
A Retrospective Look at the Monitoring and
Checking (MaC) Framework

Sampath Kannan1, Moonzoo Kim2, Insup Lee1, Oleg Sokolsky1, and Mahesh
Viswanathan3

1 University of Pennsylvania, Philadelphia, USA
2 KAIST, Republic of Korea

3 University of Illinois, Urbana-Champaign, USA

Abstract. The Monitoring and Checking (MaC) project gave rise to
a framework for runtime monitoring with respect to formally specified
properties, which later came to be known as runtime verification. The
project also built a pioneering runtime verification tool, Java-MaC, that
was an instantiation of the approach to check properties of Java pro-
grams. In this retrospective, we discuss decisions made in the design
of the framework and summarize lessons learned in the course of the
project.

1 Introduction

Motivation The idea for the MaC project came from the realization that static
verification of safety and security properties was difficult and run-time moni-
toring, which seemed more feasible and practical, lacked a formal framework.
Program checking [5] was a relatively new and rigorous framework at that time
for run-time verification of programs computing (terminating) functions compu-
tations. Our goal was to take ideas from program checking to create a formal
run-time monitoring framework that would apply universally, not just to func-
tion computations, but to arbitrary programs including reactive programs that
have an on-going interaction with an environment.

As a first instantiation of this goal we decided to look into run-time ver-
ification of sequential programs (e.g., C and single-threaded Java). We were
presented immediately with several challenges. Because program checking was
defined only for programs computing (terminating) functions, it could treat the
program being checked as a black box and check only its input-output behavior.
In contrast, we were interested in checking properties over program behavior
during execution. Since we were monitoring and checking stateful programs, our
monitors needed to keep track of the values of variables in the programs being
checked.

Next, in order to check the correctness of a program, one needs to have
a notion of correctness defined independently of the program. Program check-
ing had been successfully used largely for functions whose correct behavior was
mathematically defined. Examples included functions in linear algebra such as



matrix rank or matrix product, graph-theoretic functions such as graph isomor-
phism, and optimization problems such as linear programming. Not only did
these functions have rigorous mathematical definitions of correctness, but they
also admitted ‘local’ self-consistency conditions. For example if two graphs are
not isomorphic, an isomorphic copy of one of them is not isomorphic to the other.
To design a program checker, one proved the sufficiency of such local consistency
checks for proving the correctness of these functions and then implemented a
checker using local self-consistency checks.

Problems In checking arbitrary programs, however, we would not have a sim-
ple exogenously-defined, mathematical notion of correctness. How then were we
going to impose what correct behavior meant? For this we turned to formal
methods, and specifically model checking, where such notions of correctness were
defined using temporal logics such as CTL and LTL, and automata.

What makes a correctness specification in one of these formalisms truly dif-
ferent from a direct and step-by-step correctness specification of a program? For
if the latter were the way correctness was specified, then the specification would
be very specific to a particular implementation and programming language used
to write the program. The key distinction between the specification and the pro-
gram was the level of abstraction or detail. Correctness properties in temporal
logic are generally specified in terms of permissible sequences of occurrences for
certain high-level or abstract events, while the program’s behavior depends on
low-level details such as the values of variables and the changes to these values
in the course of execution of the program.

Solutions. Regarding how we relate the detailed behavior of the program to the
high-level events in the specification, which was a major design challenge, one
of the important design decisions was to let the designer of the program specify
these relationships, rather than seeking to automate the process of discovering
them. Thus the programmer, who would be intimately familiar with the details of
the program would identify the variables whose values and value changes would
trigger high-level events. The programmer would also provide a logical specifica-
tion of when a high-level event occurs. The MaC framework would provide the
language for expressing these logical connections.

We had to decide how events would be expressed in terms of values of vari-
ables. We realized that, for example, an event could be triggered at the instant
at which some variable changed its value, but only if it happened during the du-
ration that another variable had a particular value. Thus, we needed primitive
variables both for describing instantaneous changes and durations. The specific
logic we used to combine these variables to describe events will be described in
the sequel.

There were many other design decisions, some in setting up the conceptual
framework, and some that arose when we implemented a system based on this
framework. Again, we describe some of these choices in the sequel.



In the rest of this paper we describe the timeline of the MaC project, some
of the detailed objectives of the project, and design decisions we made, and the
impact the project has had.

Timeline of the MaC project. The Monitoring and Checking (MaC) project
started as part of ONR MURI funded during 1997-2002. Goals of the MURI
project were to make advances in software verification with specific applications
to cyber-security. One of the initial ideas was that the well-known program-
checking hypothesis [5], namely that it is often more efficient to check the cor-
rectness of a result than actually generating the result, can be applied to program
correctness verification. First publications of describing the framework architec-
ture and design trade-offs appeared in 1998 [12] and 1999 [15, 17] and the initial
version of the tool, Java-MaC, implementing the MaC framework for monitoring
of Java programs, has been presented at the first workshop on Runtime Veri-
fication in 2001 [13]. Since then, several extensions to the monitoring language
and tools have been incorporated, while keeping the architecture intact. As the
most significant extensions, we mention the steering capability [14], parametric
monitoring [24], and support for monitoring of timing and probabilistic prop-
erties [21]. The Java-MaC tool has been applied to a variety of case studies,
including an artificial physics application [9], network protocol validation [4],
and a control system application that provided a simplex architecture-like effect
using steering [14]. A variant of the tool to generate monitors in C has been
applied to monitor a robotic control system [25].

Objectives of the MaC project. The MaC project has several distinct objectives
from its inception:

– Understand requirements for formal specification to represent monitorable
properties and choose or develop a suitable language;

– Understand requirements for a tool infrastructure for monitoring and check-
ing of software systems with respect to formal properties and develop and
architecture to help satisfy these requirements; and

– Develop a prototype tool for software monitoring and checking.

All of these objectives were achieved in the course of the project. In the rest
of the paper we will discuss design decisions that were made in the process.

Overview of the MaC architecture. A visual representation of the architecture for
the MaC framework is shown in Figure 1. The architecture has two tiers. The top
tier represents design-time activity. The user specifies properties using the MaC
languages. There is a clear separation between primitive events and conditions,
defined directly in terms of observations on the system, and derived events and
conditions, defined hierarchically in terms of simpler objects. This separation
is also maintained at run time in the lower tier of the architecture diagram,
where a component called monitor or event recognizer observes the execution
and detects occurrence of primitive events and changes in the values of primitive
conditions. The checker then operates on the stream of primitive events and



determines whether the property is satisfied. The definitions of primitive events
serve an additional purpose: they capture, which observations on the system
are important for monitoring. This information is then used to instrument the
system to provide required observations. Finally, the checker can raise alarms to
notify system operators or provide feedback to the system through additional
instrumentation or via an existing recovery interface.

Fig. 1. Architecture of the MaC framework

2 MaC design highlights

In this sections, we take a closer look at components of the MaC framework
and key design considerations for them. We consider property specification in
the design-time layer of the framework, architecture of the run-time layer, and
feedback capabilities.

2.1 Specification languages and their semantics

Two-tiered specification. As mentioned above, the MaC framework includes two
specification languages: Primitive Event Definition Language (PEDL) and Meta-
Event Definition Language (MEDL). This approach allows for separation of con-
cerns: behavior specification is expressed in MEDL, in terms of abstract notions
such as events and conditions. Separately, primitive events and conditions are
defined in PEDL in terms of program entities such as function calls and variable
assignments. The PEDL language is by necessity specific to the system being
monitored, since event definitions need to refer to system entities. For example,



in Java-MaC, an instantiation of the MaC framework for Java programs, PEDL
expressions operate on method calls, updates to fields of an object, or local vari-
ables within a method. Objects are referenced using the “dot” notation familiar
to Java programmers. By contrast, MEDL is intended to be system-independent.

A distinctive feature of MEDL is that it allows users to intermix two specifi-
cation styles: a logical specification based on a past-time temporal logic and op-
erational specification based on guarded commands over explicitly defined state
variables. The interplay between the two specification styles is further discussed
below.

Continuous-time semantics. MEDL specifications express properties of an exe-
cutions at all time instances, not just instances where observations are available.
This is in contrast to most RV approaches, where semantics of a specification
are given in terms of a trace, i.e., samples of an execution captured by available
observations. The consequence of defining semantics in terms of a given trace is
that the question of whether we check the right trace is left out of the problem.
To match MEDL specifications to program execution, the set of primitive events
in a MEDL specification imposes requirements on what observations need to
be extracted, and a PEDL specification describes how the extraction should be
performed. We can easily check that every primitive event has a definition. If
the right instrumentation technology is available, the PEDL specification also
becomes the basis for automatic instrumentation.

Events and conditions. The core of the MEDL language is the logic of events and
conditions. Events and conditions are two distinct semantic entities in the logic.
Events are instantaneous and signal changes in the state of the system. Typical
examples of events are function calls and returns and assignment of values to
variables. By contrast, conditions can be thought as predicates over the state
of the system. Conditions evaluate to Boolean values and persist for a certain
interval of time. Events and conditions as software specification devices have
been around since the work of D.L. Parnas [1] and implemented in tools such as
SCR∗ [11].

Most logics defined in the literature avoid making this distinction (e.g., dura-
tion calculus [30]) or concentrate on one or the other notion. State-based logics
capture system properties in terms of states, while action-based logics concen-
trate on state changes. It is well-known that one specification style can be trans-
formed into the other (see, e.g., [7]). In a monitoring setting, where properties
are checked over a discrete trace, in which states are comprised of observations,
it is indeed tempting to treat events as predicates. Such a predicate would be
true in states where the event is observed and false everywhere else. Such a view
would allow us to treat events and conditions uniformly. Nonetheless, we chose
to treat events and conditions as semantically different kinds in the logic for the
two reasons discussed below.

While, theoretically, it is sufficient to have either state-based or logic-based
approach, they result in different specification styles. We believed that different
kinds of system properties are more naturally specified using different styles.



Moreover, it may be helpful to combine state-based and event-based reasoning,
resulting in more compact and understandable specifications.

Second, we wanted to make claims about satisfaction of properties not just
at instances when observations are available, but at all time instances. When
we try to do this, we notice that conditions and events require very different
reasoning. If, at a certain time point, there is no observation for an event, we
conclude that the event is not occurring at that time point. By contrast, if there
is no observation to evaluate the predicate of the condition, we conclude that
the value of the predicate has not changed since the last time the predicate has
been evaluated. If we tried to use the uniform representation of both events and
conditions as predicates, as suggested above, we would not be able to properly
choose the reasoning rule. To avoid this problem, we define separate semantic
definitions for events and conditions.

The intuition presented above, treating conditions as abstractions of state
and events as abstractions of state changes, allows us to define relationships
between events and conditions. Each condition c, primitive or composite, gives
rise to two events, start(c) and end(c). These events occur when c changes its
value: start(c) occurs at the instance when the predicate defining c becomes
true and end(c) occurs when the predicate defining c becomes false. Conversely,
given two distinct event definitions e1 and e2, we can define the condition [e1, e2),
which is true at the current time if there has been an occurrence of e1 in the
past, but no occurrence of e2 between that occurrence and the current moment.
We refer to [e1, e2) as the interval operator and note that it is similar to the
since operator in past-time LTL.

The interval operator [e1, e2) is the only temporal operator of the core logic
of MEDL. From the discussion above, it is clear that it is a past-time temporal
operator, with semantics given in terms of the prefix of the execution trace
seen so far. This design decision was motivated by two considerations. First, we
focused on detecting violations of safety properties and it is well known that if
a safety property is violated, a violation is always exhibited by a finite prefix
of an execution, so a past-time logic was deemed an appropriate specification
approach. Second, a past-time approach allows us to avoid reasoning about future
extensions of the current prefix and dealing with uncertainty about the future.
In turn, this lack of uncertainty leads to more efficient checking algorithms.
Processing a single observation takes time linear in the size of the formula and is
independent of the length of the observed trace, which matches the complexity of
checking past-time LTL [10]. The amount of space needed to represent the state
of the monitor is also linear in the size of the formula and can be determined
statically while generating the monitor.

Three-valued logic Both specification languages of MaC framework are based
on a three-valued logic to express undefined states of a target program in a
compact manner. For example, a member variable vj of an object oi may not be
visible until oi is instantiated. In such situation, an expression ek of behavioral
specification like oi.vj==10 is undefined. This expression becomes defined only
after oi is instantiated. Similarly, this expression becomes undefined again if oi



is destructed. Thus, an expression of behavioral specification may change its
definedness during the execution of a target program and three valued logic of
PEDL/MEDL can conveniently describe such changes.

Monitor state and guarded commands with auxiliary variables. In addition to
the logic of events and conditions, MEDL specifications can include guarded
commands. Commands are sequences of expressions that update state variables
of the monitor. We refer to these state variables as auxiliary variables, since
they extend the state of the monitored system. Commands are triggered by
occurrences of events defined in PEDL or MEDL. In turn, auxiliary variables
can be used in predicates that define MEDL conditions and, ultimately, define
new events. This creates a potential for infinite loops in monitor execution.
MEDL semantics have been augmented to detect potential loops and reject such
specifications as invalid.

2.2 Tool architecture

Instrumentation vs. virtual machine. In order to support the continuous-time
semantics defined above, instrumentation has to guarantee that no changes to
monitored variables are missed. As a different method of extracting runtime in-
formation, we can utilize a monitoring and checking layer on top of a virtual
machine such as JVM or LLVM virtual machine through debugging interfaces
(e.g., The Java Virtual Machine Tools Interface (JVM TI)). Although a virtual
machine-based approach can extract richer runtime information than the one
extracted through target program instrumentation, it might be slower than the
target program instrumentation. Also, at the time of developing Java-MaC (i.e.,
1998-2000), JVM did not have “good” debugging interface, and thus, we deter-
mined that it would have required significantly more amount of effort to develop
Java-MaC as a virtual machine layer than to develop Java-MaC as a framework
to instrument a target program.

Bytecode-level vs. source-level instrumentation To extract runtime information
of a target program, a monitoring framework can instrument a target program
either in a bytecode (i.e., executable binary) level or a sourcecode level. We
decided to instrument a target program in a bytecode-level for the following
reasons:

– high applicability (i.e., can be applied to almost all target programs)
– fast setup for runtime verification (i.e., no source code compilation required).
– on-the-fly applicability to mobile applications (e.g., Android applications)

which are downloaded from app stores (e.g., Google playstore).

The weakness of bytecode level instrumentation is that it is difficult to di-
rectly obtain high-level runtime information from a target program execution.
However, we believe that PEDL and MEDL scripts can enable reconstruction
of high-level behavior of target program executions based on the low-level mon-
itored data. In contrast, source-level instrumentation can be very complicated



depending on the complexity of target source code, since the instrumentation
should handle all possible complex statements of a target program.

Asynchronous vs. synchronous monitoring. Although MaC architecture can be
applied to synchronous as well as asynchronous monitoring, our Java-MaC tool
was designed to operate asynchronous monitors. The motivation for this design
decision was to reduce timing overhead, i.e., disruption to the timing behavior
of the system: instead of stopping the system while an observation is processed
by the monitor, we send the observation to a stand-alone monitor, allowing
the system to move along. Although the instrumentation to extract observation
still needs to run as part of the system, checking of the property is performed
elsewhere.

Checking of timing properties. When dealing with properties that specify quan-
titative timing behavior, the monitor needs to keep track of the progress of time.
If an event e2 should occur within a certain interval of time after an occurrence
of e1, the monitor needs to detect that the interval has expired. With the focus
on asynchronous monitoring, timing properties present additional challenges in
the MaC architecture, since the monitor clock may be different from the system
clock. One can rely on timestamps of observations received from the system.
Assuming in-order event delivery, once an observation with a sufficiently large
timestamp is received, the monitor can conclude that e2 did not occur in time.
There may be a delay in detecting the violation, which may or may not be ac-
ceptable. However, if there is a possibility that observations will stop arriving if
e2 misses its deadline, then the violation will never be detected. In that case, the
monitor would be required to track progress of time using its own clock, which
requires additional assumptions about clock synchronization, delays in transmit-
ting observations, etc. Extensions to the MEDL language and ways to provide
guarantees of timely detection have been studied in [22].

2.3 Response

When a violation of a property is detected, it is not sufficient to just raise an
alarm. Human operators may not be able to respond to an alarm fast enough,
may not have sufficient situational awareness to choose an appropriate action
to take, or may not have the right level of access to the running system. The
MaC architecture allows the monitor to decide on the action and provides an
interface to apply the action though the same instrumentation technology used
to extract observations. We referred to this capability as steering. In response
to an event raised by the monitor, a steering action can be performed to change
the state of the running system or to invoke a recovery routine that may be
provided by the system. A general theory of steering that would allow us to
reason about the effects of monitor-triggered actions is not available. However,
several case studies showed the utility of steering in situations where a high-level
model of the system behavior is available. In particular, in [14], we developed
a monitor-based implementation of Simplex architecture [23] and demonstrated



its utility in a control system. In [9], a simulation-based study illustrated efficacy
of steering in a distributed robotic application based on artificial physics.

3 Lessons learned

After more than two decades of working on runtime verification problems, we
can look back at the MaC framework and assess its vision and design through
the prism of accumulated experience. We see two kinds of lessons that can be
learned, as discussed in detail below. First, we can look at the impact of design
decisions we have made and compare them with alternative decisions and pos-
sible extensions we did not pursue. Second, we can revisit our vision for how
run-time verification would be applied and contrast it with emerging practical
applications.

3.1 Reflections on MaC design decisions

Probably the most significant contribution of the MaC project was to perform
an exploration of design choices in runtime verification, before settling on a
particular set of decisions. We revisit some of these decisions below and briefly
compare them with alternative approaches taken by the research community.

The separation of MEDL and PEDL. Separation of event definition from the
rest of the monitoring specification proved very useful and we believe it is one
of the most important insights to come out of the MaC project. It allows to
quickly adapt to changes both in properties to be checked and in system imple-
mentations. On the one hand, if a change to the property does not require any
new primitive events, there is no impact on system instrumentation. However, if
we are unable to represent the changed property with existing primitive events,
we know that a new primitive event needs to be introduced, which in turn tells
us exactly what new instrumentation is needed. On the other hand, if a system
implementation is changed, we just need to update the definition of primitive
events and the rest of the monitoring setup is not affected. In this way, primi-
tive event definitions serve as a layer of abstraction, isolating checkers from the
system itself to the extent possible. In the case of software monitoring, primi-
tive event definitions are relatively straightforward and are defined in terms of
function calls and returns and state updates. However, in many situations where
direct observation is more difficult, in particular in cyber-physical systems where
continuous environments need to be monitored. Here, event detectors need to
deal with noisy observations, for example, using statistical techniques. In such
cases, a clear separation between properties, checked in a conventional way us-
ing logics, and statistics-based detection of primitive events is even more useful.
Preliminary investigation of such a setting has been explored in [20].

At the same time, it gradually became clear that separation between prim-
itive events and the rest of the event and conditions used within the monitor
may be rather arbitrary. In fact, a complex system may benefit from multiple



levels of abstraction, where events and conditions on one level are defined in
terms of events and conditions at levels below. This insight became one of the
foundations in our follow-up work on modular runtime verification systems [29].

MEDL vs. LTL, past time vs. future time. Many people prefer to work with
familiar temporal logics like LTL. Since LTL is a future-time logic that has its
semantics over infinite traces, runtime verification requires additional machinery
to reason about all possible extensions of the currently observed prefix. Elegant
approaches have emerged after the conclusion of the MaC project, e.g., [2], which
is based on three-valued semantics of LTL. In addition, such an approach allows
us to easily decide when it is possible to turn the monitor off because the outcome
of checking will not change in any future extension of the trace, something that
is not always easy to do with past-time formulas.

Monitorability. Our approach in the MaC framework was to view runtime ver-
ification as an approach to detect violations of specifications. This means that
monitorable properties would have to be safety properties, that have finite wit-
nesses demonstrating their violation. Further, any checking framework can only
detect safety properties whose set of violating prefixes is a recursive set. It turns
out that the MEDL language (and its translation to automata) is as powerful
as one can hope for — the MaC framework can detect violations of all safety
properties whose set of violating prefixes are decidable [26]. Since this initial
work on understanding the expressiveness of what can and cannot be moni-
tored, subsequent work has identified richer notions. In this work, one views
runtime verification as not just an approach to detect specification violations,
but also as a means to establish that an observed execution is guaranteed to
meet its specification for all future extensions of the observed prefix [2]. Such
properties (i.e., those that can be affirmed) need to be such that a witnessing
finite prefix of an execution guarantees their satisfaction; these are the class of
guarantee or co-safety properties. The notion of monitorable properties has been
further extended in [18].

Temporal logic vs. abstract commands. The mixture of temporal logic constructs
and guarded commands in the monitoring language makes the approach more
expressive, but complicates semantics due to the presence of potentially circular
dependencies. State of the monitor is now spread between explicitly introduced
state variables and values of conditions defined in the logical part of the language.
Understanding the property being checked may now require more effort by the
user.

Synchronous vs. asynchronous monitoring. The focus of Java-MaC on asyn-
chronous monitoring turned out to be one of the design decisions that, in retro-
spect, was not completely justified. Support for synchronous monitoring turned
out to be useful in many situations, in particular for security properties as well
as checking timing properties in real-time. Moreover, case studies suggest that



asynchronous monitoring may not always reduce timing overhead. With asyn-
chronous monitoring, instrumentation probes do not perform checking directly,
but instead have to deliver collected observations to the monitor. When the
monitor is running in a separate process or on a remote computing node, the
overhead of buffering and transmitting observations often turns out to be higher
than performing checks synchronously within the instrumentation probe. To the
best of our knowledge, there has been no systematic exploration of the trade-
off between synchronous and asynchronous deployment of monitors. Preliminary
results are available in [28].

Randomization. As mentioned in the introduction, the original motivation for
the work in the MaC project, was to extend ideas from program checking [5] to
checking reactive program computations. In the context of program checking,
randomization is often critical to obtain effective checkers. Does the same apply
in the context of runtime verification of reactive programs? More recent work has
tried to exploit randomization in the context of runtime verification [6, 16], in-
cluding identifying the theoretical limits and expressiveness of such checkers [6].

3.2 Applications of runtime verification in safety-critical systems

Recurrent questions about runtime verification technologies concern which prop-
erties it makes sense to check at run time and why they were not verified at design
time. As part of our original motivation for the MaC project, our answer to these
questions was that properties come from system requirements, but they could
not be formally verified at design time because state of the art in formal verifica-
tion did not scale sufficiently well. For a safety-critical system this vision seems
insufficient. Discovering a violation of a safety property during a mission does
not improve safety, as it may be too late to react to an alarm. Therefore, more
realistic approaches need to be applied to make sure that runtime verification
improves safety assurance. Without trying to be exhaustive, we consider three
such approaches below.

Predictive monitoring. While discovering a safety violation after it occurs may
not be acceptable, discovering that a violation is imminent would be very de-
sirable. To achieve this capability would requires us to predict likely executions
in the future for a limited horizon. Such prediction may be difficult for software
executions. However, for cyber-physical systems, where an accurate model of
system may be available, model-based predictions are able to achieve this goal.
The challenge is to keep the approach computationally feasible, due to inherent
uncertainties in the model and noisy observations. A promising approach [27],
based on ideas from Gaussian process regression theory, appears to be efficient
enough to be applied on small robotic platforms.

Monitoring-based adaptation. Finally, an important use case is when the out-
come of monitoring is used to take action aimed at helping the system recover
from the problem or adapt to a new situation. These actions can take different



forms. In our early work, we showed that the well-known control-theoretic ap-
proach based on Simplex architecture [23] can be implemented in a monitored
setting [14]. This case targets faults in controllers, where the checker monitors
boundaries of the safety envelope of the system and triggers a switch to a safety
controller, which may have worse performance but is trusted to keep the system
safe. This approach relies on careful control-theoretic analysis of the system dy-
namics and targets a limited case when the source of the fault is assumed to be
known and the action is pre-determined. In more general scenarios, several al-
ternative approaches have been considered. One approach is to avoid diagnosing
the problem, concentrating instead on ensuring that observable behavior is ac-
ceptable. This approach came to be known as runtime enforcement. Rather than
altering the state of system components to allow them to return to correct opera-
tion, runtime enforcement concentrates on making sure that observable behavior
is safe. Runtime enforcement actions involve delaying, suppressing, or modifying
observations in other ways. A different approach is to diagnose the problem and
localize the fault by collecting additional information and invoke an appropriate
existing recovery procedure or applying a change directly to the internal state of
a faulty component. Providing guarantees in the latter approach may be difficult
and requires an accurate model of system components. A detailed survey of state
of the art is given in [8].

Monitoring of assumptions. In open systems that have to operate in environ-
ments that are not sufficiently known, verification is typically performed with
respect to assumptions about the environment. In this case, it is important to
detect that some of the assumptions are violated at run time. We note that a
violation of the assumption does not necessarily indicate an immediate problem.
The system may still be able to successfully operate in the new environment.
However, some of the design-time guarantees may not hold any more and system
operators should pay additional attention to the situation.

In some approaches, most notably in assume-guarantee frameworks for re-
active systems [3], assumptions – just like guarantees – can be naturally ex-
pressed in specification languages such as LTL or MEDL. In many other cases,
assumptions take drastically different forms. For example, in control systems, as-
sumptions are often made about the levels of noise in sensor streams. Similarly,
learning-based systems rely on assumptions about training data, in particular
that training data are assumed to be drawn from the same distribution as in-
puts encountered at run time. Detecting violations of such assumptions require
statistical techniques. While there is much literature on statistical execution
monitoring in process control and robotics (see, e.g., [19]), treatment of statisti-
cal monitoring tends to be much less formal than logic-based monitoring. Much
work remains to be done to determine monitorability conditions for statistical
monitoring and develop specification languages with formal semantics.



Acknowledgement

We would like to thank Dr. Ralph Wachter who provided and encouraged us with
research funding and freedom to explore and develop the MaC framework when
he was at the ONR. We also would like to thank other participants of the ONR
MURI project: Andre Scedrov, John Mitchell, Ronitt Rubinfeld, Cynthia Dwork,
for all the fruitful discussions. One of the authors of the first MaC paper [12],
Hanêne Ben-Abdallah, participated in the project as a summer visitor in 1998.

References

1. Alspaugh, T.A., Faulk, S.R., Britton, K.H., Parker, R.A., Parnas, D.L., Shore,
J.E.: Software requirements for the A7-E aircraft. Tech. Rep. NRL Memorandum
Report 3876, Naval Research Laboratory (Aug 1992)

2. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Transactions on Software Engineering Methodologies 20, 14:1–14:64 (2010)

3. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.:
Multiple viewpoint contract-based specification and design. In: Formal Methods for
Components and Objects: 6th International Symposium, FMCO 2007. pp. 200–225
(Oct 2007)

4. Bhargavan, K., Gunter, C.A., Kim, M., Lee, I., Obradovic, D., Sokolsky,
O., Viswanathan, M.: Verisim: Formal analysis of network simulations. IEEE
Trans. Software Eng. 28(2), 129–145 (2002). https://doi.org/10.1109/32.988495,
https://doi.org/10.1109/32.988495

5. Blum, M., Kannan, S.: Designing programs that check their work. Journal of the
ACM 42, 269–291 (Jan 1995)

6. Chadha, R., Sistla, A.P., Viswanathan, M.: On the expressiveness and complexity
of randomization in finite state monitors. Journal of the ACM 56(5), 26:1–26:44
(2009)

7. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Semantics of Systems of Concurrent Processes. pp. 407–419 (1990)

8. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and re-
action. In: Lectures on Runtime Verification, Lecture Notes in Computer Science,
vol. 10457, pp. 103–134. Springer (2018)

9. Gordon, D., Spears, W., Sokolsky, O., Lee, I.: Distributed spatial control and global
monitoring of mobile agents. In: Proceedings of the IEEE International Conference
on Information, Intelligence, and Systems (Nov 1999)

10. Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In: Pro-
ceedings of Tools and Algorithms for Construction and Analysis of Systems
(TACAS’02). LNCS, vol. 2280, pp. 342–356 (Apr 2002)

11. Heitmeyer, C.L.: Software cost reduction. In: Encyclopedia of Software Engineer-
ing. John Wiley & Sons, Inc. (2002)

12. I.Lee, H.Ben-Abdallah, S.M.O.M.: A monitoring and checking framework for run-
time correctness assurance. In: Proceedings of the Korea-U.S. Technical Conference
on Strategic Technologies (Oct 1998)

13. Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan, M.: Java-MaC: a run-
time assurance tool for Java programs. In: Proceedings of Workshop on Runtime
Verification (RV’2001). Electronic Notes in Theoretical Computer Science, vol. 55
(July 2001)



14. Kim, M., Lee, I., Sammapun, U., Shin, J., Sokolsky, O.: Monitoring, checking,
and steering of real-time systems. In: 2nd Workshop on Run-time Verification (Jul
2002)

15. Kim, M., Viswanathan, M., Ben-Abdallah, H., Kannan, S., Lee, I., Sokolsky, O.:
Formally specified monitoring of temporal properties. In: Proceedings of the Eu-
ropean Conference on Real-Time Systems (ECRTS ’99). pp. 114–121 (Jun 1999)

16. Kini, D., Viswanathan, M.: Probabilistic automata for safety LTL specifications.
In: Proceedings of the International Conference on Verification, Model Checking,
and Abstract Interpretation. pp. 118–136 (2014)

17. Lee, I., Kannan, S., Kim, M., Sokolsky, O., M.Viswanathan: Runtime assurance
based on formal specifications. In: Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA ’99)
(Jun 1999)

18. Peled, D., Havelund, K.: Refining the safety-liveness classification of temporal prop-
erties according to monitorability. In: Models, Mindsets, Meta: The What, the How,
and the Why Not? - Essays Dedicated to Bernhard Steffen on the Occasion of His
60th Birthday. Lecture Notes in Computer Science, vol. 11200, pp. 218–234 (2018)

19. Pettersson, O.: Execution monitoring in robotics: A survey. Robotics and Au-
tonomous Systems 53(2), 73–88 (2005)

20. Roohi, N., Kaur, R., Weimer, J., Sokolsky, O., Lee, I.: Parameter invariant monitor-
ing for signal temporal logic. In: Proceedings of the 21st International Conference
on Hybrid Systems: Computation and Control. pp. 187–196 (2018)

21. Sammapun, U., Lee, I., Sokolsky, O., Regehr, J.: Statistical runtime checking of
probabilistic properties. In: Proceedings of the 7th Workshop on Run-time Verifi-
cation. Lecture Notes in Computer Science, vol. 4839, pp. 164–175 (Mar 2007)

22. Sammapun, U.: Monitoring and checking of real-time and probabilistic properties.
Ph.D. thesis, University of Pennsylvania (2007)

23. Sha, L.: Using simplicity to control complexity. IEEE Software 18(4), 20–28
(July/August 2001)

24. Sokolsky, O., Sammapun, U., Lee, I., Kim, J.: Run-time checking of dynamic prop-
erties. In: Proceeding of the 5th International Workshop on Runtime Verification
(RV’05). Edinburgh, Scotland, UK (July 2005)

25. Tan, L., Kim, J., Sokolsky, O., Lee, I.: Model-based testing and monitoring for hy-
brid embedded systems. In: Proceedings of the 2004 IEEE International Conference
on Information Reuse and Integration (IRI ’04). pp. 487–492 (Nov 2004)

26. Viswanathan, M., Kim, M.: Foundations for the run-time monitoring of reactive
systems: Fundamentals of the MaC language. In: International Conference on The-
oretical Aspects of Computing (ICTAC). LNCS, vol. 3407, pp. 543–556 (Sep 2004)

27. Yel, E., Bezzo, N.: Fast run-time monitoring, replanning, and recovery for safe au-
tonomous system operations. In: Proceedings of the IEEE International Conference
on Intelligent Robots and Systems (IROS) (Nov 2019), to appear.

28. Zhang, T., Eakman, G., Lee, I., Sokolsky, O.: Overhead-aware deployment of run-
time monitors. In: In this volume. (Oct 2019)

29. Zhang, T., Eakman, G., Lee, I., Sokolsky, O.: Flexible monitor deployment for run-
time verification of large scale software. In: International Symposium on Leveraging
Applications of Formal Methods. pp. 42–50. Springer (2018)

30. Zhou, C., Hansen, M.: Duration Calculus. Springer (2004)


