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ABSTRACT

CAUSAL INFERENCE WITH TWO-STAGE LOGISTIC REGRESSION

-ACCURACY, PRECISION AND APPLICATION

Bing Cai

Thesis supervisors: Thomas R. Ten Have, MPH, Ph.D. and Dylan S. Small, Ph.D.

Two-stage predictor substitution (2SPS) and the two-stage residual inclusion

(2SRI) are two approaches to instrumental variable (IV) analysis. While 2SPS and

2SRI with linear models are well-studied methods of causal inference, the properties

of 2SPS and 2SRI for logistic binary outcomes have not been thoroughly studied. We

study the bias and variance properties of 2SPS and 2SRI for a logistic outcome model

so that we can apply these IV approaches to the causal inference of binary outcomes.

We also propose and implement an extension of generalized structure mean model

originally developed for a randomized trial. We first present closed form expressions

of asymptotic bias for the causal odds ratio from both 2SPS and 2SRI approaches.

Our closed form bias results show that the 2SPS logistic regression generates asymp-

totically biased estimates of this causal odds ratio when there is no unmeasured

confounding and that this bias increases with increasing unmeasured confounding.

The 2SRI logistic regression is asymptotically unbiased when there is no unmeasured

confounding, but when there is unmeasured confounding, there is bias and it increases

with increasing unmeasured confounding. In the second part, we propose the sand-

wich variance estimator of logistic regression of both 2SPS and 2SRI approaches and

the variance estimator is adjusted for the fact that the estimates from the first stage
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regression is included as covariates in the second stage regression. The simulation

results show that the adjusted estimates are consistent with the observed variance

while the naive estimates without the adjustments are biased. This study also shows

that the 2SRI method has a larger variance than the 2SPS method. Lastly, we com-

pare the 2SPS and 2SRI logistic regression with the generalized structure mean model

(GSMM). Our simulation results show that the GSMM is an unbiased estimator of

complier-average causal effect (CACE) and has the least variance among the three

approaches. We apply these three methods to the analysis of the GPRD database on

antidiabetic effect of bezafibrate.
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Chapter 1

Introduction

In randomize clinical trial, if there are non-compliers, the treatment effect es-

timated by comparing patients who take the study drug with patients who take

placebo or comparison medication is biased, because non-compliance may be associ-

ated with the outcome. The bias causing by some factors that are associated with

both treatment and outcome is called confounding. Intend-to-treat (ITT) analysis

which compares groups defined by the treatment assignment, instead of treatment

received, is unbiased, but it can only estimate effect of treatment assignment instead

of effect of treatment, even though the effect of treatment assignment is sometimes of

biologic and public health interest. In epidemiology research, confounding is bigger

issue than in clinical trial because there is no randomization, thus the confounding

bias may be caused by many observed or unobserved factors. For many studies, even

identifying potential confounding factors is difficult. For this reason, developing a

method to control different kinds of confounding is an important task in epidemiol-

ogy research. Traditional methods for controlling confounding bias include matching
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(1; 2), stratification, standardization and multivariate analysis. In the recent years,

new methods have been applied to epidemiology research, which include propen-

sity score methods (3; 4; 5), inverse probability of treatment weighting to estimate

marginal structure model (6; 7; 8; 9; 10), case-crossover design (11; 12; 13; 14), case

time-control design (15), self-controled case series method (16; 17), and instrumental

variable analysis. Among these novel methods, instrumental variable (IV) analysis is

a potentially important tool for controlling measured and unmeasured confounding

in both clinical trials and nonrandomized observational studies. The IV method has

been used in econometrics for many years as an important tool to address endogene-

ity, which means there is a correlation between the parameter or variable and the

error term (confounding is one reason for endogeneity). In recent years, this method

has been applied to clinical trials and epidemiology research. An IV is a variable that

meet the following three criteria: a) it is associated with treatment; b) it has no direct

causal effect on the outcome; and c) it is independent of all (unmeasured) confounders

of the treatment-outcome relationship. For randomized trials, the IV is a random-

ized treatment assignment, but for observational studies it needs to be a carefully

selected to meet the above assumptions. The IV approach is usually implemented

by two-stage regression, which includes two-stage predictor substitution (2SPS) and

two-stage residual inclusion (2SRI). Under the 2SPS approach, predicted treatment

from the first stage model replaces observed treatment as the principal covariate in

the second stage model relating outcome to treatment. Under the 2SRI method,

predicted and observed treatment are used to compute a residual that is included

as a covariate in the second stage model where the principal covariate is observed
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treatment. The IV analysis not only provides a tool for controlling measured and un-

measured confounding, but also has interpretability in causal inference. The causal

association of intervention and outcome can be qualitatively analyzed by graphical

models (18; 19), and more importantly, can be quantitatively analyzed by the coun-

terfactual or potential-outcome framework originating from Neyman and Fisher in

the early 20th century (20). Counterfactual or potential-outcome means what out-

come would be for an individual if this individual received different intervention. The

difference of this potential outcome for each individual represents the causal effect

of the intervention on outcome. In reality, this causal effect is difficult to identify

because for each individual, we can only observed one of the two or more potential

outcomes, unless there is some kind of study design under the specific assumption.

For instance, in the cross-over design of clinical trial, under the assumption that there

is no residual treatment effect and patients’ condition and response to the treatment

doesn’t change over time, the causal effect with this potential outcome framework

is identifiable. The case crossover design in epidemiology has the same virtue under

specific assumptions. For general clinical trials without noncompliance, the patients

in study treatment group and comparison group are ’exchangeable’, there is no fac-

tor associated with treatment. The treatment effect based on treatment received is

causal effect under the potential outcome framework, but it is not in the clinical trials

with non-compliance. To identify the causal treatment effect in a two-arm random-

ized trial with non-compliance, Angrist, Imbens and Rubin develop a causal model

with the following assumptions: 1) Stable unit treatment value assumption (SUTVA)

(71; 105), which means that potential outcomes for each person is unrelated to the
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treatment status of other individuals; this assumption also implies the consistency

assumption, which means that the potential outcome of a certain treatment will be

the same regardless of the treatment assignment mechanism (73); 2) Random as-

signment assumption, which means that the randomized assignment is unrelated to

all confounders in randomized clinical trials, or it is unrelated to the unmeasured

confounders (conditional on the measured confounders) of the treatment-outcome

relationship in non-randomized studies; 3) Exclusion restriction, which means that

any effect of treatment assignment on outcomes must be via an effect of treatment

assignment on treatment received; 4) Nonzero average causal effect of treatment as-

signment on treatment received, which means that the treatment assignment should

be associated with treatment received; and 5) Monotonicity, which means that there

is no one who would do the opposite of his/her treatment assignment regardless of

the actual assignment. They also classify patients into different strata based on the

potential treatment receive with different treatment assignment. For patients whose

potential treatment received is always the study treatment, they are called always-

takers; for patients whose potential treatment received is always consistent with the

treatment assignment, they are called compliers; for patients whose potential treat-

ment received is always placebo or non-treatment, they are called never-takers; for

patients whose potential treatment received is always opposite to the treatment as-

signment, they are called defiers. With the monotonicity assumption, there are no

defiers. Comparing Angrist-Imbens-Rubin’s model assumptions with the IV assump-

tion if we take randomized assignments as IV, we can see that nonzero average causal

effect of treatment assignment on treatment received makes the treatment assign-

4



ment meet the first IV criterion; exclusion restriction makes it meet the second IV

criterion and random assignment assumption makes it meet the third criterion. By

taking randomized treatment assignment as IV, they analytical proved that under

the five assumption mentioned above, the treatment effect estimated with 2SPS lin-

ear regression is the average causal effect of receiving treatment among compliers,

which is called the local average treatment effect (LATE) or the complier average

causal effect (CACE). With linear models, it was proved that other types of estima-

tors based on 2SRI or structural mean models estimated the same treatment effect,

thus they can be interpreted similarly (63; 62). Since the outcome of interest in clini-

cal trials and in non-randomized observation studies is often binary, the IV approach

has been extended in different ways for inference based on odds ratios from logistic

models, where the odds ratio is interpreted as the effect of treatment on outcome

in compliers. Terza et al.(21) extended the two-stage IV approach for non-linear

models including logistic regression model (two stage predictor substitution (2SPS)),

where the predictor of treatment as a function of the instrumental variable replaces

observed treatment in the treatment-outcome model. The two stage logistic regres-

sion IV approach has been applied to observational studies and compared with other

method such as probit structural equation model and a generalized method of mo-

ment (GMM) instrumental variable approach(22; 69). Alternatively, Nagelkerke et

al.(70) and Terza et al.(23) offered an approach where the treatment-outcome model

includes a residual term from the treatment-instrumental variable model (two stage

residual inclusion (2SRI)). While the 2SRI procedure is equivalent to the 2SPS ap-

proach under the linear model, this is not the case under the logistic model. Terza(23)
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showed analytical and simulation-based differences under a true model where it was

assumed the true confounders could be observed. Rassen at al.(22) compared the 2

stage logistic regression approach in the context of specific data analysis with other

approaches, but they did not do a formal evaluation of these methods theoretically or

with simulations, as their comparisons were based on feasibility of implementation.

The 2SPS procedure was also used in binary regression measurement error models

(24; 25; 26) and an approach similar to 2SRI was used for adjusting for bias and

unmeasured confounding in Mendelian randomization studies with binary responses

(27; 28). Using the Bayesian logistic model estimated with Markov-Chain Monte

Carlo techniques, Hirano et al. (29) estimated the log odds ratio for treatment on

outcome in the compliers. Using an approach similar to the IV procedure, Goetghe-

beur et al.(65; 30; 96), Vanstellandt et al.(66), Robins and Rotnitzky (68) and Ten

Have et al.(67) extended the structural mean model (SMM) for continuous outcomes

in different ways to binary outcomes under logistic regression. These semi-parametric

approaches estimate the same effect of treatment on outcome as do the IV approaches,

but employ different estimation techniques involving estimating equations. Robins

and Rotnitzky (68) proposed a multi-stage approach including an estimation step for

the prediction of treatment as a function of the IV. Vansteelandt and Goetghebeur

(66) offered a two-stage approach where the first stage models the association of out-

come on exposure or treatment only among those with the treatment level of the IV

and the causal effect is only among those who actually take the treatment. Ten Have

et al.(67) presented an iteratively reweighted approach based on estimation under a

linear structural mean model. Whereas the approaches by Vansteelandt and Goet-
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ghebeur (66), Robins and Rotnitzky (68) are not biased if the association model is

specified correctly, the other structural mean model approaches are biased in general

at least away from the null association with the bias increasing with the magnitude

of confounding. Our research question in the first part of the dissertation is whether

the two-stage logistic regression, either of 2SPS or 2SRI, has the interpretation causal

log odds ratio of complier average causal effect. In other words, our study objective

is to analyze the bias of IV methods of two-stage logistic regression as an estimator of

causal log odd ratio. For this purpose, we set up the parameter according to the prin-

cipal stratification framework and focus on evaluating analytically and empirically

with simulations the bias of the 2SPS and 2SRI approaches following the results of

Angrist et al. (43) for the additive model. Terza et al. (23) assessed the bias of these

two approaches but with respect to a different treatment effect (conditional on the

true confounder). There is a need for evaluation in terms of the effect of treatment

in compliers, which is the focus of much of the IV literature on the clinical trials

(43; 32; 33; 47; 49). To apply the 2SPS and 2SRI to the causal inference of binary

outcomes, we not only need to evaluate the performance of the point estimates, but

also need to develop methods to correctly estimate variance of the estimates. For

the linear two stage methods, the naive variance estimate obtained with ordinary

least squares under the second stage regression model of treatment on outcome is

not correct, since it does not adjust for the variability of the predicted treatment

as a covariate in this model. The variance estimator for the 2SPS IV estimator is

based on a heteroskedasticity-robust or sandwich estimator of variance involving cross

products of the predicted treatment vector and a scalar dispersion factor based on

7



the observed treatment factor (34). For the 2SRI approach, we have not found any

published research on the variance estimator, but the estimate needs to be adjusted

in a similar way, as the 2SRI and 2SPS approaches yield the same estimate of treat-

ment effect for the linear case (35). In the second part of my dissertation, we will

derive the sandwich variance estimator for the for the two-stage logistic regression

using a similar approach described by Wooldridge (34) to account for the fact that

the second stage model include parameters estimates obtained from the first stage.

This approach was also used by Zeger and Liang to get asymptotically unbinased

variance estimators of generalized estimate equation model (GEE) for longitudinal

data analysis (89; 90). We will also do simulations to compare the naive variance

estimate and our adjusted estimates with the observed variance of estimates of the

treatment effect. We will also compare variance, mean standard error (MSE) and

95% confidence interval coverage of 2SPS and 2SRI by simulation. In the third part

of my dissertation, we will compare both 2SPS and 2SRI logistic regression with the

generalized structure mean mode (GSMM) proposed by Vansteelandt and Geotghe-

beur as an extension of the structure mean model (SMM) (96; 68; 97; 104) to the

logistic regression for binary outcomes under the randomized clinical trial (RCT) set-

ting when patients assigned to the placebo group can not access the study treatment.

In order to apply GSMM to observational study, we first modified the R program so

that the GSMM IV method is extended from the RCT setting to observation studies

when the placebo group can access the study treatment. Then we can use this pro-

gram to perform simulations to evaluated performance of SMM IV method under the

principal stratification framework. Flory et al did a retrospective cohort study using

8



the General Practice Research Database (GPRD) to compare instance of diabetes

between bezafibrate users and other fibrate users. Their results suggest a significant

protective effect of bezafibrate against diabetes (95). As the last part of my disserta-

tion, we will apply different IV approaches to the analysis of the same data to test if

there is further evidence of causal effect of bezafibrate against diabetes.
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Chapter 2

Bias of Causal Inference for the

Odds Ratio Using Two-Stage

Instrumental Variable Methods

2.1 Introduction

Instrumental variable (IV) methods are used to estimate effects of receiving treat-

ment or exposure to risk factor on outcome when there is unmeasured confounding in

medical research, such as in clinical trials under non-adherence to treatment (40) or

observational studies (41; 42). We present closed form expressions of asymptotic bias

for the causal odds ratio from two-stage logistic regressions, which is an extension of

the conventional IV method for continuous outcomes to a binary outcome.

In the following discussion, we use ”treatment” to represent either treatment re-

ceived or exposure to a risk factor. An IV has the following properties: a) it is

10



associated with treatment; b) it has no direct causal effect on the outcome; and c)

it is independent of all (unmeasured) confounders of the treatment-outcome relation-

ship (41; 43; 45; 46). Note that in randomized trials, the randomized treatment

assignment IV is independent of all confounders because it is randomized. In an

observational study, the IV could be associated with measured confounders as long

as it is independent of all unmeasured confounders of the treatment-outcome rela-

tionship conditional on the measured confounders, and the measured confounders

are controlled for in the analysis (45). Under these conditions, IV analysis of the

treatment-outcome relationship controls for measured and unmeasured confounding

(43; 47; 48; 49).

In the context of randomized trials, the IV analysis has been used to adjust for all

measured and unmeasured confounding due to treatment non-compliance when esti-

mating the effect of actually receiving treatment. Such confounding factors impact

outcome while causing treatment non-compliance or switching from one treatment to

another. While intent-to-treat (ITT) inference comparing randomized groups but ig-

noring treatment non-compliance is protected against such unmeasured confounding,

this inference pertains to the effect of prescribing or assigning treatment in the popu-

lation with the same rate and pattern of non-compliance in the particular trial. Using

randomized treatment as an IV, IV inference for the effect of receiving treatment is

not dependent on the rate of compliance in the trial except that lower compliance

leads to higher variability (50). This IV inference aims to estimate the effect of ac-

tually receiving treatment, which is useful for individual patient decisions and for

predicting the effect of making the treatment available to populations in which the
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rate of compliance might differ from the trial (51; 52).

Besides clinical trials, IV methods are used in observational studies, such as data-

based evaluations of the effect of medication on clinical or adverse outcomes. IVs

such as physician’s prescribing preference (101; 54; 55; 111; 57), clinic or hospital

(58),or geographic region (59; 93; 61) have been used to adjust for confounders of the

intervention-outcome relationship.

For the additive effect of treatment, Angrist, Imbens and Rubin (43) considered

five assumptions for a setting with a proposed IV that are explained in detail in

Section 2. Briefly, the key assumptions are that the proposed IV is associated with

treatment, is independent of unmeasured confounders given the measured confounders

and that the IV only affects outcome through treatment received and there are no

defiers. With these assumptions, they used principal stratification (44) to motivate

interpretation of the IV estimand. Under the principal stratification framework, the

population is divided into sub-classes based on potential treatment receipt that would

occur under each level of the instrument variable. In the context of randomized trials

with non-compliance, the principal strata are defined as compliers, who adhere to

the assignment of treatment but do not take it when not assigned to it; always-

takers and never-takers, who respectively always or never take treatment regardless

of assignment; and defiers, who only take treatment when not assigned to it. They

proved that the probability limit of the two-stage least squares estimator, the usual

IV estimator, is the average causal effect of receiving treatment among compliers,

which is called the local average treatment effect (LATE) or the complier average

causal effect (CACE). Under certain no-interaction assumptions, this effect pertains
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to other sub-groups including anyone who takes the treatment or all patients. The

estimands for other types of estimators based on structural mean models can be

interpreted similarly (62; 63).

For binary outcomes, the IV approach has been extended in different ways for

inference based on odds ratios under logistic models, where the odds ratio is inter-

preted as the effect of treatment on outcome in compliers. Those approaches include

the Bayesian logistic model estimated with Markov-Chain Monte Carlo techniques

(64), the structural mean model (SMM) (65; 66; 67), and a multi-stage approach

including an estimation step for the prediction of treatment as a function of the IV

(68).

Terza et al. (39) extended the two-stage IV approach for non-linear models in-

cluding the logistic regression model (two-stage predictor substitution (2SPS)), where

the predictor of treatment as a function of the instrumental variable replaces observed

treatment in the treatment-outcome model. This two-stage logistic regression IV ap-

proach was applied to observational studies and compared with other IV methods

such as the probit structural equation model and a generalized method of moment

(GMM) IV approach (69). Alternatively, Nagelkerke et al. (70) and Terza et al. (39)

offered an approach where the treatment-outcome model includes a residual term from

the treatment-instrumental variable model (two-stage residual inclusion (2SRI)). The

2SRI procedure is equivalent to the 2SPS approach under the linear model, but this

is not the case under the logistic model. Terza (39) showed analytical and simulation-

based differences under a true model for the causal effect of treatment conditional on

the unmeasured confounder.
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Give the focus of much of the clinical trials literature on the causal effect of

treatment in compliers, there is a need for assessment of the 2SPS and 2SRI two-

stage logistic estimators with respect to this causal effect. To achieve this goal, we

present analytical and simulation results for the bias of these two estimators under

a causal logistic model expressed in terms of potential outcomes under the principal

stratification framework, following the results of Angrist et al. (43) for the additive

model. We also confirm our analytic result with simulations, and the simulations

further reveal patterns of bias for different ranges of confoundings. Our bias evaluation

is for a different context from that of Terza et al. (39), who focused on the causal odds

ratio in the total population conditional on the unmeasured confounder, whereas we

focus on the causal odds ratio among compliers.

2.2 Assumption and Notation

We have the same five assumptions as Angrist, Imbens and Rubin stated in their

causal model (43): 1) Stable unit treatment value assumption (SUTVA) (71; 105),

which means that potential outcomes for each person is unrelated to the treatment

status of other individuals; this assumption also implies the consistency assump-

tion, which means the potential outcome of a certain treatment will be the same

regardless of the treatment assignment mechanism (73); 2) Random assignment as-

sumption, which means that the IV is unrelated, as the randomized assignment, to

all confounders in the randomized clinical trials, or it is unrelated to the unmeasured

confounders (conditional on the measured confounders) of the treatment-outcome re-
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lationship in observational studies; 3) Exclusion restriction, which means that any

effect of treatment assignment on outcomes must be via an effect of treatment assign-

ment on treatment received; 4) Nonzero average causal effect of treatment assignment

on treatment received, which means that the treatment assignment should be associ-

ated with treatment received; and 5) Monotonicity, which means that there is no one

who would do the opposite of his/her treatment assignment regardless of the actual

assignment.

With the above five assumptions, we first define R and Z as the treatment as-

signment and treatment received variables, respectively. First, R=1 denotes that a

patient is assigned to the study treatment, and R=0 means a patient is assigned to

the other treatment (or non-treatment), thus R is the IV. Similarly, Z=1 means that

a patient receives the study treatment, and Z=0 means that a patient receives the

other treatment (or non-treatment). Additionally, Y (1) and Y (0) are the variables for

potential outcomes. Y (1) indicates what the outcome for a patient would be if this

patient were to take the study treatment, and Y (0) indicates what the outcome for

this patient would be if he/she were to take the other treatment (or non-treatment).

In contrast, Y is the observed outcome. Similarly, Z(1) and Z(0) are the variables

for potential treatment. Z(1) indicates what treatment a patient would take if this

patient were assigned to the study treatment, and Z(0) indicates what treatment this

patient would take if he/she were assigned to the other treatment (or non-treatment).

Based on the principal stratification and potential outcome framework, patients are

defined as always-takers (AT) if Z(1) = 1 and Z(0) = 1; compliers (C) if Z(1) = 1 and

Z(0) = 0; never-takers (NT) if Z(1) = 0 and Z(0) = 0; and defiers (DF) if Z(1) = 0 and
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Z(0) = 1.

Accordingly, we define the following parameters in the principal stratification

framework:

ω1
A = Pr

(
Y (1) = 1|AT

)
,

ω1
C = Pr

(
Y (1) = 1|C

)
,

ω1
N = Pr

(
Y (1) = 1|NT

)
,

ω0
A = Pr

(
Y (0) = 1|AT

)
,

ω0
C = Pr

(
Y (0) = 1|C

)
,

ω0
N = Pr

(
Y (0) = 1|NT

)
,

r = Pr (R = 1) ,

ρA = Pr(AT ),

ρC = Pr(C).

With our monotonicity assumption, there are no defiers (43), i.e., Pr(DF ) = 0.

Hence,

Pr(NT ) = ρN = 1− ρA − ρC .

The causal log odds ratio for compliers is parameterized as:

ψ = logit
[
Pr

(
Y (1) = 1|C

)]
− logit

[
Pr

(
Y (0) = 1|C

)]
= logit

(
ω1

C

)
− logit

(
ω0

C

)
.

The parameter ψ is the log of the odds ratio that compares the probability of a

successful outcome if all compliers received the study treatment compared to if all

compliers received the other treatment (or no treatment).
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2.3 Bias of Two-Stage Predictor Substitution (2SPS)

In this section, we derive a closed form expression for the probability limit of

the two-stage 2SPS logistic regression estimator based on the principal stratification

framework and assumptions. We can then obtain closed form expressions for the

bias, which is the difference between the expected value of the two-stage regression

estimator and the causal log odds ratio.

2.3.1 Probability limit of the estimator

The first stage regression is the treatment received on the treatment assignment R

as the IV. Let D = E(Z|R) and D̂ be an estimator of D (e.g., maximum likelihood)

such that D̂ converges in probability toD, D̂ = Ê(Z|R). Two-stage logistic regression

estimates the causal log odds ratio with the coefficient for D̂ in the logistic regression

of Y on D̂. Let ξ̂ be an estimator (e.g., maximum likelihood) of the log odds ratio

for D in the logistic regression of Y on D, and let ξ̂
∗

be the estimator of the log odds

ratio for D̂ in the logistic regression of Y on D̂(i.e., the two-stage 2SPS estimator).

As the sample size gets larger, D̂ −→ D and |ξ̂∗ − ξ̂| p−→ 0 (74; 75), i.e., ξ̂
∗

converges

in probability to ξ under the true model conditional on D, which is P (Y = 1|D) =

expit(η + ξD). We now find an expression for ξ as a function of the log odds ratio

for treatment received among compliers under the principal stratification framework.

When R=0, only always-takers will receive the treatment; when R=1, both always-

takers and compliers will get the treatment. It follows that:

d0 = E(Z|R = 0) = ρA (2.3.1)
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and

d1 = E(Z|R = 1) = ρA + ρC . (2.3.2)

Then for the second stage logistic regression we have:

logitPr (Y = 1|R = 0)

= logitPr (Y = 1|D = d0)

= η + ξd0,

logitPr (Y = 1|R = 1)

= logitPr (Y = 1|D = d1)

= η + ξd1.

Solving the above two equations for ξ, we have:

ξ =
logitPr (Y |R = 1)− logitPr (Y |R = 0)

d1 − d0

.

Under the five assumptions stated in Section 2 and the above parameter settings,

the probability of observed Y given R can be expressed as the conditional proba-

bility of potential outcome Y (0) and Y (1). We can then calculate Pr (Y |R = 1) and

Pr (Y |R = 0) as follows:

logitPr (Y |R = 1) = logit
(
ρAω

1
A + ρCω

1
C + ω0

N − ρAω
0
N − ρCω

0
N

)
,

logitPr (Y |R = 0) = logit
(
ρAω

1
A + ρCω

0
C + ω0

N − ρAω
0
N − ρCω

0
N

)
.
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The full proof of these equations is in Appendix A1. From the above equation, we

can calculate ξ as follows:

ξ =
logitPr (Y |R = 1)− logitPr (Y |R = 0)

d1 − d0

(2.3.3)

=

logit (ρAω
1
A + ρCω

1
C + ω0

N − ρAω
0
N − ρCω

0
N)−

logit (ρAω
1
A + ρCω

0
C + ω0

N − ρAω
0
N − ρCω

0
N)

ρC

.

Since ξ̂ converges in probability to ξ, equation (2.3.3) is a closed form expression for

the probability limit of the two-stage logistic regression estimator of ξ̂.

2.3.2 Bias analysis

Having derived the closed form expression of ξ, we can calculate the difference

between ψ and ξ, the asymptotic bias of the two-stage logistic regression.

B2SPS = ξ − ψ (2.3.4)

=
1

ρC

 logit (ρAω
0
A + ρCω

1
C + ω0

N − ρAω
0
N − ρCω

0
N)

−logit (ρAω
0
A + ρCω

0
C + ω0

N − ρAω
0
N − ρCω

0
N)


−

(
logit

(
ω1

C

)
− logit

(
ω0

C

))
=

1

ρC

 logit(ρAω
0
A + ρCω

1
C + expit (logit (ω0

C) + δ) ρN)

−logit(ρAω
0
A + ρCω

0
C + expit (logit (ω0

C) + δ) ρN)


−

(
logit

(
ω1

C

)
− logit

(
ω0

C

))
.

In the above equation, we re-parameterize the ω0
N and introduce a new parameter δ

as follow,

logit
(
ω0

N

)
= logit

(
ω0

C

)
+ δ,
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then

ω0
N = expit

(
logit

(
ω0

C

)
+ δ

)
= ω0

C

eδ

ω0
Ce

δ − ω0
C + 1

.

The parameter δ is the difference between ω0
N and ω0

C on the logit scale, so it is the log

odds ratio of never-takers over compliers regarding the outcome. Given differences

between principal strata are due to unmeasured confounders related to outcome, δ

in equation (2.3.4) can be interpreted as the magnitude of confounding, where δ = 0

implies no confounding because ω0
N=ω0

C .

From the equation (2.3.4), we can easily see:

a) When ρC = 1 (every one is a complier), B2SPS = 0. This is because when

ρC = 1, both ρA and ρN are 0. In equation (2.3.4), if we replace ρC by 1 and both ρA

and ρN by 0, we have B2SPS = 0.

b) When ω1
C = ω0

C (there is no causal effect), B2SPS = 0. If we replace ω1
C by ω0

C

in equation (2.3.4), all terms are canceled out and we have B2SPS = 0.

c) The bias function does not include R, thus bias is not related to Pr(R = 1).

d) Bias can exist even when there is no confounding, that is, when ρA = 0 and

ω0
C = ω0

N . Replacing ρA by 0 in equation (2.3.4), we have

B2SPS =

logit (ρAω
1
A + ρCω

1
C + ω0

N − ρAω
0
N − ρCω

0
N)

−logit (ρAω
1
A + ρCω

0
C + ω0

N − ρAω
0
N − ρCω

0
N)

ρC

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
=
logit (ρCω

1
C + ω0

N − ρCω
0
N)− logit (ω0

N)

ρC

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
.

In this equation, B2SPS is generally not 0, because ρC in the denominator can not be

canceled out with the ρC in the logit function of the numerator.
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With the closed form expression (2.3.4), we can analyze the magnitude of bias

under different parameter settings according to specific scenarios. To simplify the

analysis and show the relationship between bias and confounding, we create four such

scenarios when there are no always-takers. We plot bias against δ while fixing all

other parameters in Fig. 2.1 to 2.4.

All four plots show that the bias is not 0 when there is no confounding (δ = 0).

When the compliance rate decreases from 0.8 to 0.5, the bias on the logit scale is

about 5 time larger (compare plot 2.1 and plot 2.2). Comparing plot 2.2 and plot

2.3, we can see that when the event rate is lower, the bias range is larger, but when

the event rate is decreased from 0.03 to 0.003 (Fig. 2.4), the absolute bias does not

increase further.

2.4 Bias of Two-Stage Residual Inclusion (2SRI)

In this section, we extend to the 2SRI estimator, the derivation in Section 3

of bias of the 2SPS under the principal stratification framework. In the first stage

regression of treatment received on the treatment assignment R as an IV, the residual

is E = Z − E(Z|R), and the second stage regression model is

Pr(Y = 1) = expit (λ0 + λ1Z + λ2E) . (2.4.1)

The estimator of λ1 is an estimate of the causal log odds ratio for receiving treatment

among compliers. We derive a closed form expression for the probability limit of the

estimator of λ1. This enables us to derive a closed form expression for the asymptotic
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difference between the probability limit of the estimator of λ1 and the causal log odds

ratio among compliers.

2.4.1 Closed form expression for the probability limit of the

estimator

For the 2SRI approach, in general, equation (2.4.1) is not the true model for

Pr(Y = 1|Z,E), as the true model includes the interaction term between Z and E;

this makes it much more difficult to develop a closed form expression for the probabil-

ity limit of the estimator. However, if we assume that there are no always-takers, so

that Pr (Z = 1, R = 0) = 0, then the true model does not have the interaction term

and the 2SRI model in equation (2.4.1) is the true model (see the details in Appendix

A2). In this section, we develop a closed form expression for the probability limit of

the estimator of λ1 only under the no always-taker assumption. The no always-taker

assumption is true in clinical trials when patients in the placebo group cannot access

the study drug. In contrast, the bias results for the 2SPS estimator depend on a true

model conditional on just Z (treatment-received) that does not require the absence

of always-takers.

The residual E = Z −E(Z|R) is estimated from the first stage regression, and is

included as a covariate in the second stage regression. Letting Ê = Z − Ê(Z|R), we

consider the second stage regression Pr(Y = 1|Z, Ê) = expit(λ0 + λ1Z + λ2Ê). The

2SRI approach estimates the causal log odds ratio with the estimated coefficient for

Z in the logistic regression of Y on Z and Ê. Let λ̂1 denote the estimated coefficient
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for Z in the logistic regression of Y on Z and E, and let λ̂∗1 denote the estimated

coefficient for Z in the logistic regression of Y on Z and Ê. As the sample size gets

larger, Ê −→ E and |λ̂∗
1−λ̂1|

p−→ 0 (74; 75). The estimator λ̂∗1 converges in probability

to λ1 under the model Pr(Y = 1|Z,E) = expit(λ0 + λ1Z + λ2E) when there are no

always-takers. When there are always-takers, the 2SRI model is misspecified. In

this situation, λ̂∗1 estimated from the second stage logistic regression converges to the

point that minimizes the Kullback-Leibler distance between the family of probability

distributions being maximized over the true probability distribution (76).

Under the no always-taker assumption, we can find an expression for λ1 as follows.

From the equations (2.3.1) and (2.3.2), we have

E(Z|R) = ρA + ρCR,

so

E = Z − E(Z|R) = Z − ρA − ρCR.

Note that Z,E and Z,R contain the same information; i.e., knowing Z,E tells us

Z,R and vice versa, so that Pr(Y = 1|Z,E) = Pr(Y = 1|Z,R). For the second stage

regression, we have

logitPr (Y = 1|Z,E) (2.4.2)

= λ0 + λ1Z + λ2E

= λ0 + λ1Z + λ2 (Z − ρA − ρCR)

= λ0 − λ2ρA + (λ1 + λ2)Z − λ2ρCR

= logitPr (Y = 1|Z,R) .
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Then we have three equations based on the possible values of Z and R ((Z=1,R=0)

is not possible because there are no always-takers):

logitPr (Y = 1|Z = 1, R = 1) (2.4.3)

= logitPr
(
Y (1) = 1|Z = 1, R = 1

)
= logit

(
ρA

ρA + ρC

ω1
A +

ρC

ρA + ρC

ω1
C

)
= λ0 − λ2ρA + (λ1 + λ2)− λ2ρC ,

logitPr (Y = 1|Z = 0, R = 1) (2.4.4)

= logitPr
(
Y (0) = 1|Z = 0, R = 1

)
= logitPr(Y (0) = 1|NT )

= logit(ω0
N)

= λ0 − λ2ρA − λ2ρC ,

logitPr (Y = 1|Z = 0, R = 0) (2.4.5)

= logitPr
(
Y (0) = 1|Z = 0, R = 0

)
= logit

(
1− ρA − ρC

1− ρA

ω0
N +

ρC

1− ρA

ω0
C

)
= λ0 − λ2ρA.

Solving equations (2.4.3), (2.4.4) and (2.4.5) for λ1 yields the closed form expression

for λ1 as:

λ1 = logit

(
ρA

ρA + ρC

ω0
A +

ρC

ρA + ρC

ω1
C

)
− logit(ω0

N) (2.4.6)

− 1

ρC

logit

(
1− ρA − ρC

1− ρA

ω0
N +

ρC

1− ρA

ω0
C

)
+

1

ρC

logit(ω0
N).
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2.4.2 Bias analysis

With the closed form expression for the probability limit of λ̂1, we can calculate

B2SRI , the bias defined as the difference between the log odds ratio for treatment-

received among compliers and the estimated log odds ratio with the 2SRI approach.

B2SRI = λ1 − ψ (2.4.7)

= logit

(
ρA

ρA + ρC

ω1
A +

ρC

ρA + ρC

ω1
C

)
− logit(ω0

N)

− 1

ρC

logit

(
1− ρA − ρC

1− ρA

ω0
N +

ρC

1− ρA

ω0
C

)
+

1

ρC

logit(ω0
N)

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
= logit

(
ρA

ρA + ρC

ω1
A +

ρC

ρA + ρC

ω1
C

)
− logit

(
expit

(
logit

(
ω0

C

)
+ δ

))
− 1

ρC

logit

(
1− ρA − ρC

1− ρA

(
expit

(
logit

(
ω0

C

)
+ δ

))
+

ρC

1− ρA

ω0
C

)
+

1

ρC

logit
(
expit

(
logit

(
ω0

C

)
+ δ

))
− logit

(
ω1

C

)
+ logit

(
ω0

C

)
.

δ is the same parameter as in equation (2.3.4). The following conclusions follow from

equation (2.4.7):

a) When ρC = 1 (every one is a complier), B2SRI = 0. If ρC = 1, both ρA and ρN

equal to 0. Plug in these values of ρC ,ρA and ρN to the equation (2.4.7), B2SRI = 0.

b) When ω0
C = ω0

N , and ω1
A = ω1

C (there is no confounding), we replace ω0
N with

ω0
C , and ω1

A with ω1
C in equation (2.4.7), yielding B2SRI = 0. That is, when there is

no confounding, the 2SRI approach is unbiased.

As in section 3 with the 2SPS estimator, we use equation (2.4.7) to analyze the

magnitude of bias of the 2SRI estimator under different scenarios as in Fig. 2.4-2.8.

All four plots (Fig 2.5 to 2.8) show that when there is no confounding (δ = 0),
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the bias of the 2SRI estimator is zero. The first scenario (Fig. 2.5) shows that when

the compliance rate is high (0.8), the bias is small for a wide range of confounding.

The second scenario (Fig. 2.6) shows that if the outcome is not rare, the bias is very

small unless δ is smaller than -1 or greater than 2, which means that the odds ratio

comparing compliers to never-takers with respect to the potential outcomes is smaller

than 0.37 or greater than 7.4. These scenarios correspond to very strong confounding.

Fig. 2.7 shows the scenario when the outcome is rare, with ω1
C and ω0

C one tenth of

those in scenario 1, The bias for this scenario is larger than that of scenario 1, but

the bias is still moderate if the confounding is not very severe. In scenario 4 (Fig.

2.8), we make the outcome even rarer. The magnitude of bias does not change much

compared to the bias under scenario 3. Therefore, we can conclude that for the 2SRI

model, there is bias when there is confounding, but the bias is small to moderate if

the confounding is not severe.

2.5 Simulation

2.5.1 Simulation algorithm

We simulated the data sets according to the following algorithm:

Step 1: Generate a data set with total number of N subjects. Among these

subjects, always-takers (ATs), compliers (Cs), and never-takers (NTs) are generated

from a multinomial distribution with probability of ρA for ATs, probability of ρC for

Cs and probability of ρN for NTs. With the statistical programming package R, this
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step can be implemented by W=t(rmultinom(n, 1, c(ρA,ρC , ρN))).

Step 2: With the probability of Pr(R = 1) = r, randomly assign about rN of

the subjects to R=1 and the rest of (1 − r)N subject to R = 0. This step can be

implemented by R=t(rmultinom(n, 1, c(r,1-r))) in the package R.

Step 3: Simulate Y (0) and Y (1) based on the value of AT, C or NT, and the

parameter ω1
A, ω1

C , ω1
N , ω0

A, ω0
C , and ω0

N . For instance, if an subject is AT, then

Pr(Y (0) = 1) = ω0
A, and Pr(Y (1) = 1) = ω1

A. With these probabilities, we can

create Y (1) and Y (0) with the binomial distribution. We implemented this step in the

package R with the following program:

prY0=W[,1]*ω0
A+W[,2]*ω0

C+W[,3]*ω0
N

dim(prY0)=c(n,1)

prY1=W[,1]*ω1
A+W[,2]*ω1

C+W[,3]*ω1
N

dim(prY1)=c(n,1)

Y0=apply(prY0, 1, function (x) rbinom(1,1,x))

Y1=apply(prY1, 1, function (x) rbinom(1,1,x))

Step 4: Based on AT, C or NT, and R, determine Z. For instance, if an observation

is in either the AT or C group, and the treatment assignment R=1, then Z=1.

Step 5: Based on Z , Y (0) and Y (1), determine Y

Y = Y (1)Z + Y (0)(1− Z).
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2.5.2 Simulation results

For each setting, we ran the simulation 2000 times, with the sample size of

n=10,000. For both 2SPS and 2SRI approaches, we simulated data with different

selection of parameters. As examples, Table 2.1 shows the results with the parameter

settings without always-takers: ρA = 0; ρC = 0.5 (thus ρN = 0.5); ω0
C = 0.3 or

ω0
C = 0.03; ω1

C = 0.6 or ω1
C = 0.06; δ varies among 2, 1.5, 1, 0.5, 0, -0.5, -1, -1.5 or

-2. For these simulations, the bias is calculated as the difference between the mean of

estimated log odds ratio (ξ̂ for 2SPS and λ̂1 for 2SRI) and the log odds ratio among

compliers ψ. The mean square of error (MSE) is calculated as the mean square of

the difference between the estimated log odds ratio and the log odds ratio among

compliers.

Under all parameter settings without always-takers, the bias resulting from simu-

lations is consistent with the analytic results, and when there is no confounding, the

bias is not zero for 2SPS but is zero for 2SRI (Table 2.1). The simulation results of

MSE follow the same pattern as the results for absolute bias with these large sample

simulations. We are currently doing further research on the MSE properties of the

different estimators.

We also performed simulations including always-takers with the parameter settings:

ρA = 0.2; ρC = 0.5 (thus ρN = 0.3); ω0
C = 0.3 or ω0

C = 0.03; ω1
C = 0.6 or ω1

C = 0.06;

δ varies among 2, 1.5, 1, 0.5, 0, -0.5, -1, -1.5 or -2. Under these parameter settings,

the analytic results are available for the 2SPS procedure, but are not possible for

the 2SRI approach as discussed in Section 4. As shown in table 2.2, the bias from
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simulated data is consistent with the analytic results for the 2SPS approach when

there are always-takers. For 2SRI, the results show that the bias is smaller than for

2SPS, and is close to 0 when δ is 0, but for some parameter settings with strong

confounding, the bias is larger than for 2SPS.

2.6 Discussion

The instrumental variable approach has been applied to logistic regression to con-

trol for unmeasured confounding in estimating treatment effects under non-adherence

in randomized trials and under actual medical care in observational studies. However,

there has been little if no evaluation of the bias of this use of instrumental variables

in the context of estimating the effect of treatment among those who are compliers or

take the treatment. Accordingly, we have developed closed form expressions for the

asymptotic bias of the 2SRI and 2SPS approaches to two-stage logistic regression, and

we have shown that these analytic results are consistent with the simulation results

under different parameter settings. Terza et al. (39) showed that the 2SRI approach

is unbiased when the true model is conditional on the unmeasured confounder. For

the treatment effect conditional on compliance or receiving treatment, Nagelkerke et

al. (70) and Ten Have et al. (67) presented simulations showing that the bias of 2SRI

approach increases as the magnitude of confounding increases. Our analytical and

simulation results confirm such bias for the 2SRI as well as for the 2SPS approach.

We further show that unlike the 2SRI approach, the 2SPS procedure is biased even

when there is no unmeasured confounding.
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An important contribution of this research is the expression of the conditional

distribution of observed outcomes Y given treatment assignment R as a function of

the probability of compliance and the conditional distribution of potential outcomes

Y (0) and Y (0), given compliance status. With this contribution, we can analytically

present probability limits and therefore the bias of the estimators of the causal effects

of treatment given compliance and treatment status. Further, we provide analytic

estimates of bias for a variety of situations. These analytic estimates of bias can help

researchers evaluate if the bias is small under specific conditions (e.g. high compliance,

and moderate confounding). Hence, our results can be used as a guide for deciding if

the 2SRI or 2SPS strategy is appropriate. This method can be potentially applied to

the bias analysis of causal inference with other non-linear two-stage regressions, such

as regressions of probit models and log linear models.

When the 2SRI or 2SPS is appropriately used, these approaches have the ad-

vantage that they are very easy to implement with any software package that can

do logistic regression (e.g., SAS, R, or STATA). Logistic regression is used for both

the first and second stages of either the 2SRI or 2SPS procedures. The predicted

or residual values from the first stage logistic regression of treatment on the IV are

used as covariates in the second stage logistic regression: the predicted value of treat-

ment replaces observed treatment for 2SPS, whereas the residual from the first stage

regression is added as a covariate along with observed treatment for 2SRI.

The bias for both the 2SPS and 2SRI approaches occurs when all of the IV as-

sumptions are met. Additional research is needed in resolving such bias, and also in

assessing departures from the IV assumptions under the logistic IV model. To resolve
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the bias of the 2SRI and 2SPS approaches, the logistic structural nested mean model

of Vansteelandt and Goetghebeur (77) in the randomized trial context when controls

do not have access to the treatment can be extended to the observational data context

when all subjects have access to treatment. Additionally, such a modeling approach

may be modified to assess departures from the exclusion restriction using a similar

weighted estimating equations approach as in Ten Have et al. (2007) (78).
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δ

 
Fig 2.1. Plot of bias on magnitude of confounding δ with 2SPS approach: Aρ =0, Cρ =0.8,   
ω1

c=0.6, ω0
c =0.3. 

 
 
 

 
δ

Fig 2.2. Plot of bias on magnitude of confounding δ with 2SPS approach: Aρ =0, Cρ =0.5,   
ω1

c =0.6, ω0
c =0.3. 
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δ

Fig 2.3. Plot of bias on magnitude of confounding δ with 2SPS approach: ω₁=0,   ω₂=0.5,   
ω₁₂=0.06,   ω₀₂=0.03. 
 

 

δ

Fig 2.4. Plot of bias on magnitude of confounding δ with 2SPS approach: Aρ =0, Cρ =0.5,   
ω1

c =0.006, ω0
c =0.003. 
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δ

 
Fig 2.5. Plot of bias on magnitude of confounding δ with 2SRI approach: Aρ =0, Cρ =0.8,   
ω1

c=0.6, ω0
c =0.3. 

 
 

 

δ

 
Fig 2.6. Plot of bias on magnitude of confounding δ with 2SRI approach: Aρ =0, Cρ =0.5,   
ω1

c=0.6, ω0
c =0.3. 
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δ

 
Fig 2.7. Plot of bias on magnitude of confounding δ with 2SRI approach: Aρ =0, Cρ =0.5,   
ω1

c=0.06, ω0
c =0.03. 

 

 

δ

Fig 2.8. Plot of bias on magnitude of confounding δ with 2SRI approach: Aρ =0, Cρ =0.5,   
ω1

c=0.006, ω0
c =0.003. 
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Table 2.1. Comparison of simulation results and analytic results when there are no always-takers. 
 

         2SPS      2SRI     

ω0
C ω1

C

True 
LogOR δ 

LogOR by 
Regression 

Observed 
Bias 

Analytic 
Result 
of Bias MSE 

LogOR by 
Regression 

Observed 
Bias 

Analytic 
Result 
of Bias MSE 

0.3 0.60 1.2528 -2.0 1.6295 0.3768 0.3754 0.1500 0.6256 -0.6272 -0.6266 0.4095 

   -1.5 1.5601 0.3073 0.3061 0.1024 0.9112 -0.3416 -0.3415 0.1295 

   -1.0 1.4740 0.2213 0.2200 0.0567 1.1127 -0.1400 -0.1410 0.0301 

   -0.5 1.3813 0.1286 0.1263 0.0238 1.2244 -0.0284 -0.0309 0.0095 

   0.0 1.2961 0.0433 0.0405 0.0088 1.2559 0.0031 0.0000 0.0075 

   0.5 1.2362 -0.0166 -0.0200 0.0069 1.2383 -0.0145 -0.0179 0.0071 

   1.0 1.2079 -0.0449 -0.0435 0.0090 1.2103 -0.0425 -0.0413 0.0088 

   1.5 1.2228 -0.0300 -0.0289 0.0081 1.2268 -0.0259 -0.0250 0.0079 

   2.0 1.2666 0.0138 0.0145 0.0080 1.3172 0.0644 0.0651 0.0123 

0.03 0.0600 0.7246 -2.0 1.2894 0.5648 0.5666 0.3901 -0.1732 -0.8978 -0.8474 0.9745 

   -1.5 1.2215 0.4969 0.4973 0.3131 0.2011 -0.5235 -0.5015 0.3865 

   -1.0 1.1225 0.3980 0.3994 0.2181 0.4788 -0.2458 -0.2314 0.1432 

   -0.5 0.9900 0.2654 0.2709 0.1232 0.6522 -0.0724 -0.0589 0.0666 

   0.0 0.8374 0.1128 0.1175 0.0585 0.7161 -0.0084 0.0000 0.0485 

   0.5 0.6770 -0.0475 -0.0459 0.0387 0.6630 -0.0616 -0.0571 0.0406 

   1.0 0.5198 -0.2048 -0.2005 0.0705 0.5002 -0.2243 -0.2169 0.0790 

   1.5 0.3911 -0.3334 -0.3310 0.1335 0.2658 -0.4587 -0.4525 0.2339 

      2.0 0.2932 -0.4314 -0.4306 0.2026 -0.0107 -0.7352 -0.7297 0.5593 

Note: The probability of always-takers ρA=0, the probability of compliers ρC=0.5 and the probability of never-takers ρN=0.5. 
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Table 2.2. Comparison of simulation results and analytic results when there are always-takers. 
 

         2SPS      2SRI     

ω0
C ω1

C

True 
LogOR δ 

LogOR by 
Regression 

Observed 
Bias 

Analytic 
Result 
of Bias MSE 

LogOR by 
Regression 

Observed 
Bias 

Analytic 
Result 
of Bias MSE 

0.3 0.60 1.2528 -2.0 1.3159 0.0631 0.0615 0.0098 1.2554 0.0026 NA 0.0090 

   -1.5 1.3007 0.0480 0.0461 0.0081 1.2624 0.0096 NA 0.0085 

   -1.0 1.2809 0.0281 0.0257 0.0065 1.2677 0.0149 NA 0.0079 

   -0.5 1.2574 0.0046 0.0016 0.0057 1.2668 0.0140 NA 0.0074 

   0.0 1.2338 -0.0190 -0.0220 0.0061 1.2559 0.0031 NA 0.0066 

   0.5 1.2167 -0.0361 -0.0389 0.0073 1.2380 -0.0148 NA 0.0067 

   1.0 1.2112 -0.0416 -0.0434 0.0083 1.2221 -0.0306 NA 0.0077 

   1.5 1.2201 -0.0327 -0.0346 0.0077 1.2216 -0.0311 NA 0.0076 

   2.0 1.2393 -0.0135 -0.0162 0.0071 1.2410 -0.0118 NA 0.0071 

0.03 0.0600 0.7246 -2.0 0.8826 0.1580 0.1583 0.0753 0.9577 0.2331 NA 0.1092 

   -1.5 0.8623 0.1378 0.1390 0.0677 0.9177 0.1931 NA 0.0895 

   -1.0 0.8312 0.1067 0.1093 0.0578 0.8633 0.1387 NA 0.0677 

   -0.5 0.7880 0.0634 0.0652 0.0483 0.7983 0.0737 NA 0.0507 

   0.0 0.7276 0.0030 0.0034 0.0410 0.7250 0.0005 NA 0.0413 

   0.5 0.6471 -0.0774 -0.0766 0.0421 0.6443 -0.0803 NA 0.0427 

   1.0 0.5549 -0.1696 -0.1704 0.0598 0.5541 -0.1705 NA 0.0600 

   1.5 0.4575 -0.2671 -0.2683 0.0971 0.4389 -0.2857 NA 0.1073 

      2.0 0.3686 -0.3560 -0.3586 0.1472 0.2962 -0.4284 NA 0.2042 

Note: The probability of always-takers ρA=0.2, the probability of compliers ρC=0.5 and the probability of never-takers ρN=0.3.  
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2.7 Appendix

A1. Prove that the probability of observed Y given R can be expressed by the

following equations.

Pr (Y |R = 1) = ρAω
0
A + ρCω

1
C + ω0

N − ρAω
0
N − ρCω

0
N ,

and

Pr (Y |R = 0) = ρAω
0
A + ρCω

0
C + ω0

N − ρAω
0
N − ρCω

0
N .

In these equations, AT means always-taker, C means complier, and NT means

never-taker, and

ω1
A = Pr

(
Y (1) = 1|AT

)
,

ω1
C = Pr

(
Y (1) = 1|C

)
,

ω1
N = Pr

(
Y (1) = 1|NT

)
,

ω0
A = Pr

(
Y (0) = 1|AT

)
,

ω0
C = Pr

(
Y (0) = 1|C

)
,

ω0
N = Pr

(
Y (0) = 1|NT

)
,

r = Pr (R = 1) ,

ρA = Pr(AT ),

ρC = Pr(C),

ρN = Pr(NT ).
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Proof:

Pr
(
Y (1) = 1|Z = 1, R = 1

)
= Pr

(
Y (1) = 1, Z = 1, R = 1

)
/Pr(R = 1, Z = 1)

=
Pr(Y (1) = 1, AT,R = 1) + Pr(Y (1) = 1, C,R = 1)

Pr(R = 1, AT ) + Pr(R = 1, C)

=
Pr(Y (1) = 1, AT ) Pr(R = 1) + Pr(Y (1) = 1, C) Pr(R = 1)

Pr(R = 1) Pr(AT ) + Pr(R = 1) Pr(C)

=
Pr(Y (1) = 1|AT ) Pr(AT ) + Pr(Y (1) = 1|C) Pr(C)

Pr(R = 1) Pr(AT ) + Pr(R = 1) Pr(C)

=
Pr(AT )

Pr(AT ) + Pr(C)
Pr(Y (1) = 1|AT ) +

Pr(C)

Pr(AT ) + Pr(C)
Pr(Y (1) = 1|C)

=
ρA

ρA + ρC

ω1
A +

ρC

ρA + ρC

ω1
C .

Note: According to the assumptions of the IV, R is independent of Y (1) and the

principal stratum, thus in the above equation, Pr(Y (1) = 1, AT,R = 1) = Pr(Y (1) =

1, AT )Pr(R = 1) and Pr(Y (1) = 1, C,R = 1) = Pr(Y (1) = 1, C)Pr(R = 1).

Pr
(
Y (0) = 1|Z = 0, R = 0

)
=

Pr(NT )

Pr(NT ) + Pr(C)
Pr(Y (0) = 1|NT ) +

Pr(C)

Pr(NT ) + Pr(C)
Pr(Y (0) = 1|C)

=
1− ρA − ρC

1− ρA

ω0
N +

ρC

1− ρA

ω0
C ,
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Pr (Y = 1|R = 1)

= Pr
(
Y (1) = 1, Z = 1|R = 1

)
+ Pr

(
Y (0) = 1, Z = 0|R = 1

)
= Pr(Y (1) = 1|Z = 1, R = 1) Pr(Z = 1|R = 1)+

Pr(Y (0) = 1|Z = 0, R = 1) Pr(Z = 0|R = 1)

=

(
ρA

ρA + ρC

ω0
A +

ρC

ρA + ρC

ω1
C

)
(ρA + ρC) + ω0

N (1− ρA − ρC)

= ρAω
0
A + ρCω

1
C + ω0

N − ρAω
0
N − ρCω

0
N ,

Pr (Y = 1|R = 0)

= Pr
(
Y (1) = 1, Z = 1|R = 0

)
+ Pr

(
Y (0) = 1, Z = 0|R = 0

)
= Pr(Y (1) = 1|Z = 1, R = 0) Pr(Z = 1|R = 0)+

Pr(Y (0) = 1|Z = 0, R = 0) Pr(Z = 0|R = 0)

= ω0
AρA +

(
1− ρA − ρC

1− ρA

ω0
N +

ρC

1− ρA

ω0
C

)
(1− ρA)

= ρAω
0
A + ρCω

0
C + ω0

N − ρAω
0
N − ρCω

0
N .

A2. Prove: Pr(Y = 1|Z,E) = expit(λ0 + λ1Z + λ2E) is not the true model and

the true model should include the interaction between Z and E, or the interaction

between Z and R. When there are no always-takers, the true model does not include

the interaction.
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Proof: The true model is

Pr (Y = 1|Z,E) = Pr (Y = 1|Z,R)

= E(Y |Z,R)

= I(Z=0,R=0)E (Y |Z = 0, R = 0) + I(Z=1,R=0)E (Y |Z = 1, R = 0)

+I(Z=0,R=1)E (Y |Z = 0, R = 1) + I(Z=1,R=1)E (Y |Z = 1, R = 1)

= E (Y |Z = 0, R = 0)

+Z [E (Y |Z = 1, R = 0)− E (Y |Z = 0, R = 0)]

+R [E (Y |Z = 0, R = 1)− E (Y |Z = 0, R = 0)]

+ZR

 E (Y |Z = 1, R = 1)− E (Y |Z = 1, R = 0)

−E (Y |Z = 0, R = 1) + E (Y |Z = 0, R = 0)


= λ0 + λ1Z + λ2R + λ3ZR.

In the above equations,

λ0 = E (Y |Z = 0, R = 0) ,

λ1 = [E (Y |Z = 1, R = 0)− E (Y |Z = 0, R = 0)] ,

λ2 = [E (Y |Z = 0, R = 1)− E (Y |Z = 0, R = 0)] ,

λ3 =
E (Y |Z = 1, R = 1)− E (Y |Z = 1, R = 0)

−E (Y |Z = 0, R = 1) + E (Y |Z = 0, R = 0)

= E (Y |Z = 1, R = 1)− (λ0 + λ1 + λ2) .

So the true model includes the interaction between Z and R.

When there are no always-takers, we have I(Z=1,R=0) ≡ 0, then the true model

41



becomes

Pr (Y = 1|Z,E) = Pr (Y = 1|Z,R)

= E(Y |Z,R)

= I(Z=0,R=0)E (Y |Z = 0, R = 0)

+ I(Z=0,R=1)E (Y |Z = 0, R = 1) + I(Z=1,R=1)E (Y |Z = 1, R = 1)

= E (Y |Z = 0, R = 0)

+R [E (Y |Z = 0, R = 1)− E (Y |Z = 0, R = 0)]

+ Z [E (Y |Z = 1, R = 1)− E (Y |Z = 0, R = 1)]

= λ0 + λ1R + λ2Z.

In the above equations,

λ0 = E (Y |Z = 0, R = 0) ,

λ1 = [E (Y |Z = 0, R = 1)− E (Y |Z = 0, R = 0)] ,

λ2 = [E (Y |Z = 1, R = 1)− E (Y |Z = 0, R = 1)] .

The true model does not include the interaction term.

A3. Some details about the bias analysis.

a)When there is no confounding, the treatment effect estimated with 2SPS can

be biased.
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The bias of 2SPS estimator is:

B2SPS =

logit (ρAω
1
A + ρCω

1
C + ω0

N − ρAω
0
N − ρCω

0
N)

−logit (ρAω
1
A + ρCω

0
C + ω0

N − ρAω
0
N − ρCω

0
N)

ρC

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
.

One no-confounding scenario is that there are no always-takers, and compliers and

never-takers have the same probability of potential outcome, e.g., ρA = 0 and ω0
C =

ω0
N . Plugging in these values to the above equation, we have,

B2SPS =

logit (0ω1
A + ρCω

1
C + ω0

C − 0ω0
C − ρCω

0
C)

−logit (0ω1
A + ρCω

0
C + ω0

C − 0ω0
C − ρCω

0
C)

ρC

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
=
logit (ρCω

1
C + ω0

C − ρCω
0
C)− logit (ω0

C)

ρC

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
.

This equation generally not 0. We can easily see that it is 0 if on linear scale instead

of logit scale.

b)When there is no confounding, the treatment effect estimated with 2SRI is

unbiased.

The bias of the 2SRI estimator with no always-takers is:

B2SRI = λ1 − ψ

= logit

(
ρA

ρA + ρC

ω1
A +

ρC

ρA + ρC

ω1
C

)
− logit(ω0

N)

− 1

ρC

logit

(
1− ρA − ρC

1− ρA

ω0
N +

ρC

1− ρA

ω0
C

)
+

1

ρC

logit(ω0
N)

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
.
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. Plug in ρA = 0 and ω0
C = ω0

N to this equation, we have:

B2SRI = λ1 − ψ

= logit

(
0

0 + ρC

ω1
A +

ρC

0 + ρC

ω1
C

)
− logit(ω0

C)

− 1

ρC

logit

(
1− 0− ρC

1− 0
ω0

C +
ρC

1− 0
ω0

C

)
+

1

ρC

logit(ω0
C)

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
= logit

(
ω1

C

)
− logit(ω0

C)− 1

ρC

logit(ω0
C) +

1

ρC

logit(ω0
C)

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
= 0.

.
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Chapter 3

Variance Estimate of Causal Odds

Ratio with Instrumental Variable

Two-Stage Logistic Regression

3.1 Introduction

Instrumental variable (IV) methods are used to estimate effects of receiving treat-

ment or exposure to risk factor on an outcome when there is unmeasured confound-

ing in medical research, such as in clinical trials under non-adherence to treatment

(45; 43; 40; 80; 81; 82; 47), or in non-randomized studies (41; 42; 83). While there has

some research on IV estimates of causal odds ratios for binary responses (84; 69; 67),

little has been written on variance estimation beyond cross-validation estimation. In

this paper, under a logistic regression model for the confounded effect of treatment

or exposure on a binary outcome, we propose sandwich variance estimators for two
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different two-stage instrumental variable estimators. The two stage logistic regression

approaches we consider are the two-stage predictor substitution (2SPS) and two-stage

residual inclusion (2SRI) methods (70; 85; 39; 79). We evaluate the bias of these vari-

ance estimators relative to the true variability of the IV point estimates by simulations

and evaluate the coverage of confidence interval calculated with the variance estima-

tor we proposed. In this paper, we use ”treatment” to represent either treatment

received or exposure to a risk factor. An IV has the following properties: a) it is

associated with treatment; b) it has no direct causal effect on the outcome; and c) it

is independent of all unmeasured confounders of the treatment-outcome relationship

(45; 40; 41; 86). Under these conditions, the IV analysis of the treatment-outcome

relationship controls for measured and unmeasured confounding (43; 47; 48; 49). For

randomized trials, the IV is randomized treatment assignment, but for observational

studies it needs to be a carefully selected under the above assumptions The 2SPS

and 2SRI IV approaches generally involve, as a first stage, the modeling of treatment

as a function of the IV and any baseline covariates and then the second stage mod-

eling of outcome as some function of predicted treatment and the covariates from

the first stage regression. Under the 2SPS approach, predicted treatment from the

first stage model replaces observed treatment as the principal covariate in the sec-

ond stage model relating outcome to treatment (88; 55). Under the 2SRI method

(70; 85), predicted and observed treatment are used to compute a residual that is

included as a covariate in the second stage model where the principal covariate is

observed treatment.

Angrist, Imbens and Rubin provided a good interpretation for the causal effect of
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the general instrumental variable strategy (43). Under the potential outcome frame-

work, they set up principal stratification framework under the assumptions that the

proposed IV is associated with treatment, is independent of unmeasured confounders

given the measured confounders and that the IV only affects outcome through treat-

ment received and there are no defiers. With the principal stratification framework,

patients are classified by the compliance status of treatment assignment as always-

takers, compliers and never-takers. For the linear model, they analytically proved

that under the above assumptions, the treatment effect estimated by the 2SPS IV

method can be interpreted as average causal effect of compliers, which is called local

average treatment effect (LATE), or compliers average causal effect (CACE). Since

the 2SPS and 2SRI approaches give the same estimates with linear regression (70),

the linear 2SRI also has the interpretation of LATE or CACE (43; 85).

For the linear two stage methods, the naive variance estimate obtained with ordi-

nary least squares under the second stage regression model of treatment on outcome

is not correct, since it does not adjust for the variability of the predicted treatment

as a covariate in this model. The variance estimator for the 2SPS IV estimator is

based on a heteroskedasticity-robust or sandwich estimator of variance involving cross

products of the predicted treatment vector and a scalar dispersion factor based on

the observed treatment factor (75). For the 2SRI approach, we have not found any

published research on the variance estimator, but the estimate needs to be adjusted in

a similar way, as the 2SRI and 2SPS approaches yield the same estimate of treatment

effect for the linear case (70).

For the two-stage logistic regression, we have derived the sandwich variance es-
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timator using a similar approach by Murphy and Topel (87) for the parameters in

the second stage when the second stage model include parameters estimates obtained

from the first stage. This approach is concisely described by Wooldridge (75) and

it was also used by Zeger and Liang to get asymptotically unbiased variance esti-

mators of the generalized estimating equations model (GEE) for longitudinal data

analysis (89; 90). Other variance estimation approaches such as those based on the

full information maximum likelihood (FIML) require the specification of the joint

likelihood, which is generally not done with two stage procedures (91). When the

joint likelihood is specified, this procedure uses the joint likelihood functions with

respect to coefficients in both steps to yield efficient estimators and asymptotically

correct estimates of variances (91). However, when there are many parameters to be

estimated, this approach is computationally impractical. For this reason and because

the joint likelihood is not specified under the two stage approaches, we implement

the method by Murphy and Topel in estimating the standard errors of the two stage

estimators. This paper is organized as follows. In Section 2, we introduce notation

on observed and potential variables based on the principal stratification framework

and we specify the two-stage logistic regression models. We use the Wooldridge’s

approach for two-step M estimation to derive the variance estimator of the 2SPS and

2SRI estimators in section 3. In Section 4, we did simulations to compare the naive

variance estimate and our adjusted estimates with the observed variance of estimates

of the treatment effect. We also compare variance, mean standard error (SME) and

95% coverage of 2SPS and 2SRI by simulation. Finally, we discuss the results and

conclusions.
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3.2 Notation and parameter setting

We define R as the IV, which in randomized trial setting is randomized treatment

assignment, and Z as the treatment received. R=1 means that a patient is assigned

to the study treatment, and R=0 means a patient is assigned to the other treatment

(or no treatment). Similarly, Z=1 means that a patient receives the study treatment,

and Z=0 means that a patient receives the other treatment (or non-treatment). Y

is the observed binary outcome. With this definition, R is the instrumental variable.

Under the principal stratification framework which provides the causal estimand for

the two stage procedures, we also define as the probability of a subject being in

the always-taker (AT) class, and as the corresponding probability for the complier

class. Under the principal stratification framework with the no-defier assumption,

only ATs can get the study treatment when they are assigned to other treatment or

no treatment. Consequently, the first stage logistic regression for both the 2SPS and

2SRI approaches is parameterized as:

E (Z|r) = expit
(
rT ρ

)
= expit (ρA + ρCr) . (3.2.1)

In the above equation, rT = (1, r) and ρT = (ρA, ρC).

For the 2SPS approach, the second stage logistic regression is the outcome on the

predicted treatment-received (i.e., the expected value of Z conditional on R) from the

first stage regression, which is,

E (Y |ẑ) = expit
(
ẑT λ

)
= expit (λ1 + λ2ẑ) . (3.2.2)

In the above equation ẑT = (1, ẑ) and λT = (λ1, λ2) With this regression, the
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treatment effect is λ2.

For the 2SRI, the second stage logistic regression is the model of outcome on

treatment received AND the residual from the first stage regression:

EY = expit (λ1 + λ2zi + λ2ê) (3.2.3)

= expit (λ1 + λ2zi + λ2 [zi − expit (ρA + ρCri)]) .

With this regression, the treatment effect is also λ2. Our goal is to derive and

evaluate variance estimators for the 2SPS and 2SRI estimators of λ2.

3.3 Variance estimate of 2 stage logistic regression

We use the Wooldridge’s approach for two-step M estimation to derive the variance

estimator of the 2SPS and 2SRI estimators of the CACE log odds ratio for receiving

treatment. Accordingly, we derive separate objective functions for the first and second

stage models from which we obtain separate score and Hessian equations.

3.3.1 Variance estimate of 2SPS

For the 2SPS approach, we derive score and Hessian functions for the first and

second stage models. For the first stage model in (3.2.1), the objective function for

the parameters is defined as the log of the binomial mass function for an individual

response:

q1 (z, r; ρ) = zi (ρA + ρCri)− ln [1 + exp (ρA + ρCri)] . (3.3.1)
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The estimators of ρA and ρC maximize
∑
q1 (z, r; ρ), and solves the first-order con-

dition: ∑
si (z, r; ρ) = 0, (3.3.2)

where si (z, r; ρ) is the two-dimensonal vector score for the objective function

q1 (z, r; ρ) for an individual subject, derived by taking the first order partial deriva-

tives of q1 (z, r; ρ) with respect to the dimensional parameter vector ρ.

Similarly, let denote the Hession matrix of q1 (z, r; ρ) with respect to ρ for an indi-

vidual subject as H1 (z, r; ρ) ≡ ∂2q1 (z, r; ρ) / ∂ρ∂ρ′, then by a Taylor series expansion

with ρ̂ converging in probability to ρ∗, we have,

ρ̂− ρ∗ ≈
(∑

H1 (z, r; ρ̂)
)−1 (

−
∑

s1 (z, r; ρ̂)
)
, (3.3.3)

where ρ̂T = (ρ̂A, ρ̂C) from the first stage regression.

For the second stage of the 2SPS approach, with ρ replaced with ρ̂ from the first

stage, the objective function based on equation (3.2.2) is,

q2 (y, r; ρ̂, λ) = yẑT λ− ln
(
1 + exp

(
ẑT λ

))
(3.3.4)

= y (λ1 + λ2ẑ)− ln [1 + exp (λ1 + λ2ẑ)]

= y (λ1 + λ2expit (ρ̂A + ρ̂Cr))− ln [1 + exp (λ1 + λ2expit (ρ̂A + ρ̂Cr))] .

The estimators of λ1 and λ2 maximize q2 (y, r; ρ̂, λ) , i.e., solves the first-order

condition, ∑
s2 (yi, ri; ρ̂,λ) = 0, (3.3.5)

where s2 (yi, ri; ρ̂, λ) is the score of the objective function q2 (y, r; ρ̂,λ) for indi-

vidual i with respect to λ. Similarly, let H2 (y, r; ρ̂,λ) denote the Hession matrix of
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the objective function q2 (y, r; ρ̂, λ), with respect to λ.

We then take the following Taylor expansion with λ̂ converging in probability to

λ∗, we have,

λ̂− λ∗ ≈
(∑

H2

(
yi, ri; ρ̂, λ̂

))−1 (
−

∑
s2

(
yi, ri; ρ̂, λ̂

))
, (3.3.6)

where s2

(
yi, ri; ρ̂,λ̂

)
and H2

(
yi, ri; ρ̂,λ̂

)
are obtained from s2 (yi, ri; ρ̂, λ) and

H2 (yi, ri; ρ̂, λ) respectively by replacing λ with λ̂. Given the series expansion in

(3.3.6), one variance estimate of λ̂ is,

V̂
(
λ̂

)
naive

=
(∑

H2

(
yi, ri; ρ̂,λ̂

))−1 ∑
s2

(
yi, ri; ρ̂,λ̂

)
s2

(
yi, ri; ρ̂, λ̂

)T

(∑
H2

(
yi, ri; ρ̂,λ̂

))−1

. (3.3.7)

However, this variance estimate does not take into account that the variability of

ẑ through ρ̂. That is, it does not take into account the series expansion in (6) for

ρ̂. Consequently, we achieve such an adjustment by incorporating the Taylor series

expansion in (3.3.3) with the following Taylor series expansion of
∑

s2 (yi, ri; ρ̂,λ)

around ρ∗, the probability limit of ρ̂, as follows:

∑
s2 (y, r; ρ̂, λ) ≈

∑
s2 (y, r; ρ∗,λ) +

∑ ∂s2 (y, r; ρ∗, λ)

∂ρ
(ρ̂− ρ∗) , (3.3.8)

where ∂s2(y,r;ρ∗,λ)
∂ρ

is the partial derivative of s2 (y, r; ρ∗,λ) with respect to ρ eval-

uated at ρ∗. From the approximation in (3.3.3) for (ρ̂− ρ∗), the expansion in (3.3.3)

is asymptotically equivalent to:

∑
s2 (y, r; ρ̂,λ) ≈

∑
s2 (y, r; ρ∗,λ) +

∑ ∂s2 (y, r; ρ∗, λ)

∂ρ

(∑
H1 (z, r; ρ̂)

)−1

(
−

∑
s1 (z, r; ρ̂)

)
. (3.3.9)
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Based on (3.3.9), we follow the general case of Wooldridge (75) by adjusting the

score evaluated at ρ̂ and λ̂ , s2

(
y, r; ρ̂, λ̂

)
, as g

(
y, r; ρ̂,λ̂

)
,

g
(
y, r; ρ̂, λ̂

)
= s2

(
y, r; ρ̂, λ̂

)
+

∑ ∂s2

(
y, r; ρ̂, λ̂

)
∂ρ

(∑
H1 (zi, ri; ρ̂)

)−1

(−s1 (zi, ri; ρ̂)) .

(3.3.10)

Replacing the s2

(
yi, ri; ρ̂, λ̂

)
by g

(
yi, ri; ρ̂, λ̂

)
, the variance estimator for the

2SPS estimator of λ, adjusted for the first stage regression estimate of ρ is,

V̂
(
λ̂

)
adjust

=
(∑

H2

(
yi, ri; ρ̂, λ̂

))−1 ∑
g

(
yi, ri; ρ̂,λ̂

)
g

(
yi, ri; ρ̂, λ̂

)T

(∑
H2

(
yi, ri; ρ̂,λ̂

))−1

. (3.3.11)

3.3.2 Variance estimator for the 2SRI approach

For the 2SRI approach, we take the same strategy as above and adjust the second

stage objective function for λ with the corresponding approximation in (3.3.3) to ad-

just for hatρ under the first stage regression. Accordingly, the second stage objective

function for λ under the 2SRI approach is:

q2 (y, z; ê,λ) = y (λ1 + λ2z + λ3ê)− ln (1 + exp (λ1 + λ2z + λ3ê)) (3.3.12)

The corresponding adjusted score is,

g
(
y, z; ê,λ̂

)
= s2

(
y, z; ê, λ̂

)
+

∑ ∂s2

(
y, z; ê, λ̂

)
∂ρ

(∑
H1 (zi, ri; ρ̂)

)−1

(−s1 (zi, ri; ρ̂))

(3.3.13)

which is then plugged into the adjusted variance estimator for in (3.3.11) to get

the adjusted variance estimator for 2SRI.
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For two stage linear regression, we analytically prove that the above 2SPS and

2SRI variance estimators, which are equivalent, equal the heteroskedasticity-robust

variance estimate of the simple two stage linear regression (See the detail in attach-

ment A).

3.4 Simulations

Since our research is focused on the causal inference of two stage logistic regression,

we simulated data with the principal stratification settings of the Angrist-Rubin model

of causal inference. The data sets were generated with the following algorithm.

Step 1: Generate a data set with total number of N subjects. Among these

subjects, always-takers (ATs), compliers (Cs), and never-takers (NTs) are generated

from multinomial distributions with probability ρA for ATs, ρC for Cs, and ρN for

NTs.

Step 2: With the probability of r, randomly assign rN subjects to R=1 and the

rest of (1− r)N subjects to R=0.

Step 3: Create the potential outcome Y (0) and Y (1) based on the compliance status

of each subject, and the probability of potential outcome for each compliance status.

Step 4: Determine treatment received Z of each subject based on the treatment

assignment R and compliance status.

Step 5: With the following equation, determine observed outcome of each subject

based on the potential outcome and treatment received,

Y = Y (1)Z + Y (0)(1− Z)
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We simulated data sets with different compliance rates, different confounding fac-

tors, and different sample sizes with information from our example data analysis. For

each setting of the parameters, we simulated 2000 data sets and performed the 2SPS

and 2SRI methods for logistic regression. For each of these estimation approaches,

we calculated the simulation-based variance of the log odds ratio estimates, in addi-

tion to the averages of the naive variance, adjusted variance, and bootstrap variance

estimated at each iteration for the corresponding estimator of the log odds ratio for

treatment on outcome. We also used these different variance estimates to calculate

95% coverage estimates for the log odds ratio. Finally, we calculated the mean square

error for the 2SPS and 2SRI estimates of the log odds ratio for treatment on outcome.

3.5 Result

Tables 3.1, 3.2, 3.3 and 3.4 present the observed simulated variance of the two

stage log odds ratio estimates and percentage difference between the observed sample

variance and the mean of the different variance estimates listed above. Tables 3.1 and

3.2 present results for different sample sizes for the 2SPS approach, and Tables 3.3

and 3.4 do the same for the 2SRI approach. First in Tables 3.1 and 3.2, we examine

the impact of the sample size on the simulated variance of the 2SPS log odds ratio

estimates. We can see that this variance decreases by about 50% when the sample size

increases from 500 to 1000. In both tables, the simulated variance increases slightly

when the confounding becomes severe, but it increases dramatically when the compli-

ance rate decreases. For example, in Table 3.2, the variance increases about 6 times
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from 0.03 to 0.18 when the compliance rate decreases from 0.7 to 0.3. In Tables 3.1

and 3.2, we next compare the average of the naive and adjusted variance estimates

with the simulated variance of the 2SPS log odds ratio estimates. The percentage

difference between the average adjusted variance and the simulated variance is oc-

casionally greater than 5%, but usually very small. The maximum difference from

all simulations is 7.34%. In contrast, the percentage difference between the average

naive variance estimate and the simulated variance is often large with a maximum of

32.85%. This difference is larger when the compliance is lower, and increases as the

confounding becomes more severe. In Tables 3.1 and 3.2, we also compare the average

of the adjusted and bootstrap variance estimates. The adjusted variance is usually

closer to the simulated variance than is the bootstrap variance, especially when the

sample size is smaller. The difference between the average bootstrap variance and

the simulated variance is as high as 18.42% when the compliance rate is 0.3 and the

confounding is very severe (δ = 3) for sample size 500. As with the average naive

variance estimate, the difference between the average bootstrap variance and the sim-

ulated variance increases as the compliance rate becomes lower and the confounding

becomes more severe. Nevertheless, overall, the average bootstrap variance estimate

is closer to the simulated variance than is the average naive variance estimate. Tables

3.3 and 3.4 provide similar comparisons for the 2SRI approach as do Tables 3.1 and

3.2 for the 2SPS approach. For the 2SRI approach, the simulated variance of the log

odds ratio estimates also decreases by about 50% when the sample size increase from

500 to 1000, and increases as the compliance rate is lower and as the confounding

gets more severe. Again, the change of the simulated variance is much more sensitive
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to compliance rate than to severity of confounding. For the 2SRI approach, Tables

3.3 and 3.4 show similar results as displayed in Tables 3.1 and 3.2 for the 2SPS ap-

proach. For the 2SRI method, the average adjusted variance estimates are closer to

the simulated variance than are the average naive and bootstrap variance estimates.

The average naive variance estimate differs substantially from the simulated variance

(as high as 27.27%) when the confounding is severe. Similarly to 2SPS approach,

the average bootstrap estimated variance of the 2SRI log odds ratio estimator is sub-

stantially different from the simulated variance when the compliance rate is low and

confounding severe. With the sample size of 500, this difference can be as high as

19%. Tables 3.5 and 3.6 present the width and coverage of 95% confidence intervals

for the 2SPS and 2SRI approaches, respectively. For the 2SPS approach, the 95%

confidence interval coverage based on the adjusted variance estimate is low (minimum

of 92.35%) when the compliance rate is 0.3 and δ is -3 to -2 (indicating very severe

confounding). Other than these settings, the 95% confidence intervals based on the

adjusted variance estimate for both the 2SPS and 2SRI approaches have coverage

close to 95%. For all of the different settings and different sample sizes, the 2SPS ap-

proach has narrower adjusted variance-based 95% confidence intervals than the 2SRI

approach. Fig. 3.1 and 3.2 present the bias, variance and MSE of the 2SPS and

2SRI log odds ratio estimates, respectively. The results show that for most of the

settings, the 2SRI logs odds ratio estimator has larger variance than the 2SPS log

odds ratio estimate, even though the bias of the 2SRI estimator is often smaller than

that of the 2SPS approach when confounding is not severe. For many settings, the

2SRI variance is twice that of the 2SPS variance, which leads to a higher MSE for
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the 2SRI approach compared to the 2SPS approach. When the sample size is 5000

(Table 3.2), the variance of both log odds ratio estimators is small, so the MSE is

mainly determined by the bias. As shown in Cai et al. (79), both the 2SPS and 2SRI

approaches are similarly biased for the log odds ratio of receiving treatment among

compliers. In this situation, the MSE of 2SRI approach is close to the 2SPS approach.

3.6 Discussion

In this paper, we applied the theory of two-step M estimation to obtain the ad-

justed variance estimators for the 2SPS and 2SRI IV estimators of the log odds ratio

of receiving treatment among compliers. Our simulation results show that the ad-

justed variance estimators provide good estimates of the simulated variance of the

causal log odds ratio. In addition, these adjusted variance estimators perform better

than the corresponding bootstrap estimators. We found that the average bootstrap

variance is not accurate when the compliance rate is low, which is consistent with

other studies that have shown that the validity of bootstrap is questionable when the

IV is weakly correlated with the endogenous explanatory variable (92).

Furthermore, our simulation results indicate that the naive variance estimate with-

out the adjustment for two stage regression can be severely biased when the compli-

ance rate is low and confounding is severe. This is true even for the 2SRI approach,

when the causal log odds ratio is the coefficient for the variable of treatment received,

instead of the expected value of treatment estimated from the first stage, which is

the case for the 2SPS approach. Our simulation results also demonstrate that the
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adjusted variance estimators for the 2SPS and 2SRI methods are very sensitive to the

compliance rate, but not very sensitive to the severity of confounding. This result

informs the estimation of power and sample size when planning the IV analysis of two

stage logistic regression. In our simulation results, the 95% confidence interval cover-

age based on the adjusted variance is good for both the 2SPS and 2SRI approaches,

even when the bias of the corresponding IV log odds ratio estimators is severe, which

is encouraging for the application of these two IV approaches. Our previous research

focused on the bias of the 2SPS and 2SRI log odds ratio estimators of receiving

treatment among compliers (79). In this paper, when comparing the 2SPS and 2SRI

approaches with respect to the bias, variance and MSE of these estimators, we found

that the variance of the 2SRI estimates is usually larger than that of 2SPS approach,

so the MSE of 2SRI approach is usually greater than that of 2SPS approach even

though 2SRI is less biased for some settings as shown by Cai et al. (79). With this

result, we conclude that 2SRI approach does not have an advantage over the 2SPS

approach.
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Table 3.1. Comparison of adjusted variance estimates with naïve estimates and the variance 
estimated by bootstrap for the percentage difference from the sample variance of simulation: 2SPS 
approach with small sample size. 
 
Compliance Rate 

 Cρ Delta 
Sample 

Variance 
Naïve Estimate  
(% Difference) 

Adjusted Variance  
(% Difference) 

Bootstrap Estimate 
 (% Difference) 

0.3 -3 0.3821 32.85 4.02 12.76 
 -2.5 0.3839 29.96 3.06 11.37 
 -2 0.3939 23.52 -0.19 10.78 
 -1.5 0.3814 23.06 1.95 9.61 
 -1 0.3717 20.45 3.41 7.22 
 -0.5 0.3563 19.09 6.65 8.20 
 0 0.3663 10.11 3.92 9.63 
 0.5 0.3865 0.98 0.92 8.29 
 1 0.4108 -5.31 -0.18 7.00 
 1.5 0.4596 -12.93 -2.48 12.57 
 2 0.5114 -17.67 -2.37 14.97 
 2.5 0.5830 -23.37 -4.16 17.15 
 3 0.6357 -25.73 -3.27 18.43 

0.5 -3 0.1206 23.01 2.77 5.79 
 -2.5 0.1205 22.37 2.84 5.03 
 -2 0.1223 19.52 1.42 4.72 
 -1.5 0.1227 17.52 1.20 6.97 
 -1 0.1240 14.30 0.47 5.15 
 -0.5 0.1267 9.45 -1.02 5.09 
 0 0.1254 8.33 1.41 5.50 
 0.5 0.1250 7.06 4.31 7.04 
 1 0.1339 -0.49 1.18 5.50 
 1.5 0.1396 -3.73 1.90 4.83 
 2 0.1471 -7.15 1.79 8.61 
 2.5 0.1529 -8.92 2.67 10.06 
 3 0.1599 -11.40 2.01 8.95 

0.7 -3 0.0629 11.81 2.32 2.96 
 -2.5 0.0628 11.88 2.56 3.26 
 -2 0.0630 11.38 2.44 3.14 
 -1.5 0.0637 10.02 1.68 4.32 
 -1 0.0645 8.34 0.86 3.29 
 -0.5 0.0657 5.96 -0.34 3.44 
 0 0.0652 6.33 1.36 2.46 
 0.5 0.0650 6.24 2.95 2.52 
 1 0.0688 0.29 -1.07 0.69 
 1.5 0.0695 -0.83 -0.53 2.13 
 2 0.0703 -1.85 -0.13 3.48 
 2.5 0.0708 -2.48 0.31 3.17 

  3 0.0717 -3.65 -0.13 2.35 

Note:  Number of iteration of bootstrap p=500;   Sample size N=500, Simulation time M=2000. 

           Outcome rate for treatment group ω11= ω 12= ω 13=0.6;   

           Outcome rate for comparison group for always-takers and compliers ω 01= ω 02=0.3. 

           Rate of always-taker ρA=0.2 and never-taker  ρA =1- ρC- ρN; Delta=logit ω03-logit ω02. 
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Table 3.2. Comparison adjusted variance estimates with naïve estimates and the variance estimated 
by bootstrap for the percentage difference from the sample variance of simulation:  2SPS approach 
with large sample size. 
 

Compliance Rate 
 Cρ δ 

Sample 
Variance 

Naïve Estimate  
(% Difference) 

Adjusted Variance  
(% Difference) 

Bootstrap Estimate 
 (% Difference) 

0.3 -3 0.1859 30.15 0.64 3.69 
 -2.5 0.1799 32.28 3.50 3.74 
 -2 0.1774 30.80 4.24 4.43 
 -1.5 0.1790 25.12 2.45 6.44 
 -1 0.1781 20.07 1.87 3.33 
 -0.5 0.1782 13.81 0.88 4.03 
 0 0.1798 7.34 0.03 4.44 
 0.5 0.1838 1.62 -0.09 5.11 
 1 0.1843 0.98 4.67 7.14 
 1.5 0.2084 -8.18 0.45 5.57 
 2 0.2342 -14.09 -1.15 4.10 
 2.5 0.2614 -18.42 -1.85 5.67 
 3 0.2892 -22.14 -2.79 5.87 

0.5 -3 0.0636 15.97 -3.34 2.66 
 -2.5 0.0640 14.49 -3.99 1.64 
 -2 0.0633 14.70 -2.90 0.25 
 -1.5 0.0628 14.19 -1.94 -0.13 
 -1 0.0648 8.78 -4.63 0.23 
 -0.5 0.0653 5.68 -4.71 0.64 
 0 0.0670 0.96 -5.74 0.81 
 0.5 0.0675 -1.40 -4.22 1.33 
 1 0.0687 -3.44 -2.19 0.86 
 1.5 0.0744 -10.16 -5.27 -1.22 
 2 0.0800 -15.11 -7.34 -1.94 
 2.5 0.0833 -16.87 -6.65 0.18 
 3 0.0860 -18.12 -6.09 0.61 

0.7 -3 0.0332 5.86 -3.27 -0.48 
 -2.5 0.0334 5.13 -3.74 -0.39 
 -2 0.0331 5.87 -2.76 -0.22 
 -1.5 0.0332 5.25 -2.85 0.01 
 -1 0.0336 3.87 -3.43 0.78 
 -0.5 0.0337 3.11 -3.14 1.73 
 0 0.0345 0.27 -4.53 2.99 
 0.5 0.0346 -0.16 -3.38 2.91 
 1 0.0357 -3.54 -4.98 -1.38 
 1.5 0.0365 -5.70 -5.54 -1.18 
 2 0.0370 -6.85 -5.35 -1.43 
 2.5 0.0374 -7.89 -5.34 -1.39 

  3 0.0378 -8.54 -5.27 -0.09 

Note:  Number of iteration of bootstrap p=700. Sample size N=1000, Simulation time M=2000.    

           Outcome rate for treatment group ω 11= ω 12= ω 13=0.6;   

           Outcome rate for comparison group for always-takers and compliers ω 01= ω 02=0.3. 

           Rate of always-taker ω 1= 0.2 and never-taker ω 3=1- ω 1- ω 2; Delta=logit ω03-logit ω02. 
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Table 3.3. Comparison of adjusted variance estimates with naïve estimates and the variance 
estimated by bootstrap for the percentage difference from the sample variance of simulation: 2SRI 
approach with small sample size. 
 

Compliance Rate 
 Cρ Delta 

Sample 
Variance 

Naïve Estimate  
(% Difference) 

Adjusted Variance  
(% Difference) 

Bootstrap Estimate 
 (% Difference) 

0.3 -3 0.8518 -9.06 3.86 16.43 
 -2.5 0.8134 -9.46 1.95 14.82 
 -2 0.7689 -10.73 -1.25 14.10 
 -1.5 0.6629 -5.92 1.57 11.43 
 -1 0.5693 -2.42 2.88 9.33 
 -0.5 0.4767 2.97 6.24 9.67 
 0 0.4347 0.97 3.52 10.61 
 0.5 0.4168 -2.74 0.90 8.86 
 1 0.4205 -6.52 -0.40 7.55 
 1.5 0.4620 -13.19 -2.56 13.12 
 2 0.5200 -18.12 -2.18 15.61 
 2.5 0.6098 -24.32 -3.57 18.29 
 3 0.6894 -27.27 -2.39 19.45 

0.5 -3 0.2077 -6.03 1.57 6.83 
 -2.5 0.2007 -4.83 2.01 5.30 
 -2 0.1948 -5.13 0.54 5.33 
 -1.5 0.1845 -4.22 0.11 7.69 
 -1 0.1720 -3.00 -0.21 5.73 
 -0.5 0.1606 -2.80 -1.34 5.54 
 0 0.1459 0.41 1.24 5.74 
 0.5 0.1351 2.99 4.31 7.45 
 1 0.1382 -2.11 1.02 6.06 
 1.5 0.1406 -4.10 1.89 5.33 
 2 0.1479 -7.35 1.81 9.06 
 2.5 0.1554 -9.38 2.75 10.44 
 3 0.1649 -12.15 2.20 9.50 

0.7 -3 0.0795 -0.97 1.60 4.48 
 -2.5 0.0788 -0.55 1.83 4.69 
 -2 0.0781 -0.36 1.73 4.41 
 -1.5 0.0776 -0.72 0.98 5.48 
 -1 0.0767 -0.93 0.29 4.26 
 -0.5 0.0758 -1.52 -0.78 4.09 
 0 0.0727 0.59 1.00 3.08 
 0.5 0.0701 2.29 2.70 3.04 
 1 0.0723 -2.28 -1.47 1.22 
 1.5 0.0715 -2.33 -0.80 2.55 
 2 0.0714 -2.68 -0.28 3.88 
 2.5 0.0715 -2.96 0.24 3.58 

  3 0.0722 -4.00 -0.19 2.79 

Note:  Number of iteration of bootstrap p=500;   Sample size N=500, Simulation time M=2000. 

           Outcome rate for treatment group ω11= ω 12= ω 13=0.6;   

           Outcome rate for comparison group for always-takers and compliers ω 01= ω 02=0.3. 

           Rate of always-taker ρA=0.2 and never-taker  ρA =1- ρC- ρN; Delta=logit ω03-logit ω02. 
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Table 3.4. Comparison adjusted variance estimates with naïve estimates and the variance estimated 
by bootstrap for the percentage difference from the sample variance of simulation:  2SRI approach 
with large sample size. 
 

Compliance Rate 
 Cρ δ 

Sample 
Variance 

Naïve Estimate  
(% Difference) 

Adjusted Variance  
(% Difference) 

Bootstrap Estimate 
 (% Difference) 

0.3 -3 0.4105 -10.76 0.21 6.77 
 -2.5 0.3755 -7.16 2.71 5.56 
 -2 0.3401 -4.43 3.79 6.07 
 -1.5 0.3086 -4.10 1.91 7.53 
 -1 0.2701 -2.22 1.54 4.17 
 -0.5 0.2365 -1.09 0.79 4.65 
 0 0.2118 -1.09 -0.02 4.94 
 0.5 0.1977 -2.00 -0.08 5.42 
 1 0.1881 -0.13 4.49 7.35 
 1.5 0.2090 -8.31 0.41 5.81 
 2 0.2380 -14.60 -1.10 4.25 
 2.5 0.2740 -19.71 -1.64 5.70 
 3 0.3152 -24.26 -2.57 5.74 

0.5 -3 0.1072 -10.07 -3.40 5.24 
 -2.5 0.1049 -9.98 -4.06 3.94 
 -2 0.0993 -7.86 -2.86 2.06 
 -1.5 0.0928 -5.64 -1.88 1.22 
 -1 0.0885 -6.55 -4.32 1.44 
 -0.5 0.0822 -5.68 -4.70 1.27 
 0 0.0778 -6.51 -6.12 1.17 
 0.5 0.0730 -5.24 -4.39 1.56 
 1 0.0706 -4.76 -2.17 1.20 
 1.5 0.0747 -10.35 -5.21 -1.04 
 2 0.0802 -15.15 -7.27 -1.76 
 2.5 0.0843 -17.09 -6.48 0.35 
 3 0.0882 -18.46 -5.65 0.79 

0.7 -3 0.0416 -5.66 -3.43 0.70 
 -2.5 0.0415 -5.95 -3.91 0.73 
 -2 0.0407 -4.63 -2.85 0.82 
 -1.5 0.0402 -4.36 -2.95 0.93 
 -1 0.0397 -4.48 -3.52 1.67 
 -0.5 0.0387 -3.82 -3.33 2.38 
 0 0.0384 -4.92 -4.73 3.49 
 0.5 0.0372 -3.77 -3.58 3.27 
 1 0.0373 -5.59 -5.00 -1.13 
 1.5 0.0374 -6.85 -5.58 -0.92 
 2 0.0375 -7.46 -5.38 -1.20 
 2.5 0.0377 -8.23 -5.38 -1.18 

  3 0.0379 -8.73 -5.27 0.11 

Note:  Number of iteration of bootstrap p=700. Sample size N=1000, Simulation time M=2000.    

           Outcome rate for treatment group ω 11= ω 12= ω 13=0.6;   

           Outcome rate for comparison group for always-takers and compliers ω 01= ω 02=0.3. 

           Rate of always-taker ω 1= 0.2 and never-taker ω 3=1- ω 1- ω 2; Delta=logit ω03-logit ω02. 
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Table 3.5. Comparison of width and coverage of 95% confidence intervals for the true log odds 
ratio between 2SPS and 2SRI approaches with small sample size. 
 

2SPS 2SRI 

Adjusted Estimate Bootstrap Estimate Adjusted Estimate Bootstrap Estimate 

 
Compliance 

Rate  Cρ

 
δ 
 

Width %Coverage Width %Coverage Width %Coverage Width %Coverage 
0.3 -3 2.4383 92.35 2.5509 91.50 3.6301 96.15 3.8499 97.20 

 -2.5 2.4335 92.95 2.5436 92.15 3.5154 96.00 3.7203 97.25 
 -2 2.4264 93.10 2.5314 92.50 3.3647 95.70 3.5453 97.00 
 -1.5 2.4144 94.45 2.5167 94.35 3.1715 96.05 3.3366 96.70 
 -1 2.4011 95.70 2.4951 94.55 2.9601 96.60 3.0994 96.40 
 -0.5 2.3882 96.30 2.4778 95.90 2.7551 96.45 2.8747 96.50 
 0 2.3895 96.20 2.4752 96.25 2.5969 96.25 2.6992 96.35 
 0.5 2.4152 96.00 2.5021 95.70 2.5077 96.20 2.6041 95.80 
 1 2.4775 95.40 2.5705 95.75 2.5034 95.45 2.6039 96.00 
 1.5 2.5843 94.70 2.6817 96.10 2.5900 94.75 2.6935 96.25 
 2 2.7194 95.45 2.8362 95.90 2.7450 95.65 2.8699 96.15 
 2.5 2.8669 95.95 3.0059 96.60 2.9421 95.95 3.0937 97.05 
 3 3.0017 96.20 3.1629 97.10 3.1415 95.85 3.3204 97.10 

0.5 -3 1.3755 94.45 1.3993 94.75 1.7917 95.55 1.8477 96.20 
 -2.5 1.3756 94.80 1.3992 94.95 1.7653 95.55 1.8166 96.15 
 -2 1.3761 94.65 1.3990 95.00 1.7269 95.60 1.7748 96.25 
 -1.5 1.3771 95.05 1.3995 95.70 1.6775 95.65 1.7205 96.30 
 -1 1.3793 95.40 1.4011 96.00 1.6175 95.25 1.6558 96.05 
 -0.5 1.3842 95.20 1.4064 95.50 1.5549 95.10 1.5903 95.85 
 0 1.3936 95.85 1.4167 95.95 1.5014 95.75 1.5331 96.05 
 0.5 1.4107 95.35 1.4351 95.45 1.4667 95.90 1.4972 95.85 
 1 1.4379 94.95 1.4636 95.00 1.4593 94.80 1.4894 95.30 
 1.5 1.4724 95.55 1.5013 95.00 1.4776 95.60 1.5102 94.95 
 2 1.5100 95.40 1.5418 95.80 1.5143 95.45 1.5498 95.95 
 2.5 1.5452 95.70 1.5815 95.95 1.5585 95.60 1.5987 96.10 
 3 1.5746 95.80 1.6136 96.00 1.6002 95.65 1.6438 96.15 

0.7 -3 0.9936 95.25 1.0022 95.95 1.1125 95.15 1.1314 95.50 
 -2.5 0.9942 95.15 1.0027 96.10 1.1090 95.15 1.1274 95.60 
 -2 0.9951 95.40 1.0036 95.95 1.1036 95.30 1.1212 95.70 
 -1.5 0.9965 95.30 1.0049 96.10 1.0962 95.30 1.1128 96.00 
 -1 0.9989 94.85 1.0075 95.70 1.0860 94.95 1.1017 95.80 
 -0.5 1.0022 94.80 1.0113 96.05 1.0739 95.20 1.0888 95.90 
 0 1.0069 95.40 1.0165 95.95 1.0613 95.40 1.0755 95.80 
 0.5 1.0133 95.70 1.0233 95.40 1.0508 95.75 1.0645 95.50 
 1 1.0215 94.35 1.0317 94.90 1.0448 94.75 1.0581 94.75 
 1.5 1.0295 94.45 1.0406 95.45 1.0430 94.50 1.0568 95.55 
 2 1.0371 94.45 1.0485 95.20 1.0447 94.40 1.0586 95.40 
 2.5 1.0432 94.65 1.0554 95.15 1.0478 94.65 1.0623 95.30 

  3 1.0478 94.45 1.0609 94.95 1.0510 94.55 1.0663 95.05 

Note:  Number of iteration of bootstrap p=500;  Sample size N=500; Simulation time M=2000. 

           Outcome rate for treatment group ω11= ω 12= ω 13=0.6;   

           Outcome rate for comparison group for always-takers and compliers ω 01= ω 02=0.3. 

           Rate of always-taker ρA=0.2 and never-taker  ρA =1- ρC- ρN; Delta=logit ω03-logit ω02. 
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Table 3.6. Comparison of width and coverage of 95% confidence intervals for the true log odds 
ratio between 2SPS and 2SRI approaches with large sample size. 
 

2SPS 2SRI 

Adjusted Estimate Bootstrap Estimate Adjusted Estimate Bootstrap Estimate 

 
Compliance 

Rate  Cρ

 
δ 
 

Width %Coverage Width %Coverage Width %Coverage Width %Coverage 
0.3 -3 1.6852 89.10 1.7148 89.40 2.4967 95.25 2.5585 95.70 

 -2.5 1.6814 89.65 1.7109 90.40 2.4178 96.15 2.4773 95.80 
 -2 1.6762 91.40 1.7053 90.70 2.3140 95.85 2.3679 96.10 
 -1.5 1.6694 92.00 1.6971 92.60 2.1846 95.60 2.2329 95.95 
 -1 1.6609 93.05 1.6869 93.95 2.0412 95.10 2.0819 95.75 
 -0.5 1.6538 95.10 1.6786 95.90 1.9038 95.60 1.9385 96.30 
 0 1.6543 95.40 1.6769 95.75 1.7949 95.20 1.8227 95.80 
 0.5 1.6715 95.00 1.6941 95.50 1.7334 95.30 1.7593 95.55 
 1 1.7121 95.35 1.7377 95.10 1.7282 95.75 1.7560 95.15 
 1.5 1.7825 95.40 1.8114 95.55 1.7845 95.45 1.8153 95.65 
 2 1.8726 95.65 1.9060 95.70 1.8880 95.55 1.9237 95.70 
 2.5 1.9694 95.30 2.0083 96.30 2.0183 94.85 2.0609 96.45 
 3 2.0597 94.90 2.1021 96.30 2.1523 92.15 2.1995 94.25 

0.5 -3 0.9702 93.90 0.9755 94.35 1.2587 94.85 1.2732 96.05 
 -2.5 0.9704 94.10 0.9754 94.40 1.2407 94.70 1.2544 95.70 
 -2 0.9706 94.25 0.9755 94.40 1.2146 95.00 1.2267 95.65 
 -1.5 0.9713 94.65 0.9761 94.65 1.1801 94.95 1.1909 95.95 
 -1 0.9729 94.35 0.9778 95.25 1.1384 94.55 1.1485 95.75 
 -0.5 0.9764 94.75 0.9812 95.25 1.0949 94.55 1.1036 95.40 
 0 0.9832 94.55 0.9881 94.85 1.0578 94.95 1.0653 94.90 
 0.5 0.9953 94.65 1.0006 95.00 1.0339 94.55 1.0410 95.20 
 1 1.0141 94.10 1.0200 94.75 1.0283 94.35 1.0358 95.05 
 1.5 1.0385 93.85 1.0454 94.15 1.0412 93.95 1.0492 94.15 
 2 1.0649 93.30 1.0728 94.55 1.0668 93.30 1.0758 94.50 
 2.5 1.0902 93.85 1.0991 95.15 1.0980 94.00 1.1081 95.20 
 3 1.1111 94.20 1.1210 94.95 1.1274 94.20 1.1387 94.65 

0.7 -3 0.7020 94.55 0.7029 94.95 0.7850 94.45 0.7883 94.85 
 -2.5 0.7024 94.00 0.7031 94.90 0.7826 94.45 0.7856 94.70 
 -2 0.7030 94.30 0.7037 94.85 0.7787 94.55 0.7817 94.55 
 -1.5 0.7040 94.15 0.7047 94.75 0.7734 94.70 0.7762 95.25 
 -1 0.7056 94.40 0.7064 94.55 0.7663 94.60 0.7691 95.50 
 -0.5 0.7081 94.40 0.7091 94.85 0.7577 94.55 0.7605 95.35 
 0 0.7115 94.00 0.7126 95.00 0.7491 94.70 0.7517 95.50 
 0.5 0.7161 94.50 0.7175 95.15 0.7418 94.45 0.7445 95.35 
 1 0.7217 94.10 0.7229 94.60 0.7376 94.15 0.7399 94.80 
 1.5 0.7275 94.30 0.7290 94.05 0.7364 94.35 0.7388 94.30 
 2 0.7328 93.80 0.7346 94.00 0.7375 93.80 0.7401 94.20 
 2.5 0.7374 93.90 0.7394 94.25 0.7399 94.15 0.7427 94.25 

  3 0.7408 93.80 0.7430 94.45 0.7422 93.75 0.7453 94.55 

Note:  Number of iteration of bootstrap p=700;  Sample size N=1000; Simulation time M=2000. 

           Outcome rate for treatment group ω11= ω 12= ω 13=0.6;   

           Outcome rate for comparison group for always-takers and compliers ω 01= ω 02=0.3. 

           Rate of always-taker ρA=0.2 and never-taker  ρA =1- ρC- ρN; Delta=logit ω03-logit ω02. 
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Figure 3.1. Comparison of Variance between 2SPS and 2SRI with sample size N=500. 
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Figure 3.2. Comparison of MSE between 2SPS and 2SRI with sample size N=500. 
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Figure 3.3. Comparison of Variance between 2SPS and 2SRI with sample size N=5000. 
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Figure 3.4. Comparison of MSE between 2SPS and 2SRI with sample size N=5000. 
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3.7 Appendix: The adjusted variance estimate is

equal to the heteroskedasticity robust variance

estimate for the simple linear case.

Prove:

The adjusted variance estimate is equal to the heteroskedasticity robust variance

estimate for the simple linear case.

Proof:

For the simple two stage linear regression, we assume that the two stage linear

model is as followed.

First stage:

zi = ρri + ui.

Second stage:

yi = ẑiλ+ vi.

Then we have the objective function for the first stage:

q1 (ρ) = (z − ρr)2 ,

and the score is,

s1 (ρ) =
∂q1 (ρ)

∂ρ
= (z − ρr) r,

and the Hession is,

H1 (ρ) =
∂q2

1 (ρ)

∂ρ2
= −r2.
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The objective function for the second stage is,

q2 (λ) = (y − ẑλ)2 .

The score is,

s2 (λ) =
∂q2 (λ)

∂λ
= (z − λẑ) ẑ = (z − λρ̂r) ρ̂r,

and the Hession is,

H2 (λ) =
∂q2

2 (λ)

∂λ2
= −ẑ2.

The adjusted score function is,

g
(
y, r; ρ̂,λ̂

)
= s2

(
y, r; ρ̂,λ̂

)
+

∑ ∂s2

(
y, r; ρ̂,λ̂

)
∂ρ

(∑
H1 (zi, ri; ρ̂)

)−1

(−s1 (zi, ri; ρ̂))

=
(
y − λ̂ρ̂r

)
ρ̂r +

∑ (
yiri − 2λ̂ρ̂r2

i

) (∑
−r2

i

)−1

[− (zi − ρ̂ri) ri] .

So the estimated variance of two stage linear regression by the Wooldrige process

is,

V̂
(
λ̂
)

adjust
=

(∑
H2

(
yi, ri; ρ̂,λ̂

))−1 ∑
g

(
yi, ri; ρ̂,λ̂

)
g

(
yi, ri; ρ̂,λ̂

)T

(∑
H2

(
yi, ri; ρ̂,λ̂

))−1

=
[∑

(ẑi)
2
]−2 ∑ 

(
yi − λ̂ρ̂ri

)
ρ̂ri+∑(

yiri − 2λ̂ρ̂r2
i

)
(
∑
−r2

i )
−1

[− (zi − ρ̂ri) ri]


2

Comparing with the heteroskedasticity-robust estimate of variance:

ˆV ar
(
λ̂
)

=
(
Ẑ′Ẑ

)−1 (∑
û2

i ẑ
′
iẑi

) (
Ẑ′Ẑ

)−1

=
(∑

ẑ2
i

)−2 ∑ [(
yi − ziλ̂

)
(ẑi)

]2

,
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we need to show,

∑ [(
yi − ziλ̂

)
(ẑi)

]2

=
∑ 

(
yi − λ̂ρ̂ri

)
ρ̂ri +

∑(
yiri − 2λ̂ρ̂r2

i

)
(
∑
−r2

i )
−1

[− (zi − ρ̂ri) ri]

 .
Since,

RHS =
∑ [(

yi − λ̂ẑi

)
ẑi +

∑ (
yiri − 2λ̂ρ̂r2

i

) (∑
−r2

i

)−1

[− (zi − ρ̂ri) ri]

]2

=
∑ 

(
yi − ziλ̂

)
(ẑi) + (zi − ẑi) λ̂ẑi +

∑(
yiri − 2λ̂ρ̂r2

i

)
(
∑
−r2

i )
−1

[− (zi − ρ̂ri) ri]


2

.

we need to prove,

(zi − ẑi) λ̂ẑi +
∑ (

yiri − 2λ̂ρ̂r2
i

) (∑
−r2

i

)−1

[− (zi − ρ̂ri) ri] = 0.

Proof:

(zi − ẑi) λ̂ẑi +
∑ (

yiri − 2λ̂ρ̂r2
i

) (∑
−r2

i

)−1

[− (zi − ρ̂ri) ri]

= (zi − ẑi) λ̂ẑi +
∑ (

yiri − 2λ̂ρ̂r2
i

) (∑
r2
i

)−1

(zi − ẑi) ri

= (zi − ẑi)

[
λ̂ẑi +

∑ (
yiri − 2λ̂ρ̂r2

i

) (∑
r2
i

)−1

ri

]
= (zi − ẑi)

(∑
r2
i

)−1
[
λ̂ẑi

(∑
r2
i

)−1

+
∑ (

yiri − 2λ̂ρ̂r2
i

)
ri

]
= (zi − ẑi)

(∑
r2
i

)−1
[∑

rizi∑
r2
i

riλ̂i

(∑
r2
i

)−1

+ ri

∑ (
yiri − 2λ̂ρ̂r2

i

)]
= (zi − ẑi)

(∑
r2
i

)−1

ri

[∑
riziλ̂i +

∑ (
yiri − 2λ̂ρ̂r2

i

)]
= (zi − ẑi)

(∑
r2
i

)−1

ri

∑ (
riziλ̂i + yiri − 2λ̂ρ̂r2

i

)
= (zi − ẑi)

(∑
r2
i

)−1

ri

∑
ri

(
ziλ̂i − λ̂ρ̂ri + yi − λ̂ρ̂ri

)
= (zi − ẑi)

(∑
r2
i

)−1

ri

∑
ri

[
λ̂i (zi − ẑi) +

(
yi − λ̂ẑi

)]
= (zi − ẑi)

(∑
r2
i

)−1

ri

∑
ri

[
λ̂iui + vi

]
= 0
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So,

RHS =
∑ [(

yi − λ̂ẑi

)
ẑi + 0

]2

= LHS
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Chapter 4

Different Approaches of

Instrumental Variable Analysis of

Antidiabetic Effect of Bezafibrate

4.1 Introduction

Two-stage logistic regression and generalize structural mean model (GSMM) are

the two different approaches to analyze causal inference of binary outcomes. GSMM

was proposed by Vansteelandt and Geotghebeur (66) as an extension of the structural

mean model (SMM) (96; 97; 104; 68) to the logistic regression for binary outcomes un-

der the randomized clinical trial (RCT) setting when patients assigned to the placebo

group can not access the study treatment. Having analyzed bias, variance, mean stan-

dard error, and 95% confidence coverage of two-logistic logistic regression approaches

and found that the two stage logistic regression is biased, we were motivated by the

72



epidemiologic study of casual antidiabetic effect of bezafibrate to apply the GSMM

together with the two-stage logistic regressions to the analysis of non-randomized

observational study. Vansteelandt and Geotghebeur mentioned that the GSMM can

be extended to observational study (66), but there was no detailed discussion how

it is implemented, and what is the property of GSMM when it is extended to non-

randomized study. In this research, we extended the GSMM to the setting when

patients assigned to the placebo group can access the study treatment, and we did

simulations to evaluate bias, variance, mean standard error of the GSMM and com-

pare it with the two-stage logistic regression approaches. The two-stage regression

approaches include two-stage predictor substitution (2SPS) and two-stage residual in-

clusion (2SRI). Under the 2SPS approach, the first stage model yields the predicted

value of treatment as a function of an instrument and covariates, and in the second

stage model for the outcome, this predicted treatment replaces the observed treatment

as covariate. Under the 2SRI approach, the first stage is the same, but the residual

term of the first stage regression is included in the second stage regression, retain-

ing the observed treatment as a covariate (70; 85). Angrist, Imbens and Rubin (43)

proposed the causal model under the potential outcome framework originating from

Neyman and Fisher in the early 20th century (20). Under specific assumptions we will

described in the second section, they classified patients based on the potential compli-

ance status, and analyzed treatment effect based on this classification, which is called

principal stratification. Patients are called always-takers if they would take the study

treatment no matter what their treatment assignment is; Patients are called never-

takers if they would not take the study treatment no matter what their treatment
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assignment is; Patients are called compliers if they follow the treatment assignment;

Patients are called defiers if they would take treatment opposite to their treatment

assignment. With this principle stratification, they proved that linear 2SPS estimator

can be interpreted as the local average treatment effect (LATE) or the complier aver-

age causal effect (CACE) (43). Nagelkerke and Terza proved 2SRI estimates the same

treatment effect as 2SPS (70; 85) for the linear model, thus it can also be interpreted

as LATE or CACE. However, when the two-stage-linear regression is extended to the

two-stage logistic regression for the binary outcome, both 2SPS and 2SRI are biased

in general (79). In this research, we want to answer the question if the treatment

effect estimated from the GSMM is unbiased estimate of CACE. More importantly,

we want to evaluate the performance of the GSMM estimator when it is extended to

be applied to the non-randomized observational study. To do this, we first wrote an

R program to implement the GSMM extended to the setting when patients in both

arms can access to the study treatment and used this program to perform simula-

tions to evaluated performance of GSMM method under the principal stratification

framework. Then we applied GSMM together with 2SPS and 2SRI to the analysis of

antidiabetic effect of bezafibrate using the GPRD database. Bezafibrate is a fibrate

that is widely prescribed in the U. K. for the treatment of dyslipidemia. Recently, it

was found by conducting post-hoc analysis of the randomized clinical trial data that

this fibrate may prevent diabetes in patients with cardiovascular disease or obesity

(106; 107; 108; 109), while other fibrates [like ciprofibrate, clofibrate, fenofibrate,

or gemfibrozil] were not found to have such effect. This may due to the fact that

bezafibrate is a pan-PPAR agonist that can activate PPAR-α as well as PPAR-γ,
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and thus have the same effect as anti-diabetes drug in the class PPAR-γ agonist

like thiazolidinedione (TZD) (94), while other fibrates are much more selective for

PPAR-α. Based on this observation, Flory et al performed a retrospective cohort

study using General Practice Research Database (GPRD) to compare the instance of

diabetes between bezafibrate users and other fibrate users. Their results suggested

a protective effect of bezafibrate against diabetes (95). In this study, we will apply

different IV approaches to the analysis of the same data to explore these methods

and further assess whether there is causal effect of bezafibrate against diabetes. This

paper is organized as follows. In the second section on method, we will first introduce

notations and assumptions of causal inference frame work of principle stratification.

Then we will describe GSMM model followed by two approaches of two-stage logistic

regression models. About the GSMM model, we will describe how it was extended

to the setting when patients assigned to the placebo arm can access the study treat-

ment. Also in the method section, we will describe how datasets were generated by

simulation with the principle stratification framework, how we did analysis with the

simulated data. Then we will describe GPRD bezafibrate data and the strategy of

analyzing this data. In the third and fourth section, we will present our result and

discussion.
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4.2 Method

4.3 Assumptions and notations

An IV is a factor that has the following properties: a) it is associated with treat-

ment; b) it has no direct causal effect on the outcome; and c) it is independent of

all unmeasured confounders of the treatment-outcome (45; 43; 46; 41). An IV anal-

ysis can provide causal inference of treatment effect that controls for all confounding

including unmeasured confounding (42). According to the Angrist-Imbens-Rubin

model, we have the following five assumption about IV analysis under the poten-

tial outcome framework (43): 1) Stable unit treatment value assumption (SUTVA)

(71; 105), which means that potential outcomes for each person is unrelated to the

treatment status of other individuals; this assumption also implies the consistency

assumption, which means the potential outcome of a certain treatment will be the

same regardless of the treatment assignment mechanism (73); 2) Random assignment

assumption, which means that the IV is unrelated, as the randomized assignment, to

all confounders in the randomized clinical trials, or it is unrelated to the unmeasured

confounders (conditional on the measured confounders) of the treatment-outcome re-

lationship in observational studies; 3) Exclusion restriction, which means that any

effect of treatment assignment on outcomes must be via an effect of treatment assign-

ment on treatment received; 4) Nonzero average causal effect of treatment assignment

on treatment received, which means that the treatment assignment should be associ-

ated with treatment received; and 5) Monotonicity, which means that there is no one
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who does the opposite of his/her treatment assignment, regardless of the actual as-

signment. Under these assumptions, we define Z as the observed treatment received;

Z = 1 means a patient takes the study treatment and Z = 0 means a patient takes

comparison treatment or non-treatment. As an IV, R is defined as treatment assign-

ment in the randomized clinical trial setting; R = 1 means a patient is assigned to the

study treatment and R = 0 means a patients is assigned to the comparison treatment

or non-treatment. In non-randomized studies, R is defined as an IV that is associated

with treatment received and meets all above IV criteria. For instance, if the physi-

cians’ preferences are used as IV, R = 1 means a physician’s preference is the study

treatment, and R = 0 means a physician’s preference is the comparison treatment or

non-treatment. For both contexts of clinical trial and observational study, we define

Y as the observed outcome, Y (1) as the potential outcome if a patient takes study

treatment, Y (0) as the potential outcome if a patients takes comparison treatment

or non-treatment. We denote ω1C as the potential outcome among compliers when

exposed to the study treatment, and ω0C as the potential outcome among compliers

when untreated. Lastly, we define ρA, ρC , and ρN as the probability of always-takers,

compliers, and never-takers respectively. Under the above monotonicity assumption,

there are no never-takers. In the clinical trial when patients in the placebo arm can

not access the study treatment, there are no always-takers, which means ρA = 0, but

with observational studies, ρA can be any value from 0 to 1.
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4.3.1 Generalized Structural Mean Models

The general class of structural mean models (SMMs) is defined under the poten-

tial outcome framework and estimated by G-estimation (96; 97; 104; 68; 110; 6).

The SMM expresses the contrast of the means of observed outcomes and the po-

tential treatment-free outcomes as a function of exposure to treatment. Under the

randomization assumption, the average treatment effect can be estimated with a G-

estimation equation based on the assumption that the means of potential outcome

in the two randomization arms are equal. This process applies to both the linear

model for estimating difference in means and the log linear model for estimating the

log-ratio of means. However, for a logistic SMM with a binary outcome, no unbi-

ased estimating equation exists for the causal parameter of the logistic SMM (68),

because integration of the mean of a binary outcome under a logistic model with the

law of iterated expectation does not produce a marginal mean for which the logistic

model holds. To solve this problem, Vansteelandt and Goetghebeur (66) proposed

the GSMM that augments the logistic SMM with a logistic regression model for the

association between the binary outcome and observed exposure in each randomization

arm or at level of the instrumental variable.

In the randomized trial context when controls cannot access treatment, the first

component of the GSMM is the structural model for the causal log odds ratio of

exposure on outcome conditional on the observed levels of the IV, exposure factor,
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and any covariates:

log it {E (Yi|Zi,xi,Ri = 1)} − log it
{
E

(
Y

(0)
i |Zi,xi,Ri = 1

)}
(4.3.1)

= η′s (Zi,xi)ψ.

where ψ is the treatment effect at the logit scale, and η′s (Zi,xi) is a function of

Zi and xi. For intendance, if η′s (Zi,xi) = Zi , then ψ is the causal log odd ratio. If

η′s (Zi,xi) contains x, it means the causal effect is different for patients with different

baseline characteristics x. This structural model is the same regardless of whether it’s

a randomized trial with controls not having access to treatment and the IV context

where everyone has access to treatment.

The second component of the GSMM is the association model for the log odds

ratio of exposure on outcome conditional on observed levels of the exposure and

covariates factors among those in the randomized to treatment group:

log it {E (Yi|Zi,xi,Ri = 1)} = η′a1 (Zi,xi) β1, (4.3.2)

where subscript 1 in ηa1 and β1 means the association model is from treatment arm.

η′a1 (Zi,xi) can be any function of Zi and xi. β1 is the parameter for the association

of observed outcome and observed treatment and covariate x. For instance, the usual

form of η′a1 (Zi,xi) β1 is Zβ11 + xβ12. For the clinical trial with controls not having

access to treatment, equation (4.3.2) is the only association model because in the

control arm, Z = 0 for all patients, but in the observational studies, Z can be either

0 or 1 in the control arm, so we have the second association model in the control arm

as follows,

log it {E (Yi|Zi,xi,Ri = 0)} = η′a0 (Zi,xi) β0. (4.3.3)
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Subscript 0 in ηa0 and β0 means the association model is from control arm.

Estimation:

In clinical trials when patients in the placebo arm can not access the study treat-

ment, the exposure-free outcome for each subject i can be expressed as,

Hi (ψ, β) = exp it {η′a1 (Zi,xi) β1 − η′s (Zi,xi)ψ}Ri + Yi (1−R) . (4.3.4)

By the randomization assumption, the treatment arm and the placebo arm have

the same conditional mean of Hi given xi , which leads to the equation,

d (xi)E {Hi (ψ, β) |xi, Ri = 1} − q (xi) (4.3.5)

= d (xi) [E {Hi (ψ, β) |xi, Ri = 0} − q (xi)]

and the estimating equation for ψ as,

∑ d (xi)Ri

pr (Ri = 1|xi)
{Hi (ψ, β)− q (xi)} (4.3.6)

=
d (xi) (1−Ri)

pr (Ri = 0|xi)
{Hi (ψ, β)− q (xi)} ,

where d(x) and q(x) can be any functions of covariates. We should select these

functions to maximize the efficiency of the estimations ( see Vansteelandt and Goet-

ghebeur (66) regarding how to select d(x) and q(x).

The estimating equations for β0 and β1 is:(7)

∑
db (Zi,xi)Ri [Yi − exp it {η′ab (Zi,xi) βb}] , (4.3.7)

for b=0,1 and where d(z,x) is an arbitary vector function of Zi and xi, for instance,

the maximum likelihood score equation.
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In a randomized clinical trial when the control group can not access the study

treatment, we can only obtain the estimate of β1 from the estimation equation (4.3.7),

and then obtain Hi (ψ, β) from (4.3.4), so that can be used in equation (4.3.6) to

estimate ψ by iterative form of G-estimation.

In the IV constext when every subject has access to treatment, the exposure-free

outcome for each subject expressed as,

Hi (ψ, β) = exp it {η′a1 (Zi,xi) β1 − η′s (Zi,xi)ψ}Ri (4.3.8)

+ exp it {η′a0 (Zi,xi) β0 − η′s (Zi,xi)ψ} (1−R)

We need to estimate both β0 and β1 from equation (4.3.7), and then obtain

Hi (ψ, β) from (4.3.8), so that can be used in equation (4.3.6) to estimate ψ by

iterative form of G-estimation.

In that above models, we need to select covariate x that is associated with both

exposure and outcome in treatment arm and placebo arm.

4.3.2 Two stage logistic regression

The first stage logistic regression is the treatment received Zi on the treatment

assignment Ri and other covariate xi.

E (Z) = exp it (ρ1 + ρ2R + ρx)

For the 2SPS, the second stage logistic regression is the outcome on the expected

value of Zi from the first stage regression, which is,

E (Y ) = exp it (λ1 + λ2ẑ + λ3x)
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With this regression, the causal treatment effect is λ2, the coefficient of the expected

value of Z.

For the 2SRI, the second stage logistic regression is the outcome on the treatment

received AND the residual from the first stage regression, which is

E (Y ) = exp it (λ1 + λ2z + λ3ê+ λ4x)

With this regression, the causal treatment effect is λ2, the coefficient of the observed

treatment received(6, 24, 34).

4.3.3 Simulations

In our previous simulations (79), we set the probability of compliance status as

constant. In this study, we make our simulation more generalized by introducing a

baseline covariate x and letting the probability of compliance status vary over x. The

detailed algorithm of simulation is as follows:

Step 1: Generate a data set with total number of N subjects. Each subject as

a continuous baseline variable x that follows the normal distribution with mean of 0

and variance of 1.

Step 2: For each subject, determine the probability of always-takers (ATs), Com-

pliers (Cs), and never-takers (NTs) as follows:

ρA = P (C) = expit(b1 + b2x)

ρC = P (AT ) = a(1− P (C))

ρN = P (NT ) = 1− P (C)− P (AT )

a, b1, and b2 are predetermined parameters that can determine probability of Cs,
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ATs, and NTs. For instance, a = 0 means there are no ATs; when b1 = 0 and the

mean of x is 0, the probability of Cs is 0.5.

Step 3: With multinomial distribution, determine each subject’s compliance situ-

ation, in R, the following program is used:

Comp=t(apply(w,1, function(w) rmultinom(1, 1, c(w[1], w[2], w[3]))))

w[1], w[2], w[3] are the probability of AT, C, and NT respectively.

Step 4: With the probability of probability r, randomly assign rN subjects to

R = 1 and the rest of (1− r)N subjects to R = 0.

Step 5: Create the potential outcome Y (0) and Y (1) based on the compliance status

of each subject, and the probability of potential outcome for each compliance status.

Step 6: Determine treatment received Z of each subject based on the treatment

assignment R and compliance status.

Step 7: Determine observed outcome of each subject based on the potential out-

come and treatment received.

Y = Y (1)Z + Y (0)(1− Z)

With this setting, patients in the control arm can access the study treatment

means that there are ATs (a 6= 0). If(a = 0), we have Pr(AT ) = 0, which means that

patients in the control arm can not access the study treatment. We also introduce

a parameter δ as a measure of severity of confounding. The δ is denoted as the

difference between the logit of outcome of never-takers and compliers,

With the same simulated data, we used GSMM, 2SPS and 2SRI methods to

estimate the treatment effect, and we compare bias, variance and MSE among those

three approaches.
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4.3.4 Bezafibrate Data from the GPRD Database

Our data is from the static version of the General Practitioner Research Database

(GPRD) that ceased to be updated in 2002. This is an electronic medical record

database from 754 general practitioner practice in UK. The database includes reg-

istration, demographic information, all prescriptions written by the general practi-

tioners, clinical diagnoses, etc. The GPRD data were originally collected for clinical

purposes but the database is widely used for epidemiological research(15-17, 21, 40).

Patients in the GPRD database represent the UK population because 98% of people

in UK receive all forms of health care through general practitioners and each person

has to register to a specific general practice.

We used the data from 1998 through 2002 to create a cohort of fibrate users and

classify those patients into bezafibrate users and other fibrate users based on their first

fibrate use recorded in the database. To be included in the cohort, patients needed to

have at least 12 months up-to-standard (which means the data quality met criteria

set by GPRD) GPRD record before the first prescription of fibrate, and needed to

have continuous prescription of bezafibrate (study group) or other fibrate (comparison

group) for at least 90 days. The continuous prescription means that the gap between

the treatments was less than 60 days. We began follow-up from the 91st day of fibrate

treatment (T0) to the 30th day after the end of fibrate treatment (T1). If a patient

switched treatment group, T1 was defined as the date this patient switched treatment

class. Patient with any evidence of diabetes before T0 were excluded.
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4.3.5 IV analysis of the Bezafibrate Data

In our IV analysis, the treatment Z is the class of fibrate, Z=1 mean bezafibrate

and Z=0 mean other fibrate. The outcome Y is the occurrence of diabetes during

the follow-up (between T0 and T1). The occurrence of diabetes is defined by at least

two diabetes codes, which can be of clinical diagnoses for diabetes, or of treatment of

diabetes.

In this analysis, we used the prior fibrate prescription from the same practice as

the IV R. Since we defined the exposure as the initial fibrate treatment, the prior

prescription from the same practice was always prescribed to a different patient than

the current patient. If a patients was the first one who are prescribed a fibrate, there

was no IV for this patients, thus this patient was excluded from the analysis.

For the covariate x, we included calendar year, age, sex, body mass index (BMI)

and smoking status were not included as covariate in the analysis because a large

portion of patients had missing values of the variables), hypertension, history of my-

ocardial infarction (MI), history of stroke, use of potentially protective drugs (ACE-

inhibitors), and common potentially diabetogenic drugs (beta blockers, thiazide di-

uretics, corticosteroids). We did analyses with and without these covariates and we

also tested if the covariates should be included in the models.

Before we did the IV analysis, we tested if the IV is associated with the exposure

by calculating correlation of IV and Z, odds ratio, and p value for the null hypothesis

that the odds ratio is 1.

We use both approaches of 2-stage logistic regression, 2SPS and 2SRI, as well as
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the GSMM to analyze the data and compare bezafibrate users vs other fibrate users

regarding rate of diabetes. We also applied traditional logistic regression without IV

to the analysis of the same data set. We compared point estimate and standard error

from all these 4 approaches of analysis.

4.4 Results

4.4.1 Simulation results

We did the simulations for both frequent outcomes (ω0C = 0.3, and ω1C = 0.6)

and rare outcomes (ω0C = 0.03, and ω1C = 0.06) with sample size N=10000. The

compliance rate is 0.5, thus the rate of NT is also 0.5. Table 4.1 is of the results of

the simulations when there are no always-takers. For the frequent outcome, the bias

was very small (less than 0.5%); for simulation of rare outcome, the bias was also

very small. It was less than 5% when the δ was less than 1. When the δ is 1 and 1.5,

the bias was greater than 5% but less than 10%. When the δ was 2, we didn’t have

the simulation results because the model didn’t converge for some of the simulations.

This result shows that the sample size 10000 is not enough for the rare outcome. All

simulations have very accurate of 95% CI coverage.

Table 4.2 is of the results of the simulations when we extended the GMSS model

to the situation that there are always-takers. In these simulations, the compliance

rate was 0.5, and the rate of ATs and NTs were both 0.25. Similar to the non-AT

situation, the bias of the treatment effect estimator was also very small (less than
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0.3%) for the frequent outcome. For the rare outcome, the bias estimated from the

simulation was larger than the frequent outcome setting, but it was still very small

(less than 5%). In these simulations, the 95% CI coverage was also close to 95%,

although it was slightly higher than 95%.

Table 4.3 compares bias, variance and SME of the three IV approaches, which

are 2SPS, 2SRI logistic regression and GSMM. In the simulations with sample size

N=3000, there were no ATs, and we set compliance rate as 0.3, 0.5 and 0.7, thus

the rate for NTs was 0.7, 0.5, and 0.3 respectively. The δ varied from -2 to 2 in the

simulations. For GSMM, the estimated bias was less than 2% in the low compliance

situation and less than 1% in high compliance situations. In contrast, the 2SPS

and 2SRI can be severely biased. The percentage bias was as high as 53.9% for the

2SPS approach and it was as high as 68.62% for the 2SRI approach. For these two

approaches, there was a trend that the bias deceases with the increase of compliance

rate (i.e., strength of the IV) and it also decreased with the decrease of confounding.

When there is no confounding, the 2SRI was unbiased (the estimated bias is less than

0.5%), which was consistent with our previous report.

Comparing the variance of the three approaches, we can see that the GSMM

generally had the smallest variance, and 2SRI had the highest variance. The GSMM

also had the smallest MSE among the three approaches. It is difficult to tell which

approach has smaller MSE when comparing 2SRI and 2SPS.
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4.4.2 IV analysis of bezafibrate data

We first estimated the association of IV and treatment and present results in table

4.4. When the prior prescription from the same practice was bezafibrate, 79.4% of

patients actually had bezafibrate prescription, in comparison, when the prior prescrip-

tion from the same practice was other fibrates, only 60.7% of patients had bezafibrate

prescription. The OR for the association of the IV and the treatment received was

2.49 with 95% confidence interval 2.31-2.69 and p value less than 0.001. The corre-

lation between the IV and exposure was 0.1907, which means the prior prescription

from the same practice was a weak IV.

Table 4.5 shows the association between exposure and outcome as well as between

IV and outcome. The unadjusted odds ratio of actual bezafibrate treatment vs. other

fibrate on the outcome of diabetes was 0.67 (95% CI 0.53-0.85) with p value 0.0009,

indicating strong association. On the other hand, the association of IV and the

outcome was very weak, with odds ratio 0.97 (%95 CI 0.76-1.26), and p value 0.8417.

This association is equivalent to intent-to-treat analysis in clinical trial.

In Table 4.6, we compare treatment effect estimated by different approaches, with

and without adjustment of covariates. With traditional logistic regression without

IV analysis, the log odds ratio was -0.3942 without covariates and the estimated log

odds ratio is almost the same when adding covariates (-0.4028). For the IV analysis

of 2-stage regression approaches, 2SPS and 2SRI yielded very similar estimates of

causal effect. When the covariates were not in the models, 2SPS and 2SRI provide

log odds ratio of -0.1391 and -0.1067 respectively; when the covariates were added to
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the models, 2SPS and 2SRI yield log odds ratio of -0.2682 and -0.2532 respectively.

On the other hand, the GSMM approaches provided log odds ratio -0.1959 when the

covariates were not in the model, but the estimated log odds ratio was 0.4040 when

the covariates are added to the model. As shown in the same table, the log odds ratio

estimated by GSMM had the smallest standard error among the three IV approaches,

which was consistent with our simulation results.

Theoretically, the IV analysis can control for all measured and unmeasured con-

founders without adding covariates in the model, unless the IV is associated with some

measured confounders, in which situation, we should add measured confounders as

covariates in the models. As the GSMM approach yielded opposite estimates of log

odds ratio when the covariates were added into the model, we tested the association

of the IV and all covariates to see if we should add any covariates into the model.

Table 4.7 shows that only gender and patients’ history of ACE inhibitor/angiotensin

receptor blocker use was associate with IV, but the p value for the association of

gender and the outcome was 0.3008 and 0.7250 in the group with IV being bezafi-

brate and with IV being other fibrate respectively, and the p value for the association

of history of ACE inhibitor/angiotensin receptor blocker use and the outcome was

0.9120 and 0.7305 respectively. With these results, we assumed that no covariates

should be included in the GSMM model.
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4.5 Discussion

In this research, we developed an R program to implement the GSMM model

proposed by Vansteelandt and Geotghebeur (66) when the model is extended from

randomized clinical trial that patients assigned to the placebo group can not access

the study treatment to observational study that patients in the comparison group

as determined by IV can access the study treatment. We then did simulations with

both situations when patients in the comparison group can or can not access the study

treatment. Our simulation results demonstrated that for both situations, the GSMM

gives unbiased estimates of treatment effect. When Vansteelandt and Geotghebeur

presented their GSMM model with clinical trial setting, they also did simulations to

demonstrate how the model worked. As most investigors do, they simulated data

sets according to the model itself in their simulations. In our simulations, we simu-

lated data sets with principle stratification framework. Our unbiased results demon-

strate that the GSMM yields unbiased estimates of the complier average causal effect

(CACE) on the logit scale, thus our simulation study creates a linkage between the

GSMM and the principal stratification framework. It will be very interesting to

analytically prove that GSMM is unbiased estimator of odds ratio of CACE. Our

simulation results not only show that the GSMM is unbiased estimator of odds ratio

of CACE while both 2SPS and 2SRI are biased, but also demonstrate that GSMM

has smaller variance and MSE. All these results proved that GSMM is better estima-

tor than 2SPS and 2SRI. However, during our simulations, we found that when the

outcome rate is low, GSMM needs much larger sample size to converge than 2SPS
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and 2SRI. For instance, when the outcome rate is 0.06 for the treatment group and

0.03 for the placebo group, the GSMM can not converge when the sample size is 5000,

but with the same outcome rates, 2SPS and 2SRI can converge even when the sample

size is 1000. In our previous study, we have shown that for 2SPS and 2SRI approach,

higher compliance rate yields less bias and smaller variance, but it may not be the

case for GSMM approach. This is because when compliance rate is high, there will

be small number of patients with z=0 in the treatment arm, thus estimates from the

association model may have larger variance, or it may be even worse, the model may

not converge. The limitation of applying the IV analysis to epidemiology research is

that it is difficult to find an IV that meets all assumptions, and violation of those

assumptions may lead to invalid inference. Potential variables that can be used as IV

in medical research includes physician’s prescribing preference (55; 57; 54; 101; 111),

clinic or hospital (58), and geographic region (93; 61; 59). Among them, physician’s

prescribing preference is the mostly widely used IV in pharmacoepidemiology. It was

reported that the last prescription of the same physician is a stronger IV (i.e., more

closely associated with exposure) than an IV based on all prior prescriptions (57).

When we analyzed the bezafibrate data with IV approaches, we found that the previ-

ous prescription from the same practice is associated with current prescription with

p value less than 0.001, which implies it can be used as an IV. We use is variable

instead of prescription from the same physician because in this GPRD database with

total number of 754 practices, 217 were missing all prescriber IDs, and only half fi-

brate prescriptions had prescriber ID. Even when prescriber IDs are available, the

prescriber ID may not represent the physician who prescribed the drug, because it
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can represent any worker in the practice such as a nurse who entered the prescription

into the system. We used the immediate prior prescription from the same practice

instead of all prior prescriptions from the same practice as IV because there is re-

port that immediate prior prescription is a stronger IV (57). We assumed that the

prior prescription of the same practice is independent of outcome conditional on the

treatment, and this variable is independent of all unmeasured confounders. In UK,

patients have to register to a practice and they can only see doctors in the practice

where they registered, thus they have much less freedom to select physicians than

people do in other European countries. People mostly select practices to register

based on the geographic area for their convenience. Our IV assumption is valid un-

less patients select practice based on the health outcome of the patients registered

to the practice. In this bezafibrate data analysis, over specifying the GSMM model

yielded opposite result, with an odds ratio greater than 1. On the contrary, for both

2SPS and 2SRI approaches, adding all covariates into the model didn’t change the

result very much. It looks like that GSMM is more sensitive to model selection than

2SPS and 2SRI. This may related to the fact that GSMM needs larger sample size

to converge, and when the sample size is too small, the model is not stable. The

important result of this analysis is that all three approaches have odd ratios less than

1, which suggests a casual protective effect of bezafibrate against diabetes. However,

the estimated protective effect is not statistically significant in this analysis. This

may due to the fact that the IV is weak and the rate of the outcome is low, thus the

sample size is not large enough. On the other hand, our analysis of logistic regression

without IV approaches showed statistically significant protective result that is similar
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with result of survival analysis by Flory et al (95). This is an example that there is

tradeoff between accuracy and precision with and without IV approaches. A larger

sample size is needed for this study with IV analysis.
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Table 4.1. Simulation results of GSMM estimator without always-takers. 
 
Outcome 
Rate w0c

Outcome 
Rate w1c δ 

Estimated 
Log OR Bias  Bias % 

Estimated 
Variance 

Width of 
95% CI 

% 
Coverage 

0.30 0.60 -2.0 1.2544 0.0017 0.1339 0.0050 0.2782 95.00 

  -1.5 1.2540 0.0012 0.0982 0.0053 0.2866 95.10 

  -1.0 1.2545 0.0017 0.1375 0.0058 0.2981 95.25 

  -0.5 1.2558 0.0030 0.2401 0.0064 0.3125 94.70 

  0.0 1.2566 0.0038 0.3043 0.0070 0.3280 95.05 

  0.5 1.2566 0.0038 0.3055 0.0076 0.3421 94.20 

  1.0 1.2549 0.0021 0.1675 0.0081 0.3518 94.65 

  1.5 1.2555 0.0027 0.2156 0.0083 0.3567 94.80 

  2.0 1.2549 0.0021 0.1710 0.0083 0.3570 94.95 

0.03 0.06 -2.0 0.7355 0.0110 1.4904 0.0261 0.6325 95.35 

  -1.5 0.7377 0.0131 1.7777 0.0285 0.6601 95.80 

  -1.0 0.7414 0.0168 2.2706 0.0325 0.7032 95.85 

  -0.5 0.7449 0.0203 2.7279 0.0391 0.7685 95.60 

  0.0 0.7484 0.0239 3.1876 0.0500 0.8644 96.05 

  0.5 0.7584 0.0338 4.4572 0.0701 1.0094 96.50 

  1.0 0.7659 0.0413 5.3949 0.1086 1.2087 95.80 

  1.5 0.7828 0.0582 7.4356 0.1892 1.4969 95.20 
  2.0 § 0.8147  0.0901  11.060 4.4463  2.2107 95.21 

Note: The Sample size is 10000; The true logOR when w0c=0.3 and w1c=0.6 is 1.2528; the true logOR 
when w0c=0.03 and w1c=0.06 is 0.7246. The compliance rate is 0.5. The bias is defined as the difference 
of estimated logOR and the true logOR. 

§ Based on the 1275 simulations instead of 2000 simulations because the R program stopped when the 
model didn't converge or the system was computationally singular. 

 

94 



 
Table 4.2. Simulation results of GSMM estimator without always-takers. 
 
Outcome 
Rate w0c

Outcome 
Rate w1c δ 

Estimated 
Log OR Bias  Bias % 

Estimated 
Variance 

Width of 
95% CI 

% 
Coverage 

0.30 0.60 -2.0 1.2556 0.0029 0.2290 0.0065 0.3171 95.90 

  -1.5 1.2555 0.0028 0.2210 0.0067 0.3199 95.75 

  -1.0 1.2552 0.0024 0.1924 0.0068 0.3240 95.80 

  -0.5 1.2545 0.0017 0.1362 0.0071 0.3297 95.80 

  0.0 1.2543 0.0015 0.1200 0.0074 0.3372 95.75 

  0.5 1.2530 0.0002 0.0184 0.0078 0.3459 96.00 

  1.0 1.2528 0.0000 0.0003 0.0082 0.3551 96.75 

  1.5 1.2513 -0.0014 -0.1129 0.0086 0.3636 96.50 

  2.0 1.2496 -0.0032 -0.2521 0.0089 0.3706 96.85 

0.03 0.06 -2.0 0.7500 0.0254 3.3876 0.0397 0.7794 97.40 

  -1.5 0.7506 0.0260 3.4642 0.0411 0.7928 97.45 

  -1.0 0.7512 0.0266 3.5409 0.0434 0.8136 97.05 

  -0.5 0.7509 0.0263 3.5038 0.0469 0.8453 97.60 

  0.0 0.7538 0.0292 3.8731 0.0529 0.8959 97.35 

  0.5 0.7541 0.0295 3.9149 0.0624 0.9693 97.45 

  1.0 0.7538 0.0293 3.8807 0.0779 1.0746 97.10 

  1.5 0.7521 0.0276 3.6666 0.1015 1.2168 97.25 

  2.0 0.7511 0.0265 3.5298 0.1415 1.4122 96.30 

Note: The Sample size is 10000; The true logOR when w0c=0.3 and w1c=0.6 is 1.2528; the true logOR 
when w0c=0.03 and w1c=0.06 is 0.7246. 
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Table 4.3. Comparing Bias, Variance and MSE of 2SRI, 2SPS and GMSS. 
 

δ   2SPS     2SRI     GSMM   Compliance 
    Bias% Variance MSE Bias% Variance MSE Bias% Variance MSE 

0.3 -2 53.9183 0.0751 0.5313 -68.6214 0.1389 0.8779 1.2139 0.0348 0.0350 
 -1.5 42.7860 0.0703 0.3576 -36.3221 0.1074 0.3144 1.3544 0.0393 0.0396 
 -1 29.8485 0.0632 0.2030 -14.0762 0.0833 0.1144 1.4558 0.0444 0.0447 
 -0.5 16.6929 0.0593 0.1030 -2.4911 0.0702 0.0711 1.4846 0.0537 0.0540 
 0 5.6660 0.0548 0.0598 0.4433 0.0594 0.0594 1.4981 0.0619 0.0623 
 0.5 -1.1777 0.0514 0.0516 -1.1879 0.0530 0.0532 1.8688 0.0688 0.0694 
 1 -4.1440 0.0542 0.0568 -3.8740 0.0544 0.0568 1.0822 0.0758 0.0759 
 1.5 -1.4274 0.0559 0.0562 -0.9504 0.0561 0.0563 1.1560 0.0738 0.0740 
 2 5.3301 0.0632 0.0676 10.7841 0.0660 0.0842 1.3621 0.0731 0.0733 
           

0.5 -2 25.1660 0.0246 0.1240 -40.8972 0.0443 0.3068 0.4856 0.0168 0.0168 
 -1.5 20.6969 0.0238 0.0910 -22.9951 0.0365 0.1195 0.5133 0.0179 0.0179 
 -1 15.0236 0.0228 0.0583 -9.7452 0.0301 0.0450 0.4827 0.0192 0.0193 
 -0.5 8.8435 0.0224 0.0347 -1.9902 0.0266 0.0272 0.6257 0.0218 0.0218 
 0 3.0573 0.0221 0.0235 0.2886 0.0240 0.0240 0.7406 0.0243 0.0244 
 0.5 -1.3746 0.0217 0.0220 -1.1937 0.0224 0.0226 0.5654 0.0265 0.0265 
 1 -3.1885 0.0205 0.0221 -2.9974 0.0206 0.0220 0.5185 0.0262 0.0262 
 1.5 -2.4763 0.0216 0.0226 -2.1383 0.0218 0.0225 0.3426 0.0271 0.0271 
 2 0.4039 0.0233 0.0233 4.0417 0.0245 0.0271 0.4064 0.0276 0.0276 
           

0.7 -2 10.8417 0.0127 0.0311 -22.0355 0.0210 0.0972 0.4427 0.0109 0.0109 
 -1.5 9.1438 0.0124 0.0255 -12.6871 0.0175 0.0427 0.4473 0.0111 0.0111 
 -1 6.8768 0.0123 0.0197 -5.4469 0.0153 0.0199 0.4520 0.0116 0.0116 
 -0.5 4.1589 0.0121 0.0148 -1.0837 0.0138 0.0139 0.4795 0.0122 0.0122 
 0 1.4723 0.0118 0.0121 0.2984 0.0126 0.0126 0.5729 0.0127 0.0128 
 0.5 -0.7934 0.0119 0.0120 -0.5530 0.0122 0.0123 0.6071 0.0137 0.0137 
 1 -2.0983 0.0122 0.0129 -1.9705 0.0123 0.0129 0.5887 0.0146 0.0146 
 1.5 -2.1766 0.0124 0.0131 -1.9599 0.0124 0.0130 0.6478 0.0148 0.0149 
  2 -1.3957 0.0128 0.0131 0.7437 0.0133 0.0134 0.7022 0.0151 0.0152 

Note: N=3000, w0c=0.3, w1c=0.6, without AT 

 
 
 
 
Table 4.4. Correlation of the IV and the exposure 
 
  Exposure to Bezafibrate (%) OR (95% CI) P value Correlation 

IV=Bezafibrate 9127 (79.40) 2.49 (2.31-2.68) <.0001 0.1904 

IV=Other fibrates 2648 (60.76)       
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Table 4.5. Rate of outcome associated with exposure and IV. 
 
  Bezafibrate  Other Fibrate OR P Value 

Exposure 209/12043 (1.74) 108/4231 (2.55) 0.67  (0.53-0.85) 0.0009 

IV 216/11495 (1.88) 84/4358 (1.93) 0.97 (0.76-1.26) 0.8417 

 
 
 
 
Table 4.6. Comparison of results of causal log OR by different approaches. 
 

Model Covariate(s) 
Treatment Effect 

Log OR Standard Error 
P value for the 
treatment effect 

Naïve Logistic Regression No Covariate -0.3942 0.1199 0.0010 
 All in the list -0.4028 0.1213 0.0009 
     
IV 2SPS No Covariate -0.1391 0.6965 0.8417 
 All in the list -0.2682 0.7238 0.7110 
IV 2SRI No Covariate -0.1067 0.6986 0.8784 
 All in the list -0.2532 0.7241 0.7265 
     
IV GSMM No Covariate -0.1959 0.2540 0.4404 
 All in the list 0.4040 0.3716 0.2752 

 
 
Table 4.7. Association of IV and Covariate. 
 

  
IV=Other Fibrate 

N (%) 
IV=Bezaofibrate 

N(%) P Value 

Male 2399(55.05) 6095(53.02) 0.0225 

Age 50-59 1427 (32.74) 3814(33.18) 0.6030 

Age 50-59 1545 (35.45) 4158(36.17) 0.3989 

Age >=70 495(11.36) 1200 (10.44) 0.0945 

MI  29 (0.67) 68 (0.59) 0.5943 

Stroke 20 (0.46) 38(0.33) 0.2321 

History of calcium channel blocker use 1050(24.09) 2715 (23.62) 0.5307 

History of thiazide diuretic use 395 (9.06) 1012 (8.80) 0.6074 

History of loop diuretic use 220 (5.05) 581 (5.05) 0.9873 

History of corticosteroid use 145 (3.33) 379 (3.30) 0.9245 

History of beta-blocker use 751 (17.23) 1891 (16.45) 0.2381 

History of ACE inhibitor/angiotensin receptor blocker use 243 (5.58) 552 (4.80) 0.0462 
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Chapter 5

Conclusion

This dissertation provides three distinct contributions to causal inference of binary

outcomes with IV analysis. The first contribution is focused on the point estimate of

2SPS and 2SRI logistic regression to evaluate the bias of these approaches. The second

contribution is focused on the variance estimate of 2SPS and 2SRI logistic regression,

and the third is to evaluate bias of GSMM in the context of principal stratification

framework and compare this approach with 2SPS, 2SRI regarding bias and MSE, then

apply all three approaches to the data analysis of antidiabetic effect of bezafibrate

with the GPRD database. In the first part, we developed closed form expressions for

the asymptotic bias of the 2SRI and 2SPS approaches to two-stage logistic regression,

and we showed that these analytic results are consistent with the simulation results

under different parameter settings. An important contribution of this part is the

expression of the conditional distribution of observed outcomes Y given treatment

assignment R as a function of the probability of compliance and the conditional

distribution of potential outcomes given compliance status. With this contribution,
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we can analytically present probability limits and therefore the bias of the estimators

of the causal effects of treatment given compliance and treatment status. Further, we

provide analytic estimates of bias for a variety of situations. These analytic estimates

of bias can help researchers evaluate if the bias is small under specific conditions (e.g.

high compliance, and moderate confounding). Hence, our results can be used as a

guide for deciding if the 2SRI or 2SPS strategy is appropriate. This method can

be potentially applied to the bias analysis of causal inference with other non-linear

two-stage regressions, such as regressions of probit models and log linear models. We

could provide closed form expressions for the asymptotic bias of the 2SPS approach

under the assumption that there are not always-takers as well as that there are always-

takers, but with 2SRI approach, we can only provide close form expressions for the

asymptotic bias when this is no always-takers, even though we can evaluate it by

simulations. This is because the 2SRI is a misspecified model. The true model should

include a term of interaction between the treatment receive (Z) and the residual (E)

in the second stage model as we have proved in the appendix. It would be interesting

to use a new 2SRI model that includes this interaction term, and to analysis bias and

variance of this new 2SRI model. We should be able to derive a close form expression

for the asymptotic bias of the new 2SRI model when there are always-takers. Another

extension of this research is to derive close form expression of asymptotic bias of both

2SPS and 2SRI approaches to the models with covariates. In the IV definition, we

only need to verify that the IV is independent with unmeasured confounding. When

the IV is associated with measured confounding, we just need to include the variables

for measured confounding as covariate in the regressions of both stages. For this
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reason, it is very important to evaluate bias of two-stage regression when covariates

are included. This is not an easy task, as the bias analysis with close form will be much

more complicated when covariates are included. In the second part, we applied the

theory of two-step estimation to obtain the adjust variance estimator for both 2SPS

and 2SRI approach of IV two stage logistic regression. Our simulation results shows

that the estimator we derived for these nonlinear IV analysis provides a good estimate

of variance of the causal log odds ratio, in that the estimated variance is consistent

with the observed sample variance. With these results, we provide a method to obtain

the variance estimate that can apply as an alternative to the bootstrap method in

the nonlinear IV analysis and the variance estimator we propose is more accurate

than the bootstrap method. Our simulation results indicate that the naive variance

estimate without adjustment for two stage regression can be severely biased when

the compliance rate is low and the confounding is severe, thus we cannot directly

use the variance estimated from the second stage regression to calculate a confidence

interval or p value. This is true even for the 2SRI approach, when the causal log

odds ratio is the coefficient for the variable of treatment received, instead of the

expected value of treatment estimated from the first stage, which is the case for the

2SPS approach. This finding may possibly correct the improper use of 2SRI approach

when the variance of log odds ratio is directly estimated from the second stage without

adjustment. Based on above results, we should do further research to provide methods

of sample size and power calculation, either analytically or by simulations for the IV

analysis with binary outcome. For instance, we found that the variance of two-stage

logistic regression is very sensitive to the compliance rate, but not very sensitive to
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the severity of confounding, thus the sample size and power calculation should more

depend on the compliance rate, which can be interpreted as the association of IV

and exposure, or strength of IV. In the third part of my dissertation, we developed

an R program to implement GSMM approach when patients in the placebo arm

have access to the study treatment, which is normally the case in non-randomized

observational studies. We then did simulations with the principal stratification setting

to test the GSMM method and the results show that the GSMM is unbiased. Our

unbiased results not only validated our R program, but also demonstrated that the

GSMM yields unbiased estimates of the complier average causal effect (CACE) on

the logit scale, thus our simulation study creates a linkage between the GSMM and

the principal stratification framework. This result should motivate future research

to analytically prove that GSMM is an unbiased estimator of odds ratio of CACE.

The simulation results also show that the variance of GSMM estimates is smaller

than both 2SRI and 2SPS. The unbiased estimator and smaller variance of GSMM

indicate that GSMM has a big advantage over 2SRI and 2SPS. When we applied all

three approaches to the data analysis of antidiabetic effect of bezafibrate, they all

yield odd ratios less than 1, which indicate a casual protective effect of bezafibrate

against diabetes. However, the estimated protective effect is not significant in this

analysis with any of the three approaches. This may be due to the fact that the IV

is weak and the rate of outcome is low, thus the sample size is not large enough.

On the other hand, our analysis of logistical regression without IV approaches shows

significant protective result that is similar with result of survival analysis by Flory

et al (9). This is an example that there is tradeoff between accuracy and precision
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with and without IV approaches. A larger sample size is required for this study with

IV analysis. The above result raises an important question about IV analysis: How

strong does the association of the IV and treatment or exposure needs to be? With the

two-stage linear regression of IV analysis, the correlation of 0.2 between the IV and

is considered strong IV, but our simulation results and empirical results of different

IV logistic regression for the analysis of binary outcome show that the correlation of

0.2 yield large variances, thus the large confident interval when the rate of outcome

is low. More research on the relationship between IV strength and variance, sample

size and power is necessary to provide guidance for the application of IV analysis to

binary outcomes.
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