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The gth moment M (q) of the growth probability of diffusion-limited aggregates is studied for
g <0 in terms of the value [M(gq,N)],, obtained by averaging M (q) over the ensemble of all aggre-
gates of a given number of particles N. For a range of structures that are susceptible to precise
analysis, we verify that all moments, even those for g <0, obey asymptotic power-law scaling in N.
Since we cannot analyze completely arbitrary structures, our analysis is not definitive. However, it
does suggest the validity of a recent proposal by one of us that there is no Lifshitz-like anomaly
(similar to that found for the distribution of currents in the random resistor network) leading to
non-power-law scaling of the negative moments of the growth probability.

I. INTRODUCTION

Since the model was first proposed by Witten and
Sander! some time ago, the aggregation of particles via
diffusion initiated from a source at “infinity” has been the
object of intense study.?”® Much of this work has been
aimed at determining the fractal dimension D of the ag-
gregate which occurs in d spatial dimensions. At present
numerical simulations have treated extremely large clus-
ters.® However, there are a number of conceptual issues
which still remain unclear, in spite of the continuing nu-
merical assault on this problem. For instance, the rela-
tion of this problem to standard critical phenomena
remains obscure. In particular, various analytic treat-
ments seem to show behavior different from that of stan-
dard critical phenomena. For example, there does not
seem to be a limit in which D becomes independent of d,
as one would have in conventional mean-field theory. In-
stead an early result’ was that D=(d>+1)/(d +1) for
large d. Also, in low dimensions there have been ques-
tions as to whether D might be different for different lat-
tice structures as found analytically by Turkevitch and
Scher,?® but not supported by simulations.’ Likewise the
application of renormalization group techniques’ to de-
scribe diffusion-limited aggregates (DLA) has not led to
entirely clear results. Furthermore, the connection to
fractal and multifractal’®”!? distributions is not totally
clear. Finally, while the fractal dimension of the aggre-
gate has been studied in detail, there are still unanswered
questions concerning the growth probability.

The growth probability p (i) is defined as the probabili-
ty that the aggregate grows by the attachment of the next
particle at site i. Note that p (i) depends on the existing
configuration of the aggregate and we sometimes indicate
this dependence by writing p (i,I"), where I" denotes an
aggregate. For a nominally spherical surface p(i) is
essentially site independent. However, the aggregate is
unstable to formation of “arms.” In the fjords between
these arms the growth probability will be heavily
screened and can become exceptionally small. In this pa-
per we will study how these small growth probabilities
scale with the size of the aggregate. Although the exact
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nature of these small growth probabilities does not
influence significantly many of the gross properties of the
aggregates, their behavior can affect rare growth process-
es and also has theoretical significance, as we shall see in
more detail. For instance, in view of the multifractal for-
malism proposed by Halsey et al.,!' one would like to
know whether this growth probability distribution is real-
ly multifractal. The simplest way to phrase this question
is to consider the scaling of the moments,'0"!*
M (q)=3,p (i) of the distribution for ¢ in the entire in-
terval — o <g < . Since the quantity M(q) is a sto-
chastic variable, it is convenient to consider the quanti-

ty15
[M(g,N)],,=3P(Ty) X' p(i,Ty), 1)

Ty €Ty

where P(I'y) is the occurrence probability of the aggre-
gate I'y containing N particles and the prime indicates
the omission of terms, if any, for which p (i)=0. The oc-
currence probability is the probability that the cluster T,
be formed when the cluster has grown to a size of N sites.
This is the correct weighting of the cluster ', within the
ensemble of all N-particle aggregates. To determine
P(T"y) one must consider all possible growth sequences
leading to a cluster of N sites. If W(I'y _,,['y) denotes
the probability that growth will occur to form the cluster
'y, given the existence of the cluster I'y_,, then we have
the recursive relation

P(Ty)= 3 P(Ty_)W(Ty_,,Ty). 2)

rN*]

[We point out that W is defined so that it is properly nor-
malized: 3r W(Iy_;,I'y)=1] For the distribution to

be completely multifractal it is necessary that for all g the
average moments obey power-law scaling in the asymp-
totic limit N — oo, i.e., that

[M(g,N)],,~N" . 3)

Whether or not Eq. (3) is valid is not obvious. There is
ample evidence that this power-law dependence on N
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holds for positive g. In the present paper we present ad-
ditional evidence that this relation also holds for negative
¢. As an introduction, consider the related question con-
cerning the moments of the current distribution'®!” for
the randomly diluted resistor network in which a unit
current flows between two terminals separated by an
asymptotically large distance L. It has been established'®
that there are anomalous configurations, shown in Fig. 1,
in which the minimum nonzero current i, flowing in
any resistor is of order exp(—KN), where N is the num-
ber of “rungs” in the ladder and throughout this paper K
denotes a constant of order unity (not necessarily the
same in all occurrences). Since these configurations
occur with a probability of order exp[ —a(p)N], where
a(p) is a weak function of p, it is clear that for strongly
negative g, the contribution from ladders with arbitrarily
large N to the gth moment of the current distribution
diverge if |g| is large enough even for p <p., where p, is
the critical percolation concentration. In that case for
large negative g there exists a function p.(q)<p,, at
which the gth moment diverges. The obvious question
now is, does this type of Lifshitz phenomenon occur also
for DLA? In the first paper!> submitted which con-
sidered this question, one of us argued by considering
“tubes” of length L that this anomaly did not occur for
DLA. We found that the occurrence probability P(I") of
the structures (of linear dimension L) with growth proba-
bility of order exp( —KL ) was too small: namely it was of
order

P(I')~exp(—KL InL) . (4)

Two objections to this argument could be raised: first of
all, the growth probabilities were not correctly estimated.
Here we will show that this error is not essential to the
conclusion and that the argument presented in Ref. 15 is
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FIG. 1. Anomalous structure in the randomly diluted resis-
tor network which leads to a minimal current whose magnitude
is of order e "XV, where N is a measure of the linear dimension
of the structure. For percolation the occurrence probability of
this structure (together with those topologically equivalent to it)
is also exponentially small in N. We indicate the currents when
the minimum current is normalized to have unit magnitude.

generically correct. The second objection is that the im-
portant anomalous configurations'® may not be as simple
as those considered for the random resistor network.'®
This objection is difficult to assess. In contrast, there
have been suggestions'>?° that, to the contrary, there is a
breakdown in power-law scaling analogous to that in the
resistor network. Accordingly, we consider here a num-
ber of additional possible growth sequences, some of
which were suggested?! as being responsible for the viola-
tion of power-law scaling. What we find in those cases
which are amenable to analysis is in precise agreement
with the original estimates: namely that structures which
have growth probabilities which are exponentially small
in N require a precise growth sequence. It is this require-
ment of a precise growth sequence which leads to an oc-
currence probability of order N!™*, which for x >0 leads
to a result of the form of Eq. (4). Note that in our discus-
sion L denotes the length of the anomalous tube. More
generally, L is defined by p,;, ~exp(—L), where p_;. is
the minimum (with respect to all surface sites) of the
growth probability for a given cluster I',. Clearly, the
whole question is, what are the occurrence probabilities
for structures with a given value of L? Here we argue
that these occurrence probabilities are of the form of Eq.
(4) and hence that these structures are not statistically
important.

What are the consequences of our conclusion, if in fact
it is true? First of all, it implies that for negative mo-
ments, i.e., for g <0, the true asymptotic regime only
occurs for extremely large L, viz., L ~exp(K|q|), where
L InL dominates gL. Of course, even if one does not get
into the true asymptotic regime, one will obtain results
which have a weak dependence on L. But, putting aside
numerical questions, the important conceptual result of
our work would be that the growth probability of DLA
in the asymptotic limit may be described completely in
terms of the multifractal description.

Briefly this paper is organized as follows. In Sec. II we
describe the model we use for DLA, and in particular we
discuss the role of the short distance cutoff for the latti-
cized problem. Here we correct our previous argument'
that a linear tunnel structure does not give rise to non-
power-law scaling of [M (g,N)],,. In Sec. III we estimate
the minimum growth probabilities for various structures
by solving the analogous electrostatic problem. In gen-
eral for structures which are not one dimensional, we find
that the minimum growth probability is given by a power
of the length scale. In Sec. IV we construct a bound for
the occurrence probability of a convoluted tunnel struc-
ture in the form of a “maze.” This bound indicates that,
contrary to Ref. 21, the maze does not give rise to a
breakdown of power-law scaling. Some brief concluding
remarks are contained in Sec. V.

II. DLA STATISTICS

There are various versions of DLA. We will focus
mainly on DLA in two spatial dimensions. However,
many of our results are in fact simpler and easier to es-
tablish in higher spatial dimension. Imagine growing a
two-dimensional cluster starting from a single seed parti-
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cle by allowing each additional particle to diffuse from a
random release point on a large circle. The growth prob-
ability in this case is not strictly the harmonic measure as
obtained from the solution to Laplace’s equation, since
there must be some coarse graining to take account of the
finite size of the diffusing particle. (Viscous fingering?>?*
and dielectric breakdown?* are probably phenomena
analogous to DLA, but for which the lattice cutoff is
zero.) The version of DLA which is the simplest both
from a numerical and from a conceptual point of view is
the latticized version in which the diffusing particle
moves from one site on a lattice to a randomly chosen
site in the shell of nearest neighbors. In two dimensions
we will treat a square lattice and in higher dimensions a
hypercubic lattice. If the diffusing particle attempts to
move onto an already occupied site, it is fixed in the loca-
tion it assumed before the abortive attempt. The proba-
bility that the added particle becomes fixed at site i is the
growth probability. Strictly speaking, p (i) is determined
from the latticized diffusion equation with absorbing
boundary conditions. However, in the continuum ap-
proximation the boundary value problem is equivalent to
the associated electrostatic problem in which the cluster
is considered to be a conductor carrying unit charge. To
be precise, the particles are taken to be squares (or hyper-
cubes in higher dimension, d) of volume b{, whose edges
are oriented along the lattice directions, as shown in Fig.
2. Then the growth probability of DLA at site i is equal
to the total charge on the surface(s) adjacent to site i in
the electrostatic problem. In this context one should note
that although the charge density can be anomalously
large (or small) at corners, the growth probability is equal
to the total charge integrated over a region of surface

FIG. 2. “Tube” configuration, the analog for DLA of Fig. 1.
Here particles are represented by squares shown schematically
here.

having size of order the lattice constant. Thus, effects
due to the roughness or corners in a structure which
occur on a scale of length less than the lattice constant
are not relevant to our discussion. Alternatively, we
could confine our attention to structures whose boun-
daries are smooth on the scale of the lattice constant by.

We will treat the above described latticized version of
DLA using the continuum electrostatic approach. As
discussed in Refs. 15 and 18-20, a possible anomaly in
the negative moments of the growth probability requires
the existence of structures which (a) have a region of ex-
tremely small growth probability and (b) occur with a
sufficiently large probability. In analogy with the struc-
tures having very small currents in the randomly diluted
random resistor network, we previously'® considered the
growth probability in a “tube” of length L, which in the
version of DLA considered here has the form shown in
Fig. 2. There we noted that if site i is at the end of the
tube, then

pli)~e 77, (5)

where L is the number of sites in the tube. We also es-
timated the occurrence probability P(I') for this cluster
to be of the form of Eq. (4), but since this discussion was
not quite correct, we present a reformulation here. Al-
though only a straight tunnel was considered in Ref. 15,
it is easy to show that the entropic factor associated with
a winding tunnel (which does not intersect itself) does not
affect the estimate of Eq. (4).

The occurrence probability that a cluster Iy, of N par-
ticles be formed from an initial seed I'; is given by

N

P(T'y)= > W(r,;_,,T;). (6)
o) SN Ty, i=2

Observe that the tube structure is in the form of a chain
bent into the shape of the letter “U.” Thus starting from
a given seed, there are at most 2V growth sequences to
create a specified linear structure of N particles. We can
obtain an upper bound to P(I') by taking the maximal
growth probability for adding particle k +1 to a chain of
k particles. This maximal probability occurs for adding
the particle at either end of an existing straight line of oc-
cupied sites. We denote this probability as p;,. Then for
any one-dimensional structure (whether bent or straight)
we have the bound

N -1
P(Ty) <2V ok > (7a)
k=1

with equality for a straight chain of N particles. To
determine p,, we need to find the charge distribution on a
rectangular conductor which carries unit charge and has
length kb and width b. Then p, is the total charge on the
end of the conductor when the conductor carries unit
charge. Since the scaling properties of this electrostatics
problem are not usually explicitly discussed, we will ana-
lyze this problem in some detail in the Sec. III. There we
will find that p, ~Kk ~ /2 for large k, so that Eq. (7a) be-
comes
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P(T'y)SQKMNN) "2 ~exp [yN—INInN |, (7b)

where ¥ =In(2K)+1.

The important conclusion is that the occurrence proba-
bility of a chain obeys the bound of Eq. (4) (with K =1).
The smaller-than-exponential probability can be traced to
the fact that the structure must be built up in a more or
less prescribed way. The entropic factor 2V is not
sufficient to modify the smallness caused by the factor
(N!)™*, where x =1, here, but more generally need only
be nonzero to ensure the validity of Eq. (4). In this sense
the discussion given in Ref. 15 is wrong in that it in-
correctly took x =1. (For spatial dimension 3 or greater,
x =1is correct.) However, the dominating effect is that a
linear structure must be built up in a definite prescribed
sequence.

III. ELECTROSTATIC ANALYSIS

A. The tube configuration

A simple way to obtain the explicit solution for the
charge distribution on a rectangular conductor subject to
the boundary condition that far from the conductor the
field is that of a (two-dimensional) unit point charge is to
use conformal mapping.?® In this approach one maps the
known solution to Laplace’s equation for the potential
outside an infinitely thin conducting strip of unit length
centered on the origin, as shown in Fig. 3(a), into the po-
tential outside a rectangular conductor, as shown in Fig.
3(b).

Therefore we start by considering the conducting strip
shown in Fig. 3(a) in the z; plane. The electrostatic prob-
lem we wish to solve is the following: The electrostatic
potential ®(x,y,) has to obey

Vip=0, (8)

subject to the boundary conditions that ® is a constant
on the surface of the conducting strip shown in Fig. 3(a),
and that far from the conductor the electric field is that
of a point charge:

P(r)~—2Q1nr ,

r—o . 9

(We will use the terminology of two dimensions, so that
the solution for a “point charge” is that for a line charge
in three dimensions. Also when we refer to “charge” it

(a) CON

At e _A Aj A

/

FIG. 3. Mapping of the upper half plane of the z, plane in
panel (a), left, into the unshaded region above both the x, axis
and the upper boundary of the rectangular conductor which oc-
cupies the cross hatched region, shown in panel (b), right.
Points related by the mapping are indicated by 4 and A4’, etc.

has the dimensions in cgs units of esu/cm. In any event,
to obtain growth probabilities we set Q =1.) We start
from the trivial solution for the potential in the z plane
outside a conductor whose boundary is the unit circle.
For this purpose we consider the complex potential W (z)
(of which ® is the real part)

W(z)=—2QInz , (10)

where z=x +iy. Consider the mapping z,=(z+z"1)/2.
This transformation maps the exterior of the unit circle
in the z plane into the entire z, plane with a branch cut
along the real axis from z;, = —1 to z; =1. Applying this
mapping to Eq. (10) we see that the complex potential in
the presence of the charged conducting strip of Fig. 3(a)
is determined by

20

and the condition that Re(W /Q) is negative. Note that
the magnitude of the charge density o, on one face of the
strip is given by

z,=cosh (11

1 |dW
=—|— 12
ol 47 | dz, (12)
For z;=x,+i0", we find that
1 dw -
"(x‘)z—m——dzl:TQ“ )72 xl<t. (13

Now we wish to find the electrostatic potential outside
the conducting rectangle covering the region in the z,
plane |x,| <a and |y,| <b, and we will assume a large as-
pect ratio: a/b>>1. To solve this problem we need to
map the upper half of the z,; plane into the unshaded re-
gion of the z, plane shown in Fig. 3. The Schwarz-
Christoffel mapping which relates z, to z, is determined
by the differential equation

dz —a/m

2
——=const X(z;, —a,)
dz, 1 1

_ —a,/m
(Zl az)

—as/m L

x(21~a3) (14)

The effect of this mapping is shown in Fig. 4. The real
axis in the z,-plane is mapped into a polygon having exte-
rior angles a,, a,,.... For our purpose we take
—a,=a,=1 and —a,=a;=p, where B is to be deter-
mined, and a,=—a,=—a;=a,=w/2. To orient the
rectangle correctly the constant in Eq. (14), which we call
B, must be real. Then

9 1) V) (15)
dz,
The relation between the size of the rectangle and the
constants in the mapping is obtained by integrating Eq.
(15) over the two sides of the rectangle. In that way we
obtain

Bfo"dxl(l—x%)*“zwz—x%)‘”:a : (16a)

Bfﬁ'dxl(1—x%)‘“2(x%—32)”2=b . (16b)
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FIG. 4. Effect of the Schwartz-Christoffel mapping which
takes the real axis of the z, plane (left) into a polygon, in the z,
plane, some of whose vertices are shown at right. The points a,
are mapped into the vertices a;, where the exterior angle is a;.

From these we find that
[ ds(1=s) 722 =) 2
fOBdS( 1—s2)" (g2 —52)172

b (17)
a

For small b/a, B is close to unity. In this limit the
denominator can be replaced by unity. In the numerator
we may approximate (1—s?) by 2(1—s) and s>—p? by
2(s —p). Then

[la—s)"12s =) 2ds =2 . (18)
B a
Evaluating this integral we find that
p~1-2b (19)
ma

To find the charge on the end of the rectangle, we
proceed as follows. The charge between two points z5*
and z5” on the surface (in the z, plane) is given by

1 % dReW
4r .0 Bn

where on lies along the outward normal to the surface
and d/ is an element of length along the surface. By the
Cauchy-Riemann condition (assuming now that d/ de-
scribes a counterclockwise traversal of the surface) this
gives

AQ= dl , (20a)

1 % 3Imw
A _—
0= A0 al

dl

=21;[ImW(z'2‘”)——ImW(z‘2b) )] . (20b)
But since the potential itself is constant on the surface of
the conductor, we have

AQ=ﬁ[W(z1 =z )—Wi(z,=2{")], (20c)
where we wrote the result in terms of the corresponding
points in the z,; plane, in which case Eq. (11) is directly

applicable. Using Eq. (20c) we write the total charge on
one end of the rectangle as

AQ=3’;[W(ZI=3+1'0+)~W(zl=1)]. (20d)
Evaluating Eq. (20d) we obtain the exact result
AQ=(Q/m)cos™'B . 21

For a >>b this gives

AQ=(2Q/m)WVb /(ma) . (22)

Thus the growth probability for adding a particle at the
end of a chain of k sites for kK >>1 is

pi=2m""% 12 (23)

We used this result to obtain the bound in Eq. (7), above.

B. Scaling considerations

One can easily generalize the above solution to the case
of a one-dimensional structure on the x axis of length 2a
and width 2b, whose center is at the origin x =0, but
whose end can have some irregular shape on the scale of
length 2b. Specifically, we are interested in the charge
distribution on a conducting structure carrying total
charge Q whose aspect ratio a /b is very large. We will
assume that at distances much greater than 26 from ei-
ther end, the object can be considered to be a uniform
rod. In that case, as we will argue, the charge distribu-
tion is given to leading order in b /a by

o(s)=(Q/a)a/b)"f(s/b), |s|/b<M
o(x)=(Q/a)g(x/a),

(24a)

[Ix|—al>>b (24b)

where s measures the distance along the surface from the
end of the object and M is a large finite number. Thus
the charge distribution near the end is characterized by a
local shape function f which is sensitive to the detailed
shape of the object near its end. The global aspect ratio
a /b only appears insofar as it affects the overall ampli-
tude factor. Equation (24b) expresses the fact that far
from the end, the details of the shape of the end are ir-
relevant. Comparison with Eq. (13) indicates that

g(y)=02m) 1—y2)~ 12, (25)
Thus, when x =a —Mb, Eq. (24b) gives
o(x)=[Q/(2ma)][a /(2bM)]'/? . (26)

Requiring consistency with Eq. (24a) with s =Mb indi-
cates that =3 and that

flx)~Qm) 2x)"17?, (25"

X —> 00 .

To motivate Eq. (24a) we note that the surface charge
density o is determined by the condition that the tangen-
tial component of the electric field vanish at all points on
the surface. We write the tangential field as that, E,,
due to charges far from the end and that, E ,,, due to
charges near the end. For the far field we assert that the
charge distribution far from the end does not depend on
the detailed shape of the end. So to leading order in b/a
we have

_ Q fa—Mb dx 1
B 2ma Y —a [1—(x/a)}]"? a—x
0 172
a
cons < | 28 , (27a)

where M is a large number. Also E,,, is the tangential
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component of

Enearzf:+(Mb) [r—r(s)]o(s)ds

_(Mb) Il'_l'(s)|2 ’ (27b)

where r is a point on the surface near the end. Here
s, (2) [s_(2)] is the value of s at x =a —t for the lower
(upper) surface and later fi(r) is the unit tangent vector at
r. Thus the total tangential field (which must vanish) is

12
Q9

a A
const X (
a

E n(r).

fs+(Mb>ﬁ(r)-[r—r(s)]a(S>ds =
s _(Mb) Ir—r(s)|?

Thus o(s)=(Q/a)a/b)'"*h(s,b). But dimensionality
considerations indicate that the lengths s and b can only
enter in the ratio (s/b). Hence we obtain Eq. (24a). In
the Appendix we explicitly verify that the exact solution
for the rectangle is of the scaling form of Eq. (24) with
f(x) given by Eq. (25").

In three (or more dimensions) the scaling of Eq. (24)
becomes trivial. The charge density is constant far from
either end so that g(x/a) is a constant. Furthermore,
1=0, reflecting the fact that the field due to very distant
charge is negligible.

0. (28)

C. Comparison with ellipse result

It is interesting to compare this solution with that one
obtains for a long thin ellipse which one might try to
identify with a rectangle. In this connection we have to
take proper account of the lattice cutoff. The ellipse can
not be so thin that it passes through several lattice points
when its thickness is much less than b,. This point is il-
lustrated in Fig. 5. Suppose the equation of the ellipse is
written as

(x/X)?+(y/Y)?=1, (29a)

with Y << X, so that the ratio of minor to major axes is
Y /X << 1. If this ellipsoid is to have a curvature on the
scale of a cluster of lattice points, then for small x near X

we should have
x=X—(K/byy?, (29b)

so that when (X —x)/b, is of order unity, (y/b,) will

FIG. 5. Ellipsoids which are (left) and which are not (right)
consistent with the lattice cut-off to serve as models for aggre-
gates.

also be of order unity. For convenience we will take the
largest permissible value of K to be . But from Eq. (29a)
we actually get

x=X—1X(y/Y)7. (29¢)

In view of Eq. (29b) we see that for a fixed value of Y the
largest value of X consistent with the lattice cutoff is
given by

boX=Y?. (30)
Now suppose the ellipsoid has a minor axis of length M

lattice constants: Y =Mb,. Then Eq. (30) gives the larg-
est allowed value of X for this Y to be

X=M2b, . 31)

Accordingly, the smallest allowed ratio of axes is

Y Mb, b 172
X M, X

1:

(32)

Thus, to identify an ellipse with a cluster on a lattice, the
maximum value of X /Y consistent with the lattice cutoff
is equal to the square root of the length (measured in lat-
tice constants.) Note that without considering the effect
of this cutoff one cannot identify the result for the ellipse
with a lattice structure. The charge density at the end of
the ellipse, 0,4, is of order o 4~(Q/a)a/b). From
this form one might have guessed that o4~ Q /b, rather
than o4~ Q /(ab)'/? as given by Eq. (24a).

D. Lacunae

Here we estimate the growth probabilities for lacunae.
The motivation for considering such structures is as fol-
lows. One believes that DLA gives rise to objects that
look like snowflakes: the structure has large branches
which may possibly get quite close to one another. When
this happens, they will enclose a large ‘““‘gallery,” which
we will model as a circular hole. What we will show here
is that the minimum growth probability inside a circular
gallery of radius R is of order AR ™%, where A4 is the
probability that the diffusing particle enter the gallery.
Of course, if the gallery has an aspect ratio that is far
from unity, then it should be classified as a tube, as we
shall see. With respect to an array of galleries in series,
one can say the probability that a diffusing particle find
its way through such a sequence of galleries is given by
I1: AR, . For a large number of galleries in series, one
is led back to the tube, except that here we operate on a
different length scale. But a series of obstacles probably
has an occurrence probability similar to that of a tube, in
that in all likelihood it must be built by a prescribed
growth sequence. Since this argument rests on power-law
scaling for the minimum growth probability for a circular
cavity, we examine that case now.

As a start, let us consider a simple electrostatics prob-
lem in which one has a conductor on the x axis from
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which is removed an interval of width 2d centered about
the origin, as shown in Fig. 6. The electric field for large
positive y goes to a constant and for large negative y it
goes to zero. This simulates DLA with a particle source
at large positive y and a seed on the x axis with a slot.
The boundary condition at large positive y can be mim-
icked by putting a uniform line of charge density o at
very large y. One can then ask what is the y component
of electric field in the slot. Clearly the charge density on
the x axis does not contribute to this field. Thus, in the
slot the y component of the electric field is 27o. That is,
the electric field is exactly half what it is just above the
conductor far from the slot. This means that the exact
result for the total charge Q_, on the underside of the
plate is

Q_=ldo, (33)

where A is the “area,” 2d of the slot. The factor 1 has an
immediate interpretation in terms of the diffusion prob-
lem with absorbing boundary conditions. Clearly, the
particle has about the same chance to reach any point on
the x axis for the first time. However, if it hits the seed
(the conductor) it sticks and the process ends. In con-
trast, if it hits the slot, it can then either go through the
slot or be reflected at the slot. The probability for each
outcome is 3, of course, and this explains the 1 in Eq.
(33). In fact, this symmetry is exact: each random walk,
after reaching the slot, has a partner obtained by
reflection about the x axis.

It is useful to solve the above problem exactly, since we
will use the solution as a basis for an approximate treat-
ment of galleries with small apertures. We start with a
uniform field in the z; plane, where the entire x, axis is a

conductor [See Fig. 6(a)], so that
Wi(z,)=iAz, . (34)

(b

e LU UL,

FIG. 6. (a) Top: A conductor on the x, axis of the z, plane.
(b) Bottom: A conductor on the x-axis with a small slot of
width 2d at the origin. The boundary condition at infinity is
that the electric field is a constant at large positive y and tends
to zero at large negative y. Some field lines are shown qualita-
tively. The analogous diffusion problem is one in which parti-
cles are released at infinite positive y and are absorbed at the
surface of the conductor. A small fraction of particles diffuse
through the slot.

Now we use the mapping
z=%d(z,+zl_]), (35)

which maps the upper half of the z, plane into the entire
z plane. The region in the upper half of the z; plane
which is exterior (interior) to the unit circle is mapped
into the upper (lower) half of the z plane. For purposes of
visualization, we can imagine a trap door on the x, axis
with hinges at x; =1 and x, = —1, the two doors meeting
at x =0. Both panels are opened downward completely
until they hit the underside of the x, axis, and the doors
are simultaneously stretched to infinite length. Thus, as
indicated in Fig. 6(b), the right trap door (z;=x,+i0",
0<x,<1) is mapped into (z=x—i0", 1<x <) and
similarly for the left door. Thus the simple problem in
the z, plane is mapped into the desired problem of a con-
ductor with a missing interval in the z plane. The charge
density in the z plane (for z on the surface of the conduc-
tor) is given by
1 dW _ Az,

)= . (36)
olz 4mi dz  2md(z,—z{')

We fix the value of A by requiring that o0 =0o far from
the slot. There, where z, is large and real, we obtain
09=A/(2md), so that 4 =270 d.

By inverting Eq. (35) to get z in terms of z,, and noting
that the two choices of sign in this solution correspond to
points on opposite sites of the conductor, we find the
charge densities on the top, o ,, and bottom, o _, of the
conductor to be

|x /d|

—==, (37)
[(x/d)?—1]""?

o.=10, |1

1
2
where |x| > d, of course.

Since the slot corresponds to the upper half of the unit
circle, it corresponds to z; =e'?. Now use Eq. (35):

z=d cos@==x =d cosf . (38)
Thus the electrostatic potential in the slot is given by
O=— Ay, =— Asinf=—A[1—(x/d)*]"?, |x|<d .

(39)

Now consider the relevant problem of the circle with a
small opening in it, shown in Fig. 7. This problem can be
solved exactly,” for arbitrary opening angle, by means of
a conformal mapping. Instead, we use a simple approxi-
mate method which is correct when the opening angle is
small and is easily generalized to rectangular galleries as
well as to simple three-dimensional galleries. We will
take the solution in Eq. (39) as giving the potential in the
opening in the limit when the size of the opening 2d is
much smaller than the radius R of the circle. Using the
continuity of the potential to match the inside and out-
side solution to Laplace’s equation, we write

®=-20In(r/R)+ 3 a,(R/r)"e™®  r>R

m= — @

(40a)
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FIG. 7. Similar to Fig. 6, except that the conductor is a circle
of radius R with a slot of length 2d, with d <<R.

o= ¥ a,(r/R)™e™®  r<R.

m=—o

(40b)

Knowing the potential for r =R [it is zero on the conduc-
tor and is given by Eq. (39) in the opening], we can find
the a,,’s:

1 d/R

a. =—
Mmoo 2rJ—asR

e M —2mo,d)[1—(R6O/d)*)*d6 ,

(41)

where we used the previously determined value of 4 and
for d <<R we set 0,=Q /(27R). Using the expressions
(40a) and (40b) for @ it is easy to show that at any angle,
the charge density on the outside of the circle is larger
than that on the inside by exactly o,. It then follows that
the total charge on the inner surface of the conductor is
given by Q, . =Q86,/(4m), where 0, is the total angle sub-
tended by the slot. For small 6 this reduces to Q;, =od
in agreement with Eq. (33). We calculate 0® /dr at r =R
inside the circle and find the charge density there to be

d2 1 (1_x2)|/2
- f ) dx
87R?% Y —1sin [1(6+xd/R)]

(42b)

One can write this solution in a scaling form. When
the distance s from the edge of the slot is comparable to
d, we obtain

o(0)/0y=F(s/d), (43a)
where the local function F is given by
1 1 (1—=xH)!2
F(y)=— ———dx . (43b)
S f—1(1+x+y)2

This result agrees with that of Eq. (37) for the charge
density on the underside of a slotted conducting plane.
For finite angles (so that the distance to the opening is
large compared to the size of the opening), we have

o(0)/0y,=(d/R)"f(0), (44a)
where n=2, and
f(9)=[4sin(%9)]_2 . (44b)

Again, note that these two solutions fit together smooth-
ly: as 6—d /R, (d /R)"f —const, to agree with Eq. (43a).
Thus we conclude that in a cavity of aspect ratio of order
unity (in which case it is generically a circle) the
minimum charge density (or minimum growth probabili-
ty for DLA), which occurs at 8=m, is of order
A(by/R)?, where A is the probability of entering the
cavity and we have set d equal to the minimum size of
opening, i.e., the lattice constant.

Finally, we extend the above result to a cavity of arbi-
trary aspect ratio, i.e., a rectangular cavity of height 2a
and width 2b in which there is a small hole of width 2d in
the top. The potential ®(x,y) is required to satisfy the
boundary conditions that it vanish on the surface of the
conductor and should be of the form of Eq. (9) at large
distances from the conductor. To implement these

a(8) _ d? ® ime [ imdx boundary conditions it is convenient to choose the axes as
0o 47R? 3 Imle Sf_l( 1—x)1/2emdx/Rdx shown in Fig. 8. Then we incorporate the boundary con-
mETe ditions except those on the top surface by an inside solu-
(42a) tion of the form
J
P(x,y)= 3 c,cos[nmx /(2b)]sinh[nmy /(2b)]/sinh(nma /b) . (45)
n odd

This will be a correct solution providing & is the correct
potential for y =2a. But ®=0 except in the gap, where
we know from our previous solutions that it is given (for
d/b <<1) by

Dy (x)=—2m0d[1—(x/d)*]"/?, (46)

where o is the charge density at the center of the top in
the absence of a gap. Thus we determine the ¢, in Eq.
(45) to be

1 pd
T f_dq)gap(X)COS[nﬂx /(2b)]dx . 47)

In calculations for the bottom surface we neglect terms in
Eq. 45) with n>1 in view of the factor
sinh(nma /b)>>1. This approximation is reasonable even
when a = b, and becomes rigorous for a /b >>1. Thus the
charge density on the bottom inside surface is
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2d

X

FIG. 8. Choice of axes for the rectangular cavity. The origin
is taken at the center of the bottom side and the axes are orient-
ed as shown by heavy lines.

0(x,0)=—(417)" '3®(x,0) /3y

~0c(0,0)cos[7x /(2b)] , (48a)

where
0(0,0)=—(4m) " '39(0,0) /Ay =~ —[c, /(8b)]e "™’ .
(48b)
If furthermore d /b << 1, then Eqgs. (46) and (47) yield:
o~ —2wao(d/b)f_"d[1 —(x /dP]Vdx = —mla,d?/b .

(49)
Thus

0(0,0)=togr(d /b)’e "™/ . (50)

We see that the exponential dependence correctly crosses
over to the result similar to that for the tunnel when a /b
becomes large. From Eq. (48a) one sees that the charge
density vanishes exactly in the inside corners. As we
have said, however, one should integrate the charge den-
sity over an interval of length b, to take proper account
of the lattice cutoff. When this is done one finds that the
charge on an interval of length b, at the corner is of or-
der

AQ ~(b3/b)a(0,0) (51)

so that only the power-law prefactors are modified near
the corner. The general conclusion from the rectangular
cavity is that exponentially small growth only occurs in
the limit when the cavity becomes a tunnel.

IV. OCCURRENCE PROBABILITY OF SPECIAL
STRUCTURES

A. The “maze” structure

In this section we calculate the occurrence probability
of the “maze” structure, shown in Fig. 9, which has been
suggested by Lee et al.?! as being responsible for a break-
down of power-law scaling. We characterize the maze

FIG. 9. The “maze” structure proposed by Lee et al. (Ref.
21).

structure as one in which there are N, tubes, each of
length N, sites. For simplicity we will assume that
N,=N, =L, so that the total number of sites in the maze
is approximately N =L2 The total linear distance (mea-
sured in units of lattice constants) of the path leading
from the entrance of the maze to the bottom site in the
maze is also L2 Here we consider the asymptotic limit
where N, and N, are large and consequently we ignore
end effects. That is, we do not worry about the distinc-
tion between, say, N, and N, +1. We will then show that
the occurrence probability P, ,,. of the maze structure is
of order

P e ~exp(—KNInN) . (52)

We now consider possible growth sequences of the
maze. First of all, suppose the maze is built up “in or-
der,” i.e., sequentially from the bottom to the top. We
construct an upper bound for the contribution 8P,_,,,., to
the occurrence probability from such a sequence. To do
that note that the maze is formed by N'!/? arms, each of
which has length N'/? lattice constants. If we calculate
the probability of forming each arm by neglecting the
shielding caused by the previously constructed arms, we
will clearly have an overestimate of the growth probabili-
ty. Thus the probability to form a single arm of length
N'72 obeys the bound of Eq. (7b) with N there replaced
now by N'/2. Thus for the entire structure of N'/? such
arms we have the bound

8Pmaze:[(ZK')‘/V(‘/.]V!)_l/z]‘/w'__C)(p(ij_%jv lnN) .
(53)

Now let us consider the effect of including other
growth sequences. If all growth sequences were equally
likely, the occurrence probability would be of order
exp(—KN) rather than of the order in Eq. (53), as we
shall see in Sec. IV B. Consider a growth sequence which
has as an intermediate state the one shown in Fig. 10(b).
As we shall see, there is a price to pay for building the
cluster “out of order,” i.e., by building walls nearer the
mouth-of the maze before ones at the bottom of the maze.
We now obtain an upper bound [which is smaller than
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FIG. 10. Left: build-up of the maze structure “in order.”
The numbers on each segment indicate the order in which it is
assembled. Right: Generic intermediate state of aggregation of
the maze structure in which it is built up “out of order.”

that of Eq. (52)] for the probability of obtaining the maze
starting from the intermediate state shown in Fig. 10(b).
This bound will be used to show that such growth se-
quences can be ignored. For this bound, we assume an
optimal growth sequence from the starting point of Fig.
10(b). Let I/; be the number of sites already present in row
i, where the rows are labeled with i =1 at the bottom and
i=L at the mouth of the maze. One sees that if
I;+1,_, <L, as is shown in Fig. 11(a), then one will have
to fill in /; —1 sites under the overhang caused by row i.
This will involve particles moving down a tube, first of
length 1, then of lengths 2, 3 ,..., /; — 1. Since the proba-
bility of reaching the end of a tube of length k is of order
exp( —ak ), the combined probability to form the row un-
der the overhang of row i is of order exp( —%al,-z). The
other case occurs if ;+1, ;> L, as is illustrated in Fig.
11(b). Then L —I,_, particles have to diffuse to the end
of tubes whose length varies from /; +1, _,— L for the first
added particle to I/; for the last added particle. In this
case the combined probability for filling out row i —1 is
therefore of order exp[ —+(L —1,_)(2l;+1;_,—L)]. Of
course, if [, +1; _;> L, then particles which are added to
rows below i —1 have to pass through a constriction, but
we neglect that fact, since we will already find a strong
enough upper bound for the growth probability. Thus in
terms of the /;’s we see that an upper bound for the prob-
ability P; , , of growing from the initial configuration to
the finally complete maze is given by

L—1
P ,<exp|— X F; |, (54)
i=2
where
i N
R i -1 ‘.———_Jl-l
321 2 1

FIG. 11. Buildup of a lower layer under an overhang. Left:
the case when row i and row i —1 are small. Right: the case
when rows i and i — 1 already overlap.

F=1lal?, L+I,_,<L, (55a)

F=YL—1l,_pQL+l,_,—L), L+L_,>L .  (55b)

Now let us use this bound when a fraction § of the L
rows satisfy

eL <l;<(1—e€)L , eL <l;_;<(1—e€)L ,

i=ijiy, ... 0, , (56)

where n =6L. For rows with I; or [, _, outside the bound
of Eq. (56), we replace F; by zero. (To obtain an upper
bound for P;_, ; we want a lower bound for the F;’s.) For
the I;’s which obey the bound of Eq. (52) we have that F;
is at least of order (eL ). Since this condition holds for at
least 8L rows, we have that

P, <exp(—KB8€’L’)=exp(—K8e’N>"?) , (57)

where K is a constant of order unity. Furthermore, we
may take account of the “entropy” associated with all
such growth sequences by multiplying the result in Eq.
(57) by N! which is obviously an upper bound for the
number of growth sequences which form the desired final
state from the intermediate state under consideration.
Then if we call P'' the contribution to the occurrence
probability from the entire class of growth sequences in-
volving a single intermediate state satisfying the condi-
tion of Eq. (56), we have

P/*; <exp(KN InN —K8€*N*7?) . (58)

Now we take e=8=N ~!/!° The conclusion is that in
total all intermediate states in which L°/'° rows (i.e., a
fraction L /1% of the rows) have /,’s in the interval
L°/"% <] <L —L°"" (this condition means that /; /L can
not be infinitesimally close to either O or 1) make contri-
butions to the occurrence probability which is small in
comparison to that from the “in order” sequence. Note
that the prohibited sequences of growth are those in
which the maze is built up even slightly out of order.
Slightly here means a growth sequence is out of order if
condition (56) is obeyed.

To obtain a bound on the occurrence probability P(I")
we note that the occurrence probability of state i referred
to in Eq. (58) is at most unity. Therefore we can interpret
Eq. (58) as giving a bound on the contribution to the oc-
currence probability due to the family of growth se-
quences involving state i. The total number of such
growth sequences [defined by satisfying Eq. (56)] is at
most of order N!. Even multiplying the result of Eq. (58)
by such a large factor does not lead to a contribution
which is comparable to that in Eq. (53) from the “in or-
der” growth sequence. Consequently we can calculate
the occurrence probability as being due exclusively to
growth sequences in which Eq. (56) is never fulfilled.
That is, to find a bound for the occurrence probability of
the maze we multiply the result in Eq. (53) by the number
of sequences which do not pass through an intermediate
state of the type of Eq. (56). In essence therefore, we can
not permit growth in such a way as to have more than a
small number of /;’s in the interval written in Eq. (56).
One way of formulating this restriction is to treat almost



41 SCALING OF NEGATIVE MOMENTS OF THE GROWTH . .. 981

all rows as consisting of 2eL +1 elements. The first eL
of these are sites which can be filled in any order (at least
as far as our bound is concerned), the middle L —2¢eL
sites form a single element because they should all be
filled at once, in order to avoid the state to which our
bound applies, and finally the last €L sites can be filled in
in any order. So in essence we need to know how many
sequences of such types there are. Clearly there are at
most (2eN)! growth sequences of this type. But since € is
of order N ~!/1° the number of such sequences is smaller
than exp(N). Since according to Eq. (53) any specific
growth sequence gives a contribution to the occurrence
probability which is bounded by exp( —KN InN), we see
that even multiplying this by exp(/N) has no effect on the
result. The conclusion, although not rigorous, is never-
theless compelling: the occurrence probability of the
maze is similar to that of the tube and is bounded by the
expression in Eq. (52).

B. The sphere

One might ask, “Do all structures have occurrence
probabilities which obey the bound of Eq. (52)?” Obvi-
ously this is not true, because the total number of clusters
grows only exponentially with their size?® (in number of
particles) N. In percolation we know that the occurrence
probability of a single specific large cluster of N sites is of
order exp(—KN), where K = —Inp —aIn(1—p), where a
is the fraction of sites on the perimeter of the cluster.
Clearly, most structures in DLA will similarly have ex-
ponential occurrence probabilities. It is only the excep-
tional ones, such as those considered here, whose oc-
currence probabilities obey the bound of Eq. (52). To see
this, consider a sphere. Let us ask what the probability
P;_. s is for growing from an initial radius to a final radius
which is one lattice constant larger. If the surface con-
sists of M sites, then roughly, the probability of hitting
any one of them is 1/M. Also note that there are M! se-
quences which lead from the initial to the desired final
state. Thus

P =M1/MM~e™ M, (59)

which is exponential in the number of added particles.
For a large sphere of N particles built up this way (like
unpeeling an onion), one obtains a lower bound on the
growth probability which is of order exp(—KN). Of
course, to really calculate (rather than bound) the oc-
currence probability, entropy effects must be taken into
account more completely. However, this argument does
prove that the occurrence probability has a lower bound
which is exponential in the size. Thus our arguments do
not always result in the bound of Eq. (52).

V. DISCUSSION

From our examples we suggest the following con-
clusion. To obtain a growth probability of order
exp(—alL), one requires a structure generically
equivalent to a tunnel whose path length (i.e., chemical
length) is of order L. The one dimensionality of the tun-
nel implies a specific growth sequence which by Eq. (7)

gives a smaller-than-exponential occurrence probability.
Thus for g <O these structures give a contribution to
[M(q,N)],, for g <0 of order

8[M(q,N)], ~eldL —KLInL (60)

As L — o« this contribution is dominated by the “regu-
lar” or power-law contribution. It is instructive to see
that the “maze” structure considered in Sec. III con-
forms to this reasoning. While we cannot rule out the
possible existence of structures which would contradict
the behavior as in Eq. (60), we nevertheless conclude that
at present there is no evidence in favor of the ‘“‘phase
transition” suggested in Refs. 19 and 20 involving non-
power-law scaling of the negative moments of the growth
probability in DLA.
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APPENDIX: SCALING FOR THE RECTANGLE

In this appendix we verify that the exact solution for
the rectangle has the scaling behavior of Egs. (24). For
this discussion we need the solution, given in Eq. (13), for
the potential near an infinitely thin conducting strip and
the mapping of Eq. (15) which takes the strip into the rec-
tangle. In that mapping for large aspect ratio we have
B=a and B=1—¢, with €=2b /(7a). Thus
1 |aw|_ 1 ldW/dz,| _

o= 4 dz, | 4m ldz,/dz,] 2

Q l(z%__BZ)*l/2| .
mTa

(A1)

To get o as a function of z, =x +iy, we must integrate
Eq. (15) to get z,(z, ).

We will study two cases: first when z, is a point on the
end of the rectangle, and later when z, is a point near the
end but on the long side of the rectangle. For the first
case, set z; =(1—¢) and z,=a +iy. As § increases from
0 to €, y increases from O to b. Using the smallness of §
we have

(A2)

Y(§)=a€f0§/edx[(1-—x)/x]1/2. (A3)

Since ae=2b /m, this equation gives /€ as a function of
y/b:
y/b=F({/€) . (A4)

Although it is not needed, we can give F (x) explicitly

F(x)Z%[sin‘l(x”2)+x1/2\/1—x ]. (AS5)
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For z, and B near unity, we have |z} —p*=2le—¢l.
Substituting this into Eq. (A1) we find that
-1
¢
€

o(x=a, y)=-2 (2¢)" 172 (A6)
2mra

But from Eq. (A4) {/e=F ~!(y /b), so that Eq. (A6) is of
the scaling form of Eq. (24a).

For the second case set z;,=1—e—{=pB—¢ and
zy,=a—s+ib. Then as { increases from 0 to 3, s in-
creases from O to a. For small § Eq. (15) is

1/2
ds

Fg— =q (A7)

£t+e

From this equation we deduce that s /b =G ({/€), where

172
Gx)==2[*

U du . (A8)
mYo

1+u

Near the end we may write |x% —-B% ~(2£), so that

U:L(ze)—l/Z[G—l(S/b)]—1/2 ,
2ma

(A9)
which is of the scaling form of Eq. (24a). For large s, this
result joins smoothly onto the form of Eq. (24b) valid far
from the end.
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