize Beeri and Vardi's result on the completeness of the infinite chase, see section 6.3.) Theorem 6.7
and theorem 6.11 also extend and generalize the corresponding completeness results on algebraic dependencies
from [YP82, Abi831, although in a different equational theory. Proposition 6.3 which in our framework is almost
"for free" immediately implies an extension and generalization of the corresponding SPC algebra [AHV95] result
of [KP82] (but not the SPCU algebra result). The decidability and chase completeness results for containment
of set-valued PC queries also hold for implication of boolean-valued disjunction aggregate PC queries.

2 CoDi

Types and expressions Only some of the language elements of CoDi are used in this paper and therefore
described here. (Other elements, relating to bags, lists, conversions, etc., will be described elsewhere.)

Types a ::= boo1 1 (Al : a l , . ..,A, : a,) ({a) I 01 X> a 2 I num I . . . other base types

Monad Algebras a ::= free I or I and I max (min

sngE I L o o p [a] (x ~ El)Ez(x) I d [a] (domE I El !E2 I k e y x k E 1 + Ez(x) - - -

x is a bound variable (as in Xx.e) in Loop [a] (x E E l) Ez(x) and key x k El + E2(x) and we write E(x) to
describe the scope of x, that is, x mayoccur in E2, but not in ~1-(1n fact, key x k El + E2(x) is just the
restriction to El of Xx.E2(x).) For substitution, we will write E(a) for the resultof replacing x with a in E(x).

Set restructuring and aggregation The CoDi fragment used here focuses on sets. We denote by {a) the type
of finite (except in section 6) homogenous sets of elements of type g. sng E denotes singleton set. Loop [a] (x E
S) E(x) and null [a] are generic notations that depend on the monad z e b r a a . The monad algebr=sed here
are structures associated with the set monad and are "enriched" with a nullary operation [LT97]. We do need the
category-theoretic definitions in this paper because they are subsumed by the generic equivalence laws satisfied
by - Loop [a] (x E S) E(x) and [a] (below). However, we need to point out that these constructs have different

def semantics for each monad algebra a . These semantics are (for S = {al , . . . ,a,)):

Loop [free] (x E S) E(x) = Uy=, E(ai) Loop [max] (x E S) E(x) = rn~xY=~ E (ai) - -

Loop [or] (X E S) E(x) = Vr=l EE() Loop [and] (X E S) E(x) = E(ai) - -

We will use the following abbreviations to improve readability:

We can now explain the typing of Loop in CoDi. Each monad algebra a has a support type, T,, namely TFree = {a)
3 , Tor = Tand = bool, Tmax = xn = num. - Loop obeys the following uniform typing rule: if S : {a) and,

3We have simplified the notation of free which should be free(u) because there is a whole family of free monad algebras, one for

Proj : s e t < s t r u c t { s t r i n g PName; c l a s s Dept (extent depts key DName)
double Budg; { a t t r i b u t e s t r i n g DName;
s t r i n g PDept ;)> a t t r i b u t e Set< s t r i n g > DProj;);

primary key (PName) ;

Proj : {(PName : string, Budg : num, PDept : string)} Dept : Doid X> (DName : string, DProj : {string))

s e l e c t d i s t i n c t s t r u c t (PN: s , DN: d.DName) - BigU (d E h D e p t)
from depts d , d.DProj s , Proj p - BigU (s E d ! Dept.DProj) - BigU (p E Proj)
where s = p.PName and p.Budg > I00000 - if eq(s, p.PName) and p.Budg > 100000

sng(PN : s , DN : d ! Dept.DName)
-

Figure 1: An ODMG schema and query and their CoDi translations

assuming x : a we have E(x) : T, , then - Loop [a] (x E S) E(x) : T,. The semantics given above does not cover
the case Loop [a] (x E 0) E(x). It turns out [LT97] that the uniform way of dealing with a nullary constructor
-

such as the empty set is to enrich each monad algebra a with a corresponding nullary operation, d [a] : T,.
Semantically, null [free] is indeed the empty set (CoDi abbreviation: empty), [or] is the boolean false (CoDi
abbreviation: false), d [a n d] is the boolean true (CoDi abbreviation: m), while d [m a x] and d [m i n] are
the smallest, respectivelly largest element of type num (assume a symbolic completion of numbers with f w).
We will also use the abbreviation

if [a] B then E sf if B then E else r ~ u l l [a] -

and to improve readability we will omit the a's in generic contexts. As for expressive power (so far), note that
BigU is the operation ext/@ of [BNTW95], shown there to have (with singleton and primitives for tuples and
-
booleans) the expressive power of the relational algebra over flat relations and the expressive power of the nested
relational algebra over complex objects. In CoDi membership is expressible with disjunction aggregation:

Dictionaries We denote by a x> r the type of dictionaries (finite functions) with keys of type a and entries
of type r. m M denotes the set of keys (the domain) of the dictionary M. K ! M denotes the entry of M
corresponding to the key K. This operation fails unless K is in dam M and we will take care to use it in contexts
in which it is guaranteed not to fail. If k is a variable of type a, D : {a}, and E(k) : T is an expression in
which k may occur, then key k D + E(k) denotes the dictionary with domain D that associates to an
arbitrary key k the entry E (k) . The set of all entries is called the range of the dictionary and is definable

range M ef BigU (k E dam M) sng(k ! M). As another example, consider a relation R : {(A : a , . . .)} and
=one of i t z t r i b u t e s A (neednot be a key). The following dictionary is a logical level representation of a
secondary index for R built on A:

ix2(R, A) ef key a II. HAR 3 - BigU (r E R) if - eq(r.A, a) then - sng(r) where IIAR def - BigU (r E R) sng(r.A)

Representing classes with extents Dictionaries can be used to model object-oriented database classes with
extents. In many semantic formalizations of oodb (eg., [AK89, Kos95]), instances of classes with extents are
finite functions on object identities. This suggests the following natural internal representation. We say that the
CoDi dictionary M represents the class C when:

The keys for M correspond to the oids of C , hence the domain of M corresponds to the extent of C. The
type of these keys is a fresh base type, distinct from other base types like nurn or boo1 and also distinct from fresh
types used for other classes. *

The type of entries in M is the record type of the components (attributes/relationships) of objects in C .

each type a, acting on the values of type {a).
4 ~ h i s is in accordance with the principle of "oid abstraction" and allows us to achieve a faithful representation of oo query

languages, a topic pursued elsewhere.

(sng) BigU (x E S) sng(x) = S - -

(monad-@) - Loop (x E - sng(E)) Ei(x) = E1(E)

(assoc) L O O ~ (X E (BigU(y€ R)S(y)))E(x) = &(Y E R) (& (x E S (Y)) E (X))

(null) - Loop (x E empty) E(x) = null

(commute) Loop (x E R) Loop (y E S) E(x , Y) = (Y E S) (X E R) E(x , Y) -

(idemloop) - L o o p (~ ~ S) i f B (z) & E = i f S o m e (x ~ S) B (x) t h e n E

(dict-@) x E D t- x ! (key - k b D =+ E(k)) = E(x)

(dam) h (k e y k b D - j E(k)) = D

(dict-7) - key k in (dom M) + k ! M = M (k not free in M)

Figure 2: Equivalence laws

To translate object-oriented queries into CoDi we need just two additions to the way we translate relational and
complex-value queries:

We translate the extent of C by k M .
If E is an expression of type C that gets translated as an expression E of the same type as the keys of M ,

then the implicit oid dereferencing E.A gets translated as E ! M.A.

We illustrate the process in figure 1 with an ODMG [Cat961 schema and query (in OQL) and their translations
into CoDi. This example features a class and the representation of a relation in (naturally extended) ODL. Note
that CoDi can represent directly dependent joins (see [SZ90, CM931).

Equivalence laws In figure 2 we show the basic laws used in CoDi. Some of these laws are derived from
the theory of monads and monad algebras and the extensions we worked out in [BNTW95, LT971. We note
that (sng,P, assoc) hold for all monads, (null) is true for monads with a nullary constructor (certain tree types
don't have it) and (commute) holds for "commutative" monads such as sets and bags, but not for lists or trees.
(idemloop) plays a special role here and is discusssed below. All the laws hold for sets and their aggregates, the
only collection type considered here. The equivalence laws for dictionaries are also in figure 2. Note the form of
(dict-0). In general, the assertions of CoDi7s equational theory have the form I' k El = E2 where

def = 51 E S ~ , X Z E S ~ (X I) , . . . ,Xn E Sn(Xl7.. . ,Xn-1) (72 2 0)

is a context that defines the "range" of each variable Si : {ai) and therefore also its type xi : ai. We shall use
the notation 2 E 3 for r , omitting for readability the part of the notation that shows which variables may occur
in the Si7s.

The rest of the equational axiomatization is in appendix A. Some laws, such as (commute) and (from the
appendix) the laws governing eq, the conditional (especially (eqcond)), and , and the congruence laws are used
rather routinely to rearrange expressions in preparation for a more substantial rewrite step. When describing
rewritings we will often omit mentioning these ubiquituous rearrangements.

Idemloop and its consequences This law depends on the idempotence property of set union and the corre-
sponding operations of the set monad algebras (disjunction, conjunction, max, min) therefore it will not hold for
bags, lists or trees. It also depends on being an identity for these operations. Note that x does not occur
in E . The disjunction aggregate tests whether E contributes at least once in - Loop. Because of (idemloop) the
equational theory of CoDi has an interesting property. The proof rule

(subst) r, x E S I- El (x) = E2 (x) and F k member(E, S) = true implies r F ~1 (E) = E~ (E)

does not have to be axiomatically stipulated (as in first-order algebraic theories) because it is already derivable.
(The lambda calculus has a similar property but it is justified differently.) Moreover, (subst) and (dict-P) prove
the expected operational justification

member(K, D) = true implies K ! (key - k D 3 E(k)) = E (K)

We will see that the (idemloop) law plays a central role in relating dependencies and query containments and in
the representation of the chase.

3 Relational conjunctive queries and embedded dependencies

Consider the tableau minimization [AHV95] on the right.
Note that Q' is a subtableau of Q and that there is also a ho-
momorphism (containment mapping) from Q to Q' (by u ++ x,
u ++ z) . Below we express Q, Q' in CoDi (note the correspon-
dence between the rows of the tableaux and the CoDi bound
variables). Then we write the equation (FOLD) below which is
a valid (holds in all instances, aka. trivial) equation, is provable
in CoDi and is equivalent to the existence of the homomorphism R V Y
above. Now, by rewriting Q' first with (FOLD) and then twice
with (idemloop), we obtain Q. (Remember that we convened X Y

to omit mention of certain minor manipulations.)

Q = - BigU (p E R) - BigU (q E R) BigU (s E R) BigU (t E R) - -
if eq(p.B, q.A) and eq(s.B, t.A) and eq(q.B, t.B) then sng(p.A,q.B) - - - - -

Q' = - BigU (p E R) - BigU (q E R) if - eq(p.B, q.A) then - sng(p.A, q.B)

(FOLD) p E R,q E R - eq(p.B, q.A) = eq(p.B, - q.A) and Some (s E R) *(t E R) - eq(s.B, t.A) - eq(q.B, t.B)

General conjunctive query containment can be represented similarly (see section 4) in CoDi's equational theory.
The correspondence between homomorphisms and CoDi equations is made clear in theorem 6.7. (FOLD) is
actually a simplified form of the equations we use for containment because it corresponds to a folding [CM77].

Embedded dependencies [AHV95] can be expressed in CoDi as equations between boolean-valued expressions
by using conjunction and disjunction aggregation for quantification and conditionals for implication. For example,
Q' above, seen as a tuple-generating dependency (tgd) d' is represented by

(dl) N (p E R) All (q E R) if - eq(p.B, q.A) then Some (r E R) - eq(r.A, p.A) - e q (r . ~ , q.B) = true

Chasing with embedded dependencies [AHV95] can also be represented by a certain kind of rewriting in CoDi's
equational theory. For this, we need another form for (d'). First we introduce a notation that is convenient when
we code up implication as an equality using conjunction:

def A A = B = A = (A d B)

Lemma 3.1 (Two forms for dependencies) For any B1(5'), Bz(5') the following two equations are derivable
from each other in CoDi's equational theory:

Indeed, (2) follows from (1) using (all) and an implication rule (see appendix A). To derive (1) from (2) it suffices
by (Loop-cong) to show that AJ(2 c' E) true = true . This follows by (idemloop) from if C then true else true = -

true which is a consequence of the implication, conditional and and rules. Therefore we can use for (dl) the
equivalent form:

As an example, we will chase the query Q with this (dl). One possible chase step is represented by a rewrite
with (dl) and (idemloop). Another possible chase step is represented by renaming p ++ s, q H t in dl, rewriting
with (d') and (idemloop) and obtaining:

d'
Q + - BigU (p c' R) - BigU (q E R) - BigU (s E R) BigU (t c' R) BigU (r E R) - -

if eq(r.A, s.A) and eq(r.B, t.B) and eq(p.B, q.A) eq(s.B, t.A) and eq(q.B, t.B) then sng(p.A, q . ~) - - - - - - -

which represents the query obtained by chasing.

Chasing a dependency instead of a query amounts to the same kind of rewriting. Consider Q seen a tgd d and
represented as boolean-valued-AJ query equals true (like the first form of dl). Rewriting the left-hand side with
(dl), without renaming, and then with (idemloop) gives a dependency which, in fact, is trivial (valid):

d ~ @ E R) ~ (~ E R) N (~ E R) ~ (~ E R) N (~ E R)
i f eq(r.A, p.A) and eq(r.B, q.B) and eq(p.B, q.A) and eq(s.B, t.A) and eq(q.B, t.B) - -
t h e n Some (z E R) eT(z .~ , p.A) _and G (~ . B , q.B) =

-

- true
-

This represents the proof by chasing that (d) is true whenever (dl) is true, i.e. (d) is implied by (dl).

4 Chasing containments, dependencies, and views in CoDi

Any equation separates the instances in which it holds from those in which it doesn't so it is fair to call it a
constraint or a dependency. We will be interested in dependencies of the form (d) below which generalizes the
relational embedded dependencies as well as the trivial equations like (FOLD) used in section 3. We will also
be interested in queries of the form Q below that generalizes the relational conjunctive queries as well as the
(set-related) OQL query translations (Loop(? - c' E) means - Loop(x1 E S1) . . . Loop(x, c' &(XI, . . . , x,-1))):

Generalizing from section 3, we call chasing Q with (d) in CoDi the rewriting of Q with (d) followed by rewriting
with id em loop)^ and resulting in

def
Q' - - Loop (2 E gl) Loop (a E 2 2 (2)) if Bl(2) Bz(2, $ then E(2)

A particular case, built just from (d) captures the essence (skeleton!) of the transformation. (d) proves by
chasing that front(d) = back(d) where

def front(d) - - BigU (2 E E l) if Bl(2) then - sng(i : 2) (i are fresh labels)

back(d) ef - BigU (2 c' &) BigU (y' E I& (Z)) if Bl(2) and B2 (2, $ then % (i : 2)

The CoDi chase yields directly equivalences, but of course containment can be reduced to equivalence using
intersection. Doing this in some generality allows us a partial treatment of aggregate queries. Consider two
queries of the studied form and define meld(-, -) and cont(-, -):

5Actually, all dependencies and queries are equivalent to dependencies and queries in such form. Here we are just pointing out
the soundness of certain syntactic methods. By putting restrictions on the expressions R, B, E we will show later (section 6) that
these methods are in fact complete for an interesting class of queries and dependencies.

6These, like front(-) and back(-) are just syntactic abbreviations: in particular they are not semantically invariant.

Clearly, cont(Q1,Qa) proves by chasing that Q1 = meld(Q1,Qz). If Q1 and Q2 are set-valued BigU queries
we will assume (by (sng)-without loss of generality) that Ei = sn~(Ei) Then, the meaning of m e w l , Qz) is
Qi r l QZ and hence QI = meld(Ql,Q2) means Q1 C Q2. Thus, cont(Q1, Q2) can be used to prove containment.

Moreover, it is easy to see that if Q1, Q2 are boolean-valued-Some queries then meld(Q1, Q2) means Q1 A Q2
and therefore implication of such queries reduces to equivalence. In fact, set-valued and boolean-valued--
path-conjunctive queries (defined in section 6) are the form of queries for which we can prove the decidability
and completeness results of section 6.

(Reverse) implication of boolean-valued-AJ queries similarly reduces to equivalence. For number-valued Max or
Min queries, Q1 = meEd(Q1, Q2) is a sufficient (but not necessary) criterion for deriving Q1 < Qz or Q1 > Q2.

The CoDi framework is nicely compositional and its equational theory often helps in reducing dependencies that
hold in views to dependencies that hold in the original instance. To illustrate, consider a schema 2, a simple
view V and a dependency (d) on instances of this view as follows (all occurrences of V in d are shown):

(d) yo E V , ~ E &(yo) t- BI(YO,$ A= Some(z0 E ~) ~ o m e (z ~ & (Y o , % , ~ o)) B z (Y o ~ % ~ ~ o , ~

Now, substituting in (d) the expression for V and using (assoc,monad-P) yields a similar form (d') which holds
in some instance I of 2 iff (d) holds in the view instance V(I):

5 Examples of dependencies on complex values and dictionaries

In this section we show that the queries and dependencies of the form given in section 4 and the chasing by
rewriting that we defined there capture examples beyond the relational model.

Inverse relationships in oo schemas. Consider two oodb classes, represented by the dictionaries

A many-many inverse relationship between attributes A1 and A2 can be represented by the following dependencies:

The first two are examples of inclusion dependencies or referential integrity contraints (RICs), while the last two
constraints complete the representation of the inverse relationship. We will see that all four dependencies are full
EPCDs (see section 6) and therefore any chase with them is guaranteed to terminate. For any monad algebra
and any expression E(y, z) of the right type consider the equation

Loop (ol E *MI) Loop (x2 E ol! M1.Al) E(o1, X Z) = &(02 E d o m ~ 2) e (x l E 02!~z.A2) E(xl,02) - -

This equation is derivable from the dependencies above, by chasing the left-hand side with (RIC1, INV1) and
the right-hand side with (RIC2, INV2). Therefore, in this schema, we can move back and forth between certain

queries "centered" on MI and queries "centered" on Mz. This is the kind of semantic optimization discussed
in [BK90] and [CD92]. Many-one and one-one inverse relationships can be similarly characterized by full EPCDs.
The next example uses the same ideas in a heterogeneous context.

An inverse relationship between a class and a relation. Consider the oo schema in figure 1 and the
following constraints on its instances. The values of DProj are sets of strings that should appear as values of
PName (thus, RICl). There is another obvious RIC2 for PDept and more subtly, we expect a certain inverse
relationship constraint between DProj and PDept. Finally, there are two key constraints (dependencies):

(RICl) d E dom Dept, s E d ! Dept.DProj I- true = Some (p E Pro j) eq(s, p.PName) -

(RIC2) p E Pro j k- = Some (d E h D e p t) - eq(p.~Dept, d ! D e ~ t . ~ ~ a m e)

(INV1) d E h D e p t , s E d ! ~ e p t . ~ ~ r o j , p E Pro j - eq(s, p.~Name) A= - eq(p.D~ro j, d ! Dept.DName)

(INV2) p Proj , d E dom Dept I- eq(p.DProj, - d ! ~ept.DName) A= Some (s E d ! Dept.DProj) - eq(p.PName, s)

(KEY1) d E h D e p t , dl E h D e p t I- eq(d - ! Dept.DName, dl ! ~ e p t . ~ ~ a m e) A= eq(d, - d')

(KEY2) p E Proj ,p' E Proj I- - eq(p.PName, pl.PName) A= - eq(p, pl)

It can be shown that for any monad algebra and any expression E(x , y) of the right type:

Loop (d E dom Dept) Loop (s E d ! D ~ P ~ . D P ~ O j) E (d ! Dept, DName, s) = Loop (p E pro j) E (p . ~ ~ e p t , ~ . ~ ~ a m e) - - -

is provable by chasing the left side with (RIC1, INV1) and the right side with (RIC2, INV2). We can use this
to show that the OQL query in figure 1 is equivalent to a much better query. Indeed, in the CoDi translation of
the query in figure 1, the innermost loop depends only on d!Dept.DName and s. With the equivalence we have
just derived (or the chases used in its proof) with a (KEY2) chase step, and with a tableau minimization (which
is chasing with trivial dependencies), we obtain the query:

s e l e c t d i s t i n c t s truct(PN: p.PName, DN: p.PDept)
from P r o j p
where p.Budg > I00000

Nest/unnest. Let R : {(A : a,B : r)} W : {(A : a,Bs : {r))} and define the well-known operations

unnest(W) %f BigU (w E W) BigU (b E w . ~ s) sng(A : w.A,B : b) -

_nest@) sf - BigU (r E R) sng(A : r.A, B s : BigU (s E R) if - eq(s.A, r.A) then sng(s.B))

With (assoc,monad-P) rewriting it can be shown that unnest(nest(R)) is equivalent not directly to R but to a
spurious join of R with itself. In turn, this becomes R by a tableau minimization rewriting as in section 3. It can
be shown that the equality R = unnest(W) is equivalent to the dependencies

and further equivalent to the family of equalities

Loop (W E W) LOOP (b E W.BS) E(w.A, b) = Loop(r E R) E(r.A,r.B)
- -

This is similar to (and simpler than) proposition 5.1 below for which a proof sketch in given. Moreover, it turns
out that the equality W = nest(unnest(W)) is equivalent to the dependencies

(KEY) wEW,bEw.Bs,wlEW F - eq(w.A,wl.A) = - eq(w,wl)

(NON-EMPTY) wEW F true = -(b E w . B s) ~

Indeed, (KEY) and (NON-EMPTY) hold provably in any view of the form W = -(R). Conversely, we can
chase nest(unnest(W)) with (NON-EMPTY) and (KEY) (at different levels of nesting7). Putting it all together,
we also conclude that W = -(R) is equivalent to all four dependencies: (UNNESTl, UNNEST2, KEY,
NON-EMPTY). Note that all but (UNNESTl) are full. The additional b E w.Bs in (KEY) was put in to make
it an inhabited dependency (see section 6). Because (KEY) is used with (NON-EMPTY) it does not impede its
applicability.

A logical level representation of secondary indexes Recall the definition of k2(-,-) in section 2. We have

Proposition 5.1 For any R : { r) where T (A : a, . . .) and any M : a X> { T) the following are equivalent
in the CoDi equational theory:

(i) M = ixlL(R,A)

(ii) (FLAT-RANGE1) r E R k true = Some(aEdomM)Sorne(t~a !M)eq(r , t) -

(FLAT-RANGE2) a E dam M, t E a ! M k true = Some (r E R) - eq(t, r)

(DUPL-KEY) a E h M , t E a!M k true = - eq(t.A, a)

(NON-EMPTY) a E h M k true = w (t E a ! M) w

(iii) - Loop (a E dam M) El (a) = Loop (T E R) El (r.A)

a E domM k Loop (r E R) if eq(r.A, a) then E ~ (T . A , r) = &(t E a ! M) &(a, t) - -

Proof sketch. (i)+(ii) Think of M as a view of R. Substituting the definition of ix2(R, A) (section 2) for M in
each dependency in (ii) produces a trivial dependency on R. (ii)+(iii) By chasing both sides of the equalities in
(iii) with dependencies in (ii) . (i i i) ~ (i) Take - BigU for -- Loop, sng(a) for El (a) and - sng(t) for E2 (a, t) .

Note that the only constraint here that is not a full EPCD is (FLAT-RANGE1). There are several ways to
replace (FLAT-RANGE1) with full EPCDs. One of the less obvious ways is to consider

(RIG) T E R I- true = d (a E h M) - eq(r.A, a)

(INV) r E R, a E h M k eq(r.A, a) A= b (t E a ! M) q (r , t) -

It can be shown by chasing that (FLAT-RANGE1) follows from (RIC) and (INV), and that (INV) and (RIC)
follow from (FLAT-RANGE1) and (DUPL-KEY).

6 Decidability and completeness results

A schema consists simply of some names (roots) and their types: 2 : a'. An instance consists of complex
values (with dictionaries) of the right type for each root name. In this section we distinguish between finite and
unrestricted instances, in the latter {a) meaning all sets. We now define paths P and path-conjunctions C:

A path-conjunctive (PC) query has the form - Loop (Z E 6) if C(Z) then P2(Z)

An embedded path-conjunctive dependency (EPCD) has one of the equivalent (see section 3) forms

a (Z E R) i f c l (Z) then Sorne(y'€ &(z))c~(z ,Y~ = true Z E 6 k (?I(?) A A = ~ X (% E f i (z)) ~ 2 (2 , $

An equality-generating dependency (EGD) is an EPCD of the form 5' E fi k Ci (2) AA= eq (fi (~ 1 , &(2)) -

7 ~ o t e that nest(unnest(W)) is not a PC query (see section 6)

9

A PC tableau consists of a context and a path-conjunction of the form T ::= {Z c' fi ; Cl(Z)}

For an EPCD as above we will also use the notation dep(T, TI), where T is as above and T' = {Z E 6, a E

fi(I); C1(2) & C2(5, c)}. This is in the spirit with the notation for tuple generating dependencies using
tableaux in [BV84a] and [BV84a]. Note however that our formalism doesn't necessarily distinguish between
EPCDs and EGDs: any EGD can be written as dep(T,T1), where T' = {Z c' &; Cl(I) & ee(fi(Z), - &(I))} .
For a PC query Q as above we will use the abbreviation Loop(T)Pz. -

Restrictions All PC queries, EPCDs, and tableaux are subject to the following restrictions. (1) A finite set
type is a type of the form { r) where the only base type occurring in r is boo1 or () (the empty record type). We
do not allow in tableaux bindings of the form x E P such that P is of finite set type. (2) x ! P can occur only
in the scope of a binding of the form x E b P '. Note that if Q1,Qz are PC queries then cont(Q1, Qa) is an
EPCD and that if d is an EPCD then front(d) and back(d) are PC queries (definitions in section 4). There is an
additional restriction on EPCDs, inhabitation, that will be outlined shortly.

Definition 6.1 A valuation of a tableau T = (2 c' E ; C(Z)) into an instance I is a type-preserving mapping
v : 2 + I that can be extended to path expressions and path conjunctions over I (i.e. v(R) = R', for any name
R, v(P.A) = v(P).A, etc.) such that the following two conditions hold:

(1) if x E P occurs in T then v(x) is an element of v(P) in I (context-preserving property)

(2) v(C(Z)) = true

The key to proving the results in this section is the construction of a canonical instance Inst(T) associated to
each tableau T lo (see appendix B for details). Briefly, we associate to each tableau T a graph Insb(T) (not quite
an instance!) having as nodes congruence classes (w.r.t. equalities mentioned in T) of path expressions over T ,
and a canonical "valuation" : T + Insb(T). Then, Inst(T) and a canonical valuation : T -+ Inst(T)
are constructed from I n s t (T) and dB by identifying empty sets of the same type.

Inhabitated dependencies. All the EPCDs we consider are required to be inhabited. This problem is specific
to complex values and is due to expressions being equated because they denote empty sets. In the subsequent
definitions and theorems of this section, all given EPCDs/EGDs are inhabited, all given PC queries are such that
the cont(-,-)s are inhabited, and all EPCDs/EGDs that are required to hold are also required to be inhabited.

Definition 6.2 eq(Q(2), Q'(2)) is an inhabited formula over T = (2 c' 3; C(2)) if Q and Q' are path expres-
sions over T sachthat d Q = &Q1 implies d 0 Q = d O Q 1 (the converse always holds).

Since the construction of Inst(T) can be carried out in PTIME, we can decide in PTIME whether a formula is
inhabited. A conjunction of inhabited formulas is an inhabited formula. We call an EGD Z E P t- C(Z) A= D(Z)
an inhabited EGD if the formula D(Z) is inhabited over T = {I c' E;C(Z)}. Intuitively, EGDs that are not
inhabited are those that may be satisfied by Inst(T), even though they are not valid. The collapsing of the
"empty" sets in Insb(T) causes this problem.

Examples. Let S = (R, W, U) a schema with three relation names. Suppose R : {(A : { o } , B : 7)). Then
x E R,y E R t- eq(x, y) A= eq(x.A, y.A) is inhabited, while x E R , y E R t true A= - eq(x.A, y.A) and
x E R t- true A= - e q ~ , U) are not inhabited.

An EPCD I E @ t C(Z) A= Some (3 E d (2)) D(2, g is an inhabited EPCD if the formula D(2, fl is inhabited
over the tableau T' = {Z E 3, y ' E d(2); C(2)).

The following shows that composing EPCDs with PC views yields EPCDs. Thus all subsequent results of this
section regarding implication/triviality of EPCDs can be used to infer implication/triviality of EPCDs over views
w w

sThis restriction could be removed at the price of tedious reasoning about partiality, but we have seen no need to do it for the
results and examples in this paper

QThe notion of valuation is useful in giving meaning of expressions with free variables. In particular, we are able to express in
terms of valuations the notion of satisfiability of an EPCD by an instance.

1°1n the relational case this instance is isomorphic to the tableau itself.

Proposition 6.3 Let (d) be an EPCD over a schema 5 whose roots have set type and suppose that S is a PC
view, that is, each S is expressed as a set-valued P C query over another schema g. Composing this view with (d)
is provably equivalent to another EPCD, this one over g.

6.1 Triviality and containment

W e state here without proof that an inhabited EGD 2 E P I- C (2) A= eq(Q(2) , Q 1 (2)) is trivial (f in /unr)
i f and only i f &Q = &Q' (and therefore i f and only i f A 0 Q = d0&7 T h u s , deciding t h e triviality o f
an inhabited EGD reduces t o checking its satisfiability in Ins t (T) under the canonical valuation. Moreover this
can be done in P T I M E (since t h e construction o f Ins t (T) can be carried out in PTIME) . It is easy t o see that
any inhabited trivial EGD 2 c'E t- C(Z)A=eq(Q, Q') is provable in CoDi ' s equational theory. Th i s is because
A 0 Q = A g Q 1 implies that Q and Q' a r z n the same congruence class in InsQ(T) (see appendix B) , thus
eq(Q, - Q') follows from C (2) using congruence rules. T o summarize:

Theorem 6.4 A n EGD holds in all unrestricted instances iff it holds i n all finite instances. Trivial EGDs are
provable i n CoDi and triviality is decidable i n PTIME.

Definition 6.5 (Homomorphism) Let T = (2 E F ; C (2) } and T' = {y' E z; D(y')} be two tableaux. A
homomorphism h : T' -+ T is a type-preserving mapping from variables y' into variables 2 such that h is context-
preserving i.e., for any yi E Ri in T' and x j € Pj i n T , i f h (y i) = x j then 2 E 9 I- C (2) A= - e q (P j , h (R i))

and such that 2 c'E @ t C (Z) A= D (h ($) .

T h e following lemma relates valuations and homomorphisms and is essential for the proof o f Theorem 6.7

Lemma 6.6 Let Tl = (2 E @; C l (2) } and T 2 = { g E 6; C2($} be two tableaux. Assume that C2(y') is an
inhabited formula over {y' E &;true). Then, for any valuation v : T2 -+ Ins t (Tl) , there exists a homomorphism
h : T2 -+ T I . I n addition v and o h satisfy the same set of inhabited formulas over {y' E 6; true)

Theorem 6.7 (Containment/Trivial dependencies)

1. Let Q 1 , Q 2 be set-valued P C queries. The following are equivalent:

(a l) Q1 G unr Q 2 (a21 Q 1 c f in Q2

(b l) cont(Q1, Q 2) is trivial (unrestricted) (b2) cont(Q1, Q2) is trivial (in the finite)

(c) there exists { 2 € 6 ; C I (2)) & {y' € 6 ; C2 (2))
such that 2 E fi I- Cl (3) A= eq(P;(Z) , Pi(h(y ')))

(d) cont(Q1, Q 2) (and therefore the containment) is provable i n CoDi's equational theory

where Q1 = - BigU (2 E f i) if 9 (2) then 3 (P ; (2)) and Q2 = BigU (y' E 6) if C2 (8 then %(Pi ($)

2. Let d be an EPCD. The following are equivalent:

(a l) d is trivial (unrestricted)

(b l) front(d) =Unr back(d)

(a2) d is trivial (in the finite)

(b2) front(d) =fin back(d)

(c) there exists { 2 E f i ; C1 (2)) A { Z E 6, y' E 6 (2) ; (2) C2 (2,y'))
such that 2 c ' ~ 6 I- C l (2) A= ~ (2 , h (2))

(d) d is provable i n CoDi's equational theory1'

where d is ? € f i k C l (2) A= ~ o m e (y ' E f i (2)) ~ 2 (2 , $

Corollary 6.8 Existence of a homomorphism of tableaux, and therefore containment/equivalence of set-valued
P C query and EPCD triviality are decidable and in N P (and hence NP-complete by [CM77]).

llwe show this in appendix A

11

6.2 Terminating chase

T h e definition o f the chase in section 4 was somewhat simplified b y the coincidence o f variable names. T h e
general definition is given next. Note that chasing (d) mimics chasing front(d) , that chasing cont(Q1, Q 2) mimics
chasing Q1 and that in chasing - Loop (2 E 2) if B(2) then E (2) the chase only affects t h e underlying tableau

(2 E 6 ; B (2)) . Therefore it suffices t o define the chase on tableaux.

Definition 6.9 (Chase step) Let (d) be the EPCD r' E 2 t- B l (q A= S (3) B2(F, $ and T be

the tableau (2 E P ; C (2)) . Suppose that there is T & { r ' ~ l?; B I (~) but there is no T 8 T' such that
2 E P 1 C (2) A= - eq(Z, h 1 (2)) where T' = (2 E P,ZE S (h (3) ; C (2) and B z (h (q , q } . Then we say that (d)

is applicable to T and chases it to T ' , written T TI. W e also write Q 5 Q' and d' -% dl'.

Lemma 6.10 (Chase properties) (1) If Q 3 QQ' then Q = Q' is provable from d i n CoDi 1 2 . (2) If Ins t (T)
d then d is applicable to T .

Part (2) o f t h e previous lemma allows us t o observe that , for any terminating chase sequence T = To + . . . +
Tn o f T b y a set o f EPCDs D (terminating means no d in D is applicable t o T,), Tn D . For any PC query
Q = Loop(T)P1 we use t h e notation chaseD(Q) for Loop(Tn)P1 (and similarly, we have chaseD(d)). - -

Theorem 6.11 (Containment with dependencies/Dependency implication) Let D be a set of EPCDs.

1. Let Q1, Q 2 be set-valued P C queries such that some chasing sequence of Q1 with D terminates (with
chaseD(Ql)). The foElowing are equivalent:

(a l) Qi cgnr Q 2
fin (a2) Qi CD Q 2

(b l) c h a s e ~ (Q 1) CUnr Q2 (b2) c h a s e ~ (Q 1) Cf in Q 2

(c l) c h a s e ~ (c o n t (Q ~ , Q2)) is trivial (unr) (c2) chase~(con t (Q1 , Q2)) is trivial (fin)

(d l) bun' cont(Q1, Q 2) (d2) D l=fin cont(Q1, Q 2)

(e) cont(Q1, Q2) (and therefore the containment) is provable from D in CoDi's equational theory

2. Let d be an EPCD such that some chasing sequence of d with D terminates. The following are equivalent:

(a l) D kUnr d (a2) D bf in d

(b l) c h a s e ~ (d) is trivial (unr) (b2) chaseD(d) is trivial (fin)

(c l) chase^ (front(d)) gunr back(d) (c2) chase^ (front(d)) g f in back(d)

(d l) front(d) c~~~ back(d) (d2) front(d) c f i n back(d)

(e) d is provable from D i n CoDi's equational theory

Definition 6.12 (Full dependencies) A n EPCD r' E 3 F B l (3 A= SOme (s' E g (3) B2 (F, q is full if for
any variable si i n s' there exists a path P i (?) such that r ' E 2, s' E g (3 k B l (q and B2(.', 3) A= - eq(s i , Pi(?'))

Theorem 6.13 If D is a set of full EPCDs and T is a tableau then any chase of T by D terminates.

Corollary 6.14 Set-valued P C query containment/equivalence under full EPCDs and logical implication of
EPCDs from full EPCDs are reducible to each other, their unrestricted and finite versions coincide, and both are
decidable.

Relational full/total tgds are full EPCDs. W e conjecture that the complexity o f t h e PC problem is exponential,
hence not worse than in the relational case [BV84b, CLM811. Note that EGDs are always full. It is easy t o see
for EGDs t h e problem is actually in PTIME, as in the relational case.

12See appendix A for proof

12

6.3 Non-terminating chase

We also generalize the results of [BV84b] for non-terminating chase, that is, we show that in the PC case the
chase is still a proof procedure. As opposed to the relational case where one can also invoke Godel's completeness
theorem, the recursive enumerability of the PC problem was not obvious.

Let Q = - BigU(T)P1 be a set-valued PC query and dep(T,T1) an EPCD where T = (2 E 3 ; C(?)} and

T' = (2 c' @,a E I?(z) ; C(2) D(Z, $1. Suppose Tm = {x; E P:; Cm(x;)) is the mth tableau in a chase
sequence (not necessarily terminating) T = To + . . . + Tn + . . . of T by a set of EPCDs D . We use the
notations:

def chase;; (d) = dep(Tm, TL) chaseg(Q) def BigU(Tm) PI

where Tk = {x; E P;, E I?(?); C,(xA) and D(2, $1
We show here that if D 1 dep(T, TI) then for any infinite chase of T by D there is a tableau T, (with m finite)
in the chase such that dep(T,,Tk) is trivial. A similar result holds for query containment/equivalence. The
techniques and the results generalize the ones of [BV84b] regarding the relational case. We make the following
assumptions:

1. every EPCD that is applicable infinitely many times should be applied infinitely many times (non-starvation
of dependencies)

2. all path expressions are over a fixed, infinite, totally ordered and well-founded set of variables. Moreover,
path expressions are not only totally ordered, but well-founded as well (this can be done by lifting the
well-founded order on variables to path expressions).

Let (T) be an infinite chase sequence of T by a set of EPCDs D: To + . . . + Tn + We define first an
infinite tableau T" = (2 c' E ; C(2)) that satisfies the following:

1. for any prefix x: E Fn of 2 c' 3 there exists a tableau T, = {x; E gm; Cm(xk)) in (T) such that x> E
-+

is a prefix of x; E Pm

2. C(2) = AT,,,E(T) c,(x;) (~ (2) is an infinite conjunction)

Next, we define the canonical instance of T", denote it by I", as the limit of the sequence (I ~ S ~ (T ,)) , > ~ (see
appendix B for definition of Inst(Tn)). For any finite path expression Q over T", it must be the case that Q
is defined over Tm in (T), for some finite m. Consider the sequence &C1(Q), for all n 2 m. &g)(Q) is the

smallest path expression in the congruence class of Q with respect to Tn. One can see that & g + ') (~) is either

identical to &"(Q) (if the congruence class of Q w.r.t Tn remains the same in Tn+1 or is unioned with other

congruence classes but the smallest element doesn't change) or smaller than @ r) (Q) (the congruence class of
Q w.r.t Tn is unioned with other congruence classes and the smallest element does change). By our assumption
of well-foundedness, there must exist a p 2 m s . t &) (Q) = &F1) (Q) = Define d0 (Q) = &)(Q).
We can verify that the graph induced by d0 preserves the context 2 E 3 of T and moreover satisfies C(2).
Finally, we collapse the empty sets, to obtain I". As in the finite case one can show that I" D .

Theorem 6.15 (Containment with dependencies/Dependency implication) Let D be a set of EPCDs.

1. Let QI , Qz be set-valued P C queries and consider an arbitrary infinite chasing sequence of Q1 with D. The
following are equivalent:

(a) Qi CEnr Qz

(b) there is a finite m such that:

(I) chase; (Ql) Cunr Qz and/or (2) chaseg (cont(Ql, Qz)) is trivial (unr)

(c) D kunr cont(Q1, Qz)

(d) cont(Q1, Qz) (and therefore the containment) is provable from D

2. Let d be an EPCD and consider an arbitrary infinite chasing sequence of d with D. The following are
equivalent:

(a) D kunr d

(b) there is m finite such that:

(1) chaseg(d) is trivial (unr) and/or (2) chaseg(front(d)) sun' back(d)

(c) front(d) g "nr back(d)

(d) d is provable from D

6.4 Disjunction aggregates

Parts (1) of theorems 6.7, 6.11 and 6.15 also hold, with similar proofs, for boolean-valued-% PC queries, where
containment means boolean implication. Alternatively, we can give a more elegant proof of this by observing the
following reduction from Some query containment/equivalence to - BigU query containment/equivalence. Each
disjunction aggregate query Q = Some (r' E z) B(F) has a corresponding set-valued PC query Q' = - BigU (r' E

g) B(7) then sng() such that Q evaluates to true if and only if Q' evaluates to sng(). (This is an immediate
consequence ofidemloop).

-

7 Related work and further investigations

Related work The monad algebra approach to aggregates is related to the monoid comprehensions of [FM95b]
but it is somewhat more general since there exist monads (trees for example) whose monad algebras are not
monoids. A different approach based on parameterized algebraic specifications appears in [BTS93]. The idea
of representing constraints as equivalences between boolean-valued (OQL actually) queries already appears
in [FRV96].

The equational theory of CoDi proves almost the entire variety of proposed algebraic query equivalences beginning
with the standard relational algebraic ones, and including [SZ89a1 SZ89b, CD92, Clu91, FM95b, FM95al and
the very comprehensive work by Beeri and Kornatzky [BK93]. Moreover, using especially (commute), CoDi
validates and generalizes standard join reordering tecliniques, thus the problem of join associativity in object
algebras raised in [CD92] does not arise.

Arrays, as dealt with in [LMW96] can be formalized as dictionaries, given some arithmetic and operations
that produce integer intervals. In [DHP97] the Kleisli/CPL system is extended to represent and query oodbs,
specifically Shore. The ideas used there can be represented with dictionaries, but dictionaries are more flexible.
The maps of [ALPR91], the treatment of object types in [BK93] and that of views in [dSDA94] are related to
our use of dictionaries. An important difference is made by the operations on dictionaries used here.

Our PC queries are less general than COQL queries [LS97], by not allowing alternations of conditionals and
BigU. However they are more general in other ways, by incorporating dictionaries and allowing equalities -
beyond base type. Containment of PC queries is in NP while a double exponential upper bound is provided
for containment of COQL queries. In [Bid871 it is shown that containment of conjunctive queries for the Verso
complex value model and algebra is reducible to the relational case. Other studies include semantic query
optimization for unions of conjunctive queries [CGM88], containment under class inheritance constraints [Cha92],
containment under Datalog-expressible constraints and views [DS96], equivalence between queries with set and
bag aggregates [NSS98], and containment of non-recursive Datalog queries with regular expression atoms under
a rich class of constraints [CGL98]. We are not aware of any extension of the chase to complex values and oodb
models.

Davidson and Hara [HD98] consider generalized functional dependencies for complex value schemas. Their
main objective is an intrinsic axiomatization of such dependencies. Our paper does not examine at all the

problem of intrinsic axiomatizations [BV84a]. Fan and Weinstein [FW98] examine the un/decidability of logical
implication for path constraints in various classes 00-typed semistructured models. Path constraints are first-
order expressible and are both weaker than our EPCDs in some respects (cannot express (NON-EMPTY) for
instance) and probably stronger in other respects (they allow more quantifier nesting).

Further investigations We conjecture that the restriction to inhabited dependencies could be totally or par-
tially removed. This may be also related to the restriction to weak equivalence in [LS97]. The axiomatization
of inclusions in [Abi83] can be soundly translated into CoDi's equational theory. We conjecture that CoDi is a
conservative extension of this axiomatization. We conjecture that confluence and semantic invariance of the chase
generalizes from the relational case to full EPCDs. Most EPCDs in our examples are full. Some of those who
are not may be amenable to the ideas developed for special cases with inclusion dependencies [JK84, CKV9Ol.
Another question regards the decidable properties of classes of first-order queries and sentences that might corre-
spond (by encoding, eg. [LS97]) to PC queries and EPCDs. Other encodings might allow us to draw comparisons
with the interesting results of [CGL98]. Rewriting with individual CoDi axioms generates too large a search
space to be directly useful in practical optimization. An important future direction is the modular development
of coarser derived CoDi transformations corresponding to various optimization techniques in a rule-based ap-
proach. Finally, CoDi is an equational rendition of a ramified higher-order logic and the question arises if it is
related to a weak form of topos theory [FS90].

Anecdote We were happily proving equalities in CoDi by rewriting with dependencies and (idemloop) for quite
some time before we realized the connection with the chase!

Many thanks to Serge Abiteboul, Peter Buneman, Sophie Cluet, Susan Davidson, Alin Deutsch, Wenfei Fan,
Carmem Hara, Rona Machlin, Dan Suciu, Scott Weinstein.

References

[Abi83] S. Abiteboul. Algebraic analogues to fundamental notions of query and dependency theory. Tech-
nical report, INRIA, 1983.

[ABU79] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in relational databases. A C M Trans-
actions on Database Systems, 4(3):297-314, 1979.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[AK89] S. Abiteboul and P. Kanellakis. Object identity as a query language primitive. In Proceedings of
A C M SIGMOD Conference on Management of Data, pages 159-173, Portland, Oregon, 1989.

[ALPRgl] M. Atkinson, C. Lecluse, P. Philbrow, and P. Richard. Design issues in a map language. In Proc. of
the 3rd Int? Workshop o n Database Programming Languages (DBPLSl) , Nafplion, Greece, August
1991.

[ASU79] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences among relational expressions. S I A M Journal
of Computing, 8(2):218-246, 1979.

[BBW92] Val Breazu-Tannen, Peter Buneman, and Limsoon Wong. Naturally embedded query languages. In
J. Biskup and R. Hull, editors, LNCS 646: Proceedings of 4th International Conference o n Database
Theory, Berlin, Germany, October, 1992, pages 140-154. Springer-Verlag, October 1992. Available
as UPenn Technical Report MS-CIS-92-47.

[Bid871 N. Bidoit. The verso algebra or how to answer queries with fewer joins. Journal of Computer and
Sys tem Sciences, 35:321-364, 1987.

[BK90] Catriel Beeri and Yoram Kornatzky. Algebraic optimisation of object oriented query languages. In
S. Abiteboul and P. C. Kanellakis, editors, LNCS 470: 3rd International Conference on Database
Theory, Paris, France, December 1990, pages 72-88, Berlin, December 1990. Springer-Verlag .

[BK93] Catriel Beeri and Yoram Kornatzky. Algebraic optimisation of object oriented query languages.
Theoretical Computer Science, 116(1):59-94, August 1993.

[BNTW95] Peter Buneman, Shamim Naqvi, Val Tannen, and Limsoon Wong. Principles of proramming with
collection types. Theoretical Computer Science, 149:3-48, 1995.

[BTS93] C. Beeri and P. Ta-Shma. Bulk data types, a theoretical approach. In Catriel Beeri, Atsushi
Ohori, and Dennis E. Shasha, editors, Proceedings of 4th International Workshop on Database
Programming Languages, New York, August 1993, pages 80-96, New York City, 1993. Springer-
Verlag.

[BV84a] Catriel Beeri and Moshe Y. Vardi. Formal systems for tuple and equality generating dependencies.
SIAM Journal of Computing, 13(1):76-98, 1984.

[BV84b] Catriel Beeri and Moshe Y. Vardi. A proof procedure for data dependencies. Journal of the ACM,
31(4):718-741, 1984.

[Cat961 R. G. G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan Kaufmann, San
Mateo, California, 1996.

[CD92] Sophie Cluet and Claude Delobel. A general framework for the optimization of object oriented
queries. In M. Stonebraker, editor, Proceedings ACM-SIGMOD International Conference on Man-
agement of Data, pages 383-392, San Diego, California, June 1992.

[CGL98] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decidability of query
containment under constraints. In Proc. 17th ACM Symposium on Principles of Database Systems,
pages 149-158, 1998.

[CGM88] U.S. Chakravarthi, J . Grant, and J . Minker. Foundations of semantic query optimization for deduc-
tive databases. In J . Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 243-273, San Mateo, California, 1988. Morgan-Kaufmann.

[CGMH+94] S. Chawathe, H. Garcia-Molina, J . Hammer, K. Ireland, Y. Papakonstantinou, J . Ullman, and
J. Widom. The tsimmis project: Integration of heterogeneous information sources. In Proc. of
IPSJ, Tokyo, Japan, October 1994.

[Cha92] Edward P. I?. Chan. Containment and minimization of positive conjunctive queries in oodb's. In
Proc. 11th ACM Symposium on Principles of Database Systems, pages 202-211, 1992.

[CKV9O] Stavros S. Cosmadakis, Paris C. Kanellakis, and Moshe Y. Vardi. Polynomial-time implication
problems for unary inclusion dependencies. Journal of the ACil4 37(1):15-46, 1990.

[CLM81] A. K. Chandra, H. R. Lewis, and J . A. Makowsky. Embedded implicational dependencies and
their inference problem. In Proceedings of ACM SIGACT Symposium on the Theory of Computing,
pages 342-354, 1981.

[Clu91] S. Cluet. Langages et Optimisation de requetes pour Systemes de Gestion de Base de donnees
oriente-objet. PhD thesis, Universite de Paris-Sud, 1991.

[CM77] Ashok Chandra and Philip Merlin. Optimal implementation of conjunctive queries in relational
data bases. In Proceedings of 9th ACM Symposium on Theory of Computing, pages 77-90, Boulder,
Colorado, May 1977.

[CM93] S. Cluet and G. Moerkotte. Nested queries in object bases. In Proc. DBPL, pages 226-242, 1993.

[CZ96] M. Cherniack and S. B. Zdonik. Rule languages and internal algebras for rule-based optimizers.
In Proceedings of the SIGMOD International Conference on Management of Data, pages ??-??,
Montreal, Quebec, Canada, 1996.

[DHP97] S. B. Davidson, C. Hara, and L. Popa. Querying an object-oriented databases using cpl. Technical
Report, To appear in Proc???, Brazil MS-CIS-97-07, University of Pennsylvania, December 1997.

[DS96] Guozhu Dong and Jianwen Su. Conjunctive query containment with respect to views and con-
straints. Infomation Processing Letters, 57(2):95-102, 1996.

C. Souza dos Santos, C. Delobel, and S. Abiteboul. Virtual schemas and bases. In Proceedings
ICEDT, March 1994.

Ronald Fagin. Horn clauses and database dependencies. Journal of the ACM, 29(4):952-985, 1982.

L. Fegaras and D. Maier. An algebraic framework for physical oodb design. In Proc. of the 5th
Int71 Workshop on Database Programming Languages (DBPL95), Umbria, Italy, August 1995.

Leonidas Fegaras and David Maier. Towards an effective calculus for object query languages. In
Proceedings of ACM SIGMOD International Conference on Management of Data, pages 47-58, San
Jose, California, May 1995.

D. Florescu, L. Rashid, and P. Valduriez. A methodology for query reformulation in cis using
semantic knowledge. International Journal of Cooperative Information Systems, 5(4), 1996.

Peter J . Freyd and Andre Scedrov. Categories, Allegories. North-Holland, Amsterdam, 1990.

Wenfei Fan and Scott Wenstein. Interaction between path and type constraints, June 1998.
Manuscript available from w f an9saul. c i s . upenn. edu.

Carmem Hara and Susan Davidson. Inference rules for nested functional dependencies. Technical
Report MS-CIS-98-19, University of Pennsylvania, 1998.

D. S. Johnson and A. Klug. Testing containment of conjuctive queries under functional and inclusion
dependencies. Journal of Computer and System Sciences, 28:167-189, 1984.

Anthony Kosky. Observational properties of databases with object identity. Technical Report
MS-CIS-95-20, Dept. of Computer and Information Science, University of Pennsylva nia, 1995.

A. Klug and R. Price. In determining view dependencies using tableaux. ACM Transactions on
Database Systems, 7:361-381, 1982.

L. Libkin, R. Machlin, and L. Wong. A query language for multidimensional arrays: Design,
implementation and optimization techniques. In SIGMOD Proceedings, Int'l Conf. on Management
of Data, 1996.

Alon Levy and Dan Suciu. Deciding containment for queries with complex objects. In Proc. of the
16th ACM SIGMOD Symposium on Principles of Database Systems, Tucson, Arizona, May 1997.

A. Levy, D. Srivastava, and T. Kirk. Data model and query evaluation in global information
systems. Journal of Intelligent Information Systems, 1995.

Kazem Lellahi and Val Tannen. A calculus for collections and aggregates. In E. Moggi and
G. Rosolini, editors, LNCS 1290: Category Thory and Computer Science Proceedings of the 7th
Int'l Conference, CTCS'97, pages 261-280, Santa Margherita Ligure, September 1997. Springer-
Verlag.

David Maier. The Theory of Relational Databases. Computer Science Press, Rockville, Maryland,
1983.

D. Maier, A. 0. Mendelzon, and Y. Sagiv. Testing implications of data dependencies. ACM
l?ransactions on Database Systems, 4(4):455-469, 1979.

Werner Nutt, Yehoshua Sagiv, and Sara Shurin. Deciding equivalen.ces among aggregate queries.
In Proc. 17th ACM Symposium on Principles of Database Systems, pages 214-223, Seattle, Wash-
ington, June 1998.

X. Qian and L. Raschid. Query interoperation among object-oriented and relational databases. In
Proc. ICDE, 1995.

[SZ89a] G. Shaw and S. Zdonik. Object-oriented queries: equivalence and optimization. In Proceedings of
International Conference on Deductive and Object-Oriented Databases, 1989.

[SZ89b] G. Shaw and S. Zdonik. An object-oriented query algebra. In Proc. DBPL, Salishan Lodge, Oregon,
June 1989.

[SZgO] G. Shaw and S. Zdonik. A query algebra for object-oriented databases. In Proc. IEEE Conference
on Data Engineering, pages 154-162, 1990.

[U1189] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, volume 2. Computer
Science Press, 1989.

[Wie92] Gio Wiederhold. Mediators in the architecture of future information systems. IEEE Computer,
pages 38-49, March 1992.

[YP82] Mihalis Yannakakis and Christos Papadimitriou. Algebraic dependencies. Journal of Computer
and System Sciences, 25:2-41, 1982.

A Equational axiomatizat ion

In addition to the laws in figure 2, the axiomatization of the CoDi equational theory consists of the following:

1. (exists) and (all):

r k & I I (Z E <) B = . ~ ~ ~ ~
(exists) I ? , x E R t- u = % (y ER)eq(y,x) - (all)

r , z ~ E t- B = -

2. Record axioms:

(rcd-proj) t- (Al : El , . . . ,An : En).Ai = Ei (rcd-surj) r I- E = (E .Al , . . . , E.A,)

3. Condit ional axioms:

(cond-nest) r k if [a] Bl then if [a] Bz then E = if [a] BI and B2 then E

(cond-true) r t- if [a] true then E = E

(eqcond) r t- if [a] eq(E1, Ez) then E(E1) = if [a] ~ (E I , Ez) then E(E2) -

(cond-loopl) r t- - Loop [a] (x E if [free] B then S) E(x) = if [a] B then - Loop [a] (x E S) E(x)

(cond-loop2) r k - Loop [a] (x E S) if [a] B then E(x) = if [a] B then - Loop [a] (x E S) E(x)

4. and rules:
(-assoc) r t (B1 and B2) and B3 = Bl and (B2 and BS)

(and -cond) r I- Bl B2 = if B1 then B2 else false

5. eq rules: -

t- El = E2 I? t eq(El, E2) = true
(refl) I? t- eq(E, E) = true -

-
I? F - eq(E1, Ez) = true r I- El = E2

6. Implication rules:

I? t- B1A=B2 r I- if B1 then B2 else true = true

I? I- if B1 then B2 else true = true r t- B1A=B2

7. Congruence rules:

r , x € R t- El =E2 r I- El E2
(Loop-cong) - (sng-cong)

I? I- Loop [a] (x E R) El = Loop [a] (x E R) E2
-

I? I- sngEl = sngE2 - - - -

I- R1 = R2 I?, k E R1 I- El = E2 I- Ml = M2
(dict-cong) (! -cong)

r I- - key k Rl + El = - key k b R2 + E2 r l k ~ h M 1 t- k ! M 1 = k ! M 2

r I- M1 = M2 F I - B 1 = B 2 F I - E l = E 2
(dam-cong) (cond-cong)

I? I- h M l = h M 2 r k if BI then El = if B2 then E2

r I- El = Ei . . . F I- En = EL r I- El = E2
(rcd-cong) (prj-cong)

r I- (A l : E l 1 . . . , A n : E n) = (A l : E ~ , . . . , A n : E L) r t E1.Ai =E2 .A i

Some obvious rules such as symmetry and transitivity of equality are missing because they are derivable largely
due t o (eqcond).

Trivial EPCDs are provable. The following inference rule is derivable (even without the PC restriction):

2 E I- C(2) A= eq(Pj, h(Ri)) c') g(8, h(Pk)) and g (2 , h(2)) and D(2 , h (g)
(triviality) -

a E P t- C(2) A= W (y ' E Z(2)) D (2 , g

where h is a mapping from variables (2, y'} into variables (2) such that h(yi) = x j and h(xk) = xl. To derive the
rule we infer first, by (exists), 2 c'E ? I- a (y i E Pj) eq(yi, h(yi)) = true, for any yi. Then we use the premises
and, mainly, congruences, (and -cond) and (eqcond), to bring in C(d) , and then to replace each Pj with h(Ri),
and then h(2) with 2 and h(y') with y'. This proves (c)+(d) in Theorem 6.7.

Provability of the chase step. Let Q = Loop (2 E E) if C(2) then E and d and h as in the definition of
the chase step (see Section 6). Observe that h extended to be the identity on 2 is a homomorphism from
(2 E P,; E Z ; e 3 (2 , h(fl)) into (2 c' $;true) such that it satisfies the condition of Theorem 6.7. Therefore
2 E 3 I- true = Some (2 E A) - eq(?, h (3) is trivial, hence provable. Since 2 c'E ? I- C (~) A = B ~ (~ (F)) is valid (h

is a homomorphism) and, therefore provable, we can rewrite - Loop (2 E P) if C(2) t h E to

Loop (2 E $)if C(2) c') Bl(h(F)) and Some(? E Z)eq(?, h (3) then E - -

Rewrites with (idemloop), (eqcond), and then d and idemloop, yield:
+ +

Loop (2 E P) Loop (? E I?) Loop (3 E f?(Tf)) if C(2) and B l (r l) and B2(r1, 4 and eq(?, h (q) then E - - - -

Applying (cond-loop2) we move - e q (J , h (3) outside of the loop over Sand apply (eqcond) to replace occurrences
of 7 with h (3 . Then a step of tableau minimization with 2 E P t true = Some (J E I?) eq (7, h(F)), followed by

replacing C(2) Bl (h (3) with C(Z) yields Loop (2 E P) ~oop (s' E S (h (3)) 3 c (z) - ~ B2(h(F), 4 then El
the query Q' that we wanted. This proves lemma 6.10 (1)

B A canonical instance construction

We associate to each tableau T = (2 E 9 ; C(2)) a special instance, Inst(T), crucial for proving our decidability
and completeness results. We also use Inst(T) to define the class of inhabited EPCDs. Intuitively, Inst(T) is the
minimal instance that contains the "structure" of T, and it allows us to express syntactical conditions on T as
necessary and sufficient conditions on Inst(T). The construction is sketched next:

1) we built a directed acyclic graph G(T): start with a set of nodes, V, containing one node for each path
expression P occuring in T . Close this set under the operations P.A, x! P, & P , R and wJ,. More precisely:
if P : (Al : TI,. . . ,A, : r,) is in V then set V = V U {p.Al, . . . ,p.A,). Similarly, for x! P and for dam P . For
each name R in the schema, set V = V U {R). Finally, V = V U {null,). Next, we add edges between nodes in
V in the natural way: for any P.A in V, add an (unlabeled) edge from P into P.A. Similarly for &P. For
x! P in V add an edge from x into x! P and an edge from P into x! P . Finally, we populate set values: we add
for each x E P occuring in T an edge labeled with E from P into x.

2) construct the congruence closure of G(T) with respect to C(2) and the normal congruence rules for P.A, x! P, dam P,
sngP and (A1 : P I , . . . ,A, : P,). Start with a partition of the nodes of G(T) into classes, by putting nodes Pl -
and Pz in the same class whenever eq(Pl, Pz) occurs in C(3). Then coarsen this partition by collapsing classes
through application of congruence rules, reflexivity, symmetry and transitivity. The process ends in polynomial
time with a partition of G(T) into classes, corresponding to the minimal congruence relation on G that satisfies
C(2). Each congruence class becomes a node in a new graph, G(T)/c(,-). Add an edge from a node [PI, . . . , P,]
into a node [Q1,. . . , Qk], if there is at least one edge from some Pi into some Qj in G(T).

3) G(T)Ic(q has all the properties to be a valid instance with one exception: there may be distinct nodes of set
type S1, . . . , S,, such that the €-edges for all Si's go into the same set of nodes, {e l , . . . , e ,)) . Thus, G(T)/c(z)
does not satisfy the extensionality property of sets. Our construction considers the two possible cases: First,
m > 0, i.e. S1,. . . , S, are not empty. We simply add a new, distinct, node (and an €-edge) to each Si. Second
case: m = 0, i.e. S1,. . . , S, are empty (one of them always comes from a Ma). Call the graph obtained until
now Insb(T). Then Inst(T) is obtained from Insb(T) by identifying SI, . . . , S, (we also make sure that we close
the result under the congruence rule for record constructors). For technical reasons, we identify each congruence
class [PI, . . . , P,] with its smallest element Pi (we can always impose a total order on path expressions).

Note that Inst(T) is completely determined only up to the new nodes introduced in the last stage. The reason
for not allowing path expressions of finite set type to occur in a binding becomes apparent from the construction:
in that case, Inst(T) could have, for example, a node S of type {bool) with more than two distinct members! It
is easy to see that there are two canonical mappings, : T + Insb(T), and : T -+ Inst(T), associating
to each path expression occuring in T nodes in Insb(T) and, respectively, Inst(T). Both d0 and cval are
naturally extended on path conjunctions, as well. It is then the case that d 0 (C (2)) = d (C (2)) = true, i.e.
each has the properties of a valuation.

