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Electromagnetic jamming results in a loss of link reliability, increased energy consumption and packet delays. In the context
of energy-constrained wireless networks, nodes are scheduled to maximize the common sleep duration and coordinate
communication to extend their battery life. This coordination results in statistical and predictable activity patterns that may be
easily detected and jammed. To eliminate spatio-temporal patterns of communication in the link and network layers, we present
WisperNet, an energy-efficient anti-jamming protocol. WisperNet employs hardware-based time synchronization and lightweight
cryptographic hashing for coordinated temporal randomization of slot schedules at the link layer and adapts routes to avoid static
jammers in the network layer. We demonstrate that WisperNet reduces the efficiency of any statistical jammer to that of a random
jammer, which has the lowest censorship-to-link utilization ratio. In the presence of a statistical jammer, WisperNet provides sub-
2% packet drop ratios for link utilization up to 50%. In addition, the jammer’s censorship efficiency is linear with link utilization
as it is unable to extract any communication patterns. WisperNet is more efficient than low-power CSMA protocols in terms of
energy, effective network throughput, reliability and delay.

1. Introduction

Resilience to electromagnetic jamming and its avoidance are
difficult problems. It is often both hard to distinguish mali-
cious jamming from congestion in the broadcast regime and
a challenge to conceal the activity patterns of the legitimate
communication protocol from the jammer. Jamming may be
both malicious with the intention to block communication
of an adversary or nonmalicious in the form of unintended
channel interference. In the context of embedded wireless
networks for time-critical and safety critical operation as in
medical devices and industrial control networks, it is essen-
tial that mechanisms for resilience to jamming are native to
the communication protocol. Resilience to jamming and its
avoidance, collectively termed as anti-jamming, are a hard
practical problem as the jammer has an unfair advantage
in detecting legitimate communication activity due to the
broadcast nature of the channel. The jammer can then
emit a sequence of electromagnetic pulses to raise the noise
floor and disrupt communication. Communication nodes

are unable to differentiate jamming signals from legitimate
transmissions or changes in communication activity due
to node movement or nodes powering off without some
minimum processing at the expense of local and network
resources.

In the case of energy-constrained wireless sensor net-
works, nodes are scheduled to maximize the common
sleep duration and coordinate communication to extend
their battery life. With greater network synchronization,
the communication is more energy-efficient as nodes wake
up from low-power operation just before the common
communication interval. Such coordination introduces tem-
poral patterns in communication with predictable intervals
of transmission activity. Channel access patterns make it
efficient for a jammer to scan and jam the channel only
during activity intervals. The jammer can time its pulse
transmission to coincide with the preambles of packets from
legitimate nodes and thus have a high censorship to channel
utilization ratio while remaining difficult to detect. The
jammer is thus able to exploit the temporal patterns in
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communication to disrupt a transmission of longer length of
legitimate transmissions with a small set of jamming pulses.

For nodes in fixed locations, a jammer can select regions
with heavier communication activity or denser connectivity
to increase the probability that a random jamming pulse
results in corrupting an on-going transmission. Nodes in the
proximity of the jammer will endure a high cost of operation
in terms of energy consumption and channel utilization with
a low message delivery rate. They must either physically
relocate or increase the cost of their links so the network may
adapt its routes.

Methods for antijamming must therefore address threats
due to both temporal patterns at the link layer and spatial
distribution of routes in the network layer. Our goal is
to reduce or eliminate spatiotemporal patterns in com-
munication while maintaining energy-efficient, coordinated
and collision-free operation in multihop wireless sensor
networks. We achieve this by incorporating coordinated
temporal randomization for slot schedules and slot durations
between each node and its k-hop neighbors. This prevents
the jammer from predicting the epoch and length of the next
activity on the channel. Such mechanisms reduce the effec-
tiveness of any statistical jammer to that of a random pulse
jammer. While temporal randomization prevents statistical
jammers from determining any useful packet interarrival
distribution for preemptive attacks, it still has an efficiency
of a random jammer and can achieve censorship which
increases linearly with channel utilization and jamming
activity. To avoid such random jammers which are colocated
near nodes with active routes, we employ adaptive routing
to select paths such that the highest possible end-to-end
packet delivery ratios are achieved. We combine the above
temporal and spatial schemes in a tightly synchronized
protocol where legitimate nodes are implicitly coordinated
network-wide while ensuring no spatiotemporal patterns in
communication are exposed to external observers.

In the context of multihop embedded wireless networks,
which are battery-operated and require low-energy con-
sumption, we require the following properties from the
antijamming protocol.

(1) Nonpredictable Schedules. Transmission instances (e.g.,
slot assignments) are randomized and nonrepeating to
prevent the jammer from predicting the timing of the next
slot based on observations of channel activity. In this way,
even if the jammer successfully estimates slot sizes, it has
to transmit pulse attacks at an interval of the average slot
duration to corrupt communication between nodes. This
makes it especially inefficient for the jammer operating on
networks with low-channel utilization, which is the common
case in sensor networks. In this case, the jammer must
expend several times more energy in jamming pulses to
corrupt a single legitimate transmission.

(2) Nonpredictable Slot Sizes. Slots are randomly sized on
a packet-by-packet basis in order to prevent the jammer
from estimating the duration of channel activity for energy
efficient reactive jamming. This requirement further reduces

the jammer’s lifetime as it will need to employ the smallest
observed slot duration as its jamming interval.

(3) Coordinated and Scheduled Transmission. The commu-
nication schedule according to which a node transmits is
known to all of its legitimate neighbors so they can wake up
to receive the message during its transmission slot. This also
prevents nodes from turning on their receiver when no legit-
imate activity is scheduled and hence reduces the likelihood
of a jammer draining the energy of a node. The schedule
must be determined implicitly without the need for frequent
and explicit node-to-node control message exchange. This
allows energy-efficient operation and increases lifetime of
every node in the network.

(4) Coordinated Changes of Slot Sizes. All nodes must be
aware of the current and next slot sizes. This is very impor-
tant because any incompatibility or synchronization error
would disable communication between legitimate nodes.

(5) Collision-Free Transmission. Communication must sat-
isfy the hidden terminal problem so that a transmit slot
of a given node does not conflict with transmit slots of
nodes within its k-hop interference range. For scheduled
communication with randomized slot assignment, it is
essential that scheduling conflicts are eliminated implicitly
and incur no additional overhead.

The rest of this paper is organized as follows. In Section 2,
we provide a background and related work for energy
efficient protocols and energy efficient jamming schemes.
In Section 3, we provide an overview of the WisperNet
antijamming protocol and describe the coordinated tem-
poral randomization scheme. In Section 4, we describe the
WisperNet coordinated spatial adaptation scheme. Section 5
describes our implementation experiences and experimental
results followed by the conclusion.

This paper is an extended version of [1]. In this paper,
we present further details about all aspects of the WisperNet.
An improved algorithm for implicit conflict resolution is
evaluated. A redesigned algorithm for topology maintenance
and updates with conflict-free operation replaces the previ-
ous contention-based scheme. In addition a more integrated
approach for implementing WisperNet has been described.
WisperNet has been implemented in the application layer
on top of the existing real-time operating system. This
allows a straightforward method for existing applications
to use WisperNet. Finally, we demonstrate the low-memory
requirements of the WisperNet protocol.

2. Background and Related Work

To understand the inherent trade-off between energy effi-
cient link protocols with well-defined schedules and their
susceptibility to jamming attacks, we first describe the
different types of jammers and their impact on various types
of link layer protocols. We then highlight a particular class
of statistical jammers and their impact on energy-efficient
sensor network link protocols.
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2.1. Jammers and Trade-Offs with Jamming

2.1.1. Comparison of Jamming Models. In [2, 3], Xu et al.
introduce four common types of jammers: constant, ran-
dom, reactive, and deceptive. Constant jammers continually
emit a jamming signal and achieve the highest censorship of
packets corrupted to total packets transmitted. The constant
jammer, however, is not energy-efficient and can be easily
detected and localized. The random jammer is similar to
the constant jammer but operates at a lower duty cycle with
intervals of sleep. A random jammer transmits a jamming
signal at instances derived from a uniform distribution with
known minimum and maximum intervals. The censorship
ratio of the random jammer is constant and invariant to
channel utilization. At low duty cycles, the random jammer
is difficult to detect and avoid. A reactive jammer keeps
its receiver always on and listens for channel activity. If a
known preamble pattern is detected, the reactive jammer
quickly emits a jamming signal to corrupt the current
transmission. Reactive jammers, while effective in corrupting
a large proportion of legitimate packets, are not energy
efficient as the receiver is always on.

Another type of reactive jammer uses a simple physical
layer energy detector as sensing and wake-up radios. These
agile jammers wait until channel activity is detected and then
jam. Although energy to “listen” is lower, this behavior is also
energy inefficient since any kind of channel activity triggers
a transmission of a jamming pulse. Due to physical layer
delays, these jammers are effective in jamming the fraction
of packets that are greater than a certain threshold length.

A deceptive or protocol-aware jammer is one that has
knowledge of the link protocol being used and the dependen-
cies between packet types. Such a jammer exploits temporal
and sequential patterns of the protocol and is very effective.

In [4], a statistical jamming model is described where the
jammer first observes temporal patterns in channel activity,
extracts a histogram of interarrival times between transmis-
sions, and schedules jamming pulses based on the observed
distribution. This results in a very effective jammer that is
not protocol-aware and is also difficult to detect. A statistical
jammer chooses its transmission interval to coincide with
the peak of interarrival times and is thus able to maximize
its censorship ratio with relatively little effort. Figure 1(a)
illustrates the relative censorship ratio and the energy-
efficiency of the different jammers. Figure 1(b) illustrates the
relative stealth or difficulty in detection. We observe that
the statistical jammer has a high censorship ratio with both
energy-efficient and stealthy operation and hence focus on
combating such jamming in the remainder of this paper.

2.1.2. Techniques for Robust Transmission. The traditional
defenses against jamming include spread spectrum tech-
niques [5] where the energy of the signal is spread across a
very wide bandwidth. Another important class of antijam-
ming techniques is channel hopping [6, 7] where the signal
transmission channel is changing over time. While spread
spectrum and frequency hopping techniques are important
physical layer mechanisms for combating jamming, addi-
tional protection is required at the packet-level. As in the
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FIGURE I: (a) Jammer’s Energy efficiency versus Censorship ratio
and (b) Energy efficiency versus Stealth.

case of standard wireless protocols such as IEEE 802.11 and
Bluetooth, the jammer may know the pseudorandom noise
code or frequency hopping sequence.

There have been several efforts to make communication
in sensor networks more robust in the presence of a jammer.
In [7], Wood et al. described DEEJAM, a link layer protocol
that includes several schemes for robust IEEE 802.15.4 based
communication for reactive and random jammers. While
mechanisms such as coding and fragmentation are proposed,
the jammer still has a competitive advantage in that it
may increase the power of its jamming signal, and a single
jamming signal is capable of jamming multiple links in
the vicinity. The authors assume that reactive jammers can
be considered energy-efficient. Current radio transceivers,
with the IEEE 802.15.4 physical layer of communication, use
almost the same, if not greater, energy for receiving as they
do for transmission [8].

In cases where resilience to jamming is not possible,
it is useful to detect and estimate the extent to which the
jammer has influence over the network. A jammed-area
mapping protocol is described in [9] which can be used to
delineate regions affected by a jammer. Such information
can ultimately be used for network routing. One of the
requirements of the protocol is that every node knows



4 EURASIP Journal on Wireless Communications and Networking

Q
<
o =
g h
g °
=)
S
[ R i
w
9]
b=
w
2 ~
<] < 2 g
~ = < =
O 9 4
[ ] [ ) [ ]
T T T T T T
6 9 12 15 18

Node’s lifetime (months)

Figure 2: Comparison of robustness to jamming and energy-
efficient operation of sensor MAC protocols.

its own position along with positions of all its neighbors.
Our proposed solution, WisperNet, does not require such
position and direction information and directly computes
routes with the highest end-to-end packet delivery rate.

2.2. Impact of Jamming on MAC Protocols. We now investi-
gate the characteristics of different classes of sensor network
link protocols and the impact of a jammer on each class.

2.2.1. Energy-Efficient MAC Protocols. Several MAC pro-
tocols have been proposed for low-power operation for
multihop wireless mesh networks. Such protocols may
be categorized by their use of time synchronization as
asynchronous [10], loosely synchronous [11, 12], and fully
synchronized protocols [13, 14]. In general, with a greater
degree of synchronization between nodes, packet delivery
is more energy-efficient due to the minimization of idle
listening when there is no communication, better collision
avoidance, and elimination of overhearing of neighbor
conversations.

Asynchronous protocols such as Carrier Sense Multiple
Access (CSMA) are susceptible to jamming both at the
transmitter (busy channel indication) and at the receiver
(energy drain). The Berkeley MAC (B-MAC) [10] protocol
performs the best in terms of energy conservation and
simplicity in design. B-MAC supports CSMA with low-
power listening (LPL) where each node periodically wakes
up after a sample interval and checks the channel for activity
for a short duration of 0.25ms. If the channel is found
to be active, the node stays awake to receive the payload
following an extended preamble. Using this scheme, nodes
may efficiently check for neighbor activity while maintaining
no explicit schedule which a statistical jammer may exploit.

Loosely-synchronous protocols such as S-MAC [11] and
T-MAC [15] employ local sleep-wake schedules known as
virtual clustering between node pairs to coordinate packet
exchanges while reducing idle operation. Both schemes
exchange synchronizing packets to inform their neighbors
of the interval until their next activity and use CSMA prior
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to transmissions. S-MAC results in clustering of channel
activity and is hence vulnerable to a statistical jammer.

Synchronous protocols, such as RT-Link [14], utilize
hardware-based time synchronization to precisely and peri-
odically schedule activity in well-defined TDMA slots. RT-
Link utilizes an out-of-band synchronization mechanism
using an AM broadcast pulse. Each node is equipped with
two radios, an AM receiver for time synchronization and
an 802.15.4 transceiver for data communication. A central
synchronization unit periodically transmits a 50 us AM sync
pulse. Each node wakes up just before the expected pulse
epoch and synchronizes the operating system upon detecting
the pulse. As the out-of-band sync pulse is a high-power
(30 W) signal with no encoded data, it is not easily jammed
by a malicious sensor node.

In general, RT-Link outperforms B-MAC which in turn
out-performs S-MAC in terms of battery life across all event
intervals [14]. Figure 2 shows the relative node lifetimes for
2AA batteries and similar transmission duty cycles. Here
node lifetimes for CSMA, S-MAC, B-MAC, and RT-link are
0.19, 0.54, 0.78, and 1.5 years, respectively, for a network
of 10 nodes with a 10s event sample period (based on
measurement values from [11, 14]). While RT-Link nodes
communicate in periodic and well-defined fixed-size time
slots as shown in Figure 3, a statistical jammer is able to
easily determine the channel activity schedule and duration
of each scheduled transmission. As shown in Figure 4, an
attacker can glean the channel activity pattern by scanning
the channel and schedule a jamming signal to coincide with
the packet preamble at the start of a time slot.

2.2.2. Statistical Jamming. We focus on the statistical jam-
mer’s performance with S-MAC and RT-Link as both result
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in explicit patterns in packet interarrival times. We do not
consider B-MAC as we aim to leverage the more energy-
efficient RT-Link as a base synchronized link-layer mecha-
nism for WisperNet. We simulated a network of 10 nodes in
each case, with a 3 ms average transmission duration. In the
case of S-MAC, we observe that all nodes quickly converge
on one major activity period of 215 ms. In Figure 5, we also
notice a spike close to 2 ms. This is the interval between the
transmission of control packets and data packets at the start
of an activity period. In the case of RT-Link, we simulated
four flows with different rates and hence observe 4 distinct
spikes in Figure 6. The other spikes with lower intensity are
harmonics due to multiples of 32 slots in a frame. In both
cases, we observe distinct interarrival patterns which enable
a statistical jammer to efficiently attack both protocols.

In this section, we showed that statistical jammers, which
exploit the observed temporal patterns in channel activity,
are both more energy-efficient than reactive and random
jammers and more deceptive than constant jammers. With

slot schedule and slot duration randomization, the statis-
tical jammer’s efficiency is reduced to that of a random
jammer. Random jammers, while relatively inefficient, are
still effective with censorship that increases linearly with
link utilization. To avoid a random jammer, it is essential
not to schedule nodes within the physical vicinity of the
jamming source. We therefore have to employ temporal
randomization to combat a statistical jammer followed by
spatial route adaptation to avoid the resultant random
jammer. Our goal is to develop a protocol which, in the
presence of a statistical jammer, has energy-efficiency near
that of RT-Link and a censorship ratio lower than that of a
random jammer.

Our goal with WisperNet is to develop coordinated
randomized schedules, packet sizes, and routes such that a
statistical jammer is unable to extract any distinctive features
from the packet interarrival distribution.

2.3. Assumptions. We make several assumptions in the design
and evaluation of WisperNet. We assume that the jammer
is as energy-constrained as a legitimate node and must
maintain a stealth operation with a low dutycycle. All
packets exchanged between nodes are encrypted with a
group key shared by legitimate nodes and hence the jammer
is not protocol-aware. We consider both malicious and
nonmalicious jamming and do not differentiate between
them as the antijamming mechanisms are native to the link
and network protocol. The transmission power is 0 dBm
(1mW) and in the worst case (with maximum power link
jamming) the nominal packet delivery rate is never below
20%. This has been demonstrated in previous experiments
[14]. For simplicity, we presume that the interference range
is equal to the transmission range of one hop. This restriction
does not limit our results. We assume that all communication
is between a central gateway and each of the nodes across one
or more hops.

3. Antijamming with Coordinated
Spatiotemporal Randomization

An effective approach to diminish the impact of a statistical
jammer on TDMA-based MAC protocols is to eliminate the
possibility to extract patterns in communication. These pat-
terns appear as a result of the use of fixed schedules which are
set when a node joins a network and are assumed to repeat
till the network is disbanded. Such simple and repetitive
patterns are maintained with tight time synchronization and
result in minimal energy consumption, deterministic end-to-
end delay, and perhaps maximal transmission concurrency.
In order to limit the impact of statistical jamming but still
benefit from the above energy and timeliness performance,
we maintain the time synchronization but change the
schedule, transmission duration, and routes in a randomized
yet coordinated manner along small time scales.

Two components of the WisperNet protocol are Coor-
dinated Temporal Randomization (WisperNet-Time) and
Coordinated Spatial Adaptation (WisperNet-Space), which
perform different actions in the temporal and spatial
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domains, respectively. WisperNet-Time is designed to defeat
statistical jammers. By randomizing the communication
in time, a statistical jammer’s performance is reduced to
that of a random jammer as the distribution of packet
interarrival times is flat. No timing-based scheme can reduce
the probability of being jammed by a random pulse jammer.
In this case, the only way to decrease the jamming impact
is by avoiding the jammed areas using WisperNet-Space.
WisperNet-Space implements adaptive network routing as a
jamming avoidance mechanism to use links which are less
affected by the jammer, if possible. Both WisperNet-Time
and WisperNet-Space incorporate on-line algorithms where
the network is continuously monitored and node operations
are adjusted in time and space.

3.1. WisperNet-Time: Coordinated Temporal Randomization.
The main requirement for the proposed protocol is the pro-
vision of tight time synchronization between nodes. In order
to keep coordination between nodes, all nodes have to be
informed about current network state in terms of current slot
schedule, current slot duration, and current active network
topology. We achieve this by building upon the FireFly sensor
network platform [16] and using the basic synchronization
mechanisms adopted in the RT-Link protocol. As illustrated
in Figure 3, all communication with RT-Link is in designated
time slots. 32 time slots form a frame and 32 frames
form a cycle. The time sync pulse is received once every
cycle. Each FireFly node is capable of both hardware-based
global time synchronization and software-based in-band
time synchronization. A second requirement for WisperNet
is that changes in state should require minimum gateway-
to-node communication and no state information exchange
between nodes. All communication must be encrypted and
authenticated so that an eavesdropper may not be able
to extract the logical state of the network. We describe
the authentication and implicit coordination scheme in the
following section and the synchronization mechanism in the
Implementation section.

3.1.1. Schedule Randomization. The first step toward sched-
ule randomization is a pruning of the physical network
topology graph into a directed acyclical graph. Figure 7(a)
shows an example network topology graph, where each edge
represents physical wireless link between two nodes. The
physical network topology is logically pruned by disabling
desired links. In order to logically remove a link, a node is
scheduled to sleep during that particular neighbor’s trans-
mission, thereby ignoring that transmission. By forming
a directed acyclic graph, we are able to efficiently assign
noncolliding schedules that can be changed for every frame,
as shown in Figure 7(b). Links marked by the dashed line
are inactive but must be accounted for by any graph coloring
algorithm.

The algorithm for schedule randomization is organized
in a distributed manner. Every node uses a PseudoRandom
Function (PRF) to obtain its transmission schedule from
the current network key and its node ID. The transmission
schedule consists of different slot indexes that can be used for

I
|
<————— Framei %E Frame i+ 1 —):

(b) Logical network topology

FIGURE 7: (a) Example network topology and (b) bits collision-free
transmit schedule from frame-to-frame.

transmission to neighboring nodes. The schedule changes for
every frame (i.e., 32 slots) and during a frame, a node trans-
mits only on the time-slots determined by its PRF output.
After transmission, every node goes to sleep, setting its sleep
timer to wake up for the earliest receive or transmit slot. In
this way, energy consumption is reduced to minimum.

To obtain nonrepeating schedules, but with full coor-
dination between nodes, the PRF computed by every node
uses the current active network key along with its node
ID. Once in a cycle, between two synchronization pulses,
the gateway broadcasts the active keys for the next cycle.
The keys, members of the one-way key chain, are generated
during gateway’s initialization and are stored in its memory.
All keys from this chain are calculated from randomly chosen
last key K, by repeatedly applying one-way function F (as
shown in Figure 8):

K;=F(Kj), j=012..n-1 (1)

As F is a one-way function, all previous members of chain,
(Ko, K1,..., K1) can be calculated from some chain element
K; but subsequent chain members Kj,Kj;1,...,K, [17]
cannot be derived. This authentication scheme is similar to
[18, 19] but its use for scheduling is new.

We use the SHA1-HMAC [20] keyed-hash function to
generate the current slot schedule. Therefore, for schedule
computation HMAC(ID, K;) is used, where K; presents
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FIGURE 8: Generation of keys at the gateway, using a one-way hash
function.

currently active network key (member of the one-way key
chain). SHA1-HMAC outputs 160 bits which are used to
specify the schedule of transmission slots for each of the
32 frames. These 160 bits are divided into 32 groups of 5-
bits, where the node’s transmit schedule in ith frame (i =
0,1,2,...,31) is determined by ith group of 5bits. These
5bits represent the index of one of the 32 frame’s slots,
eventually used for transmission.

3.1.2. Implicit Schedule Conflict Resolution. This approach
for determining the transmission schedule locally can intro-
duce a problem of potential interference that may occur
when neighboring nodes are assigned the same random slot.
To prevent this, every node, in addition to its schedule,
calculates a slot precedence (or priority) for every transmis-
sion. The precedence for the ith frame’s transmission sched-
ule is calculated using ROL(reverse(HMAC(ID,Kj})), 5 -
(i — 1)), where reverse returns 160 bits in reversed order,
while ROL(w,n) is a left rotate of the word w for n
places. Transmissions’ precedences of nodes scheduled to
transmit in the same slot are compared and the node
with the highest precedence value is allowed to transmit.
The proposed approach keeps full randomization and
since HMAC(ID,, K;) # HMAC(IDy, K;) for ID, # ID,, two
nodes cannot have same transmit slot schedule with the same
precedences.

To compute its schedule in one sync period with 32
frames, beside some basic bitwise operations, each node has
to calculate exactly one SHA1-HMAC function for itself,
and one SHA1-HMAC per node for all nodes in its k-hop
interference range. We assume that the node IDs of all k-
hop neighbors are known (when a node joins the network
it broadcasts its ID to all its neighbors in k-hop range).
Given the IDs for all nodes in its k-hop radius, a node
calculates the schedule and precedence for all of neighbors
as shown in Figure 9. After schedule conflicts are resolved
implicitly based on the higher precedence, the node follows
the combined transmit and receives schedule in a single
vector. The proposed solution introduces some additional
memory and processing requirements considered in detail in
implementation section.

Since the full synchronization between nodes’ schedules
is achieved, schedule randomization does not introduce any
additional energy consumption in any of the nodes, even
when a node sends messages designated only to some of its
neighbors. For example, consider the topology presented in
Figure 7(a). If node C transmits two separate messages per
frame, for both nodes E and F, there is no need for node E to
be awake when a message for node F is transmitted, and vice

EIRF A ey
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B: HMAC(IDg,K;)

H: HMAC(IDg,K;)

C: HMAC(ID¢,K;)

F: HMAC(IDF,K;)

Final schedule for D

[RX 5| TXpa|TXp4| [...

(] Regular schedule
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Ficure 9: Implicit conflict resolution.

versa. In standard TDMA protocols, like RT-Link, these two
transmissions would be dedicated to particular slots, where
for example, the earlier slot is used for C — E transmission
and the latter is used for C — F transmission. The same
approach can be used with WisperNet. Node C calculates
two SHA1-HMAC outputs, where the first one is used for
C — E link scheduling, while the other is used for C — F
scheduling. The above example shows that the implemented
algorithm allows light-weight migration from the use of RT-
Link enabled applications to use WisperNet. More details on
the implementation are presented in Section 5.

The proposed slot conflict resolution can have minor
inefficiencies when a node with a higher transmit precedence
for a particular slot does not have any message to send, while
another node is not allowed to send its message in the same
slot due to a lower precedence. This results in a lower end-to-
end bandwidth and an increase in a message delay. However,
this issue has a fairly low probability of occurring in networks
for sensor networks with a low-to-moderate duty cycle.

3.1.3. Slot Size Randomization. Even though the statistical
jammer uses energy efficient pulse attacks, the proposed
schedule randomization reduces its efficiency to that of a
random jammer. However, with the schedule randomization,
an adversary is able to estimate slot sizes from the probability
distribution function (PDF) of packet interarrival times
[4]. This statistical jamming scheme allows the jammer
to transmit short pulse attacks at beginning of each slot,
therefore corrupting all communication attempts. Although
this jamming scheme is less energy efficient than a fixed
schedule TDMA protocol, it is still more efficient than a
random jammer.

Slot size randomization is implemented in a similar man-
ner to slot schedule randomization, using SHA1-HMAC, as
schedule randomization, but with one important difference.
Instead of using the last revealed key for the slot size
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calculation, every node uses a shared predefined key, Kyot,
and the network’s state counter cnt. Therefore, for slot size
randomization the PRF is calculated as HMAC(cnt, Kot).
The cycle counter is transmitted in the header of each
packet and is incremented every cycle. Ko is intentionally
a local key so that a node joining the network will be able
to synchronize its slot sizes after receiving one legitimate
packet. The SHA1-HMAC’s 160 bits output, calculated once
per cycle, is used to calculate slot sizes on a frame-by-frame
basis for all frames in a cycle, as shown in Figure 10. For
example, if slot sizes can have 32 possible values, each slot
size can be determined from a group of 5 bits. Thus, slot sizes
for all 32 frames between two sync pulses can be calculated
from SHA1-HMAC’s 160 bits output.

The network’s state counter represents the number
of sync pulses received by the network, and its value is
exchanged between neighboring nodes in the header of every
packet. Here we assume that every sync pulse is received
as it is a global and high-power AM pulse. Therefore, it
is only nodes who want to join an already operational
network need to be informed about current network counter.
The proposed coordinated slot size randomization scheme
assures that all nodes know the current frame’s slot sizes and
allows them to calculate an accurate time interval for their
transmissions/receptions.

If a key from the key chain is used for slot size calculation
instead a predefined one, in cases when a node does not
receive a key from the gateway would result in complete loss
of synchronization. Without correct information about a slot
size, nodes that do not know the current frame size are not
able to schedule themselves to wake-up for the expected sync
pulse. With the predefined key used for slot size calculations,
nodes are always able to know size of each frame, therefore,
they can schedule their awakening on time.

Slot sizes have values from a discrete set, where the set size
is determined by the number of PRF output bits. The number
of values used for slot sizes and relative distance between
them have direct influence on PDF of packet interarrivals
times. The goal of our antijamming scheme is to have a
uniform PDF, or at least a PDF with spikes flattened as
much as possible, which does not allow timing information
extraction. It is recommended that at least 8 slot sizes with
small relative difference between them be used.

Slot size randomization requires additional memory
resources if nodes need to send some fixed-size data block
in a fixed time interval. In this case slot sizes can be both
smaller and bigger than the size necessary for data block
transmission, which can result in lower network utilization
in former case or data congestion in later case. In the latter
case, a portion of the data available for transmission will
have to be buffered in node’s internal queue till the next
transmission slot occurs. In this case, the average slot size
must be larger than slot size needed for one data block
transmission. The size of the queue needed in every node is
directly connected with ratio between these two sizes.

3.2. WisperNet-Time: Performance Analysis. We now investi-
gate the impact of channel utilization on the PDF of packet
interarrival times. We also determine the buffering needs due
to randomized slot sizing and its impact on the end-to-end
delay. Finally we look at the censorship ratio versus jammer’s
lifetime for RT-Link, S-MAC, and WisperNet.

We conducted a simulation in Matlab on a protocol with
structure similar to RT-Link [14], where each cycle consists
of 32 frames and each frame consists of 32 slots. At the
beginning of every cycle, a sync pulse is transmitted. We have
simulated a system where slot sizes have uniform distribution
with values in range [15] ms. A maximum slot size of 5 ms is
chosen to match the maximum message size of 128 bytes for
IEEE 802.15.4 transceiver with data rate of 250 kbps[8]. 128
bytes can be sent with transmission duration of 4.2 ms and
the rest of the slot time is used for interslot processing and for
guard times. A simulation for 10000 sync pulses (i.e., cycles)
was carried out, which on an average lasts 50 minutes.

We first simulated the influence of the link utilization
factor (U) on the PDF of interarrival times and show that
it has very little influence with the proposed scheme. This
is one of the major benefits of WisperNet-Time, because for
other protocols the only way to reduce spikes in the PDF is
to reduce the utilization factor, as proposed in [4]. Results
for PDF of interarrival times are shown in Figure 11 for U =
50%, where slot sizes were randomly chosen from one of the
32 possible values in desired span. While channel utilization
has an effect to the PDF, it is to a significantly smaller extent
than in B-MAC’s case. We observe that the peak of the PDF is
less than 2% and no patterns can be extracted by the jammer.
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Figure 11: (a) PDF of interarrival times for WisperNet. (b)
Corresponding CDF.

With U below 50%, a small increment can be seen on spikes
in (5 10] ms interval. Also with integer multiples of some slot
sizes within [15] ms interval, influence of U can almost be
ignored. Due to the uniform distribution for all three cases
of U, it is not possible to extract slot sizes. Even if the PDF is
derived from a smaller statistical sample size, the results are
similar due to the pseudorandomness of the slot size.

3.2.1. Impact on End-to-End Delay. To analyze how the slot
size changes affect the end-to-end delay, we simulated a 1-
dimension chain with 20 nodes. In every frame, each node
forwards the previously received data to next node. If the
slot size is smaller than necessary to transmit the backlogged
data, the maximum allowed packet size is sent and a rest of
the data is buffered. In a simulated chain, the source node
receives fixed size data blocks at a fixed interval and at a
slightly smaller size than for an average slot size (e.g., 3 ms).
Figure 12 presents PDF and CDF of delay at last node
for different slot’s size quantizations. We observe that with
finer quantization of slot sizes, the distribution interval of
the last node has not only a smaller maximum delay but also
a smaller possible set of delay values that can be expected.
The reason is that finer quantization allows better data dis-
tribution per packets and therefore reduces the delay caused
with packets fragmentation. Expectedly, this randomization
introduced some additional delay. In a TDMA system with
a constant slot size of 3ms, the delay at the last node
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FIGURE 12: Message delay and its Cumulative Distribution at last
node, for 20 nodes chain.
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would be 20 - 3ms = 60ms. Here average delay is around
75ms, but with 95% probability interval [67-88] ms. This
shows that randomization introduces some variability into
the communication end-to-end delay estimation.

3.2.2. Impact on Memory Requirements. Another potential
side-effect of WisperNet-Time is a need for additional
memory for data queuing. In Figure 13, the maximum queue
size for every node in chain is presented. The first node,
with its constant data block input, requires a buffer with an
additional 512 bytes of memory. All other nodes require an
additional buffer for one maximum sized packet.

3.2.3. Comparative Analysis of MAC Protocols. Figure 14
presents the relationship between the jammer’s lifetime
(LIFE) and censorship ratio (CR) for communication in
its range. We simulated the influence of two types of
jammers—statistical jammers (SJ) and random jammers
(RJ)—on different kinds of protocols. Both these types of
jammers transmit 150 ys-long pulse attacks. We modeled
these attacks with a 90% success rate of packet corruption
in cases when jamming pulse is transmitted during a node’s
communication. For RT-Link and WisperNet-Time, we used
the previously described protocols; while for the Random
Schedule TDMA (RSTDMA), we also used 32 slots per
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frame, where every slot is 3ms long. All protocols are
simulated for systems with 25% of network utilization.

As we expected, for RT-Link and S-MAC, the SJ’s lifetime
is very high. As shown, RSTDMA is easily jammed and
the SJ enjoys the longest lifetime. In addition, the slot size
randomization component decreases the jammer’s lifetime,
for almost 0.1 years at 50% CR. Note that differences between

EURASIP Journal on Wireless Communications and Networking

LIFE-CR curve for SJ and RJ are caused only by the fact
that SJ does not transmit pulses in intervals smaller than
1 ms, which, in this case, is the smallest slot size (only
parameter that can be extracted from input signal statistics).
We observe that schedule randomization has a significantly
higher impact on the jammer’s lifetime than does slot size
randomization. This justifies our decision to use a prestored
key for the latter’s calculations, while using keys from the
gateway’s one-way chain for former. If some nodes are
captured and compromised, only the predefined slot-size key
would risk being extracted.

4. WisperNet-Space: Coordinated
Spatial Adaptation

We now discuss spatial aspect of antijamming. For the
WisperNet-Space, we consider a dense sensor network where
each node is modeled as a unit disk graph. The network is
represented as an undirected graph G(V, E), where V is a set
of nodes (vertices) and E a set of links (edges). For each link
e = e(u,v), k weights (or costs) w;(u,v), (j = 1,2,...,k)
are associated. For a tree T in graph G, the aggregate weight
W;(T) is defined as

Wi(T) = > wile),

ecT

j=12...k 2)

Weights associated with each link describe the different types
of costs which may include the network’s parafunctional
properties, such as reliability of network communication or
delay and energy consumption of a sensor network.

In general, a set L & V of terminal nodes is given
and the objective is to find a connected subgraph, spanning
all the terminals with minimal aggregate weights for all
j =1,2,...,k. If only one weighting function is considered,
L = V, and the connected subgraph is required to
be a tree, then the problem is defined as a Minimum
Spanning Tree problem (MST). The MST problem can be
solved using known algorithms (Kruskal’s, Boruvka’s, etc.)
[21]. If L#V and also only one weighting function is
considered, the problem is equivalent to Steiner minimal
tree problem (SMT). SMT is an NP-complete problem, but
several heuristics exist which resolve SMT problem in both
a centralized and a distributed manners. For applications
where more than one weighting function is to be defined,
algorithms for multiconstrained routing are used in order to
control all application’s important parafunctional properties
of the network.

For WisperNet-Space, we only considered network’s
reliability, so we associate a reliability weight function for
each link in network. We define the weight of each link
to be a function of the packet loss ratio and hence aim
to derive routes which connect all essential nodes using
most reliable links. The continuous execution of the cost
minimization function essentially allows evasion of links
under the influence of a random jammer.

The network’s reliability is measured in terms of its
Packet Delivery Ratio (PDR) which is defined as the ratio
of packets that are successfully delivered to a destination
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[3]. PDR can be perceived as the probability of error-free
communication between two nodes. Thus, the reliability of a
path P in the given network can be defined as a [ [, pPDR(e).
Our goal is to achieve maximum reliability on a path P,
which is equivalent to maximizing

In [ [PDR(e) = > In PDR(e). (3)

ecP ecP

With PDR(e) < 1 for path P, our goal is to minimize
> eep | In PDR(e)[. Therefore, the reliability weight for some
link e = e(u, v) is defined as

w,(u,v) = |In PDR(u, v)]|. (4)

4.1. Active Topology Update. For adaptive routing in
WisperNet-Space, we use an MST-Steiner heuristic to solve
the SMT problem. All active nodes periodically send the
PDRs for all their active links to the gateway. After receiving
a link’s weight, the gateway updates its weight table for all
existing links in the network. Since the PDR is not defined
for inactive (not used) links, these links keep same weights as
they had prior to activation of the present network topology.
Their weights cannot be reset to zero, since that would
allow some heavily jammed links to become competitive for
network routing right in next iteration.

In order to defend against mobile jammers, the weights
of unused network’s links are processed in time with a leaky
integrator. To avoid situations where some previously heavily
jammed link still has a high weight although the jammer that
caused it has moved away, for every link e = e(u, v) and the
current active subgraph T, the reliability weight for the next
network topology calculation is defined as

In PDR(w, V)|, e€T,
wr(u,v) = (5)
p - we(u,v), ez T.
p (0 < p < 1) is a leaky constant that determines a

speed of network’s adaptation to jammers’ mobility. It is not
recommended to set a too small value for p, since something
similar to previously described situation can happen, when a
jammed link can be repeatedly included in active topology
after very short duration. For example, with p = 0.8
reliability weight for unused link would be reduced by 20%
for every calculation of network topology, which would allow
inclusion of the jammed link into new topology after only a
few iterations. If all jammers have fixed positions, p can be
set to 1.

After updating its weights table, the gateway calculates
the new active topology with minimum costs to reach
all Steiner points (i.e., active nodes). To distribute the
information about active links, we used the Prufer code
(sequence) [21], a unique sequence associated with a tree,
which for a tree with N vertices contains N — 2 elements.
In addition to this code, we send a second code sequence that
maps the node ID of the active nodes to the index of the N —2
sequence. In a case of dense networks, with N nodes, from
which the Steiner tree is derived, a much smaller number of
nodes (M) may be active. Therefore, for all M nodes from

while 1 do

if NewWeightArrive then
Update Weight Table
if AllReceived or TopologyTimerOn then

TableUpdated — 1

end if

end if

if TableUpdated then
SMT
CalculateSpreadingSchedule
FloodNetwork

end if

end while

ArLGoriTHM 1: Gateway procedure description.

the Steiner tree, different temporal IDs are assigned from
1 : M interval, and for that tree, a Prufer code with M — 2
elements is derived. Along with this sequence and number of
active nodes, M, a lookup table with size M is sent, where ith
position in this table contains ID of a node, that is indexed
as i while creating the Prufer code sequence. In this way only
2-M—1 values are sent from gateway and can be encapsulated
within one maximum-sized 128 byte IEEE 802.15.4 packet.

4.2. Topology Maintenance and Updates. WisperNet-Space
computes a new network topology every 128 cycles. Given
the average slot size of 3 ms and 1024 slots/cycle, the topology
update occurs every 6.4 minutes on average. The current
active topology includes a subset of the node population as
active nodes and the unused node, which are not part of
the active topology, and are considered inactive nodes. The
key challenged during a topology update is to activate the
inactive nodes, which to save energy operate at a very low
duty cycle.

At the beginning of the new topology distribution,
all currently active nodes are informed about new active
topology by a broadcast from the gateway. To activate
inactive nodes, which are to be part of the topology update, 8
slots after the sync pulse are reserved for asynchronous com-
munication. We refer to these 8 slots in each cycle to be the
“topology configuration” frame. Thus topology maintenance
and updates account for a 0.78% overhead. Instead of using
contention based transmission for inactive nodes, we opted
to schedule these transmissions from inactive nodes for a
more deterministic behavior for the propagation of topology
updates. As information needs to be spread in only one direc-
tion (from gateway) through a low-degree tree, and since
only nodes that need to activate some inactive nodes (on the
periphery of the current topology) would be scheduled for
transmission in these slots, the TDMA configuration frame
of 8 slots is enough for collision-free transmission scheduling
of a degree-4 tree with 2-hop coloring. These transmission
indices are calculated using conservative version of MAX [22]
for maximal transmission concurrency.

Algorithm 1 describes the gateway’s procedure for topol-
ogy dissemination. The generated message with the infor-
mation about new network topology is distributed over the
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while 1 do

if mod(cnt,2'°) == 0 and Need2W ake then
update — 1

end if

if update and MyTxCon figSlot then
Send Message

end if

if update and AllChildrenRetransmitted then
update — 0

end if

end while

ALGorITHM 2: Active node’s procedure for new nodes activation.

SetWakeUp on ConfigurationSlots
while 1 do

NOP
end while

WakeUpRoutine
if WakeUp then
Listen
if ReceivedM yID then
Active — 1
end if
end if
end of WakeUpRoutine

AvrcoriTHM 3: Inactive node procedure for its activation.

network using all active links. Since some currently inactive
nodes may be part of next active topology, the mechanism to
inform them is described in Algorithm 2 (cnt is the value of
the sync pulse counter).

All nodes that are used for activation of the inactive nodes
along with the new topology receive 3-bit index of the slot
dedicated for its transmission, in the 8 slots “configuration”
frame. Using this index, each node schedules its transmission
of the new configuration to neighboring node and keeps
on transmitting it on the same slot in every “configuration”
frame. Once all its required neighboring nodes (i.e., currently
active or inactive nodes that need to be activated) are heard
retransmitting the new topology update, a node is assured
that its topology has been successfully updated.

All inactive nodes wake up after every sync pulse, and
listen for the first 8 slots in a cycle. If the message for its
activation is received, a node switches to active mode and
executes the active mode’s algorithm (see Algorithm 3).

Since a new topology is computed once in 128 cycles,
1024 configuration slots are available for both activation
of dormant nodes and also for association of newly added
nodes. Our experiments showed that for networks with less
than 500 nodes all inactive nodes are activated in first 10%
of these slots. Given this, we allowed last 20% of these slots
(i.e., configuration slots 820-1024) to be used as contention
slots for admission of new nodes only. These slots enable
nodes that want to join a network to announce their presence

(b) Network topology at an intermediate
time instance f;

&

SES o
o o)

(c) Network topology - optimal

FIGURE 15: Network topology; green links—actual, “physical” links;
red—Ilinks used for Steiner tree; blue nodes—terminal nodes
(members of set L); dark gray area—area under jammers’ influence.

to neighboring nodes (via a HELLO packet in RT-Link), so
that they can be initially included as inactive nodes in the
network. RT-Link supports both contention and contention-
free slots and thus makes it convenient to include this
asynchronous traffic.

4.3. WisperNet-Space: Performance Analysis. In order to
evaluate the performance of WisperNet-Space under ran-
dom jamming attacks, we first simulated an SMT network
with a random topology. A network with 400 randomly
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distributed nodes in a 4km X 4km square was analyzed.
We also randomly distributed nine jamming nodes, each
with the same RF characteristics as network’s nodes. To
emphasize the jamming effect in order to test WisperNet-
Space’s adaptation, the jammers’ link utilization is set to
50%. We implemented a communication protocol so that
all neighboring nodes exchange exactly one message per
frame. Changes in network routes for both SMT and MST
components are performed once in 100 frames. In our
experiments, we used a value of 0.999 for p, which decreases
reliability weight of unused link by 1% for every period of 96
seconds (on average).

Figure 15(a) presents the initial network topology and
the initial routes. The terminal nodes and the areas under
attack by the jammers are highlighted. We observe that a
large number of active links are under attack. The average
censorship ratio for this network is 9% for this startup
configuration. The censorship ratio decreases to less than
1% as the routes adapt to more reliable paths and it can
not go below this minimum value. This is because for the
given Steiner tree topology and its distribution of jamming
regions, the best case routes determined by WisperNet-Space
do include at least 2 partially jammed links. The optimal
configuration includes 0 links jammed in both directions and
2 links jammed in only one direction, as shown in Figure 16.

We observed that at some intermediate moments (e.g.,
moments #; and t, as seen in Figure 15(b) and corresponding
Figure 17), network routes with more jammed links were
chosen, which directly resulted in an increase of the overall
censorship ratio. This is more prominent at the beginning
of the WisperNet-Space’s operation when all links start with
the same minimum weight (0). We see in Figure 15(b), that
three links are jammed in both directions in the top-right
corner. As the routing algorithm explores the problem space
with different sets of active links, it often chooses links under
heavy influence of the jammer. As this procedure of refining
the route continues and more links are evaluated for the
first time, the algorithm will choose jammed links only if its
weight, due to the leaky integrator, drops below a threshold
that would make the aggregate weight of a subgraph smaller

Averaged censorship ratio
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Censorship ratio (%)
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Network configurations

FIGURE 17: Averaged network’s censorship ratio on 100 blocks, for
implemented Steiner tree.

than the aggregate weight of currently used subgraph. We
observe these spikes in the network’s censorship ratio in
Figure 17. Figure 15(c) presents optimal solution where only
two links from highlighted area, jammed in only one direc-
tion, are used for routing. Over the course of the adaptation
for one hour, we observe in Figure 18 that the number of
active links does not vary much. We also noticed that the
stretch factor of the network path lengths is <1.3 due to
the end-to-end weight minimization function for calculating
cumulative packet reliability across multiple links.

5. Implementation and Evaluation

The WisperNet antijjamming protocol was implemented on
a network of FireFly sensor nodes [16]. Each node consists
of a microcontroller, an 802.15.4 2.4 GHz transceiver, and
multiple sensors. Figure 19 shows two configurations of
the FireFly node—one with in-band software-based time
synchronization and the other with an add-on AM radio
receiver for receiving an out-of-band AM sync pulse. In
order to achieve the highly accurate time synchronization
required for TDMA at a packet level granularity, we use
a carrier-current AM transmitter to provide an out-of-
band time synchronization pulse. The time synchronization
transmitter, a separate module, is plugged into the wall-
outlet and uses the building’s power grid as an extended AM
antenna. This scheme was able to cover an entire eight story
building. Nodes were synchronized with a 50 us pulse that
was transmitted every 10 seconds from the AM transmitter
(see [16] for details). The AM pulse has a jitter of <150 ys.

We implemented our jamming avoidance scheme incor-
porating SHA1, SHA1-HMAC, gateway schedule updates,
and neighbor information exchange in 8-bit fixed-point C
for the Atmel ATMEGA32L microcontroller and a 16-bit
16 MHz TI MSP430F22x microcontroller. Each node ran the
nano-RK [23] real-time operating system and the RT-Link
[14] link protocol. The RT-Link TDMA cycle includes 32
frames which in turn are composed of 32 slots. The slot sizes
were assigned values from [15] ms. In our tests, every node
attempts to transmit one message per frame.



14 EURASIP Journal on Wireless Communications and Networking

Number of links used for communication

220
200 f- e ” TR |
g I, N nll
B 200 b
—
190 t
180 . . . .
0 2000 4000 6000 8000 10000

Frame number

FiGURre 18: Number of active links in the network for implemented
Steiner tree.

F1GURE 19: FireFly node with sensors on the left; on the right FireFly
node with add-on radio receiver.

We observe that most of the current hardware platforms
used for wireless sensor networks development are not CPU-
constrained, but have a memory limitation. Our imple-
mentation of the SHA1I-HMAC function required only 3
additional 160-bit buffers as the comparison of schedules and
precedences is done iteratively for all the node’s neighbors.
The SHA1-HMAC function required 12.5 ms for calculations
on TI’s MSP430F22x microcontroller. For networks where
maximal node’s degree in a network is N, every node, in the
worst case, needs to execute SHA1-HMAC function (N? +1)
times for schedule calculation and once more for slot size
computation in every sync period. For example, if N =
5, in worst case, 27 SHA1-HMAC function executions are
needed, which results in 337.5 ms of CPU time used for these
calculations in every sync period, where one sync period
contains 32 - 32 = 1024 slots, with sizes from 1ms to
5ms. Therefore, in the worst case, less than 33% of CPU
processing is used for these calculations, while on average less
than 11% is used. From perspective of memory constraints,
the implemented procedure for schedule randomization uses
276 bytes of flash memory and 400 bytes of RAM. Since only
two nodes’ schedules have to be compared in each iteration,
the schedule calculation procedure occupies only 236 bytes
for code size. For the initialization vector of the SHAI-
HMAC function, 40 bytes of data are prestored in FLASH. As
same code is used for slot size randomization, and since this
procedure is called after previous calculations, no additional
memory is needed for slot size computation.

WisperNet is implemented in the application layer, on
top of the nano-RK kernel [23], as shown in Figure 20. To
allow an easy transition for applications that exploit RT-Link,
WisperNet can be considered as a “slot remapping layer”

i Logical
RT-link mapping

=)
.8
l

§ WiseperNet Physical
TE, I mapping
i

3 | nano-RK |

<

: [
S

=

T

FIGURE 21: Experimental setup with 3 FireFly nodes.

below RT-Link. With this, the API for RT-Link based appli-
cations is used only for logical slot ordering, while the actual
logical schedule mapping to the current set of randomized
slots is performed by WisperNet. As in the example presented
in Figure 7, WisperNet just uses ordering relations between
RT-Link transmission slots’” indexes. This keeps connectivity
between all pairs of nodes unchanged and has limited impact
on end-to-end delay of the RT-Link protocol.

In Figure 21, we connected three nodes to the oscillo-
scope to display the transmit and receive activity. Two nodes
were programmed to be a transmit and receive pair to show
the coordinated and collision-free schedule randomization.
A third node was programmed to raise a signal on every slot
to provide a reference of the slot boundaries. In Figure 22,
the top signal on the oscilloscope is triggered by the transmit
pin of the transmitter and the middle signal is triggered by
the receive pin on the receiver. The signal at the bottom
is triggered on every slot interval to provide a reference of
the slot boundaries. We observe that the schedule is both
coordinated and changes on a frame-by-frame basis.

Finally, we evaluate the impact of clock drift on the
proposed scheme. Synchronization pulses are transmitted
every 10 seconds to maintain synchronization between
nodes. In [16], the authors have observed that the worst
case clock drift of FireFly’s clocks was 10 us/s, equivalent
to clock accuracy of 10ppm (parts per million). The drift
of the clock crystals has been observed to be relatively
regular. Since the AM transmitter’s pulse jitter is less than
150 us, the time between synchronization pulses is measured
and used for software clock-rate adjustments on the FireFly
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node. This clock-rate adjustment procedure achieves a global
synchronization accuracy within 120 us. Therefore, by setting
the guard time for each time slot to be 0.5ms, 150 us AM
pulses’ drift allows a node to miss up to three consecutive AM
sync pulses without loosing the synchronization. Since 99.6%
of the synchronization pulses are properly detected [16], the
probability that more than three pulses will not be received
is less than 3 - 10719, However, even if this occurs, the node is
able to resync again, after it receives a sync pulse.

5.1. Limitations. We observe some limitations with our cur-
rent implementation. The WisperNet-Spatial routing scheme
is centralized and will not scale well in large networks (>500
nodes) under moderate to heavy attack as the message from
the gateway may not get through. While several distributed
heuristics for the MST problem exist, they require a large
amount of information with respect to shortest paths from
a node to all other nodes in the network. For continuously
changing system, with respect to the weights of used link,
these distributed solutions do not represent satisfactory
solution. Also these schemes are not conducive to energy-
constrained and memory-constrained sensor networks. We
aim to explore distributed solutions further. The presented
solution is intended to serve as a reference point, a step
toward distributed solution for spatiotemporal antijamming.

A second limitation is that all nonactive nodes in the
MST are required to receive for few contention slots (i.e., 8
in our implementation) every cycle to receive and forward a
route update message. This may be wasteful if the network is
not under heavy attack from jammers.

6. Discussion and Conclusion

In this paper, we proposed the WisperNet antijamming
protocol which is a distributed technique for Coordinated
Temporal Randomization of transmissions (WisperNet-
Time) to reduce the censorship ratio of a statistical jammer to
that of a random jammer. A second component of WisperNet
is Coordinated Spatial Adaptation (WisperNet-Space), where

network routes are adapted continually to avoid jammed
regions (and hence random jammers) and select paths with
the max packet delivery ratio.

Through simulation and experiments, we demonstrate
that WisperNet is able to effectively reduce the impact of sta-
tistical and random jammers. Unlike coding-based schemes,
WisperNet is resilient to jamming even under moderate
to high link utilization with <2% censorship rate for the
network topologies explored in this work. The schedules
derived from WisperNet are nonrepeating, with randomized
packet lengths while maintaining coordinated and collision-
free communication. WisperNet has been implemented on
a network of FireFly sensor nodes with tightly synchronized
operation and low operation overhead.
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