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“In cosmological neutrino physics, no neutrinos are harmed. In neutrino

astrophysics individual neutrinos must be captured and killed so that we can

learn more.”

— John Beacom, APS April Meeting 2015

This dissertation is dedicated to all the neutrinos who sacrificed everything
in the name of scientific progress.

Seriously, though, it’s for Lauren.
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ABSTRACT

CONSTRAINING THE HEP SOLAR NEUTRINO AND DIFFUSE SUPERNOVA

NEUTRINO BACKGROUND FLUXES WITH THE SUDBURY NEUTRINO

OBSERVATORY

Andrew T. Mastbaum

Joshua R. Klein

The Sudbury Neutrino Observatory has demonstrated that the apparent deficit in solar

neutrinos observed on Earth is due to matter-enhanced flavor transitions, and provided

precision measurements of the relevant oscillation parameters. The low backgrounds and

large, spectral charged-current νe − d cross section that enabled these measurements also

give SNO unique sensitivity to two yet-unobserved neutrino signals of great interest: the

hep solar neutrino flux and the diffuse supernova neutrino background (DSNB).

This work presents a joint analysis of all three running configurations of the SNO ex-

periment in order to improve constraints on the hep and DSNB νe fluxes. The crucial

uncertainties in the energy response and atmospheric neutrino background, as well as the

event selection criteria, are reevaluated. Two analysis approaches are taken, a single-bin

counting analysis (hep and DSNB) and multidimensional signal extraction fit (hep), using

a random sample representing 1/3 of the total SNO data. These searches are the most

sensitive to date for these important signals, and will improve further when the full dataset

is analyzed.

The SNO+ liquid scintillator experiment is a successor to SNO primarily concerned with

vi
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a search for neutrinoless double-beta decay (0νββ) in 130Te. The modifications to the SNO

detector in preparation for SNO+ and an analysis of the 0νββ sensitivity of this upcoming

experiment will also be presented in this work. SNO+ will be the first experiment to load Te

into liquid scintillator, and is expected to achieve world-class sensitivity in an initial phase

commencing in 2017, with significantly improved sensitivity in an upgraded configuration

to follow using much higher Te target mass.
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Chapter 1

Introduction

Decades of neutrino experiments using solar [1–7] and terrestrial [8–11] neutrino sources

have firmly established that neutrinos undergo flavor-changing oscillations and have small

but nonzero mass, and demonstrated the validity of solar energy production models. Of the

several electron neutrino-producing reactions in the Sun, the highest-energy hep neutrinos

remain unobserved. A measurement of this flux would provide a verification of solar energy

production models complementary to recent low-energy results. The hep neutrinos also have

unique sensitivity to certain classes of non-standard solar models, as they are produced at a

relatively high energy and high radius within the Sun [12]. The heavy water (2H2O, hereafter

“D2O”)-based Sudbury Neutrino Observatory experiment (SNO) had unique sensitivity to

low-energy νe including hep solar neutrinos through the large charged-current (CC) cross

section on deuterium, which is about 100 times larger than the νe − e− elastic scattering

(ES) cross section at 20 MeV. The CC interaction also provides a better measurement of

the incoming neutrino energy, as the final state electron kinetic energy is strongly correlated

to the initial state neutrino energy. These benefits allow SNO to reach a sensitivity beyond
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even much larger light water Cherenkov detectors.

According to astrophysical models of core-collapse supernova, the high frequency of these

events within the observable universe produces an MeV-scale neutrino and antineutrino

“glow” that should be observable in terrestrial neutrino observatories. This too remains

unobserved so far. Measurement of this diffuse supernova neutrino background (DSNB)

would provide valuable input to our understanding of supernovae, as it probes both the

average number of neutrinos released in these events and the average temperature at the

surface of last scattering for the neutrinos. In contrast to single nearby core-collapse super-

nova events like SN1987A [13], the DSNB is always “on,” and the information about average

behavior provides context for interpreting isolated nearby supernova events. The Super-

Kamiokande experiment, using a larger, light water Cherenkov detector, has set limits on

the DSNB ν̄e flux via inverse beta decay searches which are close to the model predictions

[14]. The SNO detector, on the other hand, had world-class sensitivity to the DSNB νe flux,

again thanks to the large, spectral CC νe − d cross section and to very low backgrounds.

Following the first phase of the SNO experiment with a D2O target, the SNO collabo-

ration published limits on the hep solar neutrino flux and the νe component of the DSNB

flux in a combined analysis [15], and these remain the most stringent direct limits today.

Subsequent to the collection of that data, the SNO detector was run in two more configura-

tions, which differed primarily in the mechanism for neutron detection, for a total of three

“phases.” For the second phase, a small concentration of NaCl was added to the D2O,

and in the third phase, the NaCl was removed and an array of proportional counters was

deployed in the D2O. Studies by C. Howard in 2010 investigated a combined analysis of all

three phases to search for the hep flux only, using a multidimensional fit [16]. That work

suggests that a low-significance measurement of the hep flux is possible using only 1/3 of the

full SNO dataset, but did not fully account for systematic uncertainties (most notably the

crucial energy-related uncertainties above the endpoint of the 8B solar neutrino spectrum)
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or possible biases in the result. This “hint” of a detection provides strong motivation for a

thorough independent analysis, which I undertake here.

This dissertation expands on the previous work, and uses data from all three phases of

the SNO experiment to constrain both the hep and DSNB νe fluxes. I perform the first

counting analysis of the combined (three phase) data, in order to produce both limits which

may be directly compared to the published results and model-independent counting rates.

This work represents the sole effort toward improving SNO’s (world-leading) direct DSNB

νe flux limit. I also conduct a multidimensional spectral fit for the hep flux, which has been

newly developed for this work and is substantially more sophisticated than previous efforts,

particularly in the statistical treatment. Both the counting and signal extraction approaches

benefit from the higher statistics and better measurement of correlated backgrounds afforded

by the expanded data set, and also take advantage of more recent theoretical progress and

analysis improvements. I have also re-evaluated the energy-related systematic uncertainties,

using calibration data to define and validate an energy response model covering the full

analysis energy range, and improved the modeling of atmospheric neutrino interactions,

revisiting the dominant uncertainties for these searches to ensure a robust result.

I begin this dissertation with brief introductions to the relevant physics: the Standard

Model (Chapter 2); solar neutrinos (Chapter 3); and the diffuse supernova neutrino back-

ground (Chapter 4). Next, the SNO detector is introduced, along with SNO+-related up-

grades (Chapter 5), and the reconstruction of events is briefly reviewed. Chapter 6 presents

an overview of the hep and DSNB searches, including the signals and backgrounds, data se-

lection process, systematic uncertainties, and details on atmospheric neutrino backgrounds.

The measurement of the systematic uncertainties associated with energy reconstruction,

which are of great importance for the hep measurement in particular, is detailed in Chapter

7. A counting (“box”) analysis approach to the hep and DSNB measurement is presented in

Chapter 8, which details the selection of data, the optimization of cuts, and the statistical

treatment. Next, a multidimensional spectral signal fit to extract the hep is presented in

3



Chapter 9. Finally Chapter 10 provides a summary and conclusions.

Since the conclusion of the SNO experiment, a new experiment known as SNO+ has

been under development that will reuse much of the SNO detector infrastructure. SNO+

will use a liquid scintillator, rather than heavy water, target to explore a broad range of

important questions in neutrino physics, with the primary objective being a sensitive search

for neutrinoless double-beta decay (0νββ) in 130Te. The upgrades to the detector and the

0νββ sensitivity analysis (which has strong parallels to the hep search in SNO) are presented

in Appendix A.
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Chapter 2

Physics of Massive Neutrinos

A light, neutral, weakly-interacting “neutron” was first proposed by Pauli in 1930 [17] in

order to explain the apparent energy nonconservation observed in β decays. The ghostly

particle smuggling away the energy was soon renamed the “neutrino” (the little neutral

one) in 1933 by Fermi to avoid confusion with the modern neutron discovered by Chadwick

in 1932. In the intervening years, enormous effort has gone into quantifying “little” and

“neutral.”

The neutrino was first observed experimentally in 1956 by Cowan and Reines through

the inverse beta decay of antineutrinos (ν̄) from the Savannah River nuclear reactor [18].

Subsequent experiments established that (left-handed) neutrinos and (right-handed) an-

tineutrinos are distinct, and that three independent neutrino flavors ensure lepton flavor

conservation in weak interactions. With the discovery of neutrino flavor oscillations in

atmospheric neutrinos in 1998 by the Super-Kamiokande Collaboration [19] and in solar

neutrinos in 2001 by the SNO Collaboration [6], however, came the implication of nonzero

neutrino mass and lepton flavor nonconservation, opening up rich new phenomenology in
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2.1 The Standard Model

the lepton sector. In some sense, less is “known” about the neutrino today than in 1930!

2.1 The Standard Model

The Standard Model developed in the 1970s brought order to a proliferation of newly

discovered particles. It described the particles comprising the known matter of the universe

and provided a unified description of their strong, weak, and electromagnetic interactions.

Notably, the Standard Model did not include gravitation, and from a modern perspective,

was lacking in its exclusion of more recently discovered neutrino masses, dark matter, and

dark energy. Although neutrino masses have since been accommodated, the remaining

limitations strongly suggest that the Standard Model is an effective theory that is part of

some more comprehensive model. This has motivated an enormous body of theoretical work

and experimental searches for “beyond the Standard Model” particles and interactions.

The Standard Model is a quantum field theory that asserts gauge invariance of the

composite symmetry group

SU(3)C × SU(2)L ×U(1)Y ,

with C referring to color, L to left-handed chirality, and Y to weak hypercharge. Gauge

invariance demands the introduction of massless bosons corresponding to the generators

of each group, which define the interactions between matter particles. These are denoted

g1..8, Aµ
1..3, and Bµ. The gluons, g, mediate the strong nuclear force and are described

by quantum chromodynamics (QCD), while the A and B together mediate weak nuclear

and electromagnetic interactions. The strengths of these interactions are given by coupling

constants, which are free parameters of the theory and must be determined experimentally.

The matter content consists of fermionic fields, which are expressed in representations of

the groups. These are divided into quarks which partipate in all three types of interactions,

and leptons which feel only the weak and electromagnetic forces. In nature, there exist
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2.1 The Standard Model

Generation
1 2 3

quarks u, d c, s t, b
leptons νe, e νµ, µ ντ , τ

Table 2.1: Matter content in the Standard Model. For each particle there exists a correspond-
ing antiparticle having identical mass but opposite charges.

three generations of matter, which share quantum numbers but differ in mass. The matter

content of the Standard Model is summarized in Table 2.1. In the chiral representation

conventionally used for analysis of highly relativistic neutrinos, the quarks and leptons are

represented as:

Lα =

(
νLi
ℓLi

)
, Qα =

(
ULi

DLi

)
, ℓRi, νRi, URi, DRi, (2.1)

with L and Q representing the lepton and quark doublets; ℓ the massive leptons; U and D

the up- and down-type quarks, respectively; subscripts L and R for left- and right-handed

chirality; and i the generation.

At the time the Standard Model was developed, experimental evidence suggested maxi-

mal parity violation in neutrino interactions, with only left-handed chiral neutrinos and

right-handed antineutrinos participating. Therefore the right-handed neutrino, a non-

interacting SU(2)L singlet, was excluded from the theory.

According to the electroweak theory developed by Weinberg, Glashow, and Salam (see,

e.g., Reference [20]), the electromagnetic and weak interactions are combined by mixing of

the gauge bosons A and B. Specifically, the trilinear couplings between electrically-charged
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2.1 The Standard Model

particles and photons take the form1

L
(γ)
int = −ℓjµγAµ (2.2)

jµγ = −ℓγµℓ (2.3)

and new, mixed fields are formed as

W µ =
Aµ

1 − iAµ
2√

2
(2.4)

Aµ = sin θAµ
3 + cos θBµ (2.5)

Zµ = cos θAµ
3 − sin θBµ (2.6)

where θ is the weak mixing angle. These W and Z are the vector bosons that participate

in charged-current (CC) and neutral-current (NC) weak interactions, respectively. In the

interacting Lagrangian, these take the forms

L
(CC)
int = − gW

2
√
2
jµW,LWµ + h.c. (2.7)

jµW,L = νℓγ
µ(1− γ5)ℓ = νℓLγ

µℓL (2.8)

L
(NC)
int = − gW

2 cos θ
jµZ,LZµ + L

(γ)
int (2.9)

jµZ,L = 2gνLνℓLγ
µνℓL + 2glLℓLγ

µℓL + 2glRℓRγ
µℓR. (2.10)

1This section largely follows the notation of [21].
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2.1 The Standard Model

Unlike its CC counterpart, the NC interaction is diagonal in the flavor basis, and so neutral

current interactions cannot change lepton flavor.

The W and Z are known experimentally to have nonzero mass, which the Standard

Model accounts for via the so-called Higgs mechanism. In this scheme, a new SU(2)L

doublet is introduced which is composed of a charged and neutral complex scalar field:

Φ(x) =

(
φ+(x)
φ0(x)

)
. (2.11)

The Higgs term in the Lagrangian takes the form

LHiggs = (DµΦ)
†(DµΦ)− V (Φ) (2.12)

with the potential term

V (Φ) = µ2Φ†Φ+ λ(Φ†Φ)2 = λ
(
Φ†Φ− v

2

)2
(2.13)

where v =
√

µ2/λ, µ < 0, and λ > 0. This potential has a minimum at Φ†Φ = v2/2,

which corresponds to the minimum-energy (vacuum) state for the field. This implies that

the charged field must have zero expectation value at the vacuum while the neutral part

must be finite:

〈Φ〉 = 1√
2

(
0
v

)
. (2.14)

This “breaks” the SU(2) × U(1) symmetry but preserves U(1)Q, which conserves electric
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2.2 Neutrino Mass and Mixing

charge. Working in the unitary gauge where

Φ(x) =
1√
2

(
0

v +H(x)

)
, (2.15)

and expanding the covariant derivatives in Equation 2.12, one finds, in addition to kinetic

and mass terms for the Higgs boson, interaction terms with the W and Z and mass-like

terms involving WH and ZH interactions. It is through the coupling to the Higgs field

that the vector bosons of the electroweak interaction gain their observed masses.

The Higgs field also couples to fermions through Yukawa couplings, generating the

fermion masses:

LHL = −
∑

α

ylαv√
2
ℓαℓα −

∑

α

ylα√
2
ℓαℓαH (2.16)

where ℓα = ℓαL + ℓαR and α = e, µ, τ , and y are Yukawa coupling constants. The fermion

masses, in terms of the unknown couplings and the Higgs vacuum expectation value (VEV)

v, are thus given by

mα =
yℓαv√
2
. (2.17)

A similar process generates masses for the quarks.

The Higgs boson, with a mass of 125 GeV/c2, was discovered simultaneously in 2012 by

the ATLAS [22] and CMS [23] collaborations at the Large Hadron Collider, a monumental

feat which has finally validated this linchpin of the Standard Model.

2.2 Neutrino Mass and Mixing

The success of the electroweak theory as originally envisioned was relatively short-lived, as

the observation of neutrino oscillations in 1998 [19] implied that neutrinos have mass (and
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2.2 Neutrino Mass and Mixing

νR is required in the theory) and that lepton flavor is not conserved.

Including the right-handed singlets, new terms are allowed in the Lagrangian:

LD = −mν
ijνRiνLj (2.18)

LM = −Mν
ijνRiν

c
Rj . (2.19)

The former is the typical Dirac mass term which exists for all fermions, and the latter a

Majorana mass term, only allowed for the neutral neutrino. If the neutrino is a Majorana

fermion, it is its own antiparticle in the sense that the distinction between “neutrinos”

and “antineutrinos” is fundamentally a statement about chirality states of the same par-

ticle. This is a question of profound significance, but has no observable impact on the

phenomenology of neutrino oscillations and may be neglected in the following discussions of

solar neutrinos. Determination of the (Majorana or Dirac) nature of the neutrino, however,

is an area of intense research interest, in particular through searches for neutrinoless double

beta decay (0νββ); Appendix A describes such a search with the SNO+ experiment, which

is built on the infrastructure and experience of the SNO experiment.

So far, the mass matrix in LD has been assumed to be diagonal, i.e. flavor-conserving.

In general, however,

LD = −
(
νeR νµR ντR

)



mee meµ meτ

mµe mµµ mµτ

mτe mτµ mττ







νeL
νµL
ντL


+ h.c. (2.20)

LD = −
(
νeR νµR ντR

)
U




m1 0 0
0 m2 0
0 0 m3


U−1




νeL
νµL
ντL


+ h.c. (2.21)
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2.2 Neutrino Mass and Mixing

where U is the unitary Pontecorvo-Maki-Nakagawa-Sakata, or PMNS, matrix which diago-

nalizes mij. It is conventional to parameterize this matrix in terms of three mixing angles

θ12, θ23, and θ13, and a complex phase δ, separated by factorization2:

UPMNS =




1 0 0
0 c23 s23
0 −s23 c23


×




c13 0 s13e
iδ

0 0 0
−s13e

−iδ 0 c13


×




c12 s12 0
−s12 c12 0
0 0 1


 . (2.22)

with cij = cos θij and sij = sin θij. This representation isolates the parameters typically

probed by different types of experiments — the “atmospheric” mixing angle θ23, the “solar”

θ12, and the “reactor/accelerator” θ13 — so differentiated for reasons that will be described

shortly.

The PMNS matrix provides a transformation between the flavor eigenstates of the weak

interaction and the mass eigenstates of the free-particle Hamiltonian. Therefore, we may

expand a flavor state α = e, µ, τ in the basis of mass eigenstates i = 1, 2, 3:

|να〉 =
∑

i

U∗
αi|νi〉. (2.23)

2.2.1 Vacuum Oscillations

Applying Schrödinger’s equation, one finds that the probability of transition between two

flavor eigenstates α and β at time t is given by

Pαβ = P (α → β) = |〈να|νβ〉|2 =
∑

j,k

UαjU
∗
βjU

∗
αkUβke

−i(Ej−Ek)t. (2.24)

2In the Majorana case, additional degrees of freedom require the addition of two more phases. This is
typically parameterized as U ′

PMNS = UPMNS × diag(1, eiφ1 , eiφ2).
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2.2 Neutrino Mass and Mixing

This may be re-expressed in terms of the mass difference squared between the mass eigen-

states, recognizing that for the highly relativistic neutrinos, time t ∼ position L and the

mass/momentum ratio ≪ 1:

P (α → β) = δαβ − 4
∑

i>j

R(UαiU
∗
βiU

∗
αjUβj) sin

2(1.27∆m2
ij(L/E)) (2.25)

+ 2
∑

i<j

I(UαiU
∗
βiU

∗
αjUβj) sin

2(2.54∆m2
ij(L/E)) (2.26)

with L the distance in km, E the energy in GeV, and ∆m2
ij ≡ m2

i −m2
j .

Considering only two neutrino flavors, the mixing matrix has only one free parameter,

a mixing angle θV . This simplifying assumption is a good approximation for solar neutrino

experiments, where states |νe〉 and |νa〉 (a linear combination of |νµ〉 and |ντ 〉) are considered
— the latter cannot be distinguished because solar neutrinos lack the energy to produce

the associated charged leptons. In the quasi-two neutrino case,

U =

(
cos θV sin θV
− sin θV cos θV

)
. (2.27)

Hence, for a νe,

|νe(x, t)〉 = cos θV e
−ip1x|ν1〉+ sin θV e

−ip2x|ν2〉. (2.28)

Inverting the expressions for |νe〉 and |νa〉 to write the free-particle Hamiltonian in terms of

flavor eigenstates:

H =
m2

1 +m2
2

4E
+

∆m2
21

4E

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
. (2.29)
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2.2 Neutrino Mass and Mixing

At a time t and distance L, pix = Eit− piL. Assuming that p1 = p2 (hence E1 6= E2)
3,

〈νe|νe〉 = cos2 θV e
−eE1t + sin2 θV e

−iE2t (2.30)

Pee ≡ |〈νe|νe〉|2 = 1− sin2 2θV sin2
(
1

2
(E1 − E2)t

)
(2.31)

where E1 − E2 = (m2
1 −m2

2)/(2E) ≡ ±∆m2/(2E). In convenient units,

Pea = sin2 2θV sin2
(
1.27

∆m2 [eV2] L [km]

Eν [GeV]

)
. (2.32)

2.2.2 Matter-Enhanced Oscillations

In the presence of matter, neutrinos oscillations are affected by scattering processes. Neu-

tral current (NC) weak interactions with electrons and nucleons affect all flavors equally

and introduce a physically-irrelevant phase, while νe alone may additionally participate in

charged current (CC) interactions. The implications for flavor oscillations were first rec-

ognized by Wolfenstein [25] in 1978, but the idea did not gain traction until 1986 when

Smirnov and Mikheyev realized that propagation in a medium with a varying electron den-

sity could lead to a resonant enhancement of flavor oscillations [26]. This effect is now

known as the Mikheyev-Smirnov-Wolfenstein (MSW) effect, or simply the “matter effect.”

A diagram representing the CC scattering responsible for the MSW effect is shown in Figure

2.1. To include the effects of matter, an effective potential is added to Hamiltonian given

in Equation 2.29, such that H00 → H00 + 2
√
2GFneE, where GF is the Fermi coupling

constant (at low energies, the diagram in Figure 2.1 reduces to an effective quadrilinear

coupling), ne is the local electron density of the propagation medium, and E is the neutrino

3This assumption is valid in the case of solar neutrinos, but not in general. For a discussion of the
generally-valid wave packet approach, see Reference [24].
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2.2 Neutrino Mass and Mixing

νe

e−

e−

νe

W+

Figure 2.1: Charged-current νe–e
− scattering, which results in the resonant conversion of νe

to other flavors in the MSW effect.

energy. Equation 2.29 may now be rewritten in terms of effective parameters [27]:

H =
∆m̃2

4E

(
− cos 2θ̃ sin 2θ̃

sin 2θ̃ cos 2θ̃

)
, (2.33)

where

A = 2
√
2GFneE (2.34)

cos θ̃ =
−A/∆m2 + cos 2θV√

(A/∆m2 − cos 2θV )2 + sin2 2θV
(2.35)

m̃1 =
A

2
− 1

2

√
(A/∆m2 − cos 2θV )2 + (∆m2)2 sin2 2θV (2.36)

m̃2 =
A

2
+

1

2

√
(A/∆m2 − cos 2θV )2 + (∆m2)2 sin2 2θV . (2.37)

The resonance condition where

ne,res =
|∆m2| cos 2θV
2
√
2GFE

, (2.38)
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2.2 Neutrino Mass and Mixing

implies that for certain neutrino energies and electron densities, large transition probabilities

are possible even for small values of the vacuum mixing angle θV .

What happens to a neutrino traversing matter depends on values of the vacuum oscil-

lation length LV and the neutrino/electron interaction length Le. If LV ≪ Le, vacuum

oscillations dominate; if LV ≫ Le, mixing is suppressed; and if LV = Le, then

|〈νa|νe〉|2 = sin2(πR sin 2θ/LV ) (2.39)

In regions of ne > ne,res, the extra potential means that νe is the heaviest eigenstate, and if

the electron density decreases slowly along the neutrino path, the νe may be adiabatically

transformed into the ν2 eigenstate of the free (vacuum) Hamiltonian. In the case of solar

neutrinos, this means that sufficiently high-energy νe emerge from the Sun effectively as ν2.

As a neutrino crosses the resonance, the probability of changing to the other adiabatic

mass eigenstate may be computed by numerical methods but is analytically calculable for

certain simple electron density profiles. For an exponential profile (approximating the Sun)

[28],

Pjump =
exp

[
−2πr0

∆m2

2E sin2 θ
]
− exp

[
−2πr0

∆m2

2E

]

1− exp
[
−2πr0

∆m2

2E

] (2.40)

where r0 ∼ 0.1R⊙ is a characteristic length for the change of electron density. The νe

survival probability is conveniently expressed in terms of this level crossing probability by

Parke’s formula:

Pee =
1

2
+

(
1

2
− Pjump

)
cos 2θ̃ cos 2θ (2.41)
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2.3 Current Mixing Parameters

2.3 Current Mixing Parameters

Results from a recent global fit for the mixing parameters are given by Gonzales-Garcia,

Maltoni, and Schwetz in [29], and reproduced in Table 2.2. Propagating these uncertainties

to the PMNS matrix, the following ranges are allowed at the 3σ confidence level [29]:

|U | =




0.801 → 0.845 0.514 → 0.580 0.137 → 0.158
0.225 → 0.517 0.441 → 0.699 0.614 → 0.793
0.246 → 0.529 0.464 → 0.713 0.590 → 0.776


 . (2.42)

For the present analysis, the parameters recommended by the Particle Data Group are

used [30]:

sin2 θ12 = 0.304+0.014
−0.013 (2.43)

∆m2
21 = (7.53 ± 0.18) × 10−5 eV2 (2.44)

sin2 θ23 = 0.514+0.056
−0.056 (NH) (2.45)

sin2 θ23 = 0.511 ± 0.55 (IH) (2.46)

∆m2
32 = (2.49 ± 0.06) × 10−3 eV2 (NH) (2.47)

∆m2
32 = (2.42 ± 0.06) × 10−3 eV2 (IH) (2.48)

sin2 θ13 = (2.19 ± 0.12) × 10−2 (2.49)

where NH and IH refer to the normal and inverted possibilities for the neutrino mass

ordering. The CP-violating phase δ has not yet been measured.
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2.3 Current Mixing Parameters

Normal Ordering (∆χ2 = 0.97) Inverted Ordering (best fit) Any Ordering
bfp ±1σ 3σ range bfp ±1σ 3σ range 3σ range

sin2 θ12 0.304+0.013
−0.012 0.270 → 0.344 0.304+0.013

−0.012 0.270 → 0.344 0.270 → 0.344

θ12/
◦ 33.48+0.78

−0.75 31.29 → 35.91 33.48+0.78
−0.75 31.29 → 35.91 31.29 → 35.91

sin2 θ23 0.452+0.052
−0.028 0.382 → 0.643 0.579+0.025

−0.037 0.389 → 0.644 0.385 → 0.644

θ23/
◦ 42.3+3.0

−1.6 38.2 → 53.3 49.5+1.5
−2.2 38.6 → 53.3 38.3 → 53.3

sin2 θ13 0.0218+0.0010
−0.0010 0.0186 → 0.0250 0.0219+0.0011

−0.0010 0.0188 → 0.0251 0.0188 → 0.0251

θ13/
◦ 8.50+0.20

−0.21 7.85 → 9.10 8.51+0.20
−0.21 7.87 → 9.11 7.87 → 9.11

δCP/
◦ 306+39

−70 0 → 360 254+63
−62 0 → 360 0 → 360

∆m2
21

10−5 eV2 7.50+0.19
−0.17 7.02 → 8.09 7.50+0.19

−0.17 7.02 → 8.09 7.02 → 8.09

∆m2
3ℓ

10−3 eV2
+2.457+0.047

−0.047 +2.317 → +2.607 −2.449+0.048
−0.047 −2.590 → −2.307

[

+2.325 → +2.599
−2.590 → −2.307

]

Table 2.2: Three-flavor oscillation parameters from our fit to global data after the NOW 2014
conference. The results are presented for the “Free Fluxes + RSBL” in which reactor fluxes
have been left free in the fit and short baseline reactor data (RSBL) with L . 100 m are
included. The numbers in the 1st (2nd) column are obtained assuming NO (IO), i.e., relative
to the respective local minimum, whereas in the 3rd column we minimize also with respect to
the ordering. Note that ∆m2

3ℓ ≡ ∆m2
31 > 0 for NO and ∆m2

3ℓ ≡ ∆m2
32 < 0 for IO. Table and

caption reproduced from [29]. “bfp” refers to the best-fit parameter value.
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2.4 Status and Prospects

The tight constraints on the oscillation parameters given in the previous section demonstrate

that in some respects the neutrino field is entering the regime of precision measurement:

the mixing angles and squared mass splittings are known with impressive and improving

precision. However, there remain fundamental questions in neutrino physics, for example:

Neutrino mass Why are the neutrinos so light in comparison the other Standard Model

fermions? Is something other than the Higgs mechanism responsible for neutrino mass

generation?

Neutrino Mass Ordering Is m1 the lighest (normal mass ordering) or is m3 (inverted

mass ordering)?

Majorana neutrinos Is the neutrino a Majorana fermion (i.e. its own antiparticle), and

if not, is lepton number a fundamental symmetry of the Standard Model?

CP Violation Could CP violation in neutrino interactions explain the matter-antimatter

asymmetry in the universe by facilitating leptogenesis?

Sterile Neutrinos Are there additional neutrino types which participate in oscillations

but not weak interactions, as some experimental evidence suggests?

NSI Are there weak nonstandard interactions in the neutrino sector that could be probed

with long-baseline interferometry?

From its humble beginnings rescuing energy conservation in nuclear beta decay, the lit-

tle neutrino has become a powerful tool for understanding fundamental physics on energy

scales from µeV to the GUT scale, and from nuclear to cosmological spatial scales. Experi-

ments under development today will measure the CP-violating phase δCP and determine the
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2.4 Status and Prospects

ordering. Next-generation experiments may observe neutrinoless double-beta decay, demon-

strating the Majorana nature of the neutrino and perhaps opening a window to GUT-scale

physics generating the neutrino mass, at energies inconceivable for terrestrial colliders.
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Chapter 3

Solar Neutrinos

The Sun-Earth system provides an incredible laboratory for precision low-energy neutrino

oscillation measurements, with incredibly rich phenomenology. Electron neutrinos are pro-

duced in several of the nuclear reactions that power the Sun, and propagate through

a nonuniform electron-rich medium, undergoing flavor- and energy-dependent scattering

which can resonantly enhance the flavor oscillations. The neutrinos are produced at a wide

range of energies and radii, making the resultant flux on Earth sensitive to details of the

solar composition and structure.

This modern perspective was hard-won over decades of experiments; the deficit in flux

now attributed to flavor oscillations, known as the “solar neutrino problem,” stood unre-

solved from the first flux observations in the late 1960s until the Sudbury Neutrino Obser-

vatory results in 2001 [6].
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3.1 Standard Solar Models

Solar models predict the evolutionary history of the Sun, assuming that it is driven by well-

understood nuclear physics and fluid dynamics. The models take as input experimentally-

determined quantities such as nuclear cross sections and a set of parameters like the initial

abundances of light elements in the Sun, and use the observational boundary conditions

(photon luminosity, size, age) to find the most suitable parameters. These parameters then

predict the neutrino fluxes, in terms of both energy spectra and where the reactions occur

within the volume of the sun.

The cornerstone of these models is the postulate that the Sun’s energy comes from a

proton-proton (pp) fusion chain terminating with the production of an α particle. There

are several branches in the pp chain in which reactions produce νe with a range of energies

up to ∼ 18 MeV. A second chain which fuses protons into α particles through catalysis

by heavier elements is the Carbon-Nitrogen-Oxygen (CNO) cycle. This set of reactions is

subdominant in the Sun but is the primary mechanism for energy production in slightly

larger stars. In either case, the overall process is that of “hydrogen burning:”

4p+ 2e− → 4He + 2νe (3.1)

The pp chain reactions are shown in Figure 3.1 and the neutrino energy spectra for

the pp and CNO cycles are in Figure 3.2. The spatial distribution of the fluxes is shown

in Figure 3.3 for the GS98SFII model4. Table 3.1 summarizes the predicted νe fluxes for

each neutrino-producing reaction in the pp and CNO chains, for selected SSMs. For the

present analysis, The BSB05(GS98) – henceforth denoted BS05(OP) – is used unless noted

otherwise.

4This model comprises the GS98 model proposed by Grevesse and Sauval in 1998 [31], with the updated
nuclear reaction rate calculations known as Solar Flux II, or SFII [32].
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3.1 Standard Solar Models

p+ p → 2H+ e+ + νe p+ e− + p → 2H+ νe

2H+ p → 3He + γ

3He + 3He → 4He + 2p

3He + 4He → 7Be + γ

3He + p → 4He + e+ + νe

7Be + e− → 7Li + νe
7Be + p → 8B+ γ

7Li + p → 2 4He 8B → 8Be∗ + e+ + νe

8Be∗ → 2 4He

(pp) (pep)

(hep)

(7Be)

(8B)

ppI

ppII

ppIII

99.6% 0.4%

85% 2× 10−5%

15%

99.87% 0.13%

Figure 3.1: The reactions of the solar pp fusion chain, with the names of the neutrino-producing
reactions are given in parentheses. Figure based on Fig. 10.1 of Reference [21].
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3.2 Solar Neutrino Oscillations

BP00 [34] BP04 [35] BSB05(GS98) [36] BSB05(AGS05) [36]

Φpp / 1010 5.95(1 ± 0.01) 5.94(1 ± 0.01) 5.99(1 ± 0.009) 6.06(1 ± 0.007)
Φpep / 108 1.40(1 ± 0.015) 1.40(1 ± 0.02) 1.42(1 ± 0.015) 1.45(1 ± 0.012)
Φhep / 103 9.3 7.88(1 ± 0.16) 7.93(1 ± 0.155) 8.25(1 ± 0.155)
Φ7Be / 109 4.77(1 ± 0.10) 4.86(1 ± 0.12) 4.84(1 ± 0.105) 4.34(1 ± 0.093)

Φ8B / 106 5.05(1+0.20
−0.16) 5.79(1 ± 0.23) 5.69(1+0.173

−0.147) 4.51(1+0.127
−0.113)

Φ13N / 108 5.48(1+0.21
−0.17) 5.71(1+0.37

−0.35) 3.05(1+0.366
−0.268) 2.00(1+0.145

−0.127)

Φ15O / 108 4.80(1+0.25
−0.19) 5.03(1+0.43

−0.39) 2.31(1+0.374
−0.272) 1.44(1+0.165

−0.142)

Φ17F / 106 5.63(1 ± 0.25) 5.91(1 ± 0.44) 5.83(1+0.724
−0.420) 3.25(1+0.166

−0.142)

Table 3.1: Solar neutrino fluxes in cm−1 s−1 for a variety of SSMs. Table reproduced from
Reference [21].

The two reactions of primary interest for the present analysis are

8B → 8Be∗ + e+ + νe, Eν < 15 MeV (8B) (3.2)

3He + p → 4He + e+ + νe, Eν < 18.778 MeV (hep). (3.3)

The hep reaction produces the highest-energy solar neutrinos, but with a very small branch-

ing ratio (2×10−7 per pp termination). This will produce an excess of detected events above

the endpoint of 8B spectrum, but with a flux about three orders of magnitude smaller.

3.2 Solar Neutrino Oscillations

The pp and CNO reactions form a pure νe source, with each reaction having a characteristic

neutrino energy spectrum and radial distribution within the stellar interior, and these solar

neutrinos initially in the νe flavor eigenstate undergo flavor oscillations en route to Earth.
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3.2 Solar Neutrino Oscillations

Figure 3.2: Solar neutrino spectrum. This figure shows the energy spectrum of neutrinos
predicted by the standard solar model (Bahcall and Pinsonneault 2004). The neutrino fluxes
from continuum sources (like pp and 8B) are given in the units of number per cm2 per second
per MeV at one AU. The line fluxes (pep and 7Be) are given in number per cm2 per second. The
spectra from the pp chain are drawn with solid lines; the neutrino energy spectra from reactions
with carbon, nitrogen, and oxygen (CNO) isotopes are drawn with dotted lines. Figure from
Reference [33].
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Figure 3.3: Spatial distributions of the fluxes in the GS98SFII standard solar model.

For real systems including the Sun-Earth system, the survival probability must be averaged

over the finite energy distribution and spatial extent of the source. The oscillating term in

Equation 2.32 are replaced with an integral over the solar model [21]:

Pea =
1

2
sin2 2θ

[
1−

〈
cos

(
∆m2L

2E

)〉]
(α 6= β) (3.4)

where 〈
cos

(
∆m2L

2E

)〉
=

∫
cos

(
∆m2L

2E

)
φ(L/E)d(L/E). (3.5)

Averaging over the broad energy and spatial distributions for the 8B and hep fluxes, the νe

survival probability for vacuum oscillations becomes

〈Pee〉 = 1− 1

2
sin2 2θ12 (3.6)
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in the effective two-flavor theory, or

〈P (3ν)
ee 〉 = sin4 θ13 + cos4 θ13

(
1− 1

2
sin2 2θ12

)
(3.7)

in the full three-neutrino scenario.

Due to the energy dependence of the MSW effect described in Section 2.2.2, neutrinos

created at lower energies emerge from the Sun effectively as νe and will undergo such

vacuum oscillations, while neutrinos created at higher energies are effectively ν2, which is

an admixture with substantial fraction of νe, νµ, and ντ , about 1/3 each. The survival

probability in this limit is

〈Pee〉 = cos4 θ13 sin
2 θ12. (3.8)

Between these limits, the energy dependence of the survival probability may be determined

numerically, by integrating along neutrino paths considering the spatial and energy distribu-

tions and the electron density profile for a given solar model. Figure 3.4 shows for example

Pee for 8B solar neutrinos assuming the BS05(OP) SSM, indicating the vacuum-dominated

and matter-dominated limits. The transition region is highly sensitive to the effective po-

tential for solar νe, making it an interesting probe for non-standard neutrino interactions

(NSI) as well as non-standard solar physics. NSI models are poorly constrained by current

data, according to a recent global analysis [37].

3.3 The Homestake Experiment

Beginning in 1962, John Bahcall and collaborators had developed robust SSMs making

definite predictions of the solar neutrino flux on Earth. In the late 1960s, an experiment
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Neutrino energy (MeV)
10−2 10−1 1 10

P
e
e

0.3

0.35

0.4

0.45

0.5

0.55

0.6 sin4 θ13 + cos4 θ13(1−
1

2
sin2 θ12)

cos4 θ13 sin
2 θ12

8B

hep

Figure 3.4: The survival probability Pee for 8B and hep solar neutrinos, assuming the
BS05(OP) SSM, and PDG-recommended three-neutrino mixing parameters (with their uncer-
tainties shown as bands), according to the Sun-Earth Large Mixing Angle Adiabatic (SELMAA)
calculation (see Reference [38]).
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was devised by Raymond Davis and collaborators that would detect this flux in order to

make a detailed measurement of stellar thermonuclear processes.5

The Homestake experiment [1] was located at the Homestake gold mine near Lead, SD,

at a depth of 4200 meters water equivalent (m.w.e.), and operated from 1970–1994. Solar

νe were observed through the production of 37Ar by a charged-current interaction of νe on

37Cl :

νe +
37Cl → 37Ar + e−, Eth = 0.814 MeV. (3.9)

The argon atoms were extracted periodically from the target vessel and gaseous samples were

assayed in miniature proportional counters. Samples were taken to be counted periodically,

with 108 individual measurements occurring throughout the duration of the experiment.

Reference [1] reports best-fit production rates for both a fit to the full data set and for each

individual run. It soon became clear that the Homestake experiment saw a deficit in the

detected flux, by about a factor of three. This discrepancy persisted through systematic

checks of the Ar extraction efficiency and analysis improvements (pulse-shape discrimination

for better SNR in the proportional counters), and thus was born the Solar Neutrino Problem.

3.4 The Solar Neutrino Problem

The deficit in the observed solar neutrino flux known as the Solar Neutrino Problem per-

sisted for decades, motivating several major experiments before SNO definitively identified

matter-enhanced flavor oscillations as the cause; solar νe changed to νµ and ντ invisible

to previous detectors. Naturally, alternative hypotheses were proposed in the mean time,

many of which attempted to preserve the massless Standard Model neutrino. A few notable

classes of theories included:

5This followed a similar experiment at Savannah River searching for reactor neutrinos with 37Cl, which
helped establish that ν and ν̄ interact differently [39].
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Nonstandard Solar Models The Standard Solar Model (SSM) was known to be imper-

fect (and remains so). Even in the 1970s, varying the model parameters conspiratori-

ally to suppress the neutrino flux was unable to account for the discrepancy. However,

modifications were proposed that suppressed the neutrino fluxes while respecting the

observational boundary conditions, for example disequilibrium in the chemical com-

position of the Sun. Such models were generally ruled out by improved observational

constraints.

Spin-flip and Neutrino Decay Two more exotic exotic explanations for a low νe count

rate are spin-flip effects and neutrino decay. The former, of which there is a standard

and matter-enhanced variety, relies on a large neutrino magnetic moment: if this

exists, a solar νe could change helicity en route to Earth and thus become undetectable

by the Cl and Ga experiments. The latter, neutrino decay, could explain the deficit if

the neutrino lifetime were sufficiently short that neutrinos of the heavier mass state

decayed into a lighter antineutrino and some scalar boson. The data at the time did

not exclude this explanation, but constrained it to a small and unexpectedly high

range of mixing angles.

WIMPs Weakly Interacting Massive Particles, or WIMPs, were proposed at as a simul-

taneous solution to both the Solar Neutrino Problem and the Dark Matter Problem.

The argument was that energy transport by WIMPs, which was not accounted for in

any solar models, could reduce the thermal gradient in the Sun sufficiently to lower

the 8B neutrino flux to the observed value.

It was not until the mid-1980s that the MSW theory was generally accepted as a plausible

solution to the solar neutrino problem. Assuming vacuum oscillations only, Equation 3.6

gives the average νe survival probability. Using a modern value of θV ∼ 33◦, 〈Pee〉 ∼ 0.6,

which does not explain the factor of ∼ 3 suppression observed at Homestake. If instead

the Cabbibo angle, the known mixing angle at the time the problem arose, is assumed,
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θV ∼ θC ∼ 13◦ and 〈Pee〉 ∼ 0.9, which appears not very promising at all. Furthermore, the

initial papers on the MSW effect contained a sign error, such that resonant flavor conversion

only occurred for the unexpected case where m(νe) > m(νµ),m(ντ ); this was corrected by

Langacker in 1986 [12].

3.5 Experimental Results

A number of other solar neutrino detectors followed Homestake, aiming to confirm or refute

the anomalous rate measurement, and it was also recognized that water Cherenkov detectors

built to search for nucleon decay could be repurposed to make real-time solar neutrino

measurements. This section briefly summarizes major results in the field; a list is given in

Table 3.2.

The next solar neutrino experiments to come online after Homestake — Kamiokande II

[40], SAGE [4, 41] and GALLEX/GNO [2, 3, 42] — confirmed the existence of the Solar

Neutrino Problem. Super-Kamiokande established strong evidence for neutrino oscillations

through observation of atmospheric neutrinos [19], and SNO demonstrated that the SNP

was caused by resonantly-enhanced oscillations of solar neutrinos [6]. Following that dis-

covery, SNO [43–48] and Super-Kamiokande [5, 49–52] have made precision measurements

of solar neutrino oscillations, and the scintillator-based Borexino experiment has pushed

down energy thresholds to make real-time measurements of the 7Be [53], pep [54], and very

low-energy pp [55] neutrinos. A number of next-generation experiments, including SNO+

[56] and Theia [57], have potential to greatly improve the precision in the coming years.

3.5.1 Searches for hep Neutrinos

Searches for hep neutrinos also have an interesting history. In March 2000, with about 800

days of data, the Super-Kamiokande collaboration reported an excess in the high-energy
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Name Dates Target Mass Location

Homestake 1970–1994 37Cl 615 t C2Cl4 Lead, SD
SAGE 1989–2007 71Ga 60 t GaCl3 Baksan
GALLEX 1991–1997 71Ga 30.3 t GaCl3–HCl LNGS
GNO 1998–2003 71Ga 30.3 t GaCl3–HCl LNGS
Kamiokande II 1987–1996 H2O 2.1 kt Kamioka
Super-Kamiokande 1996– H2O 50 kt Kamioka
SNO 2001–2006 D2O 1 kt Sudbury
Borexino 2007– LS 278 t LNGS
SNO+ (Future) 2017– LS 780 t Sudbury

Table 3.2: Summary of solar neutrino flux measurements.

spectrum, a low-significance hint of an unexpectedly high flux of hep solar neutrinos, at the

level of 16.7 times the (BP98) SSM [58]. The fit and energy spectrum are shown in Figure

3.5.

The first SK publication on the subject came in 2001, with 1258 days of data, and the

discrepancy apparently resolved. A limit of 4.0×104 ν cm−2 s−1 (90% CL), or 4.3 times the

BP2000 SSM prediction, was obtained for the hep flux [60] based on data shown in Figure

3.6. In 2006, SK published a revised limit based on the full SK-I data set. With 4.9 ± 2.7

events in the energy range from 18–21 MeV, the 90% CL limit was slightly weakened, at

7.3× 104 ν cm−2 s−1 [50].

Also in 2006, the SNO collaboration published a stronger limit based on an exposure of

0.65 kilotonne-years of a pure D2O target, 2.3×104 ν cm−2 s−1 at the 90% CL [15], with two

events observed in a 14.3–20 MeV signal region. The data and Monte Carlo prediction are

shown in Figure 3.7. This dissertation expands on that result, as detailed in the subsequent

chapters.
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Figure 3.6: The published 2001 Super-Kamiokande data showing a hep flux consistent with
the SSM. Figures from Reference [60].
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Figure 3.7: The spectrum published by SNO for events near the 8B endpoint, indicating the
hep search region. Shaded bands show the systematic uncertainties. Figure from Reference [15].

34



Chapter 4

The Diffuse Supernova Neutrino

Background

A core-collapse supernova (SN) is a dramatic astrophysical event wherein a star, no longer

supported by thermal or electron degeneracy pressure, collapses to a neutron star or black

hole, ejecting its outer layers. While supernovae can be so optically bright as to out-

shine their host galaxies, most of the energy loss occurs through neutrinos, which interact

only weakly with the surrounding medium. Nearby core-collapse supernovae — those close

enough that terrestrial neutrino detectors would observe a statistically significant number

of interactions — are rare events, with only a few expected per century. The last such

event, Supernova 1987A, provided a wealth of information with only ∼ 20 events detected

worldwide, but opened new questions as well [13].

The diffuse supernova neutrino background6 (DSNB) is the “glow” of neutrinos emitted

6This is occasionally referred to as the relic neutrino background, or the relic supernova neutrino back-
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4.1 Core-Collapse Supernovae

in the large number of supernovae in the visible universe that are not detectable on an

event-by-event basis. Models generally suggest that this signal should be at the limits

of detection of current-generation neutrino observatories, and likely accessible to the next

generation. A measurement of the DSNB flux would provide valuable input for modeling

of core-collapse supernovae: the spectrum carries information about the mean temperature

and average total energy of these systems, and the flavor composition could provide insight

into the weak processes involved and help to constrain models of supernova dynamics.

As the DSNB has not yet been observed, we must defer the spectroscopy and flavor

characterization to a future in which more sensitive detectors than SNO observe a signifi-

cant sample of DSNB events. The details of supernova dynamics, and the flavor-changing

processes that occur within, are at this time very uncertain. I therefore choose for this

analysis a simple but illustrative model, and report counting rates in the relevant energy

region, to will allow freedom of interpretation once the source effects are clarified.

4.1 Core-Collapse Supernovae

The structure and size of a star is determined by the balance of thermal, electron degeneracy,

and gravitational pressure. Throughout the stellar life cycle, the core will fuse heavier and

heavier elements; once a source is exhausted, the core contracts, heats up, and fusion of the

next becomes energetically available. In sufficiently massive stars, this proceeds until the

chain reaches iron, which has the highest binding energy. At this point, the fate of the star

depends on its mass, which determines whether the gravitational pressure can overcome the

electron degeneracy pressure, leading to a collapse to either neutron star or black hole. The

ground (RSNB). This must not be confused with the cosmological relic neutrinos which are a product of the
Big Bang.
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4.1 Core-Collapse Supernovae

threshold mass is known as the Chandrasekhar limit, and given by [21]

MC ≃ 5.83Y 2
e M⊙ ≃ 1.46M⊙ (4.1)

where Ye = Np/(Np + Nn) ∼ 0.5 is the electron fraction and M⊙ is the mass of the Sun

(one solar mass). In the case of core-collapse supernovae, the instability occurs once this

mass of iron has been produced [61]. The specific type of supernova, characterized by the

light curve and emission spectrum, as well as the type of remnant (neutron star or black

hole) depends on the initial mass and the composition (specifically the metallicity) of the

progenitor star.

The rebound following the collapse triggers an outward-directed shock wave, which

dissociates the material in the collapsing outer layers. Electron neutrinos produced in

electron captures on the free protons behind the high-density shock front are trapped,

emerging as a burst — the neutronization or shock breakout burst — once the expansion

reaches a point where the density becomes low enough. This “prompt” burst is a relatively

small component of the total neutrino emission, although the timing is very informative in

single-event observations. The bulk of supernova neutrinos are produced in the collapsed

core via numerous νν̄ pair-producing reactions, leading to roughly equal numbers of each

flavor. Due to the high (nuclear) density of this environment, neutrinos emitted in the core

will diffuse outward, undergoing many scatters, and therefore emerge from the surface of

last scattering (known as the neutrinosphere) with an approximately thermal spectrum [61]:

dN(E)

dE
=

Etot
ν

6

120

7π4

E2

T 4

[
exp

(
E

T

)
+ 1

]−1

, (4.2)

where Etot
ν is the total energy emitted in neutrinos (assuming equipartition of flavors) and

T is the temperature at the surface of last scattering for the neutrino flavor under consid-
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4.2 The Diffuse Supernova Neutrino Background

eration. Detailed calculations suggest that the spectrum is slightly squeezed (suppressed at

low and high temperatures), however the data required to constrain such models are sparse

[62].

4.2 The Diffuse Supernova Neutrino Background

Production The DSNB flux is calculated with a line-of-sight integral of sources, account-

ing for the variation in the intrinsic rate of supernovae as a function of redshift. The flux

expected on Earth is given by [63]

dφ(E)

dE
=

∫
RSN (z)

dN [E(1 + z)]

dE
(1 + z)

∣∣∣∣
dt

dz

∣∣∣∣ dz (4.3)

where RSN (z) is the intrinsic rate of core-collapse supernovae at redshift z, dN/dE is the

(thermal) emission spectrum, and |dt/dz| depends on cosmological parameters. In a minimal

ΛCDM model, ∣∣∣∣
dt

dz

∣∣∣∣ =
[
H0(1 + z)

√
ΩM (1 + z)3 +ΩΛ

]−1
, (4.4)

with H0 the Hubble constant and ΩM and ΩΛ the relative energy density due to matter

and the dark energy, respectively. These parameters have been measured by the Planck

experiment [64], with results summarized in Table 4.1.

In the “concordance” model of L. Strigari [65], the intrinsic rate of core-collapse super-

novae, RSN , is inferred from measurements of the UV, visible, and IR luminosity of galaxies.

The formation rate of massive stars is measured through these channels, and it is assumed

that the death rate is equal such that the galaxy remains in equilibrium. Then, an initial

mass function (IMF) is used as a model of the population of stellar masses for extrapolation
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4.2 The Diffuse Supernova Neutrino Background

Parameter TT+lowP TT,TE,EE+lowP+lensing+ext

H0 67.31 ± 0.96 67.74 ± 0.46
ΩM 0.315 ± 0.013 0.3089 ± 0.0062
ΩΛ 0.685 ± 0.013 0.6911 ± 0.0062

Table 4.1: Cosmological parameters as measured by Planck in [64]. H0 is given in units of km
s−1 Mpc−1. See reference for further details on the different constraints.

to lower-mass stars (down to the Chandrasekhar limit). A star formation rate of the form

RSF (z) =

{
RSF (0)(1 + z)β , z < zp
RSF (zp)(1 + z)α, z > zp

(4.5)

with β ∼ 2, zp ∼ 2, and α ∼ 0 — that is, the star formation rate is a power law up to some

threshold redshift, after which it is constant — is found to be consistent with observations;

see Figure 4.1.

Given RSF and an IMF Ψ, the supernova rate is given by [61]

RSN (z) = RSF

∫ 50
8 Ψ(M)dM

∫ 100
0.1 MΨ(M)dM

≃ RSF (x)

143M⊙
(4.6)

where the rightmost expression is calculated assuming the canonical Salpeter IMF,

Ψ(M) =
dn

dM
∝ M−2.35, 0.1M⊙ < M < 100M⊙.

Putting this together with the approximate neutrino energy spectrum given in Equa-

tion 4.2 and computing the integral over redshift, we arrive at the DSNB flux prediction on

Earth shown in Figure 4.2. As redshift increases, the spectrum shifts toward lower energy,
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4.2 The Diffuse Supernova Neutrino Background

Figure 4.1: Comparison of data with the Strigari concordance model for the star forma-
tion rate. The hatched band is allowed by observations including the SuperK DSNB ν̄e limit.
The black, red, and blue lines are measurements by Dahlen et al. [66], GALEX [67], and
2MASS+2dF [68], respectively, and indicating the effect of a dust correction for the latter.
Figure from [65].
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and the contribution with Eν > 15 MeV is negligible for z & 3, so the integral is cut off

at that point. This cutoff affects the shape at low energy, where the DSNB is already a

negligible background to the 8B solar neutrinos.

An alternative approach, using the catalog of z . 0.05 Type II core-collapse super-

novae (SNII) which were optically observed while SNO was taking data to perform a time-

correlated search, is explored in Appendix C. The best sensitivity, however, is obtained

using the method described above, due in general to the much larger volume of space being

sampled. This technique may be of interest, however, for more sensitive searches such at

the Super-Kamiokande ν̄e search.

Detection The rate of DSNB νe interactions expected in a terrestrial detector is is given

by the product of the flux with the detector material cross sections, scaled by the number

of targets [63]:

R(E) =
∑

T

NT t

∫
dφ(Eν)

dEν

dσT (Eν , Ee)

dEe
dEνdEe (4.7)

where T represents a type of target, t the exposure time, Eν the incoming neutrino energy,

and Ee the energy of an outgoing electron.

4.3 Experimental Efforts

Detection of the DSNB would not only provide a means of studying supernova neutrinos

while waiting for another SN1987A-like event, but also provide crucial context to single-

event observations. Therefore a number of experimental attempts have been made to ob-

serve this flux, and experimental sensitivities will meet or exceed the model predictions in

the near future. As we have learned from the case of solar neutrinos, detecting the flux is
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but the first step in understanding the source. This section reviews existing experimental

searches for the DSNB and highlights some significant future prospects.

4.3.1 Current Results

The first direct limits on the DSNB fluxes came from the Liquid Scintillator Detector (LSD),

a 90 ton liquid scintillator detector operated at Mont Blanc in the late 1980s to search for

antineutrino bursts [69]. Search channels included inverse beta decay (IBD) for ν̄e, charged-

current interactions on 13C for νe and ν̄e, and neutral-current interactions with 12C for νµτ

and ν̄µτ , all using time coincidences for event tagging. The LSD experiment reported the

following flux limits in 1992 [69]:

Φνe < 6.8× 103 cm−2 s−1, 25 < Eν < 50 MeV (4.8)

Φν̄e < 9.0× 104 cm−2 s−1, 9 < Eν < 50 MeV (4.9)

Φν̄e < 8.2× 103 cm−2 s−1, 20 < Eν < 50 MeV (4.10)

Φνµτ < 3.0 × 107 cm−2 s−1, 20 < Eν < 100 MeV (4.11)

Φν̄µτ < 3.3 × 107 cm−2 s−1, 20 < Eν < 100 MeV (4.12)

In 2006, in a combined search for hep solar neutrinos, the SNO experiment set an

improved direct limit on the νe component of the flux [15]:

Φνe < 70 cm−2 s−1, 22.9 < Eν < 36.9 MeV (4.13)

This remains the strongest direct νe constraint to date, and that work is the foundation for

the DSNB search presented in this dissertation.
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The strongest overall limits on the DSNB flux are due to the Super-Kamiokande (SK)

experiment, based on a search for ν̄e through IBD. While SK places direct limits on the ν̄e

flux, this limit has also been used to derive model-dependent limits on the νe [70], νµτ , and

ν̄µτ fluxes in the range Eν > 19.3 MeV [71]:

Φνe < 73.3 − 154 cm−2 s−1 (4.14)

Φν̄e < 1.4 − 1.9 cm−2 s−1 (4.15)

Φνµτ < (1.0− 1.4) × 103 cm−2 s−1 (4.16)

Φν̄µτ < (1.3− 1.9) × 103 cm−2 s−1 (4.17)

where the limits represent bounds at the 90% confidence level. In the range 22.9 < Eν <

36.9, the νe flux limit is Φνe < 39− 54 cm−2 s−1.

4.3.2 Future Directions

Recently, the community’s attention has focused on a Gd-loaded phase of SK (SK-Gd) [72].

This will improve the sensitivity by enhancing the neutron detection efficiency, and given

the proximity of the limit to the theoretical prediction, there is well-founded hope that this

will bring the first observation of the DSNB. Following a significant R&D effort, SK-Gd has

been approved to proceed as of June 2015 [73].

While a tremendous achievement, this measurement would only directly address the

ν̄e component of the flux, leaving much work to do for a complete picture of neutrino

production and propagation in supernovae. Next-generation detectors such as DUNE (LAr

target) [74] and Theia (water-based liquid scintillator with potential for target isotope load-

ing) [57] could help to improve the precision of the flux measurement and begin to address

the question of flavor composition. With SK-Gd moving forward, large LAr TPC-based de-
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tectors slated to begin operation in the near future, and LS detectors of unprecedented scale

on the horizon, prospects are good for not only detection, but also quantitative spectral

measurements that will constrain SN models in the coming years.
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Chapter 5

The Sudbury Neutrino

Observatory

The Sudbury Neutrino Observatory experiment, originally envisioned by H. Chen in 1985

[75], was built to conclusively solve the solar neutrino problem outlined in Chapter 3.

Whereas previous solar neutrino detectors had been sensitive only to the expected νe flavor,

SNO was simultaneously sensitive to this and the total flux of all active neutrino flavors

through the use of a deuterium target; this provided a measurement of the solar neutrino

flux independent of the neutrino oscillation hypothesis.

SNO was enormously successful, leading to the conclusion that the solar neutrino prob-

lem was due to matter-enhanced flavor oscillations, and providing confirmation of the neu-

trino oscillation hypothesis favored by Super-Kamiokande’s atmospheric neutrino observa-

tions. Art McDonald, director of the SNO experiment, was awarded the 2015 Nobel Prize

in Physics for these contributions, along with Takaaki Kajita for Super-Kamiokande.
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The strengths of the SNO detector that allowed this important result, namely the unique

target medium, excellent shielding due to depth, and exceptionally low backgrounds, also

make SNO a useful tool for a competitive measurements of the hep solar neutrinos and the

νe component of the DSNB flux.

5.1 Physical Principles

The key advantage of the SNO design was the choice of target medium: heavy water,

i.e. 2H2O, commonly referred to as D2O. The detection of Cherenkov radiation in large

water detectors had been demonstrated by nucleon decay and light water solar neutrino

experiments, but in terms of neutrino interactions, these detectors were sensitive only to

elastic scattering of electrons (ES). A heavy water detector also has detection channels

corresponding to the W -mediated charged current (CC) and Z-mediated neutral current

(NC) neutrino interactions with deuterium, which have a low threshold of a few MeV. The

three interactions of interest are summarized in Table 5.1, with corresponding diagrams in

Figure 5.2. The NC and ES interaction are sensitive to all neutrino flavors, while CC is

available only for νe. Although the total cross section is relatively small, the differential ES

cross section is strongly directional, with the direction of the final state electron correlated

with that of the incoming neutrino. Meanwhile, the electron energy in the CC interaction is

strongly correlated with neutrino energy. Figure 5.1 illustrates the directional and spectral

characteristics of the CC and ES interactions. The NC interaction is detectable via the final

state neutron, which carries no information about the initial neutrino energy or direction.

SNO was sensitive to DSNB νe primarily through the CC interaction. Super-Kamiokande,

on the other hand, searches for DSNB ν̄e through inverse beta decay,

ν̄e + p → e+ + n,
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Figure 5.1: Normalized differential cross sections for the (νe − d) CC and (νe − e−) ES
reactions, showing the spectral fidelity of CC and directionality of the ES. Figures reproduced
from Reference [27].
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Elastic Scattering (ES) νx + e− → νx + e− Fig. 5.2(c), 5.2(d)
Charged Current (CC) νe + d → e− + p+ p (Eth = 1.44 MeV) Fig. 5.2(a)
Neutral Current (NC) νx + d → νx + p+ n (Eth = 2.2 MeV) Fig. 5.2(b)

Table 5.1: Neutrino interactions in SNO.
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Figure 5.2: Schematic diagrams illustrating the neutrino interactions in SNO.
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counting positron-neutron coincidences. In addition to IBD, SNO can in principle also

observe ν̄e through the CC interaction

ν̄e + d → e+ + n+ n

with background strongly suppressed by requiring a triple coincidence. Unfortunately, given

the cross sections and mass of SNO, the event rates expected are very small (see, e.g. Ref-

erence [76]); SNO cannot compete with the much larger Super-Kamiokande in detection of

the DSNB ν̄e signal, hence this search is focused on νe which is enhanced by the CC channel.

SNO is able to observe neutrino interactions through the Cherenkov radiation produced

by charged final state particles and secondaries. Such detectable particles include electrons

produced in CC interactions and scattered in ES, and electrons Compton scattered by de-

excitation γs following the capture of neutrons produced in NC interactions. Cherenkov

radiation is produced when relativistic charged particles travel through a medium of index

of refraction n with a velocity v > c/n (β > 1/n); in this case radiation due to the

polarization of the material may interfere constructively. The photons form a wavefront

with a half angle cos θ = 1/nβ relative to the particle momentum, forming a cone. The

imaging of the resulting Cherenkov ring projected onto an array of photon detectors is the

fundamental operational principle for ring-imaging Cherenkov (RICH) detectors, providing

a means to infer particle track position and momentum. The spectrum of emitted photons

per unit wavelength dλ and distance dx is given by [28]

dN

dλdx
=

2παz2

λ2

(
1− 1

β2n2(λ)

)
(5.1)

where α is the fine structure constant and z the charge of the particle in units of the
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electron charge. The velocity threshold implies very different energy thresholds for particles

of different masses: in water, the total energy threshold for an e± is 0.77 MeV, µ± 160 MeV,

π± 210 MeV, and p ∼ 1400 MeV. Hence, for example, the protons scattered in few-MeV

scale CC and NC interactions are not visible in SNO, and below-threshold (“invisible”)

µ which decay to isolated relativistic electrons within the detector present a problematic

background.

5.2 Detector

The SNO detector is fully described in Reference [77]. The detector consisted of a target

volume enclosed within a transparent acrylic sphere 6 m in radius, viewed by 9456 inward-

looking 8” Hamamatsu R1408 photomultiplier tubes at a radius of 8.4 m. The acrylic

vessel (AV) and the structure supporting the PMTs (PSUP) were suspended in an ultra-

pure light water-filled cavity, which was additionally instrumented with outward-looking

(OWL) PMTs to provide an active veto system. In order to shield from muons and from

the neutrons and decay products of unstable isotopes resulting from muon interactions, the

detector was located deep underground with a 6020 m (water equivalent) rock overburden

at the 6800-foot level of the Inco7 Creighton nickel mine near Sudbury, Ontario, Canada.

Figure 5.3 shows the major elements of the detector and the experimental hall.

The detector was significantly modified twice throughout the course of the experiment,

resulting in three distinct operational phases. These phases differed primarily in the method

for detecting neutrons (foremost as the products of NC interactions). In Phase I (the “D2O

phase”), the detector was loaded with only heavy water, and neutrons were detected by

capture on deuterium; the de-excitation gammas Compton scattered, producing Cherenkov

7This mine is now operated by Vale Canada Limited, and the expanded underground experimental facility
by the SNOLAB Institute.
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(a) Diagram of the detector.

(b) Diagram of the experimental hall.

Figure 5.3: The SNO Experiment. Figures from Reference [77].
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light in the reaction

n+ d → 3H+ γ (6.25 MeV).

In Phase II (the “salt phase”), 0.2% NaCl was added to take advantage of the improved

neutron capture rate on Cl and the higher-energy and more isotropic de-excitation γ cascade:

n+ 35Cl → 36Cl +Nγ

with a total energy of the N gammas of 8.6 MeV. In Phase III (the “NCD phase”), an

array consisting of 36 3He proportional counters (referred to as Neutron Counting Devices,

or NCDs) plus four additional detectors used for background studies, was deployed in pure

D2O to further improve neutron detection by observing the capture on 3He to produce a

triton and proton:

n+ 3He → 3H+ p.

5.3 Electronics

The SNO data acquisition system (DAQ) was responsible for the capture and storage of

PMT hit information (threshold-crossing time and integral charge for each PMT fired),

including the trigger system which makes a decision on when to record data. The DAQ

electronics were comprised of custom-designed printed circuit boards organized into a hier-

archical system with many identical boards at each level. PMTs connected to the front-end

electronics via a single RG-59 coaxial cable, which carried both the high voltage and any

signal pulse; the signal pulse was picked off by a decoupling capacitor at the PMT Interface

Card (PMTIC).

Each SNO PMTIC handled 32 PMT channels, arranged into groups of eight which shared

a Paddle Card, the physical interface for the cable connections. In addition to HV supply
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and signal pickoff, the PMTIC also allowed paddle cards to be disabled through remotely-

programmed relays, and included a “charge injection” calibration system for simulating

PMT pulses. From the PMTIC, the PMT signal traveled to a corresponding Daughterboard,

one of four mezzanine cards on the 32-channel Front-End Card (FEC), each of which handled

8 channels.

The Daughterboards contained discriminators, integrators, and a custom control ASIC

for each channel which was responsible for data storage and readout and generation of

trigger signals. When a PMT signal crossed a user-defined threshold, the discriminator

fired and initiated (a) the start of a timer (TAC), (b) the integration of charge (Q) on

capacitors with a long (L) and short (L) integration time and high (H) and low (L) gain,

and (c) the generation of a set of current pulses that were fed into the trigger system.

Readout began if the front-end electronics received a Global Trigger (GT) signal from the

trigger system. The GT stopped the TAC timer, providing a measurement of a channel’s

hit time relative to the detector-wide GT. Integrated charges (QHS, QHL, and QLS or

QLL) were stored on a switched capacitor array to await readout. If a GT did not arrive

before a fixed channel reset time (∼ 400 ns), the data were discarded. Asynchronously,

the sequencer (a Xilinx FPGA on the FEC) stepped through channels with data available,

piping the analog voltages into a set of analog-to-digital converters (ADCs) shared FEC-

wide, and writing the digitized words into FEC memory along with any error condition

bits, forming a 96-bit PMT Bundle. The set of these PMT bundles corresponding to a GT

constitute the raw channel-level detector data for an event.

The full system consisted of 9728 channels: 19 electronics crates on the deck above

the detector each held sixteen 32-channel FECs. 9456 of these channels were used for the

inward-looking PMT array, with a smaller number for outward-looking PMTs, test PMTs,

PMTs in the neck, and electronics calibration channels. An overview of the system is shown

in Figure 5.4.
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Figure 5.4: A simplified overview of the SNO data acquisition electronics. Figure from Refer-
ence [77].
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The data acquisition computer was a VME single-board computer, with the FEC mem-

ory of the entire detector mapped to local memory via a two-stage translation system: a

set of XL1 cards sharing the VME crate were connected to XL2 cards in each front-end

electronics crate that translated between VME and the custom SNOBUS protocol (imple-

mented to reduce noise due to readout within the crates). Having been read from the front

end electronics, data was passed along to the Event Builder software, which grouped PMT

and trigger information according to the sequential Global Trigger ID (GTID) and wrote

the sorted data to disk for analysis.

The trigger system was responsible for deciding when to issue a GT and record data, and

also had a tiered architecture. When a PMT signal crossed threshold, the individual channel

ASIC generated three current pulses: a 93 ns-wide square pulse (NHIT100) and a 20 ns-wide

square pulse (NHIT20) of about 600 µA each, and a shaped copy of the PMT pulse (ESUM,

in a high-gain and low-gain version). These signals were added together with like signals

DB-wide, then FEC-wide, then crate-wide on a Crate Trigger Card (CTC). From the CTC,

crate-wide trigger sums traveled via RG-58 coaxial cables to the appropriate Analog Master

Trigger Card (MTC/A); there were seven MTC/A cards, for NHIT100, NHIT20, low-gain

ESUMLO, high-gain ESUMHI, OWL NHIT100, OWL ESUMHI, and OWL ESUMLO. The

MTC/A created a detector-wide trigger sum and compared it to up to three user-defined

thresholds. Threshold crossings were communicated to the Digital Master Trigger Card

(MTC/D) which would issue a GT depending a user-specified mask of enabled trigger

channels. The MTC/D also provided a built-in pulser for random sampling of the detector

occupancy (pulsed GT), electronics calibration functions, and synchronization with a GPS

master clock (connected to a satellite receiver above ground via a fault-detecting, delay-

compensated fiber optic system). A schematic overview of the trigger system is provided in

Figure 5.5.

The effect of the MTC/A triggers was to provide a threshold setting that scaled with

the energy deposited in the detector (the number of photons) within two (100 ns and 20
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ns) coincidence windows corresponding to the transit time of light across the detector and

from near the center. The pulser was used to create a random trigger at 5 Hz, sampling

the detector independent of physics triggers to provide a measurement of e.g. PMT noise

rates.

For each GT issued by the MTC/D, trigger conditions were stored and included with

the event data. This included the trigger channels causing the GT, the active trigger mask,

event times (for both precise inter-event timing and GPS synchronization), ESUM pulse

characteristics (peak, integral, and derivative) measured by the Analog Measurement Board

(AMB), and error flags. The Event Builder combined this event-by-event trigger metadata

with the PMT data to produce complete event records for processing and analysis.

5.4 Calibration

Calibration of the both the detector electronics and the detector response as a whole is

essential for understanding the data. Using circuitry built into the electronics and well-

understood deployed sources, relative measurements of hit and event energy and time are

mapped to absolute measurements in physically-meaningful units.

5.4.1 Electronics

The SNO front-end electronics measured the channel hit times and integrated charges

in terms of ADC counts, and small differences in analog circuitry introduced channel-to-

channel variations which must be accounted for. The first step in electronics calibration

was the ECAL, which consisted of a suite of tests to determine the optimum values for

channel-level hardware settings. For example, the slope of the TAC ramps were tuned by

setting DACs on the FEC, and the correct DAC values – those which will make the timing

measurement consistent across the detector – were measured by the ECAL. The ECAL tests
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5.4 Calibration

made use of the calibration systems built into the trigger system. The so-called “pedestal”

(PED) signal forced selected channels to fire, bypassing the discriminator. This provided

a measurement of the zero level of the charge integrators, and combining a PED with a

precisely-delayed global trigger (GT) allowed calibration of the channel timing. The re-

sult of the ECAL was to make the channel-level response as uniform as possible across the

detector by tuning low-level hardware settings. ECALs were time-consuming and had to

be performed without PMT high voltage, and so were generally executed when electronics

were powered up.

The next step of electronics calibration was the ECA, which determined the mapping

between the raw ADC counts measured by the front end and physical units required for

analysis. The ECA consisted of a PED run which measured the zero-level charges for

each channel (which should be relatively uniform due to the ECAL) and a time slope

measurement, which used a delayed global trigger precisely calibrated in ns to determine

the ADC-to-ns conversion for each TAC. ECA calibrations were performed approximately

twice weekly, or following changes to the detector hardware.

Finally, the PCA (PMT calibration) measured the gain, channel-to-channel timing delay

(due, e.g. to the path length differences in PCB traces across the FEC backplane), and

“time walk” (the dependence of measured time on total charge due to the constant-threshold

discriminator bias). The PCA was done using the laserball, a deployed source described in

the following section, to generate short pulses of variable intensity. PCA calibrations were

performed approximately monthly.

The ECAL constants were loaded to hardware as part of the initialization, and play

no further role in the analysis. The constants measured by the ECA and PCA calibra-

tions were applied to the raw data during production processing, to yield time and charge

measurements for compensated for electronics effects and suitable for physics analysis.
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Figure 5.6: The SNO source manipulator system. Figure from Reference [77].

5.4.2 Sources

To understand the response of the detector to the interactions of interest, a variety of

radioactive and optical sources were deployed within the target volume. This is essential,

for example, to calibrate the absolute energy scale in MeV, rather than the number of

PMTs hit, to measure the uncertainty on that energy measurement, to understand the

spatial variations across the detector volume, to measure the optics of the media in situ,

and generally to validate the Monte Carlo detector model.

The deployment of sources was controlled by the manipulator system, a computer-

controlled positioning system. While the system could not access arbitrary positions, it

was able to sample the x− z and y − z planes (using two positioning ropes) and the z axis

(using a single rope) with a position uncertainty of about 2 cm. The concept for off-axis

source positioning is shown in Figure 5.6. Beyond the control ropes, sources were generally

connected to services in the deck clean room through an umbilical cable; this contained

low- and high-voltage cabling, gas supply and return, etc., depending on the requirements

of the particular source.
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The primary deployed sources included:

Laserball The laserball was a diffusing optical source which isotropically distributed short

pulses of light from a multi-wavelength laser system situated on the deck above the

detector [79]. This source was used for PMT calibrations (described in the previous

section) and in an off-axis configuration to extract the optical properties of the detector

media in a dedicated multidimensional fit.

16N The 16N source served as an important energy calibration near the detector threshold

[80]. A deuterium-tritium source above the detector produced the gaseous 16N, which

was flowed down to a decay chamber in the source. The 16N underwent β decay to

an excited state of 16O, which relaxed via the emission of a 6.13 MeV γ. A small

PMT scintillator detector inside the source triggered on the initial β, thereby creating

a tag for analysis. This signal-like source was also instrumental to understanding the

sacrifice of analysis cuts.

8Li The 8Li source was, like the 16N, a tagged source using decays in a radioactive gas [81].

The β spectrum is similar to that of 8B with an endpoint at 14 MeV, and detected

through scintillation light produced in the He carrier gas, wavelength-shifted to match

the PMT sensitivity by a thin layer of tetraphenyl butadiene (TPB). 8Li has a short

lifetime of 840 ms, requiring the gas — produced by a dT generator and 11B target

outside the detector — to be pumped down to the decay chamber at high velocity.

pT The pT source consisted of a miniature proton accelerator and produced 19.8 MeV

γ rays through the 3H(p, γ)4He reaction [82]. This high-energy source provided a

powerful handle for constraining the energy calibration and a direct measurement of

the energy response near the hep analysis endpoint. This source was not deployed in

Phase II or III, however.
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252Cf The 252Cf source was a source of neutron bursts, due to spontaneous fission decays

[27]. Gammas were also produced in association with the desired neutrons.

AmBe The Americium-Beryllium (AmBe) source provided neutrons with associated 4.14

MeV γs, through α decay of 241Am and subsequent 9Be(α, n)12C∗ [83].

238U and 232Th Acrylic-encapsulated 238U and 232Th provided a higher-rate measurement

of U- and Th-chain decays that are important backgrounds to the lower-energy 8B

solar ν analysis [84].

Rn and 24Na Spikes Two distributed sources were used, where a spike of radioisotope-

rich water was injected into the detector to provide a uniform distribution of low-

energy background without the optical complications of a source container. In sepa-

rate instances, an Rn spike was used to measure low-energy backgrounds, and a 24Na

spike as a distributed 2.6 MeV γ source [27].

The hep and DSNB regions of interest are at relatively high energy, with electron kinetic

energies Teff > 14 MeV, and so the most relevant sources are 16N, pT , and 8Li. The

laserball, of course, is critical to calibrating the detector in the first place. For the high-

energy analysis, tagged Michel electrons provide an additional calibration source, since the

spectrum is well-modeled. The use of these calibrations to understand uncertainties in the

energy response is detailed in Chapter 7.

5.5 Simulation

This analysis, like previous SNO analyses, relies heavily on Monte Carlo simulations of

signals and backgrounds with a detailed detector model to extrapolate calibration data to

signal expectations and to characterize systematic uncertainties. All simulations are per-

formed using SNOMAN (SNO Monte Carlo and Analysis), a Fortran 77 software package
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developed by the SNO collaboration over the course of the experiment. In addition to simu-

lations, SNOMAN was also used in processing of detector data, for example the application

of calibrations and the reconstruction of event vertices. The goal of the SNOMAN simula-

tion is to reproduce detector data as accurately as possible, using microphysical modeling

and minimal tuning.

SNOMAN is capable of producing realistic samples of all major signals and backgrounds

through a set of flexible event generators. Modeling of solar neutrino generation is included

(using the spectrum measured by Winter et al. [85]), as are total and differential CC, NC,

and total cross sections for all neutrino flavors and detector materials. Radioactive back-

ground generators are provided with tables of β and γ decay chain branching fractions. The

DSNB signal is treated similarly to a solar neutrino source, with a spectrum determined as

outlined in Chapter 4. SNOMAN also has a capability to bypass event generation and input

primary Monte Carlo vertices directly into the Monte Carlo Particle List (MCPL) banks;

this is the method used to import atmospheric neutrino interaction vertices from NUANCE

into SNOMAN for propagation through the full detector model and reconstruction.

5.5.1 Physics and Detector Modeling

The modeling of light production by electron and γ interactions is handled by the EGS4

(Electron Gamma Shower) package [86]. Cherenkov photon directions are linearly inter-

polated between discrete track segments used to approximate multiple scattering, with a

step size optimized to reproduce data and number of photons is sampled from a Poisson

distribution based on the analytic calculation of light yield. Neutron transport is handled

by the MCNP4A (Monte Carlo Neutron Propagation) code developed at Los Alamos Na-

tional Laboratory [87], configured to propagate neutrons only; accurate modeling of thermal

neutron propagation through H2O and D2O is crucial for understanding the NC signal and

the deuterium photodisintegration background at low energy. Higher-energy leptons (such
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as cosmic ray muons) are handled with the LEPTO 6.3 [88] package developed at CERN,

and hadrons by FLUKA [89] and GCALOR. Lower-energy secondaries produced in these

processes are passed to EGS4 for further propagation. This hybrid Monte Carlo model

represented the state of the art during SNO running, and is used for the present analysis as

well, in order to maintain consistency with past results and make use of existing verification

work.

The optical properties of the PMT and concentrator array are complex and handled spe-

cially. A partially-phenomenological model is used which employs a full three-dimensional

geometry and ex situ efficiency measurements scaled in order to reproduce the angular and

timing distributions observed in data. If a photon hit is registered in the PMT simulation,

a photoelectron is sampled using a model (the electron optics and amplification process

are not simulated), and passed to a complete simulation of the detector electronics. The

output of this stage is identical to detector data and undergoes the same processing and

reconstruction.

5.5.2 Event Rates

For the solar neutrino signals, the expected event rate is the product of the standard solar

model flux and survival probability described in Chapter 2, the interaction cross section,

and the interaction-dependent detector response which depends on the operational phase.

Formally [38],

RT,i = NΦi

∫ ∞

0
φ(Eν)Pee,i(Eν)

∫ ∞

0

dσ(Eν , Te)

dTe

∫ T+∆T

T

dR(Te, T
′)

dT ′
dT ′dTedEν (5.2)
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for event classes where the energy is measured (e.g. CC, ES), and

Ri = NΦi

∫ ∞

0
φ(Eν)σtot(Eν)dEν (5.3)

when the energy is not measured (e.g. NC). Here N refers to the number of targets, Φi the

total flux for neutrino reaction i with a normalized spectrum φ, Pee the νe survival probabil-

ity, σ the cross section for the interaction channel under consideration, T the reconstructed

kinetic energy and ∆T the bin width in T , and dR/dT the distribution of outgoing electron

energies.

Cross Sections SNOMAN, and hence this analysis, uses ν − d cross sections for the CC

and NC processes calculated by Butler, Chen, and Kong [90], and the ν − e− ES cross

sections by Bahcall [91]; both calculations include radiative corrections. The total cross

sections up to 35 MeV are shown in Figure 5.7.

Survival Probability The survival probability for Pee for the
8B and hep solar neutrinos

is calculated in the full three-neutrino theory as outlined in Section 3.2, using the Sun-Earth

Large Mixing Angle Adiabatic approximation (SELMAA) as developed and used in the SNO

combined three-phase analysis [38, 48].

Fluxes The 8B and hep solar neutrino fluxes are based on the BS05(OP) standard solar

model, as given in Section 3.1. The DSNB flux is calculated following Beacom and Strigari

as outlined in Chapter 4. The rate of background events due to atmospheric neutrino

interactions is calculated as in Section 6.2.
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Figure 5.7: Total cross sections for νe − d CC, ν − d NC, and ν − e− ES.

66



5.6 Vertex Reconstruction

5.6 Vertex Reconstruction

A variety of sophisticated vertex and energy reconstruction algorithms were developed for

the SNO experiment, which together take the observed pattern of hit PMTs for an event

in charge and time, and calculate the most probable event position, direction, and energy,

under the assumption that the event is due to a single electron-like vertex. The vertex

fitters chosen for this analysis are the Path Fitter (FTP) [44, 92] for Phases I and II, and

the NCD-aware version of the QPDF fitter (nFTU) [47] for Phase III. In all three phases,

the Energy Response (RSP) fitter [93] is used to reconstruct the energy, based on the results

of the FTP or nFTU vertex fit.

These algorithms are discussed in substantial detail in the aforementioned references;

here their general structure is outlined briefly.

5.6.1 The FTP Vertex Fitter

For Phases I and II, the Path Fitter (FTP), fully described in References [44, 92], is used

for reconstruction of event vertices (position, direction, and time relative to the trigger). As

a first pass, the detector volume is coarsely binned and a grid scan is performed to find the

voxel where the likelihood for the time-of-flight corrected PMT hit times (time residuals)

as compared to a Monte Carlo-derived PDF is maximized [44]:

logL =

Nhit∑

i=1

log [P (ti − te − |~re − ~ri|n∗/c)] (5.4)

where ti and te refer to the positions of the PMT i and the event hypothesis and n∗ is

an effective index of refraction which determines the average photon group velocity. This

simple first-pass fit provides a starting point (seed) for the event position ~re and time te for

the Path Fitter.
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The Path Fitter computes the most likely direction ~ue for the vertex in addition to ~re,

and uses both the hit times of PMTs and the event-PMT angle, encoding the average angular

distribution of Cherenkov photons in a PDF for cosα. The event PDFs are composed of

contributions from direct light (D) and other (O) sources of hits, which are subsequently

factorized into uncorrelated time (T ) and angle (A) PDFs. The total likelihood function is

[44]

logL =

Nhit∑

i=1

log


 ∑

j=D,O

∏

k=T,A

P k
j (~re, ~ue, te; ti, ~ri)


 (5.5)

where the time PDF is as above and the angular PDF is a function of the Monte Carlo-

derived average Cherenkov angle distribution and the solid angle given the hypothesized

event position and direction.

There are a few notable limitations of this approach. The factorization of PDFs assumes

that the photons are uncorrelated, which is not true for Cherenkov photons which propagate,

but are not produced, independently. Also, the angular PDF is generated by summing many

simulated events. In reality, there are significant event-by-event variations in hit angle (due

for example to multiple Coulomb scattering) and any particular event is unlikely to look like

the average. Finally, there is a systematic “drive” along the event direction introduced as a

result of photons scattering out of the Cherenkov cone; a correction is applied to compensate

for this, and a systematic uncertainty is included for this ‘vertex accuracy.’

5.6.2 The nFTU Vertex Fitter

In Phase III, the impact of the NCD array on photon trajectories must be accounted for

in the vertex fitter. The Path Fitter relies heavily on analytic response functions, and

is not easily modified to account for the more complex optics in this configuration. In-

stead, an NCD-aware version of the QPDF (FTU) fitter, denoted nFTU, is used for vertex

reconstruction in Phase III. This fitter is described in Reference [47].
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The first step is the maximization of a likelihood function of the same form as Equation

5.4, fitting for the event position ~re and time te only. In nFTU, the PDFs for the time

residual distribution depend on the NCD shadowing as a function of position; they are

constructed by interpolating between fully-shadowed and non-shadowed Monte Carlo PDFs,

which were additionally truncated to minimize the contributions of NCD reflections. The

event direction ~ue is fit in a later step, with the position fixed, by maximizing a likelihood

function depending on the average angular distribution of hits about the hypothesis direction

for a Cherenkov ring, with a factor to compensate for solid angle.

5.6.3 The RSP Energy Fitter

While simply counting the number of hit PMTs provides an approximate estimate of the

energy of an event, energy reconstruction algorithms incorporate information about the

detector and the event vertex (position, direction, and time) to compute (ideally) the true

energy of an event, in physical units and independent of the detector. For this analysis, the

Energy Response fitter (RSP), described in Reference [93], is used.

RSP operates on PMT hits only in a prompt time window of ±10 ns in the hit time

residuals. An effective Nhit is calculated accounting for the number of in-window hits

Nw and expected number of accidentally coincident dark (noise) hits Nd, and a position-

dependent scaling is applied to map to an effective number of hits for an event at the center

of the detector. For an event position ~re and direction ~ue [44],

Ncorr = (Nw −Nd)× [(ǫr/ǫ0) ǫh ǫd]
−1 (5.6)

where ǫh and ǫd are corrections for the number of channels online (with good hardware

and calibration status) and a time-dependent variation in the response (“drift”), and ǫr

characterizes the optical response, with ǫ0 for the center. The factor ǫr is a weighted
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sum of angular response functions over event directions (the event position is fixed) and

wavelengths. This accounts for the wavelength distribution of Cherenkov light and the

average attenuation in the optical media (D2O, acrylic, and H2O), and also includes a

correction factor for multiple photons striking the same PMT.

Subsequent to the Phase I SNO publications, substantial improvements were made to

the RSP algorithm by MacLellan [93]. In the improved version, used in this analysis, the

angular response function in ǫr uses the response characteristics of individual PMTs, rather

than averaging over a large angular bin. This serves to improve the reproduction of local

variations in the response and better capture the effects of multiple incident photons.

With the variation in time, angle, and position accounted for, the final step is to put the

output in terms of physical energy units. To achieve this, Ncorr is computed and averaged

for monoenergetic electron Monte Carlo, and this is repeated for many electron energies.

The resulting mapping is inverted to obtain an energy in MeV from the RSP estimate. This

provides the electron-equivalent reconstructed kinetic energy, denoted Teff , used throughout

this work.

5.6.4 Issues with the FTK Energy Fitter

FTK is a newer, more sophisticated energy fitter used heavily in the SNO low-energy thresh-

old analysis [46]. The energy resolution for FTK appears to be slightly better than RSP

for events in the hep and DSNB ROI, making this is a promising potential improvement;

particularly, any reduction in the 8B background is a boon to the hep search. FTK also

reports asymmetric uncertainties which can be used to cut events that fit poorly and are

likely to be misreconstructed.

Unfortunately, while FTK is very successful for events with Teff . 20 MeV, at higher

energies there is significant misreconstruction which cannot be cut by the uncertainties, as

these errors become highly irregular and do not scale linearly with resolution. It is thus
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(a) Correlations in the positive- and
negative-side errors reported by FTK

(b) FTK fit energies as a function of
true electron kinetic energy, with ener-
gies more than 20 MeV away from RSP
shown in red.

Figure 5.8: Examples of FTK mis-reconstruction of high-energy events, shown for Phase I
isotropic electron Monte Carlo after corrections.

not possible to construct an FTK uncertainty cut with reasonable signal loss (less than a

few percent) for high-energy events. These issues are illustrated in Figure 5.8. Not only are

these the events of interest for the DSNB search, but high-energy Michel electron events

are used in validating the reconstruction in the hep and DSNB energy range, and so we are

forced to abandon FTK for this high-energy analysis. In principle, there is nothing wrong

with the algorithm, and it remains possible that further development could yield a robust

high-energy fitter with better resolution than RSP.

These issues are clearly evident when looking at Michel electrons, used in this analysis

as a high-energy calibration source, above the DSNB search window. Figure 5.9 compares

the performance of fitters in reconstructing stopped µ Monte Carlo; RSP outperforms FTK

significantly.
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Figure 5.9: A comparison of SNO fitter performance for reconstructing Phase I stopped µ
Monte Carlo.

5.7 SNO+ Upgrades

This section describes detector upgrades made for the SNO+ experiment, a successor to

SNO primarily concerned with a sensitive search for neutrinoless double-beta decay (0νββ).

The physics aspects of SNO+ are described in Appendix A.

The SNO+ detector, shown in Figure 5.10, makes use of the existing infrastructure of the

SNO experiment described above, but with the target volume filled with Tellurium-loaded

liquid scintillator rather than heavy water. To account for the buoyancy of scintillator-filled

inner vessel in the water-filled cavity, a hold-down rope net system has been constructed

[94]. Additionally, to meet more stringent background requirements, an embedded LED and

laser calibration system has been installed, reducing the dependence on a deployed optical

source for calibration of the PMT timing and in situ measurement of the scintillator optical

properties [95].
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Figure 5.10: The SNO+ detector. The active volume is contained within a 12 m diameter
acrylic sphere (grey), suspended with ropes in a volume of ultra-pure water. The outer 18 m
diameter structure supports 9500 inward-looking PMTs.

5.7.1 Electronics Upgrades

The transition from a water Cherenkov to a liquid scintillator detector significantly changes

the requirements for the front-end and trigger electronics described in Section 5.3. Both

the rate (the number of events per second) and the occupancy (the number of channels hit

per event) are expected to be much higher for SNO+, necessitating faster front-end readout

and a replacement of the analog trigger system which has limited ability to handle the

higher RMS current resulting from a “brighter” detector. The hardware trigger threshold

for SNO+ has not yet been determined, but the intention is to take data as quickly as the

hardware allows, and potentially perform data reduction in a software (“Level 2”) trigger.

This approach facilitates low-energy time-correlated analysis, such as looking for proton

scatters in a supernova burst, or low-energy α decays to tag background βs.

In order to improve the data transfer rate, the performance of electronics calibrations,

and the level of operator control, we have upgraded the front-end readout with a new crate
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controller board, the XL3, which functionally replaces both the XL1 and XL2. An XL3

is responsible for the control of a single crate and autonomously and continuously reads

out data from front-end cards. Data is packaged into ethernet packets and pushed to a

central DAQ computer, then passed onto an Event Builder similar to the system built for

SNO. The logic on the XL3 is implemented in a Xilinx Virtex-4, a device which combines

a PowerPC CPU and an FPGA, coupled with a high-speed shared data bus. The ethernet

communication is handled in C code using the lwIP (lightweight IP) library running on

the PPC, and the SNOBUS protocol communication is implemented in the FPGA. This

system improves on the SNO readout speed by about a factor of 100, by leveraging faster

hardware and by parallelizing the work of crate readout. The total bandwidth is about

300 Mbps, sufficient for rates expected with SNO+ calibration. The proof-of-concept and

initial versions of the C-layer data buffering and IP communication were implemented by

the author.

I have also developed, installed, and commissioned an upgraded the analog master trig-

ger card (MTC/A) with a drop-in replacement board dubbed the MTC/A+. The primary

goals were to eliminate the limitations in trigger sum current inherent to the MTC/A and

to expand the dynamic range beyond the ∼ 1000-hit range of SNO, allowing us to trigger at

thresholds anywhere in the full 10000-hit range, and also to capture trigger sum waveforms

with the maximum dynamic range.

The required analog changes presented an opportunity to make several additional up-

grades. While the MTC/A+ is entirely compatible with the existing SNO trigger system,

it was fully redesigned to improve threshold stability, provide additional diagnostic capabil-

ities, and incorporate programmable logic to allow hardware triggering on certain signals

of interest. These improvements will have a direct impact on the live time and physics

capabilities of the SNO+ experiment.
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Analog Design The analog side of the MTC/A+ was designed to optimize speed and

dynamic range. In particular, a dynamic range covering the full spectrum of 1–10000 hit

channels is required, as well as better than single-hit resolution at low hit levels, fast response

(pulse rise and fall times of less than 3 ns per hit channel), high-rate performance (better

than 10 kHz at 100 hit channels), and long-term (> 1 hour) drifts in the DC baseline of

less than 1 PMT hit. The MTC/A+ addresses these criteria with a two-stage operational

amplifier sum in each of three gain paths and through active baseline restoration.

The gain paths are tuned to saturate at approximately 1000, 5000, and 10000 hit PMTs,

with the “high-gain” (low NHIT threshold) path offering the best resolution in NHIT and

the “low-gain” (high NHIT threshold) the possibility of triggering on and digitizing the full

10000-channel scale. A block-level diagram of the MTC/A+ is shown in Figure 5.11.

Good signal integrity — low rise, fall, and settling times and low noise — is maintained

by using high-speed current-feedback amplifiers in an inverting configuration. The partic-

ular amplifier used in the MTC/A+, the Texas Instruments THS3001, was chosen for its

fast slew rate and wide power supply range (±15 V). The large signaling current of the

CTC presents a challenge for downstream electronics. Each hit channel results in 600 µA of

current in the NHIT100 CTC sum, meaning that a fully populated crate sources 300 mA,

and a 10000-hit event results in 6 A arriving at the analog trigger. The MTC/A featured a

current limit at the input, which dumped excess current and limited its range to about 2000

PMT hits. Given the higher number of hit PMTs expected in SNO+, this is not a viable

option for the MTC/A+. Instead, low-noise amplifiers are used to sample the voltage of an

attenuated input signal, while still maintaining an adequate signal-to-noise ratio.

The MTC/A+ also performs active baseline restoration. In the fully DC-coupled SNO

system, long-term drifts in the input current effectively raised or lowered the trigger thresh-

old, necessitating frequent recalibration. An active LRC feedback loop restores the MTC/A+

baseline to the nominal value with a time constant on the order of tens of seconds. This

not only eliminates the impact of slow thermal fluctuations in the crate current output, but
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Figure 5.11: A block-level overview of the major features of the MTC/A+, the upgraded
analog trigger board for SNO+.
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also helps to address the issue of trigger “dropout.” Dropout is an issue with the trigger

current pulse generation in the front-end CMOS chips, resulting in a channel trigger that

stays high until the next time the channel is hit, effectively lowering the trigger threshold

by one hit in the interim. The MTC/A+ baseline restoration time constant attempts to

strike a balance where we compensate for dropped-out channels, but do not integrate real

signals.

Trigger Logic The trigger logic on the MTC/A+ is implemented in VHDL code running

on a Xilinx XC2C512 CPLD. The most basic form defines the following logic:

1. Fire raw trigger on channel X when channel X crosses threshold

2. Also fire raw trigger on channel X at the end of the lockout window8 if channel X

crosses threshold during lockout window, or is still high at the end of the lockout

window

3. Fire raw triggers at the end of N sequential lockout windows, where N is a pro-

grammed number of “forced retriggers.”

The CPLD may be reprogrammed if additional logic is desired. For example, it is possible

to use the three separate copies of the trigger signal to create a gated low-energy window

trigger, where an initial high-energy trigger enables triggering within a low-energy window

for some fixed amount time. This could be used to create a hardware trigger for Bi-Po

coincidences, improving tagging of an important background for the SNO+ 0νββ search.

“Bi-Po” refers to the decay chains 214Bi → 214Po + β → 210Pb + α (t1/2 = 164.3 µs) and

212Bi → 212Po+β → 208Pb+α (299 ns). The noted half-lives for the α decay are such that

the β and αmay fall in the same 400 ns trigger window (“pileup”) or not. The MTC/A+ can

be configured such that an initial β enables a gated α trigger, even if the hardware threshold

8The lockout window is a ∼ 440 ns period after the MTC/D issues a global trigger during which new any
triggers are ignored; the PMT data for this window is essentially already flagged for saving.
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is set much higher in energy. This ensures we capture these coincidences, reducing the risk

of missing an α and subsequently misidentifying a lone β as a 0νββ signal event.

Operational Improvements In addition to the analog and trigger logic changes, new

MTC/A+ features also improve trigger system operations. Each crate-level input passes

through a remotely-programmable reed relay, so that an operator can disconnect a crate

from the sum without physically moving any trigger system cabling. This provides a useful

debugging tool, and can improve detector live time in the case where restricted underground

access prevents fixing or physically disconnecting a problematic crate.

Status The XL3 and MTC/A+ boards have been installed in the SNO+ detector since

2010 and used in all subsequent detector electronics and DAQ commissioning runs, and have

performed well. In particular, the production MTC/A+ boards have a resolution of about

3 DAC counts per hit PMT on the high-gain channel, low noise, and very stable thresholds.

Complete testing of trigger efficiency under realistic conditions, however, awaits deployment

of the laserball source during the initial water-filled phase of SNO+.
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Chapter 6

An Improved hep and DSNB

Search with SNO

Given the unique sensitivity of the SNO experiment to the hep solar neutrinos and νe

component of the DSNB, it is vitally important that searches for these signals are performed

using the full data set comprising all three phases, expanding on the existing Phase I-only

analysis [15] and previous studies of fits for the hep flux [16]. This chapter provides an

outline for such a three-phase analysis and highlights improvements I have made relative to

previous work.

79



6.1 Signals and Backgrounds

6.1 Signals and Backgrounds

As the regions of interest for the hep and DSNB searches, where the backgrounds are lowest,

occurs at relatively high energy, the low-energy backgrounds that were of central impor-

tance to previous analyses (such as the low-energy threshold analysis [46]) are of much lesser

significance. The dominant backgrounds are due to interactions of 8B solar neutrinos and

atmospheric neutrinos. There is also potential for other backgrounds if the fiducial volume

is expanded beyond the nominal 550 cm, such as events attributed to light production in

the AV acrylic [45].

The signals and backgrounds considered for this analysis include:

• hep νe CC on deuterium

• hep νe CC on 17O

• hep νe CC on 18O

• hep ν ES in the target region

• hep ν NC on deuterium

• DSNB νe CC on deuterium

• DSNB ν ES in the target region

• 8B νe CC on deuterium

• 8B νe CC on 17O

• 8B νe CC on 18O

• 8B ν NC on deuterium
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• 8B ν ES in the target region

• 8B ν ES in the AV acrylic

• Atmospheric ν interactions

– All ν flavors, Eν > 100 MeV

– νe, Eν < 100 MeV

– ν̄e, Eν < 100 MeV

The energy spectra for these backgrounds (after application of corrections and cuts

described below) are shown in Figure 6.1, for Phase I. Other sources of neutron captures

are not distinguished from solar neutrino NC interactions; the total NC PDFs are used to

represent all neutrons.

6.2 Atmospheric Neutrino Backgrounds

Primary cosmic rays (primarily protons) interact in Earth’s atmosphere to produce sec-

ondary mesons that can eventually decay to neutrinos, which are known as atmospheric

neutrinos. The energies of these neutrinos span several orders of magnitude, resulting in a

broad array of observable processes in detectors. Atmospheric neutrinos are a rich subject

in their own right, and provided the first strong evidence for neutrino oscillations when an

asymmetry in the upward- and downward-going fluxes was found to be consistent with an

oscillation model by Super-Kamiokande in 1998 [19]. For the purposes of this analysis, how-

ever, atmospheric neutrinos are considered only as a background, with a rate determined by

the absolute flux. These interactions result in a significant background for the hep search

which becomes the dominant background in the DSNB region.

There are large uncertainties in the absolute fluxes — on the order of 25% — due to un-

certainties in measurements of the primary cosmic ray spectra and the hadronic interactions
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Figure 6.1: Energy spectra around the hep and DSNB energy regions of interest for Phase I,
after corrections and cuts described in the text.
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in the atmosphere. Unlike oscillation searches that use ratios to largely cancel systematic

uncertainties, we are here forced to propagate this large error to the expected background

level in the hep and DSNB search windows. Additional systematics related to interactions

in the detector also play a role, as described below.

6.2.1 Production

For neutrino energies below ∼ 100 GeV, the primary interactions generating neutrinos in

the atmosphere are due to secondary pions:

π± → µ± +
(—)

νµ (6.1)

µ± → e± +
(—)

νe +
(—)

νµ . (6.2)

At higher energies, kaons come to dominate the flux.

In terms of the slant height for a height h given a density ρ, X(h) =
∫∞
h ρ(h′)dh′, the

flux φj of a cosmic ray of type j is given by the set of coupled cascade equations of the form

[21]
dφj(E,X)

dX
= −φj(E,X)

λj(E)
− φj(E,X)

dj(E,X)
+

∑

k

Sk→j(E,X) (6.3)

where λj is the interaction length which depends on the cross section, dj is the decay length

calculated from the lifetime, and Sk→j gives the flux of j due to a parent k. The first term

describes disappearance due to attenuation, the second particle decay, and the third is a

source term. This equation is analytically tractable only through substantial approximation.

However, some interesting features are evident, for example that for unstable secondaries

there exists a critical energy where λj ∼ dj , i.e. where interaction effects dominate decay.

For pions, E
(π)
crit = h0mπ/τπ ∼ 115 GeV; above this threshold, kaon decay dominates neutrino
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Figure 6.2: Fluxes calculated in the Bartol04 calculation for each flavor, averaged over zenith
angle. Min and max refer to the solar minimum and maximum. The summed spectra for νe+ ν̄e
and νµ + ν̄µ at the solar minimum are shown for comparison to Figure 2 in [96].

production9.

More detailed calculations are carried out numerically, and modern approaches include

a full three-dimensional treatment with charged cosmic rays being deflected by the Earth’s

magnetic field, which affects the angular distributions particularly at low energies. For the

purposes of this analysis, I have used the Bartol04 calculation of the atmospheric neutrino

flux [96] from 100 MeV to 10 GeV. In that work, the authors calculated differential fluxes

for Kamioka, Soudan, and SNO; the fluxes relevant for SNO are shown in Figure 6.2. At

lower energies (E ≤ 10 GeV), the solar wind affects the cosmic ray flux, introducing a

modulation with the solar cycles. The SNO data set spans from 2001 to 2006, from the

maximum of solar cycle 23 to the minimum between cycles 23 and 24. The Bartol04 fluxes

are calculated for the solar minimum and maximum; I use the average in calculating the

9Here, h0 ∼ 6.4 km, the decay constant of atmospheric density assuming an exponential model.
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Flux (m−2 s−1)
Solar Minimum Solar Maximum

νe 14824.0 10973.1
ν̄e 12157.4 9452.8
νµ 27853.1 21304.5
ν̄µ 27967.4 21283.6

Table 6.1: Total fluxes of atmospheric neutrinos predicted in the Bartol04 model, integrated
over energy and zenith angle.

total flux. The total flux used to normalize the expected high-energy event rate is calculated

from the Bartol04 predictions by integrating over zenith angle and energy for each flavor.

These rates are given in Table 6.1.

For the lower-energy fluxes below 100 MeV, tables computed by Battistoni et al. [97]

were used.10 In this regime, only νe and ν̄e are considered, as these events are below the

muon production threshold and the ES contribution is very small. Fluxes are calculated

only for the solar minimum, where the rate is highest; this leads to an overestimate of this

background, which is neglected since the sub-100 MeV contribution to the total atmospheric

neutrino background is small.

6.2.2 Oscillations

Neutrinos produced in the atmosphere undergo oscillations which, as described in Section

2.2.1, results in a survival probability that depends on the energy and the path length; the

10The authors calculated fluxes for Gran Sasso and Kamioka only; the Sudbury tables were provided to
the SNO collaboration by request and do not appear in the publication.
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observed flux will be related to the initial flux as

φβ
′(Eν , θz) =

∑

α=e,µ

φα(Eν , θz)P
3ν
αβ(Eν , L(h(Eν , θz), θz)), (6.4)

which is computed numerically. Here, φα represents the initial flux for a neutrino flavor α

as a function of energy Eν and zenith angle θz, P
3ν
αβ is a transition probability for flavor α

to β in a three-neutrino mixing model, and L is the propagation path length, which is a

function of the production height h. The distribution of path lengths has been calculated by

Gaisser and Stanev [98] as a function of neutrino energy and zenith angle using a 3D model.

I take the Bartol04 νe and νµ flux predictions, and for each energy/angle bin, sample a large

set of neutrino energies and zenith angles θz. Production heights h are sampled from the

appropriate Gaussian distributions, defined according to the Gaisser and Stanev calculation,

and oscillation baselines calculated using the relation [21]

L =
√

(RE + h)2 − (RE − d)2 sin θz + (RE − d) cos θz (6.5)

with RE the radius of Earth and d the detector depth. This method averages over neutrino

energy, zenith angle, and production height within the bin. Finally, oscillations are applied

according to a three-neutrino oscillation model with the best-fit oscillation parameters given

in Section 2.3. The mean survival/appearance probability for the ensemble computed for

each bin is used to reweight the Bartol04 neutrino (antineutrino) flux in that bin, leading to

a suppression of the νµ (ν̄µ) flux and the appearance of a ντ (ν̄τ ) flux, with a small impact

on
(—)

νe . The oscillated fluxes are given in Table 6.2.

In order to normalize the Monte Carlo simulations, I have calculated event rates for

each neutrino flavor in each detector volume using the oscillated Bartol04 fluxes and the

CC, NC, and total cross sections for detector materials extracted from GENIE [99]; the
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Flux (m−2 s−1)
Solar Minimum Solar Maximum

νe 14382.53 10650.25
ν̄e 11796.31 9174.87
νµ 15119.12 11670.56
ν̄µ 15166.70 11631.49
ντ 13640.63 10266.80
ν̄τ 13629.04 10274.74

Table 6.2: Total oscillated fluxes of atmospheric neutrinos predicted by the Bartol04 model
and the oscillation model described in the text, integrated over energy and zenith angle.

νe ν̄e νµ ν̄µ ντ ν̄τ

Total Solar Min. 87.27 23.66 92.45 31.55 18.91 8.62
Solar Max. 73.51 20.65 81.96 28.05 16.07 7.32

CC Solar Min. 64.90 15.53 66.55 19.95 0.35 0.18
Solar Max. 54.69 13.61 59.25 17.95 0.35 0.18

NC Solar Min. 22.36 8.12 25.95 11.59 18.56 8.43
Solar Max. 18.81 7.03 22.74 10.10 15.72 7.13

Table 6.3: Expected number of atmospheric neutrino events per year in the heavy water during
Phase I.

implementation of the SNO detector in GENIE is discussed in Appendix B. The expected

event rates for the D2O volume in Phase I are given in Table 6.3. On average, a total of

262.5 (685.8) events are expected within the D2O (full detector) per year assuming the flux

at solar minimum.
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6.2.3 Atmospheric ν Backgrounds to the hep and DSNB Search

Given the high energies of atmospheric neutrinos, many channels are available for interac-

tions in detectors: quasielastic (QE) scattering, production of light mesons (e.g. π), light

baryons (e.g. ∆ + π), strange baryons (e.g. Σ +K) in inelastic scatters on nucleons, and

elastic and quasielastic scattering on electrons. Fortunately, many of these interactions

involve multiple decays and coincidence tagging may be used to substantially reduce the

background. The dominant backgrounds for the hep and DSNB searches in SNO are 15.1

MeV γ rays that result from NCQE interactions on 16O and from Michel electrons resulting

from the decay of sub-threshold µ produced in CCQE (and to a lesser extent resonant pion

production) interactions.

In the γ case, an initial ν(16O, 15O∗)n or ν(16O, 15F∗)p reaction leaves the struck nucleus

in an excited state. A few percent of these states ultimately relax via the emission of a

15.1 MeV γ from 12C∗ [100], although the branching ratio is not well measured. A large

systematic uncertainty is included to account for this.

The Michel electrons due to “invisible” muon decay form the dominant background

above the hep endpoint (the DSNB region of interest). The Cherenkov threshold for a

µ in water is 160 MeV (see Section 5.1), and so water Cherenkov detectors are blind to

low-energy µ produced in CCQE and interactions where resonantly-produced sub-threshold

pions decay to sub-threshold µ. If these unseen µ decay within the detector, the resulting

relativistic electrons will appear as isolated single-electron events, mimicking the signal.

Other interactions are generally reducible, either via coincidence tagging or properties of

the events themselves, such as the shape or number of Cherenkov rings. These approaches

are described in Section 6.3.2.2 for the present analysis. For a description of the similar

cuts used in the Super-Kamiokande DSNB search, see Reference [14].

For the low-energy (Eν < 100 MeV) atmospheric neutrinos, only the dominant νe and

ν̄e CC interactions are simulated. The former looks essentially like a high-energy, isotropic

solar neutrino signal, while the latter produces coincident neutrons via inverse beta decay.
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Figure 6.3: Energy spectra for low-energy (Eν < 100 MeV) atmospheric neutrino CC inter-
actions in Phase I.

The ν̄e component is therefore significantly reduced by coincidence cuts, as shown in Figure

6.3.

6.2.4 Systematic Uncertainties

The estimation of flux and cross section uncertainties follows that of Reference [15]. The flux

uncertainty, based on comparisons of primary cosmic ray flux measurements and different

theoretical approaches, is approximately 10% for Eν < 10 GeV [101]. This depends on

energy, and we conservatively use a constant 10%. Cross section uncertainties are defined

separately for CCQE interactions (25%) and all other interaction types (30%) based on

Reference [102]. An uncertainty of 100% is assigned to the production rate for 15.1 MeV γ

rays following NCQE interactions on oxygen nuclei.
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Finally, a detailed comparison of atmospheric neutrino Monte Carlo to data in sideband

control regions found that neutron production was under-predicted in the model [15, 103].

Therefore the MC is reweighted based on the presence of a coincident neutron in order to

better match data, and a systematic uncertainty is applied to these weighting factors. The

factors are 2.11± 0.32 for events with neutrons and 0.55± 0.04 for those without neutrons

[103].

6.2.5 Simulations

The primary vertices (positions, momenta, and types of final-state particles) for the high-

energy (Eν > 100 MeV) atmospheric neutrino Monte Carlo were produced using the NU-

ANCE package [104], and then passed into the full SNOMAN detector simulation for prop-

agation through a realistic detector model [103]. For the NUANCE step, a simple model

of the SNO detector was implemented — a 5 cm thick spherical shell of C5O2H8 acrylic

with heavy water inside and light water outside out to 8.5 m — and a Bartol04 fluxes and

a nominal neutrino mixing model used as input.

For the present analysis, the latest mixing parameter measurements are used in a three-

neutrino mixing model as described above; the NUANCE/SNOMAN MC is reweighted to

transform from the assumed oscillation model to our own. For calculation of event rates

used in the reweighting, I have used a model based on the state-of-the-art GENIE package

[99]. The GENIE model and the implementation of the SNO detector are described in

Appendix B.

6.3 Data Selection

There are three stages involved in the selection of events from the dataset to be used in

the analysis. First, entire runs (a contiguous block of time, usually several hours, where
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the detector configuration is constant) are flagged as good or bad. For the selected runs,

individual events are then subject to low-level cuts meant to remove instrumental and

time-correlated backgrounds, and finally to high-level cuts which test compatibility with

the signal hypothesis.

6.3.1 Run Selection

In order to ensure that only high-quality data is selected for analysis, a set of criteria

are applied to each run. For each phase, a set of detector conditions were specified that

constituted stable running, and the run selection criteria were designed to flag anomalies.

These criteria included data quality metrics automatically calculated by the First Pass

(FPS) and Second Pass (SPS) selection tools during data processing, and also information

recorded during data taking by the shift operator. The log files from the event builder

and the environmental monitoring system (CMA) also bear on the run quality. All of this

information was considered by members of the SNO run selection committee on a run-by-

run basis. More details on the SNO run selection process, including descriptions of the

specific criteria, may be found in Appendix B of Reference [105].

This process culminated with run lists for each phase containing thoroughly vetted high-

quality physics data, which were further reviewed before publications. The present analysis

makes use of the following run lists:

Phase I (D2O) The same run list is used as for the SNO NC Physical Review Letter,

Reference [43]. This includes runs with abnormally high radon concentration, which

were excluded from the subsequent low-energy threshold analysis (LETA) [46]; these

runs correspond to about 10% of the Phase I live time. The total live time for Phase

I for this analysis is 306.4 days.

Phase II (Salt) The run list used for the SNO Phase II Physical Review C publication [45]
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excluded runs with high levels of radon or activation of the sodium11, which present

backgrounds for lower-energy oscillation analysis. These runs are added back for the

hep/DSNB analysis. The salt hep run list was created by the authors of the 2006 hep

analysis in support of Reference [16], and includes 370 more runs than the salt PRC

run list, for a total of 1582 runs and a 22.3% increase in live time. The total live time

for Phase II is 478.63 days.

Phase III (NCD) The same run list is used as for the SNO combined three-phase Physical

Review C publication [48]. The total live time for Phase III is 385.17 days.

For calibration source data, the same run lists are used as are recommended in existing

source analysis documentation for the pT source (enumerated in Appendix E), and a run

list for 8Li source data was constructed based on past analysis efforts and detector shift

reports (see Appendix F).

6.3.2 Event Selection

In order to maximize the sensitivity of the hep and DSNB searches, the background in the

search region must be minimized. Fortunately, most backgrounds in this high-energy regime

are different from signal in fundamental ways: many instrumental backgrounds (due e.g.

to electronics effects) have distinctive signatures, and atmospheric neutrino interactions

often produce secondaries visible in time-correlated events, or multiple/non electron-like

prompt Cherenkov rings. The signal in both searches is single, electron-like Cherenkov rings

produced in isolation. Since the energy is high relative to other SNO searches, there is less

multiple scattering and improved photon statistics, both of which improve reconstruction

and allow tighter cuts.

11Specifically activation of 24Na, which produces decay products too low in energy to be of concern for
the present analysis.
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In the following sections, I define a set of event selection criteria, variables constructed

from the event observables that discriminate between event classes. For the counting analy-

sis, these parameters are subject to optimized cuts, and the signal region of interest becomes

a volume in the hyperspace of observables. For the signal extraction fit analysis, we can

make use of the shapes of the distributions of these variables by treating them (including

correlations) as dimensions in a probability distribution.

In the following sections, the term “sacrifice” refers to acceptance loss, i.e. the fraction

of the signal that is cut by an effort to remove background.

6.3.2.1 Low-level Cuts

Low-level cuts are those that generally do not rely on event vertex reconstruction, and

are applied to remove events from the data set prior to analysis, never being treated as

observables in a fit. They include instrumental background cuts (which typically rely on

the geometry, charge, and timing of hit PMTs) and cuts that are based on the conditions

under which the event occurred (such as occurring just after a tagged µ interaction).

Instrumental backgrounds are caused by detector effects, for example high-voltage break-

down of a PMT or electronic pickup. Such events tend to have distinct signatures, such as

correlations in the physical locations of electronics channels, which are very different from

“physics” events. Over the course of the SNO experiment, a variety of cuts were developed

that identify instrumental backgrounds with very good accuracy.

The low-level cuts were applied during processing in SNOMAN, and packed into a set

of two 32-bit words known as the DAMN banks, such that analyses may share a set of cuts

using a bitmask. For each Phase, I adopt the same set of low-level cuts used in previous

work [48], as these have been extensively validated and tuned for minimal signal sacrifice

(for the 8B solar neutrino region of interest). A summary of the low-level cuts is given in

Appendix D.
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6.3.2.2 High-level Cuts

The next step in event selection is to define selection criteria which discriminate the hep

and DSNB signals from physics backgrounds. For the counting analysis, these are treated

as cuts, while for a multivariate analysis or fit, some are used as observables. These cuts,

which were developed for previous SNO analyses, have been adapted and retuned for this

work.

It is assumed that 8B and hep events of the same visible energy are indistinguishable12;

that is, the difference in visible energy spectrum provides the only discriminant. In addition

to a having different spectrum, DSNB events also have no correlation with the direction

to the Sun. The cuts described in this section are geared toward reducing the background

due to atmospheric neutrino interactions where possible, i.e. other than single-electron final

states.

Event Isotropy Signal events — hep and DSNB νe CC interactions at 15-30 MeV —

produce single, electron-like Cherenkov rings, which are highly anisotropic. Two variables

were developed in SNO for quantifying event anisotropy, β14 and θij.

The parameter θij is the mean angle between all pairs of PMTs hit in a given event.

The charge-weighted extension, Qij, is defined by

Qij =

∑∑
PMTs i 6=jqiqjθij∑

PMTs qi
, (6.6)

that is, a normalized sum of angles weighted by the charge observed in each PMT. In the

LETA analysis [46] this was found to provide good discrimination for low-energy external

12There may in fact exist some possibility for discrimination based on Cherenkov ring properties which
we are not leveraging. For example, differences due to multiple scattering and δ ray production, since the
average true energy of events beyond the 8B endpoint are different, and these factors are presumably not
correlated with the statistical fluctuations Cherenkov in photon production.
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Bi and Tl events, and used a cut. However, in the high-energy hep and DSNB ROI, the cut

is not so powerful: for example, with ∼ 99% signal efficiency, only a small amount (about

3–5%) of the (atmospheric neutrino) background is removed. Therefore Qij is not used,

and β14 provides the measure of event isotropy.

The β14 isotropy parameter is defined as:

β14 = β1 + 4β4 (6.7)

where

βl = 〈Pl(cos θij)〉i 6=j , (6.8)

an average of the l-th Legendre polynomials evaluated at the cosines of the angles between

all pairs of hit PMTs i and j. The particular combination of β14 was chosen for its good

discrimination power and approximately normal distribution [105].

In-time Ratio (ITR) The in-time ratio (ITR) is the fraction of the hits in the event

falling within a narrow (∼ 8 ns) prompt timing window. For single-electron signal events,

the Cherenkov light arrives at the PMTs within a narrow time window, whereas for events

such as atmospheric neutrino interactions, rings from multiple secondaries may pile up

in the same event window, leading to a more uniform hit timing distribution. The vertex

reconstruction is performed under the assumption of a single Cherenkov ring; whether due to

pile-up of multiple events (e.g. secondary pions) in the event window or multiple promptly-

generated Cherenkov rings, a departure from this hypothesis results in a poor position fit,

leading to broadening of the time-of-flight corrected PMT hit time distribution.

Angular Figures of Merit Two additional cuts depend on the reconstructed vertex po-

sition and direction, using Kolgomorov-Smirnov (KS)-like tests to evaluate hypothesis that
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the hits were due to a single electron ring, which is useful for identifying both muon rings

(too sharp) and multi-ring events. The first (denoted Pφ) tests compatibility of the az-

imuthal distribution of hits around the reconstructed direction to the distribution expected

for an electron. This essentially captures the Cherenkov angle, smeared by multiple scatter-

ing as averaged over many events. The second test (P2d) is a two-dimensional extension that

also includes the polar angle. This calculation makes use of the same empirical 1D angular

distribution, but also accounts for scattering, reflections, and noise with an approximate

analytical function.13

In the previous Phase I hep analysis, these figures of merit were calculated within (and

only available for) the FTP fitter and used a single PDF generated for a 5 MeV electron

event. Subsequently, prior to the LETA analysis [46], they were generalized to apply to all

fitters, and also upgraded to include the energy dependence of the angular PDFs. There

remains some residual energy bias, which is corrected by scaling P2d by T 4
eff . These updated

versions are used for the present analysis, an improvement over previous work.

These figures of merit form powerful discriminants, particularly when the only events of

interest are single-ring electron events. In principle, one could make even further use of these

variables in an energy endpoint search, since 8B CC events in the hep ROI have leaked into

that energy range due to upward statistical fluctuations in the number of PMTs hit. The

true electron energy for these events is lower than the average true electron energy for hep

events in the ROI. On average, therefore, 8B events are subject to more multiple Coulomb

scattering, and have greater angular spread within the Cherenkov ring. Unfortunately,

even with the energy-dependent PDFs, the effect is much too small to observe in Pφ or P2d.

However, it remains possible that including this information in the upstream fitter, rather

than averaging over the multiple scattering effects, could yet provide some discrimination.

13These tests use a binned approximation to the true Kolmogorov-Smirnov test (which relies on sorted,
unbinned data) which is valid in the limiting case where the number of events is large compared to the
number of bins, and the binning is small relative to any physically-meaningful scale for the parameter.
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In-cone Time Another figure of merit computed based on the fit vertex is the in-cone

time (ICT) parameter. This is a KS test that compares the time residuals for hits inside the

Cherenkov ring (defined by 0.6 < cosα < 0.8, where α is the angle between the reconstructed

vertex and hit) to a template distribution extracted from 16N calibration source data.

Clean Event Burst Cut The low-level cuts described in Section 6.3.2.1 do not tell the

full story of whether an event has occurred in isolation with respect to other physics events,

which is a requirement for hep and DSNB signal events; specifically, we seek to eliminate

any events that occur in coincidence with a neutron capture or Michel electron in order

to reduce the background due to inelastic scatters of atmospheric neutrinos. For example,

a CC DIS in which a neutron (that is later captured) is produced in coincidence with an

invisible µ− (that subsequently decays) would not be flagged by the standard low-level cut

criteria. Based on the cut developed for the Phase I hep analysis [15], I define a “clean event

burst” cut which is triggered by more than one physics-like event within a few hundred ms

window. To trigger the cut, an event must meet the following criteria:

• Teff > 4 MeV

• −0.12 < β14 < 0.95

• ITR > 0.55

• Radius r < 600 cm

• P2d ·E4 > 10−5

• Pφ > 10−9

• Passes all low-level cuts except retrigger and muon follower
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Once such an event is identified, the cut steps backward 125 ms and forward 125 ms, and

if any other “clean” events are found in that window, both those and the trigger event are

flagged as a clean event burst and excluded from the analysis. The definition of a clean event

is extended to include events where the outward-looking PMTs trigger, and NCD-triggered

events in Phase III.

Fiducial Volume The fiducial volume is set to 550 cm for this analysis, which has been

the choice for most previous SNO analysis efforts. We maintain this status quo for two

main reasons, beyond precedent and ease of comparison: background due to so-called IAVB

(isotropic acrylic vessel background) events and energy calibration uncertainties. IAVB

events are fast isotropic bursts of light; the origin is not known, but is believed to be due

to triboluminescence in the AV acrylic. A more complete description is given in Reference

[45]. Previous work on hep searches set an upper limit of 0.002 in the range 6 < Teff < 35

MeV, indicating that this background is negligible [15]. However, the number of accepted

IAVB events increases substantially nearer the AV. Given that these backgrounds are not

fully understood, it does not seem prudent to use a Monte Carlo model to predict the rate

of this background in the region near the AV in a low-statistics search; it would be difficult

to trust any purported hep or DSNB discovery based on events in this volume.

A second reason for maintaining the historical 550 cm fiducial volume relates to the

calibration facilities in SNO. The source manipulator system was not capable of reaching

beyond 550 cm in the x−y plane, and so the only way to sample the volume from 550−600 cm

was on the z axis, at the bottom of the detector (or by interpolating between source positions

inside and outside the AV). This makes it difficult to evaluate the spatial nonuniformity of

position and reconstruction algorithms in the region near the AV wall, and hence to define

plausible systematic errors without relying significantly on detector Monte Carlo.
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6.4 Blindness

In order to minimize bias in the final results, a form of statistical blindness [106] is applied

wherein only a fraction of the data is used to develop the analysis, and all parameters are

fixed before analyzing the full data set; no further adjustments are made based on the

results. In the present analysis, cuts are tuned exclusively based on Monte Carlo samples

and validated using sideband and calibration data, and the visible fraction of the data is

used only as a cross-check to ensure that there are no serious problems with the analysis

before total unblinding. While strictly speaking this is a gray area (a choice to do something

different could have been made based on some of the data), the “check” data is still included

in the final analysis dataset, consistent with previous SNO analyses that have used a similar

blindness scheme.

Since the entire SNO dataset has already been analyzed, including for a hep and DSNB

search in Phase I, a truly blind analysis is not possible. Instead an iterative pseudo-blind

approach is used. 2/3 of the data are re-blinded, and the remaining 1/3 are initially visible

to check the analysis. The non-blinded (“unblind”) events are randomly-sampled contiguous

sequences of events representing 1/3 of the livetime of each run. In this way, it is possible

to develop cuts that identify time-correlated effects.

Each SNO run (both the Monte Carlo and processed data) was split into 30 “dataset”

chunks of equal time, and each event tagged with a dataset word. So as to avoid bias, the

starting point for dataset 1 was selected randomly based on the run number. In order to

select one third of the live time, 10 of the 30 datasets were chosen at random to arrive at

the dataset mask, and the corresponding events were copied into new files, to eliminate any

possibility of accidental unblinding. This procedure applied to detector data only; the full

set of Monte Carlo was available throughout the analysis.
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6.5 Monte Carlo Simulations

This analysis uses SNOMAN Monte Carlo described in Section 5.5 and predominantly uses

the production MC generated for the LETA [46] and combined three-phase [48] analyses.

Simulations are performed for each background, for each run, with the event rate scaled up

by a large factor so as to oversample distributions used to build PDFs.

The version of SNOMAN used for this analysis includes many improvements over that

used for the Phase I hep/DSNB search, including a substantially improved model of PMT

charge and timing, and PMT-specific efficiencies; a summary of the upgrades may be found

in Reference [83]. These improvements generally serve to improve the agreement of Monte

Carlo with calibration data, and thereby reduce systematic uncertainties.

I have generated Monte Carlo samples for low-energy atmospheric neutrino interactions,

i.e. those with Eν < 100 MeV, as these were not created as part of the standard SNO

production running. These simulations were generated using SNOMAN version 5.0294.

6.6 Summary of Systematic Uncertainties

A wide range of systematic effects impact this analysis; for example, variations in the energy

response may shift 8B background events into and out of the hep energy region of interest

in a box analysis, affecting the background estimate, or errors in cross sections may change

the interpretation of event rates in terms of fluxes. These may generally be classified in two

categories: normalization uncertainties, which affect the overall rate of events of a particular

class, and shape uncertainties, which change the how the events are distributed in one or

more observable dimensions. Table 6.4 provides an overview of the parameters considered

in this analysis.
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Parameter Variation Correlated

Live time §6.3.1
Energy scale §7.3
Energy resolution §7.3
Vertex accuracy 2.9%
Vertex resolution 2.5 cm
Instrumental cut sacrifice §8.1.1 X
8B νe spectrum §6.6 X

ν Mixing parameters §2.3 X

Atm. ν flux §6.2.4
Eν > 100 MeV 10% X

Eν < 100 MeV 25% X

Cross sections
CC ν − d 1.2% X

Atm. ν CCQE 25% (§6.2.4) X

Atm. ν other 30% (§6.2.4) X

15.1 MeV γ 100% (§6.2.4) X

Atm. n multiplicity 7% (§6.2.4) X

Table 6.4: Systematic uncertainties. “Correlated” means that the parameter is assumed to
take on the same value across all phases.
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Live Time A small uncertainty in the live time (the period of time the detector was

fully online and collecting data) is derived by comparing live times calculated by using the

global 10 MHz system clock and by using randomly-triggered (pulsed GT) data, and also

considering the uncertainty due to electronics effects and burst cuts; see e.g. Reference [45].

The fractional live time uncertainties used in this analysis are taken from previous SNO

publications using the same or similar data sets, per Section 6.3.1.

Energy Systematics The reconstruction-related systematics are understood through the

use of calibration sources, specifically the 16N source (5 MeV) at the low end, the pT source

(19.8 MeV, Phase I only) near the hep endpoint, and a sample of Michel electrons extracted

from data on the high-energy end; the 8B-like 8Li source data is used a cross-check and a

high-statistics sample with which to search for unexpected tails in the energy response.

The estimation of energy systematics is detailed in Chapter 7. For Phases I and II, the

FTP vertex fitter is used, while FTN is chosen for Phase III. The RSP energy estimator is

used for all three phases. For more details on vertex and energy reconstruction, see Section

5.6.

Vertex Reconstruction Systematics As with the energy estimation, uncertainties in

the reconstructed position and direction can distort observed spectra and shift events into or

out of the analysis window. These uncertainties have been estimated based on comparison

of calibration data and Monte Carlo for previous SNO publications; I have used values from

Reference [48].

Instrumental Cut Sacrifice The low-level instrumental background cuts described in

Section 6.3.2.1 unfortunately will also remove a small number of signal events. This cannot

be estimated using Monte Carlo, since instrumental backgrounds are not modeled in the

simulation. Instead, an estimate of the sacrifice is based on calibration source data.
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While most past efforts have focused on the energy range relevant to 8B oscillation

analysis, in the preparation of Reference [15] an estimation was made for higher energies

(up to 35 MeV) using a combination of 16N, 8Li, pT , and laser source data. The instrumental

cut sacrifice was fit with a quadratic function, as shown in Figure 6.4. This result is used

for the present analysis, and assumed to apply to all three phases.

It is clear that the fit is poor at the high-energy side, specifically the high-energy laser

data. The systematic error shown in the figure is about 3% up 8.5 MeV and increasing

thereafter to a maximum 11% at 40 MeV. For the present analysis, the errors beyond 8.4

MeV are increased such that the maximum at 40 MeV is 25%, more representative of the

spread in calibration data. A simple linear scaling is used to expand the uncertainty σ,

where

σ(T > 8.4 MeV) → (1.0 + 0.0394 · (T − 8.4))σ.

8B νe Spectrum Shape The best measurement of the energy spectrum for 8B β+ decay

neutrinos [85] is inferred from a positron energy spectrum, which is in turn inferred from a

measurement of 8Be decay α energies. The difficulty of the measurement and the corrections

in each step result in an effective energy scale uncertainty in P (Eν). This energy shift is

modeled as a distortion in the shape of the spectrum, and Monte Carlo events are reweighted

according to the parent neutrino energy. The distortion is shown in Figure 6.5.

Solar Neutrino Oscillation Parameters The oscillation parameters relevant for so-

lar neutrinos, ∆m2
12, θ12, and θ13, have been tightly constrained by recent global analyses

combining the results of solar neutrino observatories, KamLAND, and short-baseline exper-

iments. For this analysis the parameter values recommended by the Particle Data Group

[28] are used; these are also summarized in Section 2.3. Values are sampled within their

respective uncertainties in order to propagate this systematic.
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Figure 6.4: Signal sacrifice due to instrumental background cuts, as measured in the Phase I
[103]
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Figure 6.5: The shape uncertainty in the Winter solar 8B νe spectrum.

6.7 Corrections to Data and Monte Carlo

The SNOMAN simulation is tuned to match data as accurately as possible, but in some

cases final corrections to observables are applied to compensate for detector effects known

to be imperfectly modeled, or to improve the agreement of simulations and data.

There are a few corrections applied to the position (FTP) and energy (RSP) observables

used in this analysis. In all three phases, reconstructed z positions of data events are lowered

by 5 cm to account for a discrepancy between the SNOMAN and the physical detector:

z′ = zFTP − 5.0 (6.9)

Additionally, in Phase I the mean energy of 16N calibration data was observed to slowly

decrease over time. This “drift” is explained by changes in detector optics which were not
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fully modeled in the first phase, and this is compensated for with a time-dependent energy

correction:

C(t) =

{
1.5902 − 6.3032 × 10−5 · t, if t < 9363

1.1806 − 1.9288 × 10−5 · t, otherwise
(6.10)

where t is the number of days since December 31, 1974 and the corrected energy T ′
eff =

TRSP/C(t). For the salt and NCD phases, the simulation was improved so as to track

changes in the detector optics and no such correction is required. However, there is a small

modification to remove some residual drift in the NCD phase [47]:

C(t) = 1.197 − 1.751 × 10−5 · t (6.11)

where t is again the number of days since the reference date. A correction is also applied

to the β14 isotropy parameter for the Phase I Monte Carlo:

β′
14 = 0.9919 × β14,

which accounts for mis-modeling of the Rayleigh scattering in Phase I, based on a com-

parison to the Phase II model for which the model parameters were explicitly measured

[46].

In addition to the observable corrections, adjustments are also required in the normal-

izations of some signals. These corrections, described fully in Section 8.6 of Reference [27],

compensate for events aborted during simulation, modeling inaccuracies, and dead time

introduced by cutting bursts of events, in order to better match the acceptance in Monte

Carlo to data:

• The standard solar model implemented in SNOMAN is the BP2000 model; 8B and hep

solar neutrino fluxes are scaled to their values in the more recent BS05(OP) model.
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• The true electron and deuteron density is higher than in the detector model, by

1.31% and 1.29%, respectively [44]. These factors are used to reweight CC, NC, and

ES interactions.

• In order to account for radiative corrections in the NC ν−d cross section not included

in the model, NC event rates are scaled down by 2.3%.

• CC interactions on Na and Cl make a small contribution in Phase II; this is modeled

by increasing Phase II CC rates by 0.2%.

• The low-level cuts result in small a loss in live time: 1.4% for Phase I, 1.1% in Phase

II, and 1.96% in Phase III, and Monte Carlo is reweighted to account for this.

• Due to events aborted in the simulation, an energy-dependent correction to Monte

Carlo event weights is made: W = 1/(1− 6.238 × 10−4Teff).

6.8 Counting Analysis Overview

In analogy to the 2006 SNO Phase I hep/DSNB search [15], I perform a counting analysis

wherein events are subjected to tight high-level cuts, counted, and compared to background

expectation in a frequentist (Feldman-Cousins) framework. This yields results simple to in-

terpret and to compare to the existing publication, and can also provide model-independent

limits.

Systematics are propagated in the counting analysis via a Monte Carlo method. A large

ensemble of pseudo-experiments is constructed with systematics drawn from the appropri-

ate distributions, and a counting analysis is repeated for each. The ensemble is sampled

such that correlated parameters are fixed across phases, so that the final sum is effectively

an ensemble of full three-phase SNO experiments. In cases where systematics are corre-

lated among themselves, for example in energy scale and resolution measured from fits to
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calibration data, linear correlations are accounted for. The resulting joint distributions are

used to estimate the uncertainties in the expected signal and background rates, and the me-

dian upper limits for the fluctuated ensemble are used to determine the overall sensitivity

estimate.

There is an additional systematic uncertainty in the counting analysis associated with

the normalization of the 8B rate, which I determine by extrapolating a fit to low energy

(6–12 MeV) data into the hep energy region of interest. The statistical uncertainties on

that fit contribute to the total systematic uncertainty on the background estimate.

The counting analysis is fully described in Chapter 8.

6.9 Signal Extraction Overview

A multi-dimensional signal extraction fit can improve the limit (or measurement uncer-

tainty) beyond the counting experiment for the hep flux by leveraging shape information

correlated across multiple observable dimensions and correlations in systematic uncertain-

ties.

To this end, I have developed signal extraction code which performs a maximum-

likelihood fit using a Markov Chain Monte Carlo (MCMC). This approach uses a random

walk to map out the likelihood space in arbitrary dimensions, producing a posterior distri-

bution proportional to the likelihood function which can be used for parameter estimation

in either a frequentist or Bayesian framework.

The fits include eight signals:

• hep Flux (with CC and ES rates correlated, and the flux correlated across all three

phases)
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• 8B Flux (with CC and ES rates correlated, and the flux correlated across all three

phases)

• Atmospheric neutrino rate (Phase I, II, and III)

• Neutron rate (Phase I, II, and III)

and twelve floating systematics (uncorrelated across phases):

• Energy scale

• Energy scale nonlinearity

• Energy resolution

• Angular resolution (for ES)

in three dimensions:

• Kinetic energy (6–20 MeV)

• Angle to the Sun (cos θ⊙)

• Isotropy (β14)

Other high-level parameters are applied to the data as cuts prior to the fit, and other

systematics are scanned (iteratively shifted and refit). The three-dimensional probability

distributions are constructed from SNOMAN Monte Carlo, after corrections have been

applied. The fit algorithm requires thorough testing in order to understand any systematic

biases or other issues. This is achieved through ensemble testing of Monte Carlo data sets

with known levels of signal, including bias and pull testing. The signal extraction analysis

is fully described in Chapter 9.
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6.10 Physics Interpretation

The physics interpretation of the result is straightforward. The counting and fit-based

analysis yield either an upper limit or a measurement of the rate of hep solar neutrino and

DSNB events observed in some predefined region of interest. There are two ways in which

this is used:

Model-independent limits are determined by choosing an analysis region with very low

background, and performing a counting experiment to set an upper limit under the

assumption that all events are due to signal. This provides an upper limit on the flux

independent of, e.g., an oscillation model.

Model-dependent limits, conversely, are determined by comparison to specific model

predictions; here, those are the standard solar model (SSM) and the DSNB model

proposed by Beacom and Strigari. The signal Monte Carlo is used to convert limits

or measurements in terms of an event rate into flux units.

The set of limits (or measurements) for hep and DSNB, accounting for all relevant systematic

uncertainties constitute the primary results for this analysis. I present both limits in the

context of particular solar and DSNB models, as well as raw event rates, such that limits

may be derived for arbitrary models.
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Chapter 7

Characterization of Energy-Related

Systematic Uncertainties

The dominant 8B solar neutrino background for the hep search has a steeply falling energy

spectrum near the hep endpoint, and so the measurement of the hep flux is highly sensitive

to the detector’s energy response. The SNO energy reconstruction algorithms described in

Section 5.6 have been extensively validated through comparisons between data and Monte

Carlo simulations [46], using a variety of calibration sources (see Section 5.4.2). The present

hep and DSNB analysis takes place at higher energies than e.g. 8B solar neutrino flux

measurements, however, so it must be confirmed that the existing energy reconstruction

routines perform adequately in this regime as well.

By comparing reconstructed event energies for nominally-identical data and Monte Carlo

data sets, we can measure the correction required to achieve consistency and the correspond-

ing uncertainty. In typical terminology, we are investigating the uncertainty in the detector
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7.1 pT Source Constraints

resolution, though ‘resolution’ in the sense of a Gaussian convolution is only part of a more

general response function. The uncertainty is defined by our ability to reproduce data

with the simulation model, and limited by finite statistics available for the comparison.

Ultimately, we are deriving constraints on a parametric model of the deviations in energy

response that tell us the extent to which Monte Carlo-derived signal and background PDFs

can be distorted while still being consistent with the calibration data.

There is a limited amount of source data available to validate the energy response at

high energy, 14–40 MeV. In Phase I, the pT source provided 19.8 MeV γ rays, but this was

not deployed in Phases II or III. Michel electrons resulting from muons that stop inside the

detector, meanwhile, provide a high-energy distributed calibration source with a well-known

spectrum in all three phases, that covers the full analysis energy range. The statistics for

this sample are relatively poor, however, with only O(100) events in each phase.

In this chapter I describe an independent re-analysis of the pT source data and a fit to

Michel electron data, using the 16N and pT source calibration as constraints. This provides

a measurement of energy systematics that are subsequently used in both the counting

and signal extraction analyses. It is also crucial to constrain the possible contribution of

non-Gaussian tails, which could introduce additional smearing of the 8B events producing

an excess at the endpoint that fakes a hep signal. This possibility appears to have been

neglected in previous work, including hep studies. Therefore, I will also present here a new

analysis of the 8Li source data — which has a spectrum similar to the 8B background — to

constrain the probability of energy smearing into a flat tail.

7.1 pT Source Constraints

The pT (3H(p, γ)4He) source, which delivered 19.8 MeV γ rays, was deployed only once (in

Phase I) and at three positions along the z axis (0, -250, and -500 cm). The run list for

this data is given in Appendix E. This section presents a reanalysis of the pT source data
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7.1 pT Source Constraints

using the latest detector Monte Carlo model and improved cuts to better reject background.

The pT source γ rays have no identifying tag, and the source produces copious neutrons

due to target and beam impurities, which contaminate the low-energy side of the γ peak and

must be removed in analysis. The following cuts are applied to select candidate γ events:

• Low-level cuts, with the NHIT burst cut excluded

• Event reconstructs near the source: Rs < 125 cm

• Event is directed away from the source: û ·Rs > 0.85

• Electron-like high-level cuts

– 0.2 < β14 < 0.8

– ITR > 0.55

– Pφ > 0.0001 or P2d · E4 > 3.60

– 10−4 < ICT ≤ 1

The Rs and û ·Rs cuts are powerful because the neutron background has a larger range and

is uncorrelated in direction; these distributions for data at the central position are shown

in Figure 7.1. Figure 7.2 shows the effect of all the cuts, relative to the raw spectrum with

only data cleaning cuts applied. The same position, û ·Rs, and high-level cuts are applied

to both the data and Monte Carlo. The energy spectra are uniformly binned into 150 keV

bins from 14 to 30 MeV. After cuts have been applied, I fit the residual neutron peak in

data with a Gaussian and subtract the fit function from the spectrum to further reduce this

background. The spectra after cuts are fit with a Gaussian function in a restricted range

from −1σ → 2.5σ, or about 16–30 MeV; an example is shown Figure 7.2(b) for data at

the origin. Fits are performed independently for each of the three positions, for data and

Monte Carlo, and the differences in mean and standard deviation between data and MC are
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Figure 7.1: Distributions of pT source data at the origin.
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Figure 7.2: Energy distributions of pT source data at the origin, demonstrating the background
reduction due to the cuts and the Gaussian fit to extract the mean and resolution.
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7.1 pT Source Constraints

taken to characterize the fractional shift in energy scale and energy resolution (i.e. (data -

MC) / MC). The best-fit values and shifts are shown in Figure 7.3. It is clear that there

is some disagreement between data and Monte Carlo, particularly a radial dependence to

the mean energy. Since this source is directional, this could be due either to a real radial

bias or a bias in û · r intrinsic to the reconstruction algorithm, which would not apply to

signal events. Assuming that case we take the most trustworthy point, at the origin, as the

central value and take the spread (3.50%) as a systematic uncertainty. This same issue has

been observed, and is handled in the same way, in Reference [15].

The resolution shift is consistent with zero, in contrast to the previous analysis where

the (volume weighted) average resolution shift was 4.6%. This appears to be due to the

improved neutron background rejection, which reduces contamination on the low side of the

peak which would tend to inflate the best-fit resolution.

The extracted resolution shift is complicated by the broadening of the γ spectrum rela-

tive to monoenergetic electrons, since the former may scatter multiple electrons, or deposit

most of their energy in a single scatter. The effect on the resolution is assumed to be nor-

mal, in which case the resolution for electrons is related to the resolution of source events

by convolution with a Gaussian with width σcorr, such that

σ2
β = σ2

source − σ2
corr. (7.1)

This broadening correction is determined from Monte Carlo, by comparing the Gaussian

fits to isotropic electron MC at r < 250 cm. Since MC is generated only at discrete energies,

I use the nearest (20 MeV) simulations and scale to the pT energy before performing the

fits. Comparing this resolution to the central pT source MC, the extracted correction is

σcorr = 0.842±0.124. Systematic uncertainties associated with this correction are neglected,

since the result is not used directly but only as input to another fit.
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Figure 7.3: pT source data (black) and Monte Carlo (red) comparisons as a function of radius,
and the corresponding shifts.
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7.2 Michel Electrons

Mean Resolution
z [cm] Data MC Shift Data MC Shift

0 19.43 ± 0.11 19.47 ± 0.06 −0.0019 ± 0.0062 2.16± 0.09 2.17 ± 0.05 −0.0036 ± 0.0484
-250 18.79 ± 0.17 19.18 ± 0.04 −0.0203 ± 0.0088 2.15± 0.14 2.13 ± 0.03 0.0064 ± 0.0681
-500 17.76 ± 0.16 18.38 ± 0.07 −0.0338 ± 0.0095 2.20± 0.13 2.20 ± 0.05 0.0035 ± 0.0639

Table 7.1: Results of pT source fits. Units are MeV, except shifts which are fractional.

Since the resolution fits appear unbiased, I perform a volume-weighted average14 of those

points to derive a single pT resolution. The pT source fit results are given in Table 7.1; the

energy shift is −0.19± 3.38%, the source resolution shift is 0.43± 6.51%, and the 19.8 MeV

electron equivalent resolution shift is 0.57 ± 7.49%.

7.2 Michel Electrons

Decay electrons from stopped µ provide a distributed source with well-known spectrum

peaked at around 50 MeV, and a time-based tag can readily provide a pure sample; hence

these events are a powerful high-energy calibration source in all three phases.

7.2.1 Event Selection

The Michel electron selection criteria are:

• Fails the retrigger low-level cut (follows another event within 5 µs)

• Passes the in-time channel cut

• Passes high-level cuts

– −0.12 < β14 < 0.95

14Assuming three bins, from 0–125 cm, 125–375 cm, and 375–550 cm.
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7.2 Michel Electrons

τ [µs]

Phase I 2.21 ± 0.27
Phase II 1.99 ± 0.16
Phase III 2.25 ± 0.22

Table 7.2: Results of lifetime fits to the selected decay electron events.

– ITR > 0.55

• Passes fiducial volume cut (r < 550 cm)

• Energy in the range 10 < Teff < 70 MeV

• Separated from the first event in the retrigger burst by > 0.8 µs (to remove electronics

noise triggers immediately following large events)

These cuts are designed to select electron-like events that follow another event, using the

coincidence with a µ event to tag the decay electron. The selection is validated by fitting the

distribution of time differences between the predecessor and retrigger event, which should be

an exponential distribution with a decay constant near muon lifetime of 2.2 µs15 (t1/2 = 1.52

µs):

f(t) = Ae−t/τ . (7.2)

The time distributions are shown in Figure 7.4, and Table 7.2 summarizes the fit results.

These events are then compared with stopped µ Monte Carlo in order to evaluate the

performance of the reconstruction. Data and simulations are compared in Figure 7.4, using

the a priori data and Monte Carlo corrections; the normalization is a nuisance parameter,

and Monte Carlo is scaled to match data. Without any further corrections, a χ2 test for

15Decreased slightly due to muon capture.
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Figure 7.4: Reconstructed energy spectra and time differences between predecessor and re-
trigger events for the Michel electron event selection.
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7.2 Michel Electrons

these distributions yields a high probability, suggesting that the reconstruction works well

at high energy, and systematic corrections should be small.

7.2.2 Energy Fits

I fit the data for the normalization, a fractional shift in the energy scale ∆S of the form

T ′ = T · (1 + ∆S), (7.3)

and a fractional change to the energy resolution ∆R, which pushes the reconstructed energy

towards (−) or away from (+) the true value:

T ′ = T +∆R · (T − Ttrue). (7.4)

This parameterization provides some advantages over the commonly-used alternative of a

kernel width for a Gaussian convolution (“σextra”). First, the ∆ approach allows negative

resolution smearing, and although it is unlikely that the Monte Carlo would need to become

narrower, asserting the parameter boundary at zero in a fit can result in bias for small values

of σextra. Second, this method is computationally simple, and lends itself well to the signal

extraction methods that will be described later. For positive σextra, the two approaches are

equivalent, in that there exists a one-to-one transformation mapping σextra ↔ ∆R [16]:

∆R =

√
1 +

σ2
extra

σ2
E

− 1 (7.5)

where σE is a mean resolution. This mapping will be used to adapt constraints from pre-

vious analyses to use in this fit.

121



7.2 Michel Electrons

The single observable in the fit to Michel electron data is the reconstructed electron-

equivalent kinetic energy (Teff), after application of the nominal corrections. The fit opti-

mizes an unbinned extended maximum likelihood function:

− logL = Ñ −
N∑

i=1

Ñ × P (Teff ,i|∆S,∆R) + LC (7.6)

where N is the number of events in data and Ñ is the normalization parameter, and the

systematic parameters determine the shape of the probability distribution P . LC contains a

set of constraint terms, which come from independent fits of the source data Λ =
{
16N, pT

}

for ∆S and ∆R:

LC =
∑

α=S,R

∑

Λ

(
∆α(T

λ
eff )− ∆̄λ

α

)2

2 (σ̄λ
α)

2 (7.7)

where T λ
eff is the mean source energy, ∆̄α is a best-fit value for the independent fit to the

source data, and σ̄ is the source constraint uncertainty.

Minimization of systematic parameters that move events between the finite number of

bins is problematic, since the likelihood space is not smooth. I therefore use a Markov Chain

Monte Carlo (MCMC) to sample the likelihood space in order to evaluate uncertainties; the

MCMC technique is outlined in more detail in Section 9.3.

7.2.3 Parameterization of Systematics

The sources constraints — namely 16N and pT — measure ∆S and ∆R at different ener-

gies, providing independent constraints on these parameters. In principle, then, the fit is

overconstrained, as measurements at three energies are fit with a linear function of energy.
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7.3 High-Energy Fit Results

In general, these systematic parameters should be allowed to vary linearly with energy:

∆α = ∆(0)
α + Teff ×∆(1)

α . (7.8)

However, it is not clear whether these additional degrees of freedom are indeed necessary.

To evaluate this, I performed very loosely-constrained fits with zeroth-order systematic

parameters, providing an independent source measurement at ∼ 50 MeV. Figure 7.5 shows

the results of the source fits; a flat line corresponds to a zeroth-order ∆ parameter, i.e.

there is a single ∆ that is appropriate for all energies, as in Equations 7.3 and 7.4. The

resolution scaling is consistent with flat, suggesting that the zeroth-order approximation is

sufficient. The energy scale, however, is somewhat better described by a linear fit ∆
(0)
S =

−0.4%, ∆
(1)
S = 0.068%) than flat (with a χ2 about half as probable) indicating a weak

preference for including the first-order term.

Based on these findings, and the precedent of including a nonlinear scaling and constant

resolution correction in previous SNO analyses, the following parameterization is adopted

for the Michel fits, and subsequently applied in the counting and signal extraction analysis:

T ′ = T + (∆
(0)
S +∆

(1)
S · T ) · T +∆R · (T − Ttrue). (7.9)

7.3 High-Energy Fit Results

The constraints input to the fit are listed in Table 7.4, and results are given in Table 7.3 and

Figure 7.6. The 16N constraints are extracted from Reference [48], wherein the following
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Figure 7.5: Results of independent source fits for energy systematics.

parameterization is used for energy scale and energy nonlinearity:

T ′ = (1 + aE0c + aE0 )T

T ′′ =

(
1 + aE1

T ′ − 5.05

19.0 − 5.05

)
T ′.

This is trivially transformed into the form of Equation 7.9, taking the 16N energy and

propagating the uncertainties on aEi . The resolution as implemented in Phase III is already

in the same form as used here, but for Phases I and II (LETA) this transformation used

the σextra parameterization defined above, and this is translated to ∆R using Equation 7.5

and taking [16]

σE = −0.185 + 0.413
√
T + 0.0254T.
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7.3 High-Energy Fit Results

Parameter Phase I Phase II Phase III

N 135 ± 12.2 213 ± 14.8 172± 13.0

∆
(0)
S /10−3 −5.20 ± 7.21 −0.01 ± 6.14 1.25 ± 10.2

∆
(1)
S /10−3 0.44± 0.42 −0.16 ± 0.37 −0.16± 0.43

∆
(0)
R /10−2 1.83± 1.60 2.38 ± 1.71 1.61 ± 1.37

Table 7.3: Results of the Michel electron fits.

This approach is inconsistent in that the Phase I and II energy systematics in the three-

phase analysis are determined using the FTK energy fitter, while this analysis uses RSP.

At low energies, however, the differences in the fitters are expected to be small, and these

uncertainties are only used indirectly in this analysis as input to the high-energy fit.

The energy scale and energy resolution shifts and uncertainties as a function of energy

were evaluated using a Monte Carlo sampling method; the results are shown in Figure 7.7.

As noted previously, these parameters and their correlated uncertainties serve as input to

both the counting experiment (for systematics sampling) and the signal extraction fit (as a

constraint on floating systematic parameters). In both cases linear parameter correlations

are captured by using the covariance matrix to model the likelihood space as a multivariate

normal distribution.

As a final cross-check on the fit, I compare the results to a simpler approach where the

source measurements shown in Figure 7.5 are fit with zeroth- and first-order polynomials;

the results for Phase I are shown in Table 7.6. These parameters are consistent with the

full Michel fit, with slightly larger uncertainties, as expected.
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7.3 High-Energy Fit Results

Energy ∆S/10
−2 ∆R/10

−2

[MeV] Constraint Fit Constraint Fit

Phase I 16N 5.0 0.0 ± 0.62 −0.30 ± 0.62 1.59 ± 1.63
1.83 ± 1.60Phase I pT 18.8 0.91 ± 3.38 0.31 ± 0.69 2.68 ± 11.3

Phase I Michel 50 — 1.70 ± 1.77 —

Phase II 16N 5.0 0.0 ± 0.53 −0.08 ± 0.53 1.87 ± 1.76
2.38 ± 1.71

Phase II Michel 50 — −0.79 ± 1.61 —

Phase III 16N 5.0 0.0 ± 0.91 0.04 ± 0.91 1.61 ± 1.41
1.61 ± 1.37

Phase III Michel 50 — −0.69 ± 1.76 —

Table 7.4: Constraints used in the Michel electron energy systematics fit, and the fit results
evaluated at the constraint energies.

N ∆
(0)
S ∆

(1)
S ∆R

N 1.000 -0.007 0.008 -0.006

∆
(0)
S — 1.000 -0.593 0.032

∆
(1)
S — — 1.000 -0.015

∆R — — — 1.000

Table 7.5: Correlation coefficients for Phase I Michel fit.

Phase I

∆
(0)
S /10−3 −3.11± 7.40

∆
(1)
S /10−3 0.57 ± 0.45

∆R/10
−2 1.31 ± 1.57

Table 7.6: Results of direct fits to the source data shown in Figure 7.5.
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Figure 7.6: Best fit to Michel electrons for energy systematics.
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Figure 7.7: Energy dependence of the scale parameters extracted in the Michel electron fit.
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7.3.1 Ensemble Testing

In order to trust in the results of the fit and the uncertainties, ensemble tests were performed

using a large number of fake data sets sampled from the joint PDF distributions and with

rates Poisson-distributed around the expected mean, and constraints sampled within their

respective uncertainties.

Figure 7.8 shows the results of the ensemble testing for Phase I, including the parameter

pull and log likelihood distributions. The pull is defined, for a best-fit value r and true value

r̄, as

Pull(r) =
r − r̄

σr
, (7.10)

with σr being the uncertainty on r reported by the fit. One expects that, for example, the

true value lies within the 68% CL fit uncertainty in 68% of the fits. The pull distribution is

constructed such that, for a large ensemble of experiments with accurately calculated errors,

it tends toward a normal distribution with a mean of zero and unity standard deviation. A

non-unit width can indicate a problem with the fit uncertainty. For a brief and informative

discussion of normality in bias and pull testing, see Appendix B of Reference [27]. The log

likelihood distribution, on the other hand, provides an indication of whether the data is

being modeled correctly; the fit NLL should be distributed the same as fake data sampled

from around the true value.

The pull distributions for all parameters in all phases are summarized in Figure 7.9.

7.4 Constraining Tails: 8Li Source

In order to make a compelling observation of the hep solar neutrino flux, we must exclude

the possibility that an excess is due to a tail in the energy response for 8B events.

The 8Li source provided a tagged source of β decays with an energy spectrum similar to

that of 8B solar neutrinos, and with Q-value of 16 MeV; these two decays are analogs in the
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Figure 7.8: Ensemble testing distributions for the Phase I energy systematics fit using Michel
electrons.
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Figure 7.9: Summary of pull distributions for energy-related systematic parameters.

A = 8 family [81, 107]. This data was used extensively in SNO for studies of low-level cut

sacrifice (see Section 6.6) and position reconstruction calibration, and also for some energy

linearity studies. The closeness to the 8B background also means this source is useful for

studying departures from the Monte Carlo model of the energy response; the absence of a

tail in 8Li data would provide strong evidence that 8B has no tails either.

The source data has contamination from 16N decays in the chamber, produced by

16O(n, p)16N activation of source materials. This background can be reduced substan-

tially with a cut on the integral charge detected in the trigger PMT [81], shown in Figure

7.10(a). A cut is also placed on the distance between the deployed source location and the

reconstructed event position, Rs, the distribution of which is shown in Figure 7.10(b).

Source runs for each phase were selected based on run length, detector conditions, and

the quality as reported by detector operators in shift reports; the list of selected runs is

provided in Appendix F. To select candidate 8Li events, the following cuts were applied:
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7.4 Constraining Tails: 8Li Source

(a) Threshold crossing time and integrated charge
in the source trigger PMT, with the cut used to
reject background 16N decays (to the left) from
signal 8Li decays (to the right)
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Figure 7.10: Cut parameter distributions for Phase I central 8Li source run 14348.
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7.4 Constraining Tails: 8Li Source

• The raw detector trigger and the source PMT trigger both fire

• 8Li-like trigger PMT pulse (see Figure 7.10)

• Rs < 70 cm

• Reconstructed radius r < 800 cm

• Electron-like high-level cuts

– −0.12 < β14 < 0.95

– ITR > 0.55

Note that the high-level cuts are as loose as the weakest used in the subsequent analysis,

making the tail constraint potentially slightly conservative.

Each source run was individually simulated in SNOMAN, including a model of the

source geometry, with comparable statistics to the data itself, and for this analysis I have

produced additional, higher-statistics Monte Carlo data (about ten times the data). Figure

7.11 shows a comparison of data and MC after cuts, where I have added together all the

runs in each phase in order to improve statistics and sample the detector volume (albeit in a

nonuniform way). For this comparison, the MC normalization has been scaled to match the

true number of observed events, and the energy scale, nonlinearity, and resolution has been

calibrated using 16N, pT , and Michel electron data as detailed in the above sections. The

agreement between data and simulation suggests that the simulation in general provides an

excellent model of the data.

The highest-energy event, with an RSP reconstructed kinetic energy of 18.2 MeV, oc-

curs in the Phase II data, in Run 23058. This event is consistent with a source event

in all respects, easily passing the tightest high-level cuts with a well-formed electron-like

Cherenkov ring, and with a reconstructed position 20 cm from the source. With 136 PMTs

hit, the light yield (Nhits/MeV) is in the center of the distribution for RSP at that energy.
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Figure 7.11: Comparison of data (black points) to Monte Carlo (gray bands) for 8Li source
runs. The MC bands indicate systematic uncertainties due to energy scale and resolution as
well as MC statistics. Source deployment positions are given in Appendix F.
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7.4 Constraining Tails: 8Li Source

The probability of pile-up with signal events or low-energy backgrounds (as evaluated us-

ing pulsed GT data) after cuts is negligible, and such a high-energy event is not readily

explained by radioisotope contamination in the source. The trigger PMT charge and time,

on which the 16N/8Li β/α PSD cut is based, is near the maximum density for 8Li. Given

that that the number of hits is large for the 8Li source, and the reconstructed energy is

consistent with that Nhit, we ascribe this event to a fluctuation (at the ∼ 10% level) in

photon production, and not indicative of a problem in the energy reconstruction.

Considering a hypothesis that the energy response has some probability to uniformly

distribute events (a flat tail), we may constrain that probability by scanning a likelihood

function, L(Ptail|data), while fixing the other energy systematics, to find Ptail < 10−5.

Applying this to the 8B background, this is an upper limit of Ntail . 10−3 events in the hep

search region in each phase, much less than the (approximately flat) atmospheric neutrino

background. It follows that this possible tail may be safely neglected, and that the data

is adequately described by the model of energy response and systematics at the level of

available statistics.

In principle the 8Li data could also provide a high-statistics sample with which to con-

strain all energy systematics, along the lines of the Michel electron fits. However, this is

unfortunately complicated by electron energy loss in the source. In the (EGS4-based) Monte

Carlo, 8Li events deposit on average 1 MeV in the stainless steel wall (energy loss in the tar-

get volume gas, modeled as air, is negligible). It is difficult to say with confidence whether

the sub-percent systematic effects extracted from this data are truly due to energy response,

or due to slight mismodeling in the source simulation. Indeed, attempts to perform these

fits resulted in an implausible negative resolution shift (i.e. resolution for data is narrower

than Monte Carlo), suggesting that this energy loss may be slightly under-predicted. In

any case, this data is used only as a general cross-check and to derive constraint on tails.
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Chapter 8

Counting Analysis

In analogy to the previously published hep and DSNB searches in Phase I [15], I first measure

the fluxes using a counting analysis. Within this framework, the events in the dataset that

pass an array of cuts (e.g. energy, radius, particle ID parameters, etc.) are counted,

and a Monte Carlo model (validated with calibrations) is used to estimate the number

of background events expected to pass these same cuts. With that in hand, we evaluate

the significance of the observation within the context of the background expectation using

standard statistical methods. The following sections detail an analysis along similar lines

to the published results, but expanded to include all three phases and making use of the

latest detector model, updated high-level cuts, and the energy calibration described in the

previous chapter.

I begin by retuning the high-level cuts with which candidate signal events are selected.

Next, I describe a signal extraction fit over a restricted energy range (6–12 MeV) used

to estimate the 8B background in the hep ROI; this is used to reweight the background

distributions. Finally, the energy window for the analysis is optimized. The overall process
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is as follows:

1. Produce Monte Carlo in SNOMAN for each run to be analyzed

2. Apply corrections (Section 6.7) and low-level cuts (Section 6.3.2.1)

3. Reweight events according to the Monte Carlo oversampling scale factor and normal-

ization corrections (Section 6.7)

4. Optimize and apply high-level cuts (Section 8.1)

5. Perform low-energy signal extraction and reweight events based on the resulting scale

factors (Section 8.2)

6. Determine the optimum energy region of interest (Section 8.3)

7. Count surviving events inside the fiducial volume and energy region of interest

In order to account for systematic uncertainties, a Monte Carlo approach is used. I sample

many sets of the systematic parameters (including correlations among phases and related

parameters) and apply these to create a large ensemble of three-phase pseudo-experiments

(i.e. background and signal PDFs), then perform the counting procedure on each. This set

is then used to calculate sensitivities (using the background PDFs) and limits (comparing

the background estimate to the observed data). The median sensitivity/limit is quoted as

the result, and this method also yields the overall systematic uncertainties on the signal

and background expectations.

Throughout this chapter, three signal regions are considered, for the hep and DSNB

searches, and the low-energy signal extraction:

Signal Extraction The range from 6–12 MeV is used to measure the 8B flux, and this

result is extrapolated into the hep ROI to determine the background rate and uncer-

tainty.
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8.1 High-level Cut Optimization

hep The hep energy region of interest ranges from about 14 MeV up to 20 MeV; the

optimization of the lower edge is deferred to Section 8.3.

DSNB The DSNB energy region of interest spans from 20–40 MeV, with the lower bound

also discussed in Section 8.3.

8.1 High-level Cut Optimization

The high-level criteria used to classify events were introduced in Section 6.3.2.2. While in

previous work these parameters have been used largely to cut low-energy backgrounds due

to radioactive decays (see e.g. References [48] and [46]), here they are used to reduce the

atmospheric neutrino background to the single-electron signal. Therefore we must reconsider

which high-level parameters are useful, and certainly re-optimize the cut values. Happily,

due to the higher energies involved, this generally means tightening the bounds. The cuts

represent several orthogonal ways to ask whether an event is compatible with the hypothesis

of a single electron. Atmospheric neutrino interactions that produce, for example, multiple

Cherenkov rings, short-lived decays that pile up in the same event window, or muons break

this hypothesis and these events tend to reconstruct poorly and fail these event quality cuts;

Figure 8.1 shows a few examples of such background event classes. Clearly an approach able

to interpret multi-ring events would be an improvement, but these näıve cuts are effective

for reducing the atmospheric background to a fraction of an event in the 1/3 non-blinded

dataset.

Each high-level cut is individually tuned on Monte Carlo to optimize the ratio SR/
√
NR

where SR and NR are the number of signal events and total events in a region of interest

R. This yields 54 independent parameters (6 HLC bounds × 3 phases × 3 ROIs), reduced

substantially by applying the same parameters in all three phases in most cases, where the

values are similar. In each ROI, the dominant signal of interest (i.e. 8B CC, hep CC, or
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8.1 High-level Cut Optimization

Run: 14301  GTID: 56

T=40.2°

P=12.1°

G=33.5°

(a) A (slightly delayed) multi-ring
event.

Run: 14393  GTID: 701

T=34.3°

P=-130.1°

G=-74.5°

(b) A single muon ring (too sharp).

Figure 8.1: Examples of atmospheric neutrino Monte Carlo events removed by the high-level
cuts. The color indicates time a PMT was hit: green is earlier, red is later.

DSNB CC) is compared to atmospheric neutrino Monte Carlo with only burst cuts applied.

As an example, Figure 8.2 shows the data and MC distributions of the Pφ parameter, and

8.3 shows the scans of all parameters for the hep ROI in Phase I. In principle, there may exist

nontrivial correlations between the high-level parameters, in which case a composite variable

could provide better discrimination. However, preliminary tests with linear (Fisher) and

nonlinear (boosted decision tree) multivariate approaches suggest that the cuts are largely

orthogonal and the potential gain is small.

The approach described above is entirely based on Monte Carlo, and so we must verify

that the MC accurately reproduces data. Biases in either the signal sacrifice or the back-

ground rejection as a function of energy may affect our interpretation of the data and the

extracted limits. Validation of the background rejection is challenging since the frequency

of these events in data is quite low, and there exists no source data to use as a proxy. As

a general cross-check, however, I consider events with 20 < Teff < 100 MeV (assumed to be
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8.1 High-level Cut Optimization
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Figure 8.2: Data and Monte Carlo distributions for the 1D angular KS test (Pφ) high-level cut
parameter in Phase I. The middle and bottom panels show the leakage fraction of atmospheric
neutrino background and the sacrifice of the signal as a function of cut value.
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8.1 High-level Cut Optimization
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Figure 8.3: High-level cut optimization scans for the hep ROI in Phase I.

141



8.1 High-level Cut Optimization

all atmospheric neutrino-related) that pass the low-level and burst cuts. Across all three

phases, there are 17 such events in the 1/3 non-blinded dataset, three of which pass the

high-level cuts. Applying the same cuts to the Monte Carlo, about 50% of events are re-

jected. While this is not a precise measurement of the background rejection efficiency of the

high-level cuts, the fact that the data and Monte Carlo are generally compatible provides

some evidence that the absolute uncertainty on this small background is itself small, and

that we are justified in neglecting the associated systematic uncertainties.

8.1.1 Signal Acceptance

To understand the signal acceptance and ensure that the cuts applied to data have the

same effect as on the Monte Carlo (on which the sensitivity estimates are based), I compare

data and MC for high-energy calibration sources: the 8Li source, Michel electrons, and in

Phase I, the pT source. Figure 8.4(a) shows this comparison for Phase II, using cuts re-

sulting from the MC-based optimization, and it is apparent that there there is a significant

discrepancy, at least for events following high-energy precursors. This is almost entirely

due to disagreement in the ITR distribution, shown in Figure 8.4(b). This is likely due to

essentially time-uncorrelated late hits associated with the precursor, such as PMT after-

pulses, falling into the follower event window and flattening out the time distribution; the

precursor events are not simulated in the decay electron Monte Carlo. To handle this and

recover an accurate background estimate, the cut is relaxed to the value used in previous

SNO publications, ITR > 0.55. With the ITR cut adjusted, there remains a very large

(∼ 50%) sacrifice at high energies; this is due to the ICT cut, which is also relaxed slightly

from its nominal value with a negligible loss in sensitivity.

Comparisons of calibration data and Monte Carlo with the final cut values are shown

for each Phase in Figure 8.5. Although statistics for high-energy sources are sparse, the dis-

tributions are consistent, and so we may expect that the post-cut Monte Carlo distributions

142



8.1 High-level Cut Optimization

 (MeV)effT
0 10 20 30 40 50 60

Sa
cr

if
ic

e

4−10

3−10

2−10

1−10

1

Li MC
8

Li data
8

Michel MC

(a) Sacrifice of all high-level cuts

ITR
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

E
v
en
ts
/
b
in

0

5

10

15

20

25

30

Michel MC

Michel data

(b) ITR for Michel electron events and decay elec-
tron Monte Carlo

Figure 8.4: Discrepancy between the data and MC for the sacrifice of the level-cuts due to
ITR. Phase II data is shown.

used in the sensitivity analysis faithfully represent the data.

To gain a general idea of how the various cuts contribute to the total sacrifice, I have used

simulated isotropic electron data as a proxy for the (single-electron) signals of interest with

high statistics across all relevant energies. The total sacrifice and that for each individual

high-level cut are shown as a function of energy in Figure 8.6.

There is additionally some signal sacrifice associated with the low-level cuts. This effect

and the associated systematic uncertainties are discussed in Section 6.6.

8.1.2 Summary of Cut Parameters

The optimized values for the high-level cuts are given in Table 8.1. The tuning of the final

cut for the counting analysis, that on energy, depends on the normalization of the 8B solar
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Figure 8.5: Data/Monte Carlo comparison for the total signal sacrifice of the high-level cuts
in each Phase.
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Figure 8.6: Sacrifice in Monte Carlo electrons due to high-level cuts. Discontinuities are due
to the three different ROIs which in general have different cuts applied.
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8.2 Low-energy Signal Extraction

Parameter Sig. Ex. ROI hep ROI DSNB ROI

Fiducial volume [cm] 550 550 550
β14 -0.12 – 0.95 0.20 – 0.82 0.28 – 0.82
ITR > 0.55 > 0.55 > 0.55
ICT (Phases I, II) > 10−4 > 10−6 > 10−6

ICT (Phases III) > 10−2 > 10−3 > 10−3

P2d ·E4 > 10−1 > 10−1 > 1
Pφ > 10−6 > 10−6 > 10−2

Table 8.1: High-level cuts for each region of interest.

neutrino background via the low-energy signal extraction, and is discussed in Section 8.3.

Table 8.2 shows the impact of the burst and high-level cuts on the atmospheric back-

ground, while Figure 8.7 shows the final spectrum for major background classes. Together,

the burst and high-level cuts reduce the atmospheric background in the hep ROI by a factor

of 30, and in the DSNB ROI by about a factor of 70, leaving a fraction of an event in both

cases, while preserving ∼ 99% and > 90% of the signal, respectively.

8.2 Low-energy Signal Extraction

The dominant background for the hep search is the steeply-falling tail of the 8B solar

neutrino spectrum. In order to estimate the number of 8B solar neutrino events inside

the hep ROI determine the associated uncertainty, I have determined the normalization

from lower-energy data in a signal extraction fit. The fit was performed in a restricted

energy range from 6–12 MeV, so as to avoid low-energy radioactive backgrounds on the low

side and to minimize the contribution of any hep signal on the high side. Near 12 MeV,

the SSM prediction for the hep rate is about 2 orders of magnitude below the expected

rate for electrons from the 8B background. The fit includes electrons due to 8B interactions
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8.2 Low-energy Signal Extraction

NCQE CCQE
Cut 15.1 MeV γ Eν > 100 MeV Other All

No cuts 38 616 2100 2754

β14 33 508 1668 2209
ITR 33 569 1566 2168
P2d 33 400 1638 2071
Pφ 35 435 1778 2248
ICT 36 606 1894 2536
Pass all HLC 25 366 1243 1634

Retrigger 38 112 496 646
Missed µ follower 38 516 828 1382
NHIT burst 36 539 1676 2251
Clean event burst 25 387 1077 1489
Pass all burst 25 67 317 409

Pass all cuts 17 25 56 98

Table 8.2: Raw numbers events in the Phase I high-energy atmospheric MC with 14 < Teff < 20
MeV and r < 550 cm passing each cut. Note that as these numbers are for the raw MC
production, and initial state neutrino flavor ratios are not correct.
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Figure 8.7: Effective electron-equivalent kinetic energy spectra for atmospheric neutrino back-
grounds for Phase I after application of the cuts summarized in Tables 8.2 and 8.1.
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8.2 Low-energy Signal Extraction

(combining CC interactions on deuterium, 17O, and 18O, and ES on electrons), and neutrons

(with a PDF built from 8B NC events), which are treated as independent. Signal extraction

fits are performed separately for each phase.

The signal extraction process consists of an unbinned extended maximum likelihood

fit, with optimization performed by MINUIT and error estimation by the MINOS routine

[108] as implemented in ROOT 5 [109]. The observables in the fit include the electron-

equivalent effective reconstructed energy (Teff), the event isotropy parameter β14, and the

cosine of the angle between the reconstructed direction and the direction to the sun, cos θ⊙.

This fit improves on the approach taken in Reference [15] by using fully three-dimensional

PDFs (in contrast to using a 2D PDF in Teff and β14 and a set of 1D PDFs for cos θ⊙). The

parameters of the fit are the normalizations of the 8B CC+ES signal and the neutron signal,

with PDFs created from SNOMAN Monte Carlo and applying a best-fit three-neutrino

oscillation model and all data/Monte Carlo corrections. As this analysis is itself meant to

determine a systematic uncertainty, the systematics associated with the mixing parameters

are handled separately. The fit allows penalty terms to include a priori Gaussian constraints

on the parameters. The minimization function is the negative log likelihood:

− logL =

M∑

j=1

Nj −
N∑

i=1

log




M∑

j=1

NjPj({Teff , β14, cos θ⊙}i)


+

∑

k

(Nk − N̂k)
2

2σ2
k

(8.1)

where Ni and Pi are the mean normalizations and probability distribution, respectively, for

each of M signals. In the final term, σi is a Gaussian uncertainty on the expected value of

the ith signal normalization N̂i. In practice, the constraint term is not included in the fit.

Fit results are shown in Figures 8.8 (Phase I), 8.9 (Phase II), and 8.10 (Phase III), and

summarized in Table 8.3. The results are used to rescale all Monte Carlo PDFs contributing

to the 8B CC and ES and total neutron signals. The results of the Phase I signal extraction
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8.2 Low-energy Signal Extraction

Phase I Phase II Phase III

8B Electrons 0.969+0.051
−0.050 0.867+0.047

−0.046 0.845+0.051
−0.050

Neutrons 1.229+0.260
−0.251 1.486+0.067

−0.066 1.050+0.177
−0.172

Table 8.3: Results of the signal extraction fits with 1/3 data, in terms of the fractional scaling
from the model prediction (using BS05(OP) fluxes).

are statistically compatible16 with the combined oscillation analysis of all three phases

published in 2013 [48].

8.2.1 Ensemble Testing

To verify the signal extraction fit and the uncertainties, which will set the expectation for

the 8B background in the hep ROI and the associated systematic uncertainty, ensemble

tests were performed using a large number of fake data sets with rates Poisson-distributed

around the expected means.

The pull distributions for Phase I are shown in Figure 8.11. The bias is negligible, but

the pull distributions appear too narrow. This is a consequence of the strong correlation

between the fit parameters, apparent in fit correlation coefficients (∼ 0.54) and visible in

Figure 8.11(d). MINOS single-parameter uncertainties are estimated as the extrema of

the n-dimensional contour, which is an overestimate for any particular value of the other

parameter; this results in a narrowing of the pull distribution. This is not problematic, but

symptomatic of using a one-dimensional metric to evaluate a non-trivially multidimensional

parameter. This suggests two possible courses of action for the extrapolation of the signal

extraction into the hep ROI: to use the independent parameter uncertainties, conservatively

16This signal extraction is performed on the 1/3 unblind dataset, and so statistical compatibility with
previous results is all that is is expected.
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Figure 8.8: Results of the Phase I signal extraction fit with 1/3 data.
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Figure 8.9: Results of the Phase II signal extraction fit with 1/3 data.
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Figure 8.10: Results of the Phase III signal extraction fit with 1/3 data.
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8.3 Energy Window Selection

treating them as uncorrelated, or to sample from the joint when evaluating systematics in

the counting experiment, which will generate correct coverage. The latter approach is taken

in this analysis. The pull distributions for both parameters in all phases are summarized

in Figure 8.12.

8.3 Energy Window Selection

The final cut made for the purposes of the counting experiment is the energy window

“region of interest” (ROI), which is chosen in order to maximize the sensitivity. Using the

Monte Carlo data after all corrections and cuts, the expected mean number of signal and

background events is calculated as a function of energy threshold. Then, for each threshold,

the sensitivity is determined by taking the median upper limit of a large number of sample

experiments using the Feldman-Cousins approach [110]. Given the shapes of the 8B, hep,

DSNB, and atmospheric neutrino signals, the optimization is much more sensitive to the

low-energy cut than the high-energy cut. The high-side cuts are set at 20 and 40 MeV for

the hep and DSNB windows, respectively, regions where the sensitivity is essentially flat.

The optimization of the lower ROI threshold is performed independently for each phase of

the experiment.

Figure 8.13 shows the results of the hep and DSNB ROI optimization analysis for Phase

I, Figure 8.14 for Phase II, and Figure 8.15 for Phase III. The hep sensitivity, shown in

terms of a scale factor to the BS05(OP) SSM prediction, is approximately flat up to about

14 MeV. Therefore, while the optimum occurs around 13.5 MeV for Phases I and II, I

choose a 14 MeV threshold, improving the signal-to-background ratio with a minimal loss

in sensitivity. For Phase III, 14.3 MeV is chosen, owing to the slightly poorer energy

resolution in that configuration. For all three phases, the DSNB ROI is chosen as 20 – 40

MeV; this is close to the maximum-sensitivity window, and chosen to be remain insensitive

to the hep background even if it happens to be on the high end of the BS05(OP) SSM
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Figure 8.11: Ensemble tests for the Phase I low-energy signal extraction.
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Figure 8.12: Summary of pull distributions for low-energy signal extraction parameters.

model uncertainty. This is a wider window than was used in the Phase I publication (21 –

35 MeV), which was restricted on the high end by certain blindness requirements and on

the low end by concerns regarding the then-larger uncertainties on the hep flux.

At some level the optimum energy window depends on the systematics, and the selection

has been made using the mean values for these parameters. This effect will be small, since

the dominant systematics are related to energy response and scale the signal and background

together to first order. Nevertheless, a check was performed by varying the threshold ±0.3

MeV and repeating the full counting analysis, and the above conclusions were found to

hold.
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Figure 8.13: The ROI optimization for the Phase I.
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Figure 8.14: The ROI optimization for the Phase II.
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Figure 8.15: The ROI optimization for the Phase III.
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8.4 Sensitivity

The sensitivity is calculated using the Monte Carlo signal and background estimate and the

Feldman-Cousins framework [110]. The sensitivity provides a statistical metric for the range

of parameter values that an experiment should, on average, be able to observe at a given

confidence level. The fundamental question of sensitivity is this: what is the minimum signal

rate that is greater than a background fluctuation of a given significance? Colloquially, what

is the smallest signal that would be visible on top of background fluctuations? Of course,

any such estimate must assume that the background model is a complete description of

the physical system that generates the data. A brief introduction to the concepts of the

frequentist statistical interpretation is provided in Appendix G.

To illustrate the process of sensitivity estimation, the signal and background expecta-

tion values for the 1/3 data set are derived with all systematic parameters set to their

central values. Note that these are not necessarily the most probable values, but serve to

demonstrate the method; these values are not used in the final result. The energy spectra

after all corrections and cuts are shown in Figure 8.16, and the contributions to the total

background are given in Table 8.4.

For the full counting analysis, this process is repeated many times, for an ensemble of

pseudo-experiments where the systematic parameters are sampled randomly (though are

correlated, if applicable). This modifies the signal and background PDFs, and in turn the

number of signal and background events expected inside the signal region of interest, which

has been fixed a priori. In this way, we can map a set of PDFs with systematic uncertainties

into a set of Feldman-Cousins sensitivities and data-based confidence intervals.
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Figure 8.16: Energy spectra around the hep and DSNB regions of interest, after corrections
and all cuts except on energy, with all parameters fixed to their mean values.
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Phase I Phase II Phase III
Signal hep DSNB hep DSNB hep DSNB

8B CC d 0.861095 0.000000 1.351067 0.000000 1.370448 0.000401
8B CC 17O 0.000000 0.000000 0.000000 0.000000 0.000400 0.000000
8B CC 18O 0.013454 0.000000 0.024592 0.000000 0.018719 0.000000
8B NC 0.000000 0.000000 0.000000 0.000000 0.000769 0.000000
8B ES (νe) 0.116836 0.000000 0.178898 0.000000 0.165484 0.000000
8B ES (νµ) 0.035915 0.000000 0.040535 0.000000 0.055347 0.000000
8B ES AV 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
hep CC d 0.272934 0.000226 0.416806 0.000420 0.342556 0.000505
hep CC 17O 0.000100 0.000000 0.000166 0.000000 0.000109 0.000000
hep CC 18O 0.002577 0.000000 0.003745 0.000015 0.002941 0.000005
hep ES 0.009358 0.000022 0.014371 0.000032 0.011980 0.000042
hep NC 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
DSNB CC 0.006208 0.004973 0.009403 0.007673 0.007570 0.005612
DSNB ES 0.000023 0.000003 0.000034 0.000013 0.000037 0.000013
Atm. ν Eν > 100 MeV 0.054093 0.059869 0.042063 0.084578 0.098085 0.098260
Atm. νe Eν < 100 MeV 0.000400 0.001405 0.000730 0.002356 0.000593 0.001825
Atm. ν̄e Eν < 100 MeV 0.000367 0.000888 0.000078 0.000184 0.000919 0.002591

Exp. signal 0.284970 0.004976 0.435087 0.007686 0.357587 0.005625
Exp. background 1.082161 0.062411 1.637963 0.087585 1.710763 0.103629
Observed 1 0 0 0 5 0

Table 8.4: Results of the counting experiment with the 1/3 data set, with all systematic
parameters fixed to their mean values.

Phase Run/GTID T (MeV) β14 ITR (x, y, z) (cm) r (cm) rNCD (cm)

I 14438/0xc95ce 14.35 0.677 0.594 (−61.7, 13.0, 504.7) 508.6 —
III 51406/0x11bbb8 14.43 0.479 0.730 (−142.8,−178.9,−26.4) 230.4 34.0
III 54357/0x5a8af 15.35 0.527 0.795 (−69.9, 361.9, 211.1) 424.8 30.2
III 57484/0x155b96 15.58 0.482 0.810 (−254.9,−187.8, 188.3) 368.3 44.0
III 65318/0xbd463 15.14 0.666 0.791 (183.7,−194.9, 253.7) 430.1 62.5
III 65914/0xcc504 16.33 0.576 0.754 (42.9, 475.5,−176.5) 509.0 137.1

Table 8.5: Characteristics of observed events in the 1/3 data set. rNCD is the distance to the
closest NCD.
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8.5 1/3 Dataset Results

This section summarizes the results of the hep and DSNB counting experiment analysis,

accounting for the variation in systematic parameters. The joint distributions obtained

by sampling systematics are shown in Figures 8.18 (Phase I), 8.19 (Phase II), and 8.20

(Phase III), and the signal and background expectations given in Table 8.6. In order to

evaluate the relative impact of each systematic parameter on the total uncertainty, the

standard deviation in signal and background expectation was calculated by varying each

individually, with others held fixed at their respective means. These are given in Table

8.7; note that the total is different from the quadrature sum due to correlations. The

dominant systematics for the hep and DSNB searches are very different: for the former,

energy response is the major issue due to the steeply-falling 8B solar neutrino background,

and for the latter, the large flux and cross section uncertainties for atmospheric neutrinos

dominate. These searches, however, remain very much statistically limited.

In total six events are observed in the hep ROI in the 1/3 data, one in Phase I and five

in Phase III; the properties of these events are consistent with single electrons, and given

in Table 8.5. These events have been hand-scanned to look for any unusual characteristics,

and appear in all respects to be valid single-electron events. A partitioning of events so

nonuniform in phase live time is unexpected, but consistent with statistic fluctuations in

the small number of events involved. For example, the probability of observing ≥ 5 events

in any one phase, ≤ 1 in a second phase, and zero in the other phase is around 7%. The fact

that the combined three-phase background expectation is entirely consistent with the total

observation, while the same detector (in a similar configuration) and the same underlying

Monte Carlo model is used in all three phases, lends some credence to the interpretation

that this is merely a somewhat unlikely fluctuation.

The least likely facet of this observation is the apparent upward fluctuation in Phase

III, which we shall scrutinize further. A potential concern for that detector configuration

is shadowing due to the NCDs: if an event mis-reconstructs near a detector, where the

163



8.5 1/3 Dataset Results

ratio of energy to hits is expected to be smaller, the event will be assigned too high an en-

ergy. Figure 8.17 shows the reconstructed positions and directions of the events observed in

Phase III (projected onto the x− y plane) relative to the NCD array; there is no significant

clustering around NCDs (or in z). There may be a spatial correlation with the outside edge

of the NCD array, however this is difficult to establish with such a small sample. It seems

unlikely that there is a global mis-modeling of the energy scale, resolution, or nonlinearity,

since those parameters are measured using calibration data and any effect would have to be

very dramatic to account for the observation. Non-Gaussian tails in the shape of the energy

response function (due for example to the changes in detector optics introduced with the

NCD array) are disfavored by the 8Li studies in Section 7.4. Although that study relies on

source data which is not available for positions very close to NCDs, data at x = ±385 cm

is near the outer edge of the NCD array and shows no anomalies in energy reconstruction.

Furthermore, there is no significant variation in 2D radial (r =
√

x2 + y2) or energy bias

as a function of r in Monte Carlo; that is, if we bin the detector by concentric hollow di-

amonds following the shape of the NCD array, there is no bias introduced as we near the

NCD array edge. This evidence supports the hypothesis that the ‘excess’ in Phase III is a

normal fluctuation. In any case, it is important to bear in mind that somehow excluding

these events worsens the agreement of the combined three-phase dataset with expectations.

An upper limit is computed for each three-phase pseudo-experiment in the ensemble

(sampled with correlated systematic parameters), and the median is taken as the limit

for the 1/3 dataset. The total signal and background expectations in the hep ROI are

1.077± 0.050 and 4.455± 0.429, respectively, with six events observed. The sensitivity (the

median upper limit for a signal-free model) is 4.19 times the BS05(OP) SSM prediction for

the hep flux, or 3.32× 104 cm−2 s−1. For six events observed, an upper limit of 6.51 times

the SSM is obtained, or 5.17×104 cm−2 s−1. For comparison, the corresponding sensitivity

for the previous Phase I analysis is 4.34 times the SSM, based on 0.99 ± 0.09 signal and
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Figure 8.17: Reconstructed positions and directions of events observed in the hep ROI in the
1/3 dataset (x− y projection). NCDs, shown as gray circles, are enlarged by a factor of 5. The
arrows (which are arbitrarily but uniformly scaled) represent the reconstructed event direction,
projected onto the x− y plane. Further details about these events are listed in Table 8.5.

165



8.5 1/3 Dataset Results

3.13± 0.60 background events expected; an upper limit is set at 2.9 times the BP2000 SSM

(2.47 times BS05(OP), or 2.3 × 104 cm−2 s−1) based on two events observed [15]. Note

that the strong limit in that case is due to an apparent downward fluctuation, with fewer

events observed than predicted for the background estimate alone, such that the limit is

significantly stronger than the sensitivity. There is also some evidence that the high-levels

cuts chosen for that analysis, in particular ITR > 0.65, could result in a biased estimate

of the background rejection efficiency (see Section 8.1). For these reasons, we should not

expect the limit to be more stringent than the previous value, even though the sensitivity

is slightly improved.

In the DSNB ROI, no events are observed, with 0.03 signal and 0.70± 0.17 background

events expected. With a background expectation close to unity, the distribution of Feldman-

Cousins upper limits for an ensemble of Poisson-distributed pseudo-experiments is bimodal,

depending on whether zero or one events are observed. Here, a median upper limit of 110

times the T = 6 MeV Beacom & Strigari model prediction lies between these extremes,

which correspond to about 60 times the model for zero events, and 115 times the model

for one event. With no events observed in the data I set an upper limit of 61.6 times

the model prediction, which is fully consistent with the sensitivity. The model predicts

0.66 ν cm−2 s−1 in the range 22.9 < T < 36.9 MeV, and so the limit from the 1/3 data

set corresponds to ΦDSNB
νe < 41 cm−2 s−1 in that energy range, an improvement over the

existing direct νe limit [15] with only 1/3 of the full dataset analyzed. This results from

increased statistics and a larger energy window, but also a random fluctuation toward zero

events when observing one would be almost as probable.

8.5.1 Projections for the Full Dataset

Moving from the non-blinded dataset to the full data, the statistics for the search will be

tripled. For the hep search, the corresponding sensitivity is 2.19 times the BS(05)OP SSM
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Figure 8.18: Monte Carlo systematic parameter variation in Phase I.
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Figure 8.19: Monte Carlo systematic parameter variation in Phase II.
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Figure 8.20: Monte Carlo systematic parameter variation in Phase III.
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Expected Expected Events
Signal Background Observed

Phase I hep 0.283 ± 0.019 1.073 ± 0.161 1
Phase II hep 0.435 ± 0.027 1.639 ± 0.230 0
Phase III hep 0.359 ± 0.028 1.742 ± 0.287 5
Total hep 1.077 ± 0.050 4.455 ± 0.429 6

Phase I DSNB 0.008 ± 0.000 0.169 ± 0.041 0
Phase II DSNB 0.012 ± 0.000 0.228 ± 0.055 0
Phase III DSNB 0.009 ± 0.000 0.303 ± 0.077 0
Total DSNB 0.029 ± 0.001 0.700 ± 0.170 0

Table 8.6: Summary of systematics sampling results for the counting analysis signal and
background expectations for the 1/3 data set.

prediction, or 1.74 × 104 cm−2 s−1; this is the highest sensitivity to the hep flux of any

search, and therefore we expect to obtain the most stringent limit. Given the proximity

of the sensitivity to the model prediction, a low-significance first observation of this flux

may also be possible, especially if the true value is near the upper end of the 15.5% model

uncertainty.

The sensitivity for the DSNB flux with the full statistics is 42 times the Beacom &

Strigari T = 6 MeV model prediction, corresponding to a νe flux of 28 cm−2 s−1 in the

energy range 22.9 < T < 36.9 MeV. This is significantly weaker than Super-Kamiokande’s

limit on the ν̄e component of the DSNB flux (1.4 − 1.9 cm−2 s−1) [14], but is by far the

strongest direct limit on the νe component and improves upon even the model-dependent

indirect limits derived from the SK data [71]. While a DSNB measurement is unlikely in

light of the model predictions and the null result of SK, the improved limit can be used to

constrain nonstandard models of supernova neutrino production and propagation. On the

other hand, if some nonstandard model that enhances the νe flux is realized in nature, SNO

may have the sensitivity to discover it!
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hep DSNB

Phase I Phase II Phase III Phase I Phase II Phase III

∆S ∆B ∆S ∆B ∆S ∆B ∆S ∆B ∆S ∆B ∆S ∆B

Low-energy fit errors 0.00 4.90 0.00 5.39 0.00 5.77 0.00 0.00 0.00 0.00 0.00 0.02
Instrumental cut sacrifice 0.04 0.03 0.04 0.03 0.04 0.03 0.20 0.23 0.20 0.23 0.20 0.23
Live time 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Energy scale 5.44 11.65 3.98 9.02 6.82 14.62 0.78 4.01 0.51 4.09 1.11 3.23
Energy resolution 1.00 6.20 1.06 6.57 0.82 4.77 0.17 0.05 0.14 0.05 0.18 0.20
Vertex accuracy 2.72 2.72 2.78 2.78 2.51 2.51 2.72 2.72 2.78 2.78 2.52 2.51
Vertex resolution 0.04 0.08 0.04 0.10 0.04 0.06 0.05 0.58 0.04 0.78 0.05 0.46
8B νe spectrum 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
θ12 2.77 3.85 2.76 4.00 2.75 3.80 0.00 0.01 0.00 0.02 0.00 0.03
θ13 0.23 0.22 0.23 0.23 0.23 0.22 0.00 0.00 0.00 0.00 0.00 0.00
∆m2

21 0.43 0.19 0.43 0.21 0.44 0.20 0.00 0.00 0.00 0.00 0.00 0.00
∆m2

31 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Atm. ν flux

Eν > 100 MeV 0.00 0.49 0.00 0.25 0.00 0.56 0.00 9.42 0.00 9.48 0.00 9.31
Eν < 100 MeV 0.00 0.02 0.00 0.01 0.00 0.02 0.00 0.90 0.00 0.71 0.00 1.05

Cross sections
CC ν − d 1.12 0.93 1.12 0.97 1.12 0.94 1.17 0.00 1.17 0.01 1.17 0.01
Atm. ν CCQE 0.00 0.25 0.00 0.19 0.00 0.28 0.00 12.62 0.00 11.74 0.00 8.11
Atm. ν other 0.00 1.02 0.00 0.50 0.00 1.05 0.00 14.39 0.00 15.34 0.00 19.27

15.1 MeV γ 0.00 0.52 0.00 0.15 0.00 1.05 0.00 0.00 0.00 0.00 0.00 0.00
Atm. ν n multiplicity 0.00 0.53 0.00 0.23 0.00 0.61 0.00 6.71 0.00 6.23 0.00 8.25

Table 8.7: Summary of the 1σ uncertainties on the signal (∆S) and background (∆B) expectations in the
hep and DSNB ROI in each phase due to the variation of a single systematic parameter while others are
fixed to their mean value. All units are percentages (∆A = 100.0× σA/µA).
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Chapter 9

Spectral Signal Extraction Fit

The counting analysis described in the previous chapter provides a straightforward approach

to obtaining hep and DSNB limits from the SNO dataset, but does not take full advantage

of the differences in the detected energy spectra of hep and 8B solar neutrinos. This chapter

describes a fit to the data, varying the normalizations and shapes of Monte Carlo probability

distributions to extract the rate of hep neutrinos in the dataset. This approach improves

the measurement of systematics and increases the statistics beyond the previously-defined

energy region of interest as, in a sense, the fit naturally optimizes the ROI.

9.1 Signal Extraction

The goal of signal extraction is to determine the unknown parameters of a model given

an observation of data. The signals and backgrounds are distributed in observable space

(energy, position, particle ID, etc.), and corresponding probability distributions may be
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built using, for example, ancillary experiments or Monte Carlo techniques. In the case of

SNO, a Monte Carlo model is validated and corrected based on comparison to calibration

data. These probability distributions constitute a model which is combined with observed

data to measure signal rates and detector parameters.

Drawing statistical inferences when fitting a model to data requires care, particularly

when the model is complex (e.g. has a large number of highly correlated signals) or there

are physical boundaries on the parameters one wishes to respect. These issues tend to drive

the problem out of the Gaussian regime, invalidating many common shortcuts taken in

function minimization.

Signal extraction for the present analysis faces both of these problems. The similar

shapes of the signal and backgrounds result in correlations, and the measured signal rate is

expected to be very close to the physical limit of zero. Hence, those function minimization

techniques which assume smooth Gaussian-distributed parameters must be avoided when

estimating model parameters. To this end, a maximum-likelihood method (Section 9.2)

is used, with the maximization performed with a Markov Chain Monte Carlo sampling

approach (Section 9.3), and parameter uncertainties extracted using both Bayesian and

frequentist approaches (Section 9.4).

9.2 The Maximum Likelihood Method

The maximum likelihood (ML) method provides a means to determine the parameters in

the model of the experiment; it is a tool for estimating the set of parameters that make the

observed dataset the most likely to have occurred. One postulates a set of M signals, i.e.

probability distribution functions from which the events were drawn, and the parameters

describing those PDFs (e.g. normalization, energy scale) become ML estimators determined

by maximizing a likelihood function. A dataset consists of N events, each described by a

vector of observables x.
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The sum Ñ of the expectation values Ñj for each signal yields the expectation value for

the total number of events, around which the observed number N is Poisson-distributed.

The probability for an individual event is then given by

P (x|{Ñj}) =
M∑

j=1

Ñj

Ñ
× Pj(x). (9.1)

Constructing a product over events to build a likelihood function, taking the logarithm, and

dropping constant terms, one arrives at the negative log likelihood function, or NLL:

− logL({Ñj}) =
M∑

j=1

Ñj −
N∑

i=1

log




M∑

j=1

Ñj × Pj(xi)


 . (9.2)

Minimizing this function provides an estimate of the normalizations of the various sig-

nals that contribute to the dataset. Extending this method to include parameter constraints

(adding penalty terms to Equation 9.2) or floating systematic uncertainties (letting P de-

pend on additional parameters) is straightforward, making the ML approach quite flexible.

The NLL may also encode prior knowledge about the parameters, such as the fact the event

rates cannot be negative, if such constraints are desired. Furthermore, one is in general

free to re-parameterize the NLL in terms of normalizations that mix signal rates, which

may be desirable for including correlations between data sets or reducing the number of

parameters. Including these terms in the NLL, one obtains the complete functional form

suitable for signal extraction applications [27]:
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− logL(r,∆) =

M∑

j=1

Ñj(r,∆)

−
N∑

i=1

log




M∑

j=1

Ñj(r,∆)× Pj(xi,∆)




+
1

2

M ′∑

k=1

(rk − r̄k)
2

σ2
rk

+
1

2

s∑

m=1

(∆m − ∆̄m)2

σ2
∆m

(9.3)

where ∆ represents the set of s systematic parameters with Gaussian uncertainties σ∆,

and r represents the rate parameters (related to Ñ by a transformation matrix such that

Ñi = ǫ j
i rj) and having Gaussian uncertainties σr. M

′ is simply the number of rate param-

eters which are externally constrained. Extension of the unbinned ML method to arbitrary

observable dimensions is trivial, as a minimization algorithm sees only the probability Pj(xi)

and is unaware of the dimensionality of x.

The likelihood space, with dimension equal to the number of parameters (M + s), con-

tains complete knowledge of parameters given the observed data, including correlations to

all orders. Given this function, one may calculate extrema as well as uncertainties on pa-

rameters, however defined. Simply calculating the entire space (e.g. by grid scanning) is

impractical in high dimensions, so directed-search algorithms such as gradient descent are

commonly employed to find extrema. These algorithms improve performance by making

assumptions about the continuity and shape of the likelihood space, assumptions which

break down near physical boundaries. Unfortunately, this is precisely the regime of inter-

est in sensitivity studies and rare-process signal extraction. Markov Chain Monte Carlo
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(MCMC), introduced in Section 9.3, provides a compromise between directed searches and

grid sampling, trading some performance for robustness.

9.2.1 Floating Systematics

When we allow systematic parameters ∆ to vary (float) in the fit, this will in general

affect the number of events included in the fit range, as PDF shape distortions move events

across the boundaries on observables which are fixed a priori. Naturally, fewer events in

the analysis window V due to a systematic shift does not imply, e.g., a lower flux, and

so Ñ must be reweighted according to this efficiency. The Monte Carlo used to build the

PDFs for this analysis is generated with a fixed scaling η relative to the model prediction

(for example, 1000 times the BP2000 SSM) and the fit is in terms of a scaling in the total

number of Monte Carlo events on top of that, such that I fit directly for a scaling relative

to the prediction of the model (which is easily converted into a flux). There is therefore

no need to normalize based on the number of events in V without any transformation

applied; this is special case which must cancel out anyway, as the answer cannot depend on

some arbitrary (if trivial) choice of systematic parameters. The elements for signal i in the

transformation matrix ǫ include this weighting with a factor of |{xi|S(xi,∆) ∈ V }|, which
counts the number of events in the analysis window (a volume V in the observable space)

after application of a systematic transformation S.

9.2.2 Multi-Phase Fitting

I perform a simultaneous fit to the entire three-phase data set, rather than combining the

results of separate fits, in order to better constrain the 8B and hep fluxes (and to a lesser

extent the atmospheric neutrino background): since these sources are presumably constant

across all three phases, the expected rates should scale in the same way. Using the combined

statistics of all three phases helps to reduce the uncertainty in this background, which in
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the counting analysis was second only to energy-related systematics in driving the total

systematic uncertainty (see Table 8.7).

Phase information is included in the signal extraction fit by adding a “dataset” tag to

each event vector xi, and only evaluating the (phase-specific) PDFs for the appropriate

events. Correlations of rates are handled as noted above, by replacing Ñj with a product

of a source rate (which is the fit parameter) and a normalization matrix (which accounts

for the differences between phases in the expected numbers of events for a given flux).

9.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo provides a general technique for sampling probability distribu-

tions, with broad applications. Essentially, the domain is sampled by a random walk such

that the distribution of random steps approximates the probability distribution itself. The

Markov Chain refers to a sequence of steps in a discrete-time stochastic Markov process,

i.e. generated by transitions within a set of states obeying the Markov property (see, e.g.

Reference [111]). This defining property is that each transition depends only on the current

state (not previous history), however the following conditions are also desirable for tractable

systems:

Stationary The systems has a steady-state solution

Unique There exists one and only one stationary solution

Ergodic The system is aperiodic (no “infinite loops” in the graph) and positive-recurrent

(the graph is completely connected)

For a discrete state space, we can envision a graph like in Figure 9.1, with transition
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BC
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PbbPcc

Figure 9.1: A three-state system.

probabilities representable in a matrix form:

Q =



Paa Pab Pac

Pba Pbb Pbc

Pca Pcb Pcc


 .

For a state vector xi, the probabilities for the next state are given by xi+1 = Qxi, and if

the above conditions are satisfied, an equilibrium (stationary state) is reached after many

steps:

lim
N→∞

QN =



Pa Pb Pc

Pa Pb Pc

Pa Pb Pc




where columns give the probability to be in each state, independent of the initial condi-

tions. This example applies to problems where the state space is discrete and the transition
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probabilities are analytically calculable. In our case, where we seek to map out an unknown

probability distribution with continuous support, we choose initial conditions and assert

the process dynamics, and perform many transitions in a numerical simulation to discover

the steady state.

The applications of the Markov Chain Monte Carlo technique to sampling arbitrary

probability distributions were elucidated by Metropolis et al. in a landmark 1953 paper

[112], where the authors developed the transition algorithm in analogy with statistical

mechanics. The Metropolis algorithm is as follows:

1. Propose a step to coordinate ~x from current coordinate ~x0 based on a symmetric

sampling distribution Q(~x|~x0).

2. If the probability P (~x) > P (~x0), or if the ratio of probabilities P (~x)/P (~x0) ≥ X,

where X is uniformly distributed on [0, 1), move to ~x. Otherwise, remain at ~x0.

3. Record the current coordinate.

Many extensions to the Metropolis algorithm have been developed, most notably

Metropolis-Hastings [113], which allows for asymmetric proposal distributions by including

a weighting factor. Beyond this, almost all extensions are special cases of Metropolis-

Hastings, applicable to a subset of problems. For generality, ease of implementation, and

because there is no particular motivation to use an asymmetric proposal distribution, I use

the basic Metropolis algorithm in the subsequent analysis.

In the limit of an infinite number of steps, coordinates will be visited with a frequency

according to the underlying probability distribution P , and so, given the list of sampled

points, one is able to extract the properties of the distribution. This approach is particularly

powerful because it is suitable for spaces of any dimension, and trivially handles complicated

or non-Gaussian distributions. By using an MCMC to sample a likelihood function, we may
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leverage the flexibility of this method to build a robust parameter estimator. Crucially,

however, the sampled distribution is not the same as P (~x), but is only proportional to P (~x).

One may normalize the distribution by choosing a prior distribution and applying Bayes’

Theorem (see e.g. [108]), to obtain a posterior probability distribution from which Bayesian

credible intervals may be derived. However, it is not possible to apply the (frequentist)

profile likelihood approach here without an absolute measure of the likelihood. For this

reason the above procedure is augmented to also record the value of P (~x) for all sampled

states {~x}. In this way, the MCMC becomes a form of importance-weighted sampling,

providing a non-uniformly sampled version of P with a sample density proportional to the

probability. The sampled set {P (~x)} may be used to calculate frequentist intervals.

There are two additional complications to the MCMC approach. First, we must choose a

starting point according to the (as yet unknown) distribution. Consider a case where in the

above discrete-state example, we chose an initial state A which actually had a vanishingly

small probability. For a finite set of samples, the value obtained for Pa would be too large.

We avoid this situation through the use of a “burn-in” phase, discarding the initial steps so

that the initial conditions are irrelevant. Second, there is the matter of ensuring that the

chain is well-mixed and that the fit has converged to a steady state.

9.3.1 Convergence

In general, it is impossible to know with certainty that the MCMC has converged. For

example one can easily imagine sampling only around a local minimum in a much larger

parameter space, if such a minimum existed and the initial proposal distribution was chosen

poorly (too narrow). In our case, however, it is known that the parameters are roughly

Poisson- (normalizations) or Gaussian-distributed (shape systematics, as evidenced by fits

to source data). Furthermore, the estimates of central values are very robust. Therefore

the likelihood function too should approximately follow a normal distribution (truncated
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in the case of parameters near a boundary), and when we arrive at a stationary posterior

distribution, we can be confident that we have obtained a good estimate of the likelihood

space.

A wide array of formal convergence tests have been developed, with a few notable

examples due to Gelman and Rubin [114] and Raftery and Lewis [115]. For a review of

commonly-used approaches, see Reference [116]. With no perfect method, however, the

criteria remain subjective at some level, with the most robust tool being inspection of the

parameter time series and the posterior distribution itself, as illustrated in Figure 9.2. To

formalize this process, I break the samples for each parameter into N time slices, and

compute an unbinned Kolmogorov-Smirnov (KS) test comparing each slice to each other

slice; this returns a probability that the samples in question were drawn from the same

parent distribution, which should be the case if we have reached the stationary distribution.

The autocorrelation function for the time series of each parameter also provides a mea-

sure of mixing: for an appropriately-chosen proposal distribution, samples should rapidly

lose correlation as a function of the time separation (known as the lag).

9.4 Estimating Uncertainty

MCMC provides a robust technique for determining maximum-likelihood estimators for

likelihood functions containing physical boundaries, excluded regions, or local maxima.

However, this is only a part of the signal extraction puzzle: also of great importance are

the uncertainties on the parameters.

The meaning of uncertainty is itself uncertain; a variety of methods which differ both

algorithmically and philosophically are in common use in particle physics. Both objec-

tive confidence intervals calculated using a frequentist framework and subjective credible

intervals derived following a Bayesian approach will be presented.
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Figure 9.2: Examples of parameter time series and projected distributions for a poorly-mixed
and well-mixed chain.
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9.4 Estimating Uncertainty

9.4.1 The Bayesian Interpretation

One approach to determining parameter errors given a sampled likelihood space is to treat

the space like a posterior probability distribution for the parameters. To map the likelihood

function to a probability distribution, one must normalize by assuming a prior distribution

for the parameters. The choice of Bayesian prior is not obvious for a Poisson process; see

Reference [117] for a discussion. Here, I choose a uniform (“flat”) prior (the canonical

“uninformative” choice) for physically-allowed regions of the parameter space (i.e. Poisson

means are ≥ 0).

When treating the normalized likelihood space as a probability distribution, one is free

to integrate it directly to obtain credible intervals containing a desired fraction of the total

probability. I project out each dimension from the full n-dimensional likelihood space and

find intervals as close to central as possible; that is, for a confidence level 1−α, parameters

(θ, r) where θ represents the parameters of interest and r the other (nuisance) parameters,

an interval [µ1, µ2] is chosen such that

∫ µ2

µ1

∫
·· ·

∫
Vr

Ldθdr∫
· · ·

∫
V(θ,r)

Ldθdr
= 1− α, (9.4)

and

θ

∫ µ̂

µ1

Pθdθ =θ

∫ µ2

µ̂
Pθdθ = (1− α)/2 (9.5)

where µ̂ is the mean of a Gaussian fit to the normalized marginal distribution Pθ for pa-

rameter θ. In cases where such a central interval does not exist (for instance, for parameter

values near a physical boundary), we find the one-sided interval [µ1 = 0, µ2] such that

∫ µ2

0
Pdθ = 1− α. (9.6)
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It is important to note that these credible intervals cannot be compared directly to

frequentist confidence intervals, including those derived in the counting analysis; these ob-

jects have very different meanings. Numerically, one-sided credible intervals constructed in

this way will have an upper limit Φ−1(1 − (1 − α)/2)/Φ−1(α) smaller than the equivalent

Feldman-Cousins intervals, where Φ−1(α) is the inverse quantile function, due to the built-in

“flip-flopping” protection in the unified frequentist approach. In the case of a normally-

distributed parameter this is the probit function and the decrease is 28.2%, which must not

be mistaken for any sort of improvement in the limit. Also, in the Bayesian construction

there is no guarantee of coverage: 90% credible intervals will not necessarily contain the

true value for 90% of experiments measuring that value. We may demonstrate explicitly

that Bayesian limits constructed in this way do have proper coverage in the parameter range

of interest using a Monte Carlo approach, though must concede that true Bayesians would

deem this fact irrelevant.

9.4.2 The Profile Likelihood Construction

According to the frequentist interpretation, the likelihood space cannot be treated as a

probability distribution: there exists a distribution of possible measurements given the true

parameter values µ, P (x|µ), but the values of the parameters are fixed by Nature and

have no probability distribution P (µ|x). Uncertainties therefore are defined in terms of an

ensemble, such that the desired frequentist coverage is assured. In other words, the interval

for a particular measurement is a randomly-distributed range in parameter space, which

will only contain the true value in some fixed fraction of trials.

According to the Neyman construction [118], we use the multi-dimensional distributions

P (x, µ) (here derived from Monte Carlo) at physically-allowed values of µ to define an

acceptance region in the parameter space within which the coverage requirement is satisfied.

In analogy with hypothesis testing, the acceptance region is defined by a likelihood ratio
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ordering principle, as defined in Appendix G:

R̃(µs) =
L(x|µs, µ̂)

L(x|µ̂s, ˆ̂µ)
(9.7)

where µs is a fixed value of the parameter of interest and µ̂ conditionally maximizes the

likelihood with fixed µs. The set of parameters {µ̂s, ˆ̂µ} maximize the likelihood globally.

This projects out the µs dimension of the likelihood space along the line of maximum

likelihood, thereby avoiding integration over the distributions of “nuisance” parameters µ,

as is done in the Bayesian case.

In principle, to calculate the sensitivity one must explicitly construct the acceptance

region in the parameter space for each of an ensemble of fake datasetsD assuming some fixed

hypothesis, by using Monte Carlo simulation of an secondary ensemble of fake datasets {F}
sampled from the best-fit physically-allowed parameters of a fit to D. In practice, however,

the procedure is considerably simpler in the limit of large N . If the likelihood function

is normal or, by the property of invariance, there exists a transformation of variables f

through which L is made normal, an interval defined by R such that

logL(D|θ, r) = logLmax −
1

2
χ2(β, k) (9.8)

in k dimensions will have probability content

P (−2 logR ≤ χ2(β, k)) = β

since R = −2 log(L(D|θ)/L(D|θ̂)) is asymptotically distributed as χ2(β, k) [108]. To eval-

uate single-parameter uncertainties, for example, we use ∆(logL) = χ2(β = 0.683, dof =

1)/2 = 1/2 (“1σ” errors) and χ2(0.9, 1)/2 = 2.71/2 (90% CL errors).
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9.4 Estimating Uncertainty

In the present analysis, parameters representing the Poisson mean of signal rates are

defined to be non-negative. If such a parameter is very close to zero, the likelihood space

is highly non-Gaussian and the parameter transformation f correspondingly nonlinear. In

order to verify that the first-order χ2 approximation is valid and that this method produces

viable frequentist intervals for the hep rate, I perform many fits to fake data with known

signal rates from 0.1 to 10 times the SSM prediction (much larger than the 5σ model

uncertainty) and verify that the expected coverage is obtained in the ensemble limit in the

range of interest for the hep signal rate. This ensemble testing is discussed further in Section

9.7.

9.4.3 A Two-dimensional Example

To illustrate the power of the MCMC method for signal extraction, let us consider an

example with two signal PDFs, a flat background and a Gaussian signal. The likelihood

function is defined so that rates are≥ 0 via a severe penalty term. To estimate the sensitivity

of this experiment, we perform an ensemble of fake experiments with data sets sampled from

the background PDF. We then run the MCMC algorithm to map out the 2D likelihood space,

and locate the maximum to determine the best-fit signal and background normalizations.

Figure 9.3 shows an example fit.

The sensitivity is then computed in two ways: projecting the likelihood space onto

the signal normalization dimension and finding the rate parameter value below which 90%

of the likelihood falls (see Section 9.4.1), and using a profile likelihood approach (Section

9.4.2). The final sensitivity estimate 〈Ŝ〉 is the median sensitivity from fits to an ensemble

to independent fake data sets, with results shown in Figure 9.4. Note that although the

numerical values of the sensitivities are similar, the meanings are entirely different; the

profile method limits are effectively 95% limits due to the flip-flopping protection implicit

in the likelihood ratio construction.
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Figure 9.3: A fit to a signal-free fake experiment in a two-signal example.
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Figure 9.4: A comparison of sensitivities obtained by integration and the Feldman-Cousins
approach.
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Bias Near a Physical Boundary In order to verify the accuracy of the fit method, we

typically would perform ensemble tests and generate bias and pull distributions to check

for normality, centrality, and pull width. The one-sidedness of the likelihood function near

a parameter boundary, however, means that the statistical fluctuations in the data or the

location of the maximum always pull the signal mean upward. This introduces both variance

and bias, and the pull distribution is not well-defined for parameters with asymmetric

uncertainties. In the profile likelihood case, where coverage is a well-defined quantity, we

may ensure that it is correct for ensembles of pseudo-experiments with a relevant range of

signal rates. This form of ensemble testing ensures that the intervals returned by the fit are

valid for the desired confidence level.

In the case of the hep flux in particular, we have a definite, nonzero model prediction

for the expected signal. I therefore explicitly verify the coverage within e.g. the 5σ model

uncertainties, and ensure that the fit produces valid intervals for any true value of the flux,

by performing an ensemble of fits to Monte Carlo data sets.

9.5 The sxmc Code

To apply these MCMC-based ML fitting techniques to the SNO hep search, I have developed

a software package called sxmc, short for Signal Extraction with a Markov Chain Monte

Carlo [119]. This software builds PDF histograms from input Monte Carlo, and uses an

MCMC to map out the likelihood function in arbitrary user-defined dimensions. sxmc allows

the user to float n-th order scale, shift, and resolution scaling systematics for any observable.

It includes a suite of statistical tools for making inferences including limit-setting, and tools

for evaluating goodness-of-fit, Markov chain convergence, and bias. The major motivations

for an MCMC-based fitter are that it is straightforward to apply parameter boundaries

and that the algorithm makes only very modest assumptions about the properties of the

underlying likelihood space, handling non-Gaussian functions and local minima well.
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9.5.1 Implementation

sxmc is implemented in C++03 and Nvidia CUDA [120], and makes heavy use of general-

purpose graphics processing units (GPGPUs) for hardware acceleration. GPUs, originally

developed for computer graphics applications, provide an architecture highly optimized for

large numbers of small parallel computations. These devices also have large on-board mem-

ory with excellent memory bandwidth, making them a powerful tool for parallel processing

of large datasets. In the case of sxmc, GPGPUs are used in two computationally-intensive

steps: histogram building and likelihood evaluation.

At each step, the likelihood function must be evaluated for the current parameter vec-

tor. As described above, sxmc computes an unbinned likelihood, and so this step involves

iterating through all the events in the dataset being fit. The first optimization is building

a two-dimensional lookup table (LUT). Every signal PDF is evaluated for each event; this

provides the Pj(xi) in Equation 9.3, and in the case that PDF shapes are constant, this

computation only needs to be performed once. Given the LUT and a set of normalization

parameters (i.e. Ñj), the next step is to compute the second term in Equation 9.3 by loop-

ing over data events. This is performed in parallel on the GPU, in a staged sum that both

preserves precision and ensures that GPU threads access memory sequentially, improving

performance. Finally, this sum is combined with the normalization and constraint terms

to arrive at the NLL. At this point the NLL remains on the GPU device, avoiding the

significant time of overhead associated with device-to-host memory transfers. The next

parameter step is chosen in GPU code and the process repeats, with parameter vectors and

likelihood values being buffered in GPU memory. This buffer is periodically synchronized

to host memory in efficient bulk transfers and flushed to a ROOT file for storage.

When systematic parameters are allowed to vary in the fit, the PDF histograms must

be rebuilt from Monte Carlo for each step in the Markov Chain, taking into account the

new systematic shift. In order to obtain smooth PDFs for the fit, the MC generally consists

of million events, and so looping through them is quite time-consuming. This is mitigated
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Platform Samples/s Notes

Intel Core i7 920 1.85 × 107 CPU mode, 2.67 GHz
Nvidia GeForce GT 650M 5.72 × 108 Apple MacBookPro10,1
Nvidia GeForce GTX 580 1.61 × 109

Nvidia Tesla K40 3.00 × 109

Table 9.1: Performance of sxmc PDF histogram building on a variety of platforms.

by moving the MC dataset to the device memory and building histograms in parallel on

the GPU. A histogram class on the GPU keeps track of MC samples, descriptions of the

systematic parameters, and performs on-demand re-binning of events when those parame-

ters change.17. Table 9.1 shows the performance of PDF histogram building on a variety of

architectures.

The CUDA GPGPU code is targeted to Nvidia hardware. However, sxmc is implemented

using the hemi library [121], and so may also be compiled to run on traditional CPUs, with

parallel operations serialized in loops (with a corresponding loss in performance).

9.5.2 Proposal Distributions and Burn-in

As noted above, two challenges that arise in implementing an MCMC are preventing the

choice of initial conditions from biasing the final result, and achieving good mixing to

efficiently explore the parameter space. In sxmc, these are both addressed in an initial two-

part “burn-in” phase. Parameters are initially set to their expectation values, and width of

the multivariate Gaussian sampling distribution Q(~x′|~x) are chosen in each dimension as:

σi
Q =

ξ

10

√
max(σi, σ̃i)

17The sxmc GPU histogram code “pdfz” was originally developed by the legendary Stan Seibert.
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or the constraint standard deviation if a constraint is provided, where σ̃ is 10 for normaliza-

tions and 1 for systematic parameters. The scale factor ξ is set to (2.4)2/Nparams [122], and

sxmc allows the user to optionally specify an additional scaling. After O(106) steps with this

proposal distribution, the RMS of the accepted steps σ′ is computed for each dimension,

and the proposal width is set to (ξσ′). This sequence is repeated once more to further refine

the width, which is then fixed for the sampling used for the fit. This approach converges to

a step acceptance rate of ∼ 20% for a wide variety of fit conditions.

9.6 Signals and Backgrounds

The signal extraction fit includes 18 signals — 8B CC, 8B ES, hep CC, hep ES, neutrons,

and atmospheric neutrino interactions for each of the three phases — through six free

parameters: the 8B flux scaling, hep flux scaling, atmospheric neutrino flux scaling, and

independent neutron rates for each phase.

8B and hep Electrons Electrons are produced in solar neutrino interactions in SNO via

several channels: CC interactions on deuterium, 17O, and 18O, and ES on electrons in the

target volume and the AV acrylic. The shape of the total spectrum depends systematically

on the ratios of the cross sections for these properties, number of target nuclei or electrons,

and the oscillation model which determines the νe/νµτ ratio at any given energy. Since the

goal of this analysis is not to measure these ratios or mixing parameters, these quantities

are fixed in the fit. PDFs are included in the fit for 8B CC, 8B ES, hep CC, and hep ES,

but the relative normalizations of 8B CC and ES signals and the hep CC and ES signals are

fixed; the sole reason for the distinction is to apply different systematics to CC and ES. The

uncertainty in the mixing parameters is also included as a systematic, as described below.

The underlying 8B rate and hep rate float freely in the fit, but are constrained to be equal

across all three phases.
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Neutrons The observed energy for neutrons is sufficiently low that it does not affect hep

search directly, but is included as a nuisance parameter such that the fit may extend lower

in energy, improving the constraint on the 8B electron background. This signal absorbs all

neutron captures in the detector, from NC interactions and other sources. Since this is not

a direct solar neutrino NC measurement, this rate is considered to be independent in each

phase.

Atmospheric Neutrino Interactions All atmospheric neutrino interaction channels

are combined in the fit, and the summed spectrum is floated. There is uncertainty in the

spectrum shape due to different cross section uncertainties for different channels; this is

handled as described below. This rate is also assumed to be constant across the three

phases, after scaling according to the time-averaged flux given the position in the solar

cycle.

9.6.1 Cuts

For inclusion in the signal extraction fit, events must pass a number of cuts, as detailed in

Section 8.1. The suite of cuts includes:

• Radius r < 550 cm

• ITR > 0.55

• P2d > 10−2

• Pφ > 10−6

• ICT > 10−6

Energy and isotropy become observables in the signal extraction fit, in contrast to the

counting analysis. The cuts are intended to minimize the atmospheric neutrino background

in the fit range (see discussion in Section 8.1).
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9.6.2 Observables

The observables included in the fit must be chosen carefully, to maximize the separation of

signals while minimizing the dimensionality of the space so as not to dilute PDF statistics.

For the hep fit, three observable dimensions are used: the energy, the angle of events relative

to the Sun, and the isotropy parameter β14. Rather than relying on an external constraint,

this signal extraction fit effectively includes the entire low-energy signal extraction described

in Section 8.2.

While it is evident from the HLC optimization that some of these parameters, ICT in

particular, would potentially help discriminate signal and atmospherics in a fit, the actual

statistics for the latter are too small to be of any use, and so there is little motivation to

increase the dimensionality of the fit beyond what differentiates hep neutrinos, 8B neutrinos,

and neutrons.

Energy Energy is the main discriminant for separating hep from 8B solar neutrino events.

The quantity used in the fit is the reconstructed effective energy kinetic energy Teff , which

is the most likely kinetic energy under the hypothesis that the event was due to a single

electron. As in the counting analysis, the best position fitter for each phase is used (the

Path Fitter FTP for Phases I and II, and NCD-aware QPDF fitter nFTU in Phase III),

and the energy response fitter RSP is used in all phases. These reconstruction algorithms

are reviewed in Section 5.6.

Teff is binned into fourteen 1 MeV bins ranging from 6–20 MeV, and so includes the

entire counting experiment low-energy signal extraction range, the hep ROI, and the range

in between. The Teff spectra are shown in Figure 9.5(a).

Angle Relative to the Sun The reconstructed angle relative to the Sun (cos θ⊙) sep-

arates neutron and atmospheric backgrounds from solar neutrinos since the former are

uncorrelated with the solar direction while the (CC) ES component of the latter is (anti-)
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Figure 9.5: One-dimensional projections of the PDFs for Phase I.
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correlated. This dimension uses 10 bins ranging from -1 to +1. The cos θ⊙ spectra are

shown in Figure 9.5(b). Interestingly, there is a small amount of discrimination between

hep and 8B neutrinos afforded by the different fractions of CC and ES in the energy window,

which distorts the total angular spectrum.

Isotropy β14 The β14 isotropy parameter helps to discriminate neutron from neutrino

events, and also provides some handle on the atmospheric neutrino background. This ob-

servable is primarily included to better measure the neutron background to the 8B electrons

at low energy. The fit uses 15 bins in the range −0.12 < β14 < 0.95. The β14 spectra are

shown in Figure 9.5(c).

9.6.3 Systematic Uncertainties

The same systematic uncertainties are considered for the signal extraction fit as were for

the counting analysis, and these are summarized in Table 6.4. For the fit, systematics are

treated with one of two methods: floating and scanning.

In the case of floating systematics, the parameters are included in the fit and modify

the PDF shapes; this simultaneously optimizes the signal shapes and normalizations. The

parameters floated in the fits include an energy scaling and resolution scaling with the

parameterization given in Section 7.2 and mean values and constraints given in Table 7.3.

An angular resolution scaling (specifically as applied to cos θ⊙) is applied to the ES signals,

and parameterized following previous SNO results [46]:

(cos θ⊙)
′ = 1 + (cos θ⊙ − 1)(1 + ∆θ). (9.9)

The constraint on this parameter is 0.0 ± 0.11. This makes for a total of twelve floating

systematic parameters: ∆
(0)
S , ∆

(1)
S , ∆R, and ∆θ for each of the three phases.
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Other parameters that affect PDF shapes are scanned, meaning that fits are run with

the parameter fixed to different values, and the resulting maximum likelihoods used to

determine the best-fit value and uncertainties. It is assumed that these parameters are

uncorrelated among themselves (they may still be correlated between phases), and errors

will be overestimated to the extent that nontrivial correlations exist. This is the same set

of assumptions as was made for the counting analysis; the internally-correlated systematics

there (low-energy signal extraction scalings and energy scale and resolution) are floated in

the fit. For the signal extraction fit, the set is restricted to systematic parameters which

were found in the counting analysis to have an impact on the signal or background of & 1%

in at least one phase. Specifically, the impact of the instrumental background cut sacrifice,

live time, vertex resolution, 8B ν spectrum shape, θ13, and atmospheric neutrino-related

systematics on the extracted uncertainties are assumed to be negligible. This leaves θ12,

∆m2
21, and the CC ν − d cross section as scanned parameters.

9.7 Ensemble Testing

As outlined in Section 9.4.3, the enforcement of a boundary at zero for rate parameters

results in distributions for both the parameters and the likelihood function which are highly

non-Gaussian. It is important to quantify the effect this has on the extracted confidence

intervals, since clearly any claims of observing a nonzero hep flux must not be attributable

to biases in the fit method. Neither bias nor pull distributions are good metrics for the

hep flux fits near the boundary at zero, since the parameter distribution is one-sided and

the “1σ” errors not well-defined. Instead, I verify that the coverage is correct, using an

ensemble of fits to fake data with the level of hep signal varying from a small fraction to

many times the SSM prediction. In this way, we can gain confidence that the intervals

produced by the fit to the data have the correct coverage, irrespective of the true value of

the flux.
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The coverage is evaluated for both methods introduced in Section 9.4, the Bayesian

(§9.4.1) and profile likelihood (§9.4.2) constructions. In each case, a large set of fits were

performed, using fake data with the hep flux set to 0.01 – 10.0 times the SSM prediction

(significantly larger than the 78% 5σ model uncertainty), and all normalizations Poisson-

distributed. Since the fitter runs much more quickly without floating systematics (about

60 times faster, in the configuration for the full hep fit), a larger set of fits were performed

with fixed systematics, and a smaller number with floating systematics to check consistency.

The results of these tests are shown in Figure 9.6; both our Bayesian and profile likelihood

methods for extracting intervals do indeed have correct coverage across the range of hep

fluxes to which our measurement is sensitive.

While these tests demonstrate that both statistical approaches produce intervals with

the correct frequentist coverage for the relevant range of true hep flux values, they do not

imply a minimum signal level actually required for discovery; the determination of the

sensitivity is discussed in the next section.

9.8 Results

With the procedure having been validated through ensemble tests with fake data, signal

extraction fits were performed using the methods described in the previous sections on the

same unblind 1/3 dataset that was used in the counting analysis.

9.8.1 Sensitivity

Along similar lines to the counting analysis, we may define a sensitivity for the signal

extraction fit by performing fits to an ensemble of signal-free Monte Carlo datasets. For a

set of fits performed for datasets with normalizations and systematic parameters sampled
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Figure 9.6: Coverage of 90% CL intervals in fake data ensemble tests using a variety of true
hep fluxes. Error bars are statistical, due to the finite size of the ensemble. Thick lines are for
fits with fixed systematics and thin lines for fits with floating systematics.
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from their nominal distributions for the 1/3 dataset, the median upper limit is 2.27 times

the BS05(OP) SSM, or

〈Φ1/3
hep〉 = 1.80 × 104 cm−2 s−1 (90% CL), (9.10)

as calculated using the profile likelihood approach.

A sensitivity is computed in the same way for the full dataset, to estimate the improve-

ment expected when the full statistics are analyzed. The median upper limit in this case is

1.16 times the BS05(OP) SSM prediction, or

〈Φfull
hep〉 = 9.21 × 103 cm−2 s−1 (90% CL). (9.11)

This is within the 1σ errors for that model, suggesting that a first observation, if at low

significance, may be achievable when the full dataset is unblinded.

9.8.2 1/3 Data Results

The maximum likelihood and uncertainties are calculated from an MCMC sample space

containing 2.4 × 107 steps (not including burn-in steps), which provides O(5000) samples

within the single-parameter 90% CL contours that define the profile likelihood intervals (see

Section 9.4.2). One-dimensional projections of the best fit in the observable dimensions Teff ,

β14, and cos θ⊙ are shown in Figure 9.8, and Table 9.2 summarizes the best-fit parameters

and 90% CL uncertainties. With scanned systematics at their nominal values, the 90% con-

fidence interval for the hep flux using the profile likelihood method includes zero, implying
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Figure 9.7: Marginalized posterior distribution for the hep flux, used to determine credible
intervals. The 90% CL interval is highlighted in gray.

an upper limit of 2.38 times the BS(05)OP prediction, or

Φhep < 1.90 × 104 cm−2 s−1 (90% CL), (9.12)

which is consistent with the expected sensitivity. The corresponding limit in the Bayesian

framework is 3.30 times the SSM, or

Φhep < 2.61 × 104 cm−2 s−1 (90% CL), (9.13)

with the marginalized posterior distribution for the hep flux shown in Figure 9.7.

Next, scanned systematics are evaluated by performing fits with these parameters shifted

by +1σ and −1σ relative to their means. Table 9.3 summarizes the results, including the
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Figure 9.8: Projections of the best fit to the 1/3 dataset. The hep CC and ES signals are
shown at the 90% CL upper limit. Phases I, II, and III are shown in the left, center, and right
columns, respectively.
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Parameter Fit Constraint Correlated

8B scale 0.963+0.040
−0.041 — X

hep scale 0.082 (< 2.034, 90% CL) — X

Atm. ν scale 1.015+0.189
−0.221 ±15% X

Neutron scale I 1.384+0.398
−0.204 —

Neutron scale II 1.526+0.114
−0.091 —

Neutron scale III 0.960+0.191
−0.188 —

∆
(0)
S I /10−3 0.855+10.302

−7.822 −5.20± 7.21

∆
(1)
S I /10−3 0.324+0.681

−0.419 0.44 ± 0.42

∆
(0)
S II /10−3 −4.954+7.554

−4.648 −0.01± 6.14

∆
(1)
S II /10−3 −0.333+0.455

−0.353 −0.16± 0.37

∆
(0)
S III /10−3 12.330+8.769

−4.866 −1.25 ± 10.20

∆
(1)
S III /10−3 0.282+0.336

−0.596 −0.16± 0.43

∆R I /10−2 2.951+0.863
−2.809 1.83 ± 1.60

∆R II /10−2 1.529+1.523
−1.268 2.38 ± 1.71

∆R III /10−2 2.639+0.700
−2.181 1.61 ± 1.37

∆θ I −0.016+0.189
−0.123 0.0± 0.11

∆θ II −0.023+0.164
−0.098 0.0± 0.11

∆θ III 0.037+0.126
−0.138 0.0± 0.11

Table 9.2: Best-fit values with 90% CL profile likelihood errors and 1σ constraints for the pa-
rameters floated in the joint three-phase signal extraction fit to the 1/3 dataset, with scanned
systematics at their nominal values. Flux scales here are relative to the BP2000 model predic-
tion.
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hep 90% CL UL
Parameter Constraint Best Fit Shift Profile Bayesian

Nominal — — — 2.39 3.30

tan2 θ12 0.437 ± 0.29 0.407
−1σ 3.81 4.04
+1σ 2.24 3.59

∆m2
21 /10−5 7.53 ± 0.18 7.51

−1σ 3.29 4.14
+1σ 2.20 3.51

σ(CC ν − d) ±1.2% +0.27%
−1σ 2.13 3.33
+1σ 2.39 3.24

Table 9.3: Upper limits in units of the BS05(OP) SSM prediction, obtained with scanned
systematics parameters individually varied in the joint three-phase signal extraction fit to the
1/3 dataset.

hep flux limits with each parameter shifted individually. Figure 9.9 shows the maximum

likelihoods for the shifted fits, suggesting that the data is consistent with the prior con-

straints.

To derive a conservative combined limit for the profile likelihood case, the 90% CL

MCMC sample subspaces for the nominal fit and for all fits with scanned systematics varied

±1σ are combined, and the uncertainties are recalculated. This approach yields an upper

limit of 3.8 times the BS(05)OP SSM prediction, or

Φhep < 3.01 × 104 cm−2 s−1 (90% CL). (9.14)

For the Bayesian approach, the sample spaces are combined to form an average posterior

distribution with which the credible intervals are calculated. The resulting limit is 3.9 times

the SSM, or

Φhep < 3.08 × 104 cm−2 s−1 (90% CL). (9.15)

A more comprehensive approach would account for the differences in likelihood when the
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systematic parameters are shifted. For example, we may sample systematics from their

prior distributions, run fits with many sampled values, and combine the likelihood spaces

to compute intervals accounting for the change in likelihood relative to the global minimum.

This computationally-intensive approach will be pursued for the analysis of the full data set.

These limits represent a significant improvement over the results obtained in the count-

ing analysis (Section 8.5). Moving beyond that one-bin analysis, we have used the PDF

shape information across multiple bins, correlations in the fluxes across the phases of SNO,

an improved, simultaneous measurement of the 8B background rate, and the concurrent

optimization of dominant systematic uncertainties along with the signal normalizations.

This limit is consistent with the previous work toward a fit for the hep flux [16]. Unlike

that work, which indicated a nonzero flux at the ∼ 68% confidence level, here no such excess

is observed in the data. This difference may be due entirely to statistical fluctuations, as

these analyses were performed using different 1/3 samples of the data. Issues with the

past analysis may also contribute, such as a too-low constraint on the atmospheric neutrino

background, the use of energy systematics extrapolated from low-energy calibrations, or

perhaps a bias in the method (ensemble tests were performed only with large numbers

of hep events, not in the small-signal regime of interest). While the lack of observation

is perhaps a disappointing finding, the reanalysis of the energy response and atmospheric

neutrino model, along with the validation of the fit method through ensemble testing, have

been performed to ensure the limit is robust.

9.8.3 Goodness of Fit

The quality of the fit is assessed through a variety of metrics. First, there is the question of

MCMC convergence: have we adequately sampled around the true global minimum? The

time series for each parameter is shown in Figure 9.11, and indicate that the good mixing
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Figure 9.9: Fits to shifted systematic parameters.
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has been achieved, and this is verified by KS tests of time slices as described in Section

9.3.1.

Although a stationary distribution has been reached, the likelihood space alone cannot

indicate whether the quality of the fit is good. For this the Pearson’s χ2 test is used, where

data are binned for comparison to the (three-dimensional) best-fit histograms for each phase

(see, e.g., Reference [108]). The expectation values in each bin are very small over much

of the PDF domain, and so we are far from the asymptotic limit where the χ2 statistic is

expected to be distributed according to the χ2 PDF, χ2(k − 1− ndof ). Therefore, in order

to calculate a p-value for the fit to data, I first construct this PDF, denoted ξ(k), explicitly

by sampling many independent datasets from the best-fit histograms and computing the

standard χ2 statistic; this distribution is shown in Figure 9.10. The p-value for a given fit,

characterized by a χ2 statistic a, is then given by

p =

∫ ∞

a
ξ(k)dk. (9.16)

The χ2 statistic for the 1/3 data fit is 5474, corresponding to a p-value of 25.8%, indicating

that the data are fully consistent with the best-fit hypothesis.

207



9.8 Results

Entries 100000

Mean 4054

RMS 1085

χ
2

2000 4000 6000 8000 10000

P
ro
b
ab

il
it
y
/b

in

10−3

10−2

10−1

Entries 100000

Mean 4054

RMS 1085

Figure 9.10: Monte Carlo-derived probability distribution for the Pearson χ2 statistic.
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Figure 9.11: Parameter values as a function of time in the MCMC likelihood evaluation.
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Chapter 10

Conclusions

Despite significant progress in terrestrial neutrino detectors over the past decades, the

fluxes due to hep solar neutrinos and the diffuse supernova neutrino background remain

unobserved. The hep flux is the last holdout from the pp chain, and observation will finally

complete the validation of — or uncover issues with — the standard solar model. The

DSNB spectrum holds valuable information about core-collapse supernova dynamics: the

average number and temperature of emitted neutrinos, the particles which carry away most

of the energy from these systems.

Data from all three operational phases of the Sudbury Neutrino Observatory experiment

has been analyzed to search for hep solar neutrinos and the diffuse supernova neutrino

background, using a dataset representing 1/3 of the total live time and equivalent to to

0.82 kton years of exposure. I have performed this search with two different approaches: a

counting analysis, wherein a sensitivity-optimized search region is defined in a space of cuts

(hep and DSNB) and a multidimensional signal extraction fit which benefits from improved

statistics and the use of PDF shapes (hep only). No evidence of the hep or DSNB flux was
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observed at the 90% CL, however this is the most sensitive search performed to date, and

a hep flux at or near the BS(05)OP standard solar model prediction is likely measurable in

the full dataset. In support of this work, I have performed an independent re-calibration

of the systematic uncertainties associated with energy reconstruction in the SNO detector,

using data from a pT source, 8Li source, and Michel electrons, combined with previously

published results using 16N at low energies.

For the counting analysis I have used a modified Feldman-Cousins approach where

systematics are sampled with a Monte Carlo method. The sensitivity obtained for the

hep flux at the 90% confidence level is is 4.19 times the BS05(OP) SSM prediction, or

33.2 × 103 cm−2 s−1. With six events observed, an upper limit of 6.51 times the SSM is

obtained, or 51.7×103 cm−2 s−1. The corresponding sensitivity for the previously published

Phase I-only analysis [15] is 4.34 times the SSM, and upper limit is set at 2.9 times the

BP2000 SSM (2.47 times BS05(OP)) based on two events observed.

No events are observed in the DSNB search region; the upper limit is 61.6 times the T = 6

MeV Beacom and Strigari model [63], corresponding to a limit of ΦDSNB
νe < 41 cm−2 s−1 in

the energy range 22.9 < Teff < 36.9 MeV.

A signal extraction fit for the hep flux was performed using an unbinned maximum

likelihood approach implemented with a Markov Chain Monte Carlo. I have performed a

simultaneous three-dimensional fit the full three-phase dataset, floating twelve systematic

parameters, to extract the neutrino fluxes. Additional, much smaller systematic uncertain-

ties were included via shift-and-refit approach. Parameter confidence intervals were cal-

culated according to both a profile likelihood (frequentist) and a Bayesian approach. The

signal extraction yields a 90% CL upper limit on the hep flux of Φhep < 1.90×104 cm−2 s−1,

(2.38 times the BS(05)OP SSM prediction) using a profile likelihood approach. This im-

proves on previous SNO results, and suggests that a measurement (if at low significance)

may be within reach with the full statistics.
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In future work, these techniques will be applied to the full SNO dataset, in order to either

make the first measurement of the hep flux or set a very strong limit that will likely stand

for years to come. An improved DSNB limit will also provide useful input to supernova

models. SNO has a unique capability to make these measurements, and it is crucial that

we make these data available to the physics community.
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Appendix A

The SNO+ Experiment

The SNO+ experiment, currently under construction, will explore a broad physics program

including nucleon decay, solar neutrinos, reactor antineutrinos and geoneutrinos, and neu-

trinoless double-beta decay (0νββ), with the 0νββ as the primary objective. This project,

initiated in 2004 by a subset of the SNO collaboration led by M. Chen, reuses the SNO

detector infrastructure, but replaces the D2O target with Tellurium-loaded liquid scintilla-

tor. The modifications made to the SNO detector to transition to SNO+ are described in

Section 5.7.

The unique capabilities of the SNO+ detector make it well-poised to make meaningful

contributions in several areas of neutrino physics and astrophysics. The primary virtues of

the detector are the large target volume, excellent shielding due to depth, and the ease with

which the target material can be changed. The SNO+ collaboration will leverage the latter

point by taking a phased approach to the experiment, exploring different physics along the

way to a neutrino-less double beta decay measurement.

In the first phase, a water-filled detector will be used for an invisible nucleon decay
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search, and also provide calibration data for comparison to SNO. Next, liquid scintillator

will replace water in the active volume, yielding a configuration similar to Borexino [7]. This

phase provides opportunities to study reactor ν̄ and potentially low-energy solar neutrinos,

if backgrounds are sufficiently low. Scintillator-phase background measurements provide

constraints to a third phase, when Te is added to the scintillator for the neutrinoless double

beta decay search.

SNO+ will be the first experiment to load Te into liquid scintillator, making use of a

novel technique [123]. Key advantages to this approach are that very large target mass

is possible with further R&D to improve optics, and that switching isotope is possible in

order to confirm an observed signal. Liquid scintillator detectors have received criticism

due to their relatively poor energy resolution in a field historically dominated by small,

high-precision detectors (Ge, bolometers, etc.). The collaboration aims to demonstrate

both the soundness and the scalability of the SNO+ model: essentially, sensitivity scales

as S/
√
B, hence more signal (large detector) is ultimately better than lower backgrounds

(good resolution).

As of mid-2016, the SNO+ detector is currently nearing the end of the construction

phase and due to begin commissioning soon; finalizing scintillator purification systems is

the largest remaining task. Water filling is underway, suggesting a start to the first phase

in late 2016. The next (scintillator) phase is scheduled to begin early 2017, and the third

(double-beta decay) phase in the latter part of 2017. The nominal plan for this third phase

calls for a five-year run time.

A.1 Neutrinoless Double Beta Decay

Neutrino oscillation experiments in recent decades have firmly established that the neutrino

is massive. However, with no charges to distinguish ν from ν̄, it remains unknown whether

the neutrino is described by a Dirac or Majorana field. The particle-antiparticle distinction
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has historically been inferred from the other participants in a interactions, with an assump-

tion of total lepton number (L) conservation. However, the motivation for this assumption

is questionable: L conservation is an accidental symmetry of the Standard Model, and lep-

ton flavor conservation is already known to be violated by neutrino oscillations. We may

turn the question around: if you run faster than a (massive) νL, what about it isn’t an

antineutrino?

The current experimental evidence allows a Majorana neutrino, for which ν = νc and

νR = (νL)
c; this neutrino is its own antiparticle. This symmetry permits a variation of

double-beta decay (2νββ) wherein the (virtual) Majorana neutrinos effectively undergo

ν − ν̄ oscillations and are absorbed internally, resulting in a three-body rather than a five-

body decay; this is known as neutrinoless double beta decay (0νββ). This decay has a clear

experimental signature in a scintillator detector where the individual electron tracks are not

resolved: the observed sum of the energies of the outgoing electrons is a peak rather than

a continuum, as shown in Figure A.1. 0νββ is not the only probe of the Majorana nature

of the neutrino, but it benefits from a level of model-independence: the Schechter-Valle

theorem [124] guarantees that any such ∆L = 2 decay can be re-expressed as neutrino-

antineutrino oscillation and thus implies a Majorana mass term in the Standard Model.

A simple realization of this, most commonly used when discussing 0νββ, is light neutrino

exchange, illustrated in Figure A.2.

The parameter being probed in 0νββ experiments is the effective Majorana neutrino

mass, to which the lifetime is inversely proportional. This is a coherent sum of neutrino

eigenstate masses (including two new Majorana CP phases φ1 and φ2 in the mixing matrix):

(t0ν1/2)
−1 = g4AG

(0)
0ν |M0ν |2

∣∣∣∣
〈mββ〉
me

∣∣∣∣
2

, 〈mββ〉 =
∑

i

U2
eimi (A.1)

where G and M are the theoretical phase space factor and matrix element for the decay, and

216



A.1 Neutrinoless Double Beta Decay

E/Qββ

0 0.2 0.4 0.6 0.8 1 1.2

d
N
/d

(E
/Q

β
β
)

0

0.5

1

1.5

2

2.5

0νββ

2νββ

Figure A.1: Double-beta decay spectra, including a few-percent energy resolution.

n p

e−

e−

n p

W

νe×

W

Figure A.2: Light Majorana neutrino exchange, one possible mechanism for 0νββ.
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the normalization of the axial vector coupling, gA, has been factored out of G to show the

strong dependence of the rate. This is of great interest since loop-level corrections involving

axial vector currents can lead to an effective tree-level gA that is smaller than the 1.269

appropriate for free nucleons, leading to a systematic underestimate of mββ limits when

translating from t1/2 limits. Figure A.3 shows the parameter landscape for 0νββ detection

in a Vissani-Strumia plot, with mββ as a function of the lightest neutrino mass (νl), which

depends on the neutrino mass ordering. In the normal ordering case (m1 < m2 < m3),

there are some values of νl and the Majorana phases which lead to a precise cancellation; in

this experimentally unfortunate case, mββ would have an unobservably small value, despite

Majorana neutrinos being realized in nature. In the case of the inverted mass ordering, 0νββ

should be observable by next-generation experiments currently being planned. It may also

be the case that mββ lies in the degenerate region, in which case it may be accessible to

current-generation experiments. Finally, it is important to keep in mind that this parameter

space is model-dependent; the landscape is very different, for example, if there exist one or

more sterile neutrino states.

Figure A.3 also shows limits from cosmological structure observations by Planck [64],

which constrain the sum of neutrino masses, the best limits from tritium beta decay end-

point measurements (the combined limit of the Mainz and Troitsk experiments [28]) which

measure

m2(νe) =
∑

i

|Uei|2m2
i , (A.2)

and a claim of observation of 0νββ in 76Ge [125], with nominal (gA = 1.269) and maximal

quenching.

The Standard Model 2νββ process has been observed in a variety of nuclei for which

competing processes are forbidden, with lifetimes on the order of 1021 years and energies

around 3 MeV. The natural abundance of the ββ isotopes range from < 1% to about 35%,

with a variety of matrix elements M , phase space factors G, and Q values. This leaves an
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three-neutrino mixing model.
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array of possible isotopes with which to study 0νββ, each with particular advantages and

drawbacks, with no clear best choice [126]. 130Te, the choice for the SNO+ experiment, is

favorable due to a high natural abundance (34.5%), reducing need for costly enrichment,

as well as a relatively large matrix element. However, the 2.528 MeV endpoint coincides

with several backgrounds including cosmogenically-activated 60Co and a 2.6 MeV γs from

U- and Th-chain decays in detector materials, which produce electrons through Compton

scattering.

A.1.1 Current Results

A number of experiments are currently performing searches or due to begin taking data

soon, and have adopted a wide variety of approaches and candidate isotopes.

Since 2006 there has been a highly controversial claim of detection in 76Ge by a subset of

the Heidelberg-Moscow experiment, with a measured half-life of T1/2 = (2.23+0.44
−0.31)× 1025 y

[125]. The authors have applied a variety of analysis improvements and claim a very high

significance (> 6σ), but the experiment has received significant criticism from the rest of

the community; see, e.g., Reference [127]. In the mean time, significant experimental effort

has gone toward confirming or excluding the result, particularly using the same isotope. In

2013, the 76Ge-based GERDA experiment published a null result with an upper limit of

T1/2 > 2.1×1025 y (90% CL), which is combined with exclusions from other Ge experiments

(Heidelberg-Moscow and IGEX) to reach T1/2 > 3.0 × 1025 y (90% CL), excluding the

claim with high significance [128]. The authors of the claim have offered a rebuttal of

this conclusion [129]. Very recently (July 8, 2016) the GERDA collaboration presented

preliminary results combing new data from an upgraded Phase II run with the existing

data; the 76Ge half-life limit is T1/2 > 5.2 × 1025 y, with a sensitivity of 4.0 × 1025 y, both

at the 90% CL.18

18These preliminary results are not yet published, and were presented at the XXVII International Con-
ference on Neutrino Physics and Astrophysics (Neutrino 2016).
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Meanwhile, the rest of the field of 0νββ experiments continue to improve sensitivity.

The NEMO experiment uses thin foils with a number of 0νββ candidate isotopes in a

tracking detector; although the target mass is low, NEMO is able to resolve the individual

β kinematics. The NEMO-3 detector has set limits for a wide array of isotopes, including

T1/2 > 1.3 × 1023 y (90% CL) for 130Te [130].

The Enriched Xenon Observatory program has run EXO-200, a liquid Xenon time pro-

jection chamber, to search for 0νββ in 136Xe, setting a limit of T1/2 > 1.1 × 1025 y (90%

CL) [131]. The collaboration has also measured the 2νββ mode [132, 133].

The KamLAND-Zen experiment also uses 136Xe, but dissolved in liquid scintillator,

inside a thin containment balloon at the center of the KamLAND detector. The first phase

produced a limit of T1/2 > 1.9 × 1025 y, or T1/2 > 3.4 × 1025 y (90% CL) when data

are combined with EXO-200 [134]. This measurement was unfortunately limited by an

unexpected contaminant near the Q value, believed to be 110mAg due to fallout from the

Fukushima nuclear incident in March 2011, introduced during construction of the inner

balloon. After a substantial background reduction campaign, the collaboration has recently

announced19 a dramatically improved limit of T1/2 > 1.1× 1026 y (90% CL) [135].

The Cryogenic Underground Observatory for Rare Events (CUORE) program is using

130Te, fabricated into TeO2 crystals operated cryogenically as bolometers. The Cuoricino

prototype operated at LNGS from 2003–2008 set a limit of T1/2 > 2.8 × 1024 y (90% CL)

[136], while in 2015 the CUORE-0 detector (a representative fraction of what will become

the full CUORE detector) improved this to T1/2 > 4.0 × 1024 y (90% CL), the strongest

limit for 130Te thus far [137].

The experiments using isotopes other than 76Ge may still test the claim of observation

in 76Ge, but the constraints are weakened by the uncertainties in the matrix element used

to convert from a half-life (which is different for every isotope) to the universal mββ. Even

so, the published joint KamLAND-Zen/EXO-200 results exclude the claim regardless of the

19At the time of writing, this paper has not yet been published.
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matrix element calculation. Furthermore, cosmological constraints on the lightest neutrino

mass due to the Planck experiment [64] independently exclude the region of the degenerate

parameter space required for the claim at high significance.

In light of this evidence, the 76Ge claim is effectively ruled out, and so there is no longer

a particular sensitivity target in mind. Therefore, all of these experiments — and more,

including SNO+ and Majorana [138] — are aggressively pursuing new technologies that

have a clear path forward to covering the entire inverted hierarchy region and beyond.

A.2 Backgrounds

With the SNO+ detector still under construction, analysis relies heavily on detector Monte

Carlo. To this end, we have developed a sophisticated detector simulation based on GEANT4

[139, 140] which includes geometry details and a microphysical optical model with photon

tracking.20 Most decays, including double-beta decays, are generated with the Decay0 gen-

erator created by V. Tretyak and ported to C++ by A. Bialek of SNO+. We model all

expected backgrounds at all locations in the detector, as described below. Microphysics, in

particular the scintillation and PMT model, is verified with benchtop experiments, and the

detector modeling has been checked against both the SNO Monte Carlo and SNO data.

Internal backgrounds originate in the scintillator, the Te, and the agents used to load

the Te into the scintillator. These include U- and Th-chain contamination, cosmogenically-

activated isotopes, and 2νββ decays. We also group elastic scatters of 8B solar neutrinos

into this category, as well as n-capture γs. The estimated rates of these backgrounds come

from a variety of sources: scintillator is assumed to purified to Borexino levels [142], 8B

ES from the global best fit to solar and reactor neutrino measurements, and 2νββ from

NEMO-3 [130]. Based on spike tests, it is believed that cosmogenically-activated isotopes

20The author has led the release of an open-source variant of this software, known as RAT-PAC (RAT is
an Analysis Tool, Plus Additional Codes) [141].
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resulting from the exposure of the Te to cosmic rays during its time on the Earth’s surface

will be reduced to negligible levels. A detailed analysis of the cosmogenic activation of Te

for SNO+ has been performed by Lozza and Petzoldt [143].

External backgrounds originate outside the target volume; these are predominantly U-

and Th- chain decays in the detector materials. Rates of these decays are estimated based

on the target levels [144] and fit results [46] from SNO.

Some backgrounds have complex distributions in time and space: for example, diffusion

of Rn from the cover gas into the scintillator, and leaching of Rn daughters from the acrylic

vessel bulk into the scintillator. These processes are modeled in an average way, with rates

estimated by ex situ assays.

A final background class, instrumental backgrounds are those due to noise in the detector

electronics, or light generated in detector components rather than in decays and scatters.

SNO+ benefits from the experience of SNO in identifying these backgrounds, but much

work remains to be done in developing cuts appropriate for a scintillator-filled detector.

These backgrounds are not modeled: it is assumed that they will be cut effectively by

future analysis.

A full account of the SNO+ background model is given in Reference [56].

A.3 Counting Analysis

The measurement of 0νββ in SNO+ is in many ways similar to the hep and DSNB mea-

surement in SNO described in the preceding chapters, despite the different physics involved.

Both are rare-process searches at the endpoint of a steeply-falling background spectrum

(130Te 2νββ and 8B solar neutrinos, respectively) and so the analysis approaches are quite

similar. A counting analysis provides a straightforward and robust means of deriving a sen-

sitivity comparable to other experiments, and a more sophisticated signal extraction fit to

be performed in the future will extract the most information out of the available statistics.
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A.3.1 Sensitivity

To estimate the sensitivity of the SNO+ experiment to 0νββ, I employ the background fluc-

tuation sensitivity introduced in Section 8.4; that is, I compute the number of background

events that would be observed in a background fluctuation of a given significance, take that

as a limit on the smallest observable signal, and translate to a limit on the decay lifetime

and effective Majorana neutrino mass. An oft-quoted formula for the half-life sensitivity is

[136]

T̂ 0ν
1/2(nσ) =

ln 2

nσ

NA · a · η · ǫ
W

√
M · t
b · δE · f(δE) (A.3)

where nσ is the desired confidence level in number of Gaussian σ, NA Avogadro’s number,

a the isotopic abundance of 0νββ isotope, η the stoichiometric fraction of isotope, ǫ the

detector efficiency, W the molecular weight of the active mass, M the active mass, t run

time, b specific background (counts per unit energy-mass-time), δE the energy cut window,

f = erf(δE
√
ln 2/∆E) the fraction of signal events inside the cut window, where ∆E is the

FWHM energy resolution at the endpoint.

This expression, however, makes a series of assumptions that are not valid for SNO+.

First, it assumed that the number of background counts is large enough that a Gaussian

distribution models the Poisson uncertainty accurately, Nb & 25. This is particularly dan-

gerous because a Gaussian approximation will under-cover (set ‘too good’ a limit) for low

Nb. Second, it is assumed that the signal rate and background rate scale together. This is

the case for many detectors such as CUORE [137] and GERDA [128], where the detection

medium itself is made from the candidate isotope, but in SNO+, the external backgrounds,

the internal backgrounds intrinsic to the LAB-PPO scintillator, and the 8B solar neutrino

elastic scattering background do not scale with Te isotope mass.

For these reasons I adopt a more exact procedure based on the Feldman-Cousins unified

approach [110]. Feldman-Cousin upper limits (FC) are derived for the desired confidence

224



A.3 Counting Analysis

level α assuming that a number of events N are observed that is Poisson-distributed around

the Monte Carlo-derived background expectation b:

T̂ 0ν
1/2(α) =

〈
Niso · ǫ · t · ln 2
FC(N, b;α)

〉

{N=Pois(b)}

(A.4)

where the average is over an ensemble of pseudo-experiments, Niso is the number of 130Te

atoms inside the active (fiducial) volume, and ǫ is the signal detection efficiency (a gener-

alization of f(δE)). This approach makes no assumptions about the relationship between

target and detector mass, is valid in the Poisson limit, and limits may be compared to other

Feldman-Cousins intervals.

While the above method is used for the baseline sensitivity calculation, note that all of

these approaches assume not only that background targets are reached, but that the mean

background rates are known exactly. This is certainly not the case for all backgrounds, and

so we require a way to incorporate that uncertainty into our limits. Possibilities include, for

example, a sampling approach similar to that used in Chapter 8, a hybrid Bayesian approach

that modifies confidence belts by marginalizing P (n;µ) over the background distribution, or

direct frequentist approaches. The sensitivities presented in the following sections, however,

follow the basic approach of Equation A.4 with fixed b.

A.3.2 Reconstruction

Reconstruction algorithms with performance rivaling or exceeding those used in SNO are

under development for SNO+. For the present analysis, however, I use Monte Carlo truth

event positions and energies, and apply an analytical energy response model, convolving the

true energy with a Gaussian kernel of width σE =
√

E [MeV]/Y where Y is the light yield

in Nhits/MeV. An exception to this rule is external backgrounds: here both reconstructed
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positions and energies are used. The SNO+ fitter is a 1D maximum likelihood fit, where

the observable is the set of time-of-flight corrected PMT hit times (time residuals).

Due to quenching, the mean energy deposited by 0νββ events is less than Qββ (2.528

MeV) by about 50 keV, according to the simulation model. I define an effective kinetic

energy unit Tββ such that the mean visible energy for simulated 0νββ events sits at the Q

value. It is difficult to construct such a unit rigorously, as it in principle involves an integral

over the two-particle phase space, so for the purposes of this analysis we achieve a similar

effect by simply multiplying all energies by a scale factor of 1.021.

A.3.3 Cuts

A number of event selection cuts are applied to reduce background and maximize the

sensitivity to mββ. It is assumed that these cuts have 100% signal efficiency (no sacrifice);

this will be revisited once cuts are finalized and have been applied simultaneously to a single

dataset.

BiPo Tagging Coincidence tagging is used to reduce the background due to 214Bi – 214Po

and 212Bi – 212Po decays which occur in quick succession, the 212 family with a 299 ns half-

life and 214 with 164 µs. We assume that we can tag and remove all events where the two

decays fall into separate 400 ns trigger windows.21 In the case where decays “pile up” in

the same window, techniques such as likelihood ratio tests using the time residuals provide

discrimination up to the point where the decays are simultaneous within the resolution of

the PMTs. Based on this limit, a factor of 50 rejection is assumed for these in-window

coincidences. It is possible that particle ID afforded by the different α and β scintillation

timing profiles in LAB-PPO scintillator will further aid in rejecting these backgrounds.

21The capabilities of the new analog trigger system developed by the author, the MTC/A+, may help to
identify these coincidences; see Section 5.7.1.
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External Backgrounds A likelihood ratio-based technique for identifying external 208Tl

events developed by Coulter [145] and independently verified by the author reduces external

backgrounds by a factor of two. This method uses the distortion in the time profile of hit

PMTs introduced when energy is promptly deposited in the AV or external water, before a

γ ray Compton scatters in the scintillator.

(α, n) Backgrounds Coincidence tagging is also used to reduce the background due to

(α, n) reactions, which can result in a 2.22 MeV capture γ which may contribute background

in the signal region of interest. These tags cuts have been tuned to eliminate > 99.6% of

prompt α events and 90% of delayed n events with minimal signal loss [56].

A.3.4 Optimizing the Signal Region of Interest

The 0νββ region of interest is defined by a restricted fiducial volume and energy window,

which are set to maximize the sensitivity. It is common in the field — which is dominated by

detectors with much better energy resolution — to use an energy window of 1σ or FWHM

around the 0νββ signal peak to define the energy window. For SNO+, however, this is not

the optimal choice, due to the presence of the steeply-falling 2νββ spectrum on the low-

energy side. In terms of volume, we must balance signal acceptance with contamination due

to external backgrounds, which have a roughly exponential radial profile. These issues are

coupled: if we accept much more background by lowering the energy threshold, externals

are subdominant and it makes sense to expand the fiducial volume slightly. Therefore, we

have a two-dimensional optimization problem.

In order to address this, I performed a grid scan over a range of fiducial volume cut

values and energy thresholds, and calculated an approximate sensitivity for each point in

the parameter space, shown in Figure A.4. The best sensitivity is achieved for a radius

cut around 3.6 m, which is rounded down to 3.5 to be more robust against uncertainties

in the external background model, and an energy window of −0.5σ → 1.5σ around the
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A.3 Counting Analysis

Figure A.4: Grid scan of the joint fiducial volume/energy range parameter space to optimize
the signal ROI in the SNO+ counting experiment. Sensitivity is approximate only.

Gaussian 0νββ peak. The volume cut accepts 20% of signal events (the entire AV is filled

with Te-loaded scintillator) and the efficiency of the energy cut is 0.625.

A.3.5 Results

Figure A.5 shows expected background distributions for the first year of running, assuming

a scintillator cocktail with 0.3% natTe by weight loaded using the surfactant PRS and a

secondary fluor bis-MSB22 [123], with a fiducial volume cut at 3.5 m applied. The number

22Since the time of this analysis, which provides the sensitivity estimates quoted in Reference [56], the
SNO+ collaboration has pursued a new loading method based on complexing Te with 1,3-butanediol. The
surfactant method suffers from (a) the higher absorption at low wavelengths, necessitating the introduction
of a secondary fluor, and (b) the cosmogenic activation of sulfur in PRS precursor LAS, leading to very high
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Figure A.5: Expected backgrounds with r < 3.5 m, shown with an example signal for a
Majorana neutrino with mββ = 200 meV.

of counts expected in the ROI for the first year of data taking are listed in Table A.1.

Background rates in subsequent years change slightly for two reasons: short-lived cos-

mogenic backgrounds decay away, leading to reduction in this class, while leaching of Rn

daughters from the inner surface of the AV leads to an increase in the rate of (α, n) back-

grounds (as well as 210Po, which affects our ability to tag certain β−α coincidences). These

effects are accounted for in the sensitivity estimates for multi-year running, given in Table

A.2.

The IBM-2 matrix element using the Miller-Spencer approach [146] and gA = 1.269

[147] are chosen for definiteness in the figures, but this is entirely arbitrary; indeed, there is

about a factor of two uncertainty among different theoretical approaches, and so it is more

correct to quote a range. Table A.3 presents mββ ranges for a variety of matrix element

calculations, where I have accounted for different choices of gA in the original references

expected backgrounds in the ROI even after purification. Significant effort is underway to demonstrate the
optical properties and long-term stability of the Te-diol complex.
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Signal Counts Signal Counts

2νββ 6.3297 22Na 6.25 × 10−3

8B ν ES 7.2619 26Al 1.65 × 10−9

(α, n) γ 0.0632 42K 6.95 × 10−5

13C (α, n) 0.0178 44Sc 1.90 × 10−5

13O (α, n) 0.0001 46Sc 5.50 × 10−5

234mPa 0.2726 56Co 1.11 × 10−6

214BiPo 0.5413 58Co 1.47 × 10−7

210Tl 1.2665 60Co 4.75 × 10−3

228Ac 0.0004 68Ga 1.62 × 10−3

212BiPo 1.7429 82Rb 1.58 × 10−4

208Tl 0.0042 84Rb 1.54 × 10−5

88Y 2.07 × 10−1

AV 214Bi 0.2558 90Y 3.11 × 10−9

AV 208Tl 1.0118 102Rh 5.77 × 10−5

AV Inner Dust 214Bi 0.0028 102mRh 1.44 × 10−4

AV Inner Dust 208Tl 0.0000 106Rh 1.44 × 10−4

AV Outer Dust 214Bi 0.0150 110Ag 1.60 × 10−5

AV Outer Dust 208Tl 0.3952 100mAg 1.84 × 10−2

Water 214Bi 0.1508 124Sb 4.72 × 10−1

Water 208Tl 0.4422 126Sb 2.93 × 10−5

HD Ropes 214Bi 0.0237 126mSb 4.30 × 10−7

HD Ropes 208Tl 1.0429
PMT β − γ 0.2788

Total 21.8304

Table A.1: Expected background counts in the ROI in the first year of SNO+ data taking.
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1 Year 5 Years 10 Years

Counts 21.830 106.826 213.108
FC Limit 8.191 17.224 24.937

T̂ 0ν
1/2 [y] 3.95 × 1025 9.38 × 1025 1.30 × 1026

mββ [meV] 105.1 68.1 58.0

Table A.2: Expected sensitivity of the SNO+ experiment at the 90% confidence level. See note
in the text about the assumptions regarding the matrix elements used for the mββ estimate.

IBM-2 QRPA-Tü ISM pnQRPA EDF
[146] [148] [149] [150] [151]

M0ν 4.03 – 4.61 3.89 – 4.81 2.06 – 2.57 3.94 4.98
Phase I mββ 59.6 – 68.2 57.1 – 70.7 107 – 133 69.7 55.2
Phase II mββ 20.5 – 23.5 19.7 – 24.3 36.8 – 45.9 24.0 19.0

Table A.3: Effective Majorana mass limits for a nominal five-year SNO+ run, for a variety of
theoretical approaches to matrix element calculation.

and normalized all to gA = 1.269. The overall range for mββ for a nominal five-year SNO+

run is 55.2 – 133 meV.

Constraints and Discovery Potential It is common to extend the background fluctua-

tion sensitivity to a higher significance (say 3σ) and consider this as the signal level at which

a discovery of 0νββ could be claimed. This interpretation can be misleading, however, as

it does not address a crucial difference between discovery and limit-setting: in practice, a

positive claim requires a demonstration that the observed signal could not have been caused

by anything else. Imagine for the sake of argument that the 60Co cosmogenic background

is in all observables identical the 0νββ signal. In computing the sensitivity, we assume a

model where this background is reduced to negligible levels by purification and exclude it.
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And indeed, if the purification target is reached, the SNO+ limit could be interpreted as

being distributed around that sensitivity estimate.

Realistically, the efficacy of the purification is unknowable at the relevant scale. If

an excess were observed (due in reality to an unexpectedly high 60Co rate), it could be

explained by a short 0νββ half-life, and hence the limit is weakened. It is clearly not

possible to make a discovery claim in this case, regardless of the confidence level of the

background-fluctuation sensitivity. For this reason, it is crucial to preserve experimental

handles that break the degeneracy between signal and background in the observables, even

at the risk of diminished sensitivity. Systematic uncertainties are similarly problematic: a

small non-Gaussian tail in the energy resolution could easily mimic a signal excess, and also

must be tightly constrained.

Unless every component of the background model can be independently constrained,

either through conclusive ex situ tests or better yet, using sidebands of the data itself, is it

not possible to claim discovery. The strongest statement that we can make is to construct

one-sided upper limits based on the known components of the background model as a

function of the observed event rate, which will result in substantially weakened limits if the

expectation is exceeded.

A.3.6 Systematic Uncertainties

There are many sources of systematic uncertainty relevant for the SNO+ 0νββ search:

uncertainties in the true mean rates of the backgrounds, uncertainties related to position

and energy reconstruction (including scale, shift, resolution, nonlinearity, tails, and time

variation), uncertainties in the model (Qββ, solar neutrino mixing parameters, the 8B solar

neutrino spectrum, cross sections, and physics models in Geant4), the target mass and

effective fiducial volume, and the finiteness of the Monte Carlo samples used to evaluate
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the limits. Additional uncertainties, such as the sacrifice of instrumental background cuts,

must await detector data before they can be quantified.

The constraints on individual background rates are derived from a variety of analyses.

The normalizations of the two dominant backgrounds, solar 8B ν elastic scattering (ES)

and 2νββ, are constrained by previous experiments (SNO and NEMO-3 [130], respectively),

but all other constraints must be determined from SNO+ data. This will be accomplished

through coincidence tagging (e.g. n and β/α), sideband fits (e.g. energy and radius), and

potentially time series analysis (to constrain certain cosmogenic backgrounds).

Systematic uncertainties other than normalizations also have impact on the sensitivity

and discovery potential for SNO+. I have investigated a variety of systematics, both in terms

of the minimum required constraint to keep backgrounds subdominant to irreducible 8B ν

scattering and how well the data itself constrains the parameters. Energy systematics (scale,

shift, and resolution) were extracted from sideband energy fits in the 1.5–2.2 MeV range,

and other parameters have been propagated using Monte Carlo and event reweighting. The

systematic parameters studied are listed in Table A.4. Per the discussion in A.3.1, it is

crucial to further develop in situ constraints for cosmogenics and 60Co in particular, and

to revise all constraints once detector background data becomes available, in order to set a

realistic sensitivity estimate.

A.4 SNO+ Phase II

Following the successful completion of the above-described 0νββ search, nominally with a

five-year run time, the SNO+ detector will be upgraded for a second phase (SNO+ Phase

II). The baseline plan for Phase II includes an increased Te loading of 3% and an upgrade

of the PMT array to new, high-quantum efficiency photodetectors such as the Hamamatsu

R5912-100. The increased loading has a negative impact on optical attenuation in the scin-

tillator, however the improved photon detection efficiency of the upgraded PMT array is
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Parameter Description Nominal Variation Reference

σE [keV] Energy resolution 112.4 +2.4
−2.2

aE Energy scale 0.021 +3.4
−3.6 × 10−3

AE [keV] Energy offset 0 +3.3
−3.7

Qββ [keV] 2νββ endpoint 2527.518 ±0.013 [152]

tan2 θ12 Solar ν mixing 0.443 +0.030
−0.025 [48]

sin2 θ13 [×10−2] Solar ν mixing 2.49 +0.20
−0.32 [48]

∆m2
21 [10−5 eV2] Solar ν mixing 7.46 +0.20

−0.19 [48]
P (Eν)

8B shape See ref. See ref. [85]

Table A.4: Systematic parameters and constraints.

expected to more than compensate, for a total detected light yield of 450 Nhit/MeV. Based

on preliminary studies, this upgrade is expected to improve the sensitivity by almost an

order of magnitude, potentially allowing SNO+ to cover a large portion of the parameter

space for the inverted neutrino mass hierarchy. With higher loading, fiducialization becomes

increasingly inefficient, both in terms of optics and cost: a large amount of the Te isotope

is “wasted” in the non-active region at high radius, and absorbs more light than unloaded

scintillator. For this reason there is motivation to pursue an inner containment vessel, such

as a thin balloon, which will have loaded scintillator inside and pure LAB-PPO outside. A

significant R&D effort is already underway to characterize the higher-concentration scin-

tillator cocktails, the response of a HQE PMT array, and the optimization of a possible

containment balloon.

I have applied the counting analysis developed above to make projections for the Phase

II sensitivity, assuming an increase to 3% loading and 450 Nhit/MeV. This involves a re-

optimization of the volume/energy region of interest, which results in an expanded fiducial

volume, out to 3.9 m in radius, while the (−0.5σ → 1.5σ) energy ROI remains near optimal.

Table A.5 shows how the assumptions, background rates, and sensitivities scale in moving

from Phase I to Phase II.
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Phase I Phase II

Fiducial volume [m] 3.5 3.9
Active isotope [kg] 160 2214
Light yield [Nhits/MeV] 200 450
Energy resolution σ at Qββ [keV] 112 75
Energy ROI (Qββ − 0.5σ, Qββ + 1.5σ)

2νββ 31.6 42.3
8B ν ES 36.3 33.6
(α, n) 0.84 0.04
U chain 10.4 49.6
Th chain 8.74 49.6
Cosmogenic 0.79 6.37
External 18.1 63.7

Total counts 107 245
T 0ν
1/2 (90% CL) [y] 9.4× 1025 8.4 × 1026

mββ (90% CL) [meV] 68 23

Table A.5: Projections for SNO+ Phases I and II compared, each for a nominal five-year live
time.

If the background and light yield targets for Phase II are achieved, a five-year measure-

ment will have sensitivity at the 90% confidence level throughout the vast majority of the

inverted mass hierarchy region of the mββ parameter space, with a limit of T 0ν
1/2 > 8.4×1026

y, or mββ sensitivity in the range 19.0 – 45.9 meV, where the range is due to the spread in

matrix element calculations, as described in Section A.3.5.

A.5 Conclusions

SNO+ is a kilotonne-scale liquid scintillator detector that will follow on the success of the

SNO experiment, reusing much the SNO detector infrastructure to perform a broad array
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of measurements in neutrino physics. The primary goal for SNO+ is a sensitive search for

0νββ in 130Te, the observation of which would demonstrate that the neutrino is a Majorana

particle. This measurement is expected to begin in 2017. I have presented in detail the

methods by which the sensitivity of this search is estimated, based on a counting analysis

analogous to the SNO hep/DSNB search. Beyond this, I have presented an overview of

relevant systematic uncertainties based on a series of sideband analyses developed to provide

robust data-driven constraints on the dominant uncertainties.

The expected sensitivity for the initial phase of SNO+ is T 0ν
1/2 > 9.4 × 1025 y at the

90% confidence level, assuming a five-year run. This corresponds to a limit on the effective

Majorana neutrino mass mββ in the range 55.2 – 133 meV, depending on the choice of

matrix element. This range is competitive with current-generation experiments, and covers

the parameter range near the top of the inverted neutrino mass hierarchy.

Following this Phase I run, the detector will be upgraded with a high-quantum efficiency

PMT array and the Te loading increased tenfold to 3.0%. This leads to nearly an order of

magnitude in half-life sensitivity, pushing the 90% CL limit to T 0ν
1/2 > 8.4× 1026 y (also for

five live-years), or mββ in the range 19.0 – 45.9 meV. This unprecedented sensitivity would

cover the vast majority of the inverted mass hierarchy parameter space.

The sensitivity of SNO+ Phases I and II are illustrated in Figure A.6, along with selected

results from GERDA and KamLAND-Zen as well as the outstanding claim of observation

in 76Ge by Klapdor-Kleingrothaus and Krivosheina [125].

SNO+ will be the first experiment to load Te into liquid scintillator, and beyond making

a competitive measurement in Phase I and achieving groundbreaking sensitivity in Phase

II, will serve to demonstrate the power of this approach for future, larger-scale experiments

using liquid scintillator and water-based liquid scintillator (WbLS) targets.
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Figure A.6: A Vissani-Strumia plot showing the parameter space for 0νββ in the canoni-
cal three-neutrino mixing model, with the projected sensitivity for SNO+ as well as selected
experimental limits (see Section A.1.1 for details).

237



Appendix B

Atmospheric Neutrino Event

Simulation with GENIE

The GENIE (Generates Events for Neutrino Interaction Experiments) generator [99] is a

software package which simulates high-energy (∼ 100 MeV to 100 GeV) neutrino interac-

tions with nuclear targets in a geometric detector model, using state-of-the-art modeling.

We may input to GENIE a calculated atmospheric neutrino flux and a simplified model

of the SNO detector to obtain a sample of primary particle tracks, and then import these

tracks into the full detector simulation (SNOMAN) to generate, propagate, and detect op-

tical photons with the appropriate response. GENIE also includes utilities for reweighting

the simulation output for variations in relevant model parameters, and important feature

for evaluating model systematics.
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B.1 Physics Models

The nuclear physics model used for all processes is the Bodek and Ritchie relativistic Fermi

gas model which accounts for short-range correlations and has been verified by electron

scattering measurements [153], with an energy- and A-dependent nuclear density. For the

quasi-elastic scattering cross section, the Llewellyn-Smith model [154] is used, with the

BBBA2005 parameterization of the electromagnetic form factors [155]. The elastic neutral

current scattering and baryon resonance production cross sections are due to Arhens et al.

[156] and Rein-Sehgal [157], respectively. Non-resonance inelastic scattering, including deep

inelastic scattering (DIS) is implemented with the Bodek and Yang model [158]. Further

details on the cross section modeling may be found in [99].

The production of hadrons in GENIE is done with the specially-developed AGKY model,

which smoothly transitions from a Koba-Nielsen-Olesen [159] model at low invariant mass to

the widely-used PYTHIA/JETSET [160] model at high mass. These hadrons may rescatter

within the nucleus; GENIE relies on the INTRANUKE subpackage for simulating intranu-

clear pion and nucleon transport and final state interactions (FSI), described in [99].

B.2 Detector Model

A simplified SNO geometry was created in ROOT for use in the GENIE simulation. This

model includes:

Acrylic Vessel The AV is modeled as a union of a spherical shell (5 cm thick and having

a radius of 600 cm) and a cylindrical shell. The material is assumed to be C5H8O2.

Light Water The AV is contained within an 8.5 m sphere of H2O. The PMTs and support

structure are not included.
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B.2 Detector Model

Figure B.1: Visualization of the simplified SNO geometry used in the GENIE primary vertex
generation. The detector model includes the acrylic vessel with neck (blue), light water (gray),
and heavy water. The facets are an artifact of the visualization.

Heavy Water Inside the vessel is an interchangeable target, which can be pure D2O, D2O

loaded with 0.2% natural NaCl, or D2O with an array of NCDs, depending on the

phase.

A visualization of the geometry is shown in Figure B.1.
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Appendix C

A Time-Correlated Approach to

Supernova Background Detection

The general discussion of the DSNB presented in this dissertation has assumed, naturally,

that it is diffuse: isotropic and uniformly distributed in space and time. However, for a

small fraction of the volume nearest to Earth, with z . 0.05, a significant number of Type

II supernovae occurring during SNO were observed optically, and so the time of the event is

approximately known, in addition to (in most cases) the direction and distance to the host

galaxy. In terms of flux, this volume corresponds to about 10% of the total DSNB signal

from 20–30 MeV, according to the Beacom and Strigari model [63, 65]. By extrapolating

the light curve back to estimate the probable arrival time for neutrinos, it is possible to

perform a time-correlated search with significantly reduced background.

To determine the practicality of such an approach, let us perform a rough estimate.

According to the model in Reference [161], the core-collapse supernova rate in this low-z
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Expected Counts
Reaction Region Phase I Phase II Phase III

CC ν̄e + p → n+ e+ H2O 409.71 409.71 409.71
CC ν̄e + d → n+ n+ e+ D2O 135.88 135.88 135.88
CC νe + d → p+ p+ e− D2O 77.74 77.74 77.74
NC νµτ + d → νµτ + p+ n D2O 83.14 188.54 120.78
NC ν̄µτ + d → ν̄µτ + p+ n D2O 67.34 152.26 97.40

Table C.1: Number of time-integrated neutrino events in each SNO phase for dominant chan-
nels, above a threshold of 16 hit PMTs, according to the Beacom and Vogel model [165]. Data
from Reference [164], Table 7.1.

region is approximately flat, ∼ 1.5 × 10−4 y−1 Mpc−3. If we efficiently sample SN with

z . 0.03, this implies about 600 such events are expected during SNO. In the supernova

catalog provided by the IAU Central Bureau for Astronomical Telegrams [162], 471 SNII are

identified, 311 of which are associated with a known astronomical object with a measured

redshift recorded in the NASA/IPAC Extragalactic Database (NED)23 [163].

Overall, the dominant channel for supernova neutrino interactions in SNO is ν̄e CC on

protons in the external H2O region (ν̄e + p → n+ e+), followed by νµτ − d and ν̄µτ − d NC

in the D2O, then νe − d and ν̄e − d CC [164]. The expected event rates for a supernova at

a distance of 10 kpc are given in Table C.1. Relative to the 10 kpc benchmark, the number

of events detected scales with the flux, as 1/r2 where r is the distance to the supernova.

Using redshift data from the NED database for SNII that occurred while SNO was taking

data, the number of events for each channel C is given by

N
(10 kpc)
C

NSN∑

i

ηi

(
10 kpc

zic/H0

)2

(C.1)

23The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, under contract with the National Aeronautics and Space Administration.
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where η is a detection efficiency including analysis cuts.

T. Shokair has previously performed a comprehensive analysis of the full SNO dataset to

search generically for antineutrinos and identified 47 events with a background of 42.68±5.02

[166]. Before any analysis cuts, about 0.14 events due to ν̄ are expected, much smaller than

the systematic uncertainty in the background estimate.

In the CC νe− d channel, about 2.4× 10−3 events are expected in the range 20–30 MeV

for the Beacom and Vogel model [165], with an in-time background of 0.24 events, assuming

a one-day search window for each candidate SN and a 5.5 m fiducial volume. As expected

from the Beacom and Strigari DSNB model, these “nearby” events contribute about 10%

of the expected DSNB flux24 (0.021 events). The signal-to-background ratio is about 10−2,

and the background-fluctuation sensitivity ∼ 900 times the signal expectation, which is not

improved significantly by further tightening the search window as it is already driven by

low signal statistics. As this is much weaker than the sensitivity achievable in the averaged

approach where the statistics are somewhat better, we do not pursue the cross-correlation

of SNO data with the SN catalog further. However, this approach may still be of interest

for more sensitive detectors.

24Note that the averaged DSNB approach does include the flux due to the nearby SN, but averaged over
time and space.
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Appendix D

Low-Level Cuts

The “low-level” cuts are applied upstream of any reconstruction or analysis, and are primar-

ily intended to remove background events caused by detector effects (e.g. flashing PMTs,

electronic pickup). They also tag events based on time, for example events closely following

a tagged muon.

Retrigger Event occurred less than 5 µs after the previous event

Charge vs. Time (QvT) Highest-charge PMT has very high charge and occurs early.

Charge vs. Nhit (Q/NHIT) Too large a fraction of the total charge of the event occurred

in too few PMTs.

Crate Isotropy Hit electronics channels are too localized: 70% within a crate and 80% of

those on adjacent FECs.

Analog Measurement Board (AMB) The pulse shape characteristics of the ESUMHI

trigger pulse are abnormal.
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Fitterless Time Spread (FTS) The median time difference of nearby PMTs (which

should have similar times) are too large.

Outward-looking PMTs (OWL) More than three outward-looking (OWL) or underwa-

ter test tubes (BUTTS) fired in the event.

Junk Event (JUNK) The event fails basic data quality checks, including missing trigger

information or duplicate PMT hit data.

Neck Event (NECK) PMTs located in the neck fired duing this event (two, or one with

high charge).

ESUM Trigger (ESUM) Both ESUMLO and ESUMHI triggers fired, and none of the

others generally used for physics triggering.

Charge Cluster (QCLUSTER) A set of nearby PMTs had anomalously high or low

charge.

Muon Follower (short) The event came within 20 seconds after a muon event.

In-time Channel Fewer than 60% of the hits fall inside any 93 ns coincidence window.

Flasher Geometry A cluster of hits occurs in either electronics space or PMT space,

which is separated from the rest of the hits. This tags “flashers,” which occur when

a PMT emits a flash of light (and it and its neighbors see high charge due to pickup)

and the light is detected by PMTs across the detector.

OWL Trigger The OWLESUMHI trigger fired.

Missed muon follower (short) The event occurred within 250 ms of another event with

Nhit > 60 (D2O phase) or Nhit > 150 (salt/NCD). This cuts followers from events

with no visible precursor.
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Appendix E

pT Source Run List

The run list for the pT source data is found in SNO internal note MANN-7HJP7R, “A

study on the pT source data,” by Feng Zhang. For posterity, the runs are:

(0,0,0) cm 15172–15177, 15235, 15237–15242

(0,0,-250) cm 15263–15266

(0,0,-500) cm 15252–15254, 15257–15259, 15261
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Appendix F

8Li Source Run List

The following 8Li source runs (with the given source positions) were selected for use in this

analysis based on information reported by shift operators.

Phase I

14348 (−16.0, 23.5, 0.08)

14371 (−16.0, 23.5, 249.14)

14373 (−16.0, 23.5, 550.04)

Phase II

23054, 23056, 23058, 23071, 23108 (0.0,−21.6, 0.0)

23073, 23075, 23077 (0.0,−21.6,−254.5)

23084, 23086, 23088, 23091 (384.9,−1.2, 73.9)
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23104, 23105 (0.0,−21.6, 249.8)

23094 (0.0,−21.6, 450.1)

In Runs 23073–23077, argon was (accidentally) used instead of nitrogen as a wavelength

shifter; PSD is still possible, so these runs are included.

Phase III The Phase III 8Li run list is taken from SNO internal note MANN-7GFKTL,

“A study on the Energy Nonlinearity using 8Li source of NCD phase dataset,” by Feng

Zhang. Runs with similar source locations are collected into groups.

Group 1 (0, 0, 0) cm 63334 63341 63342 63344 63346 63362 63369 63371

Group 2 (0, 0, 200) cm 63396 63398

Group 3 (4, 1, 258) cm 63401 63403 63405 63407 63415 63417

Group 4 (0, 0, 400) cm 63432 63434 63444 63449

Group 5 (−384, 0, 76) cm 63381 63382 63383 63388 63394

Group 6 (384, 0, 76) cm 63374 63375 63379
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Appendix G

Frequentism

One straightforward way to define uncertainty is to repeat an experiment many, many times,

and use the deviations in the results to characterize the inherent errors. Assuming that the

true value µ of a physical parameter we seek to measure has a fixed but unknown value, we

may define a range of values [µ1, µ2] such that

P (µ ∈ [µ1, µ2]) = α (G.1)

This is a statement about the behavior of an ensemble of many experiments: we define

the interval [µ1, µ2] such that in a fraction α of experiments, the interval will contain the

true value µ.25 Importantly, this is not a statement about the probability distribution of

µ itself, which in the frequentist interpretation does not exist. Hence, it is not correct to

assume that there is a probability α that µ lies inside any particular range of values.

25It is a common misconception that the experiments forming an ensemble must be “identical” and that
this makes the frequentist approach impractical. In fact the only requirement is that all measure µ.
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Assuming that one cannot run many experiments in order to define the intervals exactly

using data — which is indeed the case for this analysis, given SNO’s currently-unique

sensitivity to the hep and DSNB νe signals — how might one construct an interval given a

single measurement?

The Neyman construction [118] provides a general framework, but allows the exper-

imenter a good deal of freedom. For all possible values of µ, one builds a probability

distribution for the measured parameter µ̂, and defines an interval in µ̂ that has a desired

probability of occurring. Then, one draws a “belt” across these intervals, taking as µ1 and

µ2 the values of µ that bound the allowed region given an observed µ̂. The choice of an

ordering principle to determine which points in each P (n|µ̂) distribution are added to the

belt for µ̂ is left to the experimenter. Simply ordering by probability is often referred to as

the classical frequentist approach, though the approach is in fact more general.

The Feldman-Cousins “unified” approach is an extension of the classical frequentist

method, representing a particular ordering principle for choosing the belts [110]. Points are

added in order of the likelihood ratio:

R =
P (n;µ)

P (n; µ̃)
(G.2)

where µ̃ is the best-fit allowed value of µ. This choice of ordering naturally transitions

between one-sided and two-sided confidence intervals, avoiding the “flip-flopping” under-

coverage issues inherent with a choice of interval based on the data, and is an intuitive

choice when considered in the context of hypothesis testing (see, e.g., Reference [167]).

For these reasons, the Feldman-Cousins approach has become very common in high-energy

physics applications, and is adopted for the analysis presented in this dissertation as well,

for consistent comparison with previous results and relative ease of interpretation.
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[160] Torbjörn Sjöstrand, Stephen Mrenna, and

Peter Skands. A brief introduction to
PYTHIA 8.1. Computer Physics Communica-
tions, 178(11):852–867, June 2008. 239

258

https://github.com/rat-pac/rat-pac
https://github.com/rat-pac/rat-pac


[161] Shunsaku Horiuchi, John F Beacom, and Eli

Dwek. Diffuse supernova neutrino back-
ground is detectable in Super-Kamiokande.
Physical Review D - Particles, Fields, Gravitation
and Cosmology, 79(8):1–14, 2009. 241

[162] List of Supernovae [online]. Available from:
http://www.cbat.eps.harvard.edu/lists/

Supernovae.html. 242

[163] NASA/IPAC Extragalactic Database -
NED [online]. Available from: https://ned.

ipac.caltech.edu/. 242

[164] J Heise. A Search for Supernova Neutrinos with
the Sudbury Neutrino Observatory. PhD thesis,

The University of British Columbia, December
2001. xv, 242

[165] J F Beacom and P Vogel. Mass signature of
supernova νµ and ντ neutrinos in the Sud-
bury Neutrino Observatory . Physical Review
D, 58(9), 1998. xv, 242, 243

[166] T M Shokair. TIME-CORRELATED COINCI-
DENCES AT THE SUDBURY NEUTRINO OB-
SERVATORY: AN ANTINEUTRINO SEARCH.
PhD thesis, University of Pennsylvania, 2012. 243

[167] Alan Stuart and J Keith Ord. Kendall’s ad-
vanced theory of statistics. Vol. 2. The Clarendon
Press, Oxford University Press, New York, fifth
edition, 1991. 250

259

http://www.cbat.eps.harvard.edu/lists/Supernovae.html
http://www.cbat.eps.harvard.edu/lists/Supernovae.html
https://ned.ipac.caltech.edu/
https://ned.ipac.caltech.edu/

	Title
	Copyright
	Dedication
	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Physics of Massive Neutrinos
	2.1 The Standard Model
	2.2 Neutrino Mass and Mixing
	2.2.1 Vacuum Oscillations
	2.2.2 Matter-Enhanced Oscillations

	2.3 Current Mixing Parameters
	2.4 Status and Prospects

	3 Solar Neutrinos
	3.1 Standard Solar Models
	3.2 Solar Neutrino Oscillations
	3.3 The Homestake Experiment
	3.4 The Solar Neutrino Problem
	3.5 Experimental Results
	3.5.1 Searches for hep Neutrinos


	4 The Diffuse Supernova Neutrino Background
	4.1 Core-Collapse Supernovae
	4.2 The Diffuse Supernova Neutrino Background
	4.3 Experimental Efforts
	4.3.1 Current Results
	4.3.2 Future Directions


	5 The Sudbury Neutrino Observatory
	5.1 Physical Principles
	5.2 Detector
	5.3 Electronics
	5.4 Calibration
	5.4.1 Electronics
	5.4.2 Sources

	5.5 Simulation
	5.5.1 Physics and Detector Modeling
	5.5.2 Event Rates

	5.6 Vertex Reconstruction
	5.6.1 The FTP Vertex Fitter
	5.6.2 The nFTU Vertex Fitter
	5.6.3 The RSP Energy Fitter
	5.6.4 Issues with the FTK Energy Fitter

	5.7 SNO+ Upgrades
	5.7.1 Electronics Upgrades


	6 An Improved hep and DSNB Search with SNO
	6.1 Signals and Backgrounds
	6.2 Atmospheric Neutrino Backgrounds
	6.2.1 Production
	6.2.2 Oscillations
	6.2.3 Atmospheric  Backgrounds to the hep and DSNB Search
	6.2.4 Systematic Uncertainties
	6.2.5 Simulations

	6.3 Data Selection
	6.3.1 Run Selection
	6.3.2 Event Selection
	6.3.2.1 Low-level Cuts
	6.3.2.2 High-level Cuts


	6.4 Blindness
	6.5 Monte Carlo Simulations
	6.6 Summary of Systematic Uncertainties
	6.7 Corrections to Data and Monte Carlo
	6.8 Counting Analysis Overview
	6.9 Signal Extraction Overview
	6.10 Physics Interpretation

	7 Characterization of Energy-Related Systematic Uncertainties
	7.1 pT Source Constraints
	7.2 Michel Electrons
	7.2.1 Event Selection
	7.2.2 Energy Fits
	7.2.3 Parameterization of Systematics

	7.3 High-Energy Fit Results
	7.3.1 Ensemble Testing

	7.4 Constraining Tails: 8Li Source

	8 Counting Analysis
	8.1 High-level Cut Optimization
	8.1.1 Signal Acceptance
	8.1.2 Summary of Cut Parameters

	8.2 Low-energy Signal Extraction
	8.2.1 Ensemble Testing

	8.3 Energy Window Selection
	8.4 Sensitivity
	8.5 1/3 Dataset Results
	8.5.1 Projections for the Full Dataset


	9 Spectral Signal Extraction Fit
	9.1 Signal Extraction
	9.2 The Maximum Likelihood Method
	9.2.1 Floating Systematics
	9.2.2 Multi-Phase Fitting

	9.3 Markov Chain Monte Carlo
	9.3.1 Convergence

	9.4 Estimating Uncertainty
	9.4.1 The Bayesian Interpretation
	9.4.2 The Profile Likelihood Construction
	9.4.3 A Two-dimensional Example

	9.5 The sxmc Code
	9.5.1 Implementation
	9.5.2 Proposal Distributions and Burn-in

	9.6 Signals and Backgrounds
	9.6.1 Cuts
	9.6.2 Observables
	9.6.3 Systematic Uncertainties

	9.7 Ensemble Testing
	9.8 Results
	9.8.1 Sensitivity
	9.8.2 1/3 Data Results
	9.8.3 Goodness of Fit


	10 Conclusions
	A The SNO+ Experiment
	A.1 Neutrinoless Double Beta Decay
	A.1.1 Current Results

	A.2 Backgrounds
	A.3 Counting Analysis
	A.3.1 Sensitivity
	A.3.2 Reconstruction
	A.3.3 Cuts
	A.3.4 Optimizing the Signal Region of Interest
	A.3.5 Results
	A.3.6 Systematic Uncertainties

	A.4 SNO+ Phase II
	A.5 Conclusions

	B Atmospheric Neutrino Event Simulation with GENIE
	B.1 Physics Models
	B.2 Detector Model

	C A Time-Correlated Approach to Supernova Background Detection
	D Low-Level Cuts
	E pT Source Run List
	F 8Li Source Run List
	G Frequentism
	References

