
User-Controlled Physics-Based Animation for Articulated Figures

Evangelos Kokkevis, Dimitri Metaxas and Norman I. Badler
evangeloOgraphics.cis,upenn.edu {dnm,badler}@central.cis.upenn.edu

Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA 19104-6389

Abstract
We present a physics-based system for the guided

animation of articulated figures. Based on an e@
cient forward dynamics simulator, we introduce a ro-
bust feedback control scheme and a fast two-stage col-
lision response algorithm. A user of our system pro-
vides kinematic trajectories for those degrees of free-
dom (DOFs) of the figure they want direct control
over. The output motion is fully generated using for-
ward dynamics. The specified motion trajectories are
the input t o a control system which computes the forces
and torques that should be ezerted t o achieve the de -
sired motion. The dynamic controllers, designed based
on the Model Reference Adaptive Control paradigm,
continuously self-adjust for optimal performance in
trajectory following. Moreover, the user is given a
handle on the type and speed of reaction of the f i g -
ure’s controlled DOFs to sudden changes in their de-
sired motion. The overall goal of our system is to pro-
vide a platform for generating and studying realistic,
user controlled motion at interactive rates. We require
minimal user involvement in specifying non-intuitive
parameters.

1 Introduction
Although physics-based simulation is guaranteed to

generate natural looking motion, it provides the user
with very little control over the results produced. In
kinematically controlled animation, the user is respon-
sible for every aspect of the generated motion; how-
ever, no guarantees can be made about the result’s
physical correctness. With our work we are trying to
provide the direct control of kinematic animation to
dynamically generated motion, hence taking advan-
tage of the strengths of both techniques.

Given a particular task, the degrees of freedom
(DOFs) of a figure can be classified as primary or sec-
ondary. Primary DOFs are instrumental in achiev-
ing the goal and distinguish that task from all oth-
ers. Secondary DOFs do not involve a particular goal
and usually move involuntarily; however, they signifi-
cantly enhance the overall realism of the motion. For
example, for a human who is casually bending for-
ward (Fig. l), primary are the DOFs of the back. The
arm DOFs can be considered as secondary since it is
not imperative for their motion to meet any goal. In
such a scenario, a user should be required to specify
only the way the back is bending and automatically
be provided with realistic arm motion. In this paper

Figure 1: Bendang the back: (a) Pure kznematzc con-
trol of the back, and (b) Dynamzc szmulataon of the
upper body. Notzce how gravaty posatzons the arms nat-
urally naturally an (b).

we present an animation system which, using a robust
adaptive control scheme, can link the user specified
kinematic requirements on the motion of the primary
DOFs to a fully automated dynamic simulation of the
whole figure.

The desired motion of the primary DOFs is pre-
scribed in the form of kinematic trajectories. Tra-
jectories can be defined for either joint displacements
or segment positions and orientations. For example,
to animate a human figure, the user might choose
to provide the desired knee and hip joint trajectory
to generate a leg motion, and the position and ori-
entation trajectory of the hand segment to generate
an arm motion. Since ultimately the figure motion
is generated dynamically, primary DOFs need to be

16
1087-4844/96 $5.00 0 1996 IEEE

http://evangeloOgraphics.cis,upenn.edu
mailto:dnm,badler}@central.cis.upenn.edu

actuated-provided with a force or torque which will
cause them to move. In our system, actuator forces
and torques which attempt to drive the primary DOFs
along the desired trajectories are computed through
a self-correcting dynamic control system based on the
Model Reference Adaptive Control (MRAC) paradigm.
The robust MRAC scheme, while being simple to im-
plement and computationally efficient, allows complex
trajectories to be consistently followed. Furthermore,
it provides the user with direct control over the speed
and type of response of the actuated DOFs to sudden
changes in their desired state.

The dynamic controllers will generate forces and
torques to actuate the primary DOFs of a figure. The
only other forces acting on the figure are external
forces due to gravity and collisions. Collision han-
dling is usually the bottleneck of interactive dynamic
animation. In our system we devised an algorithm
which breaks up the collision response problem into
two distinct phases-an impact and a contact phase.
The impact phase occurs when two objects first collide
and results in an instantaneous change of the objects’
velocities. The contact phase continues for as long
as the objects are touching and produces the contact
force between them that will prevent interpenetration.
This two stage approach gives physically accurate col-
lision behavior with relatively low computational cost.
With all the forces acting on a figure known, a forward
dynamics simulator completes the animation proce-
dure and computes the figure motion.

The advantages of using dynamic simulation for an-
imating a figure whose desired motion of the primary
DOFs is already specified are the following: (1) Phys-
ical validity of the motion is guaranteed by the dy-
namic simulation which handles collisions and joint
limits. (2) Natural passive motion of secondary DOFs
is automatically generated, leaving the animator free
to direct specific aspects of the active motion. (3)
Feasibility of motions can be studied given realistic
actuator limits. A desired motion will be followed as
closely as possible within the specified physical con-
straints of the system. (4) Segment position and ori-
entation trajectories provide powerful tools which do
not suffer from the occasional jerkiness present in in-
verse kinematics solutions. They can be particularly
useful in following trajectories provided by sensors of
a motion-capture system.

Our system maintains low computational cost and
small user involvement in the dynamic simulation. A
recursive forward dynamics technique based on the
work of Featherstone [8] was enhanced to effectively
handle articulated figure collisions. There is no over-
head in simulating the motion of new figures since
their dynamic equations need not be derived symbol-
ically. The dynamic control scheme used to generate
driving forces for the simulation adjusts automatically
to its assigned task and needs no special tuning from
the user. In fact, generating an animation with our
system requires no more effort than any kinematics-
based system would.

The system described in this work is built as an
extension to Jack, the human modeling and simulation
package developed at the University of Pennsylvania

[17, 11. The user can take advantage of the advanced
interactive manipulation features of Jack to specify
complex kinematic trajectories and achieve enhanced
motion through the dynamic simulation.

The remaining sections of the paper describe the
animation system in detail with special emphasis given
to the collision response and the dynamic control al-
gorithms. We provide the equations used to handle
impact between articulated figures and a step-by-step
account of how to build a MRAC system for trajectory
following.

1.1 Related Work
Researchers have tried to tackle problems in gen-

erating physically correct purposeful motion for com-
puter animation in a variety of ways and for a vari-
ety of applications. Raibert, Hodgins and their col-
leagues have developed dynamic control algorithms
that deal with motion of machines and simulated hu-
mans [18, 10, g]. Their controllers were hand-crafted
to assure successful and natural looking motion for
the models they used. Dynamic controllers tailored
for particular simulated figures were also used by
McKenna and Zelzer [15] and Bruderlin and Calvert
[4]. In recent years, a number of techniques for auto-
matically generating motion for particular behaviors
have been presented [22, 51 which automatically de-
termine an optimal trajectory, a suitable control algo-
rithm or even a morphological structure for the sim-
ulated system [19]. These approaches completely free
the user from specifying the details of the motion but
unfortunately their use is limited to simple systems
and basic behaviors.

Our work does not deal directly with generating
a particular behavior on a certain figure. Instead we
provide a general system for animating articulated fig-
ures by giving the user a substantial amount of low
level control. Isaacs and Cohen [ll] presented a sys-
tem which blends kinematic and dynamic motion in a
figure by removing the kinematically controlled DOFs
from the dynamic formulation for the figure. Barzel
and Barr [3] control the motion of figures through con-
straint forces although their algorithm is not particu-
larly suited for articulated figures with complex joints
since it provides no direct control over joint angles.
Our work has similarities to the work of Lamouret
and Gascuel [13] who use dynamic controllers to drive
motion along kinematically specified paths in space
and to synchronize the animation of different objects.
However, in their system, articulated figure motion
cannot be described through desired joint trajecto-
ries thus complicating user control of complex figures.
Furthermore, the Proportional Derivative (PD) con-
trol scheme used for the actuators lacks the robustness
and ability to adapt to a variety of dynamical systems
and motions provided by adaptive control, as we will
explain in a section 5.

2 System Description
Figure 2 shows the overall structure of the ani-

mation system. The user input is mostly limited to
defining the objects and their geometry and providing
the desired motion trajectories for the primary DOFs.

17

- SCENE
GEOMETRY

GEOMETRY

COLLISION
DETECTION/

RESPONSE

FORCES I FIGURE

T O R Q T 1 1 sTrm - 1 :ET 1-d TRAJECTORIES MRAC I
Figure 2: The overall structure of the animation sys-
tem.

Given the specified trajectories and the figure state
computed by the dynamic simulator, the MRAC cal-
culates the forces and torques to be applied at the ac-
tuated DOFs. The collision response module interacts
with the dynamic simulator to prevent penetrations
between figures.
2.1 Figure Representation

A typical environment contains one or more figures.
Each figure consists of rigid segments with defined ge-
ometric shape connected together through joints in a
tree structure. Every segment has only one parent seg-
ment to which it is connected through its parent goznt.
The only exception is the root segment of the figure,
which has no parent. Joints connecting the segments
can have up to six degrees of freedom (DOFs) , three
translational and three rotational.

Attachment points on a segment are called sztes.
The root joint of each segment connects the segment’s
root szte to one of its parent’s sites. Every site is the
origin of a Cartesian system attached rigidly to the
segment. The Cartesian system attached to the root
site is the local frame of the segment. The environment
has a fixed coordinate system called the znertzal frame.

Any kinematics based animation system should
have the above parameterization to generate motion.
For a dynamic simulation, the mass (or density) of
each segment should be provided. Assuming uniform
mass distribution, the center of mass and inertia ten-
sor of each segment can be automatically computed
from the segment’s geometry. For added realism, a
damping element can be added to the joints to simu-
late mechanical energy dissipation due to joint friction
or muscular stiffness.
2.2 Desired Kinematic Trajectories

Trajectories can be specified for both joints and
sites. A joint trajectory describes joint displacements
over time and a site trajectory position or orientation
over time. Joints or sites that have been assigned a
trajectory are called actuated since there a force or
torque acting on them will make them follow that tra-
jectory. A joint actuator is internal to the figure and
plays a role similar to a muscle or a motor. A site

actuator acts much like a string on a marionette, pro-
viding an external force at the site. Typically, the
user decides to power the primary DOFs which are
the most important to a particular motion and al-
lows the secondary DOFs to follow naturally. Kine-
matic trajectories reflect a desired motion and can be
constructed in advance or while the animation is pro-
gressing. An interesting source for site trajectories is
motion-captured data which can be used to drive the
motion of a simulated articulated figure if sites are
placed on the same positions on the figure as sensors
on the real body. The advantage of using a dynamic
simulation instead of playing back the raw kinematic
data in this case is that we prevent physically incor-
rect situations (such as segment interpenetration) due
either to inconsistencies between the real and the sim-
ulated world or sensor noise.

3 Efficient Forward Dynamics
A forward dynamics simulator computes the fig-

ure motion when all external and internal forces are
known. For an interactive system, the simulator
should be computationally efficient and able to handle
arbitrary complex figures without user involvement.
The forward dynamic simulator in our system is based
directly on Featherstone’s Articulated Body Method
(ABM) [8], an efficient recursive procedure which ac-
commodates a variety of joint types. The algorithm
runs in time proportional to the number of DOFs for
any articulated figure without closed loops. Contrary
to the equivalent closed form Lagrangian formulation
with implicit joint constraints ([6]), no symbolic pre-
processing stage is necessary to develop the equations
of motion and there is therefore no additional over-
head for each new figure. Moreover, solutions of the
closed form of the Lagrange equations typically have
at least quadratic complexity.

The ABM algorithm is formulated in spatzal no-
tatzon which uses 6-dimensional vectors to represent
quantities such as the velocity and acceleration of a
rigid body. A spatial vector combines linear and an-
gular components of physical quantities. The use of
spatial vectors leads to elegant solutions in rigid-body
dynamics problems with a significantly reduced num-
ber of equations. A complete coverage of spatial alge-
bra can be found in Featherstone’s work and we advise
the reader who is unfamiliar with the spatial notation
to read through the examples in Appendix A before
continuing with the rest of the paper. All vector quan-
tities in this paper appear in boldface and spatial vec-
tors are denoted with a hat (^).

In its most general form, an articulated structure in
Featherstone’s formulation consists of links connected
together with single degree of freedom joints, each
with a corresponding joint axis 8. A multiple degree
of freedom joint can be represented as a chain of the
appropriate number of single degree of freedom joints.
The state of a figure can be fully described by the
position, p ~ , and velocity, C R , of the root link and
the displacement, 41, and its derivative, 41, of the joint
attached to each link 1 . The velocity of any link I,
C I , can be recursively obtained from the velocity of its

18

parent link p , G p , the joint axis B and q, using:

GI = Gp + fj[B[.

In the next sections we will describe the additions
to the basic form of the forward dynamic simulator
needed to complete our animation system.

4 Collision handling
One of the most important features of a dynami-

cal simulation is the ability to automatically handle
collisions between objects. Modeling impact and con-
tact is the bottleneck of a dynamic simulation. There
is two distinct aspects to collision handling: detec-
t i on and response. In a simulated world, collisions be-
tween segments can be detected by examining the seg-
ment geometry, position and orientation. This process
needs to be repeated at every step of the simulation
and can be very costly for geometrically complex en-
vironments. When a collision is detected, appropriate
action must be taken to ensure proper response. In a
physics-based simulation, repulsive forces between the
colliding rigid objects prevent interpenetration of the
objects.

Several algorithms, varying in sophistication and
efficiency, exist for detecting collision between polygo-
nal surfaces [16]. In our system we use afast bounding
box check to pick which segment pairs could be in con-
tact. Only for these segment pairs, a more accurate
technique based on the work of [7] is applied to obtain
the contact position if one exists.

The most popular technique for dealing with col-
lision response in a dynamically simulated environ-
ment is inserting a fictitious spring-damper element
at the contact point between the two segments and
allowing small penetrations of the segment geometries
[18, 9, 151. The repulsive force is a function of the
penetration distance and velocity. A spring-damper
element is easy to implement and computationally in-
expensive. Ideally, a spring should be stiff enough
to allow only minimal penetration between objects
even when they collide with high velocities. How-
ever, stiff springs lead to a stiff dynamical system that
requires slow integration. Choosing the spring and
damper constants is non-trivial since a good choice
depends on the physical properties and collision ve-
locities of the colliding objects. An interesting but
more involved technique for the computation of con-
tact forces between rigid non-articulated bodies with-
out using spring-damper elements is described in [2].

The method we use for dealing with collision re-
sponse is automated and has small effect on the dy-
namic simulator’s integration rate. We divide the col-
lision of two objects in two stages, the zmpact and
the contact stage. At the impact stage, which lasts
an infinitesimally short time, the velocity of the in-
volved objects changes instantaneously whereas their
position and orientation remain constant. Once a new
collision is detected during the course of the forward
dynamic simulation, we temporarily halt the simula-
tion, compute new object velocities from their current
velocities, and restart the simulation. When the sim-
ulation restarts, the objects are still in contact since

their position and orientation did not change during
the impact. If the collision is elastic and the objects
separate in the next time instant, then no further steps
need to be taken. If however the colliding objects do
not separate and for as long as they stay in contact,
repulsive forces are generated to prevent interpenetra-
tion.

For the contact stage we use a spring-damper ele-
ment at every contact point. However, springs gener-
ating contact forces after impact need not be stiff. A
mild spring can adequately prevent interpenetration of
objects since the relative velocity of the contact points
is always zero after the impact. A reasonable choice
for the spring and damper constants can work for a
variety of objects and motions.

In our simulated environment there can be colli-
sions between two dynamically animated figures as
well as between a dynamical and a stationary (non-
dynamical) figure such as a wall or a floor. Two seg-
ments can come in contact in multiple contact points.
The following section provides a description of the
equations needed for the impact stage of our collision
response algorithm.
4.1 Impact stage

Impact occurs when two objects collide and results
in an instantaneous change in their velocities. Using
the principle of conservation of momentum one can
formulate an analytical solution for the impact be-
tween two arbitrary articulated figures. For strong
collisions, an analytical solution is advantageous com-
pared to the spring-damper approach, because it by-
passes the problem of large collision forces. At the
time of the impact, a linear system of equations is
formulated and solved to obtain the post-impact ve-
locities of the figures. The equations presented in this
section grew out of the work in [16] and are adapted
to match the dynamic figure representation required
by Featherstone’s algorithm. All the quantities in this
section are assumed to be expressed in the inertial
frame .

As a simple first case, we will consider a rigid object
colliding with a fixed flat surface (see Figure 3(a)). If P
is the spatial inertia of the object then the relationship
between the spatial velocity C- before and Ct after
the impact is given by

k+ = f G - + R,, (1)

where R, = [RCT tCTlT is the unknown collision im-
pulse from the surface to the object. If 0 is the origin
of the object and C is the collision point, then the
velocity of point C is given by

where CXO is a transformation from point 0 to point
C. The collision frame is defined by three orthogonal
unit vectors, 2 perpendicular to the contact surface
and i’ and With the
elasticity coefficient of the collision e E [0,1] we use the
following relationship to compute the perpendicular to

in the plane of the surface.

19

k
,i

(b)

Figure 3: Impact of (a) a simple figure and (b) an
articulated figure with a fixed surface. The collision
impulse i s Re. The law of action and reaction holds
f o r impulses between connected segments an a figure.

the surface post-impact velocity of the contact point:

When e = 0 the collision is inelastic and when e = 1
the collision is perfectly elastic. If there is no fric-
tion at the contact point then there can be no impulse
along the ;and ?directions:

R, * i‘= R, . j’= 0 (3)
and if we assume infinite friction then the velocity
along the surface will be zero:

(4)
-+

V C . e = V c . ~ = o .

For the time being we do not handle arbitrary friction
coefficients during the impact stage.

So far we have found nine linear equations (six from
Eq. 1, one from Eq. 2 and two from Eqs. 3 or 4) with
twelve unknowns (six for G+ and six for Re). The
remaining three equations are obtained from the de-
pendency of the linear and angular components of R,
which take the form:

t, = rc x R,
where rc is the position of point C in the inertial
frame.

This basic principle of momentum conservation can
be readily extended from the simple solid object to an
arbitrary articulated figure (see Figure 3(b)). For each
segment 1 , the general form of Eq. 1 is:

(5)

A

A segment 1 receives an impulse Rp+l from its par-
ent, p , through their connecting joint. From the law
of action and reaction, p receives an impulse -&+I
of equal magnitude but opposite direction, and hence
for each segment I we need to add the impulses re-
ceived from all its children d, - R l - d . Finally, each
active contact point c on the segment contributes an
external impulse Re. A joint cannot transfer impulse
in a direction along its axis 8 , and therefore for each
degree of freedom f of the root joint of segment 1 we
need an equation of the form:

GfsRp+l = 0 (7)

To compute the joint velocities right after the impact,
for each DOF f we also need the equation which re-
lates the velocity of a segment to the velocity of its
parent:

$7 = Gps + Cp+, (8)
f

The equations relating to the contact point velocity
and impulse are the same as in the simple rigid object
case. For each contact point c in every segment we
need Equations 2, 3 or 4 and 5. The equations de-
scribed form a complete system which can be solved
to obtain the post impact segment and joint velocities.
Although for a complex figure the system to be solved
is large, the coefficient matrix is sparse. A sparse ma-
trix technique can be used to achieve efficiency.

Only minor modifications to the above scheme are
required to generalize it for impacts between two dy-
namic figures or between segments of the same fig-
ure: when an impulse 8, is applied to one of the two
contacting segments, an impulse -Re is applied to
the other. The absolute velocity of the contact point,
G c , is replaced by the relative velocity of the con-
tact points of the two segments. We have also worked
out the details for handling different types of common
contacts between polygonal surfaces, involving edges
or planes instead of single points but a full description
of these is beyond the scope of this paper.

5 Dynamic Control
An animation system needs to provide means for

controlling the motion to be generated. Contrary to
kinematics based systems where motion is driven di-
rectly by setting kinematic trajectories such as object
positions and joint angles over time, physics-based sys-
tems use as input only forces and torques. For a user,
specifying a desired object trajectory in Cartesian co-
ordinates is generally more intuitive than giving the
force that would make the object move along it. If it
were not for the dynamic controllers, forward dynam-
ics would almost be useless for generating purposeful
motion! A dynamic controller links the direct kine-
matic control with realistic looking dynamic anima-
tions.

A dynamic controller acts on a specific dynamic
system ranging in complexity from a single joint to
multi-DOF articulated figure. The controIler and the
dynamic system together are called a control system.

20

The inputs to the controller are the desired values of
the system’s variables, and the output is a set of forces
or torques which, when applied to the system, attempt
to create the desired effect on the actual values of the
same variables. The goal of the control system is to
minimize the discrepancy between the desired and the
actual values. For example, if the dynamic system
is a human arm and the desired motion is the elbow
flexion, then a dynamic controller can produce the re-
quired torque at the elbow joint to flex it as desired.

There are two main classes of controllers, the open
loop and the feedback controllers. Open loop con-
trollers base their output only on the desired state of
the dynamic system and are much less powerful than
the feedback controllers which take into account the
actual state of the system as well. A typical example of
an open loop control strategy for articulated figures is
inverse dynamics which, given the desired joint angles,
velocities and accelerations of the figure, computes the
required internal torques to achieve them.

The simplest to implement and most commonly
used type of closed loop controller is the Proportional
Derivative (PO) controller Ell, 18, 9, lo]. The output
torque of the PD controller is proportional to the dif-
ference in position and velocity between the desired
and the actual state, which makes it behave similarly
to a spring-damper system:

f = I c p (Z d e s z r e d - Z a e t u a l) - K d (2 d e s z r e d - & a c t u a l)

Since a PD controller assumes nothing about the
dynamical characteristics of the system to which it is
applied, its successful performance relies heavily on
the fine tuning of its two parameters, namely, the pro-
portional and the derivative gains, KP and K d . Tuning
of the controller needs to be done through trial and er-
ror and the gains depend on the characteristics of both
the system and the desired motion. Gains that work
fine for a slow motion could be inappropriate for a mo-
tion involving high accelerations and vice versa. An
animation system using PD controllers would require
laborious manual tuning of the gains to successfully
achieve a desired motion.
5.1 Model Reference Adaptive Control

The adaptive control systems used in this work have
evolved from the need to implement high performance
control systems that assume little about the dynamic
characteristics of the system to be controlled. The fun-
damental characteristic of adaptive control systems is
the presence of a supplementary feedback loop act-
ing upon a performance index of the control system.
Among the many solutions which have been proposed
to make a control system ’adaptive’, a special class
called Model Reference Adaptave Control (MRAC ,
uses the innovative idea of a reference model to speci / y
the desired system performance [14, 20, 211.

The advantages of using MRAC to generate the
forces and torques driving a figure along kinematically
specified trajectories are many: (1) MRAC systems
are easy to implement and computationally efficient,
(2) Since MRAC assumes little about the system it is
being applied to, one basic controller design can be

MODEL Xm

i
ADAPTATION

Figure 4: The structure of a MRAC. The model and
the actual system run in parallel. The diflerence in
their state is f e d to the adaptation mechanism which
subsequently modifies the gains K and I(,

used to successfully control a variety of dynamic sys-
tems, (3) The self-adjusting nature of the controller
relieves the user from explicitly setting gains or other
non-intuitive parameters, and (4) MRAC design gives
the user direct control over the ideal behavior of the
controlled system. For example, an animator could
vary the speed in which figures should react to changes
in their desired motion, thus simulating a variety of
muscular response times for animated characters.

Figure 4 shows a typical configuration of a model
reference adaptive control system. The reference
model which specifies a given index of performance in
terms of inputs and model states is a part of the con-
trol system itself. The MRAC tries to force the state
of the system 2 to follow the model state zm even in
the presence of disturbances or open loop differences.
The adaptation mechanism modifies the control vari-
ables K and IYr and synthesizes an auxiliary input
signal to assure good model following.

The dynamics of an articulated figure with n DOFs
can be written as:

k = A(q, 4)x + B(q)u (9)
where q is the n x 1 vector of the root segment position
and the joint displacements, x = [qTGT] is the 2nx 1
state vector and U is the vector of external and internal
forces acting on the figure. Matrices A and B can be
symbolically derived from the figure structure and a
coupled MRAC can be designed to control the motion
of any number of the figure’s DOFs.

Alternatively, the same dynamic system with n
DOFs can be written as n 1-DOF dynamic simpler
systems each one dealing with a single DOF q of the
original system. The equation of each simple system
can be written as :

T

kq = 4)Xq + Btq)uq (10)
or

21

The n simple systems are coupled and therefore scalars
a q l , u p and bql depend on the values of all the DOFs.

This set of dynamic systems can be controlled using
a decoupled MRAC approach: A simple controller can
be attached to each DOF of the figure that needs to
behave in a specified manner. Decoupled MRACs have
been proven to be robust and nearly as effective as the
coupled MRAC while at the same time they are easier
to implement and are computationally more efficient.
For each DOF q of the figure, we construct a reference
model system which has the form:

kmq = AmqXmq + B m q r q , (11)

(12)

and the model following error for q is defined as:

X e q = Xmq - Xq

To complete the MRAC, we define the control input
up of Eq. 10 to be:

U , = K, (t)x, + K7.q (t)rq , (13)

1 -
09

c

0.5

where K q (t is a 1 x 2 vector and Krq(t) scalar. The
objective o f! the MRAC is to force zeq asymptotically
to zero in a controlled fashion and achieves that by
setting the proper values of the adaptive gains K, and

We devote the following section to present a step
by step procedure on how to synthesize a MRAC to
do trajectory following for a single DOF of a dynamic
figure. The decoupled MRAC approach is elegant for
controlling multiple DOFs at the same time, can be
achieved by assigning a different MRAC to each DOF.
5.2 Sample MRAC synthesis

This section gives a 'cookbook' description for a
procedure which results in a successful MRAC synthe-
sis. Model Reference Adaptive Control is a powerful
technique and the interested reader should consult the
original published work in [14,20, 211 for more details.

Assume that a joint trajectory is given from which
we can extract the joint angle and velocity at any time
instant. The goal is to synthesize a MRAC which gen-
erates the torque within specified limits which would
move the actual joint close to the trajectory in a con-
trolled manner. The steps to be followed are:

Krq.

1. Descgn the reference model The dynamical sys-
tems we are interested in are driven by finite
forces and therefore cannot change their state in-
stantaneously. The greater the force applied to
the system, the faster its state changes. Given
a particular goal position, if the force supplied is
too low, the system will move too slowly. If the
force is too great, the system will reach the goal
quickly but will not be able to stop in time and
will overshoot, as shown in Figure 5. The model
system will act as an index of performance of the
actual system. We therefore need to design it so
that it behaves the way we would like the actual
system to behave. The MRAC will try to min-
imize the difference between the model and the

-

1.5 I I I

Input -
Crit. damped ----

Underdamped - - - - I overshoot
-,..

: '..
8 %

n l
3 4 1 ts 0

t

Figure 5: Different responses to a step input. Un-
derdamped motion reaches the desired state faster but
overshoots. Cn'tically damped motion provides the
fastest response without overshooting. The settling
time t , is shown for the critically damped case.

actual system's state, thus driving the actual sys-
tem as closely as possible to its ideal behavior.
The model system is defined from Eq. 11 where

For good trajectory following, a critically damped
behavior of the model system gives the fastest
response possible with no overshoot. Critically
damped behavior can be achieved by setting:
amql = b,, = X 2 , amq2 = 2X with X = 4/ts where
t , is the required setthng time of the system [12].
The settling time can be set by the user to adjust
the speed of response of the controlled system.
Typically the settling time is defined as the time
taken for the system to reach within 10% of its
desired value. The lower the settling time, the
faster the system has to move to its desired state
which translates to higher force or torque gener-
ated by the controller. By setting lower settling
time for a figure's actuated DOFs, an animator
can achieve quick responses. A high settling time
would give a sluggishly moving figure.

2. Generate the model input: With the model sys-
tem defined, the controller is ready. The model
and the actual systems will be integrated at the
same time to observe the difference in their states.
At each time instant, the input rq to the model
system is determined by inverting the reference
model dynamics:

rq = Bmq+(kdq - AmqXdp) (14)

where Bmq' = [0 l /bmq]. This input will in-
stantaneously drive the model system towards the
desired state z d q obtained from the user provided
desired trajectory of DOF q.

22

(a) t , = 0.2 (b) t , = 0.05

Figure 7: Trajectory following for the human waist on
a smooth motion. The lower the value of the settling
time t , the more accurate the following.

3. Compute Control Signal: The control signal uq is
computed from the following equations ([14]):

K, (t) = 1' Q y xT d r + pyxT (16)

I l rq(t) = a y r d ~ + P y r (17) I'
uq = Kq(t) + Krq(t)rq

Equations 16 and 17 are the heart of the adap-
tation process and guarantee the asymptotic con-
vergence of zeq to 0 [20]. Constants Q and p de-
pend on the characteristics of the dynamic system
but can be chosen within a wide range of values
and do not have a significant effect on the trajec-
tory following performance of the controller.

To enhance the realism of a dynamic animation it is
necessary to limit the outputs of the controllers just as
the outputs of mechanical motors and human muscles
are limited. In the MRAC scheme, when the control
signal computed from Eq. 13 is higher than the max-
imum allowed torque then the integration in Eqs. 16
and 17 must be halted and the old values of the in-
tegrals should be kept. The output of the controller
is set to the maximum allowed value and the integra-
tion is stopped until the signal returns to within its
specified range.

6 Results
We have conducted a series of experiments to test

our system and determine possible limitations. We
have applied the forward dynamic simulator with the
collision handling module to a variety of articulated
figures, from simple pendulums to a human figure
model. For simple articulated figures with up to five
segments, computation time is not a problem; typi-
cally simulations can go faster than real time. As fig-
ures get more complicated, the running time increases

(a) t , = 0.2 (b) t , = 0.05

Figure 8: Trajectory following for the human waist
on a discontinuous motion. By varying t , one gets
different response time of the joint to changes in the
desired state.

but interactive rates can be still be maintained espe-
cially when the number of impacts is not excessive.
Impact equations for a complex figure result in a large
linear system which is expensive to solve. However,
impacts do not cause a decrease in the integration
time step like stiff springs do; furthermore, they pre-
serve the numerical stability of the dynamic system
much better. A difficult test case for the collision re-
sponse system is the simulation of a soldier falling on
his back after being shot in the chest. The velocity of
the soldier's back when he hits the ground combined
with the large mass of his body give rise to high im-
pact forces. Very slow integration would be required
if springs were used to handle the impact. Our sys-
tem handles the impact and the contact at the back
and the legs without a significant delay. The motion
shown in Figure 6 is generated by giving a large initial
impulse at the middle of the soldier's upper torso and
letting him fall to the ground.

The adaptive controllers proved to be powerful in
driving the controlled DOFs along desired trajecto-
ries. A number of trajectories were used to drive the
joints and sites of articulated figures. As expected, for
smooth desired trajectories there was almost no error
(Figure 7). On discontinuous trajectories like the one
shown in Figure 8, the error varies depending on the
choice of the settling time t , of the model reference
system. Lower settling time forces faster response to
changes in the state, while higher settling time makes
the system take to adjust and results to greater error.
For both figures we used a human figure model which
was dynamically animated from the waist up. We ac-
tuated the waist joint and we allowed the rest of the
joints (arms and upper torso to move freely. Despite
the disturbances created by t h e free motion of the rest
of the joints, the waist followed the desired trajectory
accurately. This shows the power of the MRAC to
continuously adapt to the system it controls and to
overcome external disturbances.

Figure 6 demonstrates an attempt to follow a phys-
ically incorrect trajectory which involves penetration
between the arms and a table. Although kinemati-
cally the motion is valid, when played back dynami-
cally the contacts are detected and penetration is pre-

23

(4 (e)

Figure 6: A wounded soldier. T h e soldier receives a large impulse at his upper chest and fal ls on the ground.

vented. A motion trajectory is originally provided for
the shoulders and the elbow. Once the contact forces
prevent any further motion, the output of the joint
controllers reaches its maximum value and stays there,
stubbornly trying to make the arms follow the desired
motion.

7 Conclusion
In this paper we present an animation system ca-

pable of generating physically correct, user-controlled
motion for articulated figures. We introduced a fast,
two-stage collision response algorithm, which together
with an efficient forward dynamics simulator enable
interactive animation rates. Robust , self-correcting
control units generate forces which drive the motion
of actuated DOFs of the figure along user specified
kinematic trajectories. The user can have direct con-
trol over the response characteristics of the actuated
parts of the figure, without having to tune unintuitive
parameters of the dynamic system. Kinematic tra-
jectories can be given either as joint displacements or
as segment positions or orientations thus providing a
variety of ways to specify desired motion.

The dynamic controllers used in this work do well
in following specified kinematic trajectories. We are
currently working on using them to generate lower
body motion and eventually dynamic human locomo-
tion given specific leg motion trajectories. Moreover,
we are experimenting on using the positions and ori-
entations of sensors from our motion capturing system
to generate site trajectories and drive an articulated
figure. The results we have so far are promising. As
a future direction, we would like to investigate ways
to automatically generate new or adjust existing tra-
jectories while an animation is progressing. The new
trajectories would depend on high level goals (such
as maintaining balance or reaching for an object) and

the current dynamic state (velocities, external forces)
of the animated figure.

8 Acknowledgments
We would like to thank Prof. Zoe Doulgeri for

the invaluable insights she provided us on the de-
sign and implementation of the MRAC. This re-
search is partially supported by DMSO and U.S. Air
Force WPAFB/HRGA DAAH04-94-G-0402, ARPA
DAMD17-94-J-4486, and ARO DURIP DAAH04-95-

APPENDIX A: Examples of spatial nota-
tion

This is a brief summary of the important spatial
quantities used in this paper. It is by no means a
complete list but should be sufficient for the under-
standing of our work.

1-0023.

Veboczty: The instantaneous velocity of a rigid
body with respect to an origin 0 may be de-
scribed by the linear velocity vo of a point mov-
ing with the object, instantaneously coincident
with 0 and the object’s angular velocity U . In
spatial notation we say that + is the spatial ve-
locity of the rigid body, where + = [wT voTIT.

Joznt Axzs: The joint axis is a spatial vector which
defines the direction and nature of motion allowed
by the joint. The relative velocity of two bod-
ies is obtained by multiplying the joint axis by
the scalar joint velocity. A revolute joint which
allows rotation about an axis s is represented
as d = [sT O T I T . A prismatic joint which al-
lows pure translation along axis s has the form
B = [OT ST]?

24

Figure 9: Following a physically incorrect motion trajectory: (a) Pure kinematics allows the motion, whereas (b)
Dynamic simulation prevents interpenetration between the arms and the desk.

25

e Force: Any number of forces acting on a rigid
body can be represented as a force f acting along
a line passing though the origin 0 together with
a couple TO. The spatial representation of the
reduced forces is f = [fT TO']'.

e Spatial Coordanate Transformataon: A spatial
transformation matrix p X 0 is a 6 x 6 matrix
transforming a spatial quantity from frame 0 to
frame P .

e Spatial Rigid-Body Inertza: The spatial rigid-
body inertia f is a 6 x 6 matrix which transforms
the spatial velocity + of a rigid body into its spa-
tial momentum P through P = f;.

e Spatial Transpose: The spatial transpose of a vec-
= [a: aT]. tor 2 = [aT ao']' is a 1 x 6 vector

References
Norman I. Badler, Cary B. Phillips, and Bonnie Lynn
Webber. Simulating Humans: Computer Graphics
Animation and Control. Oxford University Press,
New York, 1993. ISBN 0-19-507359-2.

David Baraff. Fast contact force computation for non-
penetrating rigid bodies. In Andrew Glassner, editor,
Proceedings of SIGGRAPH '94 (Orlando, Florada,
July 24-29, 1994), Computer Graphics Proceedings,
Annual Conference Series, pages 23-34. ACM SIG-
GRAPH, ACM Press, July 1994. ISBN 0-89791-667-
0.

Ronen Barzel and Alan H. Barr. A modeling sys-
tem based on dynamic constraints. In John Dill, ed-
itor, Computer Graphics (SIGGRAPH '88 Proceed-
zngs), volume 22, pages 179-188, August 1988.
Armin Bruderlin and Thomas Calvert. Goal-directed,
dynamic animation of human walking. In Computer
Graphics (SIGGRAPHproceedings), volume 23, pages

Michael F. Cohen. Interactive spacetime control for
animation. In Edwin E. Catmull, editor, Computer
Graphzcs (SIGGRAPH '92 Proceedings), volume 26,
pages 293-302, July 1992.
John J. Craig. Introduction to robotzcs: mechanzcs
and control. Addison-Wesley, 1989.
D.W. Johnson E.G. Gilbert and S.S. Keerthi. A fast
procedure for computing the distance between ob-
jects. IEEE Journal of Robotzcs and Automation,
1988.
Roy Featherstone. Robot dynamzcs algorzthms.
Kluwer Academic Publishers, 1987.
Jessica K. Hodgins, Paula K. Sweeney, and David G.
Lawrence. Generating natural-looking motion for
computer animation. In Proceedings of Graphics In-
terface '92, pages 265-272, May 1992.

233-242. ACM, July 1989.

[lo] Jessica K. Hodgins, Wayne L. Wooten, David C. Bro-
gan, and James F. O'Brien. Animating human ath-
letics. In Robert Cook, editor, SIGGRAPH 95 Con-
ference Proceedings, Annual Conference Series, pages
71-78. ACM SIGGRAPH, Addison Wesley, August
1995. held in Los Angeles, California, 06-11 August
1995.

[Ill Paul M. Isaacs and Michael F. Cohen. Mixed methods
for complex kinematic constraints in dynamic figure
animation. The Visual Computer, 4(6):296-305, De-
cember 1988.

[12] B.C. Kuo. Automatic Control Systems. Prentice Hall,
1991.

[13] Alexis Lamouret and Marie-Paule Gascuel. Script-
ing interactive physically-based motions with relative
paths and synchronization. In Proceedings of Graph-
ics Interface '95, pages 18-25, May 1995.

[14] I.D. Landau. Adaptive control, the model reference
approach. Marcel Dekker, New York, 1979.

[15] Michael McKenna and David Zeltzer. Dynamic sim-
ulation of autonomous legged locomotion. In Com-
puter Graphics (SIGGRAPHproceedings), volume 24.
ACM, August 1990.

Collision de-
tection and response for computer animation. In
John Dill, editor, Computer Graphacs (SIGGRAPH
'88 Proceedangs), volume 22, pages 289-298, August
1988.

Interac-
tive behaviors for bipedal articulated figures. In
Thomas W. Sederberg, editor, Computer Graphics
(SIGGRAPH '91 Proceedings), volume 25, pages 359-
362, July 1991.

[18] Marc H. Raibert and Jessica K. Hodgins. Animation
of dynamic legged locomotion. In Thomas W. Seder-
berg, editor, Computer Graphzcs (SIGGRAPH '91
Proceedings), volume 25, pages 349-358, July 1991.

[19] Karl Sims. Evolving virtual creatures. In Andrew
Glassner, editor, Proceedings of SIGGRAPH '94 (Or-
lando, Flortda, July 24-29, 1994), Computer Graph-
ics Proceedings, Annual Conference Series, pages 15-
22. ACM SIGGRAPH, ACM Press, July 1994. ISBN

[20] D.P. Stoten and H. Benchoubane. Empirical studies
of an mrac algorithm with minimal control synthe-
sis. International Journal of Control, 51(4):823-849,
1990.

[21] D.P. Stoten and H. Benchoubane. The decentralized
minimal control synthesis algorithm. International
Journal of Control, 56(4):967-983, 1992.

[22] Andrew Witkin and Michael Kass. Spacetime con-
straints. In John Dill, editor, Computer Graphics
(SIGGRAPH '88 Proceedings), volume 22, pages 159-
168, August 1988.

[16] Matthew Moore and Jane Wilhelms.

[17] Cary B. Phillips and Norman I. Badler.

0-89791-667-0.

26

