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ABSTRACT

COSMOLOGY AND ASTROPHYSICS FROM SMALL SCALES

Shivam Pandey

Bhuvnesh Jain

Cross-correlations between tracers of large-scale structure (LSS), such as galax-
ies, weak lensing, and thermodynamics of hot gas, provide powerful tests of the
cosmological model. In this Ph.D. thesis, we develop analytical models of these
tracers and apply them to compare measurements to theoretical predictions of
the standard model of cosmology. The complicated non-linear interactions be-
tween various components of the Universe present a significant challenge to con-
straining cosmological or astrophysical models. We aim to maximize the infor-
mation gained from current and future cosmological datasets in the presence
of astrophysical and observational sources of uncertainty. In the first half of
the thesis, we describe and validate a hybrid galaxy biasing model (non-linear
mapping between dark matter and galaxies) aimed at analyzing the correlations
between galaxy positions and weak lensing. We then apply this model to recent
data from the Dark Energy Survey, leading to a significant gain in cosmological
constraints. In the second half of the thesis, we carry out high significance mea-
surements of cross-correlations between the pressure of hot gas and weak lensing
(shear-y) and galaxy positions (galaxy-y). We constrain the evolution of the av-
erage thermal pressure of the Universe and find evidence for reduced pressure
in low mass halos. Our results point to the effects of increased baryonic feed-
back (the impact of supernovae or active galactic nuclei on LSS). These results
will help in understanding how baryonic feedback impacts galaxy formation and
using the non-linear regime for cosmological analysis with future survey data.
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Chapter 1

Introduction

1.1 Physical Cosmology

Obtaining a coherent model of the Universe that can broadly describe all the

aspects of the Universe is one of the holy grails of human endeavor. Through

centuries of theoretical and experimental progress, we currently have narrowed

down to two standard models of physics: Standard Model (SM) of particle physics

and ΛCDM model of cosmological physics. While it is possible to perform lab

experiments to test the laws of particle physics 1, we are only given one Universe

to observe the laws at cosmological scales. The SM has been tested to exquisite

precision through these experiments, with almost all the observations explained

through the current understanding of quantum physics. On the other hand,

while the ΛCDM model can also successfully explain virtually all the recent

1subject to energy constraints
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Figure 1.1: Distribution of the energy content of the Universe within ΛCDM

model as constrained from current data. Credits: NASA

observations of the Universe from galactic to cosmological scales, it requires

the existence of non-standard physics model components that we very poorly

understand. According to this model, approximately 25% of the total energy

density comprises of cold dark matter that drives the majority of structure for-

mation by interacting using gravitational force [8,88]. The observed accelerating

expansion of the Universe is driven by exotic dark energy which comprises of

approximately 70% of the total energy budget (see Fig. 1.1) [233,257]. Both dark

matter and dark energy most probably require beyond-SM physics that is an area

of very active research.
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Figure 1.2: Timeline of the evolution of the Universe within ΛCDM model

paradigm as constrained from current data. Credits: NASA

1.1.1 Cosmic timeline

Our best understanding of the evolution of the Universe is broadly described in

Fig. 1.2 (see [251] for a review on which text of this sub-section is based). The

Universe started with a singularity known as the big bang. A theory of quantum

gravity, which represents the unification of the four fundamental forces, will be

needed to describe what happened in the first 10−43s of the Universe and is an

area of active research. However, as this hot and small Universe started to ex-

pand, it started cooling. The temperature of the quark-gluon plasma dropped to

the point where it underwent a phase transition, forming color-neutral baryons

and mesons, a process known as the quantum chromodynamics phase transi-
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tion. Processes appear to go out of the equilibrium in cosmic history because

their cross-sections decrease as cosmic temperature decreases. This resulted in

the decoupling of neutrinos and the freezing of the neutron-to-proton ratio, for

example. Later, by nuclear fusion, these constituents began to generate the light-

est elements. This occurred during the age of nucleosynthesis, and the projected

element abundances match the latest measurements surprisingly well. Although

the Universe was globally neutral, there were still free electrons and nucleons at

this epoch. Recombination occurred 380,000 years after the big bang when un-

bound electrons and nucleons began to combine to create neutral atoms. The

photons ceased interacting effectively with the electrons at this time, and the

formerly opaque Universe became transparent to the radiation. While cooling to

create the astoundingly homogeneous blackbody radiation field of temperature,

TCMB = 2.75K, the photons generated during recombination travel reasonably

undisturbed until the present moment. This final scattering surface, or cosmic

microwave background, is the furthest direct observation of the Universe that

we can currently make. The cosmological standard model relies heavily on this

relatively homogeneous final scattering surface, although there are modest tem-

perature inhomogeneities in the temperature field, which are an imprint of the

somewhat inhomogeneous matter distribution during recombination. These in-

homogeneities increased as a result of gravitational evolution, and when they be-

came large enough, gravitational collapse generated the first dark matter haloes.
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These haloes eventually converged to produce larger and larger haloes. After re-

combination, the baryonic gas followed the dark matter and accumulated in the

dark matter potential wells. It might reach enough high concentrations there to

cool efficiently, condense, and create the stars and galaxies we see today.

1.1.2 The expanding Universe

In this sub-section we describe the basics of an expanding Universe and the text

in this sub-section is heavily inspired by [94]. General Relativity (GR) forms

the backbone of the standard cosmological model (see [324] for a review). The

Einstein field equations describing GR can be succinctly written as:

Gµν = 8πGTµν , (1.1.1)

where Gµν describes the geometry of the spacetime and Tµν describes all the

sources of matter and energy in the spacetime. When additionally imposing

the cosmological principle, which posits that the Universe is homogeneous and

isotropic on large scales, the most general form of spacetime metric is known as

the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric:

ds2 = dt2 − a2(t)
[
dr2

1−Kr2 + r2(dθ2 + sin2(θ)dφ2
]
, (1.1.2)

where, r, θ and φ are the spherical coordinates of the position in space, t is

time and K is the curvature describing global geometry of the Universe. This

curvature term, K is strongly constrained to be zero, especially using the analysis
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of the primary CMB anisotropies, and hence the baseline model is known as flat-

ΛCDM model. We will use this condition of K = 0 everywhere in this thesis,

unless specified otherwise.

Under this FLRW metric and assuming ΛCDM model, we can solve for the

evolution of the scale of the Universe (a(t)), and these are described by the Fried-

mann equations:

H2 ≡
(
ȧ
a

)2

=
8πG

3
ρ+

Λ

3
(1.1.3)

ä
a

= −4πG
3

(
ρ+

3p
c2

)
+
Λ

3
, (1.1.4)

where, these equations describe how scale of the Universe depend upon the en-

ergy density (ρ) and pressure (p) of the contents of the Universe, and the cos-

mological constant (Λ). We can also encode the scale of the Universe using the

parameter known as cosmological redshift which is defined as z ≡ 1/a− 1, hence

we have cosmological scale factor of a = 1 at redshift z = 0.

The energy densities of the components of the Universe are also normalized

relative to the characteristic critical density of the Universe, ρcritical which is

given by:

ρcritical =
3H2(z)
8πG

. (1.1.5)

The relative contribution to the total energy density of the Universe by the three

major components, matter (Ωm), radiation (ΩR) and dark energy (ΩΛ) at z = 0 is
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then defined as:

Ωm ≡
ρm(z = 0)

ρcritical(z = 0)
,ΩR ≡

ρR(z = 0)
ρcritical(z = 0)

,Ωm ≡
ρΛ(z = 0)

ρcritical(z = 0)
, (1.1.6)

where, ρm, ρR and ρΛ are the physical densities of matter, radiation and dark

energy respectively. These three densities scale differently with the expansion

of the Universe, due to different equation of state. With redshift, the matter

density scales as ρm ∝ (1 + z)3, radiation density scales as ρm ∝ (1 + z)4 and the

dark energy density, ρΛ remains constant. Observations show that at present

time of z = 0 approximately, Ωm ∼ 0.3, ΩΛ ∼ 0.7 and ΩR ∼ 10−4. Therefore,

radiation is sub-dominant contributor to the total energy density at present time

and only becomes important at very high redshifts.

Lastly, we can use the above equations to define the distance measures in the

expanding Universe. There are three measures of the distances that are generally

used in cosmology, the comoving distance χ(z), luminosity distance DL(z) and

the angular diameter distance DA(z). The comoving distance is given by:

χ(z) = c
∫ z

0

dz′

H(z′)
. (1.1.7)

The luminosity distance preserves the inverse square law for diminishing flux

and is related to comoving distance asDL(z) = χ(z)×(1+z). The angular diameter

distance is computed such that assuming a Eucledian geometry, the size (δL)

and observed angular extent (δθ) of a source is related as, δL = DAδθ. In a flat

Universe, we get DA(z) = χ(z)/(1 + z).
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1.2 Dynamics of matter: structure formation

In the standard model, dark energy does not cluster and only impacts the global

geometric shape of the spacetime. Therefore, to understand the physics of struc-

ture formation, we aim to describe how the density of the matter component

evolves.

1.2.1 Quasi-linear regime

In this sub-section, we describe the structure formation in quasi-linear regime,

heavily based on [32]. Under the assumption that matter is a pressure less per-

fect fluid, its dynamics are fully governed by continuity equation, Euler equation

and the Poisson equation. Transforming these equations fully to comoving coor-

dinates, we get:

Poisson : ∇2φ =
3
2
ΩmH

2
0
δ
a

(1.2.1)

Continuity : δ′ +∇ · [v(1 + δ)] = 0 (1.2.2)

Euler : v′i +Hvi + v · ∇vi = −∇iφ, (1.2.3)

where, φ is the peculiar gravitational potential andH = a(z)H(z) is the comoving

Hubble constant. Note that the derivatives are with respect to co-moving time

(dη = dt/a) and co-moving space coordinates.
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1.2.1.1 Linearized equations

Firstly, neglecting all the terms beyond the linear order in the continuity and

Euler equation and writing them in terms of velocity divergence (θ = ∇ · v) we

get:

δ′ +θ = 0 (1.2.4)

θ′ +Hθ = −∇2φ. (1.2.5)

These two coupled equations (along with Poisson equation) can be easily com-

bined as:

δ′′ +Hδ′ − 3
2
Ω(z)H2δ = 0. (1.2.6)

This equation can have a growing and a decaying mode solution, and since only

the growing mode solution can survive, it can easily be found to be:

D+(z) =D+,0H(z)
∫ ∞
z

dz′(1 + z′)
H3(z′)

, (1.2.7)

1.2.1.2 Perturbative solutions

Now, to solve the original set of equations, including all the terms, we write them

down in Fourier space. The continuity equation becomes:

δ′(k) +θ(k) = −
∫

d3q
(2π)3

d3q′

(2π)3δ
D(k−q−q′)α(q,q′)θ(q)δ(q′), (1.2.8)

and Euler equation is written as:

θ′(k) +Hθ(k) +
3
2
ΩmH2δ(k) = −

∫
d3q

(2π)3
d3q′

(2π)3δ
D(k−q−q′)β(q,q′)θ(q)θ(q′)

(1.2.9)
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where the coupling kernels are:

α(q,q′) =
q · (q + q′)

q2 (1.2.10)

β(q,q′) =
1
2

q ·q′

qq′

(
q

q′
+
q′

q

)
+

(q ·q′)2

(qq′)2 . (1.2.11)

These coupled equations can be solved perturbatively in the regime where

δ << 1 and θ << 1. These solutions can be succinctly written as:

δ(k, z) =
∞∑
i=1

ai(z)δ(i)(k) (1.2.12)

θ(k, z) = −H(z)
∞∑
i=1

ai(z)θ(i)(k) (1.2.13)

where,

δ(i)(k) =
i∏
j=1

{
d3qj
(2π)3δ

(1)(qj)
}
Fi(q1.....qi)δ

(D)
(
k−

i∑
n=1

qn

)
(1.2.14)

and

θ(i)(k) =
i∏
j=1

{
d3qj
(2π)3δ

(1)(qj)
}
Gi(q1.....qi)δ

(D)
(
k−

i∑
n=1

qn

)
. (1.2.15)

Here, Fi and Gi are the coupling kernels, and for third-order perturbation

theory, they are given as:

F2(k1,k2) =
5
7
α(k1,k2) +

2
7
β(k1,k2) (1.2.16)

and
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G2(k1,k2) =
3
7
α(k1,k2) +

4
7
β(k1,k2) (1.2.17)

1.2.2 Non-linear regime

In this sub-section we describe the large scale structure in highly non-linear

regime (we refer the reader to [67] which inspires the text of this sub-section).

As the matter overdensity continues to evolve, simple perturbative treatment is

not suitable to describe the structure formation. In the fully non-linear regime, a

sufficiently large overdense patch is able to collapse on itself and relax into a viri-

alized structure called a halo. This collapse is well approximated to first order

by a spherical collapse model. In this model, we can calculate the cosmology-

dependent overdensity threshold (δc) a region has to achieve to form a dark

matter halo. Assuming a matter-dominated Universe (Ωm = 1), this threshold

is approximately equal to δc = 1.69. These collapsed structures have a density

contrast (relative to the critical density, ρcritical) that can be well approximated as

(∆vir):

∆vir = 18π2 + 82(Ωm − 1)− 39(Ωm − 1)2. (1.2.18)

This density relation is then used to relate the Mvir and its corresponding Rvir of

a halo.

The density distributions of virialized halos have been well studied using the

simulations and result in a remarkable consistency in shape, showing very weak
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dependence on the size, environment, and cosmology. This profile (ρm(r,Mvir))

of a halo with mass Mvir is in general proportional to :

ρm(r,M) ∝ 1
x(1 + x)2 , (1.2.19)

where x = r/rs and rs = cMvir
Rvir with cMvir

being the concentration of the particu-

lar halo.

1.3 Large scale structure and its tracers

We don’t observe all the components of the Universe but only the light emitted by

the baryonic components. Therefore to constrain the properties of dark matter

and dark energy, we have to observe their impact on the physics of baryonic

matter. There are various tracers of this underlying matter field that are used to

that end. In this thesis, we focus on the position of the galaxies, the weak lensing

of the shape of the galaxies by the matter, and the pressure of the hot gas in the

Universe.

1.3.1 Galaxies

The position of the galaxies naturally traces the total underlying matter field.

The text in this sub-section is based on the review article [91]. Since the forma-

tion of galaxies occurred significantly later in the evolution of the Universe, the

dark matter had already formed deep potential wells in the background. These

12



deep potential wells slowly collapse to form virialized structure, called halos.

Moreover, they also provide a well for baryonic components to fall in and se-

quentially collapse to form stars, galaxies, etc. The probability of formation of

the galaxies is related but is not directly proportional to the depth of the poten-

tial well of the background matter field. Galaxy formation happens preferen-

tially at the locations where the density of the background matter field exceeds

a certain threshold value. This leads to the phenomena of galaxy biasing.

The perturbation theory framework aims to describe the overdensity of a bi-

ased tracer of dark matter, such as galaxies, in terms of matter overdensity. This

relationship is encoded in the bias parameters. In this analysis, we typically work

on scales larger than the Lagrangian radius of the host halos of our galaxies (de-

noted by R∗), which is the radius in early Universe Lagrangian space from which

the matter accretes inside the halo. On account of this, alongside the fact that

the large-scale growth factor is scale-independent, we work under the approxi-

mation that the galaxy overdensity, δg, can be described as a function of matter

density at the same redshift (see [91] for a detailed review).

At large scales and high redshift, the physics of overdensity perturbations is

largely linear, and hence galaxy bias is well approximated by a linear relation:

δg = b1δm (1.3.1)

The gravitational evolution of the dark matter naturally results in non-linear

and non-local effects, which become dominant at smaller scales and lower red-
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shifts. Assuming homogeneity and isotropy, it can be shown that these non-

linear and non-local terms can only be sourced by scalar quantities constructed

out of gravitational evolution of matter density (δm), shear (∇i∇jφ, where φ is

gravitation potential), and velocity divergences (∇ivj , where vj is the j-th com-

ponent of the 3D particle velocity). As described in [60, 207], the expansion of

the galaxy overdensity (δg) can be re-arranged into independent terms that con-

tribute at different orders:

δg ∼ f (δm,∇i∇jΦ ,∇ivj) ∼ f (1)(δm) + f (2)(δ2
m, s

2)

+ f (3)(δ3
m,δms

2,ψ, st) + .... (1.3.2)

where, f i are functions that contribute to the total overdensity at i-th order only,

and ψ,s and t are scalar quantities constructed out of shear and velocity diver-

gences. Note that these terms are all spatially local, meaning that galaxy over-

density at any Eulerian position is expressed in terms of the matter density eval-

uated at the same position. Nevertheless, galaxy formation is a non-local process

in which matter from nearby areas collapses. As described in [207], the lowest

order contribution from this process is captured by the Laplacian of the matter

overdensity, ∇2δm. We incorporate this term in our theory model as well. The

galaxy biasing model is further elucidated in § 1.4.2 and described in detail in

Chapter 2 (see § 2.2).
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1.3.2 Weak lensing

As the light travels from the background source galaxy towards the foreground

lens galaxy, it gets distorted by the lensing effect of the intervening matter field.

In this sub-section we describe this effect, drawing heavily on [95]. This lens-

ing effect is broadly divided into three categories, “strong", “weak" and “micro"

lensing. The strong lensing effect significantly alters the path of the photon by a

large amount of lensing mass (e.g., a massive cluster), and micro-lensing occurs

due to small lensing mass (e.g., stars and planets), which leads to a slight change

in the brightness of background sources. While both of these types of lensing are

relatively rare, weak lensing (WL) occurs for all the sources of the Universe by

the total integrated matter in the foreground and hence provides an important

tool in studying the distribution of the matter statistically. The weak gravita-

tional lensing leads to small distortions in the shape of the background galaxies,

and while this distortion in the shape of the galaxy is not observed at a signifi-

cant level for any individual galaxy, it is a very powerful probe when analyzed

at a statistical level using an ensemble of galaxies (O(100)million galaxies).

The WL convergence, κ at the sky location θ, is defined as projected surface

mass density relative to the critical surface mass density:

κ(θ) =
Σ(θ)

Σcritical
, (1.3.3)
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where,

Σ(θ) =
∫
ρl(Dlθ,z)dz (1.3.4)

Σcritical =
c2

4πG
Ds

DlDls
. (1.3.5)

Here, Dl, Ds and Dls are the distance to lens, source and between lens and

source respectively. Moreover, ρl is the density of matter around the lens, c is

the speed of light and G is the gravitational constant. In order to connect this

convergence to gravitation potential, we can define lensing potential as:

Ψ (θ) =
2
c2

Dls

DlDs

∫
Φ(Dlθ,z)dz, (1.3.6)

where, Φ is the Newtonian potential of the lens. We can then describe the lensing

convergence based on this potential:

κ =
1
2

(∂11Ψ +∂22Ψ ), (1.3.7)

where the partial derivatives are taken with respect to θ, the angular position in

the sky. More generally, it is possible to express the full lensing physics using

a Jacobian matrix, A that maps the light distribution in the source plane to the

lensed light distribution, A = ∂θsource/∂θlens. This matrix can be expressed as:

A =


1−κ −γ1 −γ2

−γ2 1−κ+γ1

 (1.3.8)

where, κ is defined above and the shear (γ = γ1 + iγ2) can be written in terms of

the derivatives of the lensing potential as:

γ1 =
1
2

(∂11Ψ −∂22Ψ ), γ2 = ∂12Ψ . (1.3.9)
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Writing the convergence field for multiple sources with a redshift distribu-

tion of ns(z):

κ(θ) =
∫ ∞

0
dzW (z)δm(χ(z)θ,z) (1.3.10)

where, δm is the overdensity of matter, χ(z) is the comoving distance out to red-

shift z, and the lensing kernelW (z) captures the strength of lensing due to matter

at redshift z and for a flat ΛCDM cosmology can be written as:

W (z) =
3
2
ΩmH

2
0

1 + z
H(z)

χ(z)
c

∫ ∞
z
dzsns(zs)

χ(zs)−χ(z)
χ(zs)

, (1.3.11)

where, Ωm is the density contrast at redshift z = 0, H(z) is the Hubble parameter

with H0 being its present day value. Note that unlike galaxy positions, since κ

directly traces the total underlying matter field density, it is an unbiased tracer

of LSS.

1.3.3 Baryonic ionized gas

Other than stars, a vast majority of the baryonic component exists in the form

of hot ionized gas that populates the dark matter halos discussed in § 1.2.2. In

this sub-section, we briefly describe the thermodynamics of this hot gas, drawing

heavily on the review article [55]. As mentioned in § 1.1.1, the baryonic compo-

nent remains coupled to photons until 380,000 years after the big bang, which

prevents it from falling into the dark matter wells that form during this period.

After recombination, the neutral gas starts to collapse, and some of it turns into

first stars, releasing strong electromagnetic radiation and re-ionizing most of the
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baryons that exist in the Universe. Furthermore, as the gas falls into deep po-

tential wells of dark matter halos, it gets gravitationally shock heated, becomes

extremely energetic, and reaches temperatures in the range of ∼ 108K. Therefore,

these hot gas halos are powerful sources of X-ray emission.

Assuming that the dynamics of the gas are controlled by gravity (mostly true

for massive halos), it is possible to derive the expected value of its thermody-

namic properties, which can be compared with observations. Assuming that the

gas reaches its thermal virial equilibrium, its average kinetic (EKE) and potential

energy (EPE) are related as −2⟨EKE⟩ = ⟨EPE⟩. This can be written explicitly as:

3
2
kBTvir =

µmpGMvir

2Rvir
, (1.3.12)

where, kB is the Boltzmann constant, Tvir is the average thermal temperature of

the gas in a halo of mass Mvir, µ is the mean molecular weight per ion and mp

is the mass of proton. Assuming typical numbers we can get a characteristic

electron thermal energy as:

3
2
kBTvir = (0.73keV)∆1/3

virial

(
Mvir

1015M⊙

)(
H(z)
70

)2/3

. (1.3.13)

Note that this can be changed to other definitions of halo masses as well, which

is typically common in baryonic property studies.

We can now use this characteristic temperature to also define a characteristic

electron pressure, Pe = nekBT , where ne is the characteristic electron number

density. We can assume for large systems that baryon fraction is largely same as
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cosmic baryon fraction (fb ≡Ωb/Ωm, where Ωb ∼ 5×10−2 is the fractional energy

density in baryons). Hence we can write:

ne,vir =
fb∆virρcritical(z)

µemp
, (1.3.14)

where, µe is the mean molecular weight per free electron. After using approxi-

mate values of the constants, we can then write the characteristic pressure of gas

in halos as:

Pe,vir =
fb
8π

µ

µe

∆
4/3
virH

8/3(z)

(2G)1/3
M2/3

vir (1.3.15)

= (3.4× 10−6 keVcm−3)∆4/3
vir

(
Mvir

1015M⊙

)2/3 (
H(z)
70

)8/3

. (1.3.16)

Remarkably these characteristic relations agree well with both observations

and full hydrodynamical simulations for systems with large masses. However,

for small mass systems, the assumptions made in the above calculations, partic-

ularly related to the domination of gravity, are violated.

As the galaxies form, several high-energy phenomena occur that can impact

the thermodynamics of gas out to large distances. Of particular importance to

this thesis are the energetic feedback associated with star formation (supernovae

explosions) and accretion of gas onto supermassive black holes, called active

galactic nuclei (AGN) feedback. These feedback processes (referred to as bary-

onic feedback) can provide reheating or redistribution of the hot gas, which can

impact the observations of gas thermodynamics. Particularly, the small mass

halo systems provide an ideal laboratory to study these feedback processes as

19



gravitational potentials are less energetically dominant.

A novel way of studying the pressure profile of low-mass halos is via the

Sunyaev-Zel’dovich (SZ) effect. As the photons from CMB travel from the surface

of the last scattering to us, they can get inverse Compton-scattered. When this

scattering happens from the random thermal motion of the hot ionized gas in

halos, it is known as the thermal SZ (tSZ) effect. This effect changes the spectral

energy distribution of the CMB in a very characteristic way and is observable

using multi-frequency observation of the sky in microwave frequencies. The

amplitude of this effect is parameterized through the Compton-y parameter:

∆Iν
Iν,CMB

= yg(ν), (1.3.17)

where, the CMB spectral intensity at any particular frequency ν is changed by

∆Iν and g(ν) is the spectral distortion function that can be theoretically calcu-

lated. Assuming a non-relativistic population of electrons we have:

g(x ≡ hν/kBTCMB) =
x4ex

(ex − 1)2

(
x

ex + 1
ex − 1

− 4
)
. (1.3.18)

The Compton-y parameter is related to the integrated pressure along the line-

of-sight:

y =
σT

mec2

∫
Pedl, (1.3.19)

where σT is the Thompson scattering cross-section, and me is the mass of the

electron. Note that the Compton-y parameter is independent of any redshift, and

hence its intensity does not decrease with distance. Therefore, tSZ is a uniquely
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powerful probe of the distance Universe.

1.4 Multiprobe cosmological analysis

Jointly analyzing all the three probes mentioned above presents an opportunity

to test the cosmological and astrophysical model in a range of environmental

conditions and time. This is of paramount importance to have a concordance

model of astrophysics and cosmology.

1.4.1 2-point correlations

The correlation in the configuration space between overdensities of field A and

field B at positions r1 and r2 respectively is called 2-point correlation function

(⟨δA(r1)δB(r2)⟩) and under the assumptions of homogeneity and isotropy can

be written as ⟨δA(r1)δB(r2)⟩ = ξAB(r = |r1 − r2|). In the Fourier space we have

⟨δA(k1)δB(k2)⟩ = (2π)3PAB(k)δD(k1 + k2), where PAB(k) is the power spectra be-

tween the two fields A and B. We refer the reader to [94] for a detailed descrip-

tion of 2-point statistics which inspires the text in this sub-section.

According to our current best understanding, the initial perturbations were

seeded by stochastic quantum fluctuations, which expanded to larger scales via

the process of inflation. Since there is no characteristic length in these random

fluctuations, the power spectrum of density perturbations is well described by a

power-law, P (k) ∝ kns , wherein the model of slow-roll inflation, we expect ns ≤ 1.
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These initial perturbations go through radiation dominated phase before enter-

ing the matter-dominated phase. This radiation-dominated phase imparts ad-

ditional shape-dependent correction to the initial seed power spectrum as the

modes that enter the horizon evolve differently compared to the modes that re-

main larger than the horizon size. Assuming this effect is captured by a transfer

function (T (k)), the power spectrum at the beginning of the matter-dominated

phase can be written as P (k) ∝ knsT 2(k). In order to account for the growth of

modes with time in the linear theory, we solve the linearized continuity and Eu-

ler equation and obtain the growth function (see § 1.2.1.1):

D+(z) =D+,0H(z)
∫ ∞
z

dz′(1 + z′)
H3(z′)

, (1.4.1)

D+,0 is a normalization factor to ensure D+(z) = 1 at z = 0. Therefore the linear

matter power spectrum at is given by Plin(k,z) ∝D2
+(z)knsT 2(k).

In the linear regime, the correlation between any two tracers is directly pro-

portional to the linear matter power spectrum:

PAB(k,z) = bAbBPlin(k,z), (1.4.2)

where bA and bB are the effective bias of the tracers A and B. However, this bias-

ing is only valid on very large scales. There are primarily two ways of modeling

the small scale correlations, a perturbation theory approach, and a halo model-

based approach.
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1.4.2 Perturbation theory

An explicit expansion of Eq. 1.3.2 in terms of matter over-density δm introduces

a set of “bare-bias" parameters that are unobservable and can not necessarily

be attributed to a physical interpretation. At the power spectrum level, a re-

normalization of these “bare-bias" parameters can be performed by combin-

ing terms with similar kernels (see [207] for a detailed calculation). After re-

normalizing, we can write the tracer-matter cross-spectrum (Pgm) and the tracer

auto power spectrum (Pgg) as:

Pgm(k) = b1Pmm(k) +
1
2
b2Pb1b2

(k) +
1
2
bsPb1s2(k)+

1
2
b3nlPb1b3nl

(k) + bkk
2Pmm(k) (1.4.3)

Pgg(k) = b2
1Pmm(k) + b1b2Pb1b2

(k) + b1bsPb1s2(k)+

b1b3nlPb1b3nl
(k) +

1
4
b2

2Pb2b2
(k) +

1
2
b2bsPb2s2(k)+

1
4
b2

s Ps2s2(k) + 2b1bkk
2Pmm(k) (1.4.4)

where b1,b2,bs,b3nl and bk are the re-normalized bias parameters.

This five parameter 1-loop perturbation theory model is complete up to third

order in its dependence on the matter overdensity and includes the higher-order

bias contribution arising from non-local galaxy formation. The power spectrum
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Pb1b2
(k) is generated from the ensemble average of ⟨δmδ

2
m⟩, Pb1s2(k) is generated

from ⟨δms
2⟩ and the kernel Pb1b3nl

is generated from a combination of the en-

semble average between δm and arguments of f (3) (see Eq. ??) that contribute at

1-loop level [263]. These terms involve convolution of the linear matter power

spectrum with various kernels and we refer the reader to Appendix A of [263]

for the form of these kernels. The sum of the higher-order bias terms that are not

directly coupled to Pmm(k) gives the 1-loop corrections P 1−loop
gg (k) and P 1−loop

gm (k).

The scale-dependent term including k2Pmm(k) originates from higher derivative

bias. This model is further detailed in Chapter 2 and Chapter 3.

1.4.3 Halo model

The halo model posits that all the matter in the Universe resides inside the viri-

alized structure called halos, as briefly described in § 1.2.2. Then the tracers are

supposed to occupy these halos depending upon the halo properties and with a

profile constrained by simulations and observations. Then the total correlations

between any two fields can be broken down into an intra-halo term (1-halo) and

an inter-halo term (2-halo). Therefore, correlating the two tracers A and B in the

Fourier space, the total correlation PAB is a sum of 1-halo (P 1h
A,B) and 2-halo (P 2h

A,B)

terms:

PAB = P 1h
AB + P 2h

AB. (1.4.5)
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The 1-halo term is given by:

P 1h
AB(k,z) =

∫ Mmax

Mmin

dM
dn
dM

ūA(k,M,z) ūB(k,M,z), (1.4.6)

where dn/dM is the halo mass function, and ūA(k,M,z) and ūB(k,M,z) are the

Fourier-space profiles of observables A and B occupying the halo of mass M at

redshift z. The two-halo term is given by

P 2h
AB = bA(k,z) bB(k,z) Plin(k,z), (1.4.7)

where bA and bB are effective linear bias parameters describing the clustering of

tracers A and B respectively, Plin(k,z) is the linear matter power spectrum. This

model will be detailed and extensively used in Chapter 5.

1.5 Outline of thesis

This chapter introduced the broad scope of observational cosmology and major

sources of theoretical uncertainties that limit our ability to constrain cosmolog-

ical and astrophysical models. The rest of the thesis aims at addressing two

sources of uncertainties, non-linear galaxy biasing and baryonic feedback:

• In Chapter 2 we detail the galaxy biasing framework using perturbation

theory and validate a non-linear model aiming to describe the galaxy and

matter correlations in photometric surveys.

• In Chapter 3, we apply this model to the latest date from the DES, obtaining

better cosmological constraints.
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• In Chapter 4, we describe the correlations between galaxies and the pres-

sure of hot gas in dark matter halos and how that can be used to constrain

the average thermal energy of the Universe and its evolution with time.

• Finally, in Chapter 5, we describe the correlations between weak lensing

and pressure of hot gas and use them to constrain baryonic feedback.
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Chapter 2

Non-linear galaxy biasing:

Validation with simulations

The text in this chapter is based on the published manuscript [231]:

S. Pandey, E. J. Baxter, Z. Xu, J. Orlowski-Scherer, N. Zhu, A. Lidz, J. Aguirre,

J. DeRose, M. Devlin, J. C. Hill, B. Jain, R. K. Sheth et al. 2020, PRD, doi =

https://doi.org/10.1103/PhysRevD.100.063519
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Abstract

We describe perturbation theory (PT) models of galaxy bias for applications to photomet-

ric galaxy surveys. We model the galaxy-galaxy and galaxy-matter correlation functions

in configuration space and validate against measurements from mock catalogs designed

for the Dark Energy Survey (DES). We find that an effective PT model with five galaxy

bias parameters provides a good description of the 3D correlation functions above scales

of 4 Mpc/h and z < 1. Our tests show that at the projected precision of the DES-Year 3

analysis, two of the non-linear bias parameters can be fixed to their co-evolution values,

and a third (the k2 term for higher derivative bias) set to zero. The agreement is typi-

cally at the 2 percent level over scales of interest, which is the statistical uncertainty of

our simulation measurements. To achieve this level of agreement, our fiducial model re-

quires using the full non-linear matter power spectrum (rather than the 1-loop PT one).

We also measure the relationship between the non-linear and linear bias parameters and

compare them to their expected co-evolution values. We use these tests to motivate the

galaxy bias model and scale cuts for the cosmological analysis of the Dark Energy Sur-

vey; our conclusions are generally applicable to all photometric surveys.

2.1 Introduction

The structure in the universe at low redshift was seeded by small perturbations

in the early universe. Although the evolution of these tiny perturbations is well

28



described in the linear regime, their non-linear evolution on small scales is an

active area of research.

There is a well-formulated framework of non-linear perturbative expansions

of these early fluctuations in both Eulerian and Lagrangian space (see [32] and

[91] for a review). Major approaches include Standard Perturbation Theory (SPT,

[130, 161]), Lagrangian Perturbation Theory (LPT, [43, 203]), Renormalized Per-

turbation Theory ( [76]), Effective Field Theory (EFT, [56, 232, 316]). Although

these theories analytically describe the relation between dark matter non-linear

density perturbations and linear density perturbations, direct observations exist

only for some biased tracers of the underlying dark matter field. These theories

have therefore been extended to describe biased tracers like galaxies [53,65,122,

139, 203, 204, 207, 269] and applied to data [33, 36, 77, 128, 132, 160, 201, 295].

Another analytical approach for biased tracers is the halo model framework

(see [67] for a review). The halo model assumes that all matter is bound in viri-

alized objects (halos) and relates clustering statistics to halos. This framework

can be extended to include the observed tracers, for example, via the Halo Occu-

pation Distribution (HOD) ( [31,330]). However, unlike the perturbation theory,

the parameterization of the HOD is tracer dependent and cannot be easily gen-

eralized [64,329]. Moreover, the HOD only describes the distribution of galaxies

inside halos (known as the 1-halo term). To correctly describe the clustering of

galaxies on weakly non-linear scales, between the non-linear 1-halo regime and
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the large scale linear regime, would require a combination with perturbative

models.

Several studies have tested the perturbation theory (PT) of biased tracers in

Fourier space (mostly focused on redshift surveys) [15, 79, 98, 263, 320]. This

study focuses on PT in configuration space using Standard Perturbation Theory

(SPT) and Effective Field Theory (EFT). We use the 3D correlation functions, ξgg

and ξgm, constructed from galaxy and matter catalogs built from simulations.

One of the key results of our analysis is the minimum length scale for which the

correlation functions can be modeled with PT.

The mock catalogs used in this analysis are designed for the Dark Energy

Survey (DES). As described in Section 2.3, our focus is on Year 3 (Y3) DES data

sets, for which we use the mocks to validate our PT models. This data set consti-

tutes the largest current imaging survey of galaxies, and thus careful testing and

validation that matches its statistical power are essential for extracting informa-

tion in the non-linear regime. We also project the 3D correlations from mocks

to the angular correlations (as measured by photometric surveys), but since pro-

jection results in loss of information, our 3D tests are more stringent. Since the

PT formalism is not tied to any particular tracer, and the scales of interest are

well above the 1-halo regime (where differences in galaxy assignment schemes

matter), we expect that our conclusions will have broad validity for the lensing

and galaxy clustering analyses from imaging surveys.
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We also aim to test the accuracy of different variants of perturbation theory

for cosmological applications with DES. Although this analysis is at fixed cos-

mology, we implement fast evaluations of the projected correlations so that they

can feasibly be used for cosmological parameter analysis. Finally, we explore the

possibility of placing well-motivated priors on some of the PT bias parameters.

This paper is organized as follows. In Sec. 2.2, we review the existing pertur-

bation theory literature and the models used in this study. Sec. 2.3 describes the

simulations used for the measurements and Sec. 2.4 the analysis choices. The

results are presented in Sec. 2.5, and we conclude in Sec. 2.6.

2.2 Formalism

We summarize in this section the perturbation theory formalism used in our

study and the projected two-point statistics relevant for surveys like DES. We

are interested in modeling both the matter and galaxy distribution. Different

perturbation theory approaches describe the evolved galaxy density fluctuations

δg(x) of a biased tracer, g, in terms of the linear matter density fluctuations δL(x).

Although formally the relationship between δg(x) and δL(x) is on the full past

Lagrangian path of a particle at Eulerian position x, in this analysis we use the

approximation that this relationship is instantaneous, meaning δg(x, z) is related

only to δL(x, z) at any redshift z.
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2.2.1 Standard Perturbation Theory

Standard perturbation theory expands the evolved dark matter density field,

δm(x) in terms of the extrapolated linear density field, shear field, the divergence

of the velocity field and rotational invariants constructed using the gravitational

potential. In Fourier space, this expansion can be written as [32]

δm(k) =
∑ 1

n!

∫
d3k1

(2π)3 ...
d3kn
(2π)3 (2π)3δD(k1..n −k)

Fn(k1, ..,kn)δL(k1)...δL(kn) . (2.2.1)

Here Fn(k1, ..,kn) are the mode coupling kernels constructed out of correla-

tions between the scalar quantities mentioned above and δD is the Dirac delta

function. The form of the Fn kernels can be derived by solving the perturbative

fluid equations. For example under the assumptions of the spatially flat, cold

dark matter model of cosmology, F2 is well approximated by

F2(k,k′) =
[
(1 +α) +µ

(
k
k′

+
k′

k

)
+ (1−α)µ2

]
. (2.2.2)

For Ωm < 1, α = 3
7(Ωm)−2/63 and µ = k·k′

k·k′ . In this analysis, we use the Einstein

de-Sitter limit and assume α = 3
7 .
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2.2.1.1 Biased tracers

The overdensity of biased tracers is modeled as the sum of a deterministic func-

tion of the dark matter density (f [δm(x)]) and a stochastic component (ε(x))

[81, 202, 298]

δg(x) = f [δm(x)] + ε(x) . (2.2.3)

Given the galaxy sample and scales of our interest (which are greater than the

lagrangian radius of the host halos of our galaxy sample) in this analysis, we ig-

nore the stochastic contribution and focus on the deterministic relation between

the dark matter field and the biased tracer. Assuming a local biasing scheme,

this expansion is given as ( [130])

δlocal
g (x) =

∞∑
n=1

bn
n!
δnm(x) . (2.2.4)

However, as is well known ( [122, 269]), on small scales this local biasing in

Eulerian space rapidly breaks down. Assuming isotropy and homogeneity, the

bias parameters have to be scalar and hence the density of a tracer can only de-

pend on scalar quantities ( [207]). Therefore, non-local terms can only be sourced

by scalar quantities constructed out of gravitational evolution of matter density

(δm), shear (∇i∇jΦ) and velocity divergences (∇ivj). Following the procedure

in [60, 99, 207], these contributions can be re-arranged into independent terms
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that contribute to the overdensity of galaxies (δg) at different orders

δg ∼ f (δm,∇i∇jΦ ,∇ivj) ∼ f (1)(δm) + f (2)(δ2
m, s

2)

+ f (3)(δ3
m,δms

2,ψ, st) + ... . (2.2.5)

Here f i are the functions that contribute to the total overdensity at i-th order

only and ψ,s and t are the scalar quantities constructed out of shear and velocity

divergences. When expanding the form of these function f i up to third order,

we introduce un-normalized bias factors as given in Eq 9 and Eq 12 of [207]. In

Fourier space, the equivalent equation is Eq. (A14) of [263].

2.2.2 Higher derivative bias

In the above section, the non-local terms included in the expansion of galaxy

overdensity comes only from shear and velocity divergences. However, those

terms are still local in the spatial sense, meaning that the formation of biased

tracers only depends on the scalar quantities discussed above at the same posi-

tion as the tracer. A short-range non-locality due to non-linear effects in halo and

galaxy formation within some some scale R, will change Eq. 2.2.3 to: ( [207])

δg(x) = f [δm(x′)] , (2.2.6)

where, generally |x − x′ | < R and R is usually of the order of halo radius. Taylor

expanding this function we can see that lowest order gradient-type term that can

contribute to δg is proportional to ∇2δm. Hence, we can further generalize our
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Eq. 2.2.5 to include this gradient-type term as

δg ∼ f (δm,∇i∇jΦ ,∇ivj) ∼ f (1)(δm) + f (2)(δ2
m, s

2)

+ f (3)(δ3
m,δms

2,ψ, st) + f grad(∇2δm) + ... . (2.2.7)

Note that in Fourier space, this term would scale as k2δm(k).

2.2.3 Effective Field Theory

Moreover, as discussed in [56], it is theoretically inconsistent to use small scale

modes in the integration over Fourier space. So we use effective integrated ultra-

violet (UV) terms in the final expansion for the power spectrum. This effective

term also enters as a k2 contribution in the large-scale limit. For example, if we

expand the non-linear matter power spectrum in terms of the linear power spec-

trum (PL(k)) using the PT framework, we have to include this k2 piece usually

written as c2
s k

2PL(k), where cs is the effective adiabatic sound speed.

2.2.4 Regularized PT power spectra

Note that the bias parameters that will appear in the expansion of δg in Eq. 2.2.7

will be un-observable “bare bias" parameters and need not have the physical

meaning usually attributed to the large scale tracer bias (for example, the mea-

surable responses of galaxy statistics to a given fluctuation). We refer the reader

to [207] for the details on the renormalization of these “bare bias" parameters by
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combining all the parameters with similar power spectrum kernels. After renor-

malizing, we can write the tracer-matter cross spectrum (Pgm) and auto power

spectrum of the tracer (Pgg) as:

Pgm(k) = b1Pmm(k) +
1
2
b2Pb1b2

(k) +
1
2
bsPb1s2(k)+

1
2
b3nlPb1b3nl

(k) + (bhd
∇2δ + c2

s )k2P
grad
mm (k) . (2.2.8)

Pgg(k) = b2
1Pmm(k) + b1b2Pb1b2

(k) + b1bsPb1s2(k)+

b1b3nlPb1b3nl
(k) +

1
4
b2

2Pb2b2
(k) +

1
2
b2bsPb2s2(k)+

1
4
b2

s Ps2s2(k) + b1(2bhd
∇2δ + c2

s )k2P
grad
mm (k) . (2.2.9)

Here the bias parameters like b1, b2, bs and b3nl are the renormalized bias

parameters which are physically observable. The bias parameter bhd
∇2δ

is the

higher-derivative bias parameter and c2
s is the sound speed term as described

by EFT (§2.2.3). As for the kernels, Pb1b2
(k) is generated from ensemble average

of ⟨δmδ
2
m⟩, Pb1s2(k) is generated from ⟨δms

2⟩ and Pb1b3nl
is generated from a com-

bination of ensemble average between δm and arguments of f (3) (see Eq. 2.2.7)

that contribute at 1-loop level [263]. For the exact form of above kernels, see the

Appendix A of [263].

Instead of expanding the Eulerian galaxy overdensity field directly as we

have done above, we can also predict the galaxy overdensity by evolving the
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Lagrangian galaxy overdensity (see [204] for detailed calculations). These two

approaches should evaluate to the same galaxy overdensity at a given loop or-

der [19,60,121,204,263]. By equating the two approaches and neglecting shear-

like terms in the Lagrangian overdensity as they are small for bias values of our

interest (see §2.5 and [213]), we get the prediction of the co-evolution value of the

renormalized bias parameters: bs = (−4/7)× (b1−1) and b3nl = (b1−1)1 [204,263].

This co-evolution picture naturally describes how gravitational evolution gen-

erates the non-local biasing even from the local biased tracers in high redshift

Lagrangian frame.

We use different choices of Pmm and P grad
mm in our analysis. These choices will

be detailed in the §2.4.1.

2.2.5 3D statistics to projected statistics

We are interested in the cosmological applications of imaging surveys via pro-

jected correlation functions. Projections of the 3D correlation functions ξgg and

ξgm, to angular coordinates in finite redshift bins give the projected correlations

known as wgg(θ) and γt(θ) respectively. We estimate the covariance of these pro-

jected statistics for the DES-Y3 like survey. This allows us to estimate the angular

scales for which our perturbation theory model is a good description for DES-Y3

like sensitivity.

1note that our co-evolution value of b3nl differs from [263] as we include their prefactor of

32/315 in our definition of Pb1b3nl
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2.2.5.1 Galaxy-Galaxy clustering

The angular correlation function wgg(θ) is given by the Limber integral

wgg(θ) =
∫ ∞

0
dχ χ4 φ2(χ)

∫ ∞
−∞
dr∥ ξgg

(√
r2
∥ +χ2θ2

)
, (2.2.10)

where χ is the comoving distance and φ(χ) is the normalized radial selection

function of the lens galaxies, related to the normalized redshift distribution of

lens galaxies (ng(z)) as φ(χ) = (1/χ2)(dz/dχ)ng(z).

To simplify the above equation and ones that follow, the inner integral will

be denoted by wpgg =
∫∞
−∞dr∥ ξgg

(√
r2
∥ +χ2θ2

)
. A similar equation applies for the

galaxy-matter correlation as well. The integral limits for this projection integral

are from −∞ to∞. Though our analysis of survey data is over a finite projection

length, as described below in §2.3, our thinnest tomographic bin spans redshift

0.3 < z < 0.45 – a distance of over 500 Mpc/h. Moreover, as our analysis uses

true galaxy redshifts, there is no peculiar velocity effect on projected integrals

[311]. Therefore ignoring the finite bin size introduces negligible errors in our

correlation function predictions.

Substituting the radial selection function in terms of the galaxy redshift dis-

tribution and using the above definition of wp, the projected galaxy clustering,

wgg(θ), can be expressed as

wgg(θ) =
∫ ∞

0
dz

dz
dχ

n2
g(z) wpgg(χθ) . (2.2.11)
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2.2.5.2 Galaxy-galaxy lensing

The galaxy-galaxy lensing signal (γt) is related to the excess surface mass density

(∆Σ) around lens galaxies by

γt(θ,zl, zs) =
∆Σ(θ,zl)
Σcrit(zl, zs)

, (2.2.12)

where Σcrit is the critical surface mass density given by

Σcrit(zl, zs) =
c2

4πG
DA(zs)

DA(zl)DA(zl, zs)
. (2.2.13)

Here DA is the angular diameter distance, zl is the redshift of the lens and zs is

the redshift of the source.

The surface mass density at the projected distance rp = χθ can be related to

the projected galaxy-matter correlation function by

Σ(rp, z) = ⟨Σ⟩+ ρm(z) wpgm(rp, z) , (2.2.14)

where ⟨Σ⟩ is the mean surface density

⟨Σ⟩ =
∫ zmax

zmin

dz
dχ
dz

ρm(z) , (2.2.15)

and ρm(z) = Ωm,0(1 + z)3ρcrit,0 is the mean density of the universe.

Therefore, the excess surface density is

∆Σ(rp, z) = ρm(z)(w̄pgm(rp, z)−w
p
gm(rp, z)) (2.2.16)

= ρm(z)∆wpgm(rp, z) (2.2.17)
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where, w̄pgm(rp, z) is given as:

w̄
p
gm(χθ,z) =

2
(χθ)2

[∫ χθ

0
drp rp w

p
gm(rp, z)

]
. (2.2.18)

Now combining all the above equations, the galaxy-galaxy lensing signal for

lenses at redshift zl and sources at redshift zs is

γt(θ,zl, zs) =
∆w

p
gm(χθ,zl) ρm(zl)
Σcrit(zl, zs)

. (2.2.19)

Averaging this signal with the redshift distribution of sources (ns(zs)) would

give

γt(θ,zl) = ∆w
p
gm(χθ) ρm(z)

∫ ∞
0
dzs ns(zs)

1
Σcrit(zl, zs)

. (2.2.20)

Finally, averaging this signal with the redshift distribution of lens galaxies

(ng(zl)) gives

γt(θ) =
∫ ∞

0
dzl ρm(zl) ng(zl) ∆w

p
gm(χθ)

×
∫ ∞

0
dzs ns(zs)

1
Σcrit(zl, zs)

. (2.2.21)

The tangential shear γt(θ) is nonlocal and depends on the correlation func-

tion at all scales smaller than the transverse distance χθ (Eq. 2.2.18, see [20,193]

for a detailed analysis). Perturbation theory is not adequate for modeling these

small scales. We therefore add to γt a term representing a point mass contribu-

tion: B/θ2, where B is the average point-mass for a sample of lens and source

galaxies and is treated as a free parameter. Any spherically symmetric mass

distribution within the minimum scale used is captured by the point mass term,
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thus removing our sensitivity to these scales. Our final expression for the galaxy-

galaxy lensing signal is

γt(θ) = γ theory
t (θ) +

B

θ2 , (2.2.22)

with γ theory
t given by Eq. 2.2.21.

2.3 Simulations and mock catalogs

The full DES survey was completed in 2019 and covered ∼ 5000 square degrees

of the South Galactic Cap. Mounted on the Cerro Tololo Inter-American Obser-

vatory (CTIO) 4 m Blanco telescope in Chile, the 570-megapixel Dark Energy

Camera [110] images the field in grizY filters. The raw images are processed by

the DES Data Management (DESDM) team [215, 276]. The Year 3 (Y3) catalogs

of interest for this study span the full footprint of the survey but with fewer ex-

posures (and depth) than the complete survey. About 100 million galaxies have

shear and photometric redshift measurements that enable their use for cosmol-

ogy. For the full details of the data and the galaxy and lensing shear catalogs, we

refer the readers to [277] and [280].

We use DES-like mock galaxy catalogs from the MICE simulation suite in this

analysis. The MICE Grand Challenge simulation (MICE-GC) is an N-body sim-

ulation run in a cube with side-length 3 Gpc/h with 40963 particles using the

Gadget-2 code [287] with mass resolution of 2.93 × 1010M⊙/h. Halos are iden-

tified using a Friend-of-Friends algorithm with linking length 0.2. For further
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details about this simulation, see [113]. These halos are then populated with

galaxies using a hybrid sub-halo abundance matching plus halo occupation dis-

tribution (HOD) approach, as detailed in [57]. These methods are designed to

match the joint distributions of luminosity, g − r color, and clustering amplitude

observed in SDSS [329]. The construction of the halo and galaxy catalogs is de-

scribed in [74]. MICE assumes a flat ΛCDM cosmological model with h = 0.7,

Ωm = 0.25, Ωb = 0.044 and σ8 = 0.8.

We use two galaxy samples generated from the full MICE galaxy catalog. A

DES-like lightcone catalog of redMaGiC galaxies [261] with average photometric

errors matching DES Y1 data is generated. We also use another galaxy sample

(Maglim hereafter) based on cuts on galaxy magnitude only. This sample is cre-

ated by imposing a cut on the simulated DES i-band like magnitudes (mag-i) of

MICE galaxies [246]. The galaxies in this Maglim sample follow the conditions:

mag-i> 17.5 and mag-i< 4z + 18 where z is the true redshift of the galaxy. This

definition results from a sample optimization process when deriving cosmolog-

ical information from a combined clustering and lensing analysis [246]. Both

simulated galaxy samples populate one octant of the sky (ca. 5156 sq. degrees),

which is slightly larger than the sky area of DES Y3 data (approximately 4500

sq. degrees, [280]). From these simulations, we measure the non-linear bias pa-

rameters at fixed cosmology, which we use as fiducial values for the DES galaxy

sample(s).
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As detailed in later sections, we divide our galaxy samples into four tomo-

graphic bins with edges [0.3,0.45,0.6,0.75,0.9]. These bins are the same as the

last four of the five tomographic bins used in the DES Y1 analysis [89, 194]. We

do not fit to the first tomographic bin of DES Y1 analysis (which is 0.15 < z < 0.3)

because we are limited by the jackknife covariance estimate (see §2.4.4 and Ap-

pendix A.1). These tomographic bins cover a similar redshift range as planned

for the DES Y3 analysis. Note that we bin our galaxies used in this analysis using

their true spectroscopic redshift. Therefore there is no overlap in the redshift

distribution of galaxies between two different bins. After all color, magnitude,

and redshift cuts, there are 2.1 million redMaGiC galaxies and 2.0 million Maglim

galaxies (downsampled to have approximately the same number density as red-

MaGiC ) used in this analysis. The normalized number densities of two catalogs

are shown in Fig. 2.1.

We note that although both the mock catalogs used in this analysis are cali-

brated with DES Y1 data, we do not expect our tests and conclusions to change

with Y3 mock catalog. Since our tests are based on the true redshifts of the galax-

ies, we are not sensitive to photometric redshift uncertainties, exact tomography

choices, and color selection of the galaxies.
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Figure 2.1: Comparison of normalized number density of galaxies correspond-

ing to redMaGiC and Maglim samples. The dashed vertical lines denote the tomo-

graphic bin edges.
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2.4 Analysis

2.4.1 Data Vector and Models

Our main analysis involves the auto and cross-correlations functions for galaxies

and matter: ξmm, ξgm and ξgg. Our focus is on galaxy bias, so we would like

to minimize artifacts that are specific to the clustering of matter, in particular

sampling effects due to the finite volume of the simulations (see Appendix A.1).

Therefore, we fit our theory models to the ratios: ξgg/ξmm and ξgm/ξmm so that

the galaxy two-point functions are analyzed relative to the matter-matter corre-

lation (see Appendix A.2 and Fig. A.3 for an analysis on correlation functions ξgm

and ξgg directly). We consider three models to describe these measured ratios:

A :
ξgm

ξmm
= b1

B :
ξgm

ξmm
=
F

[
b1P

1−loop
mm (k) + P 1−Loop

gm (k) + k2b∇2δPlin(k)
]

F
[
PHF

mm(k)
]

C :
ξgm

ξmm
=
F

[
b1P

HF
mm(k) + P 1−Loop

gm (k) + k2b∇2δP
HF
mm(k)

]
F

[
PHF

mm(k)
] ,

(2.4.1)

where, F denotes the Fourier transform and P 1−Loop
gm (k) is the effective sum of all

the terms dependent on b2,bs and b3nl in Eq. 2.2.8. An analogous form of this ex-

pansion can be derived for Pgg(k). The term P
1−Loop
mm (k) is the 1-Loop PT estimate

of the matter-matter correlation function. Model A is the linear bias model and
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the numerator in Model B is similar to the model considered by previous analy-

ses using the EFT description of clustering [25, 63, 77, 129, 160, 232, 275]. In this

study, we also analyze Model C, which differs from Model B in the use of the full

nonlinear matter power spectrum using halofit (as opposed to 1-loop PT in Model

B) in the numerator. This model is motivated by completely re-summing the

matter-matter auto-correlation term to all orders as it uses the fully non-linear

fits to simulations such as halofit [296]: PNL
mm = PHF

mm. We make similar a choice

for P grad
mm (k) [18]. The bias term, b∇2δ is the sum of both the higher-derivative bias

term (bhd
∇2δ

) and the sound speed term (c2
s ) for Pgm(k). The sound speed term is

zero in Model C as the fully non-linear matter power spectra include any cor-

rection from the UV divergent integrals. Hence in Model C, b∇2δ = bhd
∇2δ

. Un-

like Model C, in Model B the sound speed term is not zero, so there we denote

b∇2δ = bhd
∇2δ

+ c2
s .

The choice of different power spectra for the three models are given in Ta-

ble 2.1.

Note that the denominator of Models B and C implicitly assumes that halofit

is a good description of the matter-matter correlation on the scales we are in-

terested in. We check this assumption using the matter density field from the

MICE simulations. The residuals of the matter-matter correlation functions for

both halofit and EFT are shown in Fig. 2.2. The EFT theory curve is predicted

by fitting the measured ξmm on scales larger than 4 Mpc/h with the model:
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Models Pmm P
grad
mm Remarks

Model A PHF
mm 0 Linear bias model

Model B P
1−loop
mm PL 1-Loop EFT model

Model C PHF
mm PHF

mm Fiducial model

Table 2.1: Variations in the choice of power spectra elements in the three models

considered here. Based on the analysis of the three models, we will used Model

C as our fiducial model (see §2.5)

ξmm = F (P 1−Loop
mm (k) + c2

s k
2Plin(k)). We can see that EFT shows deviations at the

5% level while halofit is a good description of ξmm over all scales and redshifts

– typically within 2% for the bins with percent level error bars on the measure-

ment.

2.4.2 Goodness of fit

To assess the goodness of fit of the models, we use the reduced χ2. For a good fit

to nd number of data-points, using a model with nv free parameters, we expect

the χ2/d.o.f to have a mean of 1 and standard deviation of
√

2/d.o.f, where d.o.f =

nd −nv is the total number of degrees of freedom.
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Figure 2.2: Residuals of the matter-matter correlation function for the four to-

mographic bins (from left to right) when using halofit and EFT as the theoretical

model. The difference between the model and measurements from the MICE sim-

ulations is plotted. Halofit performs significantly better on small scales. The

reduced χ2 for halofit using the data points above 4Mpc/h (outside of the gray

shaded regions) are 0.36,0.53,0.49 and 0.55 for the four tomographic bins re-

spectively. The red and blue points are staggered for clarity.

2.4.3 FAST-PT

The mode coupling kernels that appear in perturbative terms, such as the higher-

order bias contributions in Eq. 2.2.8, in Fourier space take the form of convo-

lution integrals. For example in Standard Perturbation Theory, we expand the

evolved over-density field of tracers in terms of the linear overdensity, up to third

order. This results in terms in the power spectrum that are proportional to P22(k)

(given by the ensemble average ⟨δ(2)δ(2)⟩) and P13(k) (given by ⟨δ(1)δ(3)⟩). These

kernels can be efficiently evaluated using fast Fourier transform techniques pre-
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sented in [105, 208, 271], if one transforms these convolution integrals to the

prescribed general form. We use the publicly available Python code FAST-PT as

detailed in [208] to evaluate all the PT kernels, which is also tested against a C

version of the code CFASTPT
2.

2.4.4 Covariance Estimation

We estimate a covariance for the data vector by applying the jackknife method

[250,309] to the simulation split intoNjk number of patches. We use the k-means

clustering algorithm to get the patches, which roughly divides the octant of sky

occupied by our galaxy samples into Njk equal-area patches. We use these same

patches for covariance calculation in each of our tomographic bins. The accuracy

of the estimated covariance increases with increasing Njk and for scales much

smaller than the size of an individual patch [119, 222]. As the total area of the

mock catalogs is fixed, changing the number of jackknife patches changes each

patch’s size.

In order to provide constraints on both non-linear and linear bias parameters,

the analysis requires a covariance estimate that correctly captures the auto and

cross-correlations between radial bins over both small and large scales to provide

constraints on both non-linear and linear bias parameters. We find that we need

to limit the analysis to z > 0.3 to achieve stable covariance estimates. For this

2
FAST-PT is available at https://github.com/JoeMcEwen/FAST-PT, and CFASTPT is avail-

able at https://github.com/xfangcosmo/cfastpt
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reason, we do not analyze the MICE catalog over the first tomographic bin used

in the DES-Y1 analysis (0.15 < z < 0.3).

We estimate the jackknife covariance using Njk = 300 patches. For the lowest

redshift bin (0.3 < z < 0.45), this results in an individual jackknife patch with

a side length of approximately 100Mpc/h. We determine the maximum scale

included in our analysis by varying the number of patches and comparing the

estimated errors at different scales. We find the covariance estimate to be stable

below 40 Mpc/h and use this as our maximum scale cut. These tests are detailed

in Appendix. A.1.

We explicitly remove the cross-covariance between tomographic bins as there

is negligible overlap in the galaxy samples of two different redshift bins, and as

length scales of interest are much smaller than the radial extent of the tomo-

graphic bins. We correct for biases in the inverse covariance (when calculating

the reduced χ2) due to the finite number of jackknife patches using the proce-

dure described in [136].

Note that Fig. A.2 shows the signal to noise for these 3D statistics for each

radial bin for our fiducial covariance.
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2.5 Results

2.5.1 Measurements

We split the galaxy sample into four tomographic bins, following the DES Year-1

analysis [89]. The redshift ranges for the four bins are: 0.3 < z < 0.45, 0.45 < z <

0.6, 0.6 < z < 0.75 and 0.75 < z < 0.9 .

The auto and cross-correlations measured with the galaxy and matter cata-

logs in the MICE simulations are shown in Fig. 2.3. We use the Landy-Szalay

estimator [178] to estimate the correlation functions ξgg, ξgm and ξmm for all the

Njk jackknife patches (see §2.4.4). We create a random catalog with 10 times the

number of galaxies in each tomographic bin and with number densities corre-

sponding to smoothed galaxy number density. We then use the ratios ξgg/ξmm

and ξgm/ξmm to create our datavector and jackknife covariance. We use the pub-

lic code Treecorr [162] to measure the cross correlations. We jointly fit these

ratios ξgg/ξmm and ξgm/ξmm with PT models mentioned in §2.4.1, as described

next.

2.5.2 Results on fitting the 3D correlation functions

As a first analysis step, we fit the correlation function ratios measured from the

simulation with the three models, Model A, B and C (Eq. 2.4.1) described in

§2.4.1. Model A only has one free parameter, linear bias b1, while Model B and
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Figure 2.3: Measurements of ratio of the 3D galaxy-matter correlation functions

(ξgg) and the matter-matter auto correlation (ξmm) for the four tomographic bins

of the redMaGiC galaxy sample in MICE simulations. The errorbars are estimated

from jackknife covariances. We fit PT models to the ratios ξgg/ξmm and ξgm/ξmm

as shown in subsequent figures.
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C in principle have b1,b2,bs,b3nl and b∇2δ as free parameters. Here b∇2δ is the

higher-derivative bias parameter. Among these parameters, by using the equiv-

alence of Lagrangian and Standard Eulerian perturbation theory (see §2.2.4), we

can write bs and b3nl in terms of b1 as their co-evolution value. Therefore, the

simplest complete 1Loop model has b1, b2 and b∇2δ as free parameters. We fit

our measurements while varying the number of free parameters in both Model

B and Model C, to find the minimum number of parameters needed to describe

the measured correlation function for different scale cuts.

We analyze the MICE data-vector with two different minimum scale cuts: 8Mpc/h

and 4Mpc/h. In Fig. 2.4, we compare the marginalized constraints on b∇2δ for

Model B and C for each redshift bin. The marginalized constraints on b∇2δ are

consistent with zero for Model C, for all redshift bins, and both scale cuts. In

contrast, Model B shows significant detection of the b∇2δ term. It appears that

the EFT term mostly captures the departure of the matter correlation function

model from the truth.

Figure 2.5 compares the goodness of fit of different models by showing the

reduced χ2 estimated from the best-fit of various model choices (as given in the

x-axis). We find that using Model C with only b1 and b2 as free parameters gives

a reduced χ2 consistent with 1 for all redshift bins (with bs & b3nl fixed to their

co-evolution value and b∇2δ = 0). Hence, we conclude that adding these as free

parameters is not needed to model the measurements on the scales considered
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here. In what follows, we consider this model choice of using 1Loop PT with

free b1 and b2 as our fiducial model. We also compare our fits to Model A, with

free linear bias parameter b1. The residuals of the observables, i.e., the ratios

ξgg/ξmm and ξgm/ξmm, are shown in Fig. 2.6 for a scale cut of 8Mpc/h, and in

Fig. 2.7 for a scale cut of 4Mpc/h. Note that halofit describes the matter-matter

autocorrelation above scales of 4Mpc/h at about the 2% level (see Fig. 2.2). In

these and following figures, we refer to ξmodel
gg = ξgg/ξmm and ξmodel

gm = ξgm/ξmm.

Our fiducial model fits the simulations on scales above 4Mpc/h and z < 1 within

2%, while the linear bias model performs significantly worse.

We also show the residuals of our fits to the Maglim sample in Fig. 2.7. We

find that similar to the redMaGiC sample results, the fiducial model describes the

measurements within about 2% above scales of 4Mpc/h.

2.5.3 Relations between bias parameters

In this section we revisit the approximation that the non-linear bias parame-

ters bs and b3nl follow the co-evolution relation. The equivalence of the local

Lagrangian and non-local Eulerian description predicts bs = −4/7(b1 − 1) and

b3nl = (b1 − 1) (see §2.2.4). We test this assumption by freeing up these parame-

ters in addition to b1 and b2 and re-fitting the measurements with these extended

models. Figure 2.8 shows the relation between the non-linear bias parameters

and b1 at the two scale cuts and for both redMaGiC and Maglim galaxy samples.
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Figure 2.4: The effective field theory parameter (b∇2δ) estimated from two dif-

ferent models, described in Eq. 2.4.1, at two different scale cuts and using the

redMaGiC galaxy sample. For example, the red points are the result of a joint

analysis of ratios ξgg/ξmm and ξgm/ξmm (see Fig. 2.3) above 8Mpc/h using Model

C with free b1, b2 and b∇2δ parameters for each tomographic bin. We see that

when the matter-matter correlation function is described by non-linear halofit

(Model C), the marginalized EFT terms are consistent with zero for all redshifts

and both scale cuts.

55



Model A

b1
Model B

b1 + b2 + b∇2δ + c2s
Model C

b1 + b2 Model C

b1 + b2 + bs + b3nl
Model C

b1 + b2 + b∇2δ

Models

1

2

3

4

5

6

7
∆
χ

2
/d
.o
.f

√
2/d.o.f

Scale Cut 4,4Mpc/h

Scale Cut 8,8Mpc/h

Figure 2.5: The reduced χ2 for various choices of free parameters in the models

described in Eq. 2.4.1, when fitting the 3D measurements of the redMaGiC galaxy

sample at scale cuts of 8Mpc/h and 4Mpc/h. The gray band denotes the expected

error in the reduced χ2 for a given number of degrees of freedom. We use Model

C with two free parameters, b1 and b2 as our fiducial model (with bs & b3nl fixed

to their co-evolution value and b∇2δ = 0).
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Figure 2.6: Residuals ((data - best-fit)/best-fit) after doing a joint fit to the mea-

surements of 3D statistics in the redMaGiC galaxy sample in four tomographic

bins shown in Fig.2.3 with Model A (linear bias model) and our fiducial model,

Model C (1Loop PT model, with free b1 & b2 bias parameter for each bin, bs &

b3nl fixed to the co-evolution value, b∇2δ = 0) and using halofit for matter-matter

auto-correlation. Panels in the upper row show the residuals for the galaxy-

galaxy correlation function, and panels in the lower row show the residuals for

galaxy-matter correlation function. Note that we refer to ξmodel
gg = ξgg/ξmm and

ξmodel
gm = ξgm/ξmm. Model C is an adequate description of the simulation mea-

surements. We use a scale cut of 8Mpc/h here and only fit the data-points out-

side the grey region.
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Figure 2.7: Same as Fig.2.6 but analyzed with scale cut of 4Mpc/h. Here we also

show the residuals for the Maglim galaxy sample. Model C fits the simulation

measurements with these smaller scale cuts for both redMaGiC and Maglim sam-

ples.
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The points in each panel for each scale cut corresponds to the four tomographic

bins. The top panel shows the relation between b1 and b2 (when the parameters

bs and b3nl are fixed to their co-evolution value), the middle panel shows the

relation between b1 and bs (when b3nl is fixed to its co-evolution value) and the

bottom panel shows the relation between b1 and b3nl when (bs is fixed to its co-

evolution value). The fits obtained when all the parameters are free have bigger

uncertainty but are consistent with the other approaches: the relation between

the parameters bs−b1 and b3nl−b1 are consistent with the expected co-evolution

value. We also note that the recovered relation with b1 is consistent for the two

scale cuts, which is a further test that the 1Loop PT is a sufficient and complete

model for the scales of interest in this analysis.

It is possible to predict the relation between b2 and b1 for our galaxy samples

(the measurements are shown in the top panel of Fig. 2.8). However, unlike the

bs−b1 and b3nl−b1 relation, predicting b2−b1 relation requires knowledge of the

HOD of galaxy samples. Since an accurate HOD of the galaxy sample in data is

challenging and not yet available for DES, we have treated b2 as a free parameter.

Therefore, only the measurements of the b2 − b1 relation from simulations are

shown in Fig. 2.8.
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2.5.4 Inferences for the projected statistics

As described in §2.2.5, we can convert our measurements and fits for the 3D cor-

relation functions to the projected statistics typically used by the imaging sur-

veys. We show such a conversion in Fig. 2.9 for galaxy number densities in MICE

simulations corresponding to the redMaGiC galaxies satisfying 0.3 < zl < 0.45

and fourth source tomographic bin as used in the DES Y1 analysis. Note that

Fig. 2.9 does not show direct measurements of w(θ) and γt, but a transformation

of the measured and best-fit datavector to angular statistics. Since our analy-

sis is based on the ratios ξgg/ξmm and ξgm/ξmm, we first convert our measured

datavector and best-fit theory curves to ξgg and ξgm and then apply Eq. 2.2.11

and Eq. 2.2.22 to estimate angular correlation functions. We use halofit predic-

tion of ξmm, which is a good fit to the matter-matter autocorrelation for our scales

of interest (see Fig. 2.2) to convert the ratios to ξgg and ξgm.

The error bars in Fig. 2.9 are calculated from Gaussian covariance3 as we do

not expect significant non-gaussian contribution to the covariance of the angular

statistics (see [173]). The covariance is estimated using all the galaxies satisfy-

ing the redshift criteria mentioned above in the MICE simulation. Explicitly, we

generate this covariance with lens and source galaxies covering 5156.6 square

degrees with number densities (per square arc-minutes) of lens galaxies in four

3We use the COSMOSIS package [334] https://bitbucket.org/joezuntz/cosmosis/wiki/

Home
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tomographic bins corresponding to 0.039, 0.058, 0.045 and 0.028 respectively.

The number density and shape noise of source galaxies is assumed to be the

same as DES Y3 [120]. Due to a similar area and number densities, this covari-

ance is comparable to the expected DES Year-3 covariance [120]. Note that the

shaded region corresponds to scales below 4Mpc/h, which are not used in the

3D fits. The top panel shows the projected galaxy correlation function, w(θ) and

bottom panel shows galaxy-galaxy lensing signal, γt(θ). Note that to estimate γt,

we fit for the point-mass term as described in §2.2.5. This best-fit value of the

point-mass term is obtained by fitting for the coefficient B in Eq. 2.2.22.

Figure 2.9 demonstrates that our model describes the projected angular cor-

relation functions well above scales of 4Mpc/h. The error bars in that figure

provide a DES Y3 like benchmark for such an agreement. Note that the frac-

tional statistical uncertainties for projected statistics are much larger than their

3D counterparts. Hence the 3D tests presented in §2.5.2 are substantially more

stringent than the projected statistics require.

The analysis of measured w(θ) and γt(θ) is detailed in Appendix A.3.

2.5.5 Comparison with other studies in literature

There have been multiple studies in the literature probing the validity of PT

models using simulations [15,79,98,263,320]. Most of these studies have focused

on Fourier space rather than configuration space. One reason for this choice
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is that non-linear and linear scales are better separated in Fourier space while

in configuration space, even large scales receive a contribution from non-linear

Fourier modes. However, many cosmic surveys perform their cosmological pa-

rameter analysis in configuration space as it is easier to take into account a non-

contiguous mask and depth variations. Hence an understanding of the validity

of PT models is required in real space to get unbiased cosmology constraints.

The Fourier space studies conducted by [263] and [15] focus only on dark-

matter halos and do not aim to reduce the number of free parameters required

to explain the auto and cross-correlations between dark matter halos and dark

matter particles. [79] and [320] probe this question on the minimum number of

bias parameters but again focus on dark matter halos as the biased tracers. Re-

cently [98] have conducted a study similar to ours in Fourier space using three

different galaxy samples (mock SDSS and BOSS catalogs) and four halo samples.

For a most general case, they find that a four-parameter model (linear, quadratic,

cubic non-local bias, and constant shot noise with fixed quadratic tidal bias) can

describe correlations between galaxies and matter catalogs, with the inclusion of

scale-dependent noise from halo exclusion being particularly beneficial for the

combination of auto and cross spectra. They also explore the restriction to a two-

parameter model by imposing co-evolution relations, as done in this paper, and

find that in general, this reduces the highest Fourier mode for which the model

is robust, but it can result in higher constraining power compared to the five
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parameter model. However, this particular scenario is not general across sam-

ples and requires careful validation with simulations, as done here. The main

differences in our study are: we work in configuration space with two different

galaxy samples that have a higher number density, cover a wider redshift range,

and probe smaller host halo masses. Our galaxy samples also have a significantly

larger satellite fraction (for example, the first two redMaGiC bins have a ∼ 50%

satellite fraction) compared to SDSS and BOSS catalogs.

These crucial differences make our study complementary to the above stud-

ies. Ours is especially relevant for imaging surveys as it is tailored to DES. The

consistency of our conclusions with [98] suggests that a two-parameter model

may have wide applicability, particularly for surveys with different galaxy se-

lections. This would be an extremely useful result and is worth investigating in

detail for the next generation of surveys.

2.6 Conclusion

We have presented an analysis of galaxy bias comparing perturbation theory and

3D correlation functions measured from N-body simulation-based mock cata-

logs. We used an effective PT model to analyze the galaxy-galaxy and galaxy-

matter correlations jointly.

Our fiducial model successfully describes the measurements from simulations

above a scale of 4 Mpc/h, which is significantly lower than the scale cut used in

65



the DES Year 1 analysis (where a linear bias model was used). In addition to the

linear bias parameter b1, we include four bias parameters in our model: b2,bs,b3nl

and b∇2δ. We find that treating only the first and second-order bias parameters b1

and b2 as free parameters is sufficient to describe the correlation functions over

the scales of interest. We find that the constraints on the higher-derivative bias

parameter b∇2δ are consistent with zero in Model C, and we thus fix it to zero in

our fiducial model. We demonstrate that fixing the parameters bs and b3nl to their

co-evolution value maintains the accuracy of our model. The agreement of our

model with measurements from simulations is typically at the 2 percent level

over scales of interest. This is within the statistical uncertainty of our simulation

measurements and below the requirements of the DES Year 3 analysis.

We show the relationship between the non-linear and linear bias parameters

at different redshifts and scale cuts. We find that the relationship between bs−b1

and b3nl − b1 is consistent with the expectations from the co-evolution relation-

ship. Moreover, we find the relationship between b2−b1 is consistent at different

scale cuts, which is a useful validation of our model.

We have validated our model with two lens galaxy samples having different

and broad host halo mass distribution – the redMaGiC and Maglim samples – that

could be used in DES Y3 cosmological analyses, which combine the projected

galaxy clustering signal, w(θ) and the galaxy-galaxy lensing signal, γt. Note that

these projected statistics have significantly higher (fractional) cosmic variance
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than their 3D counterparts ξgg and ξgm, due to the smaller number of indepen-

dent modes. Furthermore, the statistical uncertainty of γt includes weak lensing

shape noise, which is not included in the error budget of its 3D counterpart

(ξgm). Hence, we analyze 3D correlation functions as the measurements from

simulations are more precise and provide a percent-level test of our model.

The scales of interest (above 4 Mpc/h) are well above the 1-halo regime, where

differences in HOD implementations are greatest. So we expect that our conclu-

sions about bias modeling with PT will have broad validity for the lensing and

galaxy clustering analysis from imaging surveys. Nevertheless, at the percent

level of accuracy, tests with a variety of schemes for assigning galaxies will be

valuable. Moreover, pushing the analysis to higher redshift, or a completely dif-

ferent galaxy selection requires additional testing. We leave these studies for

future work.
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Chapter 3

Cosmological and galaxy bias

constraints with DES Year-3 data

The text in this chapter is based on the submitted manuscript [229]:

S. Pandey, E. Krause, J. DeRose, N. MacCrann, B. Jain, M. Crocce, J. Blazek, A.

Choi, H. Huang, C. To, X. Fang, J. Elvin-Poole, J. Prat, A. Porredon, L. F. Secco,

M. Rodriguez-Monroy, N. Weaverdyck, Y. Park, M. Raveri, E. Rozo, E. S. Rykoff,

G. M. Bernstein, C. SÃ¡nchez, M. Jarvis, M. A. Troxel, G. Zacharegkas, C. Chang,

et al. 2021, Submitted to PRD,
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Abstract

We constrain cosmological and galaxy-bias parameters using the combination of galaxy

clustering and galaxy-galaxy lensing measurements from the Dark Energy Survey Year-

3 data. We describe our modeling framework, and choice of scales analyzed, validating

their robustness to theoretical uncertainties in small-scale clustering by analyzing sim-

ulated data. Using a linear galaxy bias model and redMaGiC galaxy sample, we obtain

constraints on the matter density to be Ωm = 0.325+0.033
−0.034. We also implement a non-

linear galaxy bias model to probe smaller scales that includes parameterization based

on hybrid perturbation theory and find that it leads to a 17% gain in cosmological con-

straining power. We perform robustness tests of our methodology pipeline and demon-

strate the stability of the constraints to changes in the theoretical model. Using the

redMaGiC galaxy sample as foreground lens galaxies, we find the galaxy clustering and

galaxy-galaxy lensing measurements to exhibit significant signals akin to de-correlation

between galaxies and mass on large scales, which is not expected in any current models.

This likely systematic measurement error biases our constraints on galaxy bias and the

S8 parameter. We find that a scale-, redshift- and sky-area-independent phenomenolog-

ical de-correlation parameter can effectively capture the impact of this systematic error.

We trace the source of this de-correlation to a color-dependent photometric issue and

minimize its impact on our result by changing the selection criteria of redMaGiC galax-

ies. Using this new sample, our constraints on the S8 parameter are consistent with

previous studies, and we find a small shift in the Ωm constraints compared to the fidu-
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cial redMaGiC sample. We constrain the mean host halo mass of the redMaGiC galaxies

in this new sample to be approximately 1.6× 1013M⊙/h.

3.1 Introduction

Wide-area imaging surveys of galaxies provide cosmological information through

measurements of galaxy clustering and weak gravitational lensing. Galaxies are

useful tracers of the full matter distribution, and their spatial clustering is used

to infer the matter power spectrum. The shapes of distant galaxies are lensed by

the intervening matter, providing a second way to probe the mass distribution.

With wide-area galaxy surveys, these two probes of the late time universe have

provided information on both the geometry and growth of structure in the uni-

verse. In recent years, the combination of two-point correlations— galaxy-galaxy

lensing (the cross-correlation of lens galaxy positions with background source

galaxy shear) and the angular auto-correlation of the lens galaxy positions—have

been developed in a theoretical framework [20,50,51,312,322] and used to con-

strain cosmological parameters [52, 72, 96, 177, 199, 214, 284, 323]. In practice,

two galaxy samples are used: lens galaxies tracing the foreground large scale

structure, and background source galaxies whose shapes are used to infer the

lensing shear and this combination of galaxy-galaxy lensing and galaxy cluster-

ing is refereed to as “2×2pt” datavector. This is generally complemented with

the two-point of cosmic shear (the lensing shear auto-correlation, referred to as
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1×2pt). The Dark Energy Survey (DES) presented cosmological constraints from

their Year 1 (Y1) data set from cosmic shear [307] and a joint analysis of all three

two-point correlations (henceforth called the “3× 2pt” datavector) [2].

This paper is part of a series describing the methodology and results of DES

Year 3 (Y3) 3× 2pt analysis. The cosmological constraints are presented for cos-

mic shear [14,273], the combination of galaxy clustering and galaxy-galaxy lens-

ing using two different lens galaxy samples [?, this paper; ]]y3-2x2ptaltlensresults,y3-

2x2ptmagnification, as well as the 3 × 2pt analysis [88]. These cosmological re-

sults are enabled by extensive methodology developments at all stages of the

analysis from pixels to cosmology, which are referenced throughout. This pa-

per presents the modeling methodology and cosmology inference from DES Y3

galaxy clustering [258] and galaxy-galaxy lensing [247] measurements. We focus

on the redMaGiC [261] galaxy sample, described further below. A parallel anal-

ysis using a different galaxy sample, the Maglim sample [245], is presented in a

separate paper [244].

Incomplete theoretical understanding of the relationship of galaxies to the

mass distribution, called galaxy bias, has been a limiting factor in interpret-

ing the lens galaxy auto-correlation function (denoted w(θ)) and galaxy-galaxy

lensing (and denoted γt(θ)). At large scales, galaxy bias can be described by a

single number, the linear bias b1. On smaller scales, bias is non-local and non-

linear, and its description is complicated [122, 269]. Perturbation theory (PT)
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approaches have been developed for quasi-linear scales ∼ 10 Mpc, though the

precise range of scales of its validity is a subtle question that depends on the

galaxy population, the theoretical model, and the statistical power of the survey.

With a model for galaxy bias, w(θ) and γt measurements, together called the

“2×2pt” datavector, can probe the underlying matter power spectrum. They are

also sensitive to the distance-redshift relation over the redshift range of the lens

and source galaxy distributions. These two datavectors constitute a useful subset

of the full 3 × 2pt datavector, since bias and cosmological parameters can both

be constrained (though the uncertainty in galaxy bias would limit either w(θ) or

γt(θ) individually).

A major part of the modeling and validation involves PT models of galaxy

bias and tests using mock catalogs based on N-body simulations with various

schemes of populating galaxies. Approaches based on the halo occupation dis-

tribution (HOD) have been widely developed and are used for the DES galaxy

samples. For the Year 3 (Y3) dataset of DES, two independent sets of mock

catalogs have been developed, based on the Buzzard [86] and MICE simulations

[73, 114, 116].

An interesting recent development in cosmology is a possible disagreement

between the inference of the expansion rate and the amplitude of mass fluctua-

tions (denoted σ8) and direct measurements or the inference of these quantities

in the late-time universe. The predictions are anchored via measurements of
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the cosmic microwave background (CMB) and use general relativity and a cos-

mological model of the universe to extrapolate to late times. This cosmological

model, denoted by ΛCDM, relies on two ingredients in the energy budget of the

universe that have yet to be directly detected: cold dark matter (CDM) and dark

energy in the form of a cosmological constant denoted as Λ. The experiments

that infer the cosmological constraints using the lensing of source galaxies, par-

ticularly using the cosmic-shear 2pt correlation are unable to generally break

the degeneracy between Ωm and σ8. A derived parameter, S8 = σ8(Ωm/0.3)0.5, is

well constrained as it approximately controls the amplitude of the cosmic shear

correlation function. The value of S8 or σ8 inferred from measurements of cos-

mic shear and the 3 × 2pt datavector [2, 14, 88, 141–143, 273, 307], from galaxy

clusters [4, 306] and the redshift-space power spectrum [234] tends to be lower

than the CMB prediction. The significance of this tension is a work in progress

and crucial to the viability of ΛCDM. The Hubble tension refers to the measured

expansion rate being higher than predicted by the CMB. The resolution of the

two tensions, and their possible relationship, is an active area of research in cos-

mology and provides additional context for the analysis presented here.

Figure 3.1, based on simulated data, shows the expected constraints on S8 and

Ωm from the 2× 2pt datavector and cosmic shear (1× 2pt). It is evident that the

two have some complementarity, which enables the breaking of degeneracies in

both ΛCDM and wCDM cosmological models (where w is the dark energy equa-
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tion of state parameter and w , −1 points towards the departure from standard

ΛCDM model). Particularly noteworthy are the significantly better constraints

compared to 1×2pt on the parameter w and Ωm using 2×2pt in the wCDM and

ΛCDM models respectively. Note that unlike in 1× 2pt, where all the matter in

front of source galaxy contributes to its signal, 2×2pt receives contribution only

from galaxies within the narrow lens redshift bins. Therefore, we attribute better

constraints on these cosmological parameters from 2× 2pt to significantly more

precise redshifts of the lens galaxy sample. This allows for precise tomographic

measurements of 2× 2pt datavector which constrains the background geometric

parameters like w and Ωm. With data, these somewhat independent avenues to

cosmology provide a valuable cross-check, as the leading sources of systematics

are largely different.

The formalism used to compute the 2 × 2pt datavector is presented in §3.2.

The description of the lens and source galaxy samples, their redshift distribu-

tions and measurement methodology of our datavector and its covariance esti-

mation are presented in §3.3. In §3.4 we validate our methodology using N-body

simulations and determine the scale cuts for our analysis. Note that in this paper

we focus on validation of analysis when using the redMaGiC lens galaxy sample

and we refer the reader to [244] for validation of analysis choices for the Maglim

sample. The results on data are presented in §3.5, and we conclude in §3.6.
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Figure 3.1: Comparison of simulated constraints on cosmological parameters Ωm

and S8 from cosmic shear alone (1×2pt), galaxy clustering + galaxy-galaxy lens-

ing (2 × 2pt) and including all three probes (3 × 2pt). This plot uses a simulated

noise-less baseline datavector (see §3.4.2) and shows that 2×2pt adds complemen-

tary information to cosmic shear constraints, particularly, providing stronger

constraints on Ωm and w.
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3.2 Theoretical model

3.2.1 Two-point correlations

Here we describe the hybrid perturbation theory (PT) model used to make theo-

retical predictions for the two-point statistics w(θ) and γt(θ).

3.2.1.1 Power spectrum

To compute the two-point projected statistics w(θ) and γt(θ), we first describe

our methodology of predicting galaxy-galaxy and galaxy-matter power spectra

(Pgg and Pgm respectively). PT provides a framework to describe the distribution

of biased tracers of the underlying dark matter field in quasi-linear and linear

scales. This framework allows for an order-by-order controlled expansion of the

overdensity of biased tracer (here galaxies) in terms of the overdensity of the

dark matter field where successively higher-order non-linearities dominate only

in successively smaller-scale modes. We will analyze two PT models in this anal-

ysis, an hybrid linear bias model (that is complete only at first order) and an

hybrid one–loop PT model (that is complete up to third order).

For the linear bias model, we can write the galaxy-matter cross spectrum as

Pgm(k) = b1Pmm and auto-power spectrum of the galaxies as Pgg(k) = b2
1Pmm(k).

Here b1 is the linear bias parameter and Pmm(k) is the non-linear power spectrum

of the matter field. We use the non-linear matter power spectrum prediction
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from [296] to model Pmm(k) (referred to as Halofit hereafter). We use the [35]

prescription to model the impact of massive neutrinos in this Halofit fitting for-

mula. We refer the reader to [175] for robustness of our results despite the limi-

tations of these modeling choices (c.f. [210] for an alternative modeling scheme).

In the hybrid one–loop PT model used here, Pgm and Pgg can be expressed as:

Pgm(k,z) = b1Pmm(k,z) +
1
2
b2Pb1b2

(k,z) +
1
2
bsPb1s2(k,z)

+
1
2
b3nlPb1b3nl

(k,z) + bkk
2Pmm(k,z) (3.2.1)

Pgg(k,z) = b2
1Pmm(k,z) + b1b2Pb1b2

(k,z) + b1bsPb1s2(k,z) + b1b3nlPb1b3nl
(k,z)

+
1
4
b2

2Pb2b2
(k,z) +

1
2
b2bsPb2s2(k,z) +

1
4
b2

s Ps2s2(k,z) + 2b1bkk
2Pmm(k,z).

(3.2.2)

Here the parameters b1, b2, bs,b3nl and bk are the renormalized bias param-

eters [207]. The kernels Pb1b2
, Pb1s2 , Pb1b3nl

, Pb2b2
, Pb2s2 and Ps2s2 are described

in [263] and are calculable from the linear matter power spectrum. We validated

this model in [231] using 3D correlation functions, ξgg and ξgm, of redMaGiC

galaxies measured in DES-like MICE simulations [73, 114, 116]. These configura-

tion space statistics are the Fourier transforms of the power spectra mentioned

above. We found this model to describe the high signal-to-noise 3D measure-

ments on the simulations above scales of 4 Mpc/h and redshift z < 1 with a

reduced χ2 consistent with one. Our tests also showed that at the projected pre-

cision of this analysis, two of the nonlinear bias parameters (bs and b3nl) can be
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fixed to their co-evolution values given by bs = (−4/7)(b1 − 1) and b3nl = (b1 − 1);

while bk can be fixed to zero. We will use this result as our fiducial modeling

choice for the one–loop PT model.

3.2.1.2 Angular correlations

In order to calculate our observables w(θ) and γt(θ), we project the 3D power

spectra described above to angular space. The projected galaxy clustering and

galaxy-galaxy lensing angular power spectra of tomography bins i, j are given

by:

C
ij
AB(ℓ) =

2
π

∫
dχ1W

i
A(χ1)

∫
dχ2W

j
B(χ2)∫

dk k2 PAB[k,z(χ1), z(χ2)]jℓ(kχ1)jℓ(kχ2) , (3.2.3)

where, AB = gg models galaxy clustering and AB = gκ, where κ denotes the

convergence field, models galaxy-galaxy lensing. Here W i
g(χ) = nig(z(χ))dz/dχ is

the normalized radial selection function of lens galaxies for tomographic bin i,

and W i
κ is the tomographic lensing efficiency of the source sample

W i
κ(χ) =

3ΩmH
2
0

2

∫ ∞
χ
dχ′n′s[z(χ

′)]
χ
a(χ)

χ′ −χ
χ′

, (3.2.4)

with nig/s(z) the normalized redshift distribution of the lens/source galaxies in

tomography bin i. For the galaxy-galaxy lensing observable, we use the Limber

approximation [188, 190] which simplifies the Eq. 3.2.3 to

C
ij
gκ(ℓ) =

∫
dχ
W i

g(χ)W j
κ(χ)

χ2 Pgκ

[
k =

l + 1/2
χ

,z(χ)
]
. (3.2.5)
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In the absence of other modeling ingredients that are described in the next sec-

tion, we have Cijgκ(ℓ) ≡ Cijgm(ℓ) (similarly Pgκ ≡ Pgm). As described in [108], even

at the accuracy beyond this analysis, it is sufficient to use the Limber approxi-

mation for the galaxy-galaxy lensing observable, while for galaxy clustering this

may cause significant cosmological parameter biases.

To evaluate galaxy clustering statistics using Eq. 3.2.3, we split the predic-

tions into small and large scales. The non-Limber correction is only significant

on large scales where non-linear contributions to the matter power spectra as

well as galaxy biasing are sub-dominant. Therefore we use the Limber approx-

imation for the small-scale non-linear corrections and use non-Limber correc-

tions strictly on large scales using linear theory. Schematically, i.e., ignoring

contributions from redshift-space distortions and lens magnification [175], the

galaxy clustering angular power spectrum between tomographic bins i and j is

given by:

C
ij
gg(ℓ)

=
∫
dχ

W i
g(χ)W j

g (χ)

χ2

[
Pgg

(
ℓ + 0.5
χ

,χ

)
− bi1b

j
1Plin

(
ℓ + 0.5
χ

,χ

)]
+

2
π

∫
dχ1 b

i
1W

i
g(χ1)D[z(χ1)]

∫
dχ2 b

j
1W

j
g (χ2)D[z(χ2)]

∫
dk
k
k3Plin(k,0)jℓ(kχ1)jℓ(kχ2) ,

(3.2.6)

where D(z(χ)) is the growth factor, and Plin is the linear matter power spectrum.

The full model of galaxy clustering, including the contributions from other mod-

eling ingredients like redshift-space distortions and lens magnification that we
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describe below, is detailed in [108] and [175].

The real-space projected statistics of interest can be obtained from these an-

gular correlations via:

wij(θ) =
∑ 2ℓ + 1

4π
Pℓ[cos(θ)] Cijgg(ℓ) (3.2.7)

γ
ij
t (θ) =

∑ 2ℓ + 1
4πℓ(ℓ + 1)

P 2
ℓ [cos(θ)] Cijgκ(ℓ) (3.2.8)

where Pℓ and P 2
ℓ are bin-averaged Legendre Polynomials (see [118] for exact ex-

pressions).

3.2.2 The rest of the model

To describe the statistics measured from data, we have to model various other

physical phenomena that contribute to the signal to obtain unbiased inferences.

In this section, we describe the leading sources of these modeling systematics.

We have also validated in [175] that higher-order corrections do not bias our

results.

3.2.2.1 Intrinsic Alignment

Galaxy-galaxy lensing aims to isolate the percent-level coherent shape distor-

tions, or shear, of background source galaxies due to the gravitational potential

of foreground lens galaxies. The local environment, however, including the grav-

itational tidal field, can also impact the intrinsic shapes of source galaxies and

contribute to the measured shear signal. This interaction between the source
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galaxies and their local environment, generally known as “intrinsic alignments”

(IA) is non-random. When there is a non-zero overlap between the source and

lens redshift distributions, IA can have a non-zero contribution to the galaxy-

galaxy lensing signal. To account for this effect, we model IAs using the “tidal

alignment and tidal torquing” (TATT) model [38]. Ignoring higher-order effects,

such as lens magnification (see [101, 247]), IA contributes to the galaxy-shear

angular power spectra through the correlation of lens density and the E-mode

component of intrinsic source shapes: Cijgκ(ℓ)→ C
ij
gκ(ℓ)+CijgIE

(ℓ). The CijgIE
(ℓ) term

is detailed in [175], [273], [247], and [38]. Within our implementation of the

TATT framework, CijgIE
(ℓ) for all tomographic bin combinations i and j can be

expressed using five IA parameters — a1 and a2 (normalization of linear and

quadratic alignments); α1 and α2 (their respective redshift evolution); and bta

(normalization of a density-weighting term) — and the linear lens galaxy bias.

Therefore this model captures higher order contributions to the intrinsic align-

ment of source galaxies as compared to the simpler non-linear linear alignment

(NLA) model that was used in the DES Y1 analysis [2, 44, 151, 174]. In princi-

ple, there are also contributions at one-loop order in PT involving the non-linear

galaxy bias and non-linear IA terms. However, in this analysis, we neglect these

terms as we expect them to be subdominant, and they can be largely captured

through the free bta parameter (see [37] for further discussion of these terms).
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3.2.2.2 Magnification

All the matter between the observed galaxy and the observer acts as a gravi-

tational lens. Hence, the galaxies get magnified, increasing the size of galaxy

images (parameterized by the magnification factor, µ) and increasing their to-

tal flux. The galaxy magnification decreases the observed number density due

to stretching of the local sky, whereas increasing the total flux results in an

increase in number density (as intrinsically fainter galaxies, which are more

numerous, can be observed). This changes the galaxy-galaxy angular power

spectrum to: Cijgg(ℓ) → C
ij
gg(ℓ) + 2Cijµg(ℓ) + Cijµµ(ℓ) and the galaxy-shear angular

power spectrum to Cijgκ(ℓ)→ C
ij
gκ(ℓ) +CijµIE

(ℓ) +Cijµκ(ℓ). The auto and cross-power

spectra with magnification are again given by Eq. 3.2.3. For example, Cijµg(ℓ) =

2(µi − 1)Cijgκ(ℓ), where, as described below, we fix µi for the five tomographic

bins to [1.31,−0.52,0.34,2.25,1.97]. We refer the reader to [175] for the detailed

description of the equations for each of the power spectra.

The magnification coefficients are computed with the Balrog image simula-

tions [102, 290] in a process described in [101]. Galaxy profiles are drawn from

the DES deep fields [137] and injected into real DES images [216]. The full pho-

tometry pipeline [278] and redMaGiC sample selection are applied to the new

images to produce a simulated redMaGiC sample with the same selection effects

as the real data. To compute the impact of magnification, the process is repeated,

this time applying a constant magnification to each injected galaxy. The mag-
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nification coefficients are then derived from the fractional increase in number

density when magnification is applied. This method captures both the impact of

magnification on the galaxy magnitudes and the galaxy sizes, including all nu-

merous sample selection effects. A similar procedure is repeated to estimate the

magnification coefficients for the Maglim sample. We refer the reader to [101]

for further details about the impact of magnification on our observable and their

constraints from data.

3.2.2.3 Non-locality of galaxy-galaxy lensing

The configuration-space estimate of the galaxy-galaxy lensing signal is a non-

local statistic. The galaxy-galaxy lensing signal of source galaxy at redshift zs by

the matter around galaxy at redshift zl at transverse distance R is related to the

mass density of matter around lens galaxy by:

γt(R;zg, zs) =
∆Σ(R;zg)

Σcrit(zg, zs)
, (3.2.9)

where, Σcrit is the critical surface mass density given by :

Σcrit(zg, zs) =
c2

4πG
DA(zs)

DA(zg)DA(zg, zs)
. (3.2.10)

Here DA is the angular diameter distance, zl is the redshift of the lens and zs

is the redshift of the source. In Eq. 3.2.9, ∆Σ(R;zg) = Σ̄(0,R;zg) − Σ(R;zg) and

Σ(R;zg) is the surface mass density at a transverse separation R from the lens and

Σ̄(0,R) is the average surface mass density within a separation R from that lens.

83



Through the Σ̄(0,R) term, γt at any scale R is dependent on the mass distribution

at all scales less than R. This makes γt highly non-local, and any model that is

valid only on large scales above some rmin will break down more rapidly than

for a more local statistic like w(θ). However, as the dependence on small scales

is through the mean surface mass density, the impact of the mass distribution

inside rmin on γt(θ) can be written as:

γt(R;zg, zs) =
1

Σcrit(zg, zs)

[
∆Σmodel(zg) +

B(zg)

R2

]
, (3.2.11)

where ∆Σmodel is the prediction from a model (which is given by PT here) that

is valid on scales above rmin (also see [20]). Here, B is the effective total residual

mass below rmin and is known as the point mass (PM) parameter. In this analysis

we use the thin redshift bin approximation (see Appendix B.1 for details of this

validation) and hence the average γt signal between lens bin i and source bin j

can be written as:

γ
ij
t = γ ijt,model +Gij /θ2, (3.2.12)

where,

Gij = Bi
∫
dzg dzs n

i
g n

j
s Σ
−1
crit(zg, zs) χ

−2(zg) ≡ Bi βij . (3.2.13)

Here Bi is the PM for lens bin i, nig is the redshift distribution of lens galaxies

for tomographic bin i, njs is the redshift distribution of source galaxies for tomo-

graphic bin j.
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However, instead of directly sampling over the parameters Bi for each to-

mographic bin, we implement an analytic marginalization scheme as described

in [193]. We modify our inverse-covariance when calculating the likelihood as

described in §3.3.4.2.

3.3 Data description

3.3.1 DES Y3

The full DES survey was completed in 2019 using the Cerro Tololo Inter-American

Observatory (CTIO) 4-m Blanco telescope in Chile and covered approximately

5000 square degrees of the South Galactic Cap. This 570-megapixel Dark En-

ergy Camera [110] images the field in five broadband filters, grizY, which span

the wavelength range from approximately 400nm to 1060nm. The raw images

are processed by the DES Data Management team [215,276] and after a detailed

object selection criteria on the first three years of imaging data (detailed in [2]),

the Y3 GOLD data set containing 400 million sources is constructed (single-epoch

and coadd images are available1 as Data Release 1). We further process this GOLD

data set to obtain the lens and source catalogs described in the following sub-

sections.
1https://des.ncsa.illinois.edu/releases/dr1
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3.3.1.1 redMaGiC lens galaxy sample

The principal lens sample used in this analysis is selected with the redMaGiC

algorithm [261] run on DES Year 3 data. redMaGiC selects Luminous Red Galax-

ies (LRGs) according to the magnitude-color-redshift relation of red-sequence

galaxies, calibrated using an overlapping spectroscopic sample. This procedure

is based on selecting galaxies above a threshold luminosity that fit (using χ2
RM

as goodness-of-fit criteria) this redMaGiC template of magnitude-color-redshift

relation to a threshold better than χ2
RM < χ2

max. The value of χ2
max is chosen such

that the sample has a constant co-moving space density and is typically less than

3. The full redMaGiC algorithm is described in [261], and after application of this

algorithm to DES Y3 data, we have approximately 2.6 million galaxies.

[258] found that the redMaGiC number density fluctuates with several obser-

vational properties of the survey, which imprints a non-cosmological bias into

the galaxy clustering. To account for this we assign a weight to each galaxy,

which corresponds to the inverse of the angular selection function at that galaxy’s

location. The computation and validation of these weights are described in [258].

3.3.1.2 Maglim lens galaxy sample

DES cosmological constraints are also derived using a second lens sample, Maglim,

selected by applying the criterion i < 4z + 18 to the GOLD catalog, where z is the

photometric redshift estimate given by the Directional Neighbourhood Fitting
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(DNF) algorithm [80]. This selection is shown by [245] to be optimal in terms

of its 2×2pt cosmological constraints. We additionally apply a lower magnitude

cut, i > 17.5, to remove contamination from bright objects. The resulting sample

has about 10.7 million galaxies.

Similarly to redMaGiC, we correct the impact of observational systematics on

the Maglim galaxy clustering by assigning a weight to each galaxy, as described

and validated in [258]. This sample is then used in [244] to obtain cosmological

constraints from the combination of galaxy clustering and galaxy-galaxy lensing

from DES Y3 data. We refer to [244] for a detailed description of the sample and

its validation.

3.3.1.3 Source galaxy shape catalog

To estimate the weak lensing shear of the observed source galaxies, we use the

Metacalibration algorithm [157, 279]. This method estimates the response of a

shear estimator to artificially sheared galaxy images and incorporates improve-

ments like better PSF estimation [164], better astrometric methods [278] and

inclusion of inverse variance weighting. The details of the method applied to

our galaxy sample are presented in [125]. This methodology does not capture

the object-blending effects and shear-dependent detection biases and we use im-

age simulations to calibrate this bias as detailed in [195]. The galaxies that pass

the selection cuts designed to reduce systematic biases (as detailed in [125]) are
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used to make our source sample shape catalog. This catalog consists of approx-

imately 100 million galaxies with effective number density of neff = 5.6 galaxies

per arcmin2 and an effective shape noise of σe = 0.26.

3.3.2 Buzzard Simulations

The Buzzard simulations are N -body lightcone simulations that have been pop-

ulated with galaxies using the Addgals algorithm [319], endowing each galaxy

with positions, velocities, spectral energy distributions, broad-band photome-

try, half-light radii and ellipticities. In order to build a lightcone that spans the

entire redshift range covered by DES Y3 galaxies, we combine three lightcones

constructed from simulations with box sizes of 1.05, 2.6 and 4.0(h−3 Gpc3), mass

resolutions of 3.3 × 1010, 1.6 × 1011, 5.9 × 1011h−1M⊙, spanning redshift ranges

0.0 < z ≤ 0.32, 0.32 < z ≤ 0.84 and 0.84 < z ≤ 2.35 respectively. Together these

produce 10,000 square degrees of unique lightcone. The lightcones are run with

the L-Gadget2 N -body code, a memory optimized version of Gadget2 [288],

with initial conditions generated using 2LPTIC at z = 50 [75]. From each 10,000

square degree catalog, we can create two DES Y3 footprints.

The Addgals model uses the relationship, P (δR|Mr), between a local density

proxy, δR, and absolute magnitude Mr measured from a high-resolution sub-

halo abundance matching (SHAM) model in order to populate galaxies into these

lightcone simulations. The Addgals model reproduces the absolute–magnitude–
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dependent clustering of the SHAM. Additionally, we employ a conditional abun-

dance matching (CAM) model, assigning redder SEDs to galaxies that are closer

to massive dark matter halos, in a manner that allows us to reproduce the color-

dependent clustering measured in the Sloan Digital Sky Survey Main Galaxy

Sample (SDSS MGS) [84, 319].

These simulations are ray-traced using the spherical-harmonic transform (SHT)

configuration of Calclens, where the SHTs are performed on an Nside = 8192

HealPix grid [27]. The lensing distortion tensor is computed at each galaxy po-

sition and is used to deflect the galaxy angular positions, apply shear to galaxy

intrinsic ellipticities, including effects of reduced shear, and magnify galaxy

shapes and photometry. We have conducted convergence tests of this algorithm

and found that resolution effects are negligible on the scales used for this analy-

sis [86].

Once the simulations have been ray-traced, we apply DES Y3-specific mask-

ing and photometric errors. To mask the simulations, we employ the Y3 footprint

mask but do not apply the bad region mask [278], resulting in a footprint with

an area of 4143.17 square degrees. Each set of three N -body simulations yields

two Y3 footprints that contain 520 square degrees of overlap. In total, we use 18

Buzzard realizations in this analysis.

We apply a photometric error model to simulate wide-field photometric er-

rors in our simulations. To select a lens galaxy sample, we run the redMaGiC
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galaxy selection on our simulations using the same configuration as used in the

Y3 data, as described in [258]. A weak lensing source selection is applied to

the simulations using PSF-convolved sizes and i-band SNR to match the non-

tomographic source number density, 5.9 arcmin−2, from the Metacalibration source

catalog. This matching was performed using a slightly preliminary version of the

Metacalibration catalog, so this number density is slightly different from the

final Metacalibration catalog that is used in our DES Y3 analyses. We employ

the fiducial redshift estimation framework (see §3.3.3.3) to our simulations in or-

der to place galaxies into four source redshift bins with number densities of 1.46

arcmin−2 each. Once binned, we match the shape noise of the simulations to that

measured in the Metacalibration catalog per tomographic bin, yielding shape

noise values of σe = [0.247,0.266,0.263,0.314].

Two-point functions are measured in the Buzzard simulations using the same

pipeline used for the DES Y3 data, where we set Metacalibration responses

and inverse variance weights equal to 1 for all galaxies, as these are not assigned

in our simulation framework. We have opted to make measurements without

shape noise in order to reduce the variance in the simulated analyses using these

measurements. Lens galaxy weights are produced in a manner similar to that

done in the data and applied to measure our clustering and lensing signals. The

clustering and galaxy-galaxy lensing predictions match the DES redMaGiC mea-

surements to 10 − 20% accuracy over most scales and tomographic bins, except
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for the first lens bin, which disagrees by 50% in w(θ). We refer the reader to Fig.

4 in [85] for a more detailed comparison.

3.3.3 Tomography and measurements

In this section we detail the estimation of the photometric redshift distribution of

our source galaxy sample and two lens galaxy samples. These three samples are

qualitatively different and have different redshift attributes, requiring different

redshift calibration methods detailed below.

3.3.3.1 redMaGiC redshift methodology

We split the redMaGiC sample into Nz,g = 5 tomographic bins, selected on the

redMaGiC redshift point estimate quantity ZREDMAGIC. The bin edges used are

z = 0.15,0.35,0.50,0.65,0.80,0.90. The first three bins use a luminosity thresh-

old of Lmin > 0.5L∗ and are known as the high-density sample. The last two

redshift bins use a luminosity threshold of Lmin > 1.0L∗ and are known as the

high-luminosity sample. The galaxy number densities (in the units of arcmin−2)

for the five tomographic bins are ⟨ng⟩ = 0.022,0.038,0.059,0.03,0.025.

The redshift distributions are computed by stacking four samples from the

PDF of each redMaGiC galaxy, allowing for non-Gaussianity of the PDF. We find

an average individual redshift uncertainty of σz/(1 + z) < 0.0126 in the redshift

range used from the variance of these samples. We refer the reader to [261]
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for more details on the algorithm of redshift assignment for redMaGiC galaxies

and to [59] for more details on the calibration of redshift distribution of the Y3

redMaGiC sample.

3.3.3.2 Maglim redshift methodology

We use DNF [80] for splitting the Maglim sample into tomographic bins and es-

timating the redshift distributions. DNF uses a training set from a spectroscopic

database as reference, and then provides an estimate of the redshift of the object

through a nearest-neighbors fit in a hyperplane in color and magnitude space.

We split the Maglim sample into Nz,g = 6 tomographic bins from z = 0.2

and z = 1.05, selected using the DNF photometric redshift estimate. The bin

edges are [0.20,0.40,0.55,0.70,0.85,0.95,1.05]. The galaxy number densities (in

the units of arcmin−2) for the six tomographic bins of this sample are ⟨ng⟩ =

0.15,0.107,0.109,0.146,0.106,0.1. The redshift distributions in each bin are then

computed by stacking the DNF PDF estimates of each Maglim galaxy. See [244] for

a more comprehensive description and validation of this methodology and [127]

for estimation of redshift distributions of this sample using the same methodol-

ogy as used for source galaxies that is described below.

3.3.3.3 Source redshift methodology

The description of the tomographic bins of source samples and the methodology

for calibrating their photometric redshift distributions are summarized in [219].
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Overall, the redshift calibration methodology involves the use of self-organizing

maps [219], clustering redshifts [124] and shear-ratio [267] information. The

Self-Organizing Map Photometric Redshift (SOMPZ) methodology leverages ad-

ditional photometric bands in the DES deep-field observations [137] and the

Balrog simulation software [103] to characterize a mapping between color space

and redshifts. This mapping is then used to provide redshift distribution sam-

ples in the wide field, after including the uncertainties from sample variance and

galaxy flux measurements in a way that is not subject to selection biases. The

clustering redshift methodology performs the calibration by analyzing cross-

correlations between redMaGiC and spectroscopic data from Baryon Acoustic Os-

cillation Survey (BOSS) and its extension (eBOSS). Candidate ns(z) distributions

are drawn from the posterior distribution defined by the combination of SOMPZ

and clustering-redshift likelihoods. These two approaches provide us the mean

redshift distribution of source galaxies and uncertainty in this distribution. The

shear-ratio calibration uses the ratios of small-scale galaxy-galaxy lensing data,

which are largely independent of the cosmological parameters but help calibrate

the uncertainties in the redshift distributions. We include it downstream in our

analysis pipeline as an external likelihood, as briefly described in §3.3.3.5 and

detailed in [267].

Finally, we split the source catalog into Nz,s = 4 tomographic bins. The mean

redshift distribution of redMaGiC lens galaxies and source galaxies are compared
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Figure 3.2: Comparison of the normalized redshift distributions of various to-

mographic bins of the source galaxies and redMaGiC lens galaxies in the data.

in Fig. 3.2. We refer the reader to [244] for Maglim sample redshift distribution.

3.3.3.4 2pt measurements

For galaxy clustering, we use the Landy-Szalay estimator [179] given as:

w(θ) =
DD − 2DR+RR

RR
(3.3.1)

whereDD,DR andRR are normalized weighted number counts of galaxy-galaxy,

galaxy-random and random-random pairs within angular and tomographic bins.

For lens tomographic bins, we measure the auto-correlations in Nθ = 20 log-

spaced angular bins ranging from 2.5 arcmin to 250 arcmin. Each lens galaxy
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in the catalog (gi) is weighted with its systematic weight wgi
. This systematic

weight aims to remove the large-scale fluctuations due to changing observing

conditions at the telescope and Galactic foregrounds. Our catalog of randoms

is 40 times larger than the galaxy catalog. The validation of this estimator and

systematic weights of the lens galaxies is presented in [258]. In total we have

Nw(θ) =Nz,g ×Nθ = 100 measured w(θ) datapoints.

The galaxy-galaxy lensing estimator used in this analysis is given by:

γt(θ) =

∑
kwrk∑
iwgi

∑
ijwgiwsje

LS
t,ij∑

kjwrkwsj
−

∑
kjwrkwsje

RS
t,kj∑

kjwrkwsj
(3.3.2)

where eLS
t,ij and eRS

t,kj is the measured tangential ellipticity of source galaxy j around

lens galaxy i and random point k respectively. The weight wgi is the systematic

weight of lens galaxy as described above, wrk is the weight of random point that

we fix to 1 and wsj is the weight of the source galaxy that is computed from in-

verse variance of the shear response weighted ellipticity of the galaxy (see [125]

for details). This estimator has been detailed and validated in [285] and [247].

We measure this signal for each pair of lens and source tomographic bins and

hence in total we have Nγt(θ) =Nz,g ×Nz,s ×Nθ = 400 measured γt(θ) datapoints.

We analyze both of these measured statistics jointly and hence we have in to-

tal Ndata =Nw(θ) +Nγt(θ) = 500 datapoints. Our measured signal to noise (SNR)2,

using redMaGiC lens sample, of w(θ) is 171 [258], of γt(θ) is 121 [247]; giving

2The SNR is calculated as
√

(D⃗C−1 D⃗), where D⃗ is the data under consideration and C is its

covariance.

95



total joint total SNR of 196. In the §3.4, we describe and validate different sets of

scale cuts for the linear bias model (angular scales corresponding to (8,6)Mpc/h

for w(θ),γt(θ) respectively) and the non-linear bias model ((4,4)Mpc/h). After

applying these scale cuts, we obtain the joint SNR, that we analyze for cosmolog-

ical constraints, as 81 for the linear bias model and 106 for the non-linear bias

model.3

3.3.3.5 Shear ratios

As will be detailed in §3.4.1.3, in this analysis, we remove the small scales’ non-

linear information from the 2pt measurements that are presented in the above

sub-section. However, as presented in [267], the ratio of γt(θ) measurements for

the same lens bin but different source bins is well described by our model (see

§3.2) even on small scales. Therefore we include these ratios (referred to as shear-

ratio henceforth) as an additional independent dataset in our likelihood. In this

shear-ratio datavector, we use the angular scales above 2Mpc/h and less than

our fiducial scale cuts for 2pt measurements described in §3.4.1.3 (we also leave

two datapoints between 2pt scale cuts and shear-ratio scale cuts to remove any

potential correlations between the two). The details of the analysis choices for

shear-ratio measurements and the corresponding covariance matrix are detailed

3Using a more optimal SNR estimator, SNR= (D⃗dataC−1 D⃗model)√
(D⃗modelC−1 D⃗model)

, where D⃗data is the measured

data and D⃗model is the bestfit model, we get SNR=79.5 for the linear bias model scale cuts of

(8,6)Mpc/h.
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in [267] and [88].

3.3.4 Covariance

In this analysis, the covariance between the statistic w(θ) and γt(θ) (C) is mod-

eled as the sum of a Gaussian term (CG), trispectrum term (CNG) and super-

sample covariance term (CSSC). The analytic model used to describe (CG) is

described in [118]. The terms CNG and CSSC are modeled using a halo model

framework as detailed in [171] and [174]. The covariance calculation has been

performed using the CosmoCov package [106], and the robustness of this co-

variance matrix has been tested and detailed in [118]. We also account for two

additional sources of uncertainties that are not included in our fiducial model

using the methodology of analytical marginalization [46] as detailed below.

3.3.4.1 Accounting for LSS systematics

As described in [258], we modify the w(θ) covariance to analytically marginal-

ize over two sources of uncertainty in the correction of survey systematics: the

choice of correction method, and the bias of the fiducial method as measured on

simulations.

These systematics are modelled as

w′(θ) = w(θ) +A1∆wmethod(θ) +A2wr.s.bias(θ) , (3.3.3)

where ∆wmethod(θ) is the difference between two systematics correction meth-
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ods: Iterative Systematic Decontamination (ISD) and Elastic Net (ENet), and

wr.s.bias(θ) is the residual systematic bias measured on Log-normal mocks. Both

terms are presented in detail in [258]. Also note that here A1 andA2 are arbitrary

amplitudes.

We analytically marginalise over these terms assuming a unit Gaussian as the

prior on the amplitudes A1 and A2. The measured difference is a 1σ deviation

from the prior center. The final additional covariance term to be added to the

fiducial covariance is:

∆C = ∆wmethod∆wmethod
T + wr.s.biaswr.s.bias

T . (3.3.4)

The systematic contribution to each tomographic bin is treated as indepen-

dent so the covariance between lens bins is not modified.

3.3.4.2 Point mass analytic marginalization

As mentioned in §3.2.2.3, we modify the inverse covariance to perform analytic

marginalization over the PM parameters. As detailed in [193], using the gener-

alization of the Sherman-Morrison formula, this procedure changes our fiducial

inverse-covariance C−1 to C−1
wPM as follows:

C−1
wPM = C−1 −C−1U(I +UTC−1U )−1UTC−1 . (3.3.5)

Here C−1 is the inverse of the halo-model covariance as described above, I is

the identity matrix and U is a Ndata ×Nz,g matrix where the i-th column is given
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by σBi t⃗
i . Here σBi is the standard deviation of the Gaussian prior on point mass

parameter Bi and t⃗i is given as:

(
t⃗i
)
a

=



0

if a-th element does not

correspond to γt(θ) and if

lens-redshift of a-th ele-

ment , i

βijθ−2
a otherwise

(3.3.6)

where the expression for βij is shown in Eq.3.2.13. We evaluate that term at fixed

fiducial cosmology as given in Table 3.1. In our analysis we put a wide prior on

PM parameters Bi by choosing σBi = 10000 which translates to the effective mass

residual prior of 1017M⊙/h (see Eq. B.1.1).

3.3.5 Blinding and unblinding procedure

We shield our results from observer bias by randomly shifting our results and

datavector at various phases of the analysis [217]. This procedure prevents us

from knowing the impact of any particular analysis choice on the inferred cos-

mological constraints from our data until all analysis choices have been made.

This procedure, as well as the decision tree used to unblind, is detailed in [88],

which is also employed here. Therefore, all of our cosmology results acquired

with fiducial galaxy samples described in this section are achieved using anal-

ysis choices that were validated prior to unblinding (see § 3.4). The results ob-
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tained by changing analysis choices (and with a different galaxy sample), after

unblinding, are confined to § 3.5.7 and § 3.5.8 of the main article, and in the

Appendix B.3.
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Model Parameter Prior Fiducial

Cosmology

Common
Parameters

Ωm U [0.1,0.9] 0.3

As × 10−9 U [0.5,5] 2.19

Ωb U [0.03,0.07] 0.048

ns U [0.87,1.06] 0.97

h U [0.55,0.91] 0.69

Ωνh
2 × 10−4 U [6.0,64.4] 8.3

Intrinsic Alignment

a1 U [−5.0,5.0] 0.7

a2 U [−5.0,5.0] -1.36

α1 U [−5.0,5.0] -1.7

α2 U [−5.0,5.0] -2.5

bta U [0.0,2.0] 1.0

Lens photo-z

∆z1
g G[0.006,0.004] 0.0

∆z2
g G[0.001,0.003] 0.0

∆z3
g G[0.004,0.003] 0.0

∆z4
g G[−0.002,0.005] 0.0

∆z5
g G[−0.007,0.01] 0.0

σz5
g G[1.23,0.054] 1.0
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Shear Calibration

m1 G[−0.0063,0.0091] 0.0

m2 G[−0.0198,0.0078] 0.0

m3 G[−0.0241,0.0076] 0.0

m4 G[−0.0369,0.0076] 0.0

Source photo-z

∆z1
s G[0.0,0.018] 0.0

∆z2
s G[0.0,0.015] 0.0

∆z3
s G[0.0,0.011] 0.0

∆z4
s G[0.0,0.017] 0.0

Point Mass
Bi

i ∈ [1,5] G[0.0,104] 0.0

Cosmology

wCDM w U [−2,−0.33] -1.0

Galaxy Bias

Linear
Bias

bi1
i ∈ [1,3] U [0.8,3.0] 1.7

bi1
i ∈ [4,5] U [0.8,3.0] 2.0

Non-Linear Galaxy Bias

bi1σ8
i ∈ [1,3] U [0.67,2.52] 1.42

bi1σ8
i ∈ [4,5] U [0.67,2.52] 1.68
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bi2σ
2
8

i ∈ [1,3] U [−3.5,3.5] 0.16

bi2σ
2
8

i ∈ [4,5] U [−3.5,3.5] 0.35

Table 3.1: The parameters varied in different models,

their prior range used (U [X,Y ] ≡ Uniform prior be-

tween X and Y ; G[µ,σ ] ≡ Gaussian prior with mean µ

and standard-deviation σ ) in this analysis and the fidu-

cial values used for simulated likelihood tests.

3.4 Validation of parameter inference

We assume the likelihood to be a multivariate Gaussian

lnL(D⃗|Θ) = −1
2

[D⃗ − T⃗ (Θ)]TC−1
wPM [D⃗ − T⃗ (Θ)] . (3.4.1)

Here D⃗ is the measured γt(θ) and w(θ) datavector of length Ndata (if we use all

the angular and tomograhic bins), T⃗ is the theoretical prediction for these statis-

tics for the parameter values given by Θ, and C−1
wPM is the inverse covariance ma-

trix of shape Ndata×Ndata (including modifications from the PM marginalization

term).

For our analysis we use the Polychord sampler with the settings described
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in [187]. The samplers probe the posterior (P (Θ|D⃗)) which is given by:

P (Θ|D⃗) =
L(D⃗|Θ)P(Θ)

P(D⃗)
(3.4.2)

where P(Θ) are the priors on the parameters of our model, described in §3.4.1.4,

and P(D⃗) is the evidence of data.

To estimate the constraints on the cosmological parameters, we have to marginal-

ize the posterior over all the rest of the multi-dimensional parameter space. We

quote the mean and 1σ variance of the marginalized posteriors when quoting the

constraints. However, note that these marginalized constraints can be biased if

the posterior has significant non-Gaussianities, particularly in the case of broad

priors assigned to poorly constrained parameters. The maximum-a-posteriori

(MAP) point is not affected by such "projection effects"; therefore, we also show

the MAP value in our plots. However, we note that in high-dimensional pa-

rameter space with a non-trivial structure, it is difficult to converge on a global

maximum of the whole posterior (also see [165] and citations therein).

3.4.1 Analysis choices

In this subsection, we detail the galaxy bias models that we use, describe the free

parameters of our models, and choose priors on those parameters.

3.4.1.1 PT Models

In this analysis, we test two different galaxy bias models:
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1. Linear bias model: The simplest model to describe the overdensity of galax-

ies, valid at large scales, assumes it to be linearly biased with respect to

the dark matter overdensity (see §3.2.1.1). In this model, for each lens to-

mographic bin j, the average bias of galaxies is given by a constant free

parameter bj1.

2. Non-linear bias model: To describe the clustering of galaxies at smaller

scales robustly, we also implement a one–loop PT model. As described

in §3.2.1.1, in general, this model has five free bias parameters for each

lens tomographic bin. For each tomographic bin j, we fix two of the non-

linear parameters to their co-evolution value given by: bjs = (−4/7)(bj1 − 1)

and bj3nl = bj1 − 1 [207, 263], while set bjk = 0 [231]. Therefore, in our imple-

mentation, we have two free parameters for each tomographic bin: linear

bias bj1 and non-linear bias bj2. This allows us to probe smaller scales with

minimal extra degrees of freedom, obtaining tighter constraints on the cos-

mological parameters while keeping the biases due to projection effects, as

described below, in control.

As we describe below, in order to test the robustness of our model, we an-

alyze the bias in the marginalized constraints on cosmological parameters.

However, given asymmetric non-Gaussian degeneracies between the pa-

rameters of the model (particularly between cosmological parameters and

poorly constrained non-linear bias parameters bj2 and intrinsic alignment
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parameters), the marginalized constraints show projection effects. We find

that imposing priors on the non-linear bias model parameters in combina-

tion with σ8, as bj1σ8 and b
j
2σ

2
8 removes much of the posterior projection

effect. As detailed later, these parameters are sampled with flat priors. We

emphasize that the flat priors imposed on these non-linear combinations of

parameters are non-informative, and our final constraints on bj1 and bj2 are

significantly tighter than the projection of priors on these parameters.

3.4.1.2 Cosmological Models

We report the constraints on two choices of the cosmological model:

1. Flat ΛCDM : We free six cosmological parameters the total matter density

Ωm, the baryonic density Ωb, the spectral index ns, the Hubble parameter

h, the amplitude of scalar perturbations As and Ωνh
2 (where Ων is the

massive neutrino density). We assume a a flat cosmological model, and

hence the dark energy density, ΩΛ, is fixed to be ΩΛ = 1−Ωm.

2. Flat wCDM: In addition to the six parameters listed above, we also free

the dark energy equation of state parameter w. Note that this parameter is

constant in time and w = −1 corresponds to ΛCDM cosmological model.
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3.4.1.3 Scale cuts

The complex astrophysics of galaxy formation, evolution, and baryonic processes

like feedback from active galactic nuclei (AGN), supernova explosions, and cool-

ing make higher-order non-linear contributions that we do not include in our

model. The contribution from these poorly understood effects can exceed our

statistical uncertainty on the smallest scales; hence we apply scale cuts chosen

so that our PT models give unbiased cosmological constraints.

As mentioned earlier, marginalizing over a multi-dimensional parameter space

can lead to biased 2D parameter constraints due to projection effects. To cal-

ibrate this effect for each of our models, we first perform an analysis using a

baseline datavector constructed from the fiducial values of that model. We then

run our MCMC chain on the contaminated datavector that includes higher-order

non-linearities, and we measure the bias between the peak of the marginalized

baseline contours and the peak of the marginalized contaminated contours.

From a joint analysis of 3D galaxy-galaxy and galaxy-matter correlation func-

tions at fixed cosmology in simulations [231], we find that the linear bias model is

a good description above 8Mpc/hwhile the two-parameter non-linear bias model

describes the correlations above 4Mpc/h. We convert these physical co-moving

distances to angular scale cuts for each tomographic bin and treat them as start-

ing guesses. Then for each model, we iterate over scale cuts until we find the

minimum scales at which the bias between marginalized baseline and contami-
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nated contours is less than 0.3σ . For the ΛCDM model, we impose this criterion

on the Ωm − S8 projected plane, and for the wCDM model, we impose this cri-

terion on all three 2D plane combinations constructed out of Ωm, S8 and w.

Further validation of these cuts is performed using simulations in 3.4.3 and [85].

3.4.1.4 Priors and Fiducial values

We use locally non-informative priors on the cosmological parameters to ensure

statistically independent constraints on them. Although our constraints on cos-

mological parameters like the Hubble constant h, spectral index ns and baryon

fraction Ωb are modest compared to surveys like Planck, we have verified that

our choice of wide priors does not bias the inference on our cosmological param-

eters of interest, Ωm and S8.

When analyzing the linear bias model, we use a wide uniform prior on these

linear bias parameters, given by 0.5 < bj1 < 3. For the non-linear bias model, as

mentioned above, we sample the parameters bj1σ8 and b
j
2σ

2
8 . We use uninfor-

mative uniform priors on these parameters for each tomographic bin j given by

0.67 < bj1σ8 < 3.0 and −4.2 < bj2σ
2
8 < 4.2. At each point in the parameter space, we

calculate σ8 and retrieve the bias parameters bj1 and bj2 from the sampled param-

eters to get the prediction from the theory model. The fiducial values of the linear

bias parameters bj1 used in our simulated likelihood tests are motivated by the

recovered bias values in N-body simulations and are summarized in Table 3.1.
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For the non-linear bias parameters, the fiducial values of bj2 are obtained from

the interpolated b1 − b2 relation extracted from 3D tests in MICE simulations (see

Fig. 8 of [231]) for the fiducial bj1 for each tomographic bin.

For the intrinsic alignment parameters, we again choose uniform and un-

informative priors. As the IA parameters are directly dependent on the source

galaxy population, it is challenging to motivate a reasonable choice of prior from

other studies. The fiducial values of these parameters required for the simulated

test are motivated by the Y1 analysis as detailed in [264].

We impose an informative prior for our measurement systematics param-

eters, lens photo-z shift errors (∆zjg), lens photo-z width errors (σzjg), source

photo-z shift errors (∆zjs) and shear calibration biases (mj) for various tomo-

graphic bins i. The photo-z shift parameter changes the redshift distributions

for lenses (g) or sources (s) for any tomographic bin j, used in the theory pre-

dictions (see §3.2) as njg/s(z) −→ n
j
g/s(z −∆z

j
g/s), while the photo-z width results in

n
j
g(z) −→ n

j
g(σzjg[z−⟨z⟩j]+⟨z⟩j), where ⟨z⟩j is the mean redshift of the tomographic

bin j. Lastly, the shear calibration uncertainity modifies the galaxy-galaxy lens-

ing signal prediction between lens bin i and source bin j as γ ijt −→ (1 +mj)γ ijt .

For the source photo-z, we refer the reader to [219] for the characterization of

source redshift distribution, [124] for reducing the uncertainity in these redshift

distribution using cross-correlations with spectroscopic galaxies and [70] for a

validation of the shift parameterization using a more complete method based on
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sampling the discrete distribution realizations. For the shear calibration biases,

we refer the reader to [195] which tests the shape measurement pipeline and

determine the shear calibration uncertainity while accounting for effects like

blending using state-of-art image simulation suite. For the priors on the lens

photo-z shift and lens photo-z width errors, we refer the reader to [59], which

cross-correlated the DES lens samples with spectroscopic galaxy samples from

Sloan Digital Sky Survey to calibrate the photometric redshifts of lenses (also

see [244] and [127] for further details on Maglim redshift calibration).

In this paper we fix the magnification coefficients to the best-fit values de-

scribed in [101, 175], but we refer the reader to [101] for details on the impact

of varying the magnification coefficients on the cosmological constraints. Note

that in our tests to obtain scale cuts for cosmological analysis using simulated

datavectors (described below), we remain conservative and fix the shear system-

atics to their fiducial parameter values and analyze the datavectors at the mean

source redshift distribution ns(z), as shown in Fig. 3.2. This procedure, after

fixing the systematic parameters, results in tighter constraints and ensures that

the impact of baryons and non-linear bias on the cosmological inference is over-

estimated. Therefore, we expect our recovered scale cuts to be conservative.
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Figure 3.3: Simulated datavector parameter constraints from a datavector con-

taminated with non-linear bias + baryons but analyzed with a linear bias +

Halofit model. Dashed grey lines mark the truth values for the simulated

datavector. The left panel shows contours for ΛCDM, and the right panel shows

wCDM. The scale cuts are (8,6) Mpc/h for w(θ) and γt respectively. In both pan-

els, we compare the peak of the marginalized constraints in the 2D parameter

plane for the contaminated datavector (blue circle) and the baseline datavector

(red square). The peaks of the marginalized baseline contours are within 0.3σ of

the peaks of the marginalized contaminated contours, which is our criterion for

acceptable scale cuts. We also show the corresponding maximum posterior value

obtained for all the contours (with a star symbol), obtained using the methodol-

ogy described in the main text.
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3.4.2 Simulated Likelihood tests

We perform simulated likelihood tests to validate our choices of scale cuts, galaxy

bias model and the cosmological model (including priors and external datasets

when relevant). In this analysis we focus on determining and validating the scale

cuts using redMaGiC lens galaxy sample and we refer the reader to [244] for vali-

dation using the Maglim lens galaxy sample. We require that the choices adopted

return unbiased cosmological parameters. This first step based on the tests on

noiseless datavectors in the validation is followed by tests on cosmological sim-

ulations.

3.4.2.1 Scale cuts for the linear bias model

Our baseline case assumes linear galaxy bias and no baryonic impact on the

matter-matter power spectrum. We use the linear bias values for the five lens

bins (in order of increasing redshift) b1 = 1.7,1.7,1.7,2.0, and 2.0. We com-

pare the cosmology constraints from the baseline datavector with a simulated

datavector contaminated with contributions from non-linear bias and baryonic

physics. For baryons, the non-linear matter power spectra (P cont
mm ) used in gener-

ating the contaminated datavector is estimated using following prescription:

P cont
mm =

(
P

hydro−sim
mm

P
DM−only
mm

)
PHalofit

mm , (3.4.3)

where, P hydro−sim
mm and P

DM−only
mm are the matter power spectra measured from a

full hydrodynamical simulation and dark matter only simulation respectively.
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Figure 3.4: The blue contours show constraints from Buzzard simulations (blue

contours) compared with Buzzard -like theory datavector (red contours) in the

ΛCDM cosmological model. The left (right) panel shows the constraints for lin-

ear (non-linear) bias models with the scale cuts given in the legend. The linear

and non-linear bias values are extracted from fits to the 3D correlation func-

tions (ξgg and ξgm). We see that both the scale-cut choices satisfy our validation

criterion.

We use the measurements from the OWLS-AGN simulations, which is based on

hydrodynamical simulations that include the effects of supernovae and AGN

feedback, metal-dependent radiative cooling, stellar evolution, and kinematic

stellar feedback [182] To capture the effect of non-linear bias, we use the fiducial

b
j
2 values as described in the previous section and fix the bias parameters bjs and

b
j
3nl to their co-evolution values.

Fig. 3.3 shows the 0.3σ contours when implementing the angular cuts corre-
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Figure 3.5: Same as Fig. 3.4 but for wCDM cosmology.

sponding to (8,6) Mpc/h for w(θ) and γt. The left panel is for ΛCDM, and the

right panel for wCDM (only the w−Ωm plane is shown, but we also verified that

the criterion is satisfied in the Ωm − S8 and S8 −w planes). The figure shows the

peaks of marginalized contaminated and baseline posteriors in 2D planes with

blue and red markers respectively. We find that a 0.24σ marginalized contam-

inated contour intersects the peak of baseline marginalized posterior in ΛCDM

model, while same is true for a 0.05σ contour in wCDM model. We find that for

the linear bias model, (8,6) Mpc/h scale cuts pass the above-mentioned criteria

that the distance between the peaks of baseline and contaminated contours is

less than 0.3σ . In Fig. 3.3, we also show the MAP parameter values for each run

using a star symbol. In order to obtain the MAP value, we use the Nelder-Mead

algorithm [221] to minimize the posterior value after starting the optimization

from the highest posterior point of the converged parameter inference chain. We

114



find that the MAP point also lies within 0.3σ of the true cosmology, further vali-

dating the inferred scale cuts (although, note the caveats about MAP mentioned

in §3.4).

3.4.3 Buzzard simulation tests

Finally, we validate our model with mock catalogs from cosmological simula-

tions for analysis choice combinations that pass the simulated likelihood tests.

These tests, and tests of cosmic shear and 3 × 2-point analyses, are presented in

full in [85], and we summarize the details relevant for 2× 2-point analyses here.

We use the suite of Y3 Buzzard simulations described above. We again require

that our analysis choices return unbiased cosmological parameters. In order to

reduce the sample variance, we analyze the mean datavector constructed from

18 Buzzard realizations.

3.4.3.1 Validation of linear bias model

We have run simulated 2 × 2-point analyses on the mean of the measurements

from all 18 Buzzard simulations. We compare our model for w(θ) and γt(θ) to

our measurements at the true Buzzard cosmology, leaving only linear bias and

lens magnification coefficients free. In this case, we have ten free parameters in

total, and we find a chi-squared value of 13.6 for 285 data points using our fidu-

cial scale cuts and assuming the covariance of a single simulation, as appropriate
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for application to the data. This analysis assumes true source redshift distribu-

tions, and we fix the source redshift uncertainties to zero as a conservative choice.

This results in cosmological constraints where the mean two-dimensional pa-

rameter biases are 0.23σ in the S8 −Ωm plane and 0.18σ in the w −Ωm plane.

These biases are consistent with noise, as they have an approximately 1/
√

18σ

error associated with them (assuming 1σ error from a single realization). We

perform a similar analysis using calibrated photometric redshift distributions

where we use redMaGiC lens redshift distributions, and use the SOMPZ redshift

distribution estimates of source galaxies. These are weighted by the likelihood of

those samples given the cross-correlation of our source galaxies with redMaGiC

and spectroscopic galaxies (we refer the reader to Appendix F of [85] for detailed

procedure). This procedure results in the mean two-dimensional parameter bi-

ases of 0.07σ in the S8 −Ωm plane and 0.05σ in the w −Ωm plane.

The left panels of Fig. 3.4 and Fig. 3.5 show the 0.3σ constraints obtained

from analyzing linear galaxy bias models in ΛCDM and wCDM cosmologies on

the Buzzard datavector in blue colored contours. Since we expect the marginal-

ized posteriors to be affected by the projection effects, we compare these contours

to a simulated noiseless baseline datavector obtained at the input cosmology of

Buzzard (denoted by gray dashed lines in Fig. 3.4 and Fig. 3.5, also see [86]). We

find that similar to results obtained with simulated datavectors in previous sec-

tion, our parameter biases are less than the threshold of 0.3σ for the fiducial scale
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cuts. For a more detailed discussion how these shift compare with probability to

exceed (PTE) values of exceeding a 0.3σ bias, see Section V of [85].

Also note that as changing the input truth values of the parameters impacts

the shape of the multi-dimensional posterior, we find that the effective magni-

tude and direction of the projection effects of the baseline contours (comparison

of red contours in Fig. 3.3 with Fig. 3.4 and Fig. 3.5) are different.

3.4.3.2 Scale cuts for non-linear bias model

Likewise, we have run simulated 2 × 2-point analyses including our non-linear

bias model on the mean of the measurements from all 18 simulations. Similar to

the procedure used to determine the linear bias scale cuts in §3.4.2.1, we iterate

over scale cuts for each tomographic bin defined from varying physical scale

cuts.

We compare our model for w(θ) and γt(θ) to our measurements at the true

Buzzard cosmology, leaving our bias model parameters and magnification coef-

ficients free, which adds 15 free parameters. We find a χ2 value of 15.6 for 340

data points using our non-linear bias scale cuts and assuming the covariance of a

single simulation. Simulated analyses using true redshift distributions result in

cosmological constraints where the associated mean two-dimensional parameter

biases for these analyses are 0.04σ in the S8 −Ωm plane and 0.11σ in the w−Ωm

plane. This is again consistent with noise due to finite number of realizations.
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In the right panel of Fig. 3.4 we show the constraints on Ωm and S8 from the

mean Buzzard 2×2pt measurements for ΛCDM cosmological model. The results

for non-linear bias models are shown, where we find, the criterion for unbiased

cosmology is satisfied for the choice of scale cuts of (4,4)Mpc/h for (w(θ),γt(θ))

respectively. Again for a more detailed discussion how these shift compare with

PTE values of exceeding a 0.3σ bias, see [85]. The Figure 3.5 shows the same

analysis for wCDM cosmological model in the Ωm and w plane, where we find

similar results. We therefore use (4,4)Mpc/h as our validated scale cuts when

analyzing data with non-linear bias model.

3.5 Results

In this section we present the 2 × 2pt cosmology results using the DES Y3 red-

MaGiC lens galaxy sample and study the implications of our constraints on galaxy

bias.

3.5.1 redMaGiC cosmology constraints

In Fig. 3.6, we compare the constraints on the cosmological parameters obtained

from jointly analyzing w(θ) and γt(θ) with both linear and non-linear bias mod-

els. We find Ωm = 0.325+0.033
−0.034 from the linear bias model (a 10% constraint) at the

fiducial scale cuts of (8,6) Mpc/h (for (w(θ),γt(θ)) respectively), while using the

non-linear bias model at same scale cuts gives completely consistent constraints.
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Figure 3.6: Comparison of the 2 × 2pt ΛCDM constraints, using redMaGiC lens

galaxy sample, for both linear bias and non-linear bias models at their respec-

tively defined scale cuts given in the legend. We find a preference for a low value

of S8, compared to DES Y1 2 × 2pt public result [2] and Planck 2018 public re-

sult [8], with both models of galaxy bias which we investigate in §3.5.3. We also

show that analyzing smaller scales using the non-linear galaxy bias model leads

to 17% better constraints in the Ωm − S8 plane.
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We also show the results for the scale cuts of (4,4) Mpc/h using the non-linear

bias model where we find Ωm = 0.323+0.034
−0.035. These marginalized constraints on

Ωm are completely consistent with the public DES-Y1 2 × 2pt results [2] and

Planck results (including all three correlations between temperature and E-mode

polarization, see [8] for details).

With the analysis of linear bias model with (8,6) Mpc/h scale cuts (referred to

as fiducial model in following text), we find S8 = 0.668+0.026
−0.033. As is evident from

the contour plot in Fig. 3.6, our constraints prefer lower S8 compared to previous

analyses. We use the Monte-Carlo parameter difference distribution methodol-

ogy (as detailed in [186]) to assess the tension between our fiducial constraints

and Planck results. Using this criterion, we find a tension of 4.1σ , largely driven

by the differences in the S8 parameter. We find similar constraints on S8 from

the non-linear bias as well for both the scale cuts. We investigate the cause of

this low S8 value in the following sub-sections.

Note that the non-linear bias model at (4,4) Mpc/h scale cuts results in tighter

constraints in the Ωm − S8 plane. We estimate the total constraining power in

this Ωm − S8 plane by estimating 2D figure-of-merit (FoM), which is defined as

FoMp1,p2
= 1/

√
[detCov(p1,p2)], for any two parameters p1 and p2 [159,318]. This

statistic here is proportional to the inverse of the confidence region area in the

2D parameter plane of Ωm − S8. We find that the non-linear bias model at (4,4)

Mpc/h results in a 17% increase in constraining power compared to the linear
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bias model at (8,6) Mpc/h.

3.5.2 Comparison with Maglim results

In Fig. 3.7, we show the comparison of the cosmology constraints obtained from

2×2pt analysis using the Maglim sample (see [244]) with the results obtained here

with the redMaGiC lens galaxy sample. The top panel compares the Ωm−S8 con-

tours assuming ΛCDM cosmology while the bottom panel compares the Ωm −w

contours assuming wCDM cosmology. We compare both the linear bias and the

non-linear bias model at the (8,6) Mpc/h and (4,4) Mpc/h scale cuts respectively.

We again find that the S8 constraints obtained with the redMaGiC sample are

low compared to the Maglim sample for both linear and non-linear bias mod-

els. As the source galaxy sample, the measurement pipeline and the modeling

methodology used are the same for the two 2 × 2pt analysis, this suggests that

the preference for low S8 in our fiducial results is driven by the Y3 redMaGiC lens

galaxy sample, which we investigate in the following sub-sections.

In the bottom panel showing the wCDM cosmology constraints, we also show

the maximum a posteriori (MAP) estimate in the Ωm −w plane, in order to es-

timate the projection effects arising from marginalizing over the large multi-

dimensional space to these two dimensional contours (see Fig. 3.3 and Fig. 3.5).

We find that the non-linear bias model suffers from mild projection effects (al-

though note the caveats about the MAP estimator mentioned in §3.4). We also
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Figure 3.7: Comparing the constraints from 2 × 2pt between the redMaGiC and

Maglim samples. The black dot and blue star denote the MAP point estimate for

redMaGiC linear and non-linear bias model respectively, while the gray triangle

and red square show the same for the Maglim sample.

emphasize that using the non-linear galaxy bias model with smaller scale cuts

gives similar improvement in the figure-of-merit of the cosmology contours shown

in Fig. 3.7, using both redMaGiC and Maglim lens galaxy samples.

3.5.3 Internal consistency of the redMaGiC results

To investigate the low S8 constraints in the fiducial analysis of the redMaGiC

galaxy sample, we first check various aspects of the modeling pipeline. In Fig. 3.8,

we show the constraints on Ωm, S8 and galaxy bias for the third tomographic bin
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Figure 3.8: The consistency of the redMaGiC 2 × 2pt cosmology and galaxy bias

constraints when changing the analysis choices (see §3.5.3 for details). We also

compare our constraints to the DES Y1 public 2 × 2pt results as well as its re-

analysis with the current analysis pipeline (∗ – we fix the point mass parameters

when re-analyzing the DES Y1 data due to the large degeneracy between point

mass parameters and cosmology at the scale cuts described and validated in [2]).

123



b3, for various robustness tests. We choose to show the third tomographic bin

for the galaxy bias constraints as this bin has the highest signal-to-noise ratio.

We divide the figure into three parts, separated by horizontal black lines. The

bottom panel shows the marginalized constraints from the results described in

the previous subsection (see Fig. 3.6). As mentioned previously, we obtain com-

pletely consistent constraints from both linear and non-linear bias models. To

check the robustness and keep the interpretation simple, we use the linear bias

model using the scale cuts of (8,6) Mpc/h in the following variations.

In the next part of the Figure, moving upwards from the bottom, we test the

robustness of the model. In particular, we check the robustness of the fiducial

intrinsic alignment model by using the NLA model. We also run the analysis

by fixing the neutrino masses to Ωνh
2 = 0.00083. This choice of Ωνh

2 parameter

corresponds to the sum of neutrino masses,
∑
mν = 0.06eV at the fiducial cosmol-

ogy described in Table 3.1 (which is the baseline value used in the Planck 2018

cosmology results as well [8]). Lastly, we test the impact of varying the dark en-

ergy parameter using the wCDM model. We find entirely consistent constraints

for all of the above variations.

In the next part of the figure, we test the internal consistency of the datavec-

tor. Firstly we remove the contribution of shear-ratio information to the total

likelihood, resulting in entirely consistent constraints. Also, note that the size

of constraints on the cosmological parameters do not change in this case com-
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pared to the fiducial results. This demonstrates that the majority of constraints

on the cosmological and bias parameters are obtained from the w(θ) and γt(θ)

themselves. We also test the impact of removing one tomographic bin at a time

from the datavector. We find consistent constraints in all five cases. Lastly, we

also split the datavector into large and small scales. The small-scales run uses

the datavector between angular scales corresponding to (8,6) Mpc/h and (30,30)

Mpc/h. The large-scales run uses the datavector between angular scales corre-

sponding to (30,30) Mpc/h and 250 arcmins. When analyzing the large scales, we

fix the point-mass parameters to their fiducial values (see Table 3.1), because of

the large degradation of constraining power at these larger-scale cuts due to the

degeneracy between point-mass parameters, galaxy bias and cosmological pa-

rameter σ8 (see Appendix B.1 and [193]). In both of these cases, we find similar

constraints on all parameters, demonstrating that the low S8 does not originate

from either large or small scales.

As an additional test of the robustness of the modeling pipeline, we analyze

the w(θ) and γt(θ) measurements as measured from DES Y1 data [2]. Note that

in this analysis, we keep the same scale cuts as described and validated in [2],

which are 8 Mpc/h for w(θ) and 12 Mpc/h for γt(θ). To analyze this datavector,

while we use the model described in this paper, we fix the point-mass parameters

again to zero due to similar reasons as described above in the analysis of large

scales. The constraints we obtain are consistent with the public results described
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in [2]. We attribute an approximately 1σ shift in the marginalized Ωm posterior

to the improvements made in the current model, compared to the model used for

the public Y1 results [174]. In particular, we use the full non-limber calculation,

including the effects of redshift-space distortions, for galaxy clustering (also see

[108]).

Lastly, to assess the impact of projection effects on the S8 parameter, we com-

pare the profile posterior to the marginalized posterior. The profile posterior

in Fig. 3.9 is obtained by dividing the samples into 20 bins of S8 values and

calculating the maximum posterior value for each bin. Therefore, unlike the

marginalized posterior, the profile posterior does not involve the projection of a

high dimensional posterior to a single S8 parameter. Hence the histogram of the

profile posterior is not impacted by projection effects. We compare the marginal-

ized posterior and profile posterior in Fig. 3.9, showing that projection effects

have a sub-dominant impact on the marginalized S8 constraints. This demon-

strates that projection effects do not explain the preference for low S8 with the

redMaGiC sample.

In summary, the results presented in this sub-section demonstrate that our

modeling methodology is entirely robust, and hence we believe our data are driv-

ing the low S8 constraints with the redMaGiC sample. Moreover, as described

above, no individual part of the data drives a low value of S8; therefore, we per-

form global checks of the datavector in the following sub-sections.
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3.5.4 Galaxy bias from individual probes

In this sub-section, we test the compatibility of the w(θ) and γt(θ) parts of the

datavector. As we will lose the power of complementarity when analyzing them

individually, we fix the cosmological parameters to the maximum posterior ob-

tained from the DES Y1 3 × 2pt analysis [2]. We find that the best-fit bias val-

ues from the w(θ) part of the datavector are systematically higher than γt(θ)

for each tomographic bin. We parameterize this difference in bias values with a

phenomenological parameter X for each tomographic bin i as:

Xilens = biγt(θ)/b
i
w(θ) (3.5.1)

We refer to X as a "de-correlation parameter" because its effect on the data is very

similar to assuming that the mass and galaxy density functions have less than

100% correlation. A value of X = 1 is expected from local biasing models. The

constraints on the parameter Xilens are shown in Fig. 3.10. We also compare the

constraints of these Xilens parameters obtained from Y1 redMaGiC 2× 2pt (see [2]

and [248] for details) and the 2 × 2pt datavector using Y3 Maglim lens galaxy

sample. For the Y1 redMaGiC datavector, we fix the scale cuts and priors on the

calibration of photometric redshifts of lens and source galaxies as described in

the [2] and for analysis of Y3 Maglim datavector we follow the analysis choices

detailed in [244]. In this analysis of all the datavectors, we use the linear bias

galaxy bias model while keeping the rest of the model the same as described

in §3.2.2. We find that the Y1 redMaGiC as well as Y3 Maglim 2 × 2pt data are
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consistent with Xilens = 1 for all the tomographic bins, while redMaGiC Y3 2×2pt

data have a persistent preference for Xilens < 1 for all the tomographic bins.

Noticeably, we find that for the DES Y1 best-fit cosmological parameters, the

Y3 redMaGiC datavector prefers a value of Xilens ∼ 0.9 for each tomographic bin.

Therefore, in order to keep the interpretation simple, we use a single param-

eter Xlens to describe the ratio of galaxy bias biγt(θ)/b
i
w(θ) for all tomographic

bins i ∈ [1,5]. We constrain this single redshift-independent parameter to be

Xlens = 0.9+0.03
−0.03 for Y3 redMaGiC, a 3.5σ deviation from Xlens = 1. Within general

relativity, even when including the impact of non-linear astrophysics, we do not

expect a de-correlation between galaxy clustering and galaxy-galaxy lensing to

be present at more than a few percent level [91]. We comment on the impact of

this de-correlation on the redMaGiC cosmology constraints in §3.5.6.

Note that the inferred value of Xlens depends on the cosmological parame-

ters, because the large-scale amplitudes of galaxy clustering and galaxy-galaxy

lensing involve different combinations of galaxy bias, σ8 and Ωm. Therefore, a

self-consistent inference of Xlens requires the full 3 × 2pt datavector and is pre-

sented in [88]. However, the DES Y1 3×2pt best-fit cosmological parameters are

fairly close to the DES Y3 3 × 2pt best-fit parameters, therefore we expect the

results presented here to be good approximations to those obtained with the Y3

3× 2pt datavector.
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Figure 3.9: Comparison of the profile posterior and marginalized posterior on

the S8 parameter from the 2× 2pt redMaGiC LCDM chain.
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Figure 3.10: Constraints on the phenomenological de-correlation parameter,

Xlens, for each tomographic bin obtained from 2 × 2pt analysis using Y1 red-

MaGiC , Y3 fiducial redMaGiC sample, Y3 broad-χ2 redMaGiC sample (see § 3.5.7)

and Y3 Maglim as the lens galaxies (the cosmological parameters are fixed to the

DES Y1 best-fit values [2]).
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3.5.5 Area split of the de-correlation parameter

In order to further study the properties of this de-correlation parameter Xlens,

we estimate it independently in 10 approximately equal area patches of the DES

Y3 footprint. We measure the datavectors, w(θ) and γt(θ) in each of these 10

patches, using the same methodology presented in §3.3.3.4. In order to obtain

the covariance for each patch, we rescale the fiducial covariance (see §3.3.4) of

the full footprint to the area of each patch. We then estimate Xlens from each

patch while keeping all the other analysis choices the same.

In Fig. 3.11 we show the DES footprint split into 10 regions. In this figure,

each region is colored in proportion to the mean value of the Xlens parameter we

obtain using redMaGiC as the lens galaxy sample. We run a similar analysis when

using Maglim as the lens sample.

In Fig. 3.12 we show a scatter plot between the value of Xlens recovered from

each of 10 regions using redMaGiC and Maglim as lens samples. We find a tight

correlation between the value of Xlens from the two lens samples, as would be

expected if they share noise from sample variance and fluctuations in the source

galaxy population. Note that the scatter in the inferred Xlens for both the Maglim

and the redMaGiC samples corresponding to each sky patch (red points) around

the mean of full sample (the blue point), is consistent with the expectation. This

shows that, compared with Maglim , the redMaGiC lens sample has a preference

for Xlens < 1 in the whole DES footprint. This correlation and area independence
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of the ratio XRedmagic/XMaglim is remarkable and suggests that the potential sys-

tematic in the redMaGiC sample has a more global origin.

3.5.6 Impact of de-correlation on 2× 2pt cosmology

To summarize, assuming a standard cosmological model, we have identified that

the galaxy-clustering and galaxy-galaxy lensing signal measured using the Y3

redMaGiC lens galaxy sample are incompatible with each other (at the set of cos-

mological parameters preferred by previous studies). We have further identi-

fied that this incompatibility is well-captured by a redshift-, scale- and area-

independent phenomenological parameter Xlens. Using Y3 redMaGiC lens sam-

ple, we detect Xlens ∼ 0.9, at the 3.5σ confidence level away from the expected

value of Xlens = 1. This 2 × 2pt analysis is done when the cosmological param-

eters are fixed to their DES Y1 best-fit values; a self-consistent Xlens inference

analysis with free cosmological parameters requires the full 3 × 2pt datavector.

This is presented in [88], where the inferred constraints on this de-correlation

parameter are Xlens = 0.87+0.02
−0.02.

In Fig. 3.13, we fix Xlens = 0.87 in our model and re-run the Y3 redMaGiC

2 × 2pt analysis. We find, as expected, that this has a significant impact on the

marginalized S8 values and results in the marginalized constraints S8 = 0.76+0.034
−0.037,

completely consistent with 2 × 2pt Y1 redMaGiC public results as well as Y3

Maglim results. Also note that the marginalized constraints on Ωm for Xlens =
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Figure 3.11: The DES footprint is split into 10 regions. The color of each area

corresponds to the mean value of the constraints on Xlens from that particular

area, inferred at fixed DES-Y1 cosmology and using the redMaGiC lens sample.

This plot shows that no special region in the sky (for example, near the galactic

plane) drives the preference for low Xlens. While a variation over the sky in

the inferred Xlens is expected from analyzing only the 2 × 2pt data due to the

variations in the photometric redshift distribution of source galaxies, we find

that the preferred mean value of Xlens from the redMaGiC sample is significantly

lower than the expected value of 1 (see Fig. 3.12).
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Figure 3.12: Each errorbar corresponds to the 68% credible interval constraints

on Xlens from one of the 10 regions (see Fig. 3.11), using either the redMaGiC

sample or the Maglim lens galaxy sample. The blue errorbar corresponds to the

constraints on Xlens from the entire Y3 area using the Maglim sample and the

fiducial redMaGiC sample, whereas the red errorbar uses the broad-χ2 galaxy

sample (see § 3.5.7). We find a tight correlation between XRedmagic and XMaglim,

due to common sources of statistical noise (e.g., photometric redshifts of the

source galaxies). We find that, while the inferred Xlens from 10 regions using the

Maglim and the broad-χ2 redMaGiC sample fluctuates around its mean value that

is close to 1, the inference from the fiducial redMaGiC sample fluctuates around a

mean value that is significantly lower than 1. This figure shows that the fiducial

redMaGiC sample prefers Xlens to be lower than 1, independent of the sky-area.
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Figure 3.13: Comparison of the constraints from 2×2pt analysis when using the

mean value of Xlens parameter for redMaGiC lens sample analysis, as estimated

and described in [88]. We find a shift in S8 parameter compared to our fiducial

results in §3.5.1, but Ωm constraints are fully consistent.
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0.87 model are Ωm = 0.331+0.037
−0.037, which remains consistent with the fiducial re-

sult.

3.5.7 Broad-χ2 redMaGiC sample

In order to further investigate the source of the de-correlation, we modify the

χ2
RM threshold for a galaxy to be classified as a redMaGiC galaxy when fitting to

the redMaGiC template using the procedure as described in [261]. As described

in § 3.3.1.1, the fiducial redMaGiC catalog is generated by implementing the χ2
RM

threshold of 3. This low-χ2
RM threshold only selects the galaxies that closely

match the template. In case there are any residual variations in the redMaGiC

catalog number densities caused by variations in the colors that are not already

corrected using the fiducial weighting scheme (as described in [258]), it would

contribute a spurious galaxy clustering signal. This would contribute towards

Xlens < 1, as we found above. In order to test this hypothesis, we increase the

threshold criteria and generate another catalog with χ2
RM = 8 and denote this

new sample as the “broad-χ2" sample.

We show the result for Xilens for all the five tomographic bins in Fig. 3.10. We

find that with the broad-χ2 sample, Xilens is consistent with 1 for the first four to-

mographic bins. While we still find that for the fifth tomographic bin, X5
lens < 1,

this bin has low constraining power. We also show the inferred Xlens from 10

independent regions over the DES footprint in the Fig. 3.11. We find that with
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Figure 3.14: Constraints on the cosmological parameters using the linear bias

model with the broad-χ2 redMaGiC sample. The top figure corresponds to the

ΛCDM cosmological model and the bottom figure corresponds to the wCDM

cosmological model. We also compare the constraints from the fiducial redMaGiC

and the fiducial Maglim lens galaxy samples.
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the new sample, the scatter in the inferred Xlens is consistent with expected value

of 1. Moreover, as shown with a red symbol in the Fig. 3.11, we find the redshift

and area independent Xlens to be entirely consistent with 1 using the broad-χ2

sample. This validates our hypothesis and points towards an uncorrected sys-

tematic that might be related to a color-dependent photometric issue in the DES

data. Since the shear catalog, as well as the Maglim galaxy catalog, do not select

galaxies based on a red-galaxy template, we do not expect this systematic to have

an effect on those catalogs.

In Appendix B.3, we further describe details of this new sample and compare

it with our fiducial redMaGiC sample. With this new sample, we use conservative

analysis choices and implement the following approximations:

• We downsample the broad-χ2 catalog to roughly match the number densi-

ties of the fiducial redMaGiC sample. This ensures that the validations of

analysis choices performed for the redmagic sample, including the covari-

ance, scale cuts, and methodology, remain true for the broad-χ2 sample as

well.

• We use a two-parameter model (shift and stretch parameterization) to ac-

count for the uncertainty in the lens redshift distribution for each tomo-

graphic bin [59]. We implement this model to reduce the impact of the

outliers in the assigned galaxy redshifts for this new sample. The Gaussian

priors on the shift and stretch parameters are tabulated in Table B.1.
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We show the cosmological constraints from the broad-χ2 sample in Fig. 3.14

and find that they are consistent with the results from Maglim sample in both

ΛCDM and wCDM cosmological models. Using the ΛCDM model, we constrain

Ωm = 0.363+0.0375
−0.0388 and S8 = 0.73+0.035

−0.029, and using the wCDM model, we constrain

w = −0.821+0.1908
−0.4341.

We note that this analysis is showing the constraints on the cosmological pa-

rameters under the approximation that we neglect the contribution to the LSS

covariance systematic term. We use the ISD method to get the weights for this

sample. Moreover, we assume that the same scale cuts work with this sample

as we obtained for the fiducial redMaGiC sample. Lastly, we have used the same

value of lens magnification as for the fiducial redMaGiC sample. We do not expect

these choices to have any major effects on the cosmological constraints described

above. However, we leave a detailed study optimizing the χ2
RM value, validat-

ing the analysis choices, and obtaining final constraints with redMaGiC sample

to [90].

3.5.8 redMaGiC host halo mass inference

In the halo model framework (see [68] for a review), the value of the linear bias

of a tracer of dark matter can be related to the host halo mass of that tracer.

The standard halo occupation distribution (HOD) approach parameterizes the

distribution of galaxies inside halos, and hence the observed number density as
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Figure 3.15: This figure shows the inferred constraints on mean host halo masses

of redMaGiC galaxies for five tomographic bins. We use the HOD framework

to make this inference as detailed in the Appendix B.4 and use the linear bias

constraints obtained using the broad-χ2 redMaGiC sample. We infer the mean

host halo masses from the linear bias constraints for all the five tomographic

bins. We compare our results to [64] and [327], and also show the expected

pseudo-evolution of a halo having Mhalo = 1.6× 1013M⊙/h at z = 0.
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well as the large scale bias values of any galaxy sample can be expressed in terms

of its HOD parameters [30,328,331]. The same HOD parameters can also be used

to infer the mean host halo mass of the galaxy sample. We use the constraints

on linear galaxy bias parameters and the co-moving number density to infer the

mean host halo mass of the broad-χ2 redMaGiC galaxy sample by marginalizing

over HOD parameters.

The details of the halo model framework used here are given in Appendix

B.4. Note that we have neglected the effects of assembly bias and the correla-

tion between number density and bias constraints in this analysis. With these

caveats in mind, in Fig. 3.15 we show approximately 25% constraints on mean

host halo mass of broad-χ2 redMaGiC galaxies and the constraints for different

tomographic bins show its evolution with redshift. This redshift evolution trend

is broadly consistent with the pseudo-evolution of halo masses due to changing

background reference density with redshift (see [93] for more details). Therefore

we find that the broad-χ2 redMaGiC sample lives in halos of mass of approxi-

mately 1.6× 1013M⊙/h, which remains broadly constant with redshift.

We also bracket the uncertainty in the host-halo masses of the fiducial red-

MaGiC sample with a gray band in Fig. 3.15. In order to estimate the band, we

use the linear bias constraints from the 2 × 2pt analysis with fiducial redMaGiC

sample, after fixing Xlens = 0.87. This de-correlation parameter results in w(θ)

and γt preferring different linear bias parameters, related by bi[w(θ)]/bi[γt(θ)] =
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Xlens = 0.87, for all tomographic bins i. Therefore, we infer the host halo masses

using both linear bias parameter values. The band is estimated by using the

lower limit of masses inferred by bi[γt(θ)] and upper limit of masses inferred

by bi[w(θ)] for all tomographic bins i. We find that the broad-χ2 sample has a

slight preference for lower halo masses, but it is consistent with constraints for

the fiducial sample.

We find that our results are also broadly consistent with the analysis of [64],

which used the redMaGiC galaxies of DES Science-Verification dataset and esti-

mated the mean halo masses by studying galaxy-galaxy lensing signal in a broad

range of scales (including high signal-to-noise small scales that we remove here)

using HOD model.4 We also find broad agreement with a similar study pre-

sented in [327], analyzing DES Y3 using the galaxy-galaxy lensing data esti-

mated from the fiducial redMaGiC sample and on a wide range of scales with

an improved halo model.

4Note that we use M200c as our halo mass definition, which denotes the total mass within

a sphere enclosing a mean density which is 200 times the critical density of the universe. [64]

work with M200m as their mass definition, denoting the total mass within a sphere enclosing a

mean density which is 200 times the mean density of the universe, therefore we convert their

constraints to M200c in the above figure.
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3.6 Conclusions

This paper has presented the cosmological analysis of the 2 × 2pt datavector of

the DES Year 3 dataset using redMaGiC lens sample. We refer the reader to [244]

for similar results using Maglim lens sample and [101] for details on the impact

of lens magnification on the 2 × 2pt datavector. The 2 × 2pt datavector com-

prises the 2-point correlations of galaxy clustering and galaxy lensing using five

redshift bins for the lens galaxies and four bins for source galaxies. It provides

independent constraints on two primary parameters of interest, the mass den-

sity Ωm and amplitude of fluctuations S8. As shown in Fig. 3.1, these constraints

are complementary to those from cosmic shear. The combination of 2× 2pt with

cosmic shear is thus better able to constrain Ωm,S8 as well as the dark energy

equation of state parameter w. Perhaps more importantly, this provides a ro-

bustness check on the results from either approach.

The estimation and marginalization of galaxy bias parameters is one of the

central tasks in extracting cosmology from the 2 × 2pt datavector. We have de-

veloped and validated the methodology for this based on perturbation theory.

We use a five-parameter description of galaxy bias per redshift bin, with three

of the parameters fixed based on theoretical considerations. We validated these

choices using mock catalogs built on N-body simulations as detailed in our ear-

lier study [231] and Section §3.4.3. We carry out two analyses: the first using lin-

ear bias with more conservative scale cuts, and the second using the full PT bias
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model going down to smaller scales. Other elements of our model include in-

trinsic alignments, magnification and “point mass marginalization” (see §3.2.2).

The validation of the analysis choice and scale cuts with simulated datavectors

(both idealized and from mock catalogs) are presented in §3.4.1.

Our cosmological results are presented in Figs. 3.6, 3.7 and 3.8, which show

preference for low value of S8 parameter when compared with previous results.

We refer the reader to [88], where, after unblinding the cosmological param-

eter constraints, we find similar inconsistency in the S8 parameter constraints

between Y3 2 × 2pt redMaGiC analysis and Y3 cosmic shear analysis, as well as

a high χ2 using the ΛCDM model. As detailed in [88], we discovered that the

reason for the high χ2 of the 3× 2pt analysis with the fiducial model was due to

inconsistencies in the galaxy-galaxy lensing and galaxy clustering signals. The

source of this inconsistency is still undetermined, however we found that a sin-

gle parameter Xlens, representing the ratio of the bias inferred from w(θ) and γt,

substantially improves the goodness of fit. This ratio is cosmology-dependent

and can only be inferred consistently (along with the other model parameters)

when using the full 3× 2pt analysis, presented in [88].

This ratio is expected to be unity in the absence of galaxy stochasticity, an ef-

fect that is expected to be only at the percent level on scales above ∼ 10 Mpc [91].

Several previous analyses with similar datasets have also found this ratio to be

consistent with unity [50, 199, 248]. However, we detect a value of Xlens = 0.87,
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below 1 at the 5-σ level. This purely phenomenological model assumes no scale

or redshift dependence, and we found consistent values of Xlens when fitting to

different scales (see Fig. 3.8) and when fitting separate values for each lens red-

shift bin (see Fig. 3.10). Since no known cosmological effect can produce such a

large and coherent deviation in clustering and galaxy lensing, we pursued pos-

sible systematic errors that could lead to this unusual result. Note that this kind

of behavior can arise with potential systematics, for example unaccounted-for

impact of photometric uncertainty or background subtraction for large or faint

objects on the galaxy selection. This can introduce extra fluctuation of the num-

ber density of the lens galaxies across the footprint which will not be captured

by the set of survey property maps used in the LSS weights estimation pipeline.

Fig. 3.13 shows the 2×2pt redMaGiC cosmology constraints after fixingXlens =

0.87, the best fit value from [88]. There is a significant shift in S8, while Ωm re-

mains stable. Interestingly the resulting contours are fully consistent with the Y1

analysis as well as the 2×2pt analysis using the Maglim lens galaxy sample [244].

We track down the source of this de-correlation to an aggressive threshold on

the colors of galaxies to match the red-galaxy template. We find that using a

sample with a relaxed threshold, which we call the broad-χ2 sample, results in

cosmological constraints that are consistent with the expectations from Maglim

sample. This points towards the existence of a potential color-dependent sys-

tematic in the galaxy catalog, and we leave a detailed exploration and mitigation
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of this systematic to a future study [90].

We note that although recent analyses using BOSS galaxies have found simi-

lar inconsistencies in the galaxy clustering and galaxy-galaxy lensing (see [180,

185] and references there-in); there are some important differences. In this anal-

ysis as well as in [88], unlike in [185], we do not use any small scale information

for galaxy clustering and galaxy-galaxy lensing measurements. Therefore, we

are significantly less prone to the impacts of poorly understood small scale non-

linear physics, like baryon feedback and galaxy assembly biases [13, 326, 332].

Moreover, in [88], by leveraging all the three two-point functions used in 3×2pt,

the analysis of the consistency between galaxy-lensing and galaxy-clustering can

be carried out while freeing the relevant cosmological parameters. The analysis

in this paper fixes the cosmological parameters close to the best-fit cosmology

from [88], hence our results are a good approximation to the analysis using the

full 3 × 2pt datavector. Similarly, a few recent studies jointly analyzing galaxy

clustering auto-correlations and galaxy-CMB lensing cross-correlations have also

reported preference for lower galaxy bias value for the cross-correlation com-

pared to the auto correlations [135,168]. However similar to above analysis with

BOSS galaxies, these studies also fix their cosmological parameters to the best-fit

cosmology from Planck results [8], which is different from this study (see [176]

for related discussion).

To access the information in the measurements on smaller scales, we use
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higher-order perturbation theory. We use a hybrid 1-loop perturbation theory

model for galaxy bias, capturing the non-linear contributions to the overden-

sity field till third order. We have tested and validated our model using 3-

dimensional correlation functions from DES-mock catalogs in [231] as well as

with projected statistics in [85]; in this study, we validate the bias model with

mocks for the 2 × 2pt redMaGiC datavector at scales above 4Mpc/h. This vali-

dation presented here, along with results in [231], are then also directly used to

validate non-linear bias model for Maglim datavector. We apply it to the data

and find that the non-linear bias model results in a gain in constraining power

of approximately 17% in the Ωm − S8 parameter plane.

A different approach, the halo occupation distribution in the halo model,

enables a connection between the masses of halos in which galaxies live and

their large-scale bias. We use our constraints on linear bias parameters (along

with the galaxy number density) and estimate the host halo masses of redMaGiC

galaxies. We marginalize over the halo occupation distribution parameters and

obtain 25% constraints on the mean mass of host halos. We show these con-

straints, including its evolution with redshift in Fig. 3.15, finding halo mass of

approximately 1.5×1013M⊙/h and its evolution with redshift consistent with the

expected pseudo-evolution due to changing background density.

The 2× 2pt combination of probes plays a crucial role in extracting the most

cosmological information from LSS surveys, especially in constraining the mat-
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ter content of universe (Ωm) and the dark energy equation of state (w). In this

analysis we measure the combination of galaxy clustering and galaxy-galaxy

lensing at approximately 200σ ; this significance is expected to dramatically in-

crease with imminent large scale surveys like the Euclid Space Telescope,5 the

Dark Energy Spectroscopic Instrument,6 the Nancy G. Roman Space Telescope,7

and the Vera C. Rubin Observatory Legacy Survey of Space and Time.8 In order

to optimally analyze these high precision measurements, especially at non-linear

small scales, we need better models and ensure their proper validation before

applying them to measurements. We have shown that the hybrid perturbation

theory galaxy bias model can be validated with simulations to sufficient accuracy

for the present analysis. By relaxing the priors on all five parameters (per red-

shift bin), the model’s accuracy can be improved though the increase in model

complexity poses other challenges in parameter estimation. Finally, and perhaps

most importantly, we have highlighted how understanding potential sources of

systematic uncertainty is of paramount importance for extracting unbiased cos-

mological information in this era of precision cosmology.

5https://www.euclid-ec.org
6https://www.desi.lbl.gov
7https://roman.gsfc.nasa.gov
8https://www.lsst.org
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Chapter 4

Baryonic feedback constraints using

galaxy & tSZ correlations

The text in this chapter is based on the published manuscript [228]:

S. Pandey, E. J. Baxter, Z. Xu, J. Orlowski-Scherer, N. Zhu, A. Lidz, J. Aguirre,

J. DeRose, M. Devlin, J. C. Hill, B. Jain, R. K. Sheth et al. 2019, PRD, doi =

https://doi.org/10.1103/PhysRevD.100.063519
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Abstract

An understanding of astrophysical feedback is important for constraining models of

galaxy formation and for extracting cosmological information from current and future

weak lensing surveys. The thermal Sunyaev-Zel’dovich effect, quantified via the Compton-

y parameter, is a powerful tool for studying feedback, because it directly probes the

pressure of the hot, ionized gas residing in dark matter halos. Cross-correlations be-

tween galaxies and maps of Compton-y obtained from cosmic microwave background

surveys are sensitive to the redshift evolution of the gas pressure, and its dependence on

halo mass. In this work, we use galaxies identified in year one data from the Dark Energy

Survey and Compton-y maps constructed from Planck observations. We find highly sig-

nificant (roughly 12σ ) detections of galaxy-y cross-correlation in multiple redshift bins.

By jointly fitting these measurements as well as measurements of galaxy clustering, we

constrain the halo bias-weighted, gas pressure of the Universe as a function of redshift

between 0.15 ≲ z ≲ 0.75. We compare these measurements to predictions from hydrody-

namical simulations, allowing us to constrain the amount of thermal energy in the halo

gas relative to that resulting from gravitational collapse.

4.1 Introduction

The nonlinear collapse of structure at late times leads to the formation of grav-

itationally bound dark matter halos. These massive objects are reservoirs of hot
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gas, with virial temperatures as high as T ∼ 108 K. This gas can be studied via

its thermal emission, which is typically peaked in x-ray bands [40]. Another way

to study the gas in halos is via the thermal Sunyaev-Zel’dovich (tSZ) effect [292],

caused by inverse Compton scattering of CMB photons with the hot gas. This

scattering process leads to a spectral distortion which is observable at millimeter

wavelengths [55].

The amplitude of the tSZ effect in some direction on the sky is characterized

by the Compton-y parameter, which is related to an integral along the line of

sight of the ionized gas pressure. By measuring contributions to y as a function

of redshift, we effectively probe the evolution of the gas pressure over cosmic

time. For the most massive halos, the evolution of the gas pressure is expected

to be dominated by gravitational physics. Gas falling into these halos is shock

heated to the virial temperature during infall into the cluster potential [104].

For lower mass halos, on the other hand, other mechanisms may deposit energy

and/or momentum into the gas; these mechanisms are generically referred to as

"feedback."

An understanding of baryonic feedback is important for constraining models

of galaxy formation [?, for a recent review, see]]Naab:2017. Furthermore, since

feedback can redistribute mass around halos (e.g. via gas outflows), an under-

standing of these processes is necessary for extracting cosmological constraints

from small-scale measurements of the matter power spectrum with e.g. weak
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lensing surveys [262, 310].

Because y is sensitive to the line-of-sight integrated gas pressure, measure-

ments of y alone (such as the y power spectrum) cannot be used to to directly

determine the redshift evolution of the gas pressure. However, given some tracer

of the matter density field which can be restricted to narrow redshift intervals,

cross-correlations of this tracer with y can be used to isolate contributions to y

from different redshifts. We take the cross-correlation approach in this analysis.

By cross-correlating a sample of galaxies identified in data from the Dark

Energy Survey (DES) [109] with y maps generated from Planck data [10], we

measure the evolution of the gas pressure as a function of redshift. As we discuss

in §4.2, our cross-correlation measurements are sensitive to a combination of the

gas pressure and the amplitude of galaxy clustering. To break this degeneracy,

we perform a joint fit to measurements of the galaxy-y cross-correlation and to

galaxy-galaxy clustering to constrain both the redshift evolution of the galaxy

bias, and the redshift evolution of a term depending on the average gas pressure

in dark matter halos.

Our analysis relies on the so-called redMaGiC galaxy selection from DES. The

redMaGiC algorithm yields a sample of galaxies whose photometric redshifts are

well constrained [260]. We note that we do not attempt to model the halo-galaxy

connection for the redMaGiC galaxies. Rather, we use these galaxies only as trac-

ers of the density field for the purposes of isolating contributions to y from dif-
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ferent redshifts. Consequently, we will restrict our measurements to the two-halo

regime, for which the galaxy-y cross-correlation can be modeled without depen-

dence on the precise way that redMaGiC galaxies populate halos [69].

Several previous analyses have also considered the cross-correlation between

galaxy catalogs and Compton-y maps from Planck [145, 197, 297, 314]. [314]

(hereafter [314]) correlated Planck y maps with a sample of galaxy groups iden-

tified from Sloan Digital Sky Survey (SDSS) data by [325]. Our analysis differs

from that of [314] in several important respects. First, the galaxy sample used

in this analysis is derived from DES data, and extends to significantly higher

redshift (z ∼ 0.7) than considered by [314] (z ≲ 0.2). Additionally, while [314]

divided their correlation measurements into bins of halo mass, we divide our

measurements into bins of halo redshift. The measurements presented here can

be considered complementary to those of [314] with regard to constraining feed-

back models.

[145] used measurements and modeling similar to [314] in order to extract

constraints on the halo Y -M relation, finding hints of departure from the predic-

tions of self-similar models at low halo masses. Our approach is similar to that

of [145], although we only fit measurements in the two-halo regime.

[238] correlated galaxies identified in SDSS data with Planck y maps. The

galaxy catalog used by [238] was restricted to "isolated" galaxies in order to

probe the pressure profiles of individual small mass halos (although note the
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issues with this approach pointed out by [181], [131] and [145]). Several au-

thors have also investigated related correlations between Compton-y and weak

lensing [147, 313] .

Recently, [297] measured the correlation of luminous red galaxies (LRGs)

with the Planck y maps in order to study astrophysical feedback. Our analysis

differs from that of [297] in two crucial aspects. First, we are only interested in

the galaxy-y cross-correlations in the two-halo regime, whereas [297] analyzed

the full y profile around LRGs, including in the one-halo regime. Second, and

more importantly, the quantity of interest in the present work, namely the bias

weighted pressure of the universe, is not sensitive to the connection between the

galaxies used for cross-correlations and the parent halo, nor to the properties of

the galaxies. The analysis of [297] exhibits strong dependence on the connection

between stellar mass and halo mass for their LRG sample.

The structure of the paper is as follows. In §4.2 we present our model for the

galaxy-y and galaxy-galaxy cross-correlation measurements; in §4.3 we describe

the DES, Planck and simulation data sets used in our analysis; in §4.4 we describe

our measurement and fitting procedure, and validate this procedure by applying

it to simulations; in §4.5 we present the results of our analysis applied to the data.

We conclude in §4.6.
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4.2 Formalism

We are interested in modeling both the galaxy-y and galaxy-galaxy correlation

functions to extract constraints on the redshift evolution of the gas pressure.

Our analysis will focus on the large-scale, two-halo regime in which the details

of the galaxy-halo connection can be ignored. The primary motivation for this

choice is that in the two-halo regime, the galaxy-y cross-correlation function is

insensitive to the details of the galaxy-halo connection, significantly simplifying

the analysis.

We will assume a fixed ΛCDM cosmological model throughout, and will

therefore suppress dependence on cosmological parameters. When analyzing

the data, we adopt a ΛCDM model with h = 0.7, Ωm = 0.28, Ωb = 0.044, ns =

0.965 and σ8 = 0.8. Given the uncertainties on our measurement of the galaxy-y

cross-correlation, adopting instead the best-fit cosmology from e.g. [243] has a

negligible impact on our main constraints.

4.2.1 Model for galaxy-y cross-correlation

The observed temperature signal on the sky in the direction n̂ and at frequency

ν due to the tSZ effect can be written as

∆T (n̂,ν) = TCMBy(n̂)f (ν), (4.2.1)
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where TCMB = 2.73K is the mean temperature of the CMB, and y(n̂) is the Compton-

y parameter. In the non-relativistic limit, we have [291]:

f (x = hν/kBTCMB) = x
ex + 1
ex − 1

− 4, (4.2.2)

where h is Planck’s constant, and kB is the Boltzmann constant.

The Compton-y parameter is in turn given by (suppressing the directional

dependence):

y =
σT
mec2

∫ ∞
0
dl Pe(l), (4.2.3)

where Pe(l) is the electron gas pressure (which dominates the inverse Compton

scattering process that gives rise to the tSZ effect) at line of sight distance l, σT

is the Thomson cross section, me is the electron mass and c is the speed of light.

For a fully ionized gas consisting of hydrogen and helium, the electron pressure,

Pe, is related to the total thermal pressure, Pth, by:

Pe =
[4− 2Y
8− 5Y

]
Pth, (4.2.4)

where Y is the primordial helium mass fraction. We adopt Y = 0.24.

We denote the galaxy-y cross-correlation with ξyg(R). This quantity repre-

sents the expectation value of y at transverse comoving separation R from the

galaxies in excess of the cosmic mean. We work in comoving coordinates be-

cause this choice preserves the size of a halo of constant mass as measured by a

spherical overdensity radius as a function of redshift. We will use r to denote the

3D comoving separation between the halo center and a given point.
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The halo-y cross-correlation function for galaxies at redshift z can be written

as

ξyg(R,z) =
σT
mec2

1
1 + z

∫ ∞
0
dχξP g

(√
χ2 +R2, z

)
, (4.2.5)

where χ is the comoving distance along the line of sight, and ξP g(r,z) is the 3D

correlation function between the electron pressure and the galaxy sample of in-

terest [314].

As functions of cluster-centric distance, halo mass, and halo redshift, we

write the halo electron pressure profile and total density profile as Pe(r,M,z) and

ρ(r,M,z). It is convenient to work with Fourier transformed quantities, rather

than the real space ones, which we represent with uP (k,M,z) and um(k,M,z), re-

spectively. For uP , for instance, we have

uP (k,M,z) ≡
∫ ∞

0
dr 4πr2 sin(kr)

kr
Pe(r,M,z). (4.2.6)

An analogous equation holds for uM .

The galaxy-pressure cross-correlation function can be related to the galaxy-

pressure cross-power spectrum via

ξP g(r,z) =
∫ ∞

0

dk

2π2k
2 sin(kr)

kr
PP g(k,z), (4.2.7)

where k is the wavenumber, and PP g(k,z) is the galaxy-pressure cross-power spec-

trum. This power spectrum can be decomposed into contributions from the halo

in which the galaxy resides (i.e. one-halo) and contributions from other halos
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(i.e. two-halo):

PP g(k,z) = P one−halo
P g (k,z) + P two−halo

P g (k,z). (4.2.8)

The one-halo part is given by:

P one−halo
P g (k,z) =

∫
dM

dn
dM

N (M,z)
n̄(z)

um(k,M,z)uP (k,M,z), (4.2.9)

where um(k,M,z) and uP (k,M,z) are the Fourier transforms of the halo mass and

pressure profiles for halos of mass M at redshift z. Here we have assumed that

galaxies are distributed according to the dark matter profile. The average num-

ber of galaxies in a halo of massM at a redshift z is given byN (M,z) and the aver-

age number density of galaxies (across all masses) is given by n̄(z). The quantity

dn/dM is the halo mass function, specifying the number density of halos (per

comoving volume) and per mass interval.

The two-halo term is then:

P two−halo
P g (k,M,z) =

[
N (M,z)
n̄(z)

um(k,M,z)
]
×

(1 + z)3
[∫

dM ′
(
dn
dM ′

)
uP (k,M ′, z)Phh(k,M,M

′)
]
, (4.2.10)

where Phh is the halo-halo power spectrum. In the two-halo limit, we can assume

linear bias, i.e. Phh(k,M,M ′) = b(M)b(M ′)Plin(k). Note that the (1 + z)3 factor

comes from converting between physical coordinates and comoving coordinates.

As stated above, we are interested here in the large scale, two-halo regime. In
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this limit (i.e. k→ 0),

uP (k→ 0,M,z) =
∫ ∞

0
dr 4πr2Pe(r,M,z) ≡ ET (M,z), (4.2.11)

where we have defined ET as the total thermal energy in a halo of mass M at

redshift z. Similarly, we have

um(k→ 0,M) =
∫ ∞

0
dr 4πr2ρ(r,M)

M
=

〈
ρ

M

〉
. (4.2.12)

Consequently, in this limit,

PP g(k,z) =
(∫ ∞

0
bg(M,z)

dn
dM

dM

)
(
(1 + z)3

∫ ∞
0
dM ′

dn
dM ′

b(M ′, z)ET (M ′, z)
)
Plin(k,z). (4.2.13)

We define the integral of bg over halos as the linear bias of our galaxy sample,

i.e.

bg(z) =
∫ ∞

0

N (M,z)
n̄(z)

〈
ρ

M

〉
b(M,z)

dn
dM

dM. (4.2.14)

Eq. 4.2.13 can then be simplified further by defining:

⟨bPe⟩(z) ≡ (1 + z)3
∫ ∞

0

dn
dM

b(M,z)ET (M,z)dM. (4.2.15)

This quantity represents the bias weighted thermal energy of all halos, and is

the primary quantity of interest in this analysis. In order to estimate the ⟨bPe⟩

from above equation, we use fitting formulae of halo mass function as described

in [300] and large scale halo bias as descirbed in [303]. We plot cumulative of
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Figure 4.1: Cumulative contribution to the ⟨bPe⟩ integral from theoretical esti-

mates (using AGN feedback pressure profile described in §4.2.2) of Eq. 4.2.15 as

a function of halo mass. Most contribution to the integral comes from halos in

the range 1013 to 1015 M⊙/h. There is significant contribution to ⟨bPe⟩ from halos

withM < 1014M⊙/h; for current data, correlation analyses of the type considered

here are the only way to probe this halo mass range.
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the integrand of Eq. 4.2.15 at several redshifts in Fig. 4.1. The dominant contri-

bution to ⟨bPe⟩ comes from halos with masses in the range of about 3 × 1012 ≲

M/(M⊙/h) ≲ 1015.

In the two-halo limit, the galaxy-pressure cross-power spectrum then simpli-

fies to:

P two−halo
P g (k,z) = bg(z)⟨bPe(z)⟩Plin(k,z). (4.2.16)

Substituting back into Eq. 4.2.5, the two-halo contribution to the galaxy-y cross-

correlation function becomes

ξtwo−halo
yg (R,z) =

σT
mec2bg(z)⟨bPe(z)⟩

1
1 + z

∫ ∞
−∞
dχ ξlin

√χ2 +R2, z

. (4.2.17)

The integral in the above equation is the projected linear correlation function,

wp,lin(R). So, succinctly, our model for the cross-correlation function becomes:

ξtwo−halo
yg (R,z) =

σT
mec2bg(z)⟨bPe(z)⟩

wp,lin(R,z)

1 + z
. (4.2.18)

A CMB experiment like Planck observes the sky convolved with a beam, which

we must account for. To do this, we first transform the above equation to angular

space. Since R denotes the comoving size of a halo, we have θ = R/χ(z), where

χ(z) is the comoving distance to redshift z. In Fourier space, the halo-y cross-

power spectrum is:

Cℓyg =
σT
mec2bg(z)⟨bPe⟩

∫
dθ2πθJ0(ℓθ)

wp,lin(χ(z)θ)

1 + z
, (4.2.19)
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where J0 is the Bessel function of the first kind.

Multiplying this power spectrum by the beam function, B(ℓ), and then inverse

Fourier transforming, we obtain:

ξs,two−halo
yg (χθ,z) =

∫
dℓ ℓ
2π

J0(ℓθ)Cyg(ℓ)B(ℓ). (4.2.20)

We thus obtain in the two-halo limit (see also [314]):

ξs,two−halo
yg (R,z) ≈ σT

mec2bg(z)⟨bPe(z)⟩
wSlin(R,z)

1 + z
, (4.2.21)

where wSlin(R,z) is the projected linear correlation function, smoothed by the

beam as shown above.

Eq. 4.2.21 describes the cross-correlation between galaxies and y at a fixed

redshift. The redMaGiC galaxies, however, are distributed over a broad redshift

range, so we must average Eq. 4.2.21 over the normalized redshift distribution,

ωi(z), of the ith redMaGiC galaxy bin. Since the bias and bias-weighted pressure

are expected to evolve slowly with redshift, and since the individual redshift

bins of the redMaGiC galaxies are only ∆z ∼ 0.15, we can define effective param-

eters over the whole bin, bg and ⟨bPe⟩. The projected correlation function is also

averaged across the redshift bins in this way. Our final model for the galaxy-y

cross-correlation is given by:

ξs,iyg (R >> rvir, z̄) ≈
σT
mec2b

i
g⟨bPe⟩i

∫ ∞
0

wSlin(R,z)ωi(z)
1 + z

dz. (4.2.22)

Given a cosmological model, wSlin(R) is fixed. Consequently, specifying bg and

⟨bPe⟩ is sufficient to specify the galaxy-y cross-correlation function. As we will
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show below, we can determine bg using fits to the galaxy-galaxy correlation func-

tion, allowing us to use the galaxy-y measurements to solve for ⟨bPe⟩.

4.2.2 Pressure profile model

Until now, we have been agnostic about the form of the halo pressure profile,

Pe(r,M,z). [22] (hereafter [22]) measured the pressure profiles of halos in hydro-

dynamical simulations, and we will use fitting functions from those measure-

ments in our analysis below. The [22] fits use spherical overdensity definitions

of the halo mass and radius, M∆ and R∆, respectively. These are defined such

that the mean density within R∆ is ∆ times critical density, ρcrit(z), i.e.:

M∆ = ∆
4
3
πR3

∆ ρcrit(z). (4.2.23)

We will use both ∆ = 200 and ∆ = 500 definitions below where convenient. The

[22] pressure profile fitting function is then a generalized NFW model:

P (x = r/R∆,M∆, z) = P∆P0(x/xc)
γ [1 + (x/xc)

α]−β , (4.2.24)

where γ , α, β and xc are redshift and mass dependent parameters of the model

and the pressure normalization, P∆, is given by:

P∆ = ∆ ρcrit(z)
Ωb

Ωm

GM∆

2R∆

, (4.2.25)

where Ωb and Ωm are the baryon and matter fractions, respectively, at redshift

z = 0. Because of significant degeneracy between the parameters, [22] set α = 1.0

and γ = −0.3.
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The free parameters of the [22] fits are then P0, xc and β. [22] additionally

modelled the mass and redshift dependence of these parameters using fits of the

form

A = A0

(
M200

1014M⊙

)αm
(1 + z)αz , (4.2.26)

whereA represents P0, xc or β. The best fit parameters are given in Table 1 of [22].

[22] considered different models for gas heating, described in more detail

in [23] (hereafter [23]). In our analysis of the data we primarily rely on the ‘shock

heating’ model from [23]. In this model, gas is shock heated during infall into the

cluster potential; no additional energy sources or cooling models are included.

Below, we will extend this model to include the possibility of additional energy

sources, which we will use the data to constrain. For the purposes of generat-

ing simulated y maps, we will also employ the AGN feedback model from [23],

which includes a prescription for radiative cooling, star formation, and super-

novae feedback, in addition to AGN.

The quantity ⟨bPe⟩ depends on the full pressure profile of the halos, and is

therefore sensitive to its behavior at large r. At distances r ≳ 2R200, [22] found

that the pressure profile fits could depart from the mean profile in simulations

by more than 5%. In our analysis, when computing ⟨bPe⟩, we will truncate the

model pressure profiles at r = 3R500. We will consider the impact of varying

this choice in §4.5.2. Additionally, the ⟨bPe⟩ integral receives some contribution

from M ∼ 1013M⊙/h halos, below the halo mass limit of the [23] simulations.
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Consequently, when we model ⟨bPe⟩ we will effectively be extrapolating the [23]

fits to a regime just below where they were calibrated.

4.2.3 Model for additional energy sources

The main purpose of our analysis is to constrain the amount of energy in the halo

gas relative to that expected from gravitational collapse. The energetics of the

halo gas could be changed relative to the gravitational expectation by processes

such as AGN feedback and cooling. As described above, the observable quantity

⟨bPe⟩ is sensitive to the total thermal energy in halos in the mass range from

about 1013 to 1015M⊙. To constrain departures from the purely gravitational

energy input to the gas, we adopt the model

ET (M) = Esh
T (M)(1 +α(M)), (4.2.27)

where Esh
T (M) is the thermal energy computed as in Eq. 4.2.11 using the shock

heating model for the pressure profile from [22] (i.e. gravitational energy input

only, and no cooling). We adopt a simple phenomenological model for α(M):

α(M) =


α ifM <Mth

0 ifM >Mth

, (4.2.28)

where α is a constant. The motivation for introducing Mth is that for very mas-

sive halos, we expect the gravitational energy to dominate over all other energy

sources. Below, we will set Mth = 1014M⊙, although we will also consider the

impact of taking Mth→∞.
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We emphasize that ⟨bPe⟩ is sensitive to the total thermal energy in halos. Any

process which changes the pressure profile, but does not change the total ther-

mal energy content should not change ⟨bPe⟩. Such process might include, for

instance, bulk motions of gas. An additional point worth emphasizing is that

the ⟨bPe⟩ measurements for a particular redshift bin constrain the total thermal

energy in the halos at that redshift. This thermal energy could be impacted by

heating or cooling at higher redshift. For instance, AGN feedback at z > 1 could

impact the measured ⟨bPe⟩, provided that gas has not had sufficient time to cool

by the redshift of observation.

4.2.4 Model for galaxy-galaxy clustering

At fixed cosmology, Eq. 4.2.21 shows that the galaxy-y cross-correlation in the

two-halo regime is completely determined once ⟨bPe⟩ and bg are specified. We

can break the degeneracy between the two quantities using information from

galaxy clustering, which is sensitive to bg , but not ⟨bPe⟩. By performing a joint

fit to the galaxy-y and galaxy-galaxy correlation functions, we can therefore con-

strain ⟨bPe⟩ as a function of z.

To constrain bg we rely on measurements of galaxy-galaxy clustering. We now

develop a model for this observable in the two-halo regime. The power spectrum
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of the galaxies in the two-halo regime is given by:

P two−halo
gg (k,z) = [∫

dM
dn
dM

N (M,z)
n̄(z)

um(k,M,z)b(M,z)
]2

Plin(k,z). (4.2.29)

In the two-halo regime, we can take the low-k limit for the dark matter halo

profile um(k,M,z), yielding:

P two−halo
gg (k,z) = [∫

dM
dn
dM

N (M,z)
n̄(z)

〈
ρ

M

〉
b(M,z)

]2

Plin(k,z). (4.2.30)

Using the same definition of bg as in Eq. 4.2.14, we find the galaxy-galaxy

power spectrum to be:

P two−halo
gg (k,z) = bg(z)2Plin(k,z). (4.2.31)

The Limber approximation [189, 191] can then be used to relate the 3D power

spectrum to the harmonic-space power spectrum on the sky:

Cgg(ℓ) =
∫
dχ
q2
g (z)

χ2 Plin

(
ℓ + 1/2
χ

,χ

)
, (4.2.32)

where q is the weight function given by:

qg(z) = bgω(z)
dz
dχ
. (4.2.33)

The angular correlation functions can then be related to the harmonic cross-

spectra for any given redshift bin i via:

wii(θ) =
∑
ℓ

2ℓ + 1
4π

Pℓ (cos(θ)) Ciigg(ℓ) (4.2.34)
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where Pℓ (cos(θ)) is the Legendre polynomial of the ℓ-th order. We note that this

model is equivalent to that employed in the [89] analysis, which uses the same

galaxy clustering measurements as employed here.

4.3 Data

4.3.1 DES redMaGiC catalog

The primary goal of this analysis is to constrain the redshift evolution of the pres-

sure of the Universe by measuring the correlation between galaxies and maps of

the Compton-y parameter. To this end, we require a sample of galaxies that have

well measured redshifts, and which can be detected out to large redshift. An

ideal catalog for this purpose is the redMaGiC catalog [89] derived from first year

(Y1) DES observations.

The Dark Energy Survey is a 5.5 year survey of 5000 sq. deg. of the southern

sky in five optical bands (g, r, i, z, and Y ) to a depth of r > 24. In this analysis,

we use first Y1 data from DES covering approximately 1321 sq. deg. to roughly

r ∼ 23 [78, 109].

redMaGiC galaxies are identified in DES data based on a fit to a red sequence

template using the methods described in [260]. The photometric accuracy of

the selection is high: σrmg = 0.0167(1 + z). For details of the validation of the

redMaGiC redshift estimates, see [260] and [58].
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Throughout this analysis, we use the same selection of galaxies and redshift

binning as used in the analysis of [89]. Using the same selection as in [89] is ad-

vantageous since systematic errors in the redshift estimates for this sample have

been thoroughly studied in [58], and the impact of observational systematics on

redMaGiC galaxy detection have been studied in [100].

The Y1 redMaGiC sample was divided into five redshift bins from z = 0.15 to

z = 0.9. The first three redshift bins use a luminosity cut of L/L∗ > 0.5, while the

fourth and fifth redshift bins use cuts of L/L∗ > 1.0 and L/L∗ > 1.5, respectively,

where L∗ is computed using a Bruzual and Charlot model [48], as described in

[260]. Given the small number of galaxies in the fifth bin and the potential for

higher contamination of the galaxy-y cross-correlation measurements in that bin

(see below), we restrict our analysis to the first four redshift bins.

Galaxies are placed into redshift bins based on their photometric redshift as

estimated by the redMaGiC algorithm [260]. redMaGiC assigns a redshift esti-

mate, zrmg, to each galaxy. The estimated ω(z) for each bin is then computed

as a sum of Gaussian probability distribution functions centered at zirmg, with

standard deviation σrmg. The corresponding redshift distributions are shown in

Fig. 4.2.
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Figure 4.2: Redshift distributions of Y1 redMaGiC galaxies used in this analysis.

The galaxy sample is divided into five redshift bins, which are identical to the

ones used in [89]. We only use the first four of these bins in the present analysis,

as described in §4.3.1. The integral of each curve over dz is equal to the num-

ber of galaxies in the bin. In total, the sample contains approximately 600,000

galaxies.
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4.3.2 Planck maps

We correlate the redMaGiC galaxies with maps of the Compton-y parameter de-

rived from Planck data. Planck observed the sky in nine frequency bands from 30

GHz to 857 GHz from 2009 to 2013 [239, 299]. The resolution of the Planck ex-

periment is band dependent, varying from roughly 30 arcminutes at the lowest

frequencies to 5 arcminutes at the highest.

We use the publicly available 2015 Planck High Frequency Instrument (HFI)

and Low Frequency Instrument (LFI) maps in this analysis [235, 241] and con-

struct Compton-y maps using the Needlet Internal Linear Combination (NILC)

algorithm that is described in [83] and [133]. For comparison, we will also make

use of the publicly available Planck estimates of y described in [10] which uses

the same set of temperature maps.

While constructing various versions of Compton-y map (see below), we use

the same galactic mask as used in [10] which blocks 2% of the sky area (mostly

in the galactic center). We also use the point source mask which is the union of

the individual frequency point-source masks discussed in [236].

4.3.3 Simulated sky maps

One of the primary concerns for the present analysis is possible contamination

of the estimated y maps by astrophysical foregrounds. The most significant po-

tential contaminant is the cosmic infrared background (CIB), which is predomi-
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nantly sourced by thermal emission from galaxies throughout the Universe. CIB

emission comes from a broad range of redshifts, roughly z ∼ 0.1 to 4.0, with the

bulk of emission coming from z ≳ 1 [270]. The majority of CIB emission is there-

fore beyond the redshift range of the galaxies considered in this analysis, and

will therefore be uncorrelated with the redMaGiC galaxies. Such emission could

constitute an additional noise source, but will not in general lead to a bias in the

estimated galaxy-y cross-correlation functions.

However, some CIB emission is sourced from z ≲ 0.7, which overlaps with the

redshift range of the redMaGiC galaxies. Since the CIB is traces the large-scale

structure, it will be correlated with the redMaGiC galaxies. Consequently, any

leakage of CIB into the estimated y maps over this redshift range could result in

a bias to the estimated galaxy-y cross-correlation functions.

Another possible source of contamination is bright radio sources. Although

the brightest sources are detected and masked, there will also be radio point

sources that are not individually detected. For instance, in a recent study by

[282], it was found that radio sources can bias the tSZ-lensing correlation when

using Planck data. Lastly, we may also have to worry about the potential biases

and loss of signal-to-noise that may arise due to galactic dust contamination. We

assess the effects of all the above mentioned biases using simulated sky maps as

described below.
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We rely on both the Websky mocks1 and the [274] simulations. These two sets

of simulations are useful in this analysis because they have produced correlated

CIB maps and partially cover the frequency range used by Planck.

The Websky mocks are full sky simulations of the extragalactic microwave

sky generated using the mass-Peak Patch approach, which is a fully predictive

initial-space algorithm, and a fast alternative to a full N-body simulation. As

described in [289], the mass-Peak Patch method finds an overcomplete set of

just-collapsed structures through coarse-grained ellipsoidal dynamics and then

resolves those structures further. These maps are provided for frequencies 143,

217, 353, 545, and 857 GHz which are very similar to the Planck HFI channels.

The [274] simulations are another set of full sky simulations which provide

maps for the cosmic microwave background, tSZ, kinetic SZ, populations of

dusty star forming galaxies, populations of galaxies that emit strongly at radio

wavelengths, and dust from the Milky Way galaxy. Maps are provided at six dif-

ferent frequencies: 30, 90, 148, 219, 277, and 350 GHz which are very similar

to the Planck LFI channels and some of the HFI channels. These sets of maps

allow us to directly test the effects of bright radio sources and galactic dust on

the Compton-y and its cross-correlation with halos that populate redMaGiC -like

galaxies.

We generate simulated sky maps in Healpix2format by combining the var-

1mocks.cita.utoronto.ca
2healpix.jpl.nasa.gov
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ious component maps from the simulations described above. For the Websky

mocks, we combine Compton-y, lensed CMB and CIB; for the Sehgal simula-

tions, we combine Compton-y, lensed CMB, CIB, radio galaxies and Milky Way

galactic dust emission. The "true" sky maps are then convolved with Gaussian

beams with frequency-dependent full width half maxima (FWHM) correspond-

ing to the Planck data. Finally, we add Planck-like white noise to each channel at

the levels given in Table 6 of [237].

4.3.4 MICE and Buzzard N-body simulations

In addition to the estimation of y from the Planck maps, the other major step in

our analysis is the inference of ⟨bPe⟩ from the measured correlation functions.

In order to test the methodology and assumptions involved in this step of the

analysis, we rely on simulated redMaGiC galaxy catalogs and y maps. The simu-

lations used for this purpose are the MICE [57,115,117] and Buzzard [87] N-body

simulations. Both simulations have been populated with galaxy samples approx-

imating redMaGiC .

MICE Grand Challenge simulation (MICE-GC) is an N-body simulation run

on a 3 Gpc/h box with 40963 particles produced using the Gadget-2 code [287].

The mass resolution of this simulation is 2.93×1010M⊙/h across the full redshift

range that we analyze here (z < 0.75), and halos are identified using a FoF algo-

rithm using a linking length of 0.2. These halos are then populated with galaxies
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using a hybrid sub-halo abundance matching and a halo occupation distribution

(HOD) approach, as detailed in [57]. These methods are designed to match the

joint distributions of luminosity, g−r color, and clustering amplitude observed in

SDSS [329]. The construction of the halo and galaxy catalogs is described in [74].

A DES Y1-like catalog of galaxies with the spatial depth variations matching the

real DES Y1 data is generated as described in [194]. MICE assumes a flat ΛCDM

cosmological model with h = 0.7, Ωm = 0.25, Ωb = 0.044 and σ8 = 0.8.

Buzzard is a suite of simulated DES Y1-like galaxy catalogs constructed from

dark matter-only N-body lightcones and including galaxies with DES griz mag-

nitudes with photometric errors, shape noise, and redshift uncertainties ap-

propriate for the DES Y1 data [87]. This simulation is run using the code L-

Gadget2 which is a proprietary version of the Gadget-2 code and the galaxy cat-

alogs are built from the lightcone simulations using the ADDGALS algorithm

[87, 194, 321]. Spherical-overdensity masses are assigned to all halos in Buzzard

. Buzzard assumes a flat ΛCDM cosmological model with h = 0.7, Ωm = 0.286,

Ωb = 0.047 and σ8 = 0.82.

We generate mock Compton-y maps for the N-body simulations by pasting

y profiles into mock sky maps at the locations of simulated halos. The y profile

used for this purpose is the AGN feedback model (with ∆ = 200) from Table 1

of [22]. This approach to generating Compton-y maps misses contributions to

y from halos below the resolution limit of the simulation. However, given that
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Buzzard and MICE identify halos above 3×1012M⊙/h and 1011M⊙/h, respectively,

Fig. 4.1 shows that for both simulations, we capture at least 95% of the contri-

bution to ⟨bPe⟩. Since the statistical errors on the simulation measurements are

significantly larger than 5%, any missing contribution to ⟨bPe⟩ is not important

for this work. Note that since MICE uses only FoF masses, it is not strictly correct

to apply the [22] profile to these halo mass estimates. However, this inconsis-

tency should not impact our validation tests described below.

4.4 Analysis

4.4.1 Measuring the galaxy-y cross-correlation and galaxy-galaxy

clustering

Our estimator for the galaxy-y cross-correlation for galaxies in a single redshift

bin and in the angular bin labeled by θα is

ξ̂yg(θα) =
1
ND

ND∑
ij

ymf (θij)−
1
NR

NR∑
iRj

ymf (θiRj), (4.4.1)

where i (iR) labels a galaxy (random point), m labels a map pixel, θim is the

angle between point i and map pixel m, and f is an indicator function such

that f (θ) = 1 if θ is in the bin θα and f (θ) = 0 otherwise. The total number

of galaxies and random points are ND and NR, respectively. By subtracting the

cross-correlation of random points with y, we can undo the effects of chance

correlations between the mask and the underlying y field.
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We measure the galaxy-galaxy correlation using the standard [178] estimator.

Because we use the same catalogs, redshift bins, and angular bins as in [100],

our measurements of clustering of the redMaGiC galaxies are identical to those

in [100]. For both the galaxy-y and galaxy-galaxy correlations, we compute the

estimators using TreeCorr [163].

We measure the galaxy-y cross-correlation in 20 radial bins from 1 Mpc/h

to 40 Mpc/h. We measure galaxy-galaxy clustering in 20 angular bins from 2.5

arcmin to 250 arcmin which is the binning used in [100]. However, as described

below in §4.4.5, we do not include all measured scales when fitting these corre-

lation functions, since the model is not expected to be valid at all scales. Our

angular scale cut choices are validated in §4.4.6.

4.4.2 Covariance Estimation

Jointly fitting the measurements of the galaxy-y and galaxy-galaxy correlations

requires an estimate of the joint covariance between these two observables. For

this purpose, we use a hybrid covariance matrix estimate built from a combina-

tion of jackknife and theoretical estimates. We validate the covariance estimation

in §4.4.6.

For the covariance block describing only the galaxy clustering measurements,

we use the theoretical halo-model based covariance described in [173]. This co-

variance has been extensively validated as part of the [89] analysis.
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For the block describing the galaxy-y covariance and for the cross-term blocks

between galaxy-y and galaxy clustering, we use jackknife estimates of the covari-

ance. The use of a jackknife is well motivated because several noise sources in the

ŷ map are difficult to estimate. These include noise from CIB and galactic dust.

Since the jackknife method uses the data itself to determine the covariance, it

naturally captures these noise sources.

The jackknife method for estimating the covariance of correlation functions

on the sky is described in [223]. To construct jackknife patches on the sky, we

use the KMeans algorithm3. We find that 800 jackknife patches is sufficient for

robust covariance estimation. This means that each jackknife patch is approxi-

mately 85 arcmin across, which is approximately 1.5 times larger than our max-

imum measured scale for each redshift bin.

Our jackknife estimates of the cross-covariance between the galaxy-clustering

and galaxy-y measurements are noisy. When applying the jackknife covariance

estimation to simulations (see §4.4.6), we find that this cross-covariance is largest

when it is between two of the same redshift bins, as expected. For the simulated

measurements, zeroing cross-covariance between clustering and galaxy-y mea-

surements of different redshift bins has no impact on the inferred ⟨bPe⟩. To reduce

the impact of noise in our covariance estimates, we therefore set these blocks to

zero in our data estimate of the covariance. The final covariance estimate is
3https://github.com/esheldon/kmeans_radec
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shown in Fig. C.2.

4.4.3 y map estimation

4.4.4 Overview

The y signal on the sky can be estimated as a linear combination of multi-frequency

maps. The constrained internal linear combination (CILC) method chooses weights

in the linear combination that:

(a) impose the constraint that the estimator has unit response to a compo-

nent with the frequency dependence of y,

(b) impose a constraint that the estimator has null response to some other

component with known frequency dependence,

(c) minimize the variance of the estimator subject to the constraints from

(a) and (b). Below, we will consider several different analysis variations that

attempt to null different components (or none at all).

Note that the more components that are "nulled," the larger the variance of

the resultant estimator, since imposing the nulling condition effectively reduces

the number of degrees of freedom that can be used to minimize the variance.

When forming the estimated y map with the CILC, the multi-frequency maps

themselves must be decomposed into some set of basis functions, such as pixels

or spherical harmonics. In this analysis, we use maps decomposed using the
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needlet frame on the sphere [83, 133, 200]. The Planck estimate of y generated

using CILC methods in the needlet frame goes under the name Needlet Internal

Linear Combination (NILC) and is described in [10]. We will use both the Planck

NILC map and also construct our own versions for the purposes of testing biases

due to contamination by the CIB and other astrophysical foregrounds. A brief

description of the analysis choices and methodology is given in §4.4.4.1; details

are provided in Appendix C.1.

4.4.4.1 Attempting to mitigate CIB bias in the y map

The Planck NILC ŷ map [10] enforces null response to components on the sky

with the same frequency dependence as the CMB. This choice is well motivated,

since the CMB constitutes the dominant noise source over the frequency range

that has significant signal-to-noise for the estimation of y. We will refer to this

choice as unit-y-null-cmb. We will also consider a variation that does not ex-

plicitly null any components, which we refer to as unit-y.

In the end, however, we only care about the cross-correlation of ŷ with galax-

ies. The CMB correlates only very minimally with galaxies (due, for instance,

to the integrated Sachs-Wolfe effect), and so should not result in a bias to the

estimated galaxy-y cross-correlation functions. Since the CILC imposes a min-

imum variance condition on ŷ, explicitly nulling the CMB is not necessary for

our purposes. Attempting to null the CIB, on the other hand, is well motivated
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to prevent potential biases in the ⟨bPe⟩ estimation; we call this method unit-y-

null-cib. To null the CIB, one must adopt some reasonable choice for its fre-

quency dependence. Unfortunately, the frequency dependence of the CIB signal

is uncertain, and furthermore, may vary with redshift, angular scale, or position

on the sky.

We determine the frequency scaling of the CIB in the Sehgal simulations and

the Websky mocks by cross-correlating the mock halos with the mock CIB maps.

To approximate the redMaGiC selection, we correlate halos in the mass range

2×1013M⊙/h < M < 3×1013M⊙/h and redshift range 0.45 < z < 0.6 with the sim-

ulated CIB maps. We then measure the frequency scaling of these correlations

at 100 arcmin, near the regime of interest for our ⟨bPe⟩ constraints. We compare

this fiducial CIB frequency dependence to Planck [242] and Sehgal simulations

in Fig. 4.3. The Planck points are derived from the rms fluctuations of the CIB

anisotropy spectrum over the range 200 < ℓ < 2000. We note these measure-

ments are consistent with the frequency scaling of the mean of the CIB field, as

described in [242].

Fig. 4.3 shows that the frequency dependence of the CIB in both the sim-

ulations and the Planck data are consistent at roughly the 10% level over the

frequency range relevant to this analysis. Larger deviations are observed at 545

and 857 GHz, but these channels are not used in the y map reconstruction (see

below). We also show the redshift dependence of the frequency scaling by cross-
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correlating with halos in different redshift bins, finding some variation. As mass

of halos hosting the redMaGiC galaxies is not completely certain, we also test

the dependence of the CIB frequency scaling on the mass of halo used for cross-

correlation.

The CIB intensity rises quickly at the higher frequency channels of Planck. In

order to reduce potential CIB contamination of the y maps, we do not use the

545 or 857 GHz channels in our y map reconstruction. This choice differs from

that made by [10], where both the 545 and 857 GHz channels were employed.

We see that variations in halo selection criteria impact the frequency dependence

of CIB by less than 20% for frequency channels below 545 GHz. We have found

that this choice makes the reconstructed y maps less sensitive to the details of

the CIB modelling, with only a minor degradation in signal-to-noise.

Finally, when analyzing the Sehgal mocks, we employ a large scale contiguous

apodized mask that covers 10% of the sky (near the galactic plane) in all the

temperature maps to minimize the biases that might result from bright pixels

in galactic plane. To minimize similar issues due to bright radio sources, we

apply a point source mask that covers radio galaxies in the top decile. This mask

is similar to the point source mask provided by the Planck collaboration that

we use in the analysis of data. Since this is a highly non-contiguous mask, we

inpaint masked pixels in the temperature maps.
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Figure 4.3: Frequency scaling of the halo-CIB correlation in the Websky mocks

for different halo selections in redshift (dashed) and mass (dot-dashed). Mea-

surements are shown relative to the fiducial CIB model, as described in the text.

We also show the frequency scaling of the CIB in the Sehgal simulations (green

solid curve), and the measurements from [239] (blue points with errorbars). For

frequencies less than 545 GHz (i.e. the frequency range used in this analysis,

corresponding to the unshaded region in this plot), departures from our fiducial

CIB model are less than 20%, and are consistent with the Planck measurements.
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4.4.4.2 Validation of y estimation with mock skys

We apply our NILC pipeline to the simulated skies described in §4.3.3, making

the three nulling condition choices described above. We correlate the resultant y

maps with a sample of halos that approximate the redMaGiC selection, with 2 ×

1013M⊙/h < Mh < 3×1013M⊙/h. The correlation results for the Sehgal simulation

with halos in the redshift range 0.15 < z < 0.3 are shown in Fig. 4.4. In general, all

three methods yield roughly consistent results that are also in good agreement

with the true correlation signal.

The CIB model of the Sehgal simulations is not complete in the sense that

it does not capture CIB contributions from halos below the mass limit of the

simulation. The CIB frequency model assumed in the Sehgal simulations is also

somewhat out of date, and does not match current Planck observations. For these

reasons, we additionally use the Websky mocks for testing potential CIB biases.

The Websky mocks employ a model for CIB contributions from halos below the

mass limit of the simulation, and also shows better agreement with recent Planck

constraints on the CIB frequency dependence. However, because the Websky

mocks do not include radio sources or galactic dust, we primarily rely on the

Sehgal simulations for validation. We discuss tests using the Websky mocks in

§C.2.

184



2× 101 3× 101 4× 101 6× 101

θ (arcmin)

10−8

ξ y
g
(θ

)

Input

Unit-y-Null-CIB

Unit-y-Null-CMB

Unit-y

Figure 4.4: Galaxy-y cross-correlation measurements with reconstructed y

maps from the Sehgal simulations. We show results for the halo bin with

2 × 1013M⊙/h < Mh < 3 × 1013M⊙/h and 0.15 < z < 0.3. The results for other

redshift bins are similar. We find that our y reconstruction methods are suffi-

cient to recover an essentially unbiased estimate of the halo-y cross-correlation

over the scales of interest.

185



0.2 0.3 0.4 0.5 0.6 0.7

z

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

〈b
P
e〉 R

M
/〈
bP

e〉 H
al

o

Buzzard

MICE

0.2 0.3 0.4 0.5 0.6 0.7

z

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

〈b
P
e〉

Theory

Buzzard RM

Buzzard halos

Figure 4.5: Left panel shows the ratio of ⟨bPe⟩ inferred in simulations from mea-

surements with redMaGiC galaxies to that inferred from halos. For both the Buz-

zard (blue) and MICE (orange) simulations, the redMaGiC galaxies and halos lead

to consistent determinations of ⟨bPe⟩. This supports the notion that the mea-

surements are sufficiently far in the two-halo regime that the inference of ⟨bPe⟩

is independent of the halo-galaxy connection. Right panel shows the measure-

ments of ⟨bPe⟩ in the Buzzard simulation compared to the theoretical prediction.
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4.4.5 Model fitting

Our measurements of the galaxy-y and galaxy-galaxy correlations in different

redshift bins can be concatenated to form a single data vector

d⃗ =
(
d
gg
1 ,d

gy
1 ,d

gg
2 ,d

gy
2 , . . . ,d

gg
4 ,d

gy
4

)
, (4.4.2)

where dggi and dgyi are the clustering and galaxy-y correlations measurements in

the ith redshift bin, respectively. We consider a Gaussian likelihood for the data:

L(d⃗ | θ⃗) = −1
2

(
d⃗ − m⃗(θ⃗)

)T
C−1

(
d⃗ − m⃗(θ⃗)

)
, (4.4.3)

where C is the covariance matrix described in §4.4.2, θ⃗ represents the model

parameters (galaxy bias, bi , and bias-weighted pressure, ⟨bPe⟩i for redshift bin i)

for all redshift bins, and m⃗ represent the model vector calculated as described

in §4.2. We adopt flat priors on all of the parameters, and sample the posterior

using Monte Carlo Markov Chain methods as implemented in the code emcee

[111].

We restrict our fits to the galaxy-galaxy correlation functions to scales R >

8Mpc/h. This restriction is imposed to ensure that the measurements are in the

two-halo dominated regime, as discussed in §4.2, and is consistent with the scale

cut choices motivated in [173] and [194].

The determination of appropriate scale cuts for the galaxy-y cross-correlation

is somewhat more involved. As described in Appendix 4.4.3, the Compton-y

map used in this analysis is smoothed with a beam of FWHM of 10 arcmin. The
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beam has the effect of pushing power from small to large scales, and therefore

shifts the location of the one-to-two-halo transition. For the highest redshift

redMaGiC bins, this shift can be significant and hence we have to increase our

scale cuts as we go to higher redshift bins. For the bins detailed in §4.3.1, we

ensure that we only include the scale cuts that are approximately twice the beam

size away for any given redshift bin in our analysis. This results in minimum

scale cuts for each of the four redshift bins at 4, 6, 8 and 10 Mpc/h. For the max-

imum scale cut, we make sure that for each redshift bin, the size of an individual

jackknife patch is approximately 1.5 times the maximum scale cut for that par-

ticular bin. To obtain a sufficiently low-noise estimate of the covariance matrix

from the jackknifing procedure, we need of order 800 jackknife patches. These

considerations yield maximum scale cuts for each of the 4 bins of 11, 17, 25 and

30 Mpc/h.

4.4.6 Validation of model assumptions and pipeline

We apply our analysis pipeline to the simulated data by correlating the mock

y maps with both the simulated redMaGiC and halo catalogs. In the two-halo

regime, both the redMaGiC galaxies and the halos should lead to consistent es-

timates of ⟨bPe⟩. The left panel of Fig. 4.5 shows the ratio of these two mea-

surements for both the Buzzard and MICE simulations. Indeed, we find that the

redMaGiC and halo measurements are consistent in both simulations, a strong
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Figure 4.6: Measurements of the galaxy auto-correlation (top row) and Compton-

y galaxy cross-correlation (bottom row) at different redshift bins corresponding

to four redshift bins used in the analysis. Solid line is the best-fit to the fiducial

model of Compton-y which is generated after removing 545GHz and 857GHz

frequency channels from the analysis. Only data in the unshaded regions are

used for fitting. These scale cut choices are validated in §4.4.6
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Figure 4.7: The galaxy-y cross-correlation function over the scales of inter-

est when the component separation method used to estimate y is varied. We

show the correlation measurements for the highest signal to noise redshift bin,

0.45 < z < 0.6, but results for the other redshift bins are similar. We find that

the estimated correlation function does not vary significantly when the y esti-

mation choices are varied. Together with our validation with simulations, this

constitutes strong evidence that our correlation measurements are not signifi-

cantly biased by astrophysical contaminants in the estimated y.
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test of our modeling assumptions and methodology.

We can also compare the recovered values of ⟨bPe⟩ from the simulations to

the value computed from the Eq. 4.2.15. Since we know the true cosmological

and profile parameters used to generate the simulated y map, the measurement

in simulations should match the theory calculation, provided our assumptions

and methodology are correct. The right panel of Fig. 4.5 shows this comparison

(using both halos and redMaGiC galaxies) for the Buzzard simulation. We find

that the inferred values of ⟨bPe⟩ are consistent with the theoretical expectation,

providing a validation of our modeling, methodology, and scale cut choices. Note

that we do not perform this test with the MICE simulation, since as discussed in

§4.3.4, MICE uses FoF halo masses, while the [22] profile used to generate the

simulated y maps requires spherical overdensity masses.

4.5 Results

4.5.1 Galaxy-y cross-correlation measurements

Our measurements of galaxy clustering (top) and the galaxy-y correlation (bot-

tom) using DES and Planck data are shown in Fig. 4.6. We show the galaxy-y

measurements with both our fiducial ŷ map and the Planck y map in Fig. 4.6.

We obtain significant detections of galaxy-y cross-correlation in all four redshift

bins. Across all radial scales, the galaxy-y cross-correlation is detected at a sig-
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with [314] and theory curves corresponding to shock heating model as described

in [22]. For theory curves, all models are evaluated for ∆ = 500 and for various

choices of Rmax/R∆.

.
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Figure 4.9: Constraints on the thermal energy of the gas as a function of red-

shift. The parameter, α, defined in Eq. 4.2.28, measures the fractional departure

of the gas thermal energy from the predictions of a model that only includes

gravitational energy. Large α means that some process must have contributed

extra thermal energy to the gas, while negative α means that the gas must have

cooled. In our model, the addition (or deficit of) thermal energy impacts all

halos below a threshold mass, Mth. We show the results for Mth → ∞ (region

between blue solid curves) and for Mth = 1014M⊙ (region between orange-red

dashed curves). The ⟨bPe⟩ measurements presented in this work are sensitive to

halos with 1013 ≲M ≲ 1015M⊙, as shown in Fig. 4.1.
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nificance of 12.3, 12.9, 12.2 and 8.4σ for four redshift bins in order of increasing

redshift. We restrict our model fits to the scales outside of the shaded regions to

ensure that we remain in the two-halo regime where our modeling approxima-

tions are valid, as discussed in §4.4. The restrictions at large scales ensure that

our jackknife estimate of the covariance is accurate; this cut leads to only a small

degradation in signal-to-noise.

In order to assess potential biases in our measurements of the galaxy-y cross-

correlation, we repeat these measurements using the unit-y-null-cib and unit-

y variations. In the absence of a correlated contaminant in the estimated y maps,

different variations on the fiducial component separation choices should not lead

to significant changes in the recovered mean galaxy-y cross-correlation. On the

other hand, significant changes in the measured cross-correlation functions for

varying component separation choices would be indicative of potential biases.

Note, though, that different component separation choices can lead to significant

changes in the uncertainties on the estimates of the galaxy-y cross-correlation,

even in the absence of any contaminant.

The impact of changing the component separation choices on the galaxy-y

cross-correlation measurements is shown in Fig. 4.7. The results are shown only

for the third redshift bin of redMaGiC galaxies, since this has highest signal-to-

noise. The results obtained for the other redshift bins are similar. We find that

the different y estimation procedures yield statistically consistent measurements
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of the galaxy-y cross-correlation over the range of scales used in this analysis.

These measurements are also consistent with the cross-correlations performed

with the Planck y map over the same range. The insensitivity of the galaxy-

y cross-correlations to the component separation choices suggests that are our

measurements are not biased by astrophysical contaminants.

However, as seen in Fig. 4.6, there is a trend with increasing redshift for the

Planck measurements at small scales to be lower in amplitude than the mea-

surements with our fiducial y map. The main difference between our fiducial y

map and the Planck map is that we do not use the 545 and 857 GHz channels

in our y reconstruction, as described in §4.4.4.1. It is difficult to determine pre-

cisely the cause of the small scale discrepancy between the two y map estimates

seen in Fig. 4.6. It appears broadly consistent with contamination due to CIB,

which would be expected to increase at higher redshift. We note that [10] also

found evidence for CIB bias in the tSZ angular power spectrum at small scales.

We note, however, that the amount and direction of this CIB bias in the y map

obtained from NILC pipeline is sensitive to the frequency channels used, and

that we consider here bias in galaxy-y cross-correlation rather than the y angu-

lar power spectrum considered in [10]. We emphasize, though, that over the

range of scales fitted in this analysis, the estimates of the galaxy-y correlations

are consistent between the different y maps.
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4.5.2 Constraints on bias-weighted pressure

The quantity ⟨bPe⟩, defined in Eq. 4.2.15 represents the halo bias weighted ther-

mal energy of the gas at redshift z. Fig. 4.8 shows our constraints on this quantity

as a function of redshift for two different y maps: our fiducial unit-y-null-cmb

map and the Planck NILC y map. The measurements with the two y maps appear

consistent, although precisely assessing the statistical consistency is complicated

by the fact that the maps are highly correlated. We find significant detections of

⟨bPe⟩ in all redshift bins considered. The multidimensional constraints on the

model parameters are shown in Fig. C.3.

The black point in Fig. 4.8 shows the constraint on ⟨bPe⟩ from the analysis of

[314] using data from SDSS and Planck. The [314] point is at significantly lower

redshift than the samples considered here (z ∼ 0.15 as opposed to 0.2 ≲ z ≲ 0.75).

The small errorbars on the [314] measurements result from the large area of

SDSS, roughly 10,000 sq. deg. Our analysis with DES Y1 data uses roughly 1300

sq. deg, although the galaxy density of the DES Y1 measurements is significantly

higher than the group catalog considered by [314].

4.5.3 Constraints on feedback models

The quantity ⟨bPe⟩ depends on the cosmological parameters and on the pressure

profiles of gas in halos. Given the current uncertainty on the cosmological pa-

rameters from e.g. [243], and the large model uncertainties on the gas profiles
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(especially at large radii), we focus on how ⟨bPe⟩ can be used to constrain gas

physics in this analysis. Fig. 4.1 shows that ⟨bPe⟩ is sensitive primarily to halos

with masses between 1013 and 1015M⊙, with sensitivity to lower mass halos at

high redshift. Because ⟨bPe⟩ effectively measures the total thermal energy in ha-

los, it is particularly sensitive to the thermodynamics of gas in halo outskirts,

where the volume is large. As seen in [23], it is precisely the large-radius, high-

redshift regime probed in this analysis for which the predictions of different

feedback models are significantly different.

The curves in Fig. 4.8 show several predictions for the redshift evolution of

⟨bPe⟩ for the ‘shock heating’ model of [22] and [23]. In this model, the baryons

are shock heated during infall into the cluster potential, and subsequently ther-

malize (with no AGN feedback or radiative cooling).

We show several model predictions in Fig. 4.8, corresponding to different

maximum radii for the halo gas profile. In our fiducial analysis, we compute

⟨bPe⟩ by integrating the pressure profile to 3R500. Similarly, the curve with

Rmax/R500 = a corresponds to integrating the profile to aR500. The data is consis-

tent with shock heating models for a = 2, a = 3 and a = 4 with χ2/d.o.f. of 2.9/4,

2.11/4 and 2.26/4, respectively.

For our fiducial shock heating model with Rmax = 3R500, we find χ2 per

degree of freedom (d.o.f.), χ2/d.o.f. = 2.11/4 for the cross-correlation measure-

ments with the unit-y-null-cmbmap, and χ2/ν = 3.99/4 for the cross-correlation
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with the Planck map. In both cases, the data are statistically consistent with the

shock heating model from [22].

As described in §4.2.3, the quantity ⟨bPe⟩ is sensitive to the (bias weighted)

total thermal energy in the halo gas. We can use the measured ⟨Pe⟩ to constrain

any sources of energy beyond that associated with gravitational collapse, such

as could be generated by feedback. The additional energy model is described

in §4.2.3, and parameterizes any additional energy contributions for halos with

mass M < Mth as a fractional excess, α(M), beyond that predicted by the shock

heating model from [23], which only includes gravitational energy.

The constraints on α(z) are shown in Fig. 4.9. In the limit that the threshold

mass is very large (Mth→∞, blue solid curve), we find that any mechanisms that

change the thermal energy of the gas must not increase (or decrease) the ther-

mal energy beyond about 30% of the total gravitational energy over the redshift

range 0.15 < z < 0.75. Note that this constraint applies to any thermal energy in

the halos at that redshift. If, for instance, significant energy injection occurred at

higher redshift and the gas was not able to cool by redshift z, this injected energy

would still contribute to our measurement.

The red dashed curve in Fig. 4.9 shows the impact of restricting the addi-

tional energy contributions to halos with M < Mth = 1014M⊙. The limit in this

case is necessarily weaker since fewer halos contribute additional thermal en-

ergy. We find that over the redshift range probed and for halos withM < 1014M⊙,
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feedback (or other processes) must not contribute an amount of thermal energy

greater than about 60% of the halo gravitational energy (or reduce the thermal

energy below about 60% of the gravitational energy). This constraint demon-

strates part of the power of the ⟨bPe⟩ constraints: we obtain constraints on ad-

ditional energy input into low mass halos, even without explicitly probing the

one-halo regime.

The implications of this constraint for feedback models depends, among other

things, on how black holes populate their host halos and a careful comparison

with simulations of AGN feedback is warranted. However, a rough estimate may

nevertheless be helpful. A plausible estimate of the energy added by black hole

feedback is Efeed = ϵrηMBHc
2, where ϵr is the radiative efficiency and η is the

fraction of the radiated energy which couples (here thermally) to the surround-

ing gas. Assuming ϵr = 0.1 and η = 0.05 [92], a black hole of mass 109M⊙ adds

Efeed = 9 × 1060 ergs to the gas. This is comparable to the thermal energy re-

sulting from gravitational collapse (i.e. in the shock heating model) of a halo of

mass Mh = 1013M⊙, and 40% of that of a Mh = 1014M⊙ halo. This suggests that

our constraints — limiting the extra thermal energy to about 60% of the gravi-

tational energy for halos with M < Mh = 1014M⊙ — are reaching an interesting

regime, and there are prospects to improve on them in the future.

It is also interesting to quantify the fraction of the total (i.e integrated over

all redshifts) Compton-y parameter accounted for in our measurements, which
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span roughly z ∼ 0.15 to z ∼ 0.75. Assuming the [22] shock heating pressure

profile and Rmax = 3R500, the total average Compton-y parameter is ⟨y⟩ = 2.9 ×

10−6 , while the contribution from the redshifts of the redMaGiC sample, 0.15 ≲

z ≲ 0.75 is ⟨y(0.15 ≤ z ≤ 0.75)⟩ = 6.7 × 10−7 . In some sense, our measurement

thererefore accounts for 23% of the total Compton-y parameter (compared to

only 2.5% by the analysis of [314]).

One caveat to the above statements is that our analysis necessarily misses any

unclustered contribution to the thermal energy. Such a component would not be

picked up in the galaxy-y cross-correlation. Furthermore, we have not accounted

for the possibility of overlapping halos in our halo model calculation. If there is

significant overlap of the pressure profiles, then we could be double counting

some of hot gas.

4.6 Conclusions

We have measured the cross-correlation of DES-identified galaxies with maps

of the Compton-y parameter generated from Planck data. We detect significant

cross-correlation in four redshift bins out to z ∼ 0.75. Using these measurements

and measurements of galaxy clustering with the same galaxy sample, we con-

strain the redshift evolution of the bias-weighted thermal energy of the Universe,

which we call ⟨bPe⟩. Our measurement of ⟨bPe⟩ extends the previous measure-

ment of this quantity from [314] from z ∼ 0.15 to z ∼ 0.75. High redshifts are of
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particular interest given the large uncertainties in both the modeling and data in

this regime.

Several features make ⟨bPe⟩ an interesting probe of gas physics. First, it can

be measured robustly even without a complete understanding of the galaxy-halo

connection, as demonstrated in this analysis. Second, ⟨bPe⟩ is expected to be a

sensitive probe of feedback models for several reasons. First, unlike pressure

profile measurements around massive clusters (M ≳ few × 1014M⊙) (typically

studied using x-ray measurements), the ⟨bPe⟩ measurements probe mass scales

down to M ∼ 1013M⊙/h, and lower masses at high redshifts, as seen in Fig. 4.1.

It is precisely the low-mass halos for which feedback is expected to have a large

impact. Additionally, ⟨bPe⟩ is sensitive to the outer pressure profiles (R ≳ Rvir),

as shown in Fig. 4.8. As shown in [23], various feedback prescriptions can make

very different predictions in the outer halo regime. Finally, ⟨bPe⟩ probes the to-

tal thermal energy in halos. Consequently, any process which changes the gas

pressure profile, but does not inject or remove energy from the gas will not im-

pact ⟨bPe⟩. For instance, our measurements would not be sensitive to feedback

processes that only move gas around without injecting any additional energy. If

one is interested in separating changes to the thermal energy from changes in

the bulk distribution of gas, then ⟨bPe⟩ is a powerful tool to this end.

As shown in Fig. 4.8, our measurements are consistent with the shock heat-

ing model from [23], with small variations depending on the extent of the pro-
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file. We use the ⟨bPe⟩ measurements to constrain departures from the purely

gravitational shock heating model, with the results shown in Fig. 4.9. Our mea-

surements constrain such departures at roughly the 20-60% level.

The measurements presented here use data from only the first year of DES

observations, covering roughly 25% of the full survey area of DES. We also em-

ploy several conservative data cuts: (1) the highest redshift bin (0.75 < z < 0.9)

is removed owing to low numbers of galaxies and greater potential for CIB con-

tamination, (2) we restrict the measurements to only the two-halo regime, (3) we

remove the largest angular scales due to the limitations of our jackknife covari-

ance estimation. With future improvements in data and methodology, these re-

strictions can be removed, enabling the full signal-to-noise of the measurements

to be exploited.

We also note that in the present analysis, we have assumed a fixed cosmolog-

ical model. This is reasonable given the uncertainties in our measurements and

the precision of existing cosmological constraints. However with future observa-

tions, it may be necessary to include uncertainty in cosmological parameters.

Current and future CMB observations will also enable higher signal-to-noise

and higher resolution measurements of Compton-y. Ground based CMB ex-

periments like the South Pole Telescope [54] and the Atacama Cosmology Tele-

scope [294] have achieved significantly lower noise levels than Planck over sig-

nificant fractions of the sky. Ongoing CMB experiments like Advanced ACT-
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Pol [140], SPT-3G [29], the Simons Observatory [6] and CMB Stage-4 [1] will

yield very high signal-to-noise maps of y. One challenge facing current and fu-

ture ground based experiments, though, is potentially greater contamination of

Compton-y maps by foregrounds, owing to the narrower frequency coverage of

these experiments.

The large apertures of ground based CMB experiments enables measurement

of y at significantly higher resolution than with Planck. Because the analysis

presented here was restricted to the two-halo regime, it is not necessarily the

case that higher resolution measurements will dramatically extend the range of

scales that can be exploited. Some improvement is expected, though, especially

for high-redshift galaxies, for which the beam pushes into the two-halo regime.

Future analyses with ground-based y maps will gain significantly from using

data in the one-halo regime.
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Chapter 5

Baryonic feedback constraints using

weak lensing & tSZ correlations

The text in this chapter is based on the submitted manuscript [230]:

S. Pandey, M. Gatti, E. Baxter, J. C. Hill, X. Fang, C. Doux, G. Giannini, M. Raveri,

J. DeRose, H. Huang, E. Moser, N. Battaglia, et al. 2021, Submitted to PRD,

204



Abstract

Hot, ionized gas leaves an imprint on the cosmic microwave background via the thermal

Sunyaev Zel’dovich (tSZ) effect. The cross-correlation of gravitational lensing (which

traces the projected mass) with the tSZ effect (which traces the projected gas pressure) is

a powerful probe of the thermal state of ionized baryons throughout the Universe, and

is sensitive to effects such as baryonic feedback. In Gatti et al. 2021 [123], we present

tomographic measurements and validation tests of the cross-correlation between galaxy

shear measurements from the first three years of observations of the Dark Energy Sur-

vey, and tSZ measurements from a combination of Atacama Cosmology Telescope and

Planck observations. In this work, we use the same measurements to constrain mod-

els for the pressure profiles of halos across a wide range of halo mass and redshift.

We find evidence for reduced pressure in low mass halos, consistent with predictions

for the effects of feedback from active galactic nuclei. We infer the hydrostatic mass

bias (B ≡M500c/MSZ) from our measurements, finding B = 1.8 ± 0.1 when adopting the

Planck-preferred cosmological parameters. We additionally find that our measurements

are consistent with a non-zero redshift evolution of B, with the correct sign and sufficient

magnitude to explain the mass bias necessary to reconcile cluster count measurements

with the Planck-preferred cosmology. Our analysis introduces a model for the impact of

intrinsic alignments (IA) of galaxy shapes on the shear-tSZ correlation. We show that IA

can have a significant impact on these correlations at current noise levels.
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5.1 Introduction

The distribution and energetics of baryons within dark matter halos are signif-

icantly impacted by astrophysical feedback processes. In particular, large-scale

winds driven by the supernova and active galactic nuclei (AGN) are expected

to reduce the ability of gas in halos to form stars, and are therefore important

ingredients in our understanding of galaxy formation [28]. At large halo mass,

feedback from AGN is expected to dominate over other feedback mechanisms.

Indeed, AGN feedback is sufficiently powerful that it modifies the total matter

power spectrum at wavenumbers k ≳ 0.1h/Mpc [310]. Unfortunately, because

feedback effects span a wide dynamical range — from sub-parsec scales to the

scales of galaxy clusters — they are difficult to model and simulate. As a result,

attempts to extract cosmological information from the matter power spectrum at

small scales (e.g., with weak lensing surveys) are often limited by our ignorance

of feedback [156]. Therefore, tighter observational constraints on feedback are

of prime importance for our understanding of both galaxy formation and cos-

mology.

Because feedback changes the thermal energy and distribution of the baryons,

it can change the pressure of ionized gas within halos, resulting in an observable

signature in the thermal Sunyaev-Zel’dovich (tSZ) effect. The tSZ results from

inverse Compton scattering of CMB photons with hot electrons, and the ampli-

tude of the effect — typically expressed in terms of the Compton y parameter —
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is directly sensitive to a line-of-sight integral of the ionized gas pressure [293].

However, because the tSZ effect is sensitive to the pressure of all ionized gas

along the line of sight to the last scattering surface, it is difficult to use the tSZ

by itself to probe the halo mass or redshift dependence of the halo gas pressure.

By cross-correlating y maps obtained from CMB observations with tracers

of large scale structure observed at low redshift, contributions to y from par-

ticular subsets of halos can be isolated. Such cross-correlations therefore en-

able measurement of the evolution of the pressure of ionized gas over cosmic

time [61, 145, 227, 228, 315].

The impact of feedback on halo pressure profiles is a function of halo mass

and redshift. At large halo mass, the energy released by feedback is small com-

pared to the gravitational potential energy of the halo, so the impact of feedback

is generally less pronounced; at low halo mass, the reverse is true. For low-mass

halos, feedback can push out a significant amount of gas from the halo, result-

ing in reduced pressure relative to expectations from self-similar models [184].

Feedback is also expected to generate significant non-thermal pressure support

in low-mass halos, lowering the temperature needed to maintain equilibrium.

Redshift evolution of the pressure profiles of halos is expected for several rea-

sons, including evolving non-thermal pressure support and the fact that at fixed

halo mass, halos at high redshift have deeper potential wells, making it more

difficult for feedback to expel gas [184].
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Here we consider the cross-correlation of the gravitational shearing of galaxy

shapes with maps of the tSZ effect. As we show below (and as was pointed out

previously by [24, 154, 225]), this correlation is predominantly sensitive to the

pressure profiles of halos with masses M200c ∼ 1014M⊙ and z ≲ 1.1 One of the

appealing features of the lensing-tSZ correlation is that — unlike the galaxy-tSZ

correlation — it can be modeled without needing to understand the galaxy-halo

connection. Several recent studies have measured the lensing-tSZ correlation

[?, ?, ?, ?, 225].

In this work and in a companion paper (citepaper1, hereafter paper I), we

present measurements and analysis of the correlation between lensing shear

measurements from Year 3 observations of the Dark Energy Survey (DES) and

tSZ measurements from the Atacama Cosmology Telescope (ACT) and Planck.

DES is a six-year optical and near-infrared galaxy survey of 5000 sq. deg. of the

southern sky.

ACT is a submillimeter telescope located in the Atacama desert that is cur-

rently performing the Advanced ACT survey. We use the data collected from

its ACTPol receiver during 2014 and 2015. We detect the correlation between

lensing and the tSZ at 21σ statistical significance, the highest signal to noise

measurement of this correlation to date.
1We use M∆c to represent the mass enclosed in a sphere centered on the halo with radius

chosen such that the mean enclosed density is ∆ρcrit(z), where ρcrit(z) is the critical density of the

Universe at the redshift of the halo.
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A companion paper, paper I, presents the cross-correlation measurements,

subjecting them to various systematic tests, and presents a comparison of the

measurements to predictions from hydrodynamical simulations. Here, we focus

on fitting the measurements with parameterized models to explore how the halo

pressure profiles vary as a function of halo mass and redshift. We present con-

straints on the parameters of these models and on the inferred relationship be-

tween halo mass and the integrated tSZ signal. Our constraints exhibit a depar-

ture from the expectations of self-similar models at low halo mass (M ≲ 1014M⊙),

consistent with expectations from the impact of feedback from AGN. We trans-

late our measurements into constraints on the so-called mass bias parameter,

finding a preference for its evolution with redshift. Such redshift evolution helps

to explain the mass bias values needed to reconcile cluster abundance measure-

ments with the cosmological model preferred by Planck [243]. Additionally, we

show that the impact of intrinsic alignments of galaxy shapes on the shear-tSZ

correlation — an effect that has been ignored in previous analyses — can be sig-

nificant, especially at low redshift.

The paper is organized as follows. In §5.2 we describe the shear-tSZ correla-

tion measurements and the various models we use to fit these; in §5.3 we describe

our methodology for fitting the data, including choices of parameter priors; we

present our results in §5.4 and conclude in §5.5.
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5.2 Measurements and Modeling

5.2.1 Measurements of the shear-y correlations

We analyze the cross-correlation between measurements of galaxy shear from

DES Y3 observations [125, 278] and Compton-y maps generated by ACT [196]

and Planck [9]. The details of the measurement process and tests of robustness

to various systematics are described in detail in paper I. We summarize below

the key aspects of the data and measurements relevant to the present analysis.

We use the shear catalog of the DES Y3 data as presented in [125]. The

shape catalog primarily uses the metacalibration algorithm and additionally

incorporates improvements in the PSF estimates [164] and improved astrometric

methods [278]. However, this pipeline does not capture the object blending ef-

fects and shear-dependent detection biases; hence image simulations are used to

calibrate this bias as detailed in [195]. This catalog consists of approximately 100

million galaxies with effective number density of neff = 5.6 galaxies per arcmin2

and an effective shape noise of σe = 0.26.

The source galaxy sample is divided into four tomographic bins with redshift

edges of the bins equal to [0.0, 0.358, 0.631, 0.872, 2.0]. The description of the to-

mographic bins of source samples and the methodology for calibrating their pho-

tometric redshift distributions are summarized in [219]. The redshift calibra-

tion methodology involves the use of self-organizing maps (SOMPZ) [219] which
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leverage additional photometric bands in the DES deep-field observations [137]

and the BALROG simulation software of [102] to characterize a mapping be-

tween color space and redshifts. The clustering redshift method is also used to

provide additional redshift information in [124]. That work uses the informa-

tion in the cross-correlation of the source galaxy sample with the spectroscopic

data from Baryon Acoustic Oscillation Survey (BOSS) and its extension (eBOSS).

Using a combination of SOMPZ and clustering redshifts, candidate source red-

shift distributions are drawn and provide us with the mean redshift distribution

of the source galaxies and uncertainty in this distribution.

We use two y maps in this analysis, one generated from a combination of

ACT and Planck data (described in [196]) and one using Planck data alone. For

simplicity, we refer to these as the ACT and Planck y-maps, respectively. We con-

struct the Planck Compton-y map using all the publicly available 2015 Planck

High Frequency Instrument (HFI) and Low Frequency Instrument (LFI) frequency

maps below 800 GHz [235, 241]. We use the map generated by the constrained

Needlet Internal Linear Combination (NILC) algorithm [83, 255], which esti-

mates the minimum variance Compton-y map as a linear combination of the

temperature maps while imposing a unit-response to the frequency dependence

of Compton-y and a null-response to the frequency dependence of Cosmic In-

frared Background (CIB). The measurements and analysis of the cross-correlations

of NILC y map with other large scale structure (LSS) tracers, as studied here,
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largely removes the leakage of foreground to the measurements. The details of

the implementation of this algorithm to obtain CIB de-projected y-maps used in

this work are presented in Appendix A of [228].

The ACT y-map covers only the D56 region, amounting to 456 square degrees

of overlap with the DES shear catalog, while the Planck y-map covers the full

sky. Owing to the higher resolution and sensitivity of the ACT y map, we only

use the Planck y-map over the region of the sky covered by DES, but not covered

by the ACT map.

We measure two-point correlations between the galaxy shears and Compton y

as a function of the angular separation of the two points being correlated. When

measuring the correlations, we consider only the component of the spin-2 shear

field orthogonal to the line connecting the two points being correlated, i.e., the

tangential shear γt. The y-γt correlation, which we represent with ξγt ,y(θ), is

expected to contain all of the physical signal while being robust to additive sys-

tematics in the shear field. An added advantage of this quantity is that it can be

computed using the shear field directly, without constructing a lensing conver-

gence map from the shear catalog.

The final tomographic measurements of ξγty using both the Planck and ACT

Compton-y maps are shown in Fig. 5.1. The correlation is detected at 21σ across

all bins. The shaded regions correspond to angular scales that are not included

in our fits (note that they are different for the Planck and ACT Compton-y map
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correlations). These scales are excluded in order to reduce the biases from the

non-linear intrinsic alignment of source galaxies and other effects at small scales

that we do not include in our model (see further discussion in §5.3).

5.2.2 Halo model for the shear-y correlations

Owing to decreasing signal-to-noise at very large angular scales and possible

large-scale systematics, we restrict our analysis to scales below 250 arcminutes.

For simplicity, then, we adopt a flat sky approximation. In this case, the two-

point angular correlation, ξγty(θ), between galaxy shears in tomographic bin i,

and Compton-y can be related to the angular cross-power spectrum, Cκy(ℓ), be-

tween the lensing convergence, κi , and Compton-y via:

ξ
ij
γty(θ) =

∫
dℓ ℓ
2π

J2(ℓθ)Cijκy(ℓ), (5.2.1)

where J2 is the second-order Bessel function. Here, j labels the y map (i.e. either

Planck or ACT), and i labels the redshift bin of the galaxy lensing measurements.

We model Cijκy(ℓ) using a halo-model framework. We will initially keep our

discussion quite general, as the same modeling framework can be used (with

small adjustments) to describe all of the cross-spectra needed to build our final

model. We use A and B to denote two tracers of the large scale structure, for

instance, lensing and Compton-y.

In the halo model [69], the cross-power between A and B can be written as

the sum of a one-halo term and a two-halo term. The one-halo term is given by
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Figure 5.1: Measurements of our observable, ξyγt , using the DES Y3 shear cata-

log split into four tomographic bins and Compton-y map from Planck and ACT

(see paper I for details). The shaded regions denote our scale cuts and are ex-

cluded in this analysis as they receive contributions from the cosmic infrared

background and higher-order intrinsic alignment than our fiducial model. The

light shaded region corresponds to the scale cuts for the Planck×DES, and the

dark region corresponds to the ACT×DES datavectors, respectively. We show the

total best-fit using solid lines for both the datavectors as well using the model de-

tailed in §5.2. This total best-fit is decomposed into 1-halo, 2-halo, and intrinsic

alignment (IA) correlations that are depicted using dashed, dot-dashed and dot-

ted lines respectively for ACT×DES datavector. Note that the Planck and the ACT

Compton-y maps have different beam sizes which impact the measurements in

the small scales and we forward model the impact of beam in our theory model.
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an integral over redshift (z) and halo mass (M):

C
ij
AB;1h(ℓ) =

∫ zmax

zmin

dz
dV
dzdΩ

∫ Mmax

Mmin

dM
dn
dM

ūiA(ℓ,M,z) ūjB(ℓ,M,z), (5.2.2)

where dV is the cosmological volume element, dΩ is the solid angle constructed

by that element and dn/dM is the halo mass function which we model using

the [301] fitting function. In the following sub-sections we will describe the

modeling of the multipole-space kernels, ūiA(ℓ,M,z) and ū
j
B(ℓ,M,z) of various

LSS tracers. In particular we describe in detail the modeling of the lensing pro-

file (through the convergence field, κ) and intrinsic alignment (I) for any to-

mographic bin i as well as Compton-y. We find that using Mmin = 1010M⊙/h,

Mmax = 1017M⊙/h, zmin = 10−2 and zmax = 3.0 ensure that the above integrals are

converged.

The two-halo term is given by:

C
ij
AB;2h(ℓ) =

∫ zmax

zmin

dz
dV
dzdΩ

biA(ℓ,z) bjB(ℓ,z) Plin(k,z), (5.2.3)

where Plin(k,z) is the linear matter power spectrum and k = (ℓ + 1/2)/χ. The

terms biA(ℓ,z) and bjB(ℓ,z) are the effective linear bias parameters describing the

clustering of tracers A and B respectively. In our case, there are three tracers of

interest: lensing, y, and intrinsic alignments. We describe our models for these

tracers in more detail below.
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5.2.3 Pressure profile models

The multipole-space kernel of Compton-y is related to the pressure profile of hot

electrons (Pe) as follows:

ū
j
y(ℓ,M,z) = bj(ℓ)

4πr200c

l2200c

σT
mec2

∫ xmax

xmin

dx x2 Pe(x|M,z)

× sin(ℓx/l200c)
ℓx/l200c

, (5.2.4)

where x = r/r200c, r is the radial distance; l200c = DA/r200c, DA is the angular

diameter distance to redshift z and r200c denotes the radius of the sphere hav-

ing total enclosed mean density equal to 200 times the critical density of the

universe [169]. The term bj(ℓ) = exp[−ℓ(ℓ + 1)σ2
j /2] captures the beam of exper-

iment j. Here σj = θFWHM
j /

√
8ln2 and we have θFWHM

1 = 10 arcmin for Planck

and θFWHM
2 = 1.6 arcmin for ACT Compton-y maps.2 We choose xmin = 10−3 and

xmax = 4, which ensures that the above integral captures the contribution to the

pressure from the extended profile of hot gas. We have verified that our conclu-

sions remain unchanged when lowering the value of xmax. We have also verified

that inclusion of the pixel window function of Compton-y maps has negligible

impact on the theory predictions as the scales analyzed to obtain our results here

are significantly larger compared to the pixel size of the maps.

2Note that the full ACT beams, including variations with observing seasons season and tele-

scope arrays have been taken into account when creating the Compton-y map as described

in [196], and only the final y-map is reconvolved with a simple Gaussian beam.
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The effective tSZ bias bjy is given by:

b
j
y(ℓ,z) =

∫ Mmax

Mmin

dM
dn
dM

ū
j
y(ℓ,M,z)blin(M,z), (5.2.5)

where blin is the linear bias of halos with mass M at redshift z which we model

using the [304] fitting function.

One of the aims of this analysis is to constrain the pressure profiles of halos

as a function of mass and redshift. We consider several possible pressure profile

models: one based on citealiasBattaglia:2012, a modified version of this profile

that allows for additional freedom to capture the impact of feedback in low-mass

halos, and the model from [16]. We describe each of these models in more detail

below.

Battaglia et al. 2012 profile model: For a fully ionized gas, the total electron

pressure P B12
e that contributes to the Compton-y signal is related to total thermal

pressure (P B12
th ) as:

P B12
e =

4− 2Y
8− 5Y

P B12
th , (5.2.6)

where Y is the primordial helium fraction that we fix to Y = 0.24. The total ther-

mal pressure profile in citealiasBattaglia:2012 is parametrized by a generalized

NFW form:

P B12
th (x|M,z) = P∆P̃0

(
x
x̃c

)γ̃ [
1 + (x/x̃c)

λ̃
]−β̃
, (5.2.7)

where

P∆ =
G∆M∆ρc(z)Ωb

2R∆Ωm
, (5.2.8)
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for any spherical overdensity, ∆, relative to the critical density, ρc, and we will

use ∆ = 200. Following citealiasBattaglia:2012, we fix λ̃ = 1.0 and γ̃ = −0.3.

For each of the parameters P̃0, x̃c and β̃, citealiasBattaglia:2012 adopts a scaling

relation with mass and redshift. This scaling relation is given by the following

form (shown here for the parameter P̃0):

P̃0(M200, z) = P0

(
M200c

M∗

)αm

(1 + z)αz , (5.2.9)

where P0 is the amplitude of the pressure profile at M200c = M∗ ≡ 1014M⊙/h and

z = 0, and αm and αz describe the scaling of the parameter P̃0 with mass and

redshift, respectively. Similar equations can be written down for the parameters

x̃c and β̃ (with their respective mass and redshift power-law indices). We have

experimented with changing the value of the break mass M∗, but find that our

results are not very sensitive to this choice. The pressure profile parameters that

are not varied are fixed to the values from Table 1 of citealiasBattaglia:2012.

Break model: The κ − y cross-correlations receive contributions from a very

wide range of halo masses (as shown in Fig. 5.2 and discussed in §5.2.6). At

low halo mass, the pressure profiles of halos may depart from the citealias-

Battaglia:2012 form as a result of, for example, baryonic feedback. We introduce

additional freedom into our model to allow for this possibility using the formal-
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ism described in [227]. We consider a modified version of the P B12
e profile:

P B12,break
e (r |M,z) =


P B12
e (r |M,z) , M ≥Mbreak

P B12
e (r |M,z)

(
M

Mbreak

)αbreak
m ,M <Mbreak

(5.2.10)

where we choose Mbreak = 2 × 1014M⊙/h and we will treat the power-law index

αbreak
m as a free parameter. The location of the break is motivated by the results

of simulations [184], which show a break in the self-similar scaling of integrated

y with mass at roughly this mass value.

Arnaud et al. profile model: We also test the [16] profile (denoted with

A10), which is another universal profile form where its parameters have been

calibrated using X-ray and tSZ observations of clusters. We note that the param-

eter values obtained by [16] are from an analysis of high mass and low redshift

clusters. The shear-y correlation will be sensitive to somewhat different halos.

Another crucial assumption adopted in the model of [16] is that the clusters are

in hydrostatic equilibrium (HSE), allowing for an estimate of HSE mass. How-

ever, significant non-thermal pressure support would violate this assumption.

Hence, the HSE mass can be different from the true mass of the halos. The rela-

tion between these two can by parameterized by a mass bias parameter B.
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The [16] profile is:

P A10
e (x|M,z) = 1.65(h/0.7)2eVcm−3

×E8/3(z)

 MSZ
500c

3× 1014(0.7/h)M⊙

2/3+αA10
p

pA10(x), (5.2.11)

where E(z) =H(z)/H0 and the generalized NFW profile pA10(x) is given by:

pA10(x) =
P A10

0 (0.7/h)3/2

(cA10
500 x)γA10

[
1 + (cA10

500 x)αA10
](βA10−γA10)/αA10 (5.2.12)

We adopt the best-fit values obtained from the analysis of the stacked pres-

sure profile of Planck tSZ clusters, P A10 = 6.41, cA10
500 = 1.81, αA10 = 1.33, βA10 =

4.13 and γA10 = 0.31 [7]. We also fix the parameter αA10
p = 0.12 as obtained

by [16] in their X-ray sample analysis. The mass obtained from the mass-pressure

relation in Eq. 5.2.11 is related to the true mass of halos by the mass bias pa-

rameter, B. We consider a model with a constant mass bias parameter, where

the true cluster mass M500c is related to the tSZ mass used in Eq. 5.2.11 by

MSZ
500c = M500c/B and r200c in Eq.5.2.4 is replaced by rSZ

200c = r200c/(B1/3). We refer

to this model as P A10c
e . We also test another model, P A10z

e , where the mass bias

evolves with redshift as:

B(z) = B(1 + z)ρB (5.2.13)

We treat B and ρB as free parameters in this model.
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5.2.4 Lensing model

The effective multipole-space kernel of convergence can be related to the dark-

matter kernel (um) as:

ūiκ(ℓ,M,z) =
W i
κ(z)
χ2 um(k,M), (5.2.14)

where k = (ℓ + 1/2)/χ, χ is the comoving distance to redshift z and W i
κ(z) is the

lensing efficiency which is given by:

W i
κ(z) =

3H2
0Ωm

2c2
χ
a(χ)

∫ ∞
χ
dχ′niκ(z(χ′))

dz
dχ′

χ′ −χ
χ′

. (5.2.15)

Here niκ is the normalized redshift distribution of the source galaxies corre-

sponding to the tomographic bin i (see [123]).

In order to model the matter multipole-space kernel we use the modeling

framework similar to the one described in [209], which is written as:

um(k,M) =
√

[1− e−(k/k∗)2]
1
ρ̄
M W (νηhmk,M), (5.2.16)

where, ν = δsc/σ (M) is the peak height, δsc is the collapse threshold calculated

from linear-theory and σ (M) is the standard-deviation of the linear density field

filtered on scale containing mass M. The exponential factor inside the square

root, depending on k∗, damps the one-halo term to prevent one-halo power from

rising above linear at the largest scales (c.f., [211]). The parameter ηhm bloats the

halo profiles, and we describe W (k,M) below.
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The halo window function, W (k,M), has an analytical form for an NFW pro-

file depending upon the halo concentration c [69]:

W (k,M)ψ(c) = [Ci(ks(1 + c))−Ci(ks)]cos(ks)

+ [Si(ks(1 + c))− Si(ks)]sin(ks)−
sin(cks)
ks(1 + c)

, (5.2.17)

where ψ(c) = ln(1 + c)− c/(1 + c), Si(x) and Ci(x) are the sine and cosine integrals,

ks = krv/c and rv is the halo virial radius. The halo concentration is calculated by

following the prescriptions of [49] using:

c(M,z) = Ahm
1 + zf

1 + z
, (5.2.18)

where Ahm is a free parameter. The formation redshift, zf, is then calculated

using via [249]:

g(zf)
g(z)

σ (ζM,z) = δc , (5.2.19)

where we fix ζ = 0.01 [49, 209] and g(z) is the growth function. We numerically

invert the equation (5.2.19) to find zf for a fixed M. Following the prescription

of [209], if zf < z, then we set c = Ahm.

For the two-halo term,

biκ(ℓ,z) =
W i
κ(z)
χ2

√[
1− f tanh2 (kσv/

√
f )

]
, (5.2.20)

where k = (ℓ + 1/2)/χ and we fix f = 0.188× σ4.29
8 (z) [209]. The parameter σv de-

noting the 1D displacement standard deviation of the matter particles in linear

theory is calculated via

σ2
v =

1
3

∫ ∞
0

Plin(k)
2π2 dk . (5.2.21)
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5.2.5 Intrinsic Alignment Model

The gravitational interaction of galaxies with the underlying dark matter field

leads to their coherent alignment, also known as intrinsic alignments (IA) (see

[308] for a recent review). Since the alignments of galaxy shapes can be related

to the underlying tidal field, intrinsic alignments can be described using per-

turbation theory [45, 152] or halo model [112, 272] frameworks. However, the

detailed mechanism of IA depends on galaxy samples, their redshifts, host halo

masses, and environments. The detailed modeling of IA, especially in one-halo

and one-to-two halo transition regime, is an area of active study using data and

simulations [126, 144, 166, 167, 198, 224, 265, 266, 283]. In this study, we model

the effects of IA on our observable using the well studied non-linear alignment

model (NLA) [45]. This model is an effective two-halo model of IA and can be

used to model the one-to-two halo transition scale and larger scales. We deter-

mine the scales over which this model is robust by comparing it to a halo model

of IA as described below. We expect the halo model to be a better description of

the small-scale intrinsic alignments, but it is computationally intensive to eval-

uate, and the specific analysis choices await future studies. Therefore, we deter-

mine the scales over which the NLA model of IA is a good approximation using

the procedure described below.

In the halo model framework, the multipole space profile of intrinsic align-
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ment is modeled as:

ūiI(ℓ,M,z) = fs(z)
niκ
χ2

dz
dχ

Ns(z,M)
n̄s(z)

|γ Is (k,z,M)|, (5.2.22)

where fs(z) is the satellite fraction, Ns(z,M) is the number of satellite galaxies in

halo of massM at redshift z, n̄s(z) =
∫
dM dn

dMNs(z,M) is the number density of the

satellite galaxies, and |γ I
s (k,z,M)| is the density weighted ellipticity of the satel-

lite galaxies. We assume that we are dominated by blue galaxies in our source

galaxy sample [265] and we model the satellite fraction, fs(z) as (see Fig. A1

of [112]):

fs(z) =


0.25− 0.2z , z < 1.0

0.05 , z > 1.0

We model the number of satellite galaxies as:

Ns(z,M) =
1
2

[
1 + erf

(
logM − logMmin

σlogM

)]
×
(
Mh

M1

)αg
(5.2.23)

where we fix logMmin = 11.57, σlogM = 0.17, logM1 = 12.75 and αg = 0.99. For

modeling |γ Is (k,z,M)|, we use Eq.16 of [112]. However, in order to be conservative

compared to the results of [112] (to account for differences between the DES

galaxies and their galaxy samples and modeling uncertainties), we use a large

value of the amplitude of one-halo IA term a1h = 0.003.

The effective bias for the two-halo term is given by:

biI(ℓ,z) = A(z)
niκ
χ2

dz
dχ
, (5.2.24)
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where the IA amplitude is modeled using a power-law scaling as:

A(z) = −AIA

(
1 + z
1 + z0

)ηIAC1ρm,0

D(z)
, (5.2.25)

and we set z0 = 0.62 and C1 = 5× 10−14M−1
⊙ h

−2Mpc3 [47].

We model the one-halo correlations between Compton-y and IA similar to

Eq. 5.2.2 with A = I and B = y. The two-halo term is modeled similar to Eq. 5.2.3,

but in order to describe the correlations on smaller non-linear scales, we use the

non-linear matter power-spectrum (PNL(k,z)) obtained from the halofit fitting

function. This model is hence similar to the non-linear alignment model (NLA)

as used previously in the calculation of the lensing cross-correlations:

C
ij
Iy;NLA(ℓ) =

∫ zmax

zmin

dz
dV
dzdΩ

biI(ℓ,z) b
j
y(ℓ,z) PNL(k,z). (5.2.26)

In order to mitigate systematic biases originating from complex inter-halo

dynamics that might violate our assumptions described above, we use NLA as

our fiducial intrinsic alignment model. We determine the scales that can be well

described with this model through simulated analysis as described in §5.3. We

compare theory ξγty datavectors with no IA contributions, full halo model IA,

ξ
ij
γty;HM, and NLA model IA, ξ ijγty;NLA (see §5.3.1 for details). Note that in order

to model halo exclusion and avoid double counting of non-linear information,

when predicting ξ ijγty;HM we truncate the two-halo contribution with a window

function f 2h−trunc = exp
[
− (k/k2h)2

]
, where k2h = 6h/Mpc [112].
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5.2.6 Final model for the shear-y correlations

The total model for the lensing-y correlation is given by Eq. 5.2.1, whereCiκy;model(ℓ)

is given by:

C
ij
κy;model(ℓ) = Ciκy;1h(ℓ) +Cijκy;2h(ℓ) +CijIy;NLA(ℓ) (5.2.27)

We model the photometric uncertainity in our source redshift distribution niκ(z)

using the shift parameters (∆ziκ) which modify the source redshift distributions

as [172]:

niκ(z)→ niκ(z −∆ziκ) (5.2.28)

We model the multiplicative shear calibration using:

ξ
ij
γty(θ)→ (1 +mi)ξ ijγty(θ) (5.2.29)

We treat the four shift parameters ∆ziκ and fourmi as free parameters and marginal-

ize over them with Gaussian priors (see Table 5.1).

In Fig. 5.2 we show the sensitivity of the measured correlations to halo mass

and redshift. We use the break model to model the pressure profile and the pa-

rameter values of the full model (along with reference equations) are detailed in

Table 5.1. We plot results for several θ values. Due to the 10 arcmin smooth-

ing applied to the Planck y-map, cross-correlations between this map and DES

are dominated by contribution from halos with M200c > 1014M⊙/h. The signifi-

cantly smaller beam of the ACT y-map (roughly 1.6 arcmin) means that cross-

correlations between the ACT y-map and DES probe much lower halo masses
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and higher redshifts.

Model Parameter Fiducial, Prior Equation

Common
Parameters

Intrinsic Alignment

AIA 0.5,U [−0.3,1.5] Eq. 5.2.25

ηIA 0.0,U [−3.0,4.0] Eq. 5.2.25

Dark Matter Profile

Ahm 2.32,U [0.1,5.0] Eq. 5.2.18

ηhm 0.76,U [0.1,1.0] Eq. 5.2.16

Shear Calibration

m1 0.0,G[−0.0063,0.0091] Eq. 5.2.29

m2 0.0,G[−0.0198,0.0078] Eq. 5.2.29

m3 0.0,G[−0.0241,0.0076] Eq. 5.2.29

m4 0.0,G[−0.0369,0.0076] Eq. 5.2.29

Source photo-z

∆z1
κ 0.0,G[0.0,0.018] Eq. 5.2.28

∆z2
κ 0.0,G[0.0,0.015] Eq. 5.2.28

∆z3
κ 0.0,G[0.0,0.011] Eq. 5.2.28

∆z4
κ 0.0,G[0.0,0.017] Eq. 5.2.28

Pressure Profile

Break Model
Pe ≡ P

B12,break
e

P0 18.1,U [2.0,40.0] Eq. 5.2.9

β 4.35,U [2.0,8.0] Eq. 5.2.9
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αz 0.758,U [−6.0,6.0] Eq. 5.2.9

αbreak
m 0.0,U [−2.0,2.0] Eq. 5.2.10

Mass Bias
Arnaud10
Model 1
Pe ≡ P A10c

e

B 1.4,U [0.9,2.8] Eq. 5.2.11

Mass Bias Redshift Evolution

Arnaud10
Model 2
Pe ≡ P A10z

e

B 1.4,U [0.9,2.8] Eq. 5.2.13

ρB 0.0,U [−3.0,3.0] Eq. 5.2.13

Table 5.1: The parameters varied in different models,

their prior range used (U [X,Y ] ≡ Uniform prior be-

tween X and Y ; G[µ,σ ] ≡ Gaussian prior with mean

µ and standard-deviation σ ) in this analysis and the

equations in the text where the parameter is primarily

used.

5.2.7 Covariance model

We measure the cross-correlations of the DES shears with the ACT y-map and the

Planck y-map. We leave a buffer region of approximately 6 degrees between the

two y-maps to minimize covariance between the two measurements and ignore
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covariance between these two measurements below. However, we do need to

model the covariance between different angular and redshift bins.

We model the covariance, �, of the shear and Compton-y cross-spectra as

a sum of Gaussian (�G) and non-Gaussian (�NG) terms. The multipole-space

Gaussian covariance is given by [155]:

�
G(Ci,jκ,y(ℓ1),Cl,jκ,y(ℓ2)) =

δℓ1ℓ2

f
(j)

sky(2ℓ1 + 1)∆ℓ1[
Ĉilκκ(ℓ1)Ĉjjyy(ℓ2) + Ĉijκy(ℓ1)Ĉljκy(ℓ2)

]
. (5.2.30)

Here, δℓ1ℓ2
is the Kronecker delta, f (1)

sky = 0.083 for Planck×DES and f (2)
sky = 0.0095

for ACT×DES are the effective sky coverage fractions; ∆ℓ1 is the size of the multi-

pole bin, and Ĉℓ is the total cross-spectrum between any pair of fields including

the noise contribution: Ĉℓ = Cℓ+Nℓ, whereNℓ is the noise power spectrum of the

field. For the lensing convergence, we assume

N i
κκ(ℓ) =

σ2
e,i

nieff
, (5.2.31)

where σ2
e,i is the ellipticity dispersion and nieff is the effective number density of

source galaxies, both in the ith source galaxy bin. For the y field, we replace

Ĉyy with the measured Compton-y auto-power spectrum, which captures all the

contributions from astrophysical and systematic sources of noise. We use the

NaMaster [11] algorithm to estimate this auto-power spectrum of both Planck

and ACT Compton-y maps after accounting for their respective masks.
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The non-Gaussian part can be written as

�
NG(Ci,jκ,y(ℓ1),Cl,jκ,y(ℓ2)) =

1

4πf (j)
sky

�
i,j;l,j
κy;κy(ℓ1ℓ2), (5.2.32)

where we model only the 1-halo part of the trispectrum � as that is expected to

be dominant for the large halo masses that we are sensitive to [66]. This term is

modeled as:

�
i,j;l,j
κy;κy(ℓ1ℓ2) =

∫
dz

dV
dzdΩ

dM
dn
dM

ūiκ(ℓ1)ūjy(ℓ1)ūlκ(ℓ2)ūjy(ℓ2). (5.2.33)

Finally, we convert the multipole-space estimates of covariance to angular

space using:

�(ξ ijγty(θ1),ξ ljγty(θ2)) =

1
4π2

∫
dℓ1

ℓ1

∫
dℓ2

ℓ2
ℓ2

1ℓ
2
2J2(ℓ1θ1)J2(ℓ2θ2)

×
[
�

G(Ci,jκ,y(ℓ1),Cl,jκ,y(ℓ2)) +�NG(Ci,jκ,y(ℓ1),Cl,jκ,y(ℓ2))
]

(5.2.34)

To evaluate these integrals, we use the fast-Fourier transform technique as de-

tailed in [107]. We estimate our fiducial covariance matrix at Planck cosmology

and fiducial parameter values as described in Table 5.1. The correlation matrix

corresponding to our fiducial covariance is presented in Appendix D.1. We refer

the reader to paper I for details on validation of the covariance using simulations

and jackknife procedure (this validated covariance is used in the data analysis of

both papers).

As described in [226] using the Compton-y auto-power spectrum, the trispec-

trum term (see Eq. 5.2.32, also referred to as connected non-Gaussian term, cNG)
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is the dominant contributor to the non-Gaussian covariance in Compton-y corre-

lations. The super-sample covariance makes a subdominant contribution in the

presence of cNG due to large Poisson number fluctuations of massive clusters,

and hence we ignore its contribution in this analysis (see [226] for details).

5.3 Data analysis

We do not expect our model to capture all physical effects over all angular scales.

For instance, we expect our fiducial intrinsic alignment model to break down at

small scales due to complex non-linear processes impacting the tidal field and

alignment of satellite galaxies. Even though we can remove the mean CIB con-

tamination in our Compton-y map using our constrained NILC methodology

described in §5.2.1, we expect other complex small-scale systematics like the

variations in the CIB spectral energy distribution (SED) across the sky to contam-

inate our estimated y-maps. We prevent these effects from biasing our results by

excluding those angular scales that are most impacted.

5.3.1 Impact of intrinsic alignments

A comparison of our shear-y models with the halo model of IA (ξγty;HM), our

fiducial NLA model (ξγty;NLA), and without any IA contribution is shown in

Fig. 5.3. We also show the estimated errorbars for Planck×DES and ACT×DES in

the figure, demonstrating our sensitivity to the IA model. Especially for the first
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two tomographic bins, we see that the impact of IA can be significant relative to

our errorbars. Note that we use the value of AIA = 0.5 for the NLA model which

is the mean of marginalized constraints obtained from DES-Y1 joint analysis of

galaxy clustering and weak lensing [3]. Apparently, shear-y correlations have

now reached the sensitivity where the impact of IA should be included for an

unbiased analysis; previous analyses of the shear-y correlation have ignored the

impact of IA.

In order to mitigate the biases originating from the high-order intrinsic align-

ment process, we estimate the scales where our fiducial NLA model is a good

approximation to a more complex halo model of IA (as described in §5.2.5). We

use the halo model framework as described in [112], but we expect the specific

parameter values of the model to be uncertain due to differences in the colors

and environment of the source galaxies as well as due to the impact of baryonic

physics, which was not modeled in their simulation-based study. Therefore, be-

ing conservative, we choose the values of the parameters describing the one-halo

IA profile as three times the constraints in [112]. The predicted theory curve

with this configuration is shown using blue color in Fig. 5.3.

We restrict our fits to those angular scales for which the difference between

our fiducial IA model and the halo-model model is small relative to our uncer-

tainties. In particular, we set a threshold total ∆χ2 = 1 between NLA and halo-

model simulated theory curves, and require that no single redshift bin contribute
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more than 1/Nbins to the total ∆χ2, where Nbins is the number of redshift bins in

the analysis measured for both ACT and Planck (i.e. Nbins = 8). For each tomo-

graphic cross-correlation ξ iγtyj ;NLA, we find the minimum angular separation that

satisfies our χ2 requirement and exclude data points at smaller separations. In

calculating this ∆χ2 per bin, �ij is the covariance matrix corresponding to that

specific tomographic bin and scales greater θijsc.

5.3.2 Impact of CIB

We also find that scales below 20 arcmin in the correlations between the last

tomographic bin of DES shear catalog and Planck y-map are impacted by the

leakage of CIB. Additionally, we also remove the scales below 7 arcmin for all

the tomographic bins of Planck×DES, due to the impact of the non-trivial struc-

ture of the DES Y3 mask in the Planck footprint on the small scales covariance

between Planck×DES (see paper I for details on the impact of CIB and covariance

validation). Note that, as the Planck Compton-y map has a beam of 10 arcmin,

the smaller scales are heavily correlated, and we do not lose any appreciable

signal-to-noise (see Fig. D.1). After the scale cuts, we are left with Ndata = 123

points in our final datavector.
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5.3.3 Bayesian analysis

We perform our analysis at fixed cosmology, but explore the impact of using a

different cosmological parameter choice on our results. Our baseline analysis

uses the best-fit flat ΛCDM model from [243], with Ωm = 0.315, σ8 = 0.811,

H0 = 67.4, Ωb = 0.0486 and ns = 0.965. We test the impact of changing the cos-

mological parameters Ωm and σ8, which are the parameters Compton-y correla-

tions are most sensitive to [146, 169]. To that end we use DES Year 1 constraints

obtained from the joint analysis of galaxy clustering and lensing, Ωm = 0.264

and σ8 = 0.807 [3].

We list the set of parameters we vary in Table 5.1 along with the priors used.

We use wide uninformative uniform priors on all the parameters except shear

calibration and source photo-z shift parameters. We refer the reader to [219]

and [195] for details on the estimation of priors on the shear calibration and

source photo-z shift parameters.

We assume the likelihood to be a multivariate Gaussian:

lnL(D|Θ) = −1
2

[
D⃗ − T⃗ (Θ)

]T
�
−1

[
D⃗ − T⃗ (Θ)

]
. (5.3.1)

Here D⃗ is the measured ξγty correlation datavector, with length Ndata, T⃗ is the

theoretical prediction for the cross-correlation at the parameter values given by

Θ, and �−1 is the inverse covariance matrix.
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We use Polychord [134] to draw samples from the posterior:

P (Θ|D) ∝ L(D|Θ)P(Θ) (5.3.2)

where P(Θ) are the priors on the parameters of our model. We use 128 live-

points as the settings of the Polychord sampler and set the length of the slice

sampling chain to produce a new sample as 30. Convergence is declared when

the total posterior mass inside the live points is 0.01 of the total calculated ev-

idence. We note that the common parameters in Table 5.1 and the likelihood

sampler settings are same between paper I and this paper.

5.4 Results

We now present the results of our analysis for the pressure profile models in-

troduced in §5.2.3: the break model and the [16] model. We first analyze our

measurements using the break model, obtaining the parameter constraints of this

generalized NFW model, inferring physical observables from these constraints

and comparing them with previous studies. Lastly, we present the constraints

on the hydrostatic mass bias parameter using the [16] model and compare with

previous studies.
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5.4.1 Break model

5.4.1.1 Parameter constraints

In Fig. 5.4 we show the residuals of our fit to the data using the break model as

described in §5.2.3. We also show the one-halo and two-halo contributions to the

total best-fit curve. Note that the contribution from the one-halo term extends

out to large angular scales. This behavior is because the lensing-y correlation is

sensitive to massive halos, and that γt is a non-local quantity, with γt at a scale

θ sensitive to the correlation function at scales below θ. Also note that for the

first two tomographic bins, the sum of the one-halo and two-halo contributions

is more than the total best-fit curve; this is a consequence of intrinsic alignments

in our best-fit model, which acts to suppress the correlation functions.

Our best fit yields a total χ2 = 150.2 with Ndata = 123 data points, which cor-

responds to a probability-to-exceed (PTE) of 0.033 after accounting for the num-

ber of constrained model variables. In order to estimate the total constrained

parameters, we compare the parameter constraints to the prior as described

in [252].3 The somewhat high value of χ2 appears to be driven at least partly

by the large-scale measurements of the shear-y correlation with ACT. Exclud-

ing scales above 100 arcmins for these measurements yields a PTE of 0.1. As

the D56 region that the ACT Compton-y map covers is near the galactic plane,

there could be additional sources of noise that are not modeled in our fiducial
3We use the publicly available tensiometer code at https://tensiometer.readthedocs.io/
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covariance. We also note that in the residuals shown in Fig. 5.4, we see some evi-

dence for departures from the model near the one-to-two halo transition regime.

We find slight preference for higher pressure at the transition scales, which is

particularly evident in top panels for Planck×DES. Our model for the shear-y

correlation ignores the impact of shocks, which have recently been shown to im-

pact the outskirts of stacked y profiles of galaxy clusters [26], and could there-

fore impact the shear-y correlation measurements in the one-to-two halo regime.

Additionally, the assumption used in this study that the linear halo bias model

describes the 2-halo correlations can be broken near the transition regime due to

non-linear effects of gravity. However, given that the PTE found in our fiducial

analysis is not very low, we do not pursue these possibilities further and leave

them to a future study.

In Fig. 5.5 we show the constraints on the pressure profile parameters of the

break model. The full constraints for this model at both Planck and DES-Y1 cos-

mologies on all the parameters (other than shear calibration and photo-z shift

parameters, as they are prior dominated) are shown in Fig. D.2 in Appendix D.2.

We find the constraints from analyzing the Planck-only and ACT correlations to

be consistent. The correlations with the Planck-only map have a higher total sig-

nal to noise owing to the larger area. Note, though, from Fig. 5.1 that the smaller

beam size of ACT equates to higher sensitivity to low mass and high-redshift

halos.
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Our results exhibit a strong degeneracy between P0 and β, making the marginal-

ized posterior on P0 very weak and the marginalized posterior on β somewhat

sensitive to our P0 prior. The redshift evolution parameter, αz, and the power-

law index below the break mass, αbreak
m , are weakly constrained when using both

the ACT and Planck maps. The dashed line in Fig. 5.5 indicates the parameter

values corresponding to the [22] model.

5.4.1.2 Inferred redshift and mass dependence of the pressure profiles

We can translate the model posterior from our fits to the shear-y correlation into

constraints on the relation between the integrated halo y signal and halo mass.

In Fig. 5.6 we show the Ỹ500 −M500 relationship inferred from the break model

fits, where Ỹ500 is given by:

Ỹ500(M,z) =
D2
A(z)

(500Mpc)2E2/3(z)
σT
mec2

∫ R500c

0
dr4πr2Pe(r |M,z)

D2
A(z)

, (5.4.1)

where E(z) is the dimensionless Hubble parameter. In order to obtain the blue-

shaded band in Fig. 5.6, we estimate the Ỹ500−M500 relationship for 2000 samples

from the posterior of the break model and estimate the 68% credible interval from

the resulting curves.

We compare the inferred Ỹ500 −M500 relationship from data to the predic-

tions from various hydro-dynamical simulations incorporating different feed-

back mechanisms. The OWLS REF and OWLS AGN curves correspond to the

cosmo-OverWhelmingly Large Simulation (cosmo-OWLS) simulations [183,205].
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OWLS REF includes the prescriptions for radiative cooling and supernovae feed-

back while OWLS AGN additionally includes the feedback from active AGN. The

Battaglia 12 curve is derived from the [22] model. This model also incorporates

prescriptions for feedback mechanisms from supernovae and AGN feedback, but

because it was calibrated at cluster-scale halo masses, we do not expect these ef-

fects to be captured correctly at low halo mass. We find that at higher masses, our

inferred constraints agree with all three predicted pressure profile models. How-

ever, we find evidence for a decline in Ỹ500 for halos with mass M < 1014M⊙/h

compared to predictions from [22] and the OWLS REF simulations. We find

that our constraints are in better agreement with OWLS AGN simulations. Note

that [145] also found similar results using the cross-correlation of galaxies with

y.

We also predict the evolution of the bias weighted average pressure of the

universe (⟨bPe⟩) from our Break Model constraints using:

⟨bPe⟩(z) = (1 + z)3
∫ ∞

0

dn
dM

b(M,z)ET(M,z)dM, (5.4.2)

where the total thermal energy of halo of mass M at redshift z is given by:

ET(M,z) =
∫ ∞

0
dr 4πr2Pe(r,M,z). (5.4.3)

Here Pe(r,M,z) are predicted using the samples from the posterior using Eq. 5.2.10.

The inferred constraints on ⟨bPe⟩ following above methodology is shown in the

blue band in Fig. 5.7. We compare our predictions to the previous studies that
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estimated ⟨bPe⟩ by analyzing cross-correlations between Compton-y and cluster

catalogs [315] or galaxy catalogs [61,170,228] . We find a good agreement in our

inference and previous studies at lower redshift with a mild deviation at higher

redshift. Note that at higher redshifts (z > 0.7), ⟨bPe⟩ receives a contribution from

lower-mass halos (see Fig. 1 of [228]) that our analysis is less sensitive to. We also

note that our inference assumes the validity of the halo model to even small mass

halos, and hence this methodology will miss the contribution in the filaments be-

tween large clusters. These caveats can qualitatively explain the mild deviation

between our inference and previous measurements at high redshift.

Next, we propagate our parameter constraints to the auto-power spectra of

Compton-y. The inferred constraints are shown using the blue band in Fig. 5.8.

We compare these predictions to the measurements from the Compton-y maps

from Planck [9] at larger scales. At smaller scales, we compare our inferences

with estimates from ACT [62] and the South Pole Telescope (SPT) Collabora-

tion [253] obtained from analyzing CMB data. We find that our inferences using

the break model is consistent with all the measurements. We also show the predic-

tion from the [22] model. While this simulation curve provides a good fit to the

Planck measurements, it over-predicts the auto-power spectrum at high multi-

poles that are dominated by high-redshift and low-mass halos. This figure high-

lights that inferences made using imminent higher significance measurements

of the shear-y cross-correlations, particularly in the small scales from ACT and
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SPT, will be crucial in establishing the consistency of the probe with Compton-y

auto-correlations and comparisons with simulations.

We now use our inferred model constraints to generate constraints on the

pressure profiles of halos as a function of mass and redshift. In Fig. 5.9 we show

our constraints on the total thermal energy of hot gas inside r200c:

E200c(M,z) = 4π
∫ r200c

0
dr r2 Pe(r,M,z), (5.4.4)

with similar predictions using the [22] model (labeled EB12
200c). We find good

agreement between our inferences and the simulation prediction for higher masses

and lower redshift halos. However we see a clear departure from simulation pre-

dictions in lower mass halos. We find our inferences on the ratio E200c/E
B12
200c are

discrepant from unity in the mass range 1013 < M200c(M⊙/h) < 2 × 1014 at 3.0σ ,

4.0σ and 5.4σ for z = 0.1,0.2 and 0.4 respectively (see the left panel of Fig. 5.9).

Similar conclusions were reached when extrapolating the tSZ analysis around

Sloan Digital Sky Survey (SDSS) galaxy samples to smaller radii (see [12, 268]).

However note that our sensitivity to the host halo masses and redshifts of the

relevant SDSS galaxies used by [12] is small. Moreover, they report excess pres-

sure compared to the predictions from the [22] model outside of the virial radius

of the halos. This behavior can occur due to ejection of hot gas from inside the

halos due to feedback processes, which can lower the pressure inside the halos

while raising it outside the virial radius.
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5.4.2 Mass bias constraints

As described in § 5.2.3, estimating the pressure profile of hot gas in halos gives

a handle on its mass estimation. This is typically done using the [16] profile

(see Eq. 5.2.11), assuming the hot gas exists in hydro-static equilibrium. How-

ever, several physical processes (e.g., the flow of gases in filaments) can violate

this assumption and bias the mass calibration. This bias is captured using a

mass bias parameter B and is typically studied in cluster mass scale halos. As

the shear-y cross-correlation is sensitive to these high-mass, cluster-scale halos

(see Fig. 5.2), we can infer the hydro-static mass bias from our measurements

and compare them with previous studies. Calibrating cluster masses is diffi-

cult, and some recent methodologies have lead to mild tension with the ΛCDM

cosmology obtained from primary CMB power spectra analysis from the Planck

Collaboration [5, 9, 39, 71, 138, 240, 333]. This uncertainty in cluster mass cali-

bration is the leading systematic in obtaining cosmology from cluster counts (see

e.g. [153,206,212,218,317]). The tSZ cross-correlation analysis studied here can

provide an independent handle on this calibration.

In Fig. 5.10, at Planck cosmology and with a model assuming a redshift inde-

pendent mass bias parameter, we obtain marginalized constraints of B = 1.8+0.1
−0.1,

which translates to large bHSE = (B−1)/B = 0.4+0.03
−0.04. In Fig. 5.11, we compare our

constraints obtained using shear-y cross-correlations (⟨γty⟩) with previous stud-

ies based on the combinations of various observables, like cluster abundance
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(Nc), Compton-y auto-power spectra (⟨yy⟩), Compton-y bispectra (⟨yyy⟩), shear-

2pt auto-correlations (γtγt) and cross-correlations between galaxy overdensity

and Compton-y (⟨gy⟩).

We find that our constraints on a redshift-independent mass-bias for the

Planck cosmology is consistent with previous analysis using tSZ cluster abun-

dances and Compton-y power spectra [9,41,42,240]. The cluster abundance and

Compton-y power spectra are largely sensitive to high mass halos which occupy

lower redshifts. While we do expect a non-zero mass bias due to non-thermal

pressure support of hot gas in halos, this mass bias value is large compared

to the predictions from hydrodynamical simulations [34] as well as analytical

calculations [281] (typically preferring bHSE ∈ [0.1,0.2]). Alternatively, this in-

consistency can also be cast into the σ8 parameter due to degeneracy between

B and σ8. Several low-redshift probes prefer a lower value of σ8 compared to

the constraints from primary CMB anisotropy analysis by Planck [3, 17, 143].

Hence lowering the value of preferred σ8 can result in a lower value of the

mass bias parameter. A previous study by [333] based on weak lensing based

mass calibration, sensitive to lower redshifts, has reported a lower value of the

mass bias as well as a lower value of σ8 = 0.76+0.04
−0.04 (see their paper for caveats

about priors on Compton-y scaling relations). Similarly other studies using weak

lensing based mass calibration and richness-based mass calibrations have also

reported a preference for lower mass bias [149, 150, 153, 212, 317]. For exam-
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ple, in a recent analysis detailing updated ACT cluster catalog, [150] estimated

bHSE = 0.31+0.07
−0.07 for clusters lying in the DES footprint with measured richness

and using richness-mass relation as described in [206].4 In a study by [158],

jointly analyzing Compton-y auto power spectra, bispectra and cluster abun-

dances has also reported a lower value of mass bias and σ8 = 0.79+0.02
−0.02 which

is still in mild tension with hydrodynamical and analytical estimates on B. In

Fig. 5.10 we also find a lower value of redshift independent Bwhen using DES-Y1

cosmological parameters which prefers a lower value of σ8 and Ωm (see §5.3.3).

This sensitivity of the mass bias parameter to cosmological parameters demands

a study jointly constraining cosmological parameters and pressure profiles of

halos. Note that the mass bias cannot be jointly constrained with cosmological

parameters from our observable (⟨γty⟩) alone due to a large degeneracy between

σ8 and B. We defer the joint analysis of our observable with other observables,

like shear-2pt auto-correlations to a future study.

As our source galaxy sample is divided into multiple redshift bins, we can

probe the change in mass bias parameter with redshift using our tomographic

datavector. While allowing for this redshift evolution, we obtain B = 1.5+0.3
−0.3 at

z = 0, which translates to bHSE = 0.34+0.1
−0.2 for the Planck cosmology. With this

model, the power-law index of the evolution of mass bias with redshift is found

4Note that this updated value of bHSE is obtained from ACT DR5 catalog documentation de-

tailed in https://lambda.gsfc.nasa.gov/product/act/actpol_dr5_szcluster_catalog_info.cfm and

differs slightly from the value published in [150].
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to be ρB = 0.8+0.8
−1.0. This model makes the mass bias estimate at low redshift

consistent with the estimates from previous studies using analytical calculation

and simulations mentioned above as well as from cross-correlation analysis with

other LSS tracers [61,170] and direct observations of clusters [97,286]. However,

a previous study by [148], analyzing cross-correlations between CMB lensing

and Compton-y, was sensitive to even higher redshift but reported a mass bias

consistent with unity. Note that [148] used a slightly different cosmology for

their analysis and probed the redshifts that are more impacted by the CIB con-

tamination and its appropriate mitigation strategy. Similarly, an earlier analysis

by [192] used shear-y correlations and obtained a lower mass bias value, but they

also used a slightly different cosmology and ignored the impact of CIB which we

find to be significant (see paper I). We also note that the galaxy cross-correlation

analysis of [61, 170] and qcut = 6 analysis of [259] are sensitive to lower mass

halos compared to our peak sensitivity (see Fig. 5.2). We defer a detailed anal-

ysis of the evolution of mass bias parameter with halo masses to a future study

(c.f. [21]). Although the model of redshift evolution of mass bias awaits future

data to obtain more precise constraints, this analysis shows how a redshift evo-

lution of sign and magnitude found here can resolve apparent tensions in the

inference of this quantity from different probes.
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5.5 Discussion

This is the second paper in a series of two on the analysis of the cross-correlation

between gravitational lensing shears from DES Y3 data and Compton-y measure-

ments from ACT and Planck. The total signal-to-noise of these measurements is

approximately 21, the highest significance measurement of the shear-y corre-

lation to date. The companion paper [123] presented the measurements and

systematic tests, and analyzed how well the data fit the feedback predictions

from hydrodynamical simulations. In this paper, we take an alternate approach,

varying the parameters describing the pressure profiles of halos in our fits to the

data.

The shear-y correlation is sensitive to the pressure profiles across a wide range

of halo mass and redshift. Our particular measurements are most sensitive to

the pressure within halos with masses of few × 1013M⊙ ≲ M ≲ 2 × 1015M⊙ and

redshifts z ≲ 0.8, as seen in Fig. 5.2. We fit the measured shear-y correlation

to constrain the redshift and halo mass-dependence of the pressure profiles of

dark matter halos. Our fits are performed at fixed cosmological parameters, but

we present results using both the best-fit Planck and best-fit DES-Y1 parame-

ters. Our main results do not depend on this choice, although our quantitative

conclusions are somewhat sensitive to the assumed cosmological model.

Our main findings are as follows:

• The shear-y correlation measurements are fit reasonably well by a halo
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model based on the pressure profile of [22], but which introduces addi-

tional freedom in the mass-dependence of the pressure profile for low-mass

(M < 1014M⊙) halos (Fig. 5.4)

• Our model fits prefer lower amplitude pressure profiles at low halo mass

(Fig. 5.6 and Fig. 5.9) and weakly prefer stronger redshift evolution than

predicted by the [22] model

• Our inference of the amplitude of the pressure profiles of low-mass halos is

consistent with predictions from hydrodynamical simulations that include

the impact of AGN feedback (Fig. 5.6)

• Our findings are generally consistent with measurements of the galaxy-y

correlation from [145] and [228], and constraints on the y autospectrum

from SPT and ACT.

• We infer the hydrostatic mass bias from our analysis, finding that its value

can change if redshift evolution is allowed (see Fig. 5.10), which can also

resolve the apparent tension between this quantity obtained from different

probes (see Fig. 5.11).

• We model the impact of intrinsic alignments on our analysis, finding it to

have a small but non-negligible impact. Previous analyses have ignored

this effect.
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The shear-y correlation provides a powerful probe of the thermal energy dis-

tribution throughout the Universe. This probe also bridges the gap in the halo-

mass sensitivity of galaxy-y correlations and Compton-y auto-correlations. Our

measurements suggest that the thermal energy in low-mass halos (M < 1014M⊙)

is suppressed relative to predictions that ignore the impact of AGN feedback.

These findings will be crucial in estimating the impact of baryonic physics on

cosmological analyses using the cosmic shear data from ongoing and future pho-

tometric surveys. We also expect inclusion of kinematic SZ (kSZ) effect and its

cross-correlations with tracers of the large scale structure to provide comple-

mentary constraints on the physics of feedback (see [12, 268]). We leave a joint

analysis of tSZ and kSZ effects and its cross-correlations with the shear field to a

future study.

Our findings suggest that we will be able to answer important and outstand-

ing questions related to the physics of hot gas and its cosmological implications

using the lower noise Compton-y maps covering a larger area from ongoing and

future CMB experiments. The imminent release of Compton-y maps from ongo-

ing high resolution surveys like ACT and SPT, as well as future experiments like

Simons Observatory5 and CMB-S46 would significantly decrease the statistical

uncertainty in small scales which are sensitive to smaller mass and higher red-

shift halos, and are therefore more sensitive to the feedback mechanisms. More-
5https://simonsobservatory.org/
6https://cmb-s4.org/
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over, availability of deeper and lower noise shear catalogs from DES in coming

years as well as larger scale surveys like the Euclid Space Telescope,7 the Dark

Energy Spectroscopic Instrument,8 the Nancy G. Roman Space Telescope,9 and

the Vera C. Rubin Observatory Legacy Survey of Space and Time10 will result in

a qualitative improvement in the shear-y correlation as a probe, advancing our

understanding of feedback physics.

7https://www.euclid-ec.org
8https://www.desi.lbl.gov
9https://roman.gsfc.nasa.gov

10https://www.lsst.org
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Figure 5.2: Sensitivity of the one-halo contribution to the shear-y correlation,

ξγty . We show the logarithmic derivative of the correlation with respect to halo

redshift (top) and halo mass (bottom). Note that no Compton-y map beam

smoothing is applied when producing these curves. The different columns rep-

resent the different redshift bins of the shear sample. To obtain this plot, we

use the break model of pressure profile (as described in §5.2.3) and the parameter

values of the full model are given in Table 5.1.
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ferent models of intrinsic alignment (IA), see § 5.2.5 for details. The quantity

∆ξγty is the difference relative to our fiducial model (NLA), and we normalize

all curves by this model. Note that due to the different beam sizes of the Planck

(top row) and ACT (bottom row) y-maps, the models for these two datasets are

different. The error-bars indicate the uncertainty on the model using the angular

binning applied in the data analysis. We see that in some cases, the difference

between the models that include IA and the model without IA can approach a

significant fraction of the uncertainty on the measurements. The gray regions

indicate the scale cuts used in our analysis (see § 5.3 for details). While deter-

mining these scale cuts, we impose the criteria that the difference in χ2 between

the predictions from the two IA models is less than 1/8 (where χ2 is computed

using the covariance used to analyze the data). This ensures that the total dif-

ference in χ2 across all bins is less than one. We restrict our analysis to scales

larger than this threshold to minimize the impact of uncertainty in the IA model

on our analysis.
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Figure 5.4: Residuals of the best-fit to the Planck ×DES (top) and ACT ×DES

(bottom) shear-y correlation measurements, using the break model of pressure

profile (see §5.2.3). Different columns represent the different redshift bins of

the lensed source galaxy sample. We show the contributions to the total best-fit

from 1-halo and 2-halo terms using blue dashed and brown dot-dashed curves

(see Eq. 5.2.27). We also compare with the predictions for shear-y correlations

when using preferred values of the pressure profile parameters from [22] fitting

function with magenta dotted line.

252



10 20 30

P0

0

1

α
b

re
ak

m

−4

0

4

α
z

4

6

β

4 6

β

−5 0 5

αz

−1 0 1

αbreak
m

ACT Only

Planck Only

ACT + Planck

Figure 5.5: Constraints on the pressure profile parameters from the break model

when using the Compton-y map from ACT only, Planck only and both. The gray

dashed lines indicate the preferred values of the parameters from [22] fitting

function.

253



1013 1014 1015

M500 (M�/h)

10−4

10−3

10−2

Ỹ
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Chapter 6

Outlook

In this thesis, we developed novel models to analyze the cross-correlations be-

tween various tracers of the LSS. Complex and poorly understood astrophysics

impacts our ability to constrain cosmological and astrophysical models from the

LSS. Two major sources of systematic errors tackled in this thesis are galaxy bias-

ing (non-linear mapping between dark matter and galaxies) and baryonic feed-

back (impact of supernovae or active galactic nuclei, AGN, on LSS):

• In Chapter 2 we describe and validate a hybrid galaxy biasing model aimed

at analyzing the correlations between galaxy positions and weak gravita-

tional lensing from photometric surveys. Using the 3D configuration space

correlations between galaxies and matter, we show that a two-parameter

hybrid perturbation theory model can describe correlation statistics from

current datasets.
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• In Chapter 3 we apply this model to recent data from the Dark Energy

Survey. We find that this model leads to a 20% gain in the cosmological

constraining power (compared to the linear bias model) by analyzing the

information from small scales. We also find a tantalizing signature of an

unresolved color-dependent photometric issue in the DES data, impacting

the cosmological inferences from the color-selected red galaxy sample. We

fix this issue by changing the selection criteria of red galaxies.

• In Chapter 4 we carry out high significance measurements of the correla-

tions between galaxies and pressure of hot gas in the Universe (as traced by

the thermal Sunyaev-Zel’dovich, tSZ effect). We use the large-scale mea-

surements of these correlations to infer the tomographic evolution of the

average thermal energy of the Universe, finding it to be consistent with

predictions from the hydrodynamical simulations.

• In Chapter 5 we use the to-date highest significance measurements of the

correlations between weak gravitational lensing and tSZ effect, where in

addition to Planck, we use the high-resolution tSZ map from the ACT tele-

scope as well. This correlation probes the pressure profile in the deep 1-

halo regime of lower mass halos, and we find a significant detection of

lower pressure inside lower mass halos. This points towards increased

baryonic feedback, pushing the hot gas out of the lower mass halos that

have lower gravitational potential well.

261



The results obtained in this thesis will be useful in pushing the cosmologi-

cal analysis from the current and next-generation LSS surveys to the non-linear

regime of small scales. Furthermore, the theoretical models and covariance

methodology would enable joint multi-probe analysis of multiple tracers of the

LSS. For example, a joint analysis of all the 2pt correlations constructed out of

weak lensing, galaxy positions, and SZ effects can self-calibrate and result in ro-

bust constraints on cosmological parameters while correctly marginalizing over

the unknown astrophysical parameters. Moreover, the models developed in this

thesis can be extended to describe the correlations beyond the 2pt statistics. For

instance, a hybrid perturbation theory framework can be used to analyze the

small-scale correlations in 3pt statistics between galaxies and weak gravitational

lensing maps from LSS and CMB surveys. Such a study would be very timely

to design the analysis choices of multiple upcoming survey telescopes in this

decade.
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Appendix A

Appendix for Chapter 2

A.1 Covariance of the data-vectors

The measurements of the correlation functions ξgg and ξgm are highly correlated

in the configuration space due to the mixing of modes. However, since the cor-

relation function ξmm is also impacted by similar mode-mixing, analyzing the

ratio of the correlation functions ξgg/ξmm and ξgm/ξmm makes the covariance

more diagonal. In the Fig. A.1 we compare the correlation matrix for ξgg and

ξgg/ξmm for the third tomographic bin for 20 radial bins ranging from 0.8-50

Mpc/h. We clearly see that analyzing the ratio gives us much better behaved

correlation matrix.

We generate the fiducial jackknife covariance from 300 patches distributed

over the simulation footprint. As the total area populated by both our galaxy
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sample is equal to one octant of the sky, changing the number of jackknife patches,

changes the size of each patch. In Fig.A.2, we compare the signal to noise esti-

mate when using a different number of patches. We see that the diagonal ele-

ments of the covariance are robust to changes in the number of patches. We have

also compared the changes in best-fit curves when using the covariance matrix

generated using a different number of patches. We get consistent reduced χ2 and

best-fit curves for z > 0.3. However, we find that we can not get a robust covari-

ance for the tomographic bin corresponding to z < 0.3 without sacrificing large

scale information (which is required to constrain the linear bias parameter). For

this reason, we only analyze the tomographic bins satisfying z > 0.3 and find that

with 300 patches, we can get a robust estimate of jackknife covariance.

A.2 Results with fitting ξgg and ξgm directly

As mentioned in the main text, we consider the ratios, ξgg/ξmm and ξgm/ξmm,

as our data-vector. This ratio is more sensitive to the galaxy-matter connection

than the correlation functions ξgg and ξgm themselves. However, when we try to

fit directly the correlation functions, ξgg and ξgm, our conclusions do not change.

The residuals of the ξgg and ξgm using our fiducial model are shown in Fig. A.3

for the third tomographic bin. We compare the residuals obtained when directly

fitting the correlation functions ξgg, ξgm with the results shown in the main text

obtained when fitting the ratios of the correlation functions, ξgg/ξmm,ξgm/ξmm.

264



1 5 10 15 20

Bin number

1

5

10

15

20

B
in

n
u

m
b

er

a) C(ξgg , ξgg)

1 5 10 15 20

Bin number

b) C(ξgg/ξmm, ξgg/ξmm)

0.2 0.4 0.6 0.8 1.0

correlation
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265



20

40

60

80

100

120

ξm
o
d
el

g
g

√
C
o
v

(ξ
m

o
d
el

g
g

,
ξm

o
d
el

g
g

)

0.3 < z < 0.450.3 < z < 0.450.3 < z < 0.45

3 5 10 20 40

R (Mpc/h)

50

100

150

200

ξm
o
d
el

g
m

√
C
o
v

(ξ
m

o
d
el

g
m

,
ξm

o
d
el

g
m

)

0.3 < z < 0.450.3 < z < 0.450.3 < z < 0.45

Njk = 500

Njk = 300

Njk = 180
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correlation function ratios has small cross-bin covariance (see Fig. A.1), we only

compare the diagonal value. The blue points (and solid) curve corresponds to

our fiducial choice of 300 as the number of jackknife patches used for covariance
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We find that our residuals are consistent with zero above the scales of 4Mpc/h

for both data-vectors.

A.3 Analyzing the 2D correlation function at fixed

cosmology

As described in the section §2.2.5 and Fig. 2.9, we convert the 3D statistics to

the projected statistics. However, we can also fit our perturbation theory models

directly to the measured projected statistics. Therefore, in this appendix, we fit

our fiducial model to the projected statistics w(θ) and γt in the four lens and

source tomographic bins. We refer the readers to [194] for the details about the

estimation of the projected statistics and the tomographic redshift distribution

of our bins.

The residuals of this model are shown in Fig. A.4 when using scales above

4Mpc/h. For the observable γt, we show the results for only the fourth source

bin and all four lens tomographic bin (since this has the highest signal to noise).

The fit has a reduced χ2 of 0.88. There are some points in the residuals that

are inconsistent with zero; however, as there is a significant correlation between

different radial bins, they do not impact the χ2 of the fit. The measured relation

between b2 and b1 from this model is shown in Fig. A.5. We also compare this

relationship with the one inferred from the 3D measurements and find them
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Figure A.3: Comparing the residuals when fitting the measured correlation func-

tions ξgg,ξgm directly and when fitting the ratio ξgg/ξmm,ξgm/ξmm for the second

tomographic bin. We use our fiducial model as our theory model in both cases.

We find the fits are consistent.
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consistent.

Hence, when fitting the measured projected correlation functions directly, we

also get a reduced χ2 consistent with one. These results motivate us to model the

correlations on the scales down to 4 Mpc/h in the DES Y3 cosmological analysis.

To determine the scale cuts for DES analysis with non-linear bias model, we will

study the cosmological parameter biases in a future study with the range of scale

cut choices motivated by this study.
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Figure A.4: Residual from joint fits to the measurements of the 2D statistics,

in four tomographic lens and source bins (see [194] for source n(z)), using our

fiducial model. The top row show the residuals for w(θ), and the bottom row for

γt, with the source redshift distribution taken as the fourth bin in the DES Y1

analysis. We use a scale cut of 4Mpc/h here and only fit the data-points outside

the grey region. The reduced χ2 including all the datapoints (total degrees of

freedom=342) above the scale cut is 0.88.
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Appendix B

Appendix for Chapter 3

B.1 Point mass marginalization

The point mass parameter (B) can also be expressed as residual mass bias, B =

δM/π where δM is approximately related to the difference between the model

and true estimate of halo mass below the scales of our model validity (rmin). More

accurately, δMhalo can be expressed in terms of galaxy-matter correlation as:

δM =
∫ rmin

0
drp(2πrp)

∫ ∞
−∞
dΠ∆ξgm

(√
r2
p +Π2, z

)
, (B.1.1)

where ∆ξgm = ξtrue
gm − ξmodel

gm .

In Fig. B.1 we compare the constraining power of 2×2pt and 3×2pt simulated

analysis at our fiducial scale cuts for different point mass parameter settings.

We generate a noiseless theory baseline datavector using the linear bias model

and the fiducial parameter values given in Table 3.1. In the blue and red filled
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contours, instead of analytically marginalizing over the point mass parameters,

we explicitly sample them when analyzing 2 × 2pt and 3 × 2pt datavectors re-

spectively. To test the impact of point mass marginalization on the constraining

power, we also show the constraints obtained after fixing the PM parameters to

their fiducial value of zero using unfilled contours. The black and green unfilled

contours show the constraints using 2× 2pt and 3× 2pt datavectors respectively.

We see that although point mass marginalization has a significant impact on the

constraining power of the 2 × 2pt analysis, it has a small impact on the 3 × 2pt

analysis. The main reason is that, due to extra constraints from cosmic shear, we

break the degeneracy between PM parameters and cosmological parameters, and

hence uncertainty in PM parameters do not dilute our cosmology constraints.

As PM marginalization degrades the constraining power of 2 × 2pt signifi-

cantly, it might be desirable to implement an informative prior on the PM pa-

rameters. However, motivating an astrophysical prior on the PM parameters is

not possible for our scale cuts as the majority of residual mass constraints are

contributed from the 2-halo regime, as shown in Fig. B.2. For simplicity, we as-

sume all our galaxies occupy the center of 2.5×1013M⊙/h mass halos. The input

“truth" curve in black solid line uses ξgm that is generated using the Navarro-

Frenk-White profile [220] in the 1-halo regime (r < 0.5 Mpc/h) and one–loop PT

in the 2-halo regime (r > 0.5 Mpc/h). Given this input halo mass, the halo model

framework predicts the effective large scale linear bias value [68]. The dashed
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blue curve is generated using a linear bias model, using a linear bias value that

is 1σ lower from this predicted value. Here σ is the uncertainity obtained from

2×2pt marginalized constraints on the galaxy bias for first tomographic bin. The

area between the two curves below some scale is equal to total δM as calculated

using Eq. B.1.1.

We show the contribution to δM separately for the 1-halo region (below the

red dashed line) and 2-halo regimes (up to the scales of 6Mpc/h, which are our

scale cuts for γt(θ)). We find that the 2-halo regime contributes significantly

more than the 1-halo region and the resulting δM value is significantly more

than the input halo mass of 2.5×1013M⊙/h. An informative prior would amount

to understanding the galaxy-matter correlation and its dependence on cosmol-

ogy and galaxy bias model from all scales below our scale cuts. Therefore we

choose an uninformative wide prior on the point mass parameters.

The baseline model parameterization assumes the point mass parameter to

be constant within each tomographic bin. We test this assumption implicitly in

the suite of Buzzard simulations. The datavector measured in N-body Buzzard

simulation will capture the effects of evolving point-mass parameters due to the

evolution of the galaxy-matter correlation within a lens tomographic bin. As we

have validated that our scale cuts pass our threshold criteria of bias in cosmo-

logical parameters being less than 0.3σ , we can conclude that the effect of point

mass parameter evolution is small. Here we also test this effect explicitly by
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Figure B.1: Effect of point mass marginalization on the constraining power of

2×2pt and 3×2pt. We see that the constraining power of 2×2pt degrades signif-

icantly with point mass marginalization, while for 3×2pt the change is minimal.

Including the shear-shear correlation breaks the degeneracy between point-mass

(we show PM for third bin, Mhalo[3]) and S8, leading to smaller sensitivity of

cosmology constraints on point mass constraints.
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Figure B.2: We show the contribution to the residual mass shown in Eq. B.1.1

from different radial regimes. We find a significant contribution from 2-halo

regime and therefore we cannot motivate an astrophysical informative prior on

the PM parameters, without putting an informative prior on cosmology as well.
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generating a simulated galaxy matter correlation function using the halo model.

We assume a constant HOD of the redMaGiC galaxies but include the evolution

of halo mass function and halo bias to predict the evolution of the galaxy-matter

correlation function. The contribution to the PM parameter due to this evolution

in each tomographic bin is given by Eq. B.1.1. In Fig. B.3, we show this contribu-

tion to each redshift bin by the black solid line. We compare this bias with the

expected level of uncertainty in the PM parameters by plotting the marginalized

constraints on these parameters as shown in Fig. B.1 for 2×2pt analyses. We see

that the uncertainty in PM parameters is significantly greater than the expected

bias.

B.2 Datavector residuals

We show the comparison between our measurements and best-fit theory datavec-

tor in Fig. B.4. We show the residuals between data and best-fit theory model

from both the fiducial model as well as with Xlens = 0.87 model . Using the

fiducial linear bias model scale cuts of (8,6) Mpc/h (that leaves 302 datapoints

in total), we find a minimum χ2 of 347.2 and 351.1 for the fiducial model and

Xlens = 0.87 model respectively.
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Figure B.4: The measurements of w(θ) and γt(θ) with redMaGiC sample are

shown with black dots. We show the best fit using the fiducial Linear bias model

in blue and model with Xlens = 0.87 in orange.
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B.3 Broad-χ2 sample

As detailed in the main text, we generate a new galaxy sample by relaxing the

selection criteria and selecting galaxies with goodness-of-fit χ2
RM = 8 to the red-

MaGiC template. This new sample is constructed to reduce the sensitivity of any

color-dependent photometric issue that might be present in the fiducial red-

MaGiC sample and causing Xlens < 1. After analyzing the 2 × 2pt datavector, we

do find that this sample prefers Xlens = 1 and results in S8 consistent with the

Maglim galaxy sample.

In Fig. B.5, we show the comparison of the lens number densities for the five

tomographic bins. We perform the calibration of these redshift distributions us-

ing cross-correlations with BOSS/eBOSS data using the same methods described

in [59]. The lens photo-z prior that we use are shown in Table. B.1. After down-

sampling the full catalog by a factor of 2, the number density (in the units of

arcmin−2) for this sample are ⟨ng⟩ = 0.027,0.04,0.07,0.03,0.03 for the five to-

mographic bins. We generate a non-Gaussian covariance corresponding to these

number densities. To mitigate the bias caused by wrong parameter values in-

put to theory covariance calculations, we recalculate the covariance matrix using

the best-fit parameters of an initial 2 × 2pt analysis and show the cosmological

constraints corresponding to this new covariance.

Using the best-fit parameter values obtained with the linear bias model, we

show the residuals in Fig. B.6. We find a best-fit χ2 of 353 for 302 datapoints,
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and both the w(θ) and γt measurements are fit well with a linear bias, ΛCDM

model. In Fig. B.7 we show the parameters constraints and compare them to the

ones obtained with the fiducial redMaGiC sample.

Parameter Prior

∆z1
g G[0.0088,0.0029]

σz1
g G[1.015,0.035]

∆z2
g G[−0.0033,0.0022]

σz2
g G[0.991,0.028]

∆z3
g G[0.0076,0.0029]

σz3
g G[1.096,0.029]

∆z4
g G[0.0015,0.0042]

σz4
g G[1.104,0.045]

∆z5
g G[−0.0058,0.0061]

σz5
g G[1.193,0.056]

Table B.1: The lens photo-z shift and stretch parameters varied in the analysis

using the broad-χ2 sample and their prior range used (G[µ,σ ] ≡ Gaussian prior

with mean µ and standard-deviation σ ).
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Figure B.8: This figure shows the marginalized constraints on the large-scale bias

of redMaGiC sample for the five tomographic bins on the left panel. The black

dots denote the mean, and the error bars correspond to 68% credible interval.

Using these constraints and co-moving number density (middle panel), we infer

the constraints on mean halo mass, as shown in the right panel for five tomo-

graphic bins. The red line and dots correspond to MCMC samples. We use the

Linear bias model with Xlens = 0.87.
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B.4 Halo mass inference

In this section we detail the methodology to infer the host halo mass of our red-

MaGiC lens galaxy sample from the constraints on galaxy bias parameters and

number density. We use the halo model framework to make this prediction and

parameterize the number of galaxies in a halo of mass M in tomographic bin j as

N
j
g(M) =N j

cen(M)+N j
sat(M) where N j

cen is the number of central galaxies and N j
sat

is the number of satellite galaxies. We parameterize these two components as:

N
j
cen =

f
j

cen

2

[
1 + erf

(
logM − (logMmin)j

(σlogM)j

)]
(B.4.1)

N
j
sat =

1
2

[
1 + erf

(
logM − (logMmin)j

(σlogM)j

)]
×
(
Mh

M
j
1

)αj
. (B.4.2)

Here we have five free parameters, f jcen, (logMmin)j , (σlogM)j , Mj
1 and αj , that

we marginalize over. We can predict the comoving number density (n(z)j) and

galaxy bias for a given tomographic bin j, bj1, from galaxy HOD as follows:

nj(z) =
∫ ∞

0
dM

dn
dM

N
j
g(M)

b
j
1 =

∫
dz
n
j
g(z)

nj(z)

∫ ∞
0
dM

dn
dM

N
j
g(M)bhalo

1 (M,z)

(B.4.3)

We use the [302] halo mass function (dn/dM) and the [305] relation for linear

halo bias (bhalo
1 (M,z)).

Therefore, Eqs. B.4.3 allow us to predict the number density and galaxy bias
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values. We then sample these HOD parameters to fit the datavector D⃗H =

nj(z1)...nj(zn),bj1,b
j
2] of length d where nj(z1)...nj(zn) are the n = d − 2 observed

comoving number density of redMaGiC galaxies as shown in middle panel of

Fig.B.8 and bj1 and bj2 are the marginalized mean bias values obtained at our fidu-

cial scale cut. For a given set of HOD parameters (ΘH), the theoretical prediction

is given by TH and we write our log-likelihood as:

lnL(D⃗H |Θ) = −1
2

[
(D⃗H − T⃗H (ΘH))CH−1 (D⃗H − T⃗H (ΘH))T

− ln(|CH |)
]

(B.4.4)

In order to account for variation of HOD within a tomographic bin that con-

tributes to the variation on nj(z) within each tomographic bin as seen in Fig.B.8,

we implement an analytical marginalization scheme. We change the covariance

of our datavector CH as :

CH → CH +αcID (B.4.5)

where ID is a diagonal matrix of dimension d×d whose diagonal elements equal

to 1 from index 1 to d-1, and equal to 0 otherwise. We sample over the parameter

αc, treating it as a free parameter.
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Appendix C

Appendix for Chapter 4

C.1 NILC pipeline

In this appendix we elaborate on the y map reconstruction pipeline. We follow

the pipeline exactly as used in Planck y map reconstruction with the freedom of

changing the frequency dependence of the component that gets unit response as

well as the number of components that get null response. The basic steps in the

reconstruction are as follows:

1. In the simulations, create the temperature maps by adding various relevant

component Healpix maps of simulations at a given value of NSIDE. In the

analysis using the Websky mocks and Sehgal simulations, we add the com-

ponents described in §4.3.3 with NSIDE of 1024 and in common units of

µKCMB. In data we are given the temperature maps which we convert to
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common NSIDE of 1024 and to units of µ KCMB using the factors given in

table 6 of [237]

Tν(θ) = aνy(θ) + b(1)
ν C(θ) + b(2)

ν S(θ) +nν(θ), (C.1.1)

where Tν(θ) is the temperature map at a given frequency ν at θ position in

sky, y(θ) is the Compton-y map with aν frequency scaling, C(θ) is the CIB

map (here we have assumed that it scales as b(1)
ν across whole sky which

may not be correct), S(θ) is the lensed CMB map and it scales as b(2)
ν and

nν(θ) denotes all other components combined. For data, we download the

publicly available temperature maps from the Planck collaboration 1. We

also apply the relevant masks as described in the main text on these tem-

perature maps before further processing .

2. Smooth all the temperature maps (Tν → Tν,s) with a Gaussian beam of

FWHM = 10 arcmin. We choose this beam size as the Compton-y map

by Planck Collaboration is also created with temperature maps smoothed

with 10 arcmin beam.

Tν,s = F −1(B(ℓ)×F (Tν)), (C.1.2)

where Tν,s are the smoothed temperature maps of frequency ν with gaus-

sian window of given FWHM (B(ℓ)). Here F denotes taking spherical har-

1pla.esac.esa.int/
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monic transform to convert Healpix maps to ℓ,m space and F −1 takes the

inverse fourier transform and converts back to map space.

3. Construct and save the spherical Fourier components, T ℓ,mf ,ν for each of

above smoothed temperature maps (f in the subscript denote the fourier

space quantity).

4. Use the 10 needlet band window functions (hi(ℓ)) provided by Planck Col-

laboration. These bands have the property that sum of square of all the

bands is equal to 1 for all ℓ. For each band, filter each frequency map with

the corresponding window function.

T̂ iν = F −1(hi(ℓ)× T ℓ,mf ,ν ) (C.1.3)

5. Calculate the weights for each frequency and needlet band corresponding

to the input constraints for generating y map. We always give unit response

to Compton-y, that means we always have
∑
νwνaν = 1 for each needlet

band i. Now, we experiment with either nulling one of the CIB signal and

the CMB signal (nulling both would degrade our signal to noise) or not

nulling any component. These weights are given by:

w⃗ =
(⃗b(i),TR−1b⃗(i))(R−1a⃗)− (⃗b(i),TR−1a⃗)(R−1b⃗(i))

(a⃗TR−1a⃗)(⃗b(i),TR−1b⃗(i))− (a⃗TR−1b⃗(i))2
, (C.1.4)

where i can be 1 or 2 corresponding to the case of unit-y-null-cib and

unit-y-null-cmb respectively. Here R is the covariance caluclated in a
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smaller patch of sky that is determined by the maximum ℓ of each needlet

band, number of frequencies and ilc-bias that we choose [82, 83, 254, 256].

We choose an ilc bias (bilc) value of 0.1%. This means that we need to cal-

culate covariance using approximately (N
i
ν−1
bilc

) pixels for any needlet band i,

which uses N i
ν channels for Compton-y estimation in any needlet band i.

6. For each needlet band, i, multiply the weights obtained for each frequency

with the needlet window filtered temperature maps. Now, sum all the re-

sultant maps to get the final map for the given needlet band i.

7. Now multiply the final map obtained for each band in previous step with

the corresponding needlet window function and sum the resultant maps

for all the bands. This gives us the estimated Compton-y map for given

sets of conditions and parameters.

C.2 Validation of y estimation on Websky mocks

As described in the text, the Sehgal CIB model is somewhat out of date, and is

not expected to perfectly capture dependence of the CIB on frequency, redshift,

and halo mass. Consequently, we also test our y estimation pipelines using the

Websky mocks.

We reconstruct Compton-y maps from the Websky mocks using the tempera-

ture maps corresponding to the frequencies less than 545GHz, as in our analysis
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of data. We cross-correlate the reconstructed maps with halos in the mass range

2 × 1013M⊙/h < Mh < 3 × 1013M⊙/h. The result of this cross-correlation for the

redshift bin 0.45 < z < 0.6 is shown in Fig. C.1. We see that Compton-y maps

obtained from various choices of reconstruction methods, as detailed in §4.4.4.1,

result in halo-y correlations that agree with each other as well as with the corre-

lations with the true y map. We find similar results for other redshift bins. As

noted in the main text, since we do not have simulated radio galaxies for the Web-

sky mocks, we rely mostly on the Sehgal simulations for validating our y analysis

choices.

C.3 Covariance and Multidimensional Parameter con-

straints

We show the estimated covariance and correlation matrices for the measure-

ments in Fig. C.2. As described in §4.4.2, we use a jackknife resampling ap-

proach to estimating the blocks of the covariance matrix involving the galaxy-

y cross-correlation. For the block involving only galaxy-galaxy clustering, we

use the theoretical covariance estimate from [173]. We also set to zero the cross

redshift-bin covariance for the blocks corresponding to cross-covariance between

galaxy-galaxy and galaxy-y.

The multidimensional parameter constraints on the galaxy bias and ⟨bPe⟩ pa-
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Figure C.1: Cross-correlation of reconstructed Compton-y with the halos in Web-

sky mocks for various reconstruction methods. We correlate halos satisfying

0.3 < z < 0.45 and 2×1013M⊙/h < Mh < 3×1013M⊙/h. The points labelled ‘input’

correspond to the true halo-y cross-correlation in the absence of any contami-

nation. The other points show the results of applying component separation to

simulated sky maps that include the CIB signal. In all cases, we use frequencies

100, 143, 217 and 343 GHz. We find that the choice of unit-y, null-CMB leads to

no significant bias in the inferred halo-y cross-correlation.
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rameters are shown in Fig. C.3 resulting from the MCMC analysis. The MCMC

is well converged, and there are no strong degeneracies between the parameters.
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Figure C.2: Top panel shows the log of the absolute value of the final covariance

matrix. Bottom panel shows the corresponding cross-correlation matrix
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Figure C.3: Multi-dimensional parameter constraints from the model fits to data.

First four parameters are galaxy bias for each of the four redshift bin used in this

analysis and next four are bias weighted pressure corresponding to same bins
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Appendix D

Appendix for Chapter 5

D.1 Covariance matrix

Our full model of theory covariance, including the Gaussian and non-Gaussian

terms is shown is Eq. 5.2.34. In paper I we validated the Gaussian part of our

total covariance using simulations. We have also compared it to the jackknife

covariance estimate which partly captures the non-Gaussian contribution to the

total covariance. Our total covariance includes the contribution from poisson

fluctuations of large clusters.

In Fig. D.1 we show the part of the correlation matrix using fourth source

tomographic bin. It clearly shows that due to large beam, the small scale angular

bins corresponding to θ < 10arcmin are more correlated in the Planck×DES part

of the matrix compared to ACT×DES.
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Figure D.1: Correlation matrix of ξγty using the fourth source bin and the two

Compton-y maps, binned into 20 radial bins from 2.5 to 250 arcmin.

D.2 Impact of assumed cosmological model on pa-

rameter constraints

We repeat our analysis adopting the best-fit cosmological parameters from [243]

and from the DES Year 1 analysis of [3]. The full posteriors for these two analyses

are shown in Fig. D.2. We find that our results are largely insensitive to the choice

of cosmological model.
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