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Symmetry, Spin-Orbit Interactions, and Spin Anisotropies
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The origins of anisotropy in the effective spin Hamiltonian, describing the ground manifold of
Hubbard models with spin-orbit interactions, are critically discussed. For tetragonal symmetry, we

show exactly that spin anisotropy can arise only if one includes both spin-orbit and Coulomb exchange
interactions. For lower symmetries, additional anisotropies arise from terms which were hitherto

neglected. Our analytic results are supported by numerical solutions for single bond clusters. These
results can explain the easy plane anisotropy in the antiferromagnetic cuprates.
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A long standing problem concerns the mechanism
whereby spin-orbit interactions give rise to magnetic
anisotropies in magnetic insulators. This problem has
attracted renewed interest following the discovery of high
temperature superconductivity in the doped cuprates [1]
and consequent interest in the magnetism of the undoped
or lightly doped cuprate insulators. Many properties of
such insulators with one hole per site are described by
a spin-1/2 Heisenberg antiferromagnet Hamiltonian, with
small spin anisotropies [2], 9f~ = g~;, l AM(i, J') with

~M (i.J) = g J (t j)S (I) S (J) ~ (1)

where p, and t label Cartesian components and (i, j)
denotes a pair of spins. For the cuprates, we shall
mainly consider nearest neighbor (nn) spins in the Cu02
plane. We refer to the case when J~ „(i,j) = J(i, j)8„„
as isotropic exchange. After Anderson [3] used the su-

perexchange formalism to derive the isotropic terms,
Moriya [4] showed that adding spin-orbit (SO) interac-
tions generates anisotropy (and even antisymmetric ex-
change terms), for sufficiently low lattice symmetry. The
recent work on the cuprates required a more system-
atic study of the relations between lattice symmetry and
the spin anisotropies: while Moriya's calculation was
extended to yield the antisymmetric exchange in or-
thorhombic La2Cu04 [5—9], which disappears when the
orthorhombic distortion vanishes, these calculations did
not yield the easy plane anisotropy which is observed
to have similar magnitudes in both the orthorhombic and
tetragonal cuprates isostructural to La2Cu04 [10].

When each site has tetragonal symmetry, then 3f~
must have the form

Ajg = g(J1S;S)~ + Jgs; S,. + J,S,'S,'), (2)
«j)

where (( and J denote components (in the plane) parallel
and perpendicular to the bond (ij) and z the component
perpendicular to the plane. Recently [11], the observed
easy plane anisotropies b,J =

(J~~ + J~)/2 —J, were at-
tributed to Coulomb exchange interactions. However, no
systematic discussion was given to show whether or not

i,a,P,cr,o'
A[w;(a, P) d; d;p ~ + H.c.]

+ g ti~)p(d;~~d)p~ + d)p~d;~~)
a,p, o', l +J

+ —
Z U;a iatdia~diatsdiasdla~

l,a,a,o,s

t t+ Z Kia, ia'diacr dia)s dia's diato
i,aWa), o,s

(3)

Here d; creates a 3d hole on the ith copper ion in
the nth spatial orbital with z component of spin cr. The
second term arises from the SO interaction, Al . s for each
hole, and w;(n, P) = g„L"p[o.„] /2, where L p
is an orbital angular momentum matrix element and [tr„]
is the Pauli matrix. 9f includes Coulomb (U) and what
we will refer to as Coulomb exchange (K) interactions
between electrons on the same site [12].

To second order in the hopping t, Moriya's superex-
change results follow from the simpler Hamiltonian

-t l -t -t
ti rrj rr' di Oa d)Oa' + U di Oo di Os di Os di Ocr ~

o,o' 2 i,o',s
i(j (4)

these results were either model dependent or sensitive to
the approximation used. In this Letter we discuss the
role of lattice symmetry in determining the various mag-
netic anisotropies. Specifically, we show exactly that for
tetragonal site symmetry the spin Hamiltonian is isotropic
unIess one includes both spin-orbit and exchange inter-

actions. When both are included, we calculate the J„'s
of Eq. (2) and obtain values for AJ which are consistent
with experiments. We further mention spin anisotropies
at lower lattice symmetries, which arise from terms not
included by previous authors.

We start by describing hopping of holes in a Cu d band
with the following generic model,

t
Ei a di a cr di a o'

l,a,o'
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where d;0 creates a hole in the renormalized ground state
(with energy zero), which contains contributions from the
original excited states through SO matrix elements, and
where t may contain spin flip terms (for low symmetry).
Perturbation expansion in powers of t/U eliminates the
states with two holes on the same ion, and the resulting
4 lowest energy states are then described by the single-
bond Hamiltonian as in Eq. (1). This procedure has been
the basis for many recent extensions [5—9] of Moriya's
work. In particular, starting from Eq. (4), Shekhtman
et al. [6] discovered a new hidden symmetry, which im-
plied that the single bond AM(i, j) is isotropic. However,
one should note that with general U, K, and t, Eq. (4)
is not equivalent to Eq. (3) above. In particular, since
Eq. (4) does not contain hopping among renormalized ex-
cited states, its results at high order in t/U differ from
those which follow Eq. (3). Other differences are dis-
cussed below. Therefore, the hidden symmetry of Ref. [6]
does not persist. Had it persisted, it would have precluded
any easy plane anisotropy in the tetragonal cuprates.

We now prove our strongest result, concerning tetrag-
onal symmetry based on the full Hamiltonian (3). When
K = 0, we prove that the spin Hamiltonian representing
the ground manifold is isotropic, regardless of the details
of the matrix U. For tetragonal d states (as appropri-
ate for the Cu ions), the spatial orbitals ~n) are fixed to
be (0) —x —y, (I) —3z —r, [x) —yz, (y) —xz, and

~z) —xy, with single ion energies Eo = 0, E(, E„=E„
and E, , and axes chosen as in Fig. l.

Diagonalization of the SO terms in spin space is
achieved using the following pseudospin operators:

t
ciao = ~l~u]g, gd&ug ~

Tl

(5)

for u = x, y, z and c; = d; „for u = 0, 1. Using this
labeling and writing L p explicitly for the above d states,
one finds that the SO interaction is independent of the

M+

d
XZ xz~lane XZ

d
yz

FIG. 1. Schematic view of d, and d, . of two nn Cu ions on
the x axis. While d orbitals are in the same plane, those of
dv orbitals are in parallel planes. Hence t, , + f, ,

pseudospin p, . Thus when K = O„A becomes
1

+((~ p)('t «'p. (;pp

l
&" JP('«'P JPP /PP

tr P u', I'=-j

(, p&, „~. ,* p (. , „~ . (6)
I.A', A'', P.P.

where 8' contains combinations of the ~ ' s. For a nn bond
in tetragonal symmetry, t, ,~

= t„p only connects states
of the same symmetry, i.e., it is diagonal except for r] ()

to ]. Consequently, the transformation to pseudospin does
not change the form of the hopping term. We see that

A is a function of the quantities g c;„„c,~~, which are
rotationally invariant in pseudospin space. Therefore A
is also rotationally invariant in the same space. Since spin
and pseudospin are identical in the ground state (0) of all
sites, AM will be rotationally invariant in the unrotated
spin space. In particular, the initially fourfold degenerate
ground state of a pair of nn ions will split into a singlet
and a triplet, and A~(i, j) will be isotropic [13]. Note
that this proof applies to all orders in perturbation theory
in both t and A. It thus represents a decisive advance in
our understanding of the spin symmetry.

In fact, an essential assumption for our proof was that
there be no hopping between states with different symme-
tries (which would imply hopping between different val-
ues of p, ). Although this assumption clearly applies for
nn hopping in tetragonal symmetry it may break down
for further neighbor hopping. We therefore restrict the
following discussions to nn hopping. For that case, there
will be no anisotropy without both exchange and SO inter-
actions. With only the former the eigenstates of a single
atom with two holes have total real spin 1 or 0. With
no exchange but with SO interactions, these eigenstates
have total pseudospin 1 or 0. In both cases, our numerical
evaluation of the energy levels gave singlets and triplets
as this argument requires. When both interactions are
present, the degeneracies are removed, and 9f~ becomes
anisotropic. To obtain the anisotropy analytically we car-
ried out a calculation treating hopping, SO, and exchange
interactions as perturbations. For tetragonal symmetry we
found the leading contribution to anisotropic exchange to
be of order t2A'K Our resu. lt has the form of Eq. (2)
with 1„=Jo + j„,where p, assumes the values x =

and, and

ILo.„I'io.(K(,,
(E + E(+ U(„)~ E~ E(+ Uo( J

Ko,p (r p„p ro,o)Lo," (o, (Ll,p.+ +(E„+ Uo,„)' E~ + Uo. i

where the index i has been dropped from E, U, and K.
We checked this calculation against results (shown in

Fig. ) obtained from exact diagonalization for the four
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tpp = top /Ep, , to 1
= ro p, ~p„l/Ep, , t„„=0,

2
rYY

= r /Ep rz, z r /EF (8)

In our numerical estimates in Fig. 2 and below, we took
J3

rap = —~3t)p, =
z (pdo) and typ = tzp, = pd77 =

—
z (pdo. ), where pdzr = 1.5 eV and E„=E~, = E~

3.25 eV [14]. We also checked that the j~, shown in

hopping spin-orbit exchange

A, =0.1

50 - K=1.0
t=1.0

K =1.0
X, =0.1
t= 1.0

40

~ 30

20

10

0
0 0 0.1 0

FIG. 2. A comparison of perturbation results in Eq. (7)
(dotted line) with the exact diagonalization results (solid line).
We took E, = E„=1.8 eV and estimated t & from Eq. (8)
and after. In the left and right panel t p and K p are replaced
by tt p and KK &, respectively. U & and K p are given in
Table I of Ref. [14]. The values of A (in eV), z, and K are
given in the panels.

lowest levels out of the 190 possible two-hole states for
a cluster of 2 nn sites. In particular, by varying the
parameters t, A, and K, we verified the analytic result of
Eq. (7) that j~ —AztzK

O. ne sees that the perturbative
results remain good approximations up to t = 1, K = 1,
and A = 0.1 eV. Note that within tetragonal symmetry
we do recover the expected full anisotropy for a single
bond, under which Jii, J&, and J, are all different.

Will these results persist for the tetragonal cuprates,
which also contain oxygens? Including all the 2p states
on the oxygen ion, a pair of holes on the cluster
Cu-0-Cu can have 325 states. We diagonalized the
resulting Hamiltonian matrix numerically and confirmed
isotropic exchange for K = 0. To show this analytically,
one introduces pseudospin on the oxygen 2p level just
as in Eq. (5), where for an oxygen site on a bond
along the x axis ~0), ~y), and ~z) denote p„, p„and
py orbitals, respectively. Then, for K = 0, one again
obtains a Hamiltonian of the form of Eq. (6), leading
to a rotationally invariant AM. When we include the
exchange interactions, the leading contribution to the
anisotropy is of order t A K. In fact, if one assumes
no Coulomb exchange on the oxygens, then the analytic
expressions of the perturbation theory at this order can
be obtained from those given in Eq. (7) by redefining the
effective hoppings

Fig. 2, agree within -10% with those obtained from the
full 325 state Hamiltonian for the Cu-0-Cu cluster.

We now compare these anisotropies with experi-
ments, taking the experimental value [10], J,„—= (J, +
J& + J~~)/3 = 130 meV for the isotropic part of the
exchange. The out-of-plane anisotropy zz» = hJ/J, „ is
positive (see Fig. 2) and therefore the spins order in that
plane. Our parameters (E = 1, t = 1, and A = O. leV)
yield AJ = 0.03 meV and u» = 2.3 X 10 4, and thus
the out-of-plane gap fi~,„, = 4SJ,„Q2uxz = 5.6 meV.
Taking account of quantum fluctuations would increase
this value [10],perhaps by the order of 15%, but in any
event it is in reasonable agreement with the experimental
[10] value 5 meV, particularly in view of the uncertainty
in the parameters we used. Given Eq. (7) for single
bonds, the classical ground state of Eq. (2) is rotationally
invariant in the basal plane. Thus, in the absence of spin
wave fluctuations, the in-plane gap is zero. However, this
invariance is broken by the dependence of the spin-wave
energies on the angle 8 between the staggered magne-
tization and the crystal x axis [15,16]. The quantum
zero-point energy of the spin waves was found [15] to
select [17] a ground state with 8 = 0 or 8 = m/2, in
agreement with some observed structures [15].

Although our analytic and numerical results for the
anisotropies are in close agreement with each other, the
use of perturbation theory to estimate the isotropic ex-
change, J,„, is less satisfactory, as also observed by oth-
ers [18]. For the generic model, perturbation theory is
reliable because t/U is small. In contrast, when one adds
the oxygens, the parameter t/E~ is sufficiently large to
lead to disagreements between the lowest order pertur-
bation results and those from the exact diagonalization
of the 325 state Cu-0-Cu cluster. These disagreements
arose due to terms which are of higher order in t/E~.
However, these terms contribute little to the anisotropies.
Similar difficulties with perturbation theory were encoun-
tered by Eskes and Jefferson [18], who reproduced the
experimental J,„by invoking hopping (of magnitude t~~)
between nn oxygen ions. To study the effect of tpp on
the exchange anisotropy, consider a Cu-0-Cu-0 cluster,
where the 2 oxygens are nn (on 2 perpendicular bonds).
Within such a cluster, one would obtain an effective sym-
metry breaking hopping toz of order to~ t~„tz ~„/Ep, Ep .
However, when summed over symmetry related clusters,
such effective hoppings which break tetragonal symme-
try (e.g., to, ) must vanish. Nevertheless, small contribu-
tions of higher order in t» may exist, which may not
be represented by effective hoppings as in Eq. (8). In any
case, we trust that the main contributions to the anisotropy
comes from K, as estimated above.

We now turn to the lower symmetry cases using the
generic model of Eq. (3). For our numerical studies, we
arbitrarily replaced the crystal field orbitals of each atom
by an independent unitary transformation applied to those
for tetragonal symmetry, thus obtaining new eigenstates
of a two-site cluster having no special symmetry. We
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then studied the energy splittings as functions of t and A.
In this low symmetry ease, we found a complete removal
of degeneracy, even when K = 0. For the special case
studied in Refs. [5,7—9], when U p

= U and K = 0,
these calculations show that the anisotropy first appears
at order t6jt2. (This dependence on t can be understood
analytically [16].) Thus the equivalence between Eqs. (4)
and (3), and therefore also the hidden symmetry found in
Ref. [6], break down at this high order.

More generally, when U p
= U + AU p depends on

its indices, both our numerical and analytical results show
that the degeneracy is broken at order t A 6 U even when
K = 0. The importance of keeping track of different
U p's was not apparent in Moriya's paper, which had
only one parameter U. Nor was this point addressed in
later papers. We have generalized Moriya's results in this
respect, and up to order t2A2AU/U2 or t2A2K/U2 we find
the single bond spin Hamiltonian as

(3) For sufficiently low symmetry and without ex-
change interactions, the rotational invariance of the single
bond Hamiltonian is broken at order t6A"- for U ~

=- U,
Thus, results obtained from Eq. (4), including the hid-
den symmetry discovered by Shekhtman et al. [6] are not
valid at such high orders.

(4) For arbitrary U p and K and sufficiently low sym-
metry, the single bond Hamiltonian is not rotationally in-
variant even at order t2A2, in contrast to the case U„p =—U
and K =- 0.
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Birgeneau and M. A. Kastner. Work at the Univer-
sity of Pennsylvania was partly supported by the Na-
tional Science Foundation MRL Program under Grant
No. DMR-91-22784 and at Tel Aviv by the U.S.-Israel
Binational Science Foundation.

9fM = JS~ S2+ D (S~ X $2)

+ S~MS2 —
2 tr(M)$~
]

where explicit expressions for J, D, and the tensor M
are given in Ref. [16]. Here we emphasize the difference
between our results and those found in Refs. [6,7), based
on Eq. (4). The hidden symmetry in Eq. (4) implied that
the tensor M can be written as D D/2J and allowed
the transformation of AM to a rotationally invariant form.
This is no longer true when one uses the full Eq. (3), with
nonzero AU, p and EC.

Adding oxygens between copper atoms yields two
intermediate channels at order t4: one in which two holes
are on the same copper site and one in which two holes
are on the same oxygen site. The first channel can be
represented by the expressions obtained from the generic
model by redefining hopping integrals, as done in Eq. (8).
This yields expressions which are similar to Eq. (9),
requiring nonzero hU or K to yield anisotropy at order t .
The second channel does not have such analogies. This
channel was not important for the tetragonal ease without
Coulomb exchange on the oxygen, because in that case
this channel does not contribute to Eq. (7). In the general
case, if the on-site Coulomb repulsion on the oxygen is
not very large, then this channel may generate anistropy
even when AU = K = 0 [19].

In summary, we list our main conclusions
(1) For tetragonal site symmetry, without Coulomb

exchange, the effective spin Hamiltonian is isotropic
at any order in the parameters t and A. Inclusion of
exchange breaks this degeneracy at order t A E for our
generic model and at order t4A2K for the cuprate system
with an oxygen between the copper atoms.

(2) Equation (7) yields an out of plane spin anisotropy
which may explain the related spin wave gap observed
[10] in many cuprates (both tetragonal and orthorhombic).
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