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ABSTRACT 

 

BIOMECHANICAL & BIOCHEMICAL CONTRIBUTIONS OF MATRIX 

METALLOPROTEINASES IN JOINT PAIN: MODELS, MECHANISMS, & 

PATIENTS 

 

Meagan E. Ita 

 

Beth A. Winkelstein 

 

Chronic joint pain is a major healthcare challenge with a staggering 

socioeconomic burden. Pain from synovial joints is mediated by the innervated joint 

tissues. Due to its innervation, the collagenous capsular ligament that surrounds the joint 

encodes nociceptive signals and transmits them for pain perception. Although increases 

in the matrix metalloproteinases (MMPs) occur in painful synovial joints either from 

injury or degenerative disorders, whether and how MMPs may be mechanistically 

involved in joint pain is unknown. Since the interstitial collagenase MMP-1 has many 

roles in collagen degradation and signal transduction pathways, it may play a role in 

nociception from the joint capsular ligament, but this has not been evaluated. The studies 

in this thesis define the biomechanical and biochemical roles of MMP-1 in afferent 

signaling using complementary approaches in human, rat, and cell culture models to 

define fibroblast-neuron and collagen-neuron interactions in nociception, with and 

without tissue loading. MMPs in the innervated capsular tissue from patients with painful 

temporomandibular joint disorders are characterized and establish a role for both MMP-1, 
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and the gelatinase MMP-9, as positive correlates with pain symptoms. Studies in the rat 

show that excess intra-articular MMP-1 is sufficient to induce behavioral sensitivity 

which is paralleled by neuronal dysregulation in both the peripheral and central nervous 

systems. Moreover, nociception may be initiated by the microscale catabolism of 

collagen molecules in the capsular ligament and its subsequent effects on the multiscale 

biomechanical function of ligament tissues in the presence of MMP-1. To better 

understand those MMP-1-induced pain mechanisms, a novel co-culture model was 

designed to mimic the multicellular microenvironment of the capsular ligament 

incorporating both fibroblasts and peripheral neurons. Biomechanical loading and 

biochemical degradation each increase both MMP-1 expression and that of the 

nociceptive neurotransmitter substance P, suggesting possible mechanisms leading to 

increased MMP-1 in painful joints. Furthermore, since studies reveal that fibroblasts 

mediate the extent of load-induced MMP-1, fibroblast functionality have a substantive 

role in contributing to and/or mediating effects of MMP-1 on peripheral neurons. 

Collectively, studies in this thesis provide a foundational schema for MMP-1 as a 

biomechanical and biochemical regulator in painful joint disorders. 
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mechanics and nociception in joint pathophysiology: insights from the facet and 
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1.1. Introduction 

Chronic joint pain is a costly and widespread problem, affecting a large proportion 

of the population at some point over the course of their lifetime, and, unfortunately, 

effective treatments are largely lacking (Hogg-Johnson et al. 2008; IBM Corporation 2019; 

Institute of Medicine 2011; National Academies of Sciences, Engineering, and Medicine 

2020). Pain from synovial joints can result from an inciting injury event to peripheral 

tissues or from damage that accumulates over time, compromising the biomechanical 

properties of the joint’s tissues and lowering the threshold for pain signaling from 

innervated joint tissues (Elliott et al. 2009; Gellhorn et al. 2013; Ita et al. 2017b; Loeser et 
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al. 2012; Sperry et al. 2017). In either case, loading of the joint’s ligamentous capsule, in 

particular, can initiate pathophysiological cascades that lead to pain by activating the 

innervating nociceptive fibers embedded in the ligamentous matrix (Kallakuri et al. 2008; 

Lee et al. 2004; Lee et al. 2008; Lu et al. 2005). 

This chapter provides a brief summary of relevant background information about 

the anatomy and innervation of synovial joints (Section 1.2.1) and an overview of 

mechanisms of nociception from the periphery to the central nervous system (Section 

1.2.2). The anatomical review focuses on the facet joints of the spine due to their high 

susceptibility to injury and propensity to encode pain signals from the periphery (Elliott et 

al. 2009; Jaumard et al. 2011; Manchikanti et al. 2004). Section 1.2.3 then provides an 

overview specifically focused on pain associated with osteoarthritis (OA), and, in 

particular, OA in the facet joints of the spine and the temporomandibular joint (TMJ) in 

the jaw. The in vivo and in vitro studies in this thesis focus on, and are designed based on, 

the spinal facet joints. Yet, the studies in Chapter 3 use the temporomandibular joint (TMJ); 

a detailed anatomical description of the TMJ is found in Section 3.1. The biology and 

functional characteristic of matrix metalloproteinases (MMPs) are discussed with a focus 

on MMP-1 and MMP-9 (Section 1.2.4). Finally, techniques and assays used throughout 

this thesis are presented and reviewed as relevant to particular studies in later chapters 

(Section 1.2.5). 

1.2. Background 

1.2.1. Anatomy & Innervation of Synovial Joints  
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The cervical facet joints are bilateral joints in the posterolateral region of the spine, 

and are responsible for coupling rotations and bending in the neck, as well as transmitting 

axial load (Figure 1.1) (Jaumard et al. 2011). The articulating joint is innervated by the 

medial branches of the primary dorsal rami of the superior and inferior cervical levels of 

each joint (Bogduk and Marsland 1988). Pain signals are transmitted by nociceptive 

afferent fibers that innervate facet tissues, including the bone, joint capsule, and synovium 

(Kallakuri et al. 2012; Loeser et al. 2012). The afferent fibers that innervate the facet have 

their cell bodies in the dorsal root ganglia (DRG) and synapse with spinal dorsal horn 

neurons to transmit sensory information from the periphery (Figure 1.1) (Basbaum et al. 

2009; Kallakuri et al. 2012; Loeser et al. 2012). Afferent nerve fibers include 

 

Figure 1.1. Schematic illustrating the anatomy in the periphery of the facet joint and the relevant neuronal 

connections to the central nervous system. Afferents that innervate the facet joint and its capsular 

ligament have cell bodies in the dorsal root ganglia (DRG) and synapse with neurons in the spinal dorsal 

horn. Nociceptive information is encoded by many types of afferent nerve fibers, including isolectin B4 

(IB4)-positive non-peptidergic neurons and peptidergic fibers that produce neuropeptides, such as 

calcitonin gene-related peptide (CGRP) and substance P. Noxious stimuli are translated into electrical 

(e.g. action potentials) and biochemical (e.g. neurotransmitter) signals. In persistent pain, central 

sensitization occurs, with neuronal hyperexcitability and altered neurotransmitter production and release 

in the spinal dorsal horn. Figure adapted from Ita, et al. J Orthop Sports Phys Ther, 2017. 
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mechanoreceptive and nociceptive C- and Aδ- fibers (Chen et al. 2006; Crosby and Smith 

2015; Jaumard et al. 2011; Kallakuri et al. 2004). 

The joint capsule is made up primarily of collagen, with Type I collagen making 

up 80-99% of the total collagen (Burgeson and Nimni 1992) at a concentration of 30-

40mg/mL (Miller and Rhodes 1982). The collagen network of the facet capsular ligament 

contains subregions of fibers with parallel and irregular orientations (Ban et al. 2017; 

Kallakuri et al. 2012; Yahia and Garzon 1993; Yamashita et al. 1996). Along with nerve 

fibers, fibroblast-like synoviocytes (FLS), also known as synovial fibroblasts or type B 

synoviocytes, reside in the capsule’s extracellular matrix (ECM) (Bartok and Firestein 

2010; Kallakuri et al. 2012; Yahia and Garzon 1993; Yamashita et al. 1996). Under normal 

physiologic conditions, synovial fibroblasts maintain the structural integrity of the capsule 

and synovium by controlling ECM composition (Bottini and Firestein 2013; Grinnell 

2000). Resident fibroblasts can also be influenced by, and even alter, the collagen network 

(Grinnell 2000; Grinnell 2003; Provenzano et al. 2005; Provenzano et al. 2002); activated 

fibroblasts convert mechanical stimuli into biological responses via regulating genes, 

releasing growth factors, and remodeling the ECM (Camelliti et al. 2005; Grinnell 2000; 

Grinnell 2003; Wang et al. 2007).  

Fibroblasts are stromal cells with roles in development, repair, wound healing, and 

ECM remodeling (Rinn et al. 2006). Fibroblasts are ubiquitous cells, found throughout the 

body, that are defined by their morphology, ability to adhere, and lack of lineage-specific 

markers; but, they are functionally and phenotypically diverse depending on their 

anatomical origin (Hinz 2013; Rinn et al. 2006). FLS are a unique class of fibroblast-like 
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cells found in the lining and capsular ligament of synovial joints (Bottini and Firestein 

2013; Yamashita et al. 1996). FLS play a large role in propagating inflammation in joint 

tissues and secreting enzymes that remodel their surrounding ECM (Bartok and Firestein 

2010; Bottini and Firestein 2013; Hardy et al. 2013). The functional role of FLS in 

inflammation and aberrant ECM remodeling is particularly important in the pathological 

cascades that mediate rheumatoid arthritis, which has been extensively described in the 

human and in rodent models of that disease (Ahn et al. 2008; Bartok and Firestein 2010; 

Bottini and Firestein 2013; Hardy et al. 2013; Hu et al. 2012). Despite the prevalence of 

studies describing the role of FLS in joint inflammation, little is known about the 

interactions between FLS and matrix mechanics and microstructure, nor about their 

interactions with peripheral neurons in the context of nociception.  

1.2.2. Nociception & Pain Transmission 

According to the International Association for the Study of Pain (IASP), 

nociception refers to activity that occurs in the nervous system in response to a noxious 

stimulus (Raja et al. 2020). Nociceptors are the subpopulation of peripheral nerve fibers 

that process the thermal, mechanical, and/or chemical stimuli in the noxious range 

(Basbaum et al. 2009). The two major classes of nociceptors are medium-diameter 

myelinated Aδ-afferents that mediate localized acute “fast” pain and small-diameter 

unmyelinated C-fibers that transmit poorly localized “slow” pain (Basbaum et al. 2009). A 

noxious stimulus is defined as an actual or potential tissue-damaging event; when that event 

is transduced by nociceptors then that noxious event is considered a nociceptive stimulus 

because it has relayed the signal of tissue damage to the nervous system (Loeser and Treede 
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2008; Raja et al. 2020). Nociceptive signaling can lead to sensitization, which is an 

increased responsiveness of neurons to their normal input or recruitment of a response to 

normally subthreshold inputs (Basbaum et al. 2009; Braz et al. 2005; Loeser and Treede 

2008). 

Sensitization can occur in the periphery or in the central nervous system (CNS). 

Peripheral sensitization leads to altered nociceptive responses at the injury site, including 

decreased thresholds to initiate afferent firing and increased responsiveness of peripheral 

nociceptive neurons (Latremoliere and Woolf 2009; Woolf et al. 1992). Central 

sensitization involves the enhancement of nociceptive pathways via the recruitment of 

previously subthreshold nociceptors in response to neural injury, aberrant activity, or 

inflammation (Latremoliere and Woolf 2009). Unlike peripheral sensitization, central 

sensitization is decoupled from the presence and/or intensity of the inciting peripheral 

stimulus (Latremoliere and Woolf 2009). Thus, a state of central sensitization represents a 

shift from “high-threshold nociception” to “low-threshold hypersensitivity” (Latremoliere 

and Woolf 2009). The host of changes in the CNS that occur with central sensitization have 

been extensively reviewed (Bettini and Moore 2016; Ji et al. 2018; Latremoliere and Woolf 

2009); a few characteristics of dorsal horn neurons that are involved in central sensitization 

include their increased spontaneous activity and a reduction in their threshold for peripheral 

stimulation (Figure 1.1). Central sensitization can also produce an increase in nociceptor 

responsiveness to their normal subthreshold afferent input at secondary sites that have no 

tissue damage (Figure 1.1) (Basbaum et al. 2009; Latremoliere and Woolf 2009; Loeser 

and Treede 2008; Syx et al. 2018).  
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Although nociception is the physiological basis for the experience of pain, the 

human experience of pain includes both sensory and emotional components (Bushnell et 

al. 2013; Loeser and Treede 2008). Self-reported pain is commonly assessed using pain 

rating scales (Hawker et al. 2011; Hjermstad et al. 2011; Williamson and Hoggart 2005). 

Unidimensional scales such as the Visual Analog Scale (VAS), the Verbal Rating Scale 

(VRS), and the Numerical Rating Scale (NRS) collect self-reported patient pain scores on 

numeric Likert scales ranging from 10-points to 100-points, with the lowest scores taken 

as “no pain” and the highest scores indicating the “worst pain imaginable” (Hawker et al. 

2011; Hjermstad et al. 2011; Williamson and Hoggart 2005). Multidimensional scales like 

the McGill Pain Questionnaire and the Chronic Pain Grade Scale provide categorized 

scores on subscales assessing more specific aspects of the pain experience, such as sensory 

pain, affective pain, and disability associated with pain (Hawker et al. 2011; Hjermstad et 

al. 2011; Williamson and Hoggart 2005). The manipulation of cognitive and emotional 

factors can impact the perception of pain (Bushnell et al. 2013). Moreover, descending pain 

pathways from the brain to the spinal cord are heavily implicated in modulating both of the 

psychological and physiological components of the pain experience (Braz et al. 2005; 

Bushnell et al. 2013; Crofford 2015; Sperry et al. 2020a). 

1.2.3. Osteoarthritis & Degenerative Joint Pain 

Pain from degenerative joint diseases like osteoarthritis represents one of the most 

common painful conditions (Institute of Medicine 2011; National Academies of Sciences, 

Engineering, and Medicine 2020; NIDCR 2014; Perrot 2015). The spinal facet joint and 

the temporomandibular joint (TMJ) are the two most common sources of chronic joint pain 
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(Hogg-Johnson et al. 2008; Institute of Medicine 2011; NIDCR 2014). Painful 

degeneration can arise in the spinal facet joints after trauma (referred to as post-traumatic 

osteoarthritis) or with age-related degeneration (Gellhorn et al. 2013; Hawellek et al. 2017; 

Kuyinu et al. 2016; Park et al. 2014; Suri et al. 2013). Painful TMJ disorder is often initiated 

by repeated atypical loading that can lead to joint degeneration (OA) or internal 

derangement (ID) (Scrivani et al. 2008; Tanaka et al. 2008). Internal derangement occurs 

with the displacement of the articular disc and is primarily considered as a soft-tissue 

disorder (National Academies of Sciences, Engineering, and Medicine 2020). Long-term 

and advanced ID develops into OA in 15% of patients with ID, with the progression to OA 

defined by the breakdown of cortical bone of the TMJ condyle (National Academies of 

Sciences, Engineering, and Medicine 2020). Current therapies for TMJ pain, including 

anesthetics, surgery, and medications, provide only temporary relief (Institute of Medicine 

2011). 

Degeneration is caused by a complex combination of biomechanical and biological 

cascades that initiate nociception in innervated joint tissues (i.e. bone, synovium, and 

ligaments and notably not the articular cartilage), resulting in pain and a loss of physical 

function (Loeser et al. 2012; Malfait and Miller 2016; Varady and Grodzinsky 2016). The 

mechanisms by which pathologic degeneration initiates pain is unclear; however, many 

animal models of joint degeneration, primarily in rodents, suggest that both neuropathic 

and inflammatory mechanisms play a role (Malfait et al. 2013). Many of those studies in 

the rodent utilize intra-articular injections to define the effects of chemical irritants on the 

structure and health of joint tissues and on the cellular responses of host cells, which is 
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discussed in more detail in Section 1.2.5.1 (Adães et al. 2015; Kras et al. 2015; Malfait et 

al. 2013; Nascimento et al. 2013; Nwosu et al. 2016). Additionally, there is evidence of 

both peripheral and central sensitization from degenerative pain (Havelin et al. 2015; Perrot 

2015; Syx et al. 2018), including the dysregulation of ion channels which has been 

demonstrated in monosodium iodoacetate-induced knee degeneration in the rat (Rahman 

and Dickenson 2015). Although the facet joints are susceptible to degeneration (Gellhorn 

et al. 2013; Kim et al. 2015) and are a known source of pain, only a handful of studies have 

investigated degenerative cascades using intra-articular injections in the facet joint via 

collagenase (Yeh et al. 2008) or complete Freund’s adjuvant (CFA) (Shuang et al. 2014).  

Degeneration induces tissue degradation that can compromise the mechanical 

integrity of joint tissues, increasing their susceptibility to mechanical injury. Enzymes like 

the matrix metalloproteases (MMPs) and ADAMTSs (a disintegrin and a metalloprotease 

with thrombospondin motifs) degrade collagen and aggrecan/proteoglycans, respectively, 

both of which make up the ECM of the articular cartilage and capsular ligament (Mort and 

Billington 2001; Pearle et al. 2005; Song et al. 2007). Selective digestion of constitutive 

components of the ECM, such as collagen, elastin, or proteoglycans, has been shown to 

alter the mechanical properties and biomechanical responses in native tissue and in vitro 

systems (Barbir et al. 2010; Grant et al. 2015; Grenier et al. 2014; Griffin et al. 2014; 

Henninger et al. 2013; Rojas et al. 2014; Smith et al. 2008; Sperry et al. 2017). Collectively, 

these studies suggest that joint tissues may have a lower threshold for mechanical injury 

during degenerative states.  
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Although abnormal capsular ligament kinematics can initiate pain signaling 

(Crosby et al. 2015; Lee et al. 2006; Quinn et al. 2007), and degeneration alters tissue 

mechanics (Grenier et al. 2014; Henninger et al. 2013; Lee et al. 2001; Sperry et al. 2017; 

Varady and Grodzinsky 2016), excessive mechanical injury is not required for 

degeneration-induced pain. Indeed, macroscopic tears and joint space narrowing are 

evident in ligaments following clinical diagnosis of “degeneration” in the absence of any 

direct trauma (Hill et al., 2005). Moreover, pain that accompanies degeneration is not 

always correlated with the extent of joint degradation in patients (Finan et al. 2013; Hunter 

et al. 2013; Malfait and Schnitzer 2013; National Academies of Sciences, Engineering, and 

Medicine 2020; Perrot 2015). That lack of correlation has led to recent work investigating 

whether or not the many other molecular pathways that are also altered in degeneration 

directly contribute to pain generation. Such pathophysiological pathways include, for 

example, the many inflammatory cytokines and chemokines that are detected in the 

synovial fluid of osteoarthritis patients (Miller et al. 2014). It is likely that a combination 

of abnormal kinematics and pathologic biochemical cascades contributes to nociception 

that drives pain in degenerative joint disease.  

1.2.4. Matrix Metalloproteinases 

The matrix metalloproteinases (MMPs), of which 24 have been identified in human 

tissues (Sbardella et al. 2012; Visse and Nagase 2003), are proteinases that degrade 

components of the ECM and have roles in many physiological and pathological processes 

(Huntley 2012; Kawasaki et al. 2008; Rosenberg 2002; Visse and Nagase 2003), including 

joint and/or nervous system diseases (Huntley 2012; Kawasaki et al. 2008; Lo et al. 2003; 
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Loeser et al. 2012; Rosenberg 2002; Sbardella et al. 2012; Visse and Nagase 2003). MMPs 

are categorized on the basis of their substrate specificity, sequence similarity, and domain 

organization (Visse and Nagase 2003). In vertebrates, MMPs are divided into six groups: 

collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other 

MMPs (Visse and Nagase 2003). This section focuses on the collagenases and gelatinases 

since those two MMP subgroups are investigated in the studies of this thesis; the functions 

and characteristics of all MMPs are extensively reviewed elsewhere (Murphy and Nagase 

2009; Sbardella et al. 2012; Visse and Nagase 2003). 

The human collagenases, MMP-1, MMP-8, and MMP-13 have identical ECM 

substrates to one another and preferentially degrade the triple helical collagen that 

composes most of the capsule’s ECM network (Burgeson and Nimni 1992; Fields 2013; 

Konttinen et al. 1999; Visse and Nagase 2003). The gelatinases, MMP-2 and MMP-9 

preferentially degrade denatured collagen (i.e. gelatin) (Visse and Nagase 2003). Although 

collagenases and gelatinases have high affinities to triple helical collagen and gelatin, 

respectively, each subgroup of MMPs has many other ECM and non-ECM substrates 

(Murphy and Nagase 2009; Sbardella et al. 2012; Visse and Nagase 2003).  

The exact substrates that an MMP can interact with at a given moment depend on 

whether the MMP is in its latent zymogen form or in its catabolically active state. MMPs 

are secreted as catabolically inactive zymogens (“pro-forms”) that are extracellularly 

activated through disruption of their cysteine-zinc interaction by proteases like plasmin or 

other MMPs (Sbardella et al. 2012; Visse and Nagase 2003). In most cases, MMPs can 

only cleave ECM substrates after they are activated and cannot participate in matrix 
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remodeling in their pro-forms. However, in both the active and pro- forms, many MMPs 

can interact with cell-surface receptors and/or cell-signaling molecules (Murphy and 

Nagase 2009; Sbardella et al. 2012; Visse and Nagase 2003). MMP activity is tightly 

regulated at the level of transcription, extracellular pro-MMP activation, and by the 

endogenous tissue inhibitors of metalloproteinases (TIMPs) (Löffek et al. 2011; Visse and 

Nagase 2003). When those MMP regulatory mechanisms are disrupted, the role of MMPs 

transitions from normal to pathological (Agrawal et al. 2008; Löffek et al. 2011; Rosenberg 

2002; Sbardella et al. 2012; Yong et al. 2001). 

MMP levels are altered in the joint capsule and synovial fluid of painful joint 

conditions (Cohen et al. 2007; Haller et al. 2015; Kim et al. 2015; Konttinen et al. 1999; 

Lattermann et al. 2017; Tchetverikov et al. 2005), but have not been investigated for their 

mechanistic relationship with nociceptive pathways. The human interstitial collagenases, 

MMP-1, -8, and -13, and the transmembrane protein MMP-14 (Visse and Nagase 2003), 

have all been detected in joints; MMP-1, in particular, increases in the joint capsule after 

elbow trauma (Cohen et al. 2007) and with facet degeneration (Kim et al. 2015). Its 

concentration has also been shown to increase in synovial fluid after knee trauma 

(Chockalingam et al. 2013; Haller et al. 2015; Konttinen et al. 1999; Tchetverikov et al. 

2005). MMP-1 may also mediate nociception via its role in catalyzing Type I collagen 

remodeling on a microscale. The local biomechanical environment of neurons in a collagen 

network mediates their signaling (Zarei et al. 2017; Zhang et al. 2016; Zhang et al. 2017a; 

Zhang et al. 2018), and degradation of a collagen network alters its network reorganization 

under load (Sperry et al. 2017). Because a degraded matrix reorganizes differently under 
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load than a non-degraded matrix (Sperry et al. 2017), it follows that collagen degradation 

driven by MMP-1 may alter the capsule’s collagen network, which activates resident 

afferents or lowers their threshold for activation by stretch. However, if and how MMP-1-

driven degradation alters the relationship between the collagen structure and composition 

with cell activation is not known. 

MMP-1 may also sensitize neurons through ECM-independent mechanisms in 

addition to its ability to degrade collagen. Both catabolically active and inactive forms of 

MMP-1 can serve as neuronal signaling proteins via receptors involved in nociception 

(Allen et al. 2016; Boire et al. 2005; Conant et al. 2002; Conant et al. 2004; Dumin et al. 

2001). Both forms also have substrates to pain-related molecules (Basbaum et al. 2009; 

Kawasaki et al. 2008; Visse and Nagase 2003; Zhou et al. 2014). For example, MMP-1 

binds to several receptors implicated in nociception, including β1-integrin and protease 

activated receptor-1 (PAR-1), even when catabolically inactive (Allen et al. 2016; Boire et 

al. 2005; Conant et al. 2002; Conant et al. 2004; Dumin et al. 2001). The non-ECM 

substrates of MMP-1 include pro-inflammatory cytokines (i.e. interleukin-1β (IL-1β) and 

tumor necrosis factor α (TNFα)) and substance P, and it is expressed in neurons and glial 

cells, which are involved in pain (Basbaum et al. 2009; Kallakuri et al. 2004; Lee et al. 

2008; Miller et al. 2014; Visse and Nagase 2003; Zhou et al. 2014). MMP-9 is downstream 

of MMP-1 (Conant et al. 2002; Visse and Nagase 2003), sensitizes peripheral neurons (Ji 

et al. 2008), is necessary for early-phase neuropathic pain (Kawasaki et al. 2008), and has 

roles in blood brain barrier breakdown and neurodegeneration (Rosenberg 2002; Sbardella 

et al. 2012). MMP-1 and MMP-9 have been identified together in joints after trauma 
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(Haller et al. 2015; Konttinen et al. 1999; Lattermann et al. 2017), further supporting that 

both may play a role in altered joint states that cause pain. 

 In addition to the human collagenases, bacterial collagenase from the bacterium 

Clostridium histolyticum can cleave Type I triple helical collagen, but by a more aggressive 

cleavage mechanism that the human collagenases (Fields 2013). Although collagenases 

derived from bacteria are devoid of the many other pathophysiological roles of native 

MMPs (Sbardella et al. 2012; Visse and Nagase 2003), their collagenolytic activity can be 

harnessed to answer question about collagen catabolism in isolation. 

1.2.5. Relevant Models & Techniques  

1.2.5.1. Intra-Articular Injection in Animal Models & Quantification of 

Behavioral Sensitivity 

 Experimental animal models using the intra-articular injection of various agents 

into the joint space have defined the downstream effects of irritants on behavioral and 

physiological outcomes. For example, intra-articular injection of the inflammatory irritant 

CFA is commonly used to produce joint pain and inflammation. Intra-articular CFA 

produces peripheral behavioral sensitivity and joint degeneration, as well as increases in 

the expression of synaptophysin, a protein involved in synaptic transmission, in the dorsal 

horn of the spinal cord (Malfait et al. 2013; Nascimento et al. 2013; Zhang et al. 2012). 

Intra-articular injection of nerve growth factor (NGF), a known inflammatory mediator that 

also contributes to inflammation in the facet joint after mechanical injury (Kras et al. 2015), 

transiently induces evoked neuronal firing of spinal neurons at one day after its injection 
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in parallel with evidence of behavioral sensitivity (Kras et al. 2015), suggesting that acute 

inflammatory pain can play a role in rodent models of facet joint pain.  

Specific investigation of pain resulting from joint cartilage degeneration often 

utilizes intra-articular injections of monosodium iodoacetate (MIA), a disruptor of 

chondrocyte glycolysis, both in the spinal facet joint and TMJ (Gong et al. 2011; Kim et 

al. 2011; Wang et al. 2016). Those studies report that MIA induces severe cartilage damage 

defined by proteoglycan loss and surface fissures in subchondral bone that progress in 

severity out to seven weeks after MIA injection (Gong et al. 2011; Kim et al. 2011; Wang 

et al. 2016). Intra-articular MIA in the facet joint induces biphasic mechanical 

hyperalgesia, with injected rats exhibiting behavioral sensitivity at days 1 and 3 after 

injection, and then not again until day 21 (Gong et al. 2011). That biphasic pain response 

induced by intra-articular MIA is paralleled by early increases in the cytokines IL-1β and 

TNFα (Gong et al. 2011), suggesting that inflammation may drive the initiation of pain in 

early stages of joint degeneration. Moreover, the dysregulation of MMPs and chemokines 

in joint tissues may contribute to later stage pain after an inflammatory stimulus, since the 

chemokine stromal cell-derived factor-1 (SDF-1), its receptor CXC chemokine receptor 4 

(CXCR4), MMP-3, and MMP-9 increase in chondrocytes four weeks after MIA injection 

into the TMJ (Wang et al. 2016). Although those studies define the effects of a severe 

inflammatory agent on pain, joint degeneration, and chondrocyte physiology (Gong et al. 

2011; Kim et al. 2011; Wang et al. 2016), they do not assess changes in peripheral nerves 

or in spinal tissues. 
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Several animal studies of intra-articular collagenase have demonstrated that a crude 

formulation of bacterial collagenase induces severe joint degeneration marked by 

chondrocyte disorganization, cartilage thinning and fibrillation, bone defects, and joint 

space narrowing (Adães et al. 2014; Gou et al. 2019; Yeh et al. 2008). Notably, intra-

articular injection of CFA, MIA, and crude bacterial collagenase all produce evident 

structural degeneration   (Adães et al. 2014; Gong et al. 2011; Gou et al. 2019; Kim et al. 

2011; Malfait and Schnitzer 2013; Nascimento et al. 2013; Wang et al. 2016; Yeh et al. 

2008; Zhang et al. 2012). As such, they correspond to the clinical scenario in which joint 

damage is severe and radiographically detectable (Gellhorn et al. 2013; Suri et al. 2013). 

Yet, those studies do not fully explain the clinical cases in which patients do not present 

with imaging evidence of joint destruction (van der Donk et al. 1991; Kjaer et al. 2005). 

Sensitization can occur within a nociceptive neuron’s receptive field in the 

periphery or to neurons in the CNS (Loeser and Treede 2008; Raja et al. 2020); that 

sensitization can manifest symptomatically as hyperalgesia and/or allodynia (Loeser and 

Treede 2008; Raja et al. 2020). Allodynia is that pain elicited by a normally non-noxious 

(non-painful) stimulus and hyperalgesia is a heighted response to a noxious (painful) 

stimulus (Loeser and Treede 2008; Raja et al. 2020). These signs are quantifiable and have 

been used in both clinical studies (Curatolo et al. 2015; Elliott et al. 2009; Lluch et al. 2014; 

Sterling et al. 2008; Sterling 2010) and animal models (Crosby et al. 2015; Lee et al. 2004; 

Sperry et al. 2020b; Winkelstein 2011) of pain, using dermatomal mapping between 

species (Takahashi and Nakajima 1996). Behavioral sensitivity is assessed by measuring a 

subject’s reflex threshold in response to a mechanical stimulus (Loeser and Treede 2008). 
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In the rat, mechanical hyperalgesia is commonly quantified using von Frey filaments that 

apply a calibrated force to the skin local to the source of pain or in nearby regions (Figure 

1.2A) (Loeser and Treede 2008). Since the same cervical spinal nerves innervate the  

capsular ligaments of the facet joints and distribute innervations to the forepaw of the rat 

 

Figure 1.2. (A) Mechanically evoked pain is detectable using behavioral assays in rodent models of facet-

mediated pain. The withdrawal threshold of the forepaw is significantly reduced (*p<0.002) in response 

to stimulation with von Frey filaments after a supraphysiologic facet capsule stretch (painful; grey) 

compared to physiologic non-painful facet capsule stretch (black) (#p<0.008), with a lower threshold 

indicating increased mechanical hyperalgesia. (B) Biomechanical measurements and imaging measures 

of collagen fiber microstructural realignment of the cervical facet joint. Schematic of a C1-C3 human 

cervical spine specimen in a mechanical testing system with vertebral markers projecting anteriorly and 

a grid of markers attached to the C2/C3 facet joint for kinematic analysis of the capsular surface strains 

during loading. The grid on the capsular surface is tracked by cameras which are used to estimate capsule 

deformation during vertebral loading. A fiber alignment map (shown in red lines), generated by polarized 

light imaging, shows collagen fiber alignment and its reorganization during facet loading, which alters 

the local biomechanical environment of any resident afferents in the ligament’s collagen matrix. Safranin 

O staining of the rat C6/C7 facet six weeks after facet joint distraction simulating physiological loading 

shows the proteoglycan content of the facet joint cartilage (red); the close-up (inset) shows that facet 

cartilage does not exhibit signs of joint degeneration after non-painful facet capsule loading. Figure 

adapted from Ita, et al. J Orthop Sports Phys Ther, 2017. 
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(Lee et al. 2008; Takahashi and Nakajima 1996; Winkelstein 2011), mechanical 

hyperalgesia evoked in the forepaw can indicate a noxious stimulus from the facet joints 

(Figure 1.2A). Importantly, mechanically evoked behavioral sensitivity does not fully 

capture the affective components of pain in the human, such as spontaneous pain (Bushnell 

et al. 2013; Loeser and Treede 2008).  

1.2.5.2. Mechanical Testing & Imaging of Collagen Networks  

Mechanical testing of human cadaveric and rodent facet capsular ligaments has 

defined the biomechanical responses of the capsular ligament under load (Panjabi et al. 

1998; Pearson et al. 2004; Quinn and Winkelstein 2007; Quinn and Winkelstein 2008; 

Quinn and Winkelstein 2011; Winkelstein et al. 2000). Full-field strain measurements 

made across the surface of the facet capsule during mechanical testing provide context to 

the biomechanical responses (Figure 1.2B). That dimensionless measure describes the 

deformation of a body by changes in length and line segments and the changes in the angles 

between them (Figure 1.2B). Strain is a helpful and common injury metric across species 

due to its relationship to deformation and because it is unitless. For example, strains during 

ligament stretch that induce pain in the rat (8-31% at 500%/s) (Dong et al. 2012) align with 

those measured in cadavers during simulated whiplash injury (29-40%) (Panjabi et al. 

1998; Pearson et al. 2004).  

Quantitative polarized light imaging (QPLI) can be integrated with mechanical 

testing to provide kinematic data of collagen in capsular ligaments (Figure 1.2B). Polarized 

light is an optical technique that exploits the natural birefringence of collagen molecules to 

quantify the dynamic reorganization of collagen fibers during mechanical loading, and has 
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been used extensively to evaluate soft tissue biomechanics and other collagenous tissue 

equivalents (Lake et al. 2011; Quinn and Winkelstein 2009; Sander et al. 2009; Tower et 

al. 2002). Briefly, in a QPLI system, light from a fiber-optic illuminator is polarized by a 

rotating polarizer, travels through the ligament (or other birefringent tissue), and is received 

by a circular analyzer mounted on a high-speed camera (Quinn and Winkelstein 2008; 

Tower et al. 2002).  

Using that approach, reorganization of the collagen fibers in human cadaveric 

capsular ligaments has been found to co-localize with regions of unrecovered tissue strain 

after a posterior-vertebral retraction (Quinn and Winkelstein 2011) and to coincide with 

decreases in tissue stiffness in posterior retraction (Lee and Winkelstein 2012) and in 

tension (Quinn and Winkelstein 2009). The reorganization of collagen fibers also coincides 

with a decrease in ligament stiffness in isolated rat facet capsular ligaments during tension 

(Quinn et al. 2010). Moreover, that anomalous fiber reorganization in the rat occurs at 

strain magnitudes that also produce pain (Quinn et al. 2007; Quinn et al. 2010), suggesting 

that anomalous fiber realignment may explain the development of pain from facet capsular 

injury. Fiber alignment maps generated by harmonic analysis of the acquired QPLI images 

also reveal that there is a spatial variation in the cervical and lumbar facet capsule and a 

high degree of inter-sample heterogeneity of the collagen organization across the surface 

of a capsular ligament (Figure 1.2B) (Ban et al. 2017). Collectively, that work emphasizes 

that the effects of loading on the physiological responses in the facet capsule may vary 

regionally with the varied collagen microstructure. Those studies also suggest that atypical 

fiber reorganization during loading may be associated with local failures in the collagen 
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network of the ligament and be a possible mechanism involved in the development of 

stretch-induced pain 

1.2.5.3. Tissue-Level Structural Degeneration  

Histological methods are extensively used as tools to evaluate degradation in joint 

tissue sections in the context of joint degeneration (Schmitz et al. 2010). Hematoxylin-

Eosin stains cell nuclei blue-purple and cartilage matrix pinkish with bluish aspect in areas 

of high proteoglycan content and is used for the overall assessment of cell and tissue 

morphology (Schmitz et al. 2010). Safranin O staining visualizes the articular cartilage by 

staining proteoglycans and glycosaminoglycans (Figure 1.2B), and is a sensitive indicator 

of pathological decreases in proteoglycan content due to degenerative changes in the joint 

(Sperry et al. 2019; Yeh et al. 2008). Histochemical staining with Picrosirius Red stains 

the collagen fibers in joint tissues, enabling tissue-level assessment of collagen orientation 

(Sander and Barocas 2009; Schmitz et al. 2010). Histology stains have been used to 

demonstrate that the progression of degradation in joint tissues due to intra-articular MIA, 

intra-articular bacterial collagenase, and instability-inducing surgery in animal models of 

joint degeneration (Kim et al. 2011; Malfait et al. 2013; Wang et al. 2016; Yeh et al. 2008) 

replicate the evidence of joint degradation that is observed in some patients with severe 

osteoarthritis (Kim et al. 2015). Although histological stains enable visualization of joint 

tissues in single tissue slices and can inform about the structural health of joint tissues, they 

do not enable measuring the dynamic responses of the tissues to load. As such, study 

designs integrating histology assays together with mechanical testing are needed to define 

the structure-function relationships of tissues (Grant et al. 2015; Lake and Barocas 2012; 
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Miller et al. 2012; O’Leary et al. 2018). 

 

1.3. Summary 

Owing to their innervation, the capsular ligaments of synovial joints are sources of 

pain (Barnsley et al. 1993; Basbaum et al. 2009; Bogduk and Marsland 1988; Kallakuri et 

al. 2012; Loeser et al. 2012). Although the mechanisms by which traumatic joint loading 

causes pain are beginning to emerge (Crosby et al. 2014; Crosby et al. 2015; Ita et al. 

2017a; Kras et al. 2015; Lee et al. 2008; Sperry et al. 2017; Zarei et al. 2017; Zhang et al. 

2016; Zhang et al. 2017b; Zhang et al. 2018), the mechanisms by which pain is initiated in 

degenerated joints are not as clear. Furthermore, MMP-1 has not been studied for its role 

in nociceptive transmission from innervated joint tissues, despite its known involvement 

in the degenerative processes that accompany painful joint diseases (Fields 2013; Loeser 

et al. 2012; Sbardella et al. 2012; Visse and Nagase 2003).  

The studies in this thesis examine the role(s) of MMP-1 in nociceptive transmission 

from the capsular ligament by defining its role in mediating collagen-neuron and fibroblast-

neuron interactions in the context of loading. Integrated approaches in patients, in a rodent 

model, and in cells are used to study the relevant questions most comprehensively. The 

first studies presented in this thesis provide clinical context for the relevance of MMPs in 

painful joint disease by quantifying MMPs in innervated soft tissues of degenerated TMJs 

from patients and probing their relationships to clinical signs and symptoms of disease 

progression. In order to define the effect of MMP-1 on pain, joint structure-function 

relationships, and neuronal dysregulation, studies in the rodent utilize intra-articular 
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injections of bacterial collagenase and MMP-1 integrated with techniques to quantify 

behavioral sensitivity. Finally, a neuron-fibroblast co-culture model is developed to 

recapitulate the microenvironment of the capsular ligament and it is used in studies to 

define the mechanistic role of MMP-1 in the context of stretch-induced nociceptive 

signaling. In studies in the animal and in the co-culture model of the capsular ligament, 

QPLI techniques are integrated with immunolabeling of proteins in order to enable 

answering questions about local relationships between the microstructural reorganization 

of collagen fibers and the dysregulation of MMPs and neuropeptides in fibroblasts and 

peripheral neurons.  
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  Chapter 2 

Rationale, Context, Hypothèses, & Aims 
 

 

 

2.1. Rationale & Context 

Chronic pain affects 100 million adults in the United States at an annual cost of 

$560-635 billion, negatively impacting the daily lives of at least 18% of Americans (IBM 

Corporation 2019; Institute of Medicine 2011). Joint pain from trauma and/or degeneration 

is a leading cause of chronic pain (Institute of Medicine 2011). Synovial joints like those 

of the spine, jaw, knee, hip, elbow, wrist, ankle, and hand can become painful with aging 

or from trauma due to repeated and/or supra-physiologic loading that can initiate tissue 

damage and degeneration (Mow et al. 1993; Neogi 2013). Neck and low back pain are 

among the most prevalent chronic syndromes (Hogg-Johnson et al. 2008; Institute of 

Medicine 2011), and can be due to pathology of the spinal facet joints which are susceptible 

to trauma (Elliott et al. 2009; Manchikanti et al. 2004; Norris and Watt 1983; Sterling et 

al. 2003) and degeneration (Gellhorn et al. 2013; Hawellek et al. 2017; Park et al. 2014; 

Suri et al. 2013) in both the cervical and lumbar regions. Disorders of the TMJ make up 

the second most common musculoskeletal condition resulting in pain and disability after 

chronic low back pain (National Academies of Sciences, Engineering, and Medicine 2020; 

NIDCR 2014). Current therapies for joint pain, including anesthetics, surgical 
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interventions, and medications, provide only temporary relief (Institute of Medicine 2011; 

National Academies of Sciences, Engineering, and Medicine 2020). Development of 

effective treatments remains hampered by an incomplete understanding of the mechanisms 

that initiate and maintain joint pain. 

 Abnormal traumatic and/or repeated loading of the innervated capsular ligament 

can cause aberrant changes to the ligament’s collagen network and initiate signal 

transduction in host FLS cells (Bartok and Firestein 2010; Kallakuri et al. 2008; Lee et al. 

2004; Zhang et al. 2016). Load-induced effects on the collagen microstructure and FLS 

physiology can lead to nociceptive signaling in afferent fibers (Yamashita et al. 1996; 

Zhang et al. 2016; Zhang et al. 2017). Yet, the interactions between afferents, FLS, and 

collagen fibers in the context of injurious loading is not well understood. MMP-1 interacts 

directly with collagen fibers via collagen catabolism and also interacts both directly and 

indirectly with host FLS cells and innervating afferents. MMP-1 may mediate nociception 

via Type I collagen catabolism that alters the local biomechanical environment of the 

ligament (Sperry et al. 2017; Visse and Nagase 2003). MMP-1 can also sensitize neurons 

by binding directly to neuronal receptors and/or acting as a signaling protein in nociceptive-

related pathways, including regulation of MMP-9 (Allen et al. 2016; Conant et al. 2002; 

Visse and Nagase 2003). Furthermore, very little is known about the interactions of afferent 

fibers and FLS with each other and their surrounding collagen network in the context of 

joint pain, despite their both being present in capsular ligaments (Provenzano et al. 2005; 

Yamashita et al. 1996). Despite evidence for MMP-1’s involvement in ECM-dependent 

mechanotransduction and non ECM-dependent nociception pathways including via MMP-
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9, it is not clear if, or how, MMP-1 acts as a mechanical and/or biologic regulator of 

nociception in the capsular ligament. Therefore, the overall goal of this thesis is to define 

how the biomechanical and biochemical actions of MMP-1 contribute to nociceptive 

transmission from the capsular ligament. 

An in vitro neuron-seeded 3D collagen gel model has been developed to replicate 

the sensory innervation and network microstructures of the facet capsule and used to define 

neuron-ECM interactions under different loads (Zhang et al. 2016; Zhang et al. 2017; 

Zhang et al. 2018). In that model, DRGs containing cell bodies of the sensory neurons that 

innervate the capsule (Basbaum et al. 2009; Kras et al. 2013) are embedded in a 3D 

collagen network to mimic the local anatomy of the capsular ligaments. While that system 

enables the investigation of afferent-collagen interactions under injurious loading, it does 

not fully mimic the local cellular contributions and interactions present in capsular 

ligaments since it does not include FLS (Bartok and Firestein 2010; Provenzano et al. 2002; 

Valencia et al. 2004; Yahia and Garzon 1993; Yamashita et al. 1996). Furthermore, since 

synovial fibroblasts interact with MMP-1 (Jenkins et al. 1999; Sorsa et al. 1992), including 

their effects in a model is critical to more fully understand how MMP-1 may mediate 

nociception in joints. In addition to the spinal facets, other synovial joints like the TMJ also 

contain multicellular environments with FLS cells embedded along with afferents (Kido et 

al. 1993); in fact, FLS cells likely play a role in the degenerative and inflammatory 

etiologies of chronic and painful TMJ disorders (Scrivani et al. 2008; Tanaka et al. 2008), 

where MMP-1 levels are also both detectable and elevated (Kanyama et al. 2000; Srinivas 

et al. 2001). As such, existing models have limited utility to evaluate afferent-fibroblast 
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interactions in the context of nociception. A major goal of this thesis was to create a more 

physiologic in vitro model of the capsular ligament and use it to study MMP-1’s role in 

nociception on a cellular level in parallel with studies in the human and the animal. 

Together with studies in the human (Aim 1), and the rat (Aim 2), studies utilizing the co-

culture collagen gel model (Aims 3 & 4) provide evidence that supports a role for MMP-1 

in joint pain across scales.  

The mechanisms by which traumatic joint loading causes pain are beginning to be 

defined (Crosby et al. 2014; Crosby et al. 2015; Ita et al. 2017; Kras et al. 2015a; Zhang et 

al. 2016; Zhang et al. 2017; Zhang et al. 2018), but the mechanisms by which pain is 

initiated and/or mediated in degenerated joints are not as clear. Despite trauma severity 

and pain being correlated (Chen et al. 2006; Crosby et al. 2015; Dong et al. 2012; Lu et al. 

2005; Panjabi et al. 1998; Pearson et al. 2004; Quinn et al. 2010), mixed reports show both 

positive and negative associations between the severity of structural degeneration and joint 

pain (Hall et al. 2017; Hunter et al. 2013; Loeser et al. 2012; Suri et al. 2013; Torres et al. 

2006). Furthermore, pain scores from patients are rarely correlated with degradative 

enzymes in the joint (Kim et al. 2011; Konttinen et al. 1999; Lattermann et al. 2017), 

hampering the ability to understand molecular changes in protein expression, particularly 

with respect to MMPs, in the context of clinically-relevant pain. Studies measuring MMP-

1 and/or MMP-9 in joints with chronic pain conditions are also scarce (Lafeber and van 

Spil 2013), and are primarily limited to the knee (Haller et al. 2015; Konttinen et al. 1999; 

Lafeber and van Spil 2013; Lattermann et al. 2017; Tchetverikov et al. 2005). Aim 1 

addresses these gaps by quantifying protein levels of MMPs in innervated joint tissues from 
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patients with chronic, painful disorders of the TMJ, commonly caused by atypical loading 

(Scrivani et al. 2008; Tanaka et al. 2008). Studies in that aim assess relationships between 

MMP levels and metrics of both structural degeneration and patient-reported pain scores 

that are currently limited in the literature. Findings in Aim 1 also help set up the cellular-

level mechanistic studies of MMP-1 and MMP-9 in the rest of this thesis by characterizing 

the relationship between MMP-1 and MMP-9 in human tissue, contextualizing their 

physiological relevance.  

Animal studies injecting intra-articular bacterial collagenase report more severe 

joint degeneration with higher doses and longer follow-up times after injection, 

hypothesizing that structural damage mediates pain (Adães et al. 2014; Gou et al. 2019; 

Yeh et al. 2008). Yet, the progression and extent of joint damage in those studies depends 

on the type of bacterial collagenase injected. Most studies use a crude bacterial collagenase 

that also contains high levels of secondary proteases; intra-articular crude bacterial 

collagenase in the knee and lumbar facet joints in rats mimics the clinical scenario in which 

joint damage, particularly to cartilage and bone, is severe (Adães et al. 2014; Gou et al. 

2019; Yeh et al. 2008). Yet, the outcomes of those studies do not explain clinical cases in 

which patients do not present with imaging evidence of joint destruction (van der Donk et 

al. 1991; Gellhorn et al. 2013; Hunter et al. 2013; Kjaer et al. 2005; Suri et al. 2013). On 

the contrary, purified bacterial collagenase, which lacks the proteolytic enzymes capable 

of degrading cartilage (Fields 2013), induces more subtle changes to the ECM of joint 

tissues (van der Kraan et al. 1990; van Osch et al. 1994; van Osch et al. 1995); intra-

articular purified bacterial collagenase increases joint laxity (van Osch et al. 1994), 
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suggesting that collagenase-mediated degradation of Type I collagen-rich tissues, like the 

capsular ligament, can destabilize the joint and potentially trigger pathological cascades in 

the resident cells. 

Purified collagenase from bacteria partially captures the collagenolytic function of 

the human interstitial collagenase MMP-1, rendering collagenase a useful tool for 

interrogating the collagenolytic effect of MMP-1 in isolation. But, it lacks the other myriad 

roles of MMP-1 in healthy and pathologic physiology. For example, bacterial collagenase 

lacks all non-ECM substrates of MMP-1 (Fields 2013; Zhang et al. 2015) and breaks down 

Type I collagen via a more aggressive mechanism by catabolizing all Y-Gly bonds versus 

cleavage into one-quarter and three-quarter segments like MMP-1 (Fields 2013; Zhang et 

al. 2015). Experiments in Aim 2 define the effect of both intra-articular purified bacterial 

collagenase and intra-articular MMP-1, in separate studies, on joint structure-function 

relationships and peripheral neuron function in the context of pain in the rat (Ita and 

Winkelstein 2019; Kras et al. 2015a; Kras et al. 2015b).  

The majority of patients diagnosed with degenerative joint pain do not report a 

significant injury to the painful joint (Hill et al. 2005), and often report pain with every-

day, physiologic activities including walking, standing, and climbing stairs (Neogi 2013), 

suggesting that joint degeneration may lower the threshold for mechanically-evoked pain. 

It is possible that increased MMP-1 in degenerated joints (Chockalingam et al. 2013; Kim 

et al. 2015; Loeser et al. 2012; Tchetverikov et al. 2005) may degrade the joint’s capsule 

and, as such, alter its response to loads. The intra-articular injection of exogenous 

collagenases in Aim 2, whether bacterial or MMP-1, provides insight into possible 



29 

 

mechanical and/or chemical mechanisms of MMP-1’s role in mediating joint pain by 

increasing joint levels of collagenases in the absence of traumatic injury. 

Studies in Aims 3 and 4 describe the development and characterization of a DRG-

FLS co-culture collagen gel model and use it to begin to define the mechanism of MMP-1 

involvement in loading-induced nociception. In those studies, our existing 3D neuron-

collagen culture system (Zhang et al. 2017; Zhang et al. 2018) is modified to more closely 

mimic an innervated ligamentous joint capsule by incorporating biologically-relevant 

fibroblasts to better match the multicellular state of the capsular ligament. Since synovial 

fibroblasts have a distinct phenotype and function compared to other fibroblasts (Bartok 

and Firestein 2010; Hinz 2013; Vandenabeele et al. 2003), primary FLS cells were 

harvested from the knee joint capsular ligaments and characterized with and without DRG 

co-culture in the 3D collagen gel environment (Aim 3a).  

Non-physiologic loading mediates neuronal nociceptive signaling (Zarei et al. 

2017; Zhang et al. 2016; Zhang et al. 2017; Zhang et al. 2018) and initiates pathological 

ECM remodeling by fibroblasts, including MMP-1 secretion (Petersen et al. 2012), and 

fibroblast collagen deposition (Bartok and Firestein 2010; Camelliti et al. 2005; Hsieh et 

al. 2000; Kim et al. 2002; Provenzano and Vanderby 2006; Wang et al. 2007). In collagen 

networks, those load-induced cellular responses are triggered by reorganization of the local 

fiber network surrounding the embedded cells (Grinnell 2000; Sander et al. 2009; Zhang 

et al. 2016). Although those load-induced cellular responses are known, how collagen 

network degradation alters the relationship between load and cell-cell interactions is not 

known. Furthermore, if, and how, FLS integration alters mechanical and/or physiological 
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behavior in the neuron-collagen system has also not been investigated. Collectively, the 

studies in Aim 3 examine nociception, DRG- and FLS-localized MMP expression, network 

composition and microstructure, and multiscale biomechanics of the co-culture collagen 

gel model in response to a degradative chemical exposure (Aim 3b) and a mechanical 

stretch-to-gel failure in uniaxial tension (Aim 3c). Throughout this thesis, nociceptive 

response is measured by changes in substance P expression since that neurotransmitter is 

involved in transmitting nociceptive signals (Basbaum et al. 2009; Cheng and Ji 2008; 

Zhang et al. 2017) and facet joint pain (Kras et al. 2015b). Calcium signaling is also utilized 

as a proxy for action potentials and neuronal activity (Chen et al. 2013; Patel et al. 2015), 

since increased neuronal firing is characteristic of afferent activity in pain resulting from 

joint trauma (Crosby et al. 2015). 

Strain magnitude directly relates to the extent of pain (Dong et al. 2012; Panjabi et 

al. 1998; Pearson et al. 2004), neuronal expression of substance P and activated signaling 

kinase phosphorylated ERK (pERK) (Zhang et al. 2016; Zhang et al. 2017), and neuronal 

activity (Chen et al. 2006; Crosby et al. 2015; Lu et al. 2005; Quinn et al. 2010). In neuron-

collagen gels, a strain threshold of 14-40% (at 1%-7% strain/sec) increases substance P 

and pERK expression (Zhang et al. 2016; Zhang et al. 2017; Zhang et al. 2018). 

Experiments in Aim 4a expand on that prior work, as well as on stretch experiments in Aim 

3c, by characterizing the expression of substance P, MMP-1, and MMP-9 in DRG and FLS 

cells, network microstructure, and multiscale biomechanical metrics after a sub-failure 

stretch. In Aim 4a, experiments test whether the strain thresholds that increase neuronal 

regulators like substance P and pERK (Zhang et al. 2016; Zhang et al. 2017; Zhang et al. 



31 

 

2018) also have nociceptive effects in the DRG-FLS co-culture model. The sub-failure 

stretch used in Aim 4 models the clinically-reported sub-failure joint trauma that produces 

sustained behavioral sensitivity in the rat (Dong et al. 2012; Ita et al. 2017; Winkelstein 

and Santos 2008) and is imposed using an equibiaxial mechanical test configuration to 

simulate the constrained anatomy of the spinal facet joint capsule (Jaumard et al. 2011; 

Sperry et al. 2017; Yahia and Garzon 1993; Yamashita et al. 1996). In addition to 

characterizing neuronal expression of substance P, that study quantifies MMP-1 and MMP-

9 expression in both DRG and FLS cells after stretch. Although MMP-1 is upstream of 

MMP-9 and substance P in signaling cascades (Conant et al. 2004; Visse and Nagase 2003; 

Zhang et al. 2017), it is not known if MMP-1 regulates either or both of MMP-9 and/or 

substance P in traumatic ligament loading or if their interactions depend on load. To 

investigate this, Aims 4b and 4c integrate MMP-1 inhibition with a painful, sub-failure 

stretch and test whether inhibiting MMP-1 alters MMP-9 expression, substance P 

expression, or the collagen network in injury modalities that cause chronic joint pain. 

Studies inhibiting MMP-1 provide mechanistic context to the outcomes of exogenous 

MMP-1 in the joint (Aim 2), as well as to the MMP levels quantified in painful joint disease 

(Aim 1). 

 

2.2. Overall Hypotheses & Specific Aims 

The studies in this thesis combine complementary approaches in the human, rat, 

and cells to define the role of MMPs, and particularly MMP-1, in joint pain by integrating 

outcomes in both the musculoskeletal and nervous systems. The overall hypothesis is that 
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MMP-1 mediates afferent signaling by regulating fibroblast-neuron and collagen-neuron 

interactions in the capsular ligament of synovial joints in the context of loading by 

changing the biomechanical environment of the ligament and acting as a biochemical 

mediator of MMP-9. The central hypothesis has four sub-hypotheses that are each tested 

in the following associated specific aims.  

 

Hypothesis 1. MMPs play a role in the degeneration and pain accompanying chronic joint 

diseases. MMP-1 and MMP-9 are detectable in innervated soft tissues from painful joints, 

with the signal for MMP-1 being higher than that of MMP-9. Since MMP-1 degrades 

collagen in joint tissues (Visse and Nagase 2003), but MMP-9 does not, MMP-1 is 

predicted to correlate with measures of joint damage. Since both MMP-1 and MMP-9 are 

linked to nociception (Allen et al. 2016; Conant et al. 2002; Kawasaki et al. 2008), both of 

those MMPs correlate with pain.  

 

Aim 1. Characterize the pro- and active forms of MMP-1 and MMP-9 protein expression 

in the Type I collagen-rich and innervated capsular ligament and disc tissues from human 

TMJs with painful internal derangement and/or osteoarthritis. Relate MMP levels to each 

other and to clinical data, including pain scores, magnetic resonance imaging (MRI), scores 

of degenerative severities, and function. 

1a. Quantify the pro- and active forms of MMPs, separately, to compare relative 

amounts of catabolically active and inactive MMPs in joint tissues and test the 

relationships between MMP-1 and MMP-9. 
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1b. Test relationships between MMPs and patient-reported pain scores using a 

Likert scale, and also with function measured by maximal incisal opening. Quantify 

joint damage using MRI data and the EuroTMjoint scoring system to evaluate 

relationships between MMPs and damage that is evident on clinical imaging. Test 

differences in MMP levels by Wilkes stage as a metric of overall joint degeneration 

at the time of surgery.  

1c. Evaluate if MMPs differ with tissue type (capsular ligament or disc) or the type 

of surgery (total joint replacement or discectomy). 

 

Hypothesis 2. Exogenous intra-articular collagenase induces immediate and sustained 

behavioral sensitivity via its mediation of the collagen network and signaling pathways. 

Because collagenases have strong collagenolytic activity and break down Type I collagen 

(Fields 2013), intra-articular collagenase, including bacterial collagenase and human 

MMP-1, degrades the ligament’s collagen network rendering its microstructure sparser and 

reorganizing it, which results in tissue-level joint degeneration and altered joint kinematics 

under load at later times. Intra-articular MMP-1 also increases expression of nociceptive 

mediators, including MMP-9, given its myriad roles in non-matrix dependent signaling 

pathways (Allen et al. 2016; Conant et al. 2002; Dumin et al. 2001; Visse and Nagase 

2003).   

 

Aim 2. Utilize a rodent model of intra-articular C6/C7 facet injection to evaluate the effects 

of intra-articular collagenases on joint structure, joint biomechanics, and peripheral 
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neuronal function in the context of behavioral sensitivity at later times. Utilize purified 

bacterial collagenase to isolate the collagenolytic functions of collagenases and MMP-1 to 

test the collagenolytic and non-collagenolytic functions collectively.  

2a. Measure the effect of intra-articular purified bacterial collagenase on immediate 

and sustained behavioral sensitivity. Quantify joint tissue structure using histology 

stains of the cartilage and capsular ligament and the physiological health of the 

cartilage using a HIF-1α label to assess chondrocyte homeostasis. In the DRG, 

measure nociceptive neuropeptide expression using an immunolabel to substance 

P and stimuli-evoked signaling transduction using an immunolabel to pERK. 

Determine if MMP-1 is increased in the DRG in parallel with changes in behavioral 

sensitivity, joint health, and the expression of substance P and pERK. 

2b. Measure the effect of intra-articular MMP-1 on immediate and sustained 

behavioral sensitivity. Quantify joint tissue structure using histology as described 

in Aim 2a. Test whether intra-articular MMP-1 changes the collagen 

microstructure and/or composition of the capsular ligament using polarized light 

imaging and biochemical assays. Investigate MMP-1-induced changes to tissue and 

microstructural ligament kinematics by assessing mechanical responses and 

ligament collagen fiber alignment maps during stretch to failure. Evaluate 

substance P and MMP-9 expression in the DRG to investigate nociceptive 

responses in the rat. 
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2c. Integrate findings from Aims 2a and 2b to infer how the collagenolytic and the 

non-collagenolytic functions of exogenous intra-articular collagenases affect 

behavioral sensitivity, joint structure-function, nociception, and inflammation.   

 

Hypothesis 3. Fibroblast-like synoviocytes regulate the microstructure of their 

surrounding collagen network during non-constrained culture and under stretch. 

Fibroblast-mediated collagen reorganization results in stronger biomechanical properties 

of the bulk matrix when stretched. Fibroblasts secrete low levels of MMPs at baseline; 

mechanical and chemical collagen-altering stimuli increase MMP levels. Fibroblasts 

regulate the cellular localization of MMPs to peripheral neurons and non-fibroblast cells 

in their local environment and influence neuronal expression of nociceptive neuropeptides. 

 

Aim 3. Develop and characterize a physiologically relevant co-culture collagen gel model 

incorporating peripheral neurons and fibroblasts that mimics the multicellular environment 

and collagen network of an innervated ligamentous joint capsule. Characterize the cellular 

and collagen network response of that co-culture collagen gel system to biochemical and 

biomechanical stimuli. 

3a. Characterize the phenotype and morphology of fibroblasts harvested from rat 

capsular ligaments using immunolabels of the structural protein vimentin and the 

cell-surface specific protein CD90. Compare the function of capsular ligament-

derived fibroblasts to the more broadly studied 3T3 fibroblast cell line using 

matched fibroblast-seeded gels and stretch-to-failure experiments to define the 
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physiology of primary-sourced fibroblasts relative to immortalized cells. Assess the 

viability and health of both peripheral neurons and capsular fibroblasts during their 

co-culture.  

3b. Expose the co-culture collagen gel system to purified bacterial collagenase and 

measure collagen network composition and microstructure. Measure peripheral 

neuronal firing using calcium signaling as a proxy for action potentials. Quantify 

MMP-1 expression in peripheral neurons and fibroblasts. Compare MMP-1 

expression in neurons in vitro with in vivo intra-articular-induced changes in DRG-

localized MMP-1 measured in studies in the rat in Aim 2a. 

3c. Impose a tensile failure stretch to the co-culture collagen gel model and measure 

neuropeptide expression of substance P in peripheral neurons, and MMP-1 and 

MMP-9 expression in neurons and fibroblasts, immediately after gel failure. Define 

macroscale biomechanics and collagen network microstructural kinematics using 

quantitative polarized light imaging during loading. Compare the cellular 

physiological and multiscale biomechanical behavior of the co-culture collagen 

gels to collagen gels containing only peripheral neurons to test if fibroblasts 

regulate how neurons and collagen fibers respond to stretch. 

 

Hypothesis 4. Sub-failure stretch of neuron-fibroblast co-culture gels above the magnitude 

that increases substance P expression in peripheral neurons also regulates MMP-1 and 

MMP-9 expression in both peripheral neurons and fibroblasts. MMP-1 mediates stretch-

induced nociceptive responses via its regulation of MMP-9. Under load, MMP-1 regulates 
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the reorganization of collagen fibers on a microscale but does not regulate macroscopic 

biomechanical properties of its environment. Inhibiting MMP-1 decreases stretch-induced 

MMP-9 and substance P expression in peripheral neurons and alters the microstructural 

reorganization of collagen fibers during a sub-failure mechanical exposure. 

 

Aim 4. Using the in vitro model from Aim 3, evaluate if, and how, MMP-1 and MMP-9 

mediate relationships between neurons and fibroblasts, and their surrounding collagen 

network, in response to a stretch that mimics the sub-failure, painful injuries that occur in 

vivo. Integrate quantitative polarized light imaging techniques to test if MMP-1 inhibition 

alters network kinematics during painful loading. Assay protein expression 24 hours after 

stretch since MMP transcriptional and translation regulation occurs after many hours. 

4a. Measure neuronal substance P expression, and neuronal and fibroblast-

localized MMP-1 and MMP-9 expression, network microstructure, and macroscale 

biomechanics of co-culture collagen gels in response to a biaxial stretch that 

induces strains greater than those that induce pain in vivo. 

4b. Optimize an MMP-1 inhibition protocol based on dose magnitude and 

frequency that decreases MMP-1 expression across cell types. Compare MMP-1 

levels between regimens that use different magnitudes of the inhibitor ilomastat 

either given: daily, only during every media change, only prior to stimuli known to 

increase MMP-1, or only immediately after stimuli. Test the effectiveness of MMP-

1 inhibition on blocking MMP-1 expression using a biochemical exposure to 
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bacterial collagenase comparable to that used in Aim 3b and a sub-failure stretch 

used in Aim 4a as stimuli known to increase MMP-1. 

4c. Perform the same experiments as in Aim 4a with the MMP-1 inhibition protocol 

optimized from Aim 4b to determine if, and how, MMP-1 inhibition alters neuronal 

expression of substance P and MMP-9 expression in peripheral neurons and 

fibroblasts, after a painful, sub-failure, biaxial stretch. Define relationships between 

expression of MMP-1, MMP-9, and substance P with changes in microstructural 

reorganization. 

 

2.3. Overview of Thesis Organization  

The aims of this thesis are organized into chapters corresponding to the individual 

studies. The studies from Aim 1 are presented first in Chapter 3 because they evaluate the 

role of MMPs in painful joint diseases in a human population, which provides a clinical 

context for questions investigated in the rest of the thesis. Chapter 4 summarizes studies 

from Aim 2a that investigate the effects of intra-articular bacterial collagenase on pain as 

well as joint and neural outcomes. Although that study demonstrates that a collagenase 

with the collagenolytic-function of human MMP-1 is sufficient to induce pain, many 

questions remained unanswered about the underlying mechanism of how a collagen-

degrading stimulus mediates nociception. Chapter 5 details the development of a novel 

neuron-fibroblast co-culture collagen gel model (Aim 3a), and characterizes that model’s 

response to exposure to the same bacterial collagenase (Aim 3b) used by the intra-articular 
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in vivo studies in Chapter 4 to better understand how a collagen-degrading agent in the 

joint mediates nociception. Chapter 6 summarizes experiments characterizing the cellular 

and network responses of the co-culture model to tensile failure (Aim 3c), elaborating on 

how integrating fibroblasts into the neuron-collagen gel model influences neuronal 

responses and collagen kinematics in the context of loading. The stretch experiments in the 

co-culture model of the capsular ligament presented in Chapter 6 demonstrate a novel role 

for MMP-1 in nociception and motivate asking whether and how intra-articular MMP-1 

alone is sufficient to induce pain. As such, Chapter 7 presents the studies from Aim 2b that 

utilize intra-articular MMP-1 in the rat and demonstrate that MMP-1 is sufficient to induce 

pain-like behaviors, further supporting that MMP-1 is directly involved in the nociceptive 

signaling presented in the in vitro work in Chapter 6. Lastly, Chapter 8 details experiments 

that test the effect of inhibiting MMP-1 on nociceptive signaling due to a sub-failure, 

painful stretch in the co-culture model. Those studies first test whether a painful stretch 

defined using the neuron-only collagen gel model is enough to initiate nociceptive 

responses in the modified co-culture model (Aim 4a), and then assess cellular and collagen 

network responses during painful stretch with MMP-1 inhibition (Aims 4b & 4c). Lastly, 

Chapter 9 integrates the main findings of the overall thesis in the broader context of painful 

joint conditions, addresses limitations and implications of this work, and proposes 

directions for future research.  
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 Chapter 3 

Characterization of MMPs & Their Relationships 

to Clinical Data in a Patient Population with 

Painful TMJ Disorders  
 

This chapter has been adapted from: 

Ita ME, Ghimire P, Granquist EJ, Winkelstein BA. MMPs in tissues from TMJ disorders 

relate to pain more than joint damage. Journal of Orthopaedic Research, under revision. 

 

3.1. Overview 
 

Orofacial pain has been identified as one of the six most common clinically relevant 

chronic pain conditions and is often caused by temporomandibular disorders (TMDs) 

(National Academies of Sciences, Engineering, and Medicine 2020; Treede et al. 2019). In 

a prospective study with over 3,000 adults, participants developed clinically verified TMD 

at a rate of 4% per year and reported orofacial pain symptoms at a rate of 18.8% per year 

(Slade et al. 2016). Painful TMDs include pathologies of the TMJ and its tissues and 

include internal derangement (ID) of the articular disc and degenerative joint diseases like 

osteoarthritis (OA) (National Academies of Sciences, Engineering, and Medicine 2020). 

For the TMJ, internal derangement of the disc refers to the displacement of the articular 

disc from its normal functional relationship with the mandibular condyle (National 

Academies of Sciences, Engineering, and Medicine 2020). Long-term and advanced 
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derangement develops into OA in 15% of patients with ID, with the progression to OA 

defined by the breakdown of cortical bone of the TMJ condyle (National Academies of 

Sciences, Engineering, and Medicine 2020). Pain from TMJ disorders is more often caused 

by repeated atypical loading than by an acute traumatic injury (Scrivani et al. 2008; Sperry 

et al. 2017; Tanaka et al. 2008), unlike the etiologies for other synovial joints like the 

cervical facets (Elliott et al. 2009; Ita et al. 2017). Such functional overloading, as is 

associated with parafunctional habits like jaw clenching and grinding, causes pathological 

changes that lead to degenerative and/or inflammatory cascades that can sensitize pain 

fibers in the TMJ (Scrivani et al. 2008; Sperry et al. 2017; Tanaka et al. 2008). 

The bilateral TMJs function together as a complex to connect the mandible to the 

temporal bone of the skull and allow for the rotational and translational movements of the 

mandible (National Academies of Sciences, Engineering, and Medicine 2020; Sperry et al. 

2017). The articular disc lies entirely within the joint capsule, positioned between the 

mandibular condyle and the glenoid fossa of the temporal bone (Figure 3.1). (National 

Academies of Sciences, Engineering, and Medicine 2020). The capsular ligament provides 

stability to the TMJ and encloses the joint’s synovial fluid (Figure 3.1) (National 

Academies of Sciences, Engineering, and Medicine 2020). The mandibular branch of the 

trigeminal nerve supplies the sensory innervation of the TMJ, with nociceptive fibers 

innervating the capsular ligament, the peripheral articular disc, the synovial membrane, and 

the periosteum (Kido et al. 1993; Sessle 2011). The nociceptor innervation of the capsular 

ligament and disc vary regionally, with the anterior portion of the joint capsule most 

densely innervated, followed by the posterior, lateral, and medial portions. The disc has 
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more nerves in the peripheral portion and no fibers in the central disc band (Kido et al. 

1993). 

Although the TMJ is like other synovial joints in its overall anatomy, having a bony 

articulation and synovial fluid encapsulated by a ligamentous capsule (Figure 3.1), there 

are several differences between the TMJ and other synovial joints (National Academies of 

Sciences, Engineering, and Medicine 2020; Wadhwa and Kapila 2008). For example, the 

articular surfaces of the TMJ consist of Type I and Type II collagen-rich fibrocartilage 

which differs from the hyaline cartilage that lines the articular surfaces of synovial joints 

in the limbs, which does not typically contain Type I collagen (National Academies of 

Sciences, Engineering, and Medicine 2020; Wadhwa and Kapila 2008). The higher Type I 

collagen content of the TMJ fibrocartilage may make it more prone to collagenase-

degradation than other synovial joints since a greater proportion of the cartilage is prone to 

 

Figure 3.1. Schematic of a unilateral TMJ and its anatomy showing the capsular ligament that surrounds 

the joint space and the articular disc. Histology images show low and high magnification Safranin O-Fast 

Green staining (top; red=cartilage, green=underlying bone, black=nuclei) and Hematoxylin-Eosin 

staining (bottom; pale pink=collagen, black=nuclei) of a human TMJ excised during a total joint 

replacement surgery. The collagenous fibers of the capsular ligament (black stars) are observed in images 

from both stains lateral to the cartilage and bone. Scale bars apply to both stains. 
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degradation with elevated collagenase levels in painful TMDs (Kanyama et al. 2000; 

Srinivas et al. 2001). Also, the articular disc of the TMJ separates the joint cavity into two 

fluid-filled compartments and it governs the rotational and translational movements in the 

lower and upper compartments, respectively (National Academies of Sciences, 

Engineering, and Medicine 2020). Although the disc is attached on its sides to the 

mandibular condyle, the anterior and posterior portions are free from attachment (National 

Academies of Sciences, Engineering, and Medicine 2020), which may contribute to overall 

mechanical vulnerability of the TMJ due to disc instability and subsequent ID and OA.  

Although this thesis focuses on the role of MMPs in pain signaling in the capsular 

ligament, the articular disc of the TMJ is also susceptible to degradation by collagenases 

and can act as a pain sensor in that joint because of its nociceptive innervation (Kido et al. 

1993). Type I collagen does make up less of the total matrix distribution in the disc than in 

the capsule due to higher levels of glycosaminoglycans in the TMJ disc; but Type I collagen 

is still the primary matrix component (Milam et al. 1991). So, MMP-1 may mediate 

nociception via degradation of Type I collagen or via its role in signaling pathways in the 

disc just as it may in capsular ligament tissue. Accordingly, this chapter includes all studies 

from Aim 1 that quantify MMPs in the capsular ligament and also presents parallel MMP 

quantification and analyses in the articular disc. MMP levels from both ligament and disc 

tissues are combined in correlation analyses with clinical pain scores and imaging to 

provide additional insight. 

MMP-1 is hypothesized to mediate afferent signaling in the capsular ligament, in 

part, by acting as a biochemical mediator of the gelatinase MMP-9. This notion is 
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supported by evidence of MMP-1’s regulation of MMP-9 (Conant et al. 2002; Visse and 

Nagase 2003) as well as the established role of MMP-9 in neuropathic pain (Ji et al. 2008; 

Kawasaki et al. 2008). The other member of the gelatinase MMP subgroup is MMP-2, 

which, like MMP-9, is also regulated by MMP-1 and implicated in neuropathic pain 

(Conant et al. 2002; Ji et al. 2008; Kawasaki et al. 2008; Visse and Nagase 2003). Yet, the 

role of the gelatinases in neuropathic pain differs in that MMP-9 is required for the early 

(on the scale of days in the rodent) pain initiation phase and MMP-2 is necessary for late 

stage (on the scale of weeks or more in the rodent) pain maintenance (Ji et al. 2008; 

Kawasaki et al. 2008). The capsular ligament and disc tissues probed in the studies in this 

chapter are from a patient population diagnosed with late-stage chronically painful TMJ 

disorders. Since MMP-2 is implicated in late-stage pain transmission, and MMPs are 

probed in tissues from joints with late-state painful joint disease, the studies outlined in this 

chapter probe MMP-2 in parallel with MMP-1 and MMP-9. Indeed, both of those 

gelatinases are detected together in the synovial fluid of TMJs with internal derangement 

(Srinivas et al. 2001) and osteoarthritis (Kanyama et al. 2000), supporting that an increase 

in both gelatinases may be mechanistically due to upstream MMP-1 and/or mediate pain.  

Correlations between MMP-1 and MMP-2, and relationships between MMP-2 and 

clinical data, are tested in the studies in this chapter as well. The relationships of MMP-1, 

MMP-9, and MMP-2 with the clinical data that are investigated in this chapter were 

expected to differ based on the extracellular matrix (ECM) substrates and signaling roles 

of each MMP (Ji et al. 2008; Kawasaki et al. 2008; Sbardella et al. 2012; Visse and Nagase 

2003). Only MMP-1 was hypothesized to relate to measures of generalized disease 
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progression and clinical imaging because it directly catabolizes the primary ECM 

component of both the ligament and disc tissue, unlike MMP-9 and MMP-2 (Visse and 

Nagase 2003). All MMPs were expected to relate to patient-reported pain scores and 

function, since all three MMPs have roles in nociceptive-related pathways (Allen et al. 

2016; Ji et al. 2008; Kawasaki et al. 2008; Visse and Nagase 2003). 

 

3.2. Relevant Background 

Chronic pain is a substantial public health challenge and is commonly associated 

with diseases of synovial joints (Institute of Medicine 2011). TMDs arise from pathologies 

of the TMJ, are the second leading musculoskeletal condition resulting in pain, and occur 

with degenerative diseases like ID and osteoarthritis OA (National Academies of Sciences, 

Engineering, and Medicine 2020; Slade et al. 2016; Treede et al. 2019). The TMJ forms 

the articulation between the mandibular glenoid fossa and the condyle, is separated into 

two synovial cavities by a fibrocartilaginous disc, and is encapsulated by a ligamentous 

capsule (Figure 3.1). Pathologic repeated loading that occurs in ID and OA activates the 

trigeminal nerve fibers that innervate TMJ tissues such as the disc and capsular ligament 

(Kido et al. 1993; Scrivani et al. 2008); as such, innervated tissues act as pain sensors in 

TMJ disorders. The resulting persistent pain and severe jaw dysfunction that occur with 

TMJ degeneration and end-stage disease can be treated surgically with open joint 

arthroplasty, discectomy, and/or total joint replacement (TJR) (National Academies of 

Sciences, Engineering, and Medicine 2020). Although patients experience positive 

outcomes and long-term stability after surgical intervention (Abramowicz and Dolwick 
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2010; Wolford et al. 2015), invasive surgery is only used after other treatments fail 

(National Academies of Sciences, Engineering, and Medicine 2020). Pharmacologic 

treatments often fall short since they are adapted from other musculoskeletal and/or pain 

disorders rather than derived from evidence-based studies of individuals with painful TMJ 

disorders (National Academies of Sciences, Engineering, and Medicine 2020). Defining 

those molecular mechanisms that sustain and exacerbate severe TMJ degeneration can 

identify better therapeutic targets for earlier intervention and disease prediction (Kusiak et 

al. 2018).  

MMPs have many roles in physiological and pathological processes including 

degenerative pathogenesis with painful TMDs (Kartha et al. 2016; Sbardella et al. 2012; 

Visse and Nagase 2003). MMPs are broadly categorized into subgroups based on their 

substrate specificity and domain structure (Visse and Nagase 2003); the collagenases 

(MMP-1, MMP-8, MMP-13) and gelatinases (MMP-2, MMP-9) increase in TMJs with 

both ID and OA (Almeida et al. 2015; Fujita et al. 2009; Gho et al. 2018; Kanyama et al. 

2000; Kubota et al. 1998; Marchetti et al. 1999; Mizui et al. 2001; Srinivas et al. 2001; 

Tanaka et al. 2001). Although there is overlap in the extracellular matrix substrates across 

MMPs, collagenases and gelatinases preferentially degrade fibrillar (triple-helical) and 

denatured collagens, respectively (Visse and Nagase 2003). MMPs are classically 

described for their catabolism of ECM constituents and, thus, in association with tissue 

destruction in TMJ disorders. Yet, MMPs are also implicated in diseases of the nervous 

system (Yong et al. 2001), pain transmission (Kawasaki et al. 2008), and in receptor-

mediated and intercellular signaling pathways that regulate nociception (Conant et al. 
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2002; Dumin et al. 2001). Accordingly, although MMPs may drive TMD pain and/or joint 

tissue degeneration, their role is unknown.  

MMP-1 is a likely mediator of TMJ pain given its role in nociception and its 

elevated levels in TMDs. MMP-1 is secreted as a catabolically inactive zymogen, pro-

MMP-1, that is extracellularly activated through disruption of its cysteine-zinc interaction 

by proteases like plasmin or other MMPs (Sbardella et al. 2012; Visse and Nagase 2003). 

Since MMPs can only cleave ECM substrates after they are activated, they cannot 

participate in matrix remodeling in their pro-forms. However, in both active and pro- 

forms, many MMPs have non-ECM regulatory roles. This is true for MMP-1, which binds 

to receptors implicated in nociception, including β1-integrin and proteinase activated 

receptor-1 (PAR-1) (Conant et al. 2002; Dumin et al. 2001) and non-ECM substrates, like 

pro-inflammatory cytokines and neuropeptides, involved in pain signaling (Sbardella et al. 

2012; Visse and Nagase 2003). Moreover, MMP-1 activates gelatinases (pro-MMP-9, pro-

MMP-2) that are heavily implicated in pain transmission (Kawasaki et al. 2008; Visse and 

Nagase 2003; Yong et al. 2001). MMP-1, MMP-9, and MMP-2 are detected together in 

TMJ synovial fluid (SF) with ID (Srinivas et al. 2001) and OA (Kanyama et al. 2000), 

supporting that an increase in gelatinases may be mechanistically due to extracellular 

activation by MMP-1. Yet if, and how, MMP-1 relates to pain in TMJ disorders, via MMP-

9, MMP-2, or other pathways, is unknown.  

Although MMPs and their relationship to joint damage have been probed (Almeida 

et al. 2015; Fujita et al. 2009; Kubota et al. 1998; Mizui et al. 2001; Srinivas et al. 2001; 

Tanaka et al. 2001), results are mixed and depend on the damage metric used. In most 
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cases, analyses compare patients by disease severity using Wilkes staging, which combines 

clinical, radiologic, and surgical findings on a gross anatomical level (Wilkes 1989). 

Overall, those studies show that MMP-9 and MMP-2 generally increase in joint tissues 

with the presence of pathology compared to asymptomatic states (Almeida et al. 2015; 

Kubota et al. 1998); but, MMP levels do not always increase with disease severity (Fujita 

et al. 2009; Srinivas et al. 2001). For instance, MMP-9 and MMP-2 are reported to be 

higher in the synovial fluid from TMJs with mild ID than in those with severe ID (Srinivas 

et al. 2001). Yet, other studies report the opposite result, with increased gelatinase levels 

in more severe disease states (Mizui et al. 2001; Tanaka et al. 2001). Unlike tissue damage 

metrics, very few studies have assessed MMPs in the context of pain scores despite patient-

reported pain being the primary reason that patients seek treatment. There is some evidence 

of elevated MMP-3 levels in TMJ synovial fluid with greater pain (Fujita et al. 2009). If 

and how MMPs relate to pain and clinical degenerative signs in TMDs is unknown. 

This study defined the extent of MMP-1, MMP-9, and MMP-2 in the innervated 

capsular ligament and disc of TMJs from patients undergoing TJR or arthroplasty 

discectomy surgery for painful TMJ disorder. Despite those tissues being innervated and 

acting as pain sensors (Kido et al. 1993; Sessle 2011), most studies characterizing MMPs 

in TMJ disorders evaluate synovial fluid levels (Fujita et al. 2009; Kanyama et al. 2000; 

Kubota et al. 1998; Mizui et al. 2001; Srinivas et al. 2001; Tanaka et al. 2001). Given the 

different tissue compositions and innervation patterns (Burgeson and Nimni 1992; Kido et 

al. 1993; Milam et al. 1991), and factors used in surgical decision making about 

recommending TJR or discectomy (National Academies of Sciences, Engineering, and 
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Medicine 2020; Scrivani et al. 2008), MMPs were evaluated by tissue and surgery type. 

Severity of disease progression using Wilkes staging (Wilkes 1989) and dysfunction by 

quantification of maximal incisal opening (MIO) (Scrivani et al. 2008) were also included 

in analyses. The pro- and active forms were probed since both forms are involved in joint 

destruction and/or nociception (Conant et al. 2002; Dumin et al. 2001; Kawasaki et al. 

2008; Visse and Nagase 2003; Yong et al. 2001). Since active MMP-1 converts pro-MMP-

9 and pro-MMP-2 to active protease states (Sbardella et al. 2012; Visse and Nagase 2003), 

active MMP-1 was hypothesized to correlate with active MMP-9 and MMP-2. It was also 

hypothesized that MMPs are involved in ECM catabolism and pain transmission in painful 

TMDs; so, we tested relationships separately between each MMP and each of clinical pain 

score, Wilkes stage (Wilkes 1989) and MRI damage scores (Kellenberger et al. 2018). 

Since there is still debate about whether structural degeneration and pain are related 

(Emshoff et al. 2003; Koh et al. 2009), we tested that relationship using MRI damage and 

pain scores for these subjects. 

 

3.3. Methods 

3.3.1. Patient Recruitment & Population Details   

This study was designed as a retrospective cohort study of evidence level three in 

the Level of Evidence classification utilized to determine the clinical value of a study in 

evidence-based medicine (Moore 2020). All procedures were performed with approval 

from the Institutional Review Board (protocol #828997) of the University of Pennsylvania. 

Written informed consent was granted from all subjects undergoing either TJR (n=6) or 
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arthroplasty surgery for discectomy (ART) (n=3) (Table 3.1). Inclusion criteria were age 

older than 18 years, surgery for OA and/or ID, and failing prior medical management of at 

least six weeks of physical therapy, medication, and use of an occlusal appliance (Scrivani 

et al. 2008). Individuals were excluded from the study if they underwent TMJ surgery for 

conditions other than ID or OA and/or had surgical site infection, history of facial 

congenital abnormalities, or prior acute facial fractures. Patient-reported pain scores were 

collected before surgery and quantified by a Likert scale from 0 (no pain) to 10 (most 

severe pain) (Leonardi et al. 2016). Maximal incisal opening (MIO) was measured to 

quantify functional range of motion (Scrivani et al. 2008). At the time of surgery, a Wilkes 

stage was assigned based on TMJ gross pathology, with scores from 1 (least severe) to 5 

Table 3.1. Summary of subject clinical & imaging data 

Subject Age Sex Surgery Tissue Wilkes Pain MIO MRI 

score 

MRI 

score ID (yrs) 
 

type type stage score (mm) total osseous 

S01 53 M TJR disc 5 10 20 2** 2 

S02 52 F ART ligament 4 9 48   

S03 61 F TJR disc 5 6 40 4** 2 

S04 39 F ART disc 5 8 26   
ligament 

S06 33 F TJR ligament 5 10 28 3 3 

S09 29 F ART ligament 3 6 28 0^^ 0 
disc 

S10 66 F TJR ligament 5 6 35   

S12 44 F TJR disc 5 8 33   

S13 29 F TJR ligament 5 9 44 3^^ 3 
disc 

M, male; F, female; TJR, total joint replacement; ART, arthroplasty; MIO, maximal incisal opening. 

Shading indicates no MRI report available. 

All MRI reports contain evaluation of bone; ** indicates MRI reports with comments on inflammation. 

^^ MR score for these subjects are correlated to MMP levels for ligament & disc samples, separately. 
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(most severe) (Wilkes 1989). Details regarding the past medical history and medication 

usage of each subject were collected and are summarized in Appendix A. TMJ tissue 

samples were extracted at the time of surgery; ligament and/or disc tissue (Figure 3.1) was 

immediately finely dissected separately based on tissue type and stored at -80ᵒC until 

protein extraction was performed.  

3.3.2. Tissue Processing, MMP Western Blot & Analyses 

 Tissue (n=12 from nine subjects; Table 3.1) was finely chopped, homogenized in 

T-PER protein extraction buffer with 1X Halt protease inhibitor cocktail (Thermo Fisher; 

Waltham, MA), and centrifuged to isolate supernatant for 5 minutes at 10,000g. A BCA 

kit (Thermo Fisher) quantified protein. Human recombinant forms of MMP-1 (Anaspec; 

Fremont, CA), MMP-9, and MMP-2 (both R&D Systems; Minneapolis, MN) were fully 

activated by incubation with 1mM 4-Aminophenylmercuric acetate (APMA) at 37ºC for 

3, 5, and 2 hours, respectively. Pro-MMP-1 (30ng/μL), APMA-activated MMP-1 

(30ng/μL), pro-MMP-9 (50ng/μL), APMA-activated MMP-9 (400ng/μL), pro-MMP-2 

(20ng/μL), and APMA-activated MMP-2 (50ng/µl) were loaded as positive controls 

(15mg/mL) and underwent SDS gel electrophoresis at 150V for 80 minutes. Protein was 

transferred to a PVDF membrane using the iBlot2 system (Thermo Fisher), blocked for 1 

hour in Intercept blocking buffer (Li-Cor; Lincoln, NE), and triple-washed in TBS-T for 5 

minutes each. Separate membranes were incubated in either a primary antibody for MMP-

1 (4μg/mL), MMP-9 (4μg/mL), or MMP-2 (1μg/mL) (all from R&D Systems) overnight 

at 4ºC. The next day membranes underwent several TSB-T washes and were incubated in 
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secondary antibody (1:10,000; Li-Cor) for 2 hours at room temperature. After additional 

TSB-T washes, membranes were imaged using an Odyssey imaging system (Li-Cor). To 

account for any variation in sample loading, membranes were stripped in stripping buffer 

(Li-Cor), labeled with β-actin (1:1,000; Cell Signaling; Danvers, MT) using the same 

protocol, and imaged again. Protein expression was quantified using the pixel intensity of 

bands matching the positive controls using Image Studio Lite (VR5.2; Li-Cor) and 

normalized to β-actin intensity for each sample (Figure 3.2). 

3.3.3. Scoring of MRI Reports 

MRI reports were available only for some patients (n=5 subjects) and rated using 

the EuroTMjoint research network progressive score (Kellenberger et al. 2018) (Table 3.1 

& Appendix A). That semiquantitative grading scale separately assesses inflammation and 

osseous deformity, with each domain evaluated from 0 (normal) to 4 (severe pathology) 

 

Figure 3.2. Representative Western Blots showing labeling for (A) MMP-1, (B) MMP-9, or (C) MMP-

2. For each blot (A-C), the left-most lane shows the molecular weight standards (in kDa) and the next 

three lanes show exemplary protein bands, grouped together for visualization and taken from different 

gels, from a TMJ disc sample (S03) and ligament sample (S10) taken from TJR surgeries and a ligament 

sample taken from an arthroplasty discectomy (S04). All brightness adjustments applied for visualization 

were applied equally for each gel image. Labeling for β-actin (45kDa) is shown under each MMP label 

and was used to normalize MMP labeling intensity for each sample. Also shown are the pro- and APMA-

activated recombinant proteins that serve as positive controls. Sample band intensity is quantified using 

the positive controls of (A) pro-MMP-1 (54kDa), active MMP-1 (double bands at 42kDa & 47kDa; 

purple), (B) pro-MMP-9 (92kDa; orange), active MMP-9 (66kDa), (C) pro-MMP-2 (72kDa), and active 

MMP-2 (66kDa). (A) The intensity of both bands of active MMP-1 (42kDa & 47kDa) were summed. (B) 

Active MMP-9 was quantified at 60kDa based on differences in intracellular post-processing between 

the human and recombinant protein, as confirmed by the manufacturer. All pro- and active MMPs were 

detectable except for pro-MMP-9 at 92kDa.  
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(Kellenberger et al. 2018). Although bone abnormalities were evaluated in all reports, only 

two reports contained comments on inflammation (Table 3.1); the absence of comments 

about inflammation was taken as normal (grade 0). For each subject with an MRI report, 

scores were tallied for each domain separately, as well as summed for a total MRI score 

(scale of 0-8). 

3.3.4. Statistical Analyses 

All statistical analyses were performed with α=0.05 using JMP-Prov14 (SAS 

Institute Inc.; Cary, NC). Since a Shapiro-Wilk test revealed non-normal distribution for 

MMP protein data, they were treated as non-normal continuous numeric variables and 

compared using non-parametric statistics. Both pain and MRI scores were treated as ordinal 

numeric variables. A Kendall’s τ correlation tested significance of relationships between 

active MMP-1 and each of active MMP-9 and active MMP-2, and between each MMP and 

pain score.  

A non-parametric Wilcoxon signed rank test tested differences in MMPs between 

disc and ligament tissues; the same analysis compared surgery type (TJR, ART). A 

Wilcoxon signed rank test assessed MMP differences between joints with most severe 

Wilkes rating (stage 5) and all other scores. Separate Kendall’s correlations tested 

relationships between each MMP and MRI scores, and between pain and MRI scores. 

Because imaging reports contained more detailed bone findings, the osseous and total MRI 

scores were separately correlated.  
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3.4. Results 

Nearly all joints (from subjects age 45.1±13.7years) have the most severe Wilkes 

score (5), with only 2 subjects exhibiting lower stages (Table 3.1). All patients report pain 

scores in the top half of the Likert scale and have a MIO of 33.55±9.11mm before surgery 

(Table 3.1). All clinical information, including medical history and medication information 

for each patient is compiled in Appendix A.  

MMPs are detected in nearly all samples, with MMP-1 detected in 10 samples and 

MMP-9 and MMP-2 in 11 samples. Although both pro- and active forms of MMP-1 and 

MMP-2 are detected across samples, only active MMP-9 is evident (Figures 3.2 & 3.3). 

Expression is greatest for active MMP-1 (5.96±10.84), active MMP-9 (5.49±6.32), and 

 

Figure 3.3. Relative MMP expression for each tissue sample. The pro- and active forms of MMP-1 and 

MMP-2, and the active form of MMP-9, are expressed in most tissue samples, with single data points 

shown for each sample along with the mean and standard deviation (SD). Active MMP-1 and active 

MMP-9 are significantly correlated (*p=0.01; τ=0.63; squares); but, there is no correlation between active 

MMP-1 and active MMP-2 (p=1.00; τ=0.00; circles). The τ correlation coefficient, ranging from -1 

indicating a negative association to +1 indicating a positive association, between active MMP-1 and 

MMP-9 is 0.63 and indicates an increase in MMP-9 with greater expression of MMP-1. The τ correlation 

coefficient between active MMP-1 and MMP-2 is 0.00 and indicates no relationship between the two 

variables. The inset shows a close-up of the data points closest to the origin.  
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pro-MMP-2 (11.57±14.43), although each exhibit substantial variation (Figure 3.3). In 

contrast, pro-MMP-1 (1.46±1.65) and active MMP-2 (0.55±0.58) are more tightly 

clustered across samples (Figure 3.3). Quantification of the protein expression of each 

MMP for each sample is detailed in Appendix A. 

Active MMP-1 and active MMP-9 are significantly positively correlated (p=0.01, 

τ=0.63) to each other (Figure 3.3). Yet, active MMP-1 and active MMP-2 are not correlated 

(p=1.00, τ=0.00) (Figure 3.3). Although MMP levels appear higher in disc than ligament, 

with increases from 1.06-4.97-fold (Figure 3.4A), those increases are not significant. 

 

Figure 3.4. MMP levels for data clustered by (A) tissue type (disc (hashed squares); ligament (unfilled 

circles) ) and by (B) surgery type (TJR (hashed squares); ART (unfilled circles) ) show no differences for 

any MMPs by a Wilcoxon rank sum test. Bar plots depict mean±standard deviation (SD) of data with 

single data points for each sample superimposed. (C) Both active MMP-1 (*p<0.01; τ=0.73) and active 

MMP-9 (*p=0.04; τ=0.51) correlate with patient-reported pain. The plots for MMP-1 and MMP-2 against 

pain score show data points staggered on either side of the ordinal pain scores to enable visualizing each 

of the data points for the pro- and active forms. 
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Similarly, expression levels of each MMP are not different whether extracted during 

arthroplasty discectomy or a TJR procedure (Figure 3.4B).  

Although MMP levels do not differ by tissue or surgery type, some MMPs are 

related to clinical and imaging data (Figure 3.5). Active MMP-1 is significantly correlated 

with pain score (p<0.01, τ=0.73); the same relationship is also detected between pain and 

active MMP-9 (p=0.04, τ=0.51) (Figure 3.4C). However, only MMP-1 varies with 

 

Figure 3.5. (A) MMP levels for samples from joints with a most severely degenerated Wilkes stage of 5 

(hashed bars; squares) and those with a Wilkes stage less than 5 (unfilled bars; circles). Tissues from 

joints with a Wilkes stage 5 score have greater expression of active MMP-1 than tissues from less 

degenerated joints (*p=0.04; Wilcoxon rank sum test). Bar plots depict mean±standard deviation (SD) of 

data with single data points shown for each sample. (B) Exemplary T2-weighted MR images (for subject 

S06) in the closed position of the healthy, unoperated right TMJ and degenerated left TMJ prior a TJR. 

Substantial condylar degeneration and flattening is evident on the degenerated TMJ which was assigned 

a Wilkes score of 5, an osseous MRI score of 3 (out of 4), and a total MRI score of 3 (out of 4); no 

inflammatory changes were noted. (C) Scatter plots of MMP level versus the EuroTMjoint total score 

and osseous score, separately, from subjects (n=5) with MR imaging. MMP levels for each sample with 

an accompanying MR report were included separately; so, MMP levels of both the ligament and disc 

samples for subjects S09 and S13 were included as unique data points in correlation analyses with MR 

scores. Data points are staggered around discrete MRI scores for data visualization. Although there are 

no correlations detected with total MRI score (p≥0.1502; τ≤0.54), pro-MMP-1 increases significantly 

with osseous MRI score (*p=0.04; τ=0.74). (D) There is no relationship between total (circles) or osseous 

(squares) MRI score with pain.  
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measures of joint damage (Figure 3.5). MMP levels in samples with the most severe stage 

of Wilkes pathology are higher than those from joints with less severe pathology (Figure 

3.5A). While this trend exists for all MMPs, it is only significant for active MMP-1 

(p=0.04) (Figure 3.5A). Despite substantial degeneration evident on MR images and 

quantified by the EuroTMJoint scoring (Table 3.1 & Figure 3.5B), total MRI score is not 

correlated with any of the MMPs (Figure 3.5C). If only the osseous domain score is 

considered (Table 3.1), a significant positive correlation (p=0.04, τ=0.74) is detected with 

pro-MMP-1 (Figure 3.5C). Of note, MRI scores do not correlate with pain, regardless of 

whether inflammation is used in the scoring (Figure 3.5D).  

 

3.5. Discussion  

MMP-1, MMP-9, and MMP-2 are detected in both the TMJ disc and capsular 

ligament, with MMP-1 and MMP-2 detected in both pro- and active forms (Figures 3.2 & 

3.3). Although immunolabeling has shown MMP-1 in the ligament and MMP-9 and MMP-

2 in the disc of TMD patients (Almeida et al. 2015; Gho et al. 2018; Marchetti et al. 1999), 

those studies did not distinguish between the pro- and active forms, limiting their ability to 

determine the degree to which MMP levels are catabolically active. In fact, detecting more 

active forms of MMP-1 and MMP-9 than their catabolically inactive pro-forms (Figure 

3.3) suggests a majority of those MMPs may be available to cleave triple helical collagen 

and gelatin, respectively (Visse and Nagase 2003). Since triple helical Type I collagen is 

the primary ECM component, with negligible gelatin, of both the disc and ligament 

(Burgeson and Nimni 1992; Milam et al. 1991), both tissues are susceptible to degradation 
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by active MMP-1 (Figure 3.4A). MMP-1 degradation of Type I collagen may affect the 

tissue’s macro- and microenvironment; tissue degradation can lead to whole joint 

destabilization and subsequent degeneration resulting in severe-stage Wilkes’ scores 

(Table 3.1) (Otterness et al. 2000; Varady and Grodzinsky 2016). Since tissue-level 

degradation by MMP-1 can produce joint instability (Varady and Grodzinsky 2016; Visse 

and Nagase 2003), elevated active MMP-1 may cause the more severe degeneration that is 

evident in the Wilkes stage 5 joints (Figure 3.5A). On a microscale, MMP-1-cleavage of 

Type I collagen could disrupt the matrix surrounding innervating afferents embedded in 

TMJ tissues (Kido et al. 1993), breaking afferent-collagen binding sites like integrin 

adhesions. Since axonal nociceptive signaling depends on β1-integrin binding sites (Zhang 

et al. 2017), collagen degradation by MMP-1 could initiate and/or mediate pain signaling, 

and may explain the correlation between active MMP-1 and pain (Figure 3.4A). 

Although all MMPs are detected, MMP-9’s pro-form is not detected (Figures 3.2 

& 3.3) and only the active forms of MMP-1 and MMP-9 relate to pain (Figure 3.4C). The 

positive correlation between active MMP-1 and MMP-9 further suggests their mechanistic 

relationship in painful TMJ disorders (Figure 3.3). Since active MMP-1 catalyzes pro-

MMP-9 by cleaving its bait region (Visse and Nagase 2003), upstream regulation of MMP-

9 by MMP-1 may be responsible for their correlation (Figure 3.3). It is also possible that 

MMP-1 activates any of the pro-MMP-9 that is present in soft tissues to an extent that 

makes only the active form detectable, which may explain why pro-MMP-9 is not detected 

(Figure 3.2B). The lack of pro-MMP-9 could also be an artefact of this sample population’s 
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late stage degeneration (Table 3.1), since pro-MMP-9 in the synovial fluid is higher in 

mildly degenerated TMJs than those with severe degeneration (Srinivas et al. 2001). 

 The ECM-independent and nociceptive-related mechanisms by which active MMP-

1 and MMP-9 directly bind to neuronal receptors may explain their relationships to pain 

(Figure 3.4C) (Basbaum et al. 2009; Conant et al. 2002; Dumin et al. 2001; Kawasaki et 

al. 2008; Sbardella et al. 2012; Visse and Nagase 2003). For example, MMP-1 stimulates 

intracellular calcium-dependent signaling via Gi protein-coupled receptors on neurons 

(Conant et al. 2002), which can stimulate neurotransmitter release (Basbaum et al. 2009), 

propagating neuronal excitability and sensitivity (Table 3.1) (Slade et al. 2016). Co-

localizing MMPs to neuronal receptors in TMJ disc and ligament would help determine 

regulatory pathways in these soft tissues. Furthermore, although MMPs are quantified in 

whole tissue homogenates in this study, localization by anatomical tissue region also would 

provide insight into whether MMPs aggregate in nerve-rich regions (Kido et al. 1993).  

The association between MMP-9, but not MMP-2, and pain (Figure 3.4C) may 

reveal that inflammatory stimuli to afferents drives TMJ pain. This notion is supported by 

MMP-9 being rapidly upregulated in the dorsal root ganglion after nerve injury (Kawasaki 

et al. 2008) and in the trigeminal ganglion after an injection of an inflammatory agent in 

the TMJ (Nascimento et al. 2013). No association between MMP-2 and pain score (Figure 

3.4C) contradicts our original hypothesis since MMP-2 maintains chronic pain (Kawasaki 

et al. 2008) and every subject has chronic pain based on their high pain scores (Table 3.1) 

and the inclusion criteria of our study. Although active MMP-2 levels are low (Figure 3.3), 

a relationship between pro-MMP-2 and pain could exist with more samples (Figure 3.4C). 
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Indeed, a power analysis using sample size charts for Kendall’s τ correlations indicates that 

approximately 35 samples are required to disprove the null hypothesis (May and Looney 

2020), which is three times the sample size (n=12) used in this study. It is also likely that 

MMP-9 and MMP-2 vary with disease progression since expression levels and functional 

roles of MMPs vary according to degenerative stage (Mizui et al. 2001; Srinivas et al. 2001; 

Tanaka et al. 2001).   

The greater pro-MMP-1 with greater osseous MRI scores (Figure 3.5C) suggests 

MMP-1 may have a role in pathological TMJ bone remodeling. Since MMP-1 is 

undetectable during healthy homeostasis, its presence indicates pathological remodeling in 

joint tissues (Sbardella et al. 2012). Pro-MMP-1 is catabolically inactive (Visse and Nagase 

2003); its association with osseous damage (Figure 3.5C) like condylar flattening and 

erosions (Kellenberger et al. 2018) is likely due to its interaction with its non-ECM 

substrates. Pro-MMP-1 regulates inflammatory cytokines that regulate joint tissue 

destruction, including bone (Ernberg 2017). Despite increased MMP-1 in more structurally 

damaged joints (Figure 3.5), the lack of association between damage scores and pain 

(Figure 3.5D) is consistent with the discordance between imaging evidence of joint 

pathology and pain clinically (Emshoff et al. 2003; Koh et al. 2009). Together, these results 

(Figures 3.4C & 3.5) suggest that MMP-1’s role in pain may be independent of its 

mediation of joint damage. 

Overall, none of the MMPs relate to total MRI scores (Figure 3.5C), which may be 

due to disparities in resolution between tissue homogenization techniques and 

semiquantitative MRI scoring. These correlations relate MMP levels in specific tissues to 
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whole joint imaging metrics (Figure 3.5C) (Kellenberger et al. 2018). However, since 

MMP-3 levels in synovial fluid and arthroscopically-detected joint synovitis are related 

(Fujita et al. 2009), it is possible that the imaging features and tissue assays used here are 

too coarse to detect relationships. Analyses of these MMPs in the context of higher 

specificity imaging features would be helpful. Although the EuroTMjoint scale was 

originally developed for juvenile idiopathic arthritis, it was used here because it includes 

inflammatory features (e.g. edema, effusion) (Kellenberger et al. 2018). However, the MRI 

reports are themselves limited by the documented practitioner impressions and their details. 

Nevertheless, results show correlations against even coarse MR features reveal distinct 

relationships between MMPs and joint damage (Figure 3.5C). 

Collectively, these results suggest that MMPs in innervated soft tissues may have a 

role in TMJ pain in addition to mediating ECM destruction. Specifically, MMP-1 and 

MMP-9 may be useful indicators of painful disease and may be helpful as diagnostic 

predictors of pain (National Academies of Sciences, Engineering, and Medicine 2020). It 

is possible that medications taken at the time, or in advance, of surgery could alter MMPs 

and may confound findings; for example, all but one of these subjects reported using 

NSAIDs (Appendix A), which could alter MMPs (Visse and Nagase 2003). Since probing 

MMPs in soft tissues requires invasive surgery, evaluating more accessible physiological 

samples (SF, serum, saliva) could not only help elucidate mechanistic pathways, but also 

aid in prognosis and treatment. Regardless, findings implicate MMPs in pain mediation 

and highlight them as useful clinical tools and/or targets for painful TMJ, and possibly 

other, disorders. 
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3.6. Integration & Conclusions 

The experiments presented in this chapter corroborate prior reports of detectable 

MMP-1, MMP-9, and MMP-2 in joint tissues with painful diseases (Almeida et al. 2015; 

Fujita et al. 2009; Kubota et al. 1998; Mizui et al. 2001; Srinivas et al. 2001; Tanaka et al. 

2001) and provides evidence that both MMP-1 and MMP-9 correlate with pain (Figures 

3.3 & 3.4). These results suggest MMP-1 and MMP-9 involvement in peripheral 

nociception and support the overall hypothesis associated with Aim 1 that MMPs play a 

role in the degeneration and pain accompanying chronic joint disease in the context of a 

clinically relevant population. The positive correlation between MMP-1 and MMP-9 

(Figure 3.3) also indicates that those two catabolic enzymes are related in nociceptive 

mechanisms underlying painful joint disease. Although a mechanistic relationship between 

MMP-1 and MMP-9 is not established based on their correlation (Figure 3.3), studies in 

Chapter 8 investigate the mechanistic regulation of MMP-9 by MMP-1 using the synthetic 

MMP inhibitor ilomastat in vitro. 

Although MMP-2 is necessary for chronic neuropathic pain (Ji et al. 2008; 

Kawasaki et al. 2008), it was not found to correlate with pain for these chronic TMJ 

disorders (Figure 3.4), despite the late-stage disease in the chronic pain patients included 

in this study (Table 3.1). Further, MMP-9 is only implicated in the initiation of neuropathic 

pain (Ji et al. 2008; Kawasaki et al. 2008), but is detectable (Figures 3.2 & 3.3) and follows 

pain severity (Figure 3.4). This relationship between this protease and pain may indicate 

ongoing noxious input from the joint even in chronic stages (Nascimento et al. 2013; 
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Winkelstein and Santos 2008), and underscores that MMPs have roles in joint-mediated 

pain transmission that are distinct from neuropathic pain. 

The significant relationships detected between MMP-1 and general disease 

progression measured by Wilkes staging (Figure 3.5A), and MMP-1 and bone damage 

indicated by MRI (Figure 3.5) support the hypothesis that MMP-1 correlates with measures 

of joint damage. However, it is not clear whether the variability of MMP-1 with joint 

damage influences afferent signaling mechanisms in those same joint tissues, especially 

since patient-reported pain score does not correlate with the overall MRI scores (Figure 

3.5D). Further, only the pro-form of MMP-1 correlates with osseous MRI scores (Figure 

3.5C); since pro-MMP-1 does not possess collagenolytic activity, this positive correlation 

between pro-MMP-1 and osseous damage may suggest that the non-collagenolytic 

functions of pro-MMP-1 somehow compromise TMJ bone health. Whether MMP-1 acts 

as a collagen-degrading catalyst, cell signaling protein, or both is also unclear. Studies in 

Chapter 4 exploit a purified bacterial collagenase that has the collagenolytic activity of 

MMP-1 to parse out how the collagenolytic role of MMP-1, in isolation from its other 

functions, may influence the development of pain and/or joint degeneration in a rat model. 

Although these studies provide clinical context in support of broader questions 

investigated in this thesis, the retrospective cohort design of this investigation has several 

limitations. The MMP levels and clinical data evaluated here are from a single timepoint, 

late in disease progression, and thus do not enable assessment of how MMP levels, joint 

structure-function outcomes, nor neuronal outcomes may develop in parallel with pain. 

Further, because capsular ligament and disc tissue can only be acquired during late-stage 
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disease surgery or post-mortem, control groups are lacking either a healthy patient cohort 

or tissues samples obtained prior to disease progression. Indeed, MMPs were assayed in 

tissues from patients that were experiencing unmanageable pain for at least six weeks, 

biasing the findings. In vivo studies in Chapter 4 utilize a bacterial collagenase as a 

provocative stimulus and measure behavioral sensitivity as an outcome, allowing the 

assessment of pain development over time. Moreover, peripheral neural tissue that is 

unable to be probed in this clinical study is assayed in the studies with the animal model in 

Chapter 4 to investigate changes in protein expression of relevant neuronal regulators. 

Although studies in Chapter 4 only assay joint and neural tissue outcomes at a single 

timepoint, they allow for a control group not available in this clinical study. Further, studies 

in Chapter 7 use an intra-articular MMP-1 injection in the facet joint of rats to directly test 

the effect of elevated intra-articular MMP-1 (Figures 3.2-3.4) on behavioral, joint, and 

neural outcomes. Studies in Chapters 5, 6, and 8 more deeply investigate interactions 

between MMP-1 and MMP-9 on a cellular level in the context of injuries and/or 

degeneration that lead to painful joint diseases, and provide insight into possible 

mechanisms. 
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  Chapter 4 

Effects of Intra-Articular Bacterial Collagenase 

on Pain, Joint Structure, & Neuronal 

Dysregulation In Vivo 
 

This chapter has been adapted from: 

Ita ME, Ghimire P, Welch R, Troche HR, Winkelstein BA. Intra-articular collagenase in 

the spinal facet joint induces pain, neuronal dysregulation, & increased MMP-1, in the 

absence of joint destruction. Scientific Reports, in press.  

 

4.1. Overview 

Pathologies of joints are a leading cause of chronic pain and present a substantial 

socioeconomic burden (IBM Corporation 2019; Institute of Medicine 2011; National 

Academies of Sciences, Engineering, and Medicine 2020). Effective therapies for joint 

pain have been hindered by difficulties in diagnosing joint disease and the inability of 

diagnostic criteria to track with patient symptoms (Finan et al. 2013; Hunter et al. 2013; 

National Academies of Sciences, Engineering, and Medicine 2020). For example, although 

the diagnostic criteria for temporomandibular disorders are generally good for acute disc 

displacement and subluxation, they are extremely poor for other displacements of the disc 

and degenerative joint disease (National Academies of Sciences, Engineering, and 

Medicine 2020). The poor performance of diagnostic criteria for joint disease is rooted in 

the fact that characteristic radiographical features, like osteophytes, bone sclerosis, and 
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joint space narrowing, and not patient self-reported symptoms, more often define the 

presence of osteoarthritis “disease” (Hunter et al. 2013; Pereira et al. 2011), which is 

problematic because anatomic elements of joint disease do not always parallel pain 

symptoms (van der Donk et al. 1991; Kjaer et al. 2005). Indeed, the main foci of the studies 

in this thesis investigate molecular and physiologic elements of joint disease (Kraus et al. 

2015), in addition to the anatomic changes, that can result in chronic pain. Recent advances 

in imaging techniques, particularly magnetic resonance imaging (MRI), show promise in 

detecting features in joint tissues that better parallel symptoms (Emshoff et al. 2003; Hunter 

et al. 2013), but they remain imperfect. In fact, the lack of association between pain and 

MRI damage scores observed in the clinical study reported in Chapter 3 also supports this 

sentiment (Ita et al. 2020). Recently, studies imaging synaptic activity in the brain 

demonstrate the ability to differentiate between joint loading that leads to persistent versus 

transient pain (Sperry et al. 2020a), suggesting that focusing imaging efforts at the level of 

the brain, in addition to, or instead of, imaging at the level of the joint, may be a useful 

prognostic tool to predict which pathologies will develop into chronic conditions.   

Collagenase is hypothesized to regulate the biomechanical environment of the 

ligament via its mediation of the collagen network. Even subtle, microscopic changes to a 

nerve-embedded collagen network can initiate afferent signaling (Zarei et al. 2017; Zhang 

et al. 2016; Zhang et al. 2017), and microscopic changes to collagen structure may not be 

detected by current diagnostic methods (Hunter et al. 2013; Kraus et al. 2015). Therefore, 

collagenase-induced degradation, and subsequent influences on nociceptive signaling, may 

be one mechanism of molecular dysregulation that leads to joint pain and disability absent 
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accompanying gross structural deficiencies (van der Donk et al. 1991; Kjaer et al. 2005). 

The studies in this chapter investigate this hypothesis using intra-articular collagenase in a 

rat model and measuring effects on pain-related behaviors, joint structure, and neuronal 

dysregulation.  

Although there have been several animal studies of intra-articular collagenase 

(Adães et al. 2014; Gou et al. 2019; Yeh et al. 2008), they use a crude bacterial collagenase, 

ranging in dose from 1U to 50U, that induces severe joint degeneration marked by 

chondrocyte disorganization, cartilage thinning and fibrillation, bone defects, and joint 

space narrowing; notably, many of these characteristics match the criteria of osteoarthritis 

diagnosis (Hunter et al. 2013). Thus, those studies characterize the clinical scenario in 

which joint damage is severe and radiographically detectable (Gellhorn et al. 2013; Suri et 

al. 2013). Studies in this chapter build off those studies by utilizing a purified bacterial 

collagenase, which only cleaves Type I collagen, unlike the crude collagenases that also 

degrade cartilage components. This study tests the hypothesis that, in isolation, the 

collagenolytic function of collagenases initiates nociceptive cascades in joint afferents by 

changing the capsule’s collagen network and manifests in pain-like behavior. Since the 

collagenase used in the studies in this chapter is purified and less aggressive than prior 

studies in its catabolism of joint tissues (Adães et al. 2014; Gou et al. 2019; Yeh et al. 

2008), a dose at the top of the range for crude collagenases (1-50U) was expected to cause 

only mild degradation. As such, 60U of purified bacterial collagenase was selected 

intentionally. Studies in this chapter utilize histology stains of facet joint ligament, 

cartilage, and bone tissue to assess the effects of intra-articular bacterial collagenase on 
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anatomic structure and to place behavioral and neural outcomes in the context of various 

clinical signs of joint disease. 

Since the overall goal of this thesis is to define nociceptive transmission from the 

capsular ligament, peripheral responses are investigated here since the axonal projections 

from the peripheral DRG neuronal cell bodies innervate joint tissues (Basbaum et al. 2009; 

Kras et al. 2013a). However, changes to central pain processing are also associated with 

chronic joint and painful diseases; there is evidence of central pain processing after joint 

trauma (Crosby et al. 2015) in experimental osteoarthritis models (Rahman and Dickenson 

2015) and in patients with osteoarthritis knee pain (Finan et al. 2013; Lluch et al. 2014). 

Although there is evidence that peripheral joint tissue inputs are necessary for joint-

mediated pain (Winkelstein and Santos 2008), the relative contributions of peripheral and 

central sensitization vary by patient and may explain the disagreement between pain 

severity and overt tissue degeneration, whereby patients with little damage exhibit greater 

physiological evidence of changes in central processing and vice versa (Finan et al. 2013; 

Malfait and Schnitzer 2013).  Studies in this chapter evaluate expression of relevant 

regulators in the spinal cord as well as in peripheral neurons to test if there is any 

collagenase-induced dysregulation in pain processing pathways. Substance P, pERK, and 

MMP-1 are immunolabeled in the superficial dorsal horn of the spinal cord, where afferent 

fibers synapse (Basbaum et al. 2009).  

 

4.2. Relevant Background 

Chronic pain poses a substantial public health challenge, with 18% of Americans 
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reporting pain interfering with daily life and annual costs in the United States exceeding 

those for cancer and diabetes combined (IBM Corporation 2019; Institute of Medicine 

2011). A primary source of chronic pain is joint disease associated with osteoarthritis 

(Institute of Medicine 2011; Loeser et al. 2012). Neck and low back pain are among the 

most prevalent chronic syndromes (Institute of Medicine 2011), and can result from 

pathology of the spinal facet joints which are susceptible to trauma (Manchikanti et al. 

2004) and degeneration (Gellhorn et al. 2013). Innervated joint tissues, like the capsular 

ligament that surrounds the spinal facet (Kallakuri et al. 2012), facilitate pain transmission. 

Since nerve fibers and resident fibroblast-like synoviocytes (FLS) in the facet capsule are 

mechanosensitive (Bartok and Firestein 2010; Zhang et al. 2017), load-induced disruption 

of the capsule’s Type I collagen network can initiate pathological cellular cascades (Lu et 

al. 2005). Collagen fiber deformation also activates nociceptive afferents (Ita and 

Winkelstein 2019; Zhang et al. 2016), which have their cell bodies in the dorsal root ganglia 

(DRG) and synapse with spinal dorsal horn neurons to transmit noxious stimuli (Basbaum 

et al. 2009).  

Degeneration is a hallmark of painful joint disease and is mediated by a host of 

proteolytic enzymes that degrade joint tissues. Collagenases, for example, are matrix 

metalloproteinases (MMPs) that degrade the extracellular matrix (ECM) of the cartilage 

and/or capsular ligament, altering joint structure and mechanics (Fields 2013; Visse and 

Nagase 2003). The interstitial collagenases, MMP-1, -8, and -13, and the transmembrane 

protein MMP-14, degrade triple helical collagen (Visse and Nagase 2003). MMP-1 protein 

levels increase in the joint capsule after elbow trauma (Cohen et al. 2007) and with facet 
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degeneration (Kim et al. 2015), and MMP-1 concentration increases in synovial fluid after 

knee trauma (Haller et al. 2015). Intra-articular injection of MMP-1 and MMP-13 in 

hamster knees produces collagen fragments indicative of Type I collagen cleavage within 

even 15 minutes (Otterness et al. 2000), demonstrating that interstitial collagenases can 

quickly initiate collagen damage. Collagenase-injected knees also exhibit increased laxity 

(van Osch et al. 1995), suggesting a decrease in their biomechanical integrity. Since the 

facet capsular ligament is primarily triple helical Type I collagen, it is especially 

susceptible to degradation by collagenases (Visse and Nagase 2003). Although it is 

possible that pathological levels of collagenases could trigger nociceptive cascades in the 

afferents embedded in the capsule’s collagen network via degradation of the fibers 

surrounding the nerves, the mechanistic involvement of collagenases in degenerative joint 

pain is unclear.  

There is a known discordance between radiographic signs of facet joint 

degeneration and pain symptoms (Hunter et al. 2013), with some studies reporting positive 

relationships between pain and evidence of joint degeneration (Gellhorn et al. 2013; Suri 

et al. 2013), and others finding weak or no correlations between damage and symptoms 

(van der Donk et al. 1991; Kjaer et al. 2005). Animal studies injecting intra-articular 

bacterial collagenase find more severe joint degeneration with higher doses and longer time 

after the injection (Adães et al. 2014; Gou et al. 2019; Yeh et al. 2008). Further, the 

progression and extent of joint damage depends on the type of bacterial collagenase. Most 

studies use a crude bacterial collagenase that also contains high levels of secondary 

proteases like trypsin and clostripain; intra-articular crude bacterial collagenase in the knee 
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and lumbar facet joints in animal models mimics the clinical scenario in which joint 

damage, particularly to cartilage and bone, is severe (Adães et al. 2014; Gellhorn et al. 

2013; Gou et al. 2019; Suri et al. 2013; Yeh et al. 2008). Crude collagenases induce 

chondrocyte disorganization, cartilage thinning and fibrillation, subchondral bone defects, 

and proteoglycan loss (Adães et al. 2014; Gou et al. 2019; Yeh et al. 2008). Movement-

induced pain-like behaviors and tactile allodynia are evident as early as three days after 

injection and lasts for eight weeks (Adães et al. 2014; Gou et al. 2019), and are 

hypothesized to be mediated by the severe progression of joint damage and subsequent 

exposure of nerve fibers in eroded subchondral bone (Gou et al. 2019).  

Although studies of intra-articular crude collagenase posit a mechanism by which 

structural damage may mediate sensitivity (Adães et al. 2014; Gou et al. 2019), that 

mechanism does not explain clinical cases in which patients do not present with imaging 

evidence of joint destruction (van der Donk et al. 1991; Kjaer et al. 2005). As such, it is 

possible that in some cases of chronic joint pain, nociception may be mediated by 

mechanisms other than structural damage detected radiographically. Given the elevated 

levels of interstitial collagenases in joint disease (Cohen et al. 2007; Haller et al. 2015; Kim 

et al. 2015), and the potential for the innervated capsular ligament to undergo collagen 

degradation (Visse and Nagase 2003), bacterial collagenase is hypothesized to initiate 

nociceptive cascades in joint afferents by changing the capsule’s collagen network, which 

alters the local microstructural environment of afferents. Indeed, injecting purified 

bacterial collagenase, which lacks the proteolytic enzymes capable of degrading cartilage, 

induces increased joint laxity and suggests that collagenase-mediated degradation of Type 
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I collagen-rich tissues, like the capsular ligament, can destabilize the joint and trigger 

pathological mechanotransduction cascades (van Osch et al. 1994). Although that study 

supports the notion that collagenase-mediated collagen degradation alone might play a role 

in joint disease, effects on pain were not investigated.  

These studies tested whether intra-articular purified bacterial collagenase in 

cervical facets induces pain-like behaviors and investigated degenerative and nociceptive 

pathways in the peripheral and central nervous systems in the rat. Behavioral sensitivity 

was quantified by measuring mechanical hyperalgesia, which is a component of the 

complex human experience of pain in the human (Loeser and Treede 2008). Mechanical 

hyperalgesia was measured for 21 days after bilateral injection into the C6/C7 cervical 

facets. A 60U dose of bacterial collagenase was chosen based on prior reports using crude 

bacterial collagenase injected into lumbar facet joints that found severe joint degradation 

accompanied by tactile allodynia (Gou et al. 2019; Yeh et al. 2008). The 60U dose has also 

been shown to increase neuronal expression of biochemical regulators of injury and 

nociception in DRG neurons (Sperry et al. 2017) and cause a 3.8-fold increase in the 

amount of degraded collagen in the capsular ligament measured with collagen hybridizing 

peptide (CHP) after two hours of digestion (Figure 4.1). CHP selectively hybridizes with 

degraded, unwound collagen chains (Hwang et al. 2017; Lin et al. 2019) and can be 

correlated to the relative amount of degraded collagen compared to total collagen using the 

hydroxyproline assay to measure degraded Type I helical collagen (Figure 4.1) (Bank et 

al. 1997). Thus, an increase in CHP with a 60U dose of purified bacterial collagenase 
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demonstrates that enzyme’s ability to degrade the collagen comprising the capsular 

ligament (Figure 4.1). 

Effects on joint structure were quantified using histology of the capsular ligament 

and cartilage at day 21, a timepoint that allows for any detectable joint damage to develop 

(Yeh et al. 2008). Hypoxia-inducible factor 1α (HIF-1α), a protein that regulates 

chondrocyte survival in pathologically hypoxic environments, was also probed for its role 

in homeostatic maintenance in the cartilage (Kartha et al. 2016; Sperry et al. 2020b). 

Substance P, a neuropeptide involved in nociception (Basbaum et al. 2009; Zhang et al. 

2017), and phosphorylated ERK (pERK), a mitogen-activated kinase indicative of noxious 

injury (Dai et al. 2002; Ji et al. 1999), were assayed in the DRG and spinal cord. MMP-1 

protein responses were also evaluated in the DRG and spinal cord since it has been shown 

recently to have a role in joint pain and in diseased joints with severe-to-very mild 

degeneration (Cohen et al. 2007; Haller et al. 2015; Kim et al. 2015).  

 

Figure 4.1. (A) Facet capsular ligaments were heated for different times to induce graded collagen 

degradation and assayed for absolute degraded collagen or CHP fluorescence to create a calibration curve 

between the two outcomes. Each data point represents 4 measurements taken from 2 ligaments for each 

group. (B) A 2-hour digestion in 60U purified bacterial collagenase produces 35% degraded collagen that 

is 3.8-fold higher than that from 6U collagenase and 8.5-fold higher than the degradation by 1U. Data in 

(B) are staggered on the x-axis to better visualize CHP fluorescence and degraded collagen together. 
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4.3. Methods 

4.3.1. Intra-Articular Injection & Tissue Harvest 

All procedures were approved by the University of Pennsylvania Institutional 

Animal Care and Use Committee (IACUC) and performed under the Committee for 

Research and Ethical Issues of the IASP guidelines (Zimmermann 1983). Male Holtzman 

rats (Envigo; Indianapolis, IN; 476±41g at tissue harvest) were pair-housed with 12-hour 

light/dark cycles and randomly assigned to groups for injection (collagenase n=12; vehicle 

n=6). Under inhalation isoflurane anesthesia (4% induction; 2.5% maintenance), a midline 

incision over the back of the neck exposed the paraspinal musculature of the C4-T2 

vertebrae (Figure 4.2). The C6/C7 facet joints were cleared, and injected bilaterally with 

either purified bacterial collagenase (collagenase n=12) dissolved in saline (10μL; 60U; 

CLSPANK; Worthington Biochemical Corporation; Lakewood, NJ) or saline (10μL; 

 

Figure 4.2. Bilateral intra-articular injection is performed in the C6/C7 facet joints of the rat. To perform 

the injection, the paraspinal musculature of the C4-T1 vertebrae are exposed and the C6/C7 facet joints 

cleared. Either purified bacterial collagenase (n=12) dissolved in saline (10μL; 60U) or saline only (10μL; 

vehicle n=6) is injected directly into the lateral aspect of the C6/C7 joint using a 33-gauge beveled needle 

for both the right and left joints.  
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vehicle n=6) (Figure 4.2). Wounds were sutured and stapled; rats were recovered in room 

air. Surgical staples were removed after 14 days, and weight gain was continuously 

monitored.  

After behavioral testing on day 21, cervical spinal facet joints (collagenase n=6; 

vehicle: n=3) or neural tissues (collagenase n=6; vehicle: n=3) were harvested from 

separate groups of rats. On day 21, rats were anesthetized with sodium pentobarbital 

(65mg/kg; i.p.) and transcardially perfused with phosphate-buffered saline (PBS; 250ml) 

followed by 4% paraformaldehyde (PFA; 250ml). The C4-T1 spinal columns were 

harvested from half of the cohort (collagenase n=6; vehicle n=3) and post-fixed in 4% PFA 

for 24 hours, held in sucrose (Sigma; St. Louis, MO) dissolved in PBS (30%) for seven 

days, and decalcified in 10% EDTA (Thermo Fisher; Waltham, MA) for 3-4 weeks (Kras 

et al. 2015). The C6/C7 segment was embedded in Tissue-Tek OCT Compound (Fisher 

Scientific; Waltham, MA), coronally cryosectioned (16μm), and thaw-mounted onto 

Superfrost Plus slides (Fisher Scientific). DRGs and spinal cord at C6/C7 were harvested 

from the remaining rats (collagenase n=6; vehicle n=3), post-fixed in PFA for 24 hours, 

held in 30% sucrose for seven days, and embedded in OCT. Axial cryosections (14μm; 6-

8/rat) were thaw-mounted. Tissue sections from naïve rats (n=2) were included in all 

analyses to provide un-operated control tissue.  

4.3.2. Behavioral Testing 

To assess whether intra-articular bacterial collagenase induces pain-like behaviors, 

behavioral sensitivity was quantified before, and for 21 days after, intra-articular injection 

(Kras et al. 2015). Since the rat C6/C7 dermatome extends to the forepaw (Takahashi and 
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Nakajima 1996), paw withdrawal threshold (PWT) in the forepaw was measured to 

quantify mechanical hyperalgesia (Kras et al. 2015). Von Frey filaments of ascending 

strengths (Stoelting; Wood Dale, IL) were applied to each rat’s forepaw and responses 

identified using thresholding methods (Kras et al. 2015). PWTs were quantified before 

surgery (baseline; BL) and on days 1, 3, 5, 7, 11, 14, 17, and 21. Three rounds of testing 

were completed each day, separated by 10 minutes; all rounds were averaged bilaterally to 

obtain the daily PWT for each rat. Groups were evaluated simultaneously; all quantitative 

analyses were performed without group identification to eliminate bias. 

4.3.3. Histology Staining of Facet Joint 

Tissue sections were stained with Picrosirius Red/Alcian Blue (Schmitz et al. 2010) 

(Sigma) to visualize collagen fibers in the capsular ligament, and imaged using an EVOS 

FL Auto Imaging microscope with a 20x Olympus objective (5-6 images/rat). Separate 

regions of interest (ROIs) containing only the ligament were randomly selected (2-4 

ROIs/image) and fiber orientation was analyzed using a Fourier transform method, which 

computes the magnitude and direction of the principal orientation axes of the image (Figure 

4.3A)  (Sander and Barocas 2009). The anisotropy index was calculated from the ratio of 

the principal axes to describe orientation on a continuous scale from isotropic (random; 0) 

to aligned (1) (Sander and Barocas 2009) and averaged across ROIs for each rat (Figure 

4.3A).  

Cartilage structure was evaluated using Safranin O/Fast Green staining (Sigma) to 

visualize cartilage and bone (Schmitz et al. 2010). Joint sections were prepared and imaged 

as described above for the ligament. Stained articular surfaces (6-8 images/rat) were scored 
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by two blinded graders using a modified Mankin scale to assess cartilage degradation 

(Table 4.1) (Xu et al. 2009), based on cellular and background staining, chondrocyte 

arrangement, and structural surface condition, with scores ranging from normal (0) to 

maximally degenerate (10) (Xu et al. 2009), and averaged across all images for each rat.  

Joint space and cartilage width were measured using FIJI (NIH; Bethesda, MD) to 

evaluate joint space narrowing and cartilage degradation (Gellhorn et al. 2013). Joint space 

width was quantified as the perpendicular distance between the articular surfaces; cartilage 

 

Figure 4.3. Structural assessment of the facet joint’s capsular ligament, cartilage, and bone at 21 days 

after intra-articular injection of collagenase or vehicle. (A) A low magnification image of collagen fibers 

stained with Picrosirius Red/Alcian blue depicts the anatomical orientation of a C6/C7 joint. A high 

magnification image of the capsule in the lateral-to-middle region shows two separate regions of interest 

(ROIs) from a ligament after collagenase injection with principal orientation axes (blue arrows) and their 

anisotropy indices (white text) overlaid. ROI 1 demonstrates collagen fibers with highly aligned 

orientation and ROI 2 demonstrates fibers with a less aligned, more isotropic orientation. (B) Low and 

high magnification images of bone and cartilage staining with Safranin O/Fast Green reveals a mild 

decrease in cartilage staining and slight fibrillation in some collagenase-injected joints. Joint space width 

is defined as the the perpendicular distance between the articular surfaces; cartilage width is defined by 

the length of the Safranin O staining perpendicular to the subchondral bone. Scale bars in collagenase 

images apply to vehicle images. 
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width was defined by the length of the Safranin O staining perpendicular to the subchondral 

bone (Figure 4.3B). Both measurements were made in triplicate for each image (3-4 

images/rat) from the lateral to medial end of the joint and averaged.  

4.3.4. HIF-1α Immunolabeling in Articular Cartilage  

HIF-1α expression was assayed using immunolabeling to evaluate the health of 

chondrocytes in the C6/C7 articular cartilage (Kartha et al. 2016; Sperry et al. 2020b). 

Immunohistochemical protocols are described previously (Sperry et al. 2020b) and used a 

primary antibody for rabbit anti-HIF-1α (1:250; Abcam Cambridge, MA) and a 

biotinylated horse anti-rabbit IgG secondary antibody (1:1,000; Vector Laboratories; 

Burlingame, CA). Coronal tissue sections without primary antibodies were included as 

negative controls and to verify antibody specificity for all immunolabeling assays. 

Articular cartilage was imaged using an EVOS FL Auto Imaging microscope with a 40x 

Olympus objective. The acquired 40x images (5 sections/rat) were cropped in FIJI to areas 

of 1000x450 pixels to include regions with chondrocytes. An assessor blinded to groups 

Table 4.1. Modified Mankin scoring system (adapted from Xu et al 2009) 

Category Grading notes Description Score 

pericellular 

Safranin-O 

staining 

Pericellular refers to the area directly 

surrounding cells. 

normal 0 

slightly enhanced 1 

intensely enhanced 2 

background 

Safranin-O 

staining 

Background refers to areas outside of and 

between cells. Changes in staining are evident 

in the more superficial layers of the cartilage 

and as cells become less dense. 

normal 0 

slight increase or decrease 1 

severe increase or decrease 2 

no staining 3 

chondrocyte 

arrangement 

Hypocellularity refers to a decrease in cells 

present. Clustering and hypocellularity 

together is a 2. 

normal 0 

chondrocyte clustering 1 

hypocellularity 2 

cartilage 

structure 

Fibrillation is the formation of clefts between 

cartilage cells. 

normal 0 

superficial fibrillation 1 

fibrillation past superficial 2 

missing cartilage 3 
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counted both the number of HIF-1α-positive and the total number of cells in each image 

(Sperry et al. 2020b); the percentage HIF-1α-positive cells was taken as an average for 

each animal.   

4.3.5. Substance P, phosphorylated ERK, & MMP-1 Immunolabeling in Neural 

Tissue 

To assess substance P, pERK, and MMP-1 in the peripheral and central nervous 

systems, axial cryosections of C7 DRGs and spinal cord (6-8/rat) were immunolabeled. 

Neural tissue was triple-labeled for the microtubule-associated protein 2 (MAP-2) to 

visualize neuronal somata and dendrites (chicken; 1:500; Abcam) (Cullen et al. 2012), 

substance P (guinea pig; 1:400; Neuromics; Edina, MN), and pERK (mouse; 1:500; Cell 

Signaling; Danvers, MT). Sections were triple washed in TBS (Thermo Fisher Scientific) 

with Triton X-100 (0.03%; Bio-Rad; Hercules, CA), blocked in TBS with normal goat 

serum (10%; Vector) and bovine serum albumin (BSA) (1%; Sigma) for 2 hours at room 

temperature, and incubated overnight at 4°C with primary antibodies in TBS with 1% BSA. 

Sections underwent three washes and were incubated for 2 hours at room temperature with 

the Alexa Fluor secondary antibodies goat anti-chicken 488, anti-guinea pig 633, and anti-

mouse 568 (all 1:1,000; Thermo Fisher) in TBS with BSA (1%). After washing in TBS and 

deionized water, slides were cover-slipped with Fluorogel (Electron Microscopy Sciences; 

Hatfield, MA).  

Sections that were fluorescently labeled for MAP-2, substance P, and pERK were 

imaged at 20x with a Leica TCS SP8 confocal microscope. To quantify substance P and 

pERK labeling intensity in neurons, MAP-2 positive cells (n=10/image) were first 
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identified by a blinded grader (n=5-7 images/rat) to select neurons (Figure 4.4); then, the 

signal intensity of substance P and pERK labeling in the MAP-2 selected neurons was 

separately quantified by manually outlining the neurons and quantifying the average pixel 

brightness, using FIJI (Figure 4.4). Substance P and pERK expression in DRG neurons was 

further assessed by neuronal size by calculating the cell diameter as the average of the 

length and width of each selected cell using FIJI. Neurons were categorized as small- 

(<21μm), medium- (21-40μm), and large- (>40μm) diameter neurons (Kras et al. 2014; 

Weisshaar et al. 2010), based on the known different functional roles across neurons of 

different sizes (Basbaum et al. 2009; Dai et al. 2002). To quantify substance P and pERK 

in the superficial dorsal horn where nociceptors synapse (Basbaum et al. 2009), spinal cord 

images were cropped to include only the superficial dorsal horn which correspond to an 

area of 700x300 pixels. Substance P and pERK were quantified, separately, by counting 

 

Figure 4.4. Substance P quantification in the DRG by neuronal size; the same approach was used for 

pERK as well. The low magnification image in the first image shows a merged MAP-2 (green) and 

substance P (red) immunolabel with blown out insets of the separated MAP-2 and substance P channels. 

Substance P is quantified in the isolated confocal image channels by first identifying 10 randomly 

selected MAP-2 positive cells in the MAP-2 imaged channel (white asterisks) and then manually 

outlining those same neurons in protein-labeled imaged channel using the FIJI software; the substance P 

channel is shown with selected neurons outlined in yellow. The average pixel intensity within, and the 

major and minor diameter of, the elliptical regions were then measured in the outlined neurons using FIJI 

to quantify signal intensity and neuronal size, respectively. 
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the number of pixels above the threshold for expression in naïve tissue using a custom 

MATLAB densitometry (Appendix B) (Lee and Winkelstein 2009). DRG signal intensities 

and the percentage of positive pixels in spinal cord were quantified for each image and 

averaged by rat.  

To quantify MMP-1 in neural tissue, separate cryosections (6-8/rat) were washed 

in distilled water, incubated in Dako Target Retrieval Solution (Agilent; Santa Clara, CA) 

for 30 minutes at 95°C, cooled, and processed as described for HIF-1α (Sperry et al. 2020b) 

using a primary antibody for MMP-1 (rabbit; 1:400; Proteintech; Rosemont, IL). MMP-1 

labeled tissues were imaged using an EVOS FL Auto Imaging microscope with a 40x 

(DRG) or 20x (spinal cord) Olympus objective. Areas of 600x600 pixels were cropped 

from the raw 40x DRG images to exclude connective tissue. Areas of 1500x500 pixels 

were cropped from the raw 20x spinal cord images to include only the superficial dorsal 

horn. Using the MATLAB script (details in Appendix B), MMP-1 expression was 

quantified using densitometry in the cropped 600x600 pixel DRG images and in the 

cropped 1500x500 pixel spinal cord images (Lee and Winkelstein 2009). The percentage 

of positively labeled pixels was separately calculated in DRG and spinal cord and averaged 

by rat.  

4.3.6. Statistical Analyses 

All statistical analyses were performed with α=0.05 using JMP Pro v14 (SAS 

Institute Inc.; Cary, NC). Normality was tested using a Shapiro-Wilk goodness-of-fit test 

for a normal continuous fit on the residuals of all outcomes. Differences in paw withdrawal 

thresholds between groups over time were compared using repeated-measures ANOVA 
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and post-hoc Tukey HSD tests, with a single rat as an experimental unit. Anisotropy index, 

joint space width, cartilage width, and HIF-1α expression were compared by two-tailed t-

tests. Since the Mankin score and all immunolabeling outcomes had non-normal 

distributions (p<0.05; Shapiro-Wilk test), differences were tested with a non-parametric 

Wilcoxon (Mann-Whitney) test to test differences between collagenase and vehicle groups. 

The effect of neuron size within groups was tested with a three-way ANOVA and post-hoc 

Tukey HSD tests. 

 

4.4. Results 

Collagenase decreases the PWT from baseline un-injected responses as early as one 

day after its injection (p<0.001), with collagenase-injected rats exhibiting increased 

sensitivity and significantly (p<0.001) decreased PWT for the full 21-day period after 

injection (Figure 4.5). Although a bilateral injection of saline vehicle also produces an 

initial decrease in PWT on day 1 (p=0.009), that decrease does not persist (Figure 4.5); the 

PWT of collagenase-injected rats is significantly lower (p≤0.036) than the vehicle group 

starting on day 3 and lasting for all days after (Figure 4.5). PWTs are compiled for each rat 

in Appendix C. 

 Despite collagenase inducing immediate and sustained behavioral sensitivity 

(Figure 4.5), there is no obvious deterioration of structure in the joint ligament or cartilage. 

Capsular ligament collagen fibers stained with a Picrosirius Red/Alcian Blue stain 

(Schmitz et al. 2010) were analyzed for the degree to which their orientation is random or 
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aligned (Sander and Barocas 2009); that analysis reveals no difference (p=0.731) in  

organization of the capsule’s collagen fibers between collagenase-and vehicle-injected 

joints (Figure 4.6A). Both groups exhibit a similar mean anisotropy index showing a mild 

level of alignment (mean±SD; collagenase 0.45±0.20; vehicle 0.45±0.17) on a scale from 

0 (isotropic, random) to 1 (aligned) (Figure 4.6A) (Sander and Barocas 2009). The 

summary of the stained images and alignment data is provided in Appendix D. 

Similarly, Mankin scoring quantification of Safranin O/Fast Green (Schmitz et al. 

2010; Xu et al. 2009) stained joints shows no differences (p=0.444) in the structure and 

health of the bone and cartilage between groups (Figure 4.6A), with a few of the 

collagenase-injected joints exhibiting very mild cartilage degeneration (Figure 4.3B). 

Collagenase-injected joints exhibit a mean Mankin score of 2.54±1.64 on a scale of 0 

 

Figure 4.5. Paw withdrawal threshold (PWT) for 21 days after intra-articular injection of collagenase or 

vehicle. PWTs quantifying mechanically evoked pain-like behavior exhibit a decrease (corresponding to 

greater sensitivity) after collagenase injection at all days (#p<0.001) compared to baseline (day 0). Intra-

articular injection of vehicle produces a decrease in PWT from baseline (&p=0.009) at day 1 that resolves 

by day 3. Starting on day 3, intra-articular collagenase induces sensitivity that is significantly lower 

(*p≤0.036) than vehicle for all days of testing. All p-values are calculated using a repeated-measures 

ANOVA and post-hoc Tukey HSD tests. 
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(healthy) to 10 (maximally degenerate) (Xu et al. 2009) that is within one Mankin point of 

the vehicle group (3.45±1.92), indicating no change in structure (Figure 4.6A). In addition, 

neither joint space width (p=0.841) nor cartilage width (p=0.111) is altered by collagenase 

 

Figure 4.6. Assessment of damage and health in joint tissues at 21 days post-injection. (A) Intra-articular 

collagenase (6 joints) does not change the collagen fiber orientation of collagen networks from vehicle 

(3 joints) (two-tailed t-test; p=0.731). Bone and cartilage staining with Safranin O/Fast Green reveals no 

significant difference in Mankin score (Wilcoxon test; p=0.444). Similar to the Mankin score, neither 

joint space width (two-tailed t-test; p=0.841) nor cartilage width (two-tailed t-test; p=0.111) change after 

intra-articular collagenase. (B) Images show chondrocytes in the articular cartilage immunolabeled with 

HIF-1α where black arrowheads indicate positive HIF-1α labeling. Chondrocytes exhibit a similar pattern 

of positive labeling regardless of group that is not different (two-tailed t-test; p=0.423). An image of the 

no primary, negative control for the HIF-1α label is also shown; scale bar applies to all HIF-1α images. 

Box-and-whisker plots show horizontal lines representing the first (lower) quartile, median, and third 

(upper) quartile of the data. Whiskers represent the minimum and maximum of the data set. Data points 

for individual joints are superimposed on boxplots and show the mean value from 5-6 images/rat and 2-

4 ROIs/image for the anisotropy index, 6-8 images/rat for the Mankin score, 3-4 images/rat for the joint 

space and cartilage width measurements, and 5 images/rat for the HIF-1α labeling. 
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(Figure 4.6A). The images, Mankin scores, and width measurements are summarized for 

each rat in Appendix D. The percentage of HIF-1α-positive cells in collagenase-injected 

joints (47.9±24.7%) is not different from (p=0.423) vehicle (53.31±23.68%) (Figure 4.6B), 

suggesting collagenase exposure that induces sensitivity (Figure 4.5) is not sufficient to 

disrupt chondrocyte homeostasis at day 21. Images of chondrocytes with HIF-1α 

immunolabeling and their quantification are detailed in Appendix D. 

Immunolabeling of substance P and pERK in the DRG and spinal cord on day 21 

suggests that collagenase may activate neuronal nociceptor and injury pathways in the 

peripheral and central nervous systems (Figures 4.7 & 4.8). Expression of both substance 

P and pERK in MAP-2-positive DRG cells significantly increases (p<0.001) in samples 

from collagenase-injected joints (Figure 4.7). Peripheral substance P expression after 

collagenase (14.95±8.85) is nearly twice that of control (7.66±4.94), and pERK levels 

increase by approximately 1.4-fold (collagenase 21.42±9.65; vehicle 15.37±6.10) (Figure 

4.7A). In the neurons assessed from the collagenase group (n=337 neurons), 14.3% are 

small, 60.9% are medium, and 24.8% are large; neuron proportions are similar in the 

vehicle group (n=220 neurons; 13.2% small, 61.8% medium, 25.0% large). The mean size 

of all neurons tested is 34.8±8.5μm, which is consistent with the reported average cell 

diameter (~30μm) of the DRG neuronal population in the rat (Bosco et al. 2010). 

Collagenase elevates both substance P and pERK in small-, medium-, and large-diameter 

neurons over vehicle (p≤0.0295) (Figure 4.7B). Further, there is a significant and different 

effect of cell size for substance P (p<0.001) and pERK (p=0.002) expression in DRG 

neurons from collagenase-injected, but not vehicle-injected rats (p≥0.171) (Figure 4.7B). 
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After intra-articular collagenase, small-diameter neurons have greater substance P 

expression than medium- (p=0.003) and large-diameter (p<0.001) neurons (Figure 4.7B). 

Yet, pERK expression is greatest in medium-diameter neurons, which have elevated 

expression levels over large-diameter neurons (p=0.002) (Figure 4.7B). Positive labeling 

for both substance P and pERK is also evident in the superficial spinal dorsal horn (Figure 

4.8). Although spinal substance P and pERK increase after intra-articular collagenase over 

 

Figure 4.7. Immunolabeling of substance P and phosphorylated ERK in the dorsal root ganglia (DRG) 

at day 21. (A) Quantification of labeling intensity for the neurotransmitter substance P (red) and the MAP 

kinase pERK (purple) in cells with MAP-2 (green) positive labeling shows elevated expression after 

collagenase (col) injection relative to vehicle (veh) injection for both substance P (Wilcoxon test; 

*p<0.001) and pERK (Wilcoxon test; *p<0.001). Data points superimposed on box plots in (A) represent 

the mean for each rat (n=5-7 images/rat; n=10 cells/image). White arrows indicate exemplary neurons 

identified as small (S), medium (M), or large (L) diameter neurons. Aggregate data from (A) separated 

by neuronal size in (B) shows that increases in substance P and pERK after collagenase occur in small 

(<21μm), medium (21-40μm), and large (>40μm) diameter neurons (Wilcoxon tests; *p≤0.0295). Size 

has a significant effect on protein expression after collagenase, with small-diameter neurons having 

greater levels than medium- and large-diameter neurons (Tukey HSD tests; #p≤0.003), and medium-

diameter neurons expressing greater levels of pERK than large-diameter neurons (Tukey HSD tests; 

#p=0.002). Box-and-whisker plots show horizontal lines representing the first (lower) quartile, median, 

and third (upper) quartile of the data. 
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levels for intra-articular vehicle, the difference is only significant for substance P (p=0.039) 

(Figure 4.8). Triple-labeled substance P/pERK/MAP-2 images for each rat are itemized 

with their quantification for each label in Appendix E. 

Pain-like behavior (Figure 4.5) and elevated substance P and pERK expression 

(Figures 4.7 & 4.8) are paralleled by changes in MMP-1 expression in the DRG and spinal 

cord. MMP-1 expression increases both peripherally and spinally after intra-articular 

collagenase injection (Figure 4.9). The average level of MMP-1 labeling in the DRG 

neurons of collagenase-injected rats (24.75±22.48%) is significantly greater (p=0.039) at 

twice that expressed in control rats with vehicle injections (12.50±9.69%) (Figure 4.9). 

Similarly, there is a significant increase in MMP-1 expression in the superficial dorsal horn 

(p=0.041) of those rats receiving intra-articular collagenase (Figure 4.9). Appendix E 

contains the MMP-1 immunolabeled images and their quantification. 

 

Figure 4.8. Immunolabeling of substance P and phosphorylated ERK in the spinal cord at day 21. Intra-

articular collagenase increases positive labeling for substance P (red) and pERK (purple) in the superficial 

dorsal horn. Spinal substance P (Wilcoxon test; *p=0.039) is significantly greater after collagenase 

injection than after injection of the vehicle, but the same increase is not detected with pERK expression 

(Wilcoxon test; p=0.147). Spinal cord images show regions of the superficial dorsal horn (700x300 

pixels) where immunolabels were quantified; insets show higher magnification of regions (white stars) 

to demonstrate positive substance P labeling. Individual data points on boxplots in represent the mean 

value per rat quantified for 6-8 images/rat. Box-and-whisker plots show horizontal lines representing the 

first (lower) quartile, median, and third (upper) quartile of the data and whiskers represent the minimum 

and maximum values of the data set. 
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Figure 4.9. Detection of matrix metalloproteinase 1 (MMP-1) expression in the dorsal root ganglia 

(DRG) and spinal cord at day 21. Collagenase injection in the facet increases MMP-1 protein expression 

in the DRG (Wilcoxon test; *p=0.039) with pronounced labeling in DRG cells. Dashed insets in the DRG 

images show representative cropped regions (600x600 pixels) where MMP-1 labeling is quantified in 

DRG cells. Spinal MMP-1 in the superficial dorsal horn is also greater with intra-articular collagenase 

(Wilcoxon test; *p=0.041). Low magnification images (top) show the superficial spinal cord, from which 

high magnification images (middle) were acquired for quantification. Dashed insets in high magnification 

images show representative cropped (1500x500 pixels) regions where MMP-1 labeling is quantified in 

the superficial dorsal horn. Images of the no primary, negative controls are shown for both DRG and 

spinal cord labels. Box-and-whisker plots show horizontal lines representing the first (lower) quartile, 

median, and third (upper) quartile of the data. Data points for individual rats on boxplots represent the 

mean of 6-8 images/rat for each of the DRG and spinal cord quantification.  
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4.5. Discussion  

This study demonstrates that introducing intra-articular collagenase in the cervical 

facet joint alone is enough to induce sustained mechanical hyperalgesia and dysregulation 

of neuronal mediators in the periphery and spinal cord (Figures 4.5, 4.7-4.9). The increase 

in known nociceptive and afferent regulators (substance P, pERK) as well as the catabolic 

and signaling protease MMP-1 in DRG neurons (Figures 4.7 & 4.9) adds to growing 

evidence that trauma- and osteoarthritis-induced joint sensitivity is regulated by 

dysregulation of a host of neurotransmitters, cell signaling proteins, and matrix-altering 

proteins in the DRG (Lee and Winkelstein 2009; Loeser et al. 2012; Miller et al. 2018; 

Sperry et al. 2017). Further, this occurs absent joint space narrowing, cartilage lesions, 

osseous changes, or chondrocyte disruption (Figure 4.6), all of which are pronounced in 

loading-induced osteoarthritis (Kartha et al. 2016; Sperry et al. 2020b) and with intra-

articular crude collagenase (Adães et al. 2014; Gou et al. 2019; Yeh et al. 2008). 

Collagenase-induced changes in neural and joint outcomes (Figures 4.5-4.9) occur 

coincident with mechanical hyperalgesia (Figure 4.5), which is a proxy for peripheral 

sensitization; since this measurement is mechanically evoked, it does not fully capture the 

affective components of pain (Loeser et al. 2012). Integrating techniques such as the facial 

grimace scale in rats (Sperry et al. 2018) into in vivo models of joint pain would provide a 

measurement of spontaneous pain that is more translatable to the affective components of 

the pain experience in the human. 

The results of this study imply that joint-mediated behavioral sensitivity from 

purified collagenase may develop and persist (Figure 4.5) by different mechanisms than 
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those etiologies with considerable joint degeneration. For example, contrary to the finding 

of elevated substance P in the DRG (Figure 4.7), crude collagenase in the knee decreases 

substance P expression in DRG neurons at 4 and 6 weeks after injection despite the 

presence of pain-like behaviors (Adães et al. 2015). The authors of that study infer that the 

decrease in substance P is due to afferents being injured by the severe articular destruction 

and subsequent exposure of subchondral bone caused by crude collagenase (Adães et al. 

2015). The opposite findings that substance P decreases with severe damage (Adães et al. 

2015), but increases without damage in the current study (Figures 4.6-4.8) are aligned with 

the disparity of observations related to structural destruction observed between the use of 

crude or purified collagenase (Adães et al. 2014; Gou et al. 2019; Yeh et al. 2008). The 

lack of change in chondrocytic HIF1α (Figure 4.6B) also differs from osteoarthritis models 

reporting HIFs being elevated with pain-like behaviors (Kartha et al. 2016; Sperry et al. 

2020b).  It is possible that HIF1α may play a role in an earlier, yet transient, chondrocyte 

response to the intra-articular collagenase (Sperry et al. 2020b). Yet, the lack of other 

evidence of cartilage damage (Figure 4.6) does not necessarily support such a hypothesis 

and further highlights that pain-like behavior persists here absent the hallmark cartilage 

breakdown.  

Notwithstanding the lack of tissue-level damage with collagenase-induced 

hyperalgesia (Figures 4.5 & 4.6), afferent regulators can act peripherally to transmit pain 

within apparently undamaged joint tissues. The increase in substance P and pERK in the 

DRG (Figure 4.7) implies that collagenase in the joint induces synthesis of these, and likely 

other, proteins in neurons and would be available for distribution to peripheral synaptic 
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terminals in innervated tissues. Moreover, pilot studies demonstrate that collagenase 

increases substance P and pERK expression in DRG monolayer culture (Sperry et al. 2017), 

absent a collagen substrate, suggesting that collagenase may increase these proteins 

independent of its influence on collagen molecules.  Although substance P was not probed 

in joint tissues, its expression has been shown to increase in subchondral bone several 

weeks after administration of crude intra-articular collagenase (Gou et al. 2019), suggesting 

substance P could also be transported peripherally in the model used here and contribute 

to peripheral sensitization (Figure 4.5). The increased phosphorylation of ERK in the DRG 

that is evident in this model (Figure 4.7) supports the notion of peripheral sensitization 

since ERK is activated in neurons in response to intense noxious stimulation (Dai et al. 

2002).  

The finding that collagenase increases pERK and substance P expression in neurons 

across all sizes (Figure 4.7) suggests that collagenase affects several neuronal populations 

that are functionally and molecularly heterogeneous (Basbaum et al. 2009). In their most 

common characterization during non-pathologic states, small-diameter neurons are 

nociceptors that transmit “slow pain” via unmyelinated C-fibers, medium-diameter 

neurons are nociceptors that transmit “fast pain” via Aδ myelinated fibers, and large-

diameter neurons are mechanoreceptors that relay touch sensation via Aβ myelinated fibers 

(Basbaum et al. 2009). Since ERK phosphorylation occurs within minutes of a noxious 

stimulus in small- and medium-diameter neurons (Dai et al. 2002; Obata and Noguchi 

2004), its elevation at the late timepoint (day 21) after collagenase (Figure 4.7), but when 

behavioral sensitivity is still present (Figure 4.5), suggests there may be ongoing noxious 
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input from the joint. Of note, peripheral noxious input does not appear to involve injury to 

the joint’s chondrocytes since HIF1α levels are unaltered (Figure 4.6B). The 

phosphorylation of ERK in large-diameter neurons indicates that some degree of tissue 

injury may be occuring after collagenase injection (Figure 4.7B), since ERK is only 

phosphorylated in mechanoreceptors after nerve injury (Ji et al. 2009). This widespread 

ERK phosphorylation across DRG neurons likely contributes to the development of 

behavioral sensitivity (Figure 4.5). 

Collagenase also increases substance P in neurons of all sizes, with the highest 

intensity of labeling in small- and medium-diameter nociceptors (Figure 4.7), suggesting 

that the behavioral sensitivity caused by intra-articular collagenase (Figure 4.5) may be 

transmitted via both the primary and secondary populations of nociceptors. Although this 

analysis does not distinguish between the peptidergic and nonpeptidergic neurons that 

make up the small-diameter, C-fiber population, the small-diameter neurons where 

substance P increases are likely the peptidergic population that release neuropeptides like 

substance P and calcitonin-gene related peptide (Figure 4.7B) (Basbaum et al. 2009). 

Furthermore, the hyperalgesia we report in the forepaw is secondary hyperalgesia since it 

is remote from the C6/C7 injection site. It is possible that abnormal recruitment of 

mechanoreceptors in nociception contributes to the manifestation of hyperalgesia away 

from the injury site (Basbaum et al. 2009), since substance P increases in large-diameter 

neurons (Figure 4.7B). Of note, the percentage of neurons positive for protein expression 

was not assessed; rather, a semi-quantitative technique was used to determine the level of 

expression (Kras et al. 2013b; Weisshaar et al. 2010). Further refining assessment of the 
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population of neurons in which afferent regulators increase could lend deeper insight into 

how collagenase leads to noxious transmission and the molecular receptors involved.  

Central sensitization may also contribute to the manifestation of behavioral 

sensitivity from elevated spinal substance P (Figures 4.5 & 4.8), but to a different extent 

than peripheral sensitization since spinal pERK levels are not elevated (Figure 4.8). 

Increased substance P in the superficial dorsal horn (Figure 4.8), where peptidergic C and 

Aδ afferent fibers synapse, suggests that collagenase may induce central sensitization by 

enhancing nociceptive circuits decoupled from peripheral noxious input (Basbaum et al. 

2009; Latremoliere and Woolf 2009). Indeed, there is evidence of central pain processing 

after joint trauma (Crosby et al. 2015), in experimental osteoarthritis models (Rahman and 

Dickenson 2015), and in patients with osteoarthritis knee pain who exhibit signs of central 

sensitization using quantitative sensory testing (Finan et al. 2013; Lluch et al. 2014). 

Although widespread, systemic sensitivity is evident in patients with osteoarthritis (Finan 

et al. 2013), additional sites further from the forepaw were not probed in this study to assess 

if there is widespread sensitivity. Despite evidence for central sensitization, the ability of 

clinical interventions, such as local intra-articular anesthetics and total joint replacement, 

to alleviate joint pain suggests that ongoing peripheral input from the affected joint, at least 

in part, may drive joint pain at chronic stages (Malfait and Schnitzer 2013). In fact, the 

relative contributions of peripheral and central sensitization have been proposed to vary by 

patient and may explain the disagreement between pain severity and radiographic joint 

damage whereby patients with little damage exhibit higher physiological evidence of 

central sensitization, and vice versa (Finan et al. 2013).  Although substance P signaling 
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contributes to neuronal hyperexcitability (Basbaum et al. 2009; Latremoliere and Woolf 

2009), electrophysiology data from DRG and spinal neurons are needed to identify if, 

where, and when, aberrant firing occurs. Furthermore, neuronal protein assays represent a 

snapshot in time (only at day 21 in this case), and do not inform about the temporal 

development and/or maintenance of neuronal hypersensitivity.  

The collagenase used in this study is from the bacterium Clostridium histolyticum, 

and is a foreign body except during certain bacterial infections (Fields 2013). So, it is 

devoid of the many other pathophysiological roles of native MMPs (Sbardella et al. 2012; 

Visse and Nagase 2003) and effectively isolates only the collagen catabolism function of 

native collagenases. As such, intra-articular collagenase is not taken as a model of 

osteoarthritis, but rather purified bacterial collagenase enables answering questions about 

the role of collagen catabolism in degenerative joint diseases. Because of this “simple” 

effect, collagenase presumably initiates nociceptive cascades via a microscale degradation 

of collagenous tissues in the joint and not through non-collagenolytic-dependent pathways 

such as direct receptor binding on neurons (Conant et al. 2002; Dumin et al. 2001; Lakes 

and Allen 2016).  Although over 90% of the injected collagenase is predicted to leave the 

joint space immediately (Otterness et al. 2000), and the remainder of the enzyme is likely 

cleared within several hours (Otterness et al. 2000), neither the volume nor clearance of 

injectant were directly measured in this study. Notably, this study used only a single dose 

and did not investigate whether the behavioral sensitivity, joint, and/or neural outcomes 

vary with the amount of bacterial collagenase. Investigating whether lower and/or more 

frequent collagenase doses induce transient and/or sustained behavioral sensitivity would 
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provide insight into how “tunable” collagen catabolism effects are on the extent and 

duration of pain-like behaviors. 

 Collagenase-mediated collagen breakdown could initiate nociception by altering 

the microstructure of the collagen network that surrounds the innervating afferents in the 

facet capsule leading to aberrant cell-matrix interactions. Indeed, prior studies in knockout 

mice implicate Type V and Type IX collagen directly in the manifestation of pain-related 

behaviors (Allen et al. 2009; Syx et al. 2020). Mechanosensitive afferent fibers and 

fibroblast cells embedded in a collagenous ligament respond to changes in their mechanical 

microenvironment via adhesive interactions with the ECM (Zhang et al. 2017); such 

disruption of collagen types involved in ECM cohesion may directly induce several 

behavioral characteristics of pain (Allen et al. 2009). Collagen breakdown could interfere 

with transmembrane integrin receptors that mediate collagen-axon adhesions, for example, 

and regulate substance P-mediated signaling (Zhang et al. 2017).  

Although it is well-established that nociceptive signaling is activated in afferents 

by stretch-induced changes to their local matrix (Zarei et al. 2017; Zhang et al. 2016; Zhang 

et al. 2017), the current study suggests that degradation-induced changes alone, absent any 

stretch, may also affect neuronal signaling. This notion is supported by the dysregulation 

of neuronal regulators in the DRG and spinal cord (Figures 4.7-4.9) absent any mechanical 

injury with a collagenase injection. It is also possible that the degradation itself does not 

initiate nociception, but rather weakens the collagen matrix itself and lowers the neuronal 

threshold for mechanical activation. In fact, exposing isolated rat facet joints to digestion 

using this same collagenase also lowers the failure force and stiffness of the capsular 
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ligament (Singh and Winkelstein 2020). There is also more abnormal microstructural 

reorganization of fibers in collagenase-treated capsules at strains associated with pERK 

upregulation (Singh and Winkelstein 2020; Zhang et al. 2016), further supporting that 

stretch of a degraded ligament could initiate injury and/or nociceptive signals in neurons, 

transmitting pain from the periphery. This notion is further supported by studies of human 

classical Ehlers-Danlos syndrome in mice, whereby Type V collagen deficiency 

compromises joint stability and causes generalized sensitization (Syx et al. 2020). A 

reduced threshold for mechanical activation of nociceptive afferents in degraded capsules 

could explain the hyperalgesia detected with collagenase exposure (Figure 4.5), as well as 

pain symptoms experienced by patients with osteoarthritis during usually non-injurious 

movements like walking or climbing stairs (Hunter et al. 2013; Loeser et al. 2012). 

It is also possible that collagenase produces collagen degradation products that act 

as signaling peptides in the joint. Collagen fragments produced by MMP-degradation are 

detectable in synovial fluid, serum, urine, and plasma in patients with painful joint 

degeneration (Bay-Jensen et al. 2016) and can act as ligands in cell-cell signaling (Siebert 

et al. 2010). Although the majority of studies characterizing collagen degradation products 

in humans have measured products of cartilage degradation and bone resorption, like CTX-

II and COMP (Bay-Jensen et al. 2016), a few show that the Type I collagen degradation 

fragment C1M is detectable in serum of patients with symptomatic osteoarthritis (Arendt-

Nielsen et al. 2014; Leeming et al. 2011; Siebuhr et al. 2014). C1M levels and 

hypersensitivity trend towards being positively correlated (Arendt-Nielsen et al. 2014), 

suggesting a clinically-relevant relationship between Type I collagen degradation and 
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nociception. Although the initial mechanism of cleavage differs between native interstitial 

collagenases (the human MMPs) and bacterial collagenases, both kinds of enzymes 

produce collagen fragments that can be subsequently post-processed into fragments 

<40kDa (Amar et al. 2017; Fields 2013; Otterness et al. 2000); those fragments are 

measurable in the synovial fluid within minutes of an MMP-13 intra-articular injection in 

the hamster (Otterness et al. 2000). Small collagen fragments ranging between 2.7-15.6kDa 

bind directly to the α2A domain of integrin (Siebert et al. 2010). Since neurons express 

integrin receptors and integrin-signaling is involved in the transduction of noxious stimuli 

(Conant et al. 2004; Zhang et al. 2017), it is possible that small collagen fragments may 

also bind to neuronal receptors, or indirectly influence neuronal signaling through their 

regulation of integrin. Such collagen fragment-mediated cascades could play a role in the 

development of the behavioral sensitivity (Figure 4.5) and neuronal dysregulation (Figures 

4.7-4.9) observed in our model. Measuring Type I collagen degradation products and their 

interactions with neurons is a promising direction for future work.  

MMP-1 activates several other proteases that directly regulate substance P (Visse 

and Nagase 2003). So, the increase of substance P and MMP-1 in DRG neurons and the 

spinal cord suggests their expression could be related to each other in collagenase-induced 

behavioral sensitivity (Figures 4.5 & 4.7-4.9). In normal non-pathologic tissues, MMP-1 

levels are usually low (Sbardella et al. 2012), so the fact that MMP-1 is detectable and 

elevated over controls in the rat DRG (Figure 4.9) indicates a distressed cellular state. 

MMPs are regulated in part by fibroblasts and interactions with ECM components, 

including matrix turnover (Craig et al. 2015; Petersen et al. 2012; Visse and Nagase 2003), 
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and it is possible that collagenase triggers mechanotransduction cascades in the fibroblast-

like synoviocytes that reside in the capsular ligament upon its injection. However, MMP-

1 was not quantified in the fibroblast-containing region of the ligaments in this study, 

although MMP-1 is expected to be produced by, and localized to, fibroblasts in pathologic 

states (Bartok and Firestein 2010). MMP-1 localization to DRG neurons (Figure 4.9) may 

directly stimulate action potentials and trigger abnormal firing patterns since there are 

known relationships between MMP-1, cell surface receptors, and non-matrix substrates 

involved with nociception (Conant et al. 2002; Dumin et al. 2001; Lakes and Allen 2016; 

Visse and Nagase 2003). Exogenous MMP-1 increases neuronal excitability (Allen et al. 

2016), so MMP-1 may contribute to the peripheral and/or central hyperexcitability in the 

rat.  

Overall, these studies put forth a model of how nociception may occur from an 

apparently structurally unaffected joint, effectively mimicking the clinical scenario in 

which symptomatic joint pain patients do not present with hallmark evidence of joint 

destruction on imaging (van der Donk et al. 1991; Finan et al. 2013; Hunter et al. 2013; 

Kjaer et al. 2005). Microscale collagen degradation is put forth leading to behavioral 

sensitivity and some combination of peripheral and/or central alterations to nociceptive 

processing via altered cell-matrix interactions or production of potent collagen fragment 

ligands. Changes in the composition of joint tissues, such as a loss of Type I collagen, are 

posited as an early initiator of degenerative joint disease that precedes “currently 

detectable” pathology (Hunter et al. 2013). Still, there remain many challenges in detecting 

microscale collagen damage clinically, as evidenced by a lack of overt changes in joint 
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structure (Figures 4.3 & 4.6). Advances in MRI and other imaging modalities are beginning 

to achieve greater sensitivity than the characteristic radiographs used for a clinical joint 

degeneration diagnosis. MRI features, like bone marrow lesions, synovitis, and effusion, 

show promise as stronger correlates with pain (Hunter et al. 2013), and support that pain 

without overt joint destruction could be due to inflammatory changes in joint tissues in 

concert with, or instead of, microscale collagen degradation (Adães et al. 2017; Arendt-

Nielsen et al. 2014; Chakrabarti et al. 2020; Miotla Zarebska et al. 2017). The ability of 

nonsteroidal anti-inflammatory drugs to attenuate pain-related behaviors after intra-

articular collagenase (Adães et al. 2014; Gou et al. 2019), as well as pilot studies showing 

increased gene expression of cytokines with collagenase both in vivo and in vitro (Ita et al. 

2017; Ita et al. 2018), support that inflammation may play a role in hyperalgesia (Figure 

4.5). Even so, the associations with inflammatory MRI features and pain are still 

inconsistent and MRI “abnormalities” are common in otherwise pain-free joints (Hunter et 

al. 2013). Since substance P, pERK, and MMP-1 appear to be indicators of Type I collagen 

degradation, these molecular regulators should be considered in diagnostic and therapeutic 

advances as facilitators of hyperalgesia in joint diseases that involve pathologic Type I 

collagen degradation. 

 

4.6. Integration & Conclusions 

The findings in this chapter demonstrate that exogenous levels of a protease 

distinctly chosen for its purity of collagenolytic activity can induce immediate and 
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sustained behavioral sensitivity in the cervical facet joint (Figure 4.5), consistent with the 

hypothesis in Aim 2. The increases in substance P, pERK, and MMP-1 in neural tissue 

(Figures 4.7-4.9) further supports the hypothesis that sensitivity results from collagenase 

mediating nociceptive and/or mitogen-activated kinase (MAPK) signaling pathways 

(Cheng and Ji 2008; Ji et al. 2009; Obata and Noguchi 2004). Contrary to the original 

hypothesis put forth in Section 2.2, intra-articular collagenase does not result in tissue-level 

joint degeneration (Figure 4.6), at least as measured by the histological stains, Mankin 

scoring, and alignment analyses utilized in this study. The evidence of very mild surface 

fibrillation and slightly decreased Safranin O staining of the articular cartilage (Figure 4.3) 

suggests the possibility that intra-articular collagenase may mildly compromise structural 

integrity. Yet, it is very unlikely that such a modest change would qualify, or even be 

detectable, as “characteristic degeneration” according to current diagnostic criteria (Hunter 

et al. 2013; Kraus et al. 2015). Thus, results collectively point to a mechanism of 

collagenolytic-mediated behavioral sensitivity that does not follow clinical etiologies with 

substantial structural damage. 

Although thesis in vivo results are useful in demonstrating that purified collagenase 

alone is sufficient to induce and sustain pain (Figure 4.5), the underlying mechanism of 

nociceptive transmission cannot be concluded from the data in this study. Certainly, 

elevated substance P and pERK in DRG neurons suggests the sensation of noxious and/or 

injurious stimuli from peripheral nerve endings, but the mechanisms by which collagenase 

brings about this dysregulation in the joint and its tissues is unknown. It is postulated that 

microscale collagen degradation induced by collagenase alters the local microenvironment 
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of innervating nerves in the capsular ligament and triggers aberrant signaling in resident 

cells. Whether cleavage of collagen fibers acts directly on adhesion sites with neurons, 

fibroblasts, or via more complicated signaling pathways is also unknown. Furthermore, the 

cleavage of Type I collagen by collagenase is an assumption, since the studies in this 

chapter do not quantify collagen fragments nor the relative amount of degraded collagen 

after injection. In vitro studies described in the next chapter help clarify the mechanisms 

by which collagenase may induce sensitivity utilizing a neuron-fibroblast co-culture model 

of the capsular ligament. The in vitro co-culture model enables higher-resolution 

investigation of the cell and fiber responses with less variability and complexity than in the 

animal; studies detailed in Chapter 5 assay neuron, fibroblast, and collagen responses to a 

bacterial collagenase exposure to define such possible mechanisms. Further, mechanisms 

by which nociceptive signaling is derived from innervated ligaments under load, and how 

such mechanisms may depend on MMPs, are defined using that same co-culture model in 

Chapters 6 and 8. 

Reports of elevated MMP-1 with painful joint trauma and/or degeneration are 

exclusively in the joint tissues; MMP-1 increases in the joint capsule after elbow trauma 

(Cohen et al. 2007) and with facet degeneration (Kim et al. 2015), and its concentration 

increases in synovial fluid after knee trauma (Chockalingam et al. 2013; Haller et al. 2015; 

Konttinen et al. 1999; Tchetverikov et al. 2005). Findings in this chapter demonstrate that 

increased MMP-1 expression localizes to neural tissue in the periphery and spinal cord 

(Figure 4.9), demonstrating that joint-mediated sensitivity is accompanied by elevated 

MMP-1 in the nervous system as well as in musculoskeletal tissues. Elevated MMP-1 



102 

 

levels in the peripheral and central nervous systems may be a result of increased levels in 

joint tissues and MMP-1 translocation along axons; yet, this animal study did not evaluate 

MMP-1 levels in the capsular ligament, synovial fluid, or other joint tissues. However, 

studies in Chapters 5, 6, and 8 quantify MMP-1 levels in the collagen substrate surrounding 

peripheral neurons in the co-culture model as a proxy for the capsular ligament in vivo, 

and provide insight into how mechanical and chemical stimuli might alter MMP-1 levels 

in joint tissues.  

Measuring MMP-1, a human collagenase, after intra-articular bacterial collagenase 

may appear redundant; yet, bacterial collagenase is not a direct substrate of, or ligand to, 

MMP-1. MMP-1 is regulated, in part, by neurons (Zhou et al. 2014), fibroblasts (Bartok 

and Firestein 2010; Petersen et al. 2012), the extracellular matrix (Visse and Nagase 2003), 

and by other MMPs (Clark et al. 2008; Fields 2013). So, its increase with bacterial 

collagenase (Figure 4.9) suggests that collagenase alters any one, or all, of these regulatory 

mechanisms and implicates MMP-1 in joint-mediated sensitivity. Studies in Chapter 7 

parallel those from this chapter by using intra-articular MMP-1 to capture the 

collagenolytic and myriad non-collagenolytic roles of human MMP-1 on pain, joint 

structure-function, and neuronal dysregulation.  
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  Chapter 5 

Development & Characterization of a Neuron-

Fibroblast Co-Culture Collagen Gel Model of the 

Capsular Ligament 
 

This chapter has been adapted from the following abstracts and portions of manuscripts: 

Ita ME, Troche HR, Winkelstein BA. Primary synovial fibroblast-collagen gels exhibit 

unique tensile failure properties & microstructure from 3T3-collagen gels. Summer 

Biomechanics, Bioengineering & Biotransport Conference, Abstract #216, June 2019. 

Seven Springs, PA. 

 

Leavitt GE, Ita ME, Winkelstein BA. Differential MMP-1 Expression is Induced After 

Stretch in Neuron-Collagen Co-Cultures Seeded with Either Fibroblast-Like Synoviocytes 

or 3T3s. Biomedical Engineering Society Annual Meeting, Abstract #3973, Oct. 2019. 

Philadelphia, PA. 

 

Ita ME, Winkelstein BA. Concentration dependent effects of fibroblast-like synoviocytes 

on collagen gel multiscale biomechanics & neuronal signaling: Implications for modeling 

human ligamentous tissues. Journal of Biomechanical Engineering, 141(9): 091013, 2019.   

 

Ita ME, Winkelstein BA. Collagenase exposure that disrupts collagen microstructure in a 

co-culture model of ligament also alters neuronal activity & MMP-1 expression. Summer 

Biomechanics, Bioengineering & Biotransport Conference, Abstract #46, June 2020.  

 

Ita ME, Ghimire P, Welch R, Troche HR, Winkelstein BA. Intra-articular collagenase in 

the spinal facet joint induces pain, neuronal dysregulation, & increased MMP-1, in the 

absence of joint destruction. Scientific Reports, in press.  

 

 

 

5.1. Overview 

In vitro neuron-seeded three-dimensional (3D) collagen gels replicating the sensory 

innervation and collagen network microstructures of the ligamentous capsule have helped 
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to define mechanisms by which mechanical stimuli may activate nociceptive responses in 

neurons in ligamentous joint capsules (Zhang et al. 2016; Zhang et al. 2017; Zhang et al. 

2018). Yet, that work omitted the possible effects of synovial fibroblasts, which are 

interspersed within the capsule’s matrix (Bartok and Firestein 2010; Provenzano et al. 

2002; Valencia et al. 2004; Yahia and Garzon 1993; Yamashita et al. 1996). Those cells 

not only alter local network mechanics (Grinnell 2008; Kural and Billiar 2013; Rhee and 

Grinnell 2007), but are also known to have myriad roles in regulating MMPs (Bartok and 

Firestein 2010; Daniels et al. 2003; Petersen et al. 2012). As such, existing models are 

limited in not being able to define cell-to-cell interactions between fibroblasts and neurons, 

especially in the context of MMP regulation and/or nociception.  

The studies in this chapter describe the development of a co-culture model that 

integrates fibroblast-like synoviocytes (FLS) into an existing neuron-collagen system to 

investigate how FLS participate in afferent signaling. To replicate the in vivo environment 

and preserve the functional role with MMP-1, studies use primary-harvested synovial 

fibroblasts. The studies in this chapter also directly build off the in vivo study in Chapter 4 

by mimicking the collagenase exposure used in the rat in the new co-culture model. Since 

the co-culture model is able to minimize any confounding factors that may be present in 

vivo and enables measuring fiber- and cell-level outcomes, it provides helpful insight into 

possible mechanisms by which intra-articular collagenase alone may induce behavioral 

sensitivity. Specifically, the effect of collagenase exposure on the amount of collagen, its 

network microstructure, live-neuronal signaling responses, and neuronal MMP-1 

expression are all assessed, matching the in vivo assays (Chapter 4).  
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A combined background section (Section 5.2) summarizes the neuron-collagen 

model in the context of the anatomy of capsular ligaments, emphasizing its utility and 

where it falls shorts in mimicking the in vivo scenario. The existing literature on fibroblast-

embedded collagen gels is presented and highlights the need for incorporating fibroblasts 

derived from the capsular ligament of synovial joints. Section 5.3 details studies performed 

to develop and optimize the new co-culture model, enumerating methods for cell harvest 

and isolation, characterization of fibroblast-like synoviocytes cells, and integration of 

neuronal and fibroblast cell types together. Separate methods, results, and discussion 

sections are presented for the studies characterizing the co-culture response to a 

biomechanical stretch to failure (Section 5.4) and to a bacterial collagenase exposure 

(Section 5.5). A combined conclusion (Section 5.6) integrates outcomes from both of the 

model development and characterization studies. Collectively, the studies in this chapter 

address Aim 3 and provide context for studies in Chapters 6 and 8.  

 

5.2. Relevant Background 

At each spinal level from the cervical to the lumbar spine, the bilateral synovial 

facet joints articulate between adjoining vertebrae. In the cervical spine these joints are a 

common source of neck pain and are susceptible to injury from trauma or during spinal 

degeneration (Hogg-Johnson et al. 2008; Jaumard et al. 2011; Panjabi et al. 1998; 

Winkelstein et al. 2000). The abnormal kinematics that are produced in the spine during 

neck injury or other dynamic spine loading can injure the individual tissues in the facet 

joint and/or the joint as a whole (Anderst et al. 2014; Pearson et al. 2004). The pathology 
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associated with those tissue injuries includes microstructural damage to the collagen 

fibrous matrix of the capsular ligament, synovial fold pinching, and/or degenerative 

changes to the articular cartilage, which can lead to osteoarthritis (Kim et al. 2015; Pearson 

et al. 2004; Schofferman et al. 2007). Because the facet joints are innervated by 

mechanoreceptive and nociceptive afferent fibers (Bogduk and Marsland 1988; Lu et al. 

2005b), any abnormal loading of the facet joint can also generate forces that mechanically 

load those afferents and initiate a host of pathophysiological responses that can lead to pain 

(Ita et al. 2017b; Kallakuri et al. 2008; Lee et al. 2004; Lee and Winkelstein 2009; Lu et 

al. 2005a). In particular, injury of the innervated ligament tissue that encapsulates the 

synovial joint has the potential to act as a pain sensor. 

Innervating fibers of the ligamentous capsule of most other peripheral synovial 

joints, in addition to the spinal facets, have their cell bodies in the dorsal root ganglia 

(DRG) and synapse with spinal dorsal horn neurons in the spinal cord (Basbaum et al. 

2009; Kallakuri et al. 2012). The extracellular matrix (ECM) of the joint capsule is 

comprised primarily of collagen, with Type I collagen making up 80-99% of the ECM 

network (Burgeson and Nimni 1992). The capsular network of the facet joints in particular 

has subregions with parallel and irregular collagen fiber orientations (Ban et al. 2017; 

Kallakuri et al. 2012; Yahia and Garzon 1993; Yamashita et al. 1996). Along with afferent 

fibers, fibroblast-like synoviocytes, also known as synovial fibroblasts or type B 

synoviocytes, reside in the capsule’s ECM and in the lining of the synovium of synovial 

joints (Bartok and Firestein 2010; Kallakuri et al. 2012; Valencia et al. 2004; Yahia and 

Garzon 1993; Yamashita et al. 1996). For the spinal facet capsules, FLS density is greater 
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in the inner capsule than the outer capsule (Yahia and Garzon 1993; Yamashita et al. 1996), 

and collagen network organization also varies, with regions that are randomly aligned and 

regions that are differentially aligned depending on the anatomical location (Ban et al. 

2017; Kallakuri et al. 2012; Yahia and Garzon 1993; Yamashita et al. 1996). 

Prior work with collagen gels embed DRGs containing cell bodies of the sensory 

neurons that innervate the capsule (Basbaum et al. 2009; Kras et al. 2013) in a 3D collagen 

network with either aligned or randomly oriented fibers (Yahia and Garzon 1993; 

Yamashita et al. 1996) to mimic the facet capsule anatomy (Zhang et al. 2016; Zhang et al. 

2017; Zhang et al. 2018). That neuron-collagen gel model has been especially useful for 

defining load-induced neuron-collagen interactions in the context of nociception; for 

example, the strain threshold for collagen fiber realignment is the same as the threshold for 

elevated expression of phosphorylated extracellular signaling kinase (pERK) (Zhang et al. 

2016); pERK indicates the presence of a noxious stimuli and is taken as an indicator of 

cellular injury (Ji et al. 2009). In addition, regional strains caused by a bulk stretch to the 

neuron-embedded collagen gel directly relate to increased expression of pERK and 

expression of the neurotransmitter substance P in DRG axons (Zhang et al. 2017; Zhang et 

al. 2018). However, that system does not include synovial fibroblasts, which are 

abundantly interspersed within the capsule’s ECM (Bartok and Firestein 2010; Provenzano 

et al. 2002; Valencia et al. 2004; Yahia and Garzon 1993; Yamashita et al. 1996). As such, 

afferent-fibroblast interactions are absent in any conclusions. In fact, no culture system has 

integrated neurons or DRGs together with FLS in a co-culture model to capture the 

anatomy and physiology of human joint capsules. Accordingly, despite their co-existence 
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in capsular ligaments, very little is known about the interactions of afferent fibers and FLS 

with each other and/or their surrounding collagen network. 

Fibroblasts are ubiquitous stromal cells that play crucial roles in both normal 

physiologic and pathological functions, including development, repair, wound healing, and 

ECM remodeling (Rinn et al. 2006). In healthy and disease states, fibroblasts model and 

remodel their ECM via mechanotransduction mechanisms that convert mechanical cues 

into biological events (Dallon and Ehrlich 2008; Grinnell and Petroll 2010; Kural and 

Billiar 2013; Wang et al. 2007). Although fibroblasts are defined broadly by their 

morphology, adherence characteristics, and lack of lineage-specific markers (Frank-

Bertoncelj et al. 2017; Rinn et al. 2006), they are functionally and phenotypically diverse, 

with distinct gene expression profiles depending on their anatomical origin in the body 

(Rinn et al. 2006), even across synovial joints (Frank-Bertoncelj et al. 2017). Therefore, a 

primary goal in improving the physiological nature of existing neuron-collagen models is 

not only to integrate fibroblasts, but to integrate fibroblast cells directly from the capsular 

ligament. Although the role of FLS in inflammation and degradation, particularly in 

rheumatoid arthritis, has been described (Bartok and Firestein 2010), little is known about 

the effect of FLS on regulating matrix mechanics, either in an unloaded state or during 

loading, despite reports that fibroblast-collagen mechanobiological relationships exist for 

fibroblasts not derived from capsular ligaments (Dallon and Ehrlich 2008; Grinnell and 

Petroll 2010; Kural and Billiar 2013). Defining if, and how, FLS alter matrix mechanics 

and/or microstructure is critical to understanding load-induced cell signaling and afferent-

FLS interactions in the synovial lining and the capsular ligaments in which FLS reside.  
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Fibroblasts cultured in 3D collagen gels have been extensively studied to define 

fibroblast-matrix interactions, with tension and network parameters found to regulate 

fibroblast mechanobiology (Dallon and Ehrlich 2008; Grinnell and Petroll 2010; Kural and 

Billiar 2013). The initial seeding concentration of fibroblasts also regulates the 

biomechanics of the collagen gels in which they are embedded (Evans and Barocas 2009). 

Fibroblast seeding concentrations in gels range from 5x104 to 2x106 cells/mL, with primary 

cell lines generally on the lower end of that range due to their lower passage of senescence 

and less robust proliferation compared to immortalized cell lines like NIH 3T3 cells (Bing 

et al. 2012; Evans and Barocas 2009; Nobe et al. 2000; Sander et al. 2011; Saravanan et al. 

2014; Simon et al. 2012; Thomopoulos et al. 2007). Since capsular ligaments exhibit 

variable FLS densities in different regions of the capsule (Yamashita et al. 1996), the 

biomechanics, microstructure, and cell-to-cell interactions between FLS and neurons are 

also likely to vary regionally within the capsule. 

Synovial fibroblasts are elongated, with polygonal morphology and branched 

cytoplasmic processes, commonly identified by the cytoskeletal proteins vimentin (Varani 

et al. 2008) or F-actin (Bing et al. 2012), and express several specific membrane proteins 

(Bartok and Firestein 2010; Rosengren et al. 2007; Valencia et al. 2004). One surface 

protein that is specific to FLS cells is CD90, also called Thy-1; it mediates adhesion (Ahn 

et al. 2008; Bartok and Firestein 2010; Neidhart et al. 2003; Rosengren et al. 2007). CD90 

has been shown to distinguish synovial fibroblasts from synovial macrophages and is 

present on greater than 70% of FLS in cell culture (Neidhart et al. 2003; Rosengren et al. 

2007; Zimmermann et al. 2001). Synovial fibroblasts contain cell surface receptors to 
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which MMP-1 can bind and initiate inter- and intra-cellular signaling (Bartok and Firestein 

2010; Jenkins et al. 1999), including integrin-triggered cascades and MAPK activation, 

both of which are implicated in nociception (Ji et al. 2012; Obata and Noguchi 2004; Zhang 

et al. 2017). Since load stimulates MMP-1 secretion in fibroblasts (Petersen et al. 2012) 

they are a possible source of the MMP-1 that is found in joints after trauma (Cohen et al. 

2007; Haller et al. 2015; Konttinen et al. 1999; Lattermann et al. 2017). As such, including 

FLS in models that investigate the role of MMPs in joint pain is crucial. 

Studies culturing DRGs alone, and with stem cells or keratinocytes, visualize 

neurite growth by immunocytochemistry (ICC) labeling for βIII tubulin, a microtubule 

primarily expressed in neurons (Cullen et al. 2012; de Luca et al. 2015; Mehnert et al. 2014; 

Zhang et al. 2018). Although βIII tubulin can assess healthy axons and neurite outgrowth, 

technically it can evaluate only the end-state at a single point. Genetically engineered 

calcium indicators (GECI), on the other hand, enable probing temporal functional 

outcomes in live cells (Chen et al. 2013; Grienberger and Konnerth 2012). GECIs consist 

of circularly permuted GFP, the calcium-binding protein calmodulin (CaM), and 

calmodulin-interacting M13 peptide (Chen et al. 2013). Calcium binding to the CaM-M13 

peptide causes conformational changes that result in increased brightness of the fluorescent 

protein (Chen et al. 2013). GECIs, such as GCaMP6f, can be virally transduced by an 

adeno-associated virus, and upon successful transduction, rapidly and transiently fluoresce 

with changes in intracellular calcium (Chen et al. 2013). Calcium-induced fluorescence 

traces can then be mapped to known characteristics of action potentials, like exponential 

decay, short duration, and timing parameters to identify action potential-induced calcium 
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transients (Patel et al. 2015; Schultz et al. 2009). Furthermore, dead cells can be identified 

by the GCaMP6f signal if the nucleus of the cell is fluorescing, since the interaction 

between calcium and calmodulin that leads to viral-induced fluorescence is not expected 

in the nucleus unless the nuclear membrane has been compromised, indicating cell death. 

Both βIII tubulin ICC and GCaMP6f viral transduction techniques are utilized in the studies 

in this chapter to help characterize the neuronal response to FLS integration. 

The following studies integrate primary FLS cells into an existing DRG-collagen 

model (Zhang et al. 2017; Zhang et al. 2018) to more closely mimic the multicellular 

environment of the capsular ligament of synovial joints (Bartok and Firestein 2010; 

Kallakuri et al. 2012; Valencia et al. 2004; Yahia and Garzon 1993; Yamashita et al. 1996). 

Pilot experiments detail the technical aspects of FLS isolation, biological characterization 

of the FLS phenotype, and optimization of a co-culture media. Viability and morphological 

assays further test the effects of co-culture integration parameters on the health and 

viability of both DRG neurons and FLS cells in the model. Biomechanical and 

physiological responses of the optimized DRG-FLS co-culture collagen gel model are 

examined in studies utilizing a biomechanical stretch and a bacterial collagenase exposure. 

Together, these studies begin to elucidate cell-matrix and cell-cell interactions under 

conditions of loading and degradation in the capsular ligament. 

5.3. Neuron-Fibroblast Co-Culture Collagen Gel Model Development 

5.3.1. Cell Harvest & Isolation   

All cells were harvested from Sprague-Dawley male rats under approved conditions and 

using sterile procedures. DRGs from all spinal levels were taken from embryonic day 18 
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Sprague-Dawley rats obtained from the CNS Cell Culture Service Center of the Mahoney 

Institute of Neuroscience. DRGs were dissected using fine forceps to remove individual 

DRG explants after exposing the rat’s spine and removing the spinal cord according to 

prior methods (Cullen et al. 2012; Melli and Höke 2009) and established lab protocols 

(Zhang et al. 2017; Zhang et al. 2018). Following harvest, DRGs were stored in Hibernate-

E medium supplemented with 1% GlutaMAX and 2% B-27 at 4°C for up to two weeks 

before plating. In monocellular, isolated culture, DRG feeding medium consisted of 

Neurobasal feeding medium supplemented with 1% GlutaMAX, 2% B-27, 1% fetal bovine 

serum (FBS), 10ng/ml 2.5S nerve growth factor, 2mg/ml glucose, 10mM FdU, and 10mM 

uridine (Cullen et al. 2012; Zhang et al. 2017). 

FLS were harvested from both hind knees of a sexually mature adult rat (384g) by 

finely dissecting the capsular tissue surrounding the knee joints, dicing the isolated capsular 

tissue as finely as possible, and incubating the diced tissue from both knee capsules 

together in Dulbecco’s Modified Eagle Medium (DMEM) with 10% FBS, 1% Penicillin-

Streptomycin (P-S), and 2mg/mL crude bacterial collagenase (C0130; Sigma-Aldrich) for 

6 hours at 37°C under gentle agitation (Saravanan et al. 2014). Digested tissue was filtered 

with a 70µm cell strainer, spun down at 300g for five minutes, and resuspended in feeding 

medium made up of DMEM with 10% FBS and 1% P-S. That initial passage was taken as 

passage 0 (P0). Culture medium was changed every other day, and cells were passaged at 

90% confluence.  

 

5.3.2. FLS Characterization   
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After harvest, the cells harvested from capsular ligaments of synovial joints that 

adhere at P0 are primarily synovial macrophages and fibroblast-like synoviocytes 

(Rosengren et al. 2007). Studies show that cultures reach ≥95% purity for synovial 

fibroblasts by passage 3 and reach senescence by passage 9 or 10 (Bartok and Firestein 

2010; Bing et al. 2012; Rosengren et al. 2007; Saravanan et al. 2014; Tanner et al. 2015). 

To ensure culture purity for the FLS cell type and to visualize the morphology of FLS cells, 

monolayer FLS cultures on glass plates were immunolabeled for the structural filament 

vimentin and the FLS-specific protein CD90. Separate FLS cultures at P4, P7, and P9 were 

labeled for characterization. P4, P7, and P9 cultures that were frozen for long-term storage 

and then thawed were also included in labeling studies to determine if cell viability is 

maintained through standard freeze-thaw cell culture protocols.  

Cultures were blocked in PBS with 10% normal goat serum (Vector Laboratories) 

and 0.3% Triton-X100 (Bio-Rad Laboratories) for one hour at room temperature and 

incubated overnight at 4°C with primary antibodies to vimentin (anti-chicken; 1:500; 

Novus) and CD90 (anti-mouse; 1:100; Abcam). Cultures were then washed in PBS and 

incubated with the secondary antibodies goat anti-chicken Alexa Fluor 647 and goat anti-

mouse Alexa Fluor 546 for two hours at room temperature (both 1:1000; Life 

Technologies). Finally, cultures were incubated in DAPI solution (1:200; Thermo Fisher) 

at room temperature for 15 minutes to stain cell nuclei, washed in PBS, washed in distilled 

water, and then cover-slipped. Labeled culture plates were imaged using the 20X objective 

of a Leica TCS SP8 confocal microscope (1024X1024 pixels; Leica Microsystems). 
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FLS exhibit a dendritic and elongated morphology with a few branched cytoplasmic 

processes characteristic of the reported FLS phenotype (Figure 5.1) (Rosengren et al. 

2007). Notably, no cells appear to exhibit the rounder and smaller macrophage morphology 

(Figure 5.1) (Rosengren et al. 2007). The FLS “characteristic” morphology is most obvious 

 

Figure 5.1. Primary-harvested cultures from the rat capsular ligament demonstrate the characteristic FLS 

morphology by vimentin labeling and express the cell-surface specific protein CD90. Cultures at passages 

4, 7, and 9 (P4, P7, P9) are shown both without (top) and with (bottom) freeze-thaw cycles. Scale bar 

applies to all images.  
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at P4, with FLS becoming more ovular and exhibiting myofibroblast-type morphology and 

stress-fibers (Figure 5.1) (Grinnell 2008). All passages exhibit similar morphologies 

regardless if they underwent freeze-thaw protocols (Figure 5.1), suggesting cells from the 

same animal harvest could be used over different experiments without altering outcomes 

due to their long-term storage. FLS label abundantly for CD90 regardless of passage 

number or freeze-thaw protocol (Figure 5.1), demonstrating that cultures from ligament 

harvests contain primarily fibroblast-like cells by P4 and all subsequent passages. Based 

on those findings, future studies utilized FLS from passages 4 and 5 and frozen cells were 

thawed to achieve the target passage if required.  

5.3.2. DRG & FLS Co-Culture Integration  

5.3.2.1. Co-Culture Media  

Prior to integrating FLS and DRG cell types together, various culture media 

formulations were investigated to determine the optimal co-culture media for the health 

and viability of both cell types. Since the health of embryonic DRGs depends on growth 

factors included in the supplemented Neurobasal medium (Melli and Höke 2009), and FLS 

generally require higher concentrations of FBS than DRGs (10% compared to 1% included 

in DRG medium) (Rosengren et al. 2007), supplemented Neurobasal medium with higher 

FBS concentrations was hypothesized to optimize the health of both cell types. Since the 

lower limit of FBS concentration required for FLS viability is not known, pilot experiments 

tested FLS viability in response to several media formulations with varying concentration 

of FBS.  
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Accordingly, FLS at P3 were cultured in supplemented DMEM (the default 

medium for monocellular fibroblast cultures) or supplemented Neurobasal medium (the 

default medium for monocellular DRG cultures) with either 0%, 1%, 2.5%, 5%, or 10% 

FBS (n=2 wells/group) until 90% confluence. Qualitatively, dead, poorly adhered, and/or 

floating cells were observed in media formulations with 2.5%, 1%, and 0% FBS, with the 

number of dead cells increasing with decreasing FBS concentrations. There was no 

evidence of dead or floating cells in formulations with 5% and 10% FBS. As such, after 

cultures reached 90% confluence, media supernatants for the 5% and 10% FBS groups 

were assayed for lactate dehydrogenase (LDH), an enzyme released by cells after damage, 

using a Pierce Cytotoxicity LDH Assay (Thermo Fisher). The LDH assay was run in 

triplicate with six wells for each media condition. At 5% FBS concentration, Neurobasal 

medium released less LDH levels (9.7±1.9% of the positive maximum lysis control group) 

than the 5% FBS DMEM medium formulation (12.4±0.6% cell lysis) (t-test; p=0.015). 

Percent cell lysis was not different between the formulations with 10% FBS (Neurobasal 

17.5±1.5%; DMEM 16.7±0.2%; t-test; p=0.244). Based on these results, a co-culture media 

formulation of supplemented Neurobasal medium with 5% FBS was chosen. 

5.3.2.2. Serum-Starving  

The main group of experiments using the co-culture collagen gel model involve 

measuring MMP levels. However, since serum, including FBS, used in culture media is 

“messy” and contains unregulated and unknown amounts of proteases including MMPs, 

serum could confound MMP quantification. Typically, studies account for this effect by 

“serum-starving” cultures for at least 24 hours prior to assaying MMP levels (Attia et al. 
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2014; Rogers et al. 2014). As such, pilot studies tested if FLS cells tolerate culture in 

serum-free conditions or with a 24-hour serum-starvation. Since the experiments assaying 

MMPs embedded FLS in collagen gels, pilot experiments were performed using FLS-

embedded collagen gels.  

In order to culture FLS within a 3D collagen environment, P4 FLS cultures were 

trypsinized, rinsed, and resuspended in rat tail Type I collagen solution (2mg/mL; Corning, 

Inc) cast in 12-well plates (1mL/well) (Zhang et al. 2018). After 45 minutes allowed for 

gelation at 37°C, the standard fibroblast DMEM media with 10% FBS and 1% P-S was 

added to gels. At day-in-vitro (DIV) 1, media was changed to supplemented Neurobasal 

medium with 5% FBS or 0% FBS (n=3 gels/group); gels underwent a full media change 

on DIV3 and DIV5. On DIV6, gels underwent three PBS washes for five minutes each, 

and serum-free supplemented Neurobasal media was added to both groups. On DIV7, gels 

were fixed with 4% paraformaldehyde for 2-3 hours and blocked in PBS with 10% normal 

goat serum and 0.3% Triton-X100 for two hours at room temperature. Gels were incubated 

overnight at 4°C with a primary antibody to vimentin (anti-chicken; 1:250; Novus). 

Cultures were then washed in PBS and incubated with the secondary antibody goat anti-

chicken Alexa Fluor 647 (1:1000; Life Technologies) and DAPI solution (1:200; Thermo 

Fisher) for two hours at room temperature. Image stacks through a 20μm depth and a 5μm 

step size were acquired using 10x, 20x, and 40x objectives of a Leica TCS SP8 confocal 

microscope (1024x1024 pixels; Leica Microsystems). 

FLS grown in supplemented Neurobasal media with 5% FBS and a 24-hour serum-

free period exhibited healthy morphology and growth in the collagen gel (Figure 5.2). The 
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FLS morphology was compared to FLS cultured in a 2mg/mL collagen gel cultured in 

DMEM media with 10% FBS as the “gold-standard” for healthy FLS growth (Figure 5.2). 

FLS did not appear to grow at all in serum-free conditions for the whole culture period 

(Figure 5.2). As such, experiments assaying MMP levels using the co-culture model 

include a 24-hour serum starvation, as opposed to completely serum-free conditions, prior 

to the DIV on which MMP assays are conducted.  

5.3.2.3. Cell Viability & Health Assessment in Co-Culture Protocol 

Based on FLS characterization and co-culture media optimization experiments, a 

protocol was established to integrate FLS and DRGs together in 2mg/mL collagen gels 

 

Figure 5.2. Vimentin labeling shows FLS dendritic morphology in a 2mg/mL collagen gel at DIV7 after 

24 hours of serum-starving. The inset shows vimentin labeling at high magnification. Vimentin labeling 

is very faint in FLS grown in serum-free conditions showing a lack of cell survivability in completely 

serum-free culture conditions. Immunolabeling of vimentin and DAPI in the lower right image 

demonstrates the “gold-standard” of FLS morphology and health for comparison in a 2mg/mL collagen 

gel at DIV9 with supplemented DMEM media. 
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(Figure 5.3). In that protocol, FLS cultures between P3 and P5 are trypsinized, rinsed, and 

resuspended in rat tail Type I collagen solution (2mg/mL; Corning, Inc) cast in 12-well 

plates (1mL/well) (Zhang et al. 2018). After gelation on the day of gel fabrication (DIV0), 

gels are cultured in the standard fibroblast DMEM media with 10% FBS and 1% P-S. On 

DIV1, DMEM medium is removed from the top of the gels, and DRGs are seeded on the 

gel surface for all samples (6-10/gel) in 100µL of Neurobasal feeding medium 

supplemented with 1% GlutaMAX, 2% B-27, 5% FBS, 10ng/ml 2.5S nerve growth factor, 

2mg/ml glucose, 10mM FdU, and 10mM uridine (Cullen et al. 2012; Zhang et al. 2018) 

(Figure 5.3). After 12-24 hours, fresh Neurobasal feeding medium is added and changed 

 

Figure 5.3. Experimental timeline and parameters for co-culture conditions. Fibroblast-like synoviocytes 

(FLS) are seeded into a Type I collagen gel solution on day-in-vitro (DIV) 0 at either a low or high 

concentration, followed by DRG seeding at DIV1. Until DRG plating, gels are cultured in supplemented 

DMEM medium with 10% FBS. After DRG plating, gels are cultured in supplemented Neurobasal 

medium with 5% FBS until the experimental end point. 
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every other day. Co-culture gels are cultured seven to 14 days in the studies presented in 

this thesis, depending on the experimental details and outcomes being measured. 

Throughout the studies in this thesis, FLS are seeded at concentrations of either 5x104 

cells/mL (low) to simulate regions with low FLS cell density or 1x105 cells/mL (high) to 

simulate regions with high FLS cell density in the capsular ligament (Figure 5.3) 

(Yamashita et al. 1996). 

With an established protocol (Figure 5.3), a live-dead cell assay was performed to 

verify that integrating the two cell types together does not compromise their viability with 

co-cultures fabricated at the low and high FLS densities (n=3 co-culture gels/density). A 

live-dead cell assay using calcein-AM, with green fluorescence indicating live cells, and 

ethidium homodimer, with red fluorescence indicating dead cells was conducted at the 

longest anticipated timepoint, DIV14 (Thermo Fisher). Indeed, no evidence of cell death 

was observed in DRG neurons and negligible cell death was observed in FLS cells (Figure 

5.4). 

 

Figure 5.4. Live-dead cell assay assessing cell viability with DRG-FLS co-culture integration at DIV14. 

There is no evidence of cell death in neurons of the DRG soma with FLS co-culture, as shown by similar 

green fluorescence in the first image (DRG without co-culture) and the second image (DRG with FLS). 

Although a few FLS cells show red labeling (dead) with co-culture integration (third image), cells are 

predominantly alive. The DRG-FLS co-culture collagen gel shown has an FLS concentration of 7.2x104 

cells/mL. Scale bar applies to all images.   
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 To ensure that DRG axonal growth was not inhibited by co-culture with FLS cells, 

neurite outgrowth was quantified by calculating the ratio of the soma diameter to the 

average axonal length for each DRG in low resolution images where gross DRG 

morphology can be visualized (Figure 5.5); a neurite outgrowth soma-to-axon length ratio 

above 0.54 can be taken as healthy and viable DRG neurite growth into the gel (Zhang et 

al. 2017; Zhang et al. 2018). As such, neurite outgrowth was quantified in DRG cultures in 

2mg/mL gels with and without FLS co-culture (n=9/condition) (Figure 5.5). Images from 

the co-culture model at DIV9 were compared to those from a prior study with no FLS from 

DIV7 (Figure 5.5) (Zhang et al. 2018). Outgrowth surpasses the threshold for both cases 

(DIV7 no FLS 0.60±0.16; DIV9 with FLS 0.65±0.12) and is not different (t-test; p=0.45) 

between the two conditions (Figure 5.5), suggesting that DRG growth is not impeded by 

FLS co-culture. 

 

Figure 5.5. DRG neurite outgrowth, quantified as the ratio of the soma diameter to the average axon 

length is not different between DRGs cultured (A) without FLS and DRGs cultured (B) with FLS. Images 

also demonstrate that neurite outgrowth does not differ between DIV7 and DIV9. Data in (A) are taken 

as the healthy control (Zhang et al, J Orthop Res, 2018). The outgrowth ratio standard for healthy DRG 

growth (0.54) is shown (red dashed line) on the bar plot quantification. The low magnification image 

shows gross DRG morphology at DIV7. 
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5.4. Distinct Response of Fibroblast-Like Synoviocytes to Stretch 

5.4.1 Rationale 

Given the functional diversity of fibroblasts derived from different organs and 

tissues throughout the body (Frank-Bertoncelj et al. 2017), and the lack of studies 

investigating capsular-ligament derived fibroblasts in the context of load or neuronal 

signaling, the effect of primary FLS cells on matrix mechanics and microstructure in the 

3D collagen gel model stretched to tensile failure was characterized. MMP-1 

immunolabeling was assessed in a subset of co-culture collagen gels after stretch to gain 

insight into how FLS may regulate MMP-1 in the context of stretch and in a shared 

microenvironment with neuronal cells. All experiments were run in parallel with 

fibroblasts from the NIH 3T3 immortalized cell line. Since 3T3-collagen interactions in 3D 

gels are more extensively studied in the literature than FLS, and are known to exert 

mechanical forces on their surrounding collagen fibers (Mohammadi et al. 2015; Simon et 

al. 2012), 3T3 outcomes served as a comparison group for better contextualizing the 

findings with FLS.  

To test the effect of cell concentration within the limits of primary FLS growth and 

to simulate the variable region-dependent concentrations in the capsular ligament 

(Yamashita et al. 1996), two FLS concentrations of 5x104 and 1x105 cells/mL were used. 

Although those concentrations are on the low end of the range reported by studies that 

embed fibroblasts in collagen gels (Bing et al. 2012; Evans and Barocas 2009; Nobe et al. 

2000; Sander et al. 2011; Saravanan et al. 2014; Simon et al. 2012; Thomopoulos et al. 

2007),  5x104 and 1x105 cells/mL have differential effects on matrix mechanics under 
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failure (Evans and Barocas 2009). As such, they were expected to be sufficient to reveal 

any concentration-dependent differences across outcomes. 

Macroscopic gel mechanics were quantified using force-displacement curves and 

stiffness using stretch-to-failure tests. Force and regional strains were compared at several 

displacement points during loading. Polarized light imaging integrated with the mechanical 

test setup enabled analysis of network microstructure through high-speed capture of 

collagen alignment maps at those same displacement points during loading (Quinn and 

Winkelstein 2009; Tower et al. 2002; Zhang et al. 2016). Collagen fiber orientation was 

quantified using circular variance (CV), with a lower CV indicating a tighter clustering and 

a higher degree of fiber alignment (Miller et al. 2012; Zhang et al. 2016). Since the relative 

expression of MMP-1 in different host cells after capsule stretch is also unknown, separate 

neuron-fibroblast co-cultures seeded with either FLS or 3T3 cells were loaded in tension 

until failure and assayed for their MMP-1 expression. MMP-1 expression was quantified 

in the DRG neurons and the FLS/3T3 fibroblasts to gain insight into relative MMP-1 

responses across cell type in the co-culture model. 

5.4.2. Methods 

5.4.2.1. Mechanical Testing & Data Analyses 

FLS and NIH/3T3 fibroblasts were maintained in DMEM with 10% FBS and 1% 

P-S. On passage 4, cultures were separately passaged and resuspended in a 2mg/mL rat tail 

Type I collagen solution (Corning) at a concentration of either 5x104 cells/mL (low FLS 

n=6; low 3T3 n=5) or 1x105 cells/mL (high FLS n=5; high 3T3 n=6) (Figure 5.6A). 

Collagen gels were cast in 12-well plates (1mL/well) and allowed to gel at 37°C, after 
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which warm media was added. Fibroblast-seeded gels were cultured until DIV9 in DMEM 

media.  

Fibroblast-only seeded collagen gels (Figure 5.6A) were removed from plates on 

DIV9 and cut into a vertical strip (21mmx8mm). Using ink, a grid of markers was added 

to the gel for strain tracking (Zhang et al. 2016). Gels were loaded into the grips of a planar 

test machine (574LE2; TestResources) and immersed in a 37°C PBS bath (Figure 5.7). 

Grips were attached to controllable actuators equipped with 500g load cells. The 

mechanical test setup was integrated with a polarized light imaging system (Quinn and 

Winkelstein 2009; Tower et al. 2002; Zhang et al. 2016) and two high-speed cameras 

(Phantom-v9.1; Vision Research) to acquire pixel-wise alignment maps and to track 

markers during loading (Figure 5.7). Gels underwent uniaxial displacement to failure at 

0.5mm/sec, with force and displacement data (200Hz) synchronized with high-speed 

imaging (500Hz) (Figure 5.7). Immediately after failure, gels were removed from the grips 

and fixed for two hours in 4% paraformaldehyde. 

 

Figure 5.6. Study design for experiments comparing the (A) biomechanical behavior and (B) MMP-1 

expression of FLS fibroblasts to 3T3 fibroblasts after failure stretch. (A) The multiscale mechanics of 

FLS and 3T3 fibroblast-seeded collagen gels are compared under uniaxial tension at a low (5x104 

cells/mL) and high (1x105 cells/mL) concentration. In (B), FLS and 3T3 cells are co-cultured with DRGs 

at only a low concentration to investigate MMP-1 expression and its cellular localization after failure in 

uniaxial tension. 
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 Force data were filtered using a 10-point moving average filter (Zhang et al. 2016). 

The maximum force from the force-displacement curve was defined as failure and 

designated as the peak force (Figure 5.7). Stiffness was calculated as the slope of the 

loading curve from 20-80% of the peak force (Figure 5.7) (Lee et al. 2006). Marker 

positions were digitized using Fiji software (NIH) and the high-speed images taken before 

loading (reference), at 20% of peak force, at 80% of peak force, and at 100% of peak force 

(failure) (Figure 5.7). LS-DYNA (LSTC) was used to calculate the maximum principal 

 

Figure 5.7. Mechanical testing setup with an integrated polarized light imaging system. During loading, 

each gel is affixed in grips for uniaxial tension to failure and marked with a grid of dots for strain tracking.  

For each gel, peak force defines the failure and stiffness is calculated as the linear slope of the force-

displacement curve between 20% and 80% of the peak force. Maximum principal strain (MPS) and 

collagen alignment maps are extracted at the displacement points corresponding to 20% of peak force, 

80% of peak force, and at failure. Strain and collagen alignment maps are shown for a 3T3-embedded 

collagen gel at failure. 
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strain (MPS) for each element defined by the grid and averaged across all elements for 

each gel (Zhang et al. 2016). Collagen alignment maps were generated at the same points 

along the loading curve as MPS and used to calculate the circular variance (CV) of the 

spread of fiber angles (Miller et al. 2012; Zhang et al. 2016); CV at failure was normalized 

to the reference CV for each gel. Differences in stiffness and reference CV were assessed 

between gels with different cell types and by concentration with a two-way ANOVA. The 

effect of cell type on force, MPS, and normalized CV at the points during loading was 

compared between FLS- and 3T3-seeded gels for each concentration, separately, using a 

repeated-measures ANOVA.  

5.4.2.2. MMP-1 Immunolabeling in Co-Cultures       

Separate Type I collagen gels (2mg/mL) were fabricated as co-cultures with DRGs 

(6-10/gel) and either FLS or NIH/3T3 fibroblasts (low DRG-FLS n=4; low DRG-3T3 n=3) 

(Figure 5.6B). This experiment probed whether MMP-1 is differentially regulated by FLS 

compared to 3T3 fibroblasts under load by measuring MMP-1 expression in both fibroblast 

types in response to the same mechanical stretch. As such, all gels in this subset were 

fabricated with fibroblasts at the lower 5x104 cells/mL concentration based on 

biomechanical results from stretch experiments with the fibroblast-only seeded collagen 

gels (Figure 5.6A) showing FLS and 3T3-seeded gels have the same mechanics at a low, 

but not high, concentration (details presented in Section 5.4.3.1 following). Gels were 

fabricated according to the optimized co-culture protocol (Figure 5.3). 

On DIV7, co-culture gels containing either DRGs and FLS fibroblasts or DRGs and 

3T3 fibroblasts (Figure 5.6B) were prepared for mechanical testing and stretched to failure 
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in uniaxial tension as described in Section 5.4.2.1. Force, displacement and MPS were 

quantified at failure as described above (Figure 5.6). Stiffness was calculated as the slope 

of the force-displacement curve at 20-80% peak force (failure) (Figure 5.6). All mechanical 

parameters were compared between groups using separate t-tests.  

Immediately after failure, gels were fixed in 4% paraformaldehyde and 

immunolabeled overnight with primary antibodies to MMP-1 (1:250; Proteintech), 

vimentin as a structural protein for fibroblasts (1:250; Novus) and βIII tubulin as a 

structural protein for neurons (1:500; Biolegend). Unstretched gels (DRG+FLS n=2; 

DRG+3T3 n=1) were also labeled. Confocal images were taken of the DRG axons, DRG 

somas, and fibroblasts (n=1-3/cell type/gel). 

The extent of MMP-1 was evaluated overall and by cell-type (Figure 5.8). MMP-1 

labeling was rated by five blinded graders as either absent (0) or present (1) (Figure 5.8) 

(Villasmil et al. 2017), with the determination of MMP-1 taken as the majority rating. 

 

Figure 5.8. (A) βIII tubulin and vimentin immunolabels identify DRG soma/axons and fibroblasts, 

respectively, in co-culture gels. MMP-1 immunolabeling in (B) shows exemplary images with positive 

labeling in DRG-FLS co-cultures (left) and DRG-3T3 co-cultures (right) in regions localized to DRG 

neurons (top) and fibroblasts (bottom). The scale bar applies to all images.  
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MMP-1 ratings in all fibroblasts and DRG images were analyzed in separate contingency 

tables for stretched and unstretched conditions by co-culture type. Additional contingency 

tables subdivided the aggregate data for stretched gels to compare MMP-1 ratings between 

co-culture type for fibroblast images and DRG images, separately. The effect of co-culture 

type (DRG-FLS vs. DRG-3T3) on contingency table outcomes were tested with two-tailed 

Fisher’s Exact tests.   

5.4.3. Results 

5.4.3.1. Multiscale Mechanics in FLS & 3T3-Seeded Collagen Gels 

In 2D culture, FLS exhibit an elongated, polygonal, and branched morphology, 

while the 3T3 cells are rounder but still branched (Figure 5.9). A high FLS concentration 

seems to induce contraction of the gel causing it to pull away from the wall of the well 

 

Figure 5.9. Labeling of the intermediate filament vimentin in fibroblasts shows elongated FLS 

morphology and rounded 3T3s in 2D culture. Macroscale photographs of collagen gels after DIV9 for 

the 1x105 cells/mL (high) concentration show the gel compaction observed in FLS, but not 3T3, 

embedded gels. The collagen microstructure after nine days in culture, prior to loading, is significantly 

more disorganized in FLS-collagen gels at a high concentration. Histograms show the spread of fiber 

angles for exemplary FLS and 3T3 gels at both concentrations, with the high FLS group exhibiting the 

widest spread of fiber angles. Quantification of CV reflects this, with high FLS gels exhibiting 

significantly greater CV than low FLS (*p=0.018) and high 3T3 (#p=0.037). 
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during culture, producing shrunken gels with a curled circular edge (Figure 5.9). Neither 

gel contraction nor wall separation were observed for the 3T3 groups, nor consistently for 

the low concentration FLS group. Before loading, the collagen organization in the high 

FLS gels is different from its low concentration counterpart (p=0.018) and from the high 

3T3 gels (p=0.037), indicating a larger spread of collagen fiber angles (Figure 5.9). 

Although force-displacement curves are similar between gels with both cell types 

at a low concentration, the failure force is consistently higher for 3T3 than for FLS gels 

made using a high cell concentration (Figure 5.10). Although the forces at both 80% and 

100% of the peak force (Figure 5.10) are 4.1-fold higher for gels with 3T3 compared to 

 

Figure 5.10. Exemplar force-displacement curves show similar biomechanical behavior between cell 

types at a low concentration, but markedly different curve shapes at a high concentration. FLS and 3T3 

gels do not exhibit differences in force at a low or high concentration despite FLS gels having 

substantially lower peak forces than 3T3 gels. Despite no significant differences in force, the differences 

in curve shape are captured in stiffness, with the high FLS gels having significantly lower stiffness than 

3T3 gels at the same concentration (#p=0.031). 
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FLS at a high concentration, this difference is not significant. The stiffness of FLS gels at 

a high concentration, however, is significantly lower than the stiffness of 3T3 gels at the 

same concentration (p=0.031) (Figure 5.10). MPS is significantly different between cell 

types at the high concentration, only at 80% of loading and at peak force (Figure 5.11). 

Although peak force is lower in the high FLS group, the MPS sustained in high FLS gels 

is greater (p<0.001) than at a matched concentration of 3T3 cells (Figure 5.11). Average 

MPS at 80% of peak force is also different between cell types at the high concentration 

(p<0.001).  

Cell type does not affect CV at either concentration at any of the displacements 

investigated (Figure 5.12). Yet, evaluation of the change in CV throughout loading for 

individual FLS-seeded gels reveals that the low and high concentrations exhibit differential 

trends. In particular, low FLS gels continue to reorganize throughout loading, as indicated 

 

Figure 5.11. Average maximum principal strain (MPS) is the same for both fibroblast types at a low 

concentration; yet, increases significantly at 80% of failure (#p<0.001) and at failure (#p<0.001) for high 

FLS gels compared to high 3T3 gels. Strain maps at failure showing hot spots of high magnitude MPS 

sustained by a high FLS collagen gel.  
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by an increase in CV and a greater degree of reorganization (Figure 5.12). High FLS gels, 

in contrast, sometimes reorganize throughout loading and sometimes become less 

organized at displacements closer to failure, as indicated by a decrease in normalized CV 

(Figure 5.12). The multiscale mechanical data including force-displacement curves, MPS 

fields, and CV quantification for each gel in this study are summarized in Appendix G. 

5.4.3.2. Differential MMP-1 Expression Between FLS & 3T3 Co-Cultures 

After Stretch 

Failure mechanics are the same for both DRG-FLS and DRG-3T3 co-culture 

collagen gels, with no differences (p>0.11) in failure force (34.1±17.3mN), displacement 

(5.2±1.8mm), MPS (0.25±0.07%), nor stiffness (9.0±4.7mN/mm). All macroscale and 

strain data are detailed in Appendix G. Despite having the same mechanics, overall MMP-

 

Figure 5.12. Circular variance (CV) normalized to the reference loading state does not vary with 

concentration or cell type. Despite this, differential microstructural kinematics are observed between 

individual sample curves in the low and high FLS groups, whereby all low FLS gels disorganize during 

tensile stretch, but not all high FLS gels follow this behavior.  
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1 labeling is different (p=0.01) in stretched gels between the different co-culture systems 

(Table 5.1). The incidence of positive MMP-1 labeling is higher in DRG-FLS stretched 

gels (18 of 25 images) than in DRG-3T3 stretched gels (7 of 22 images) (Table 5.1). 

Unstretched levels are not different (p=0.68) between types of co-cultures (Table 5.1). The 

greater extent of positive MMP-1 labeling that is observed in co-cultures with FLS than in 

those with 3T3 cells appears to be driven by the FLS fibroblasts, since FLS co-cultures 

have greater MMP-1-positive images in fibroblast-localized images (11 of 12 images) than 

3T3 gels (2 of 8 images) (p<0.01). Conversely, there is no difference (p=0.45) in stretched 

DRGs (5 of 14 images in FLS+DRG; 7 of 13 images in 3T3+DRG) (Table 5.1). All images 

and their incidence of positive labeling are summarized in Appendix G.  

5.4.4. Discussion  

At the higher concentration used in this study, FLS-embedded gels exhibit different 

macroscale mechanical behavior, stiffness, and strain fields than 3T3-embedded gels 

(Figures 5.10 & 5.11). High FLS gels contract, separating from their boundary wall, an 

effect not observed by 3T3s (Figure 5.9). Although this study did not investigate the 

mechanism by which FLS may be shrinking the gel, fibroblast-mediated gel contraction is 

Table 5.1. Quantification of MMP-1 labeling in stretched DRG-FLS & DRG-3T3 co-culture gels 

 stretched  stretched – fibroblast images 

 - +   - + 
DRG-FLS 7 18  DRG-FLS 1 11 

DRG-3T3 15 7  DRG-3T3 6 2 

    

 unstretched  stretched – neuronal images 

 - +   - + 
DRG-FLS 6 12  DRG-FLS 6 7 

DRG-3T3 2 7  DRG-3T3 9 5 
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postulated to occur by cell contraction, cell traction forces, or initial cell elongation and 

spreading (Dallon and Ehrlich 2008), any of which may be occurring in this system (Figure 

5.9). ECM remodeling or degradation by FLS at a high concentration may also be 

responsible for gel contraction, the more disorganized matrix at reference, and/or the 

decreased gel stiffness (Figures 5.9 & 5.10) (Grinnell and Petroll 2010; Hinz 2013). Dermal 

fibroblasts cultured in a 2mg/mL collagen gel at the same concentrations used in this study 

have been shown to increase the gel modulus by 1.12 and 3 times, respectively, from a no 

cell control, after only one day in culture (Evans and Barocas 2009). In contrast with that 

effect, FLS cells decrease the gel stiffness at higher concentrations (Figure 5.10). Although 

strain has been shown to increase with CV in collagen gels without fibroblasts (Zhang et 

al. 2016), this is not true in the presence of a high concentration of FLS; the MPS for high 

FLS is greater than high 3T3, but the normalized CV is not different (Figures 5.11 & 5.12). 

This may be due to FLS exhibiting cell traction forces on the gel (Dallon and Ehrlich 2008), 

although visualization of cells within the gel is necessary in order to conclude the exact 

cell-matrix interactions that may be occurring. 

 This study demonstrates a concentration-dependent effect of FLS comparisons to 

3T3 cells on collagen gel stiffness, regional strains, and microstructure, both before and 

after loading (Figures 5.9-5.12). Since different regions of the synovial lining and capsular 

ligament have varying densities of embedded FLS (Yamashita et al. 1996), a concentration-

dependent effect of FLS could have implications for mechanosensitive cells in regions with 

varying FLS cell density. For example, in this same collagen gel model, absent fibroblasts, 

nociceptive related signaling has been found to be triggered in embedded nerve fibers by 
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strains above 14-40% and concurrent with reorganization of the collagen network (Zhang 

et al. 2016; Zhang et al. 2018). The results of the current study suggest that under traumatic 

loading, nerve fibers in FLS-dense regions may be subjected to different regional strain 

fields and microstructural changes than those in FLS-sparse regions (Figures 5.11 & 5.12).  

Despite comparable mechanical responses to load, co-cultures with FLS fibroblasts 

have more MMP-1 than those with 3T3 fibroblasts (Table 5.1), suggesting that FLS and 

3T3 fibroblasts may upregulate MMP-1 after stretch by different mechanisms. 

Furthermore, differential expression in fibroblast-localized regions from neuron-localized 

regions (Table 5.1) suggests a unique relationship between FLS fibroblasts and MMP-1 in 

trauma-induced nociception. Notably, only one concentration of fibroblasts was examined 

here to achieve comparable mechanical insults, and it is possible that FLS show 

concentration-dependent effects on cellular responses under load. Indeed, this is likely 

given concentration-dependent biomechanical behavior (Figures 5.10 & 5.11) and variable 

microstructures during culture (Figure 5.9 & 5.12); concentration-dependent effects are 

investigated further in the studies in Chapter 6. Collectively, findings demonstrate that FLS 

cells exhibit a unique phenotype and effect on matrix mechanics and MMP-1 expression 

after failure stretch that is distinct from NIH/3T3 cells. This work emphasizes the 

importance of considering FLS in models of the capsular ligament and supports the use of 

primary FLS, versus fibroblasts from another source, in studies aiming to mimic the 

capsular ligament of synovial joints.  
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5.5. Effects of Collagenase Exposure in the Co-Culture Model of 

Ligament  

5.5.1. Rationale 

Injecting crude bacterial collagenase in the facet joint and knee leads to degradative 

changes in the bone and cartilage of those joints and behavioral sensitivity, in part, are 

attributed to such joint damage (Adães et al. 2014; Gou et al. 2019; Yeh et al. 2008). Yet, 

the in vivo study detailed in Chapter 4 shows that intra-articular collagenase induces 

behavioral sensitivity (Figure 4.5) and neuronal dysregulation (Figures 4.7-4.9) without 

any evidence of substantial joint damage (Figure 4.3 & 4.6). The same severe joint damage 

is not hypothesized to be detected in the model presented because it used a purified 

bacterial collagenase, which differs from the crude collagenase used in prior work (Adães 

et al. 2014; Gou et al. 2019; Yeh et al. 2008). The combination of proteolytic enzymes in 

crude collagenase catabolize extracellular molecules in addition to collagen, and in doing 

so, induce severe joint degeneration (Grenier et al. 2014). In contrast, the purified formula 

consists of two proteases with collagenolytic activity toward the alpha helices that 

comprise Type I, II, and III collagen and thus act only on collagen molecules (Fields 2013). 

Since bacterial collagenase does not act directly on afferent fibers, FLS cells, or other 

cellular populations in joint tissues, purified collagenase is hypothesized to induce 

sustained sensitivity (Figure 4.5) and neuronal dysregulation (Figures 4.7-4.9) by acting on 

the collagen molecules in joint tissues. But, since tissue-level histological changes are not 

detected after collagenase (Figure 4.3 & 4.6), collagen molecular-level changes in vivo are 

posited to occur at a smaller scale than is detectable by histological methods. To test 
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whether purified collagenase changes the collagen microstructure and initiates neuronal 

dysregulation, the bacterial collagenase exposure was repeated using the in vitro co-culture 

collagen gel model to enable measure higher-resolution cell and fiber responses. 

5.5.2. Methods 

5.5.2.1. Bacterial Collagenase Exposure  

Type I collagen gels (2mg/mL) were fabricated with FLS (~5x104 cells/mL) and 

DRGs (6-10/gel) (Figure 5.3) and cultured until DIV10. On DIV10, co-culture gels were 

incubated with 60U of purified bacterial collagenase (CLSPANK; Worthington) in DMEM 

(collagenase) or DMEM only (vehicle) for 20 minutes, since gel mechanics are altered by 

collagenase exposures for 15-35 minutes (Sperry et al. 2017) and 20 minutes allows enough 

time to detect changes in neuronal firing patterns (Allen et al. 2016). Separate co-cultures 

were designated to exposure experiments performed under a physiological, constrained 

hold (Figure 5.6A) and under free-floating conditions (Figure 5.6B). 

5.5.2.2. Constrained Physiological Hold & Mechanical Analysis 

To assess the effects of collagenase on multiscale mechanics, a group of gels 

(collagenase n=3; vehicle n=3) were cut into cruciforms and marked with a grid to track 

surface strains (Figure 5.13A) (Zhang et al. 2017). Gels were immersed in a 37°C PBS bath 

and gripped biaxially in a planar test device (Figure 5.13A) (574LE2; TestResources). PBS 

was aspirated to expose the gel surface to air, and slack in the gel was removed from the 

arms (<2mN). Collagenase or vehicle solution (600μL) was pipetted onto the gel’s center 
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and left for 20 minutes (Figure 5.13A); the solution was observed not to evaporate during 

that time period. The test device was integrated with high-speed cameras (Phantom-v9.1; 

Vision Research; 200fps) to track the grid of surface markers. Force data (10Hz) were 

continuously acquired, and high-speed images (500Hz) were taken immediately before 

(baseline) adding any solution and at 20 minutes after. The change in force from baseline 

was computed for each arm and averaged for each gel. Marker positions were digitized 

(Fiji software; NIH) at the same timepoints for elemental strain analyses (Figure 5.13A). 

 

Figure 5.13. Study design for bacterial collagenase exposure experiments in the co-culture model of the 

capsular ligament. Co-cultures undergo a 60U, 20-minute exposure either during (A) a constrained biaxial 

hold to simulate the boundaries of capsular ligaments in vivo or (B) exposure during free-floating 

conditions. (A) Force and high-speed image data were collected during the hold; fiducial markers were 

used to calculate maximum principal strain (MPS) across the gel surface. An exemplary co-culture gel in 

biaxial grips shows an overlaid elemental strain field with MPS magnitudes reaching 19%. (B) Live-cell 

calcium (Ca2+) was performed before, and 20 minutes, after collagenase exposure. DRG time-lapse 

images were manually segmented to delineate neurons and the normalized fluorescence traces (ΔF/F) 

were computed for each segmented neuron. Colored fluorescence traces match the segmented neuron 

colors. Co-cultures exposed to collagenase in free-floating conditions were immunolabeled for Type I 

collagen and MMP-1.  
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LS-DYNA (LSTC) software was used to calculate the maximum principal strain (MPS) 

for each gel.  

5.5.2.3. GCaMP6f Transduction, Calcium Imaging & Data Analysis 

To measure neuronal activity during collagenase exposure, DRG neurons were 

transduced on DIV2 by adding the adeno-associated virus expressing GCaMP6f 

(#AAV1.Syn.GCaMP6f.WPRE.SV40; 1:4,000) directly into the culture media. GCaMP6f 

rapidly and transiently fluoresces with calcium influx (Chen et al. 2013) and enables the 

visualization of calcium (Ca2+) transient waveforms in real-time. Furthermore, the 

GCaMP6f used here is under control of the Synapsin promoter that exclusively transduces 

neurons (Chen et al. 2013; Patel et al. 2015).  In a subset of gels incubated in collagenase 

(n=5) or vehicle (n=2), time-lapse images were acquired (20Hz for 1 minute) at baseline 

and after 20 minutes with a Nikon Eclipse TE2000U spinning disk confocal microscope 

(CSU-10b; Solamere Technologies; Salt Lake City, UT) in an environmental chamber held 

at 37°C and 5% CO2 (Figure 5.13B) (Patel et al. 2015). For each gel, DRGs (1-2) were 

imaged, maintaining a constant field of view. The same DRGs were imaged at both 

baseline and 20 minutes so that time-lapse data tracked the same DRGs over time. 

Fluorescence data were analyzed using FluoroSNNAP in MATLAB (MathWorks) 

(Patel et al. 2015). Individual neurons (n=28-33) were segmented in each DRG (Figure 

5.13B); although neurons in the same DRG were segmented at both timepoints, the 

segmentation of identical neurons could not be maintained due to motion artifact caused 

by collagenase-induced gel degradation during the exposure. Only neurons with a cell 

nucleus distinct from the cytosol were selected in order to ensure that only living neurons 
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were analyzed. The number of Ca2+ events was counted using a template-matching 

algorithm to identify Ca2+ waveforms that are known to match those that occur with action 

potentials (Patel et al. 2015; Schultz et al. 2009). The total Ca2+ events across all segmented 

neurons was calculated for each DRG and concatenated for each group at each timepoint. 

5.5.2.4. Immunolabeling & Image Analyses 

To assess the effect of collagenase on the amount of collagen and its organization, 

a subset of gels (collagenase n=4; vehicle n=4) was fixed (4% PFA) after 20 minutes of 

incubation at 37°C and immunolabeled for Type I collagen using a free-floating protocol. 

Gels were triple washed in PBS, blocked in PBS with 10% normal goat serum (Vector 

Laboratories) and 0.3% Triton-X100 (Bio-Rad Laboratories) for two hours at room 

temperature, and incubated overnight at 4°C with a primary antibody to collagen (mouse; 

1:400). Gels were triple-washed and incubated with the Alexa Fluor secondary antibody 

goat anti-mouse 488 for two hours at room temperature (1:1,000; Thermo Fisher 

Scientific), triple washed, and then cover-slipped with Fluorogel (Electron Microscopy). 

Image stacks (n=4/gel) were acquired at 10μm steps over a 50μm depth at 40x with a Leica 

TCS SP8 confocal microscope. A single maximum projection image from each stack was 

analyzed to quantify the number of positive pixels (Ita et al. 2017a). Collagen fiber 

orientations were analyzed using a Fourier transform method to compute the magnitude 

and direction of the principal orientation axes of the image (Sander and Barocas 2009); the 

anisotropy index was calculated from the ratio of principal axes on a scale from isotropic 

(random; 0) to aligned (1) (Sander and Barocas 2009). 
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Separate gels incubated in collagenase (n=4) or vehicle (n=2) were fixed (4% PFA) 

after 20 minutes of incubation at 37°C to assess effects of collagenase on MMP-1 

expression using immunolabeling. Gels were fluorescently labeled using the same protocol 

as was used for the collagen immunolabel with primary antibodies to MMP-1 (rabbit; 

1:200; Proteintech), βIII tubulin (anti-mouse; 1:300; Biolegend), and vimentin (chicken; 

1:400; Novus). After incubation with the Alexa Fluor secondary antibodies goat anti-rabbit 

555, goat anti-mouse 488, and goat anti-chicken 633 (all 1:1,000; Thermo Fisher), gels 

were incubated in DAPI (1:200; Thermo Fisher) at room temperature for 15 minutes to 

stain cell nuclei. Images were acquired in regions of the DRG axons and somas (n=5/gel) 

and in regions with only FLS cells (n=2-3/gel), at 40x with a Leica TCS SP8 confocal 

microscope. Labeling above a threshold for positive MMP-1, βIII tubulin, and vimentin 

was separately quantified using a custom densitometry script in MATLAB. MMP-1 co-

localization to βIII tubulin and vimentin was computed, separately, to quantify neuronal 

and fibroblast-localized MMP-1, respectively. MMP-1-βIII tubulin co-localized pixels 

were normalized to total βIII tubulin, and MMP-1-vimentin co-localized pixels to total 

vimentin as a measure of neuronal and fibroblast-localized MMP-1. The MATLAB scripts 

for single channel and co-localization are provided in Appendix B. 

5.5.2.5. Statistical Analyses 

All statistical analyses were performed with α=0.05 using JMP Pro v14 (SAS 

Institute Inc.; Cary, NC). Normality was tested using a Shapiro-Wilk goodness-of-fit test 

for a normal continuous fit on the residuals of all outcomes. T-tests compared changes in 

force and MPS from baseline at 20 minutes. Differences between the distribution of 
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calcium events were tested with a non-parametric Wilcoxon test, separately at each of 

baseline and 20 minutes. A Wilcoxon test assessed the differences in collagen labeling 

between groups. A t-test compared anisotropy index between gel exposures. Neuronal and 

fibroblast-localized MMP-1 labeling was compared using a Wilcoxon test since those data 

were non-normally distributed. 

5.5.3. Results  

Collagenase exposure significantly decreases collagen labeling (p=0.008), with 

collagenase-incubated gels (5.76±7.72%) exhibiting a 6-fold decrease relative to gels held 

in a control solution (36.28±26.61%) (Figure 5.14), suggesting substantial Type I collagen 

 

Figure 5.14. Effects of collagenase exposure on the collagen network. Type I collagen labeling (green) 

after 20 minutes of collagenase incubation is significantly reduced from levels with vehicle exposure 

(Wilcoxon test; *p=0.008); in contrast, fiber orientation is unchanged with collagenase exposure (two-

tailed t-test; p=0.380). Significantly less force is required to maintain a constrained hold with collagenase 

treatment (t-test; *p=0.005); yet, the maximum principal strain sustained by the gel surface is not affected 

by collagenase. Box-and-whisker plots show horizontal lines representing the first (lower) quartile, 

median, and third (upper) quartile of the data; whiskers are the minimum and maximum. Scale bar applies 

to both collagen labeling panels. 
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enzyme degradation during the 20-minute incubation. Despite decreased collagen labeling, 

the organization of the fiber network is not changed by collagenase (p=0.380) (Figure 

5.14). Since collagen gels were fabricated with a random isotropic orientation, this finding 

suggests collagenase degrades fibers without preference to fiber orientation. Collagenase 

exposure also produces a change in force over 20 minutes that is smaller (p=0.005) by more 

than 55% than the change from a vehicle exposure, although there are no differences in the 

magnitude of elemental MPS after 20 minutes (p=0.336) (Figure 5.14). Force, strain, and 

collagen immunolabeling data and quantification for each gel are detailed in Appendix F. 

The pattern of neurons with firing profiles before any exposure is not different 

(p=0.562) (Figure 5.15), indicating that the neuronal populations from the collagenase and 

vehicle groups exhibit equivalent activity, and any change in firing patterns after the 

exposure is due to the collagen exposure itself. After 20 minutes, neuronal firing profiles 

differ by treatment, with the distribution of vehicle-treated neurons exhibiting a greater 

number of inactive neurons and significantly fewer calcium events compared to those with 

collagenase exposure (p=0.002) (Figure 5.15). The decrease in calcium events detected 

implies that those neurons quiet over time, whereas neurons exposed to collagenase 

maintain a heightened level of activity (Figure 5.15). Quantification of calcium events at 

each timepoint by neuron and DRG are itemized in Appendix F.   

Neuronal and FLS-localized MMP-1 are elevated after collagenase (Figure 5.16). 

Exposure increases neuronal MMP-1 (p<0.001) by nearly 15-fold (25.75±10.10%) over 

that measured in co-cultures exposed to vehicle (1.74±1.52%) (Figure 5.16). MMP-1 
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expression in FLS cells increases by nearly 6-fold (collagenase: 31.93±21.27%; vehicle:  

5.40±6.34%) after exposure to bacterial collagenase (p<0.001) (Figure 5.16). 

Immunolabeled images and their densitometric quantifications for each co-culture gel are 

detailed in Appendix F.  

5.5.4. Discussion 

Less force required to maintain a constrained hold of collagen gels may be due to 

the degradation of fibers (Figure 5.14) and subsequent change in force distribution at the 

cruciform-grip interface. Less collagen content with an exposure to an enzyme that 

degrades collagen is intuitive (Figure 5.14); yet, this finding together with a lack of change 

 

Figure 5.15. Time-lapse captures of fluorescent calcium imaging show DRGs with segmented individual 

neurons labeled as active (blue; ≥1 calcium events) or inactive (yellow; no calcium events) in images 

from both before the addition of either collagenase (7 DRGs) or vehicle (4 DRGs) solution and after 20 

minutes of exposure. Neuronal firing profiles captured across 28-33 neurons/DRG are the same in both 

groups at baseline (Wilcoxon test; p=0.562), shown by frequency distributions of the percentage of 

neurons versus the firing magnitude per minute. Summary data in the bar plot also show no difference in 

number of calcium events at baseline. However, firing frequency patterns differ with treatment after 20 

minutes, with vehicle-exposed neurons quieting as shown by a left-shift of the frequency curve peak 

toward zero and the summary data detailed in the bar plot (Wilcoxon test; *vs. vehicle p=0.002). 
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in strain suggests that collagenase degrades collagen on a microscale that may not be 

detected on the macroscopic tissue-level. A lack of effect of collagenase on fiber 

orientation in vitro is consistent with the observation that the collagen orientation in the 

rat’s capsular ligament is unchanged by intra-articular collagenase administration (Figure 

4.6) (Ita et al. 2020). This implies that collagenase does not degrade fibers with any 

preference for orientation. Moreover, it suggests that probing metrics of degraded collagen 

in addition to, or instead of, metrics of reorganized collagen may be more sensitive in  

detecting collagenase-induced changes in the capsular ligament’s microstructure, at least 

under physiological loads.  

Indeed, the detectable signal in the change in force but not strain (Figure 5.14), begs 

the question of how a collagenase-exposed system would behave under load. Here, the 

mechanical response under a static load was all that was examined, but prior work in vitro 

has shown that collagenase-degraded collagen gels (Sperry et al. 2017) and rat facet joints 

 

Figure 5.16. Collagenase (col) exposure increases neuronal and fibroblast-localized MMP-1 expression 

over vehicle (veh) (Wilcoxon tests; *p<0.001) quantified by the co-localization of the neuronal structural 

protein βIII tubulin (green) and MMP-1 (red) (top panel) or by the co-localization of the fibroblast 

structural protein vimentin (green) and MMP-1 (red) (bottom panel). A DAPI label for nuclei is also 

shown (blue). The box-and-whisker plots show horizontal lines representing the first (lower) quartile, 

median, and third (upper) quartile of the data; whiskers are the minimum and maximum. 
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(Singh and Winkelstein 2020) are weaker and restructure differently when loaded to 

failure. In the rat facet joint, collagenase increases the capsular ligament’s fiber 

disorganization and the occurrence of anomalous realignment in the collagen fibers (Singh 

and Winkelstein 2020). Collectively, these findings (Figure 5.14) and prior work (Singh 

and Winkelstein 2020; Sperry et al. 2017) suggest that increases in collagenases in human 

capsules with disease (Cohen et al. 2007; Kim et al. 2015) or exogenously introduced, may 

alter the microstructure of the ligament, potentially increasing its vulnerability to stretch-

induced injury. 

Mechanically-triggered neuronal (Zarei et al. 2017) and fibroblast (Petersen et al. 

2012) responses depend on collagen concentration, so a collagenase-induced decrease in 

collagen (Figure 5.14) could alter how DRG neurons and fibroblasts respond to mechanical 

cues after exposure. In fact, a collagenase-induced reduction in collagen by nearly 50% 

compromises the tensile biomechanical responses of gels using the same formulation as 

presented here (Sperry et al. 2017). Since the collagenase exposure used in the current 

studies decreases collagen labeling by approximately 87% (Figure 5.14), it is likely that if 

subjected to load, degraded co-cultures would be weaker, less stiff, and reorganize 

differently, and as such, alter cell-matrix interactions.  

The notion that collagen degradation of the capsular ligament alone is sufficient to 

evoke neuronal regulation of nociception (and pain in vivo) is supported by the maintained 

neuronal signaling (Figure 5.15) and elevated neuronal MMP-1 expression (Figure 5.16) 

after collagenase digestion absent any additional mechanical stimulus. The ability of 

collagenase to maintain firing profiles in live neurons (Figure 5.15) supports that 
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collagenase influences neuronal signaling at least very early after exposure and could 

explain the later increases in substance P observed with intra-articular injection in vivo 

(Figure 4.7) (Ita et al. 2020). The higher number of calcium events in collagenase-exposed 

neurons (Figure 5.15) suggests a possible mechanism by which degradation-induced 

changes to the collagen network may regulate neuronal firing; further investigation and 

electrophysiological studies are needed to more fully define such mechanisms. Further, 

although collagenase exposure results in a greater number of calcium events than exposure 

to a vehicle solution (Figure 5.15), this effect is measured across all neurons, since the 

Synapsin promoter used here does not selectively transduce different types of neurons 

(Chen et al. 2013; Jackson et al. 2016). 

The collagenase-induced increases in MMP-1 observed in vitro (Figure 5.16), 

corroborates a possible causal relationship between intra-articular collagenase and the 

upregulation of MMP-1 in DRGs in the rat (Figure 4.9) (Ita et al. 2020). MMPs are 

regulated in part by fibroblasts and interactions with ECM components, including matrix 

turnover (Craig et al. 2015; Petersen et al. 2012; Visse and Nagase 2003); so, degradation 

of collagen (Figure 5.14) may be responsible for its elevation (Figure 5.16). As such, an 

increase in fibroblast-localized MMP-1 (Figure 5.16), at least in joint tissues where 

degradation is presumably localized, is expected; yet, the MMP-1 localization to neurons 

in both co-culture gels (Figure 5.16) and DRG tissue (Figure 4.9) (Ita et al. 2020) is 

surprising. MMP-1 localization to neurons may directly stimulate action potentials and 

trigger abnormal firing patterns since there are known relationships between MMP-1 and 
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cell surface receptors and non-matrix substrates involved with nociception (Conant et al. 

2002; Dumin et al. 2001; Lakes and Allen 2016; Visse and Nagase 2003). 

This study demonstrates that a collagenase-induced loss of collagen (Figure 5.14), 

absent a mechanical stimulus, influences neuronal firing profiles and increases MMP-1 

expression (Figures 5.15 & 5.16). Since the purified collagenase used here is known to 

only act on collagen molecules, and not on cells, the neuronal dysregulation can be taken 

to be a result of collagenase’s effect on the surrounding collagen fibers, further reinforcing 

the notion that degradation to surrounding fibers alone, absent a noxious mechanical 

stimulus, might be able to trigger nociceptive-relevant responses.  

 

5.6. Integration & Conclusions 

The studies in this chapter present the development and characterization of a 

neuron-fibroblast co-culture in vitro model simulating the capsular ligament and provide 

initial evidence that fibroblast-like synoviocytes regulate the microstructure of their 

surrounding collagen network during non-constrained culture (Figure 5.9) and under 

stretch (Figure 5.12). The experiments performed under load (Section 5.4) elucidate a 

distinct response of FLS compared to 3T3 fibroblasts and emphasize the importance of 

defining afferent signaling in the ligament in the presence of primary FLS cells. Yet, the 

statistical comparisons in those stretch experiments (Section 5.4) do not focus on the 

concentration-dependence of outcomes between FLS at a low and high concentration. 

Studies detailed in Chapter 6 investigate the concentration-dependence in larger sample 

sizes and expand outcomes to also evaluate neuropeptide expression in DRGs. Counter to 
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the hypothesis associated with Aim 3, FLS do not appear to strengthen the biomechanical 

properties of the bulk matrix, as least not relative to 3T3 fibroblasts (Figure 5.10). 

Experiments in Aim 3 compare DRG-FLS co-cultures to collagen gels containing only 

DRGs in order to define FLS effects on collagen multiscale mechanics in parallel with 

neuronal signaling.  

Results of these studies support the hypothesis that FLS regulate the cellular 

localization of MMPs to peripheral neurons in their local environment. Moreover, these 

findings establish a role for MMP-1 both due to mechanical (Table 5.1) and degradative 

(Figure 5.16) stimuli, each in isolation; in doing the studies reveal mechanisms by which 

MMP-1 may participate in aging- and/or trauma-induced joint pain. Yet, the influence of 

FLS on neuronal expression of nociceptive neuropeptides is not evaluated. Experiments in 

Chapters 6 and 8 investigate load-induced changes in MMP-1 expression and collagen 

microstructure in the context of substance P expression.  

 



149 

 

  Chapter 6 

Regulation of MMP-1, MMP-9, & Nociceptive 

Responses In Vitro 
 

This chapter has been adapted from: 

Ita ME, Leavitt OME, Winkelstein BA. MMP-1 induces joint pain that may be mediated 

by increased activity in peripheral neurons. Orthopaedic Research Society Annual Meeting, 

Abstract #2184, March 2018. New Orleans, LA.  

 

Ita ME, Winkelstein BA. Concentration dependent effects of fibroblast-like synoviocytes 

on collagen gel multiscale biomechanics & neuronal signaling: Implications for modeling 

human ligamentous tissues. Journal of Biomechanical Engineering, 141(9): 091013, 2019.   

Ita ME, Winkelstein BA. MMP-1 & MMP-9 increase after tensile stretch: lessons from 

neuronal-fibroblast co-cultures simulating joint capsules. Biomedical Engineering Society 

Annual Meeting, Abstract #767, October 2019. Philadelphia, PA. 

 

6.1. Overview 

 The density and shape of fibroblast-like synoviocytes (FLS) in the spinal facet 

capsular ligament vary with both anatomic region and between healthy and pathologic 

states. For example, in the outer layer of the facet joint capsule FLS are less dense and have 

elongated nuclei; in the inner layer, FLS are more dense and exhibit round and ovoid nuclei 

(Yahia and Garzon 1993; Yamashita et al. 1996). FLS density can also increase with 

fibroblast infiltration into the capsular tissue which can occur with both inflammation 

and/or traumatic injury (Bartok and Firestein 2010; Cohen et al. 2007; Provenzano et al. 
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2002). Since the afferent nerve fibers that innervate the capsule are also found in those 

same capsular regions that have variable FLS density, any cell-cell interactions between 

FLS and afferent fibers may depend on the FLS cell density. The studies in Chapter 5 

suggest that there are concentration-dependent effects of fibroblasts on the collagen gel 

stiffness (Figure 5.10) and regional strains sustained during failure stretch (Figure 5.11). 

Those studies demonstrated the unique functional phenotype of the FLS fibroblasts by 

comparing FLS-seeded collagen gels to 3T3-seeded collagen gels, and did not investigate 

concentration-dependent effects of FLS specifically on the multiscale mechanics, or in the 

context of neuronal physiologic outcomes. The studies in this chapter vary FLS seeding 

density in the DRG-FLS co-culture model presented in Chapter 5 to define the effects of 

FLS on stiffness, failure mechanics of the collagen gel and the collagen fibers, and MMP-

1 and MMP-9 expression. Studies also assay neuronal substance P to begin to define the 

effects of FLS concentration on nociception. To accomplish these goals, studies in this 

chapter utilize uniaxial tensile loading to gel failure to define if, and how, FLS alter 

macroscopic failure properties. Additionally, experiments integrate polarized light 

techniques with mechanical testing to quantify mechanics on the microscale and to 

understand mechanical changes on a multiscale in the context of physiological cellular 

responses. 

Quantitative polarized light imaging (QPLI) exploits the natural birefringence of 

collagen molecules to quantify the dynamic reorganization of collagen fibers during 

loading, and has been used to evaluate soft tissue biomechanics and other collagenous 

tissue equivalents (Lake et al. 2011; Quinn and Winkelstein 2009; Sander et al. 2009b; 
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Tower et al. 2002). Using that approach, collagen fiber realignment during tensile and 

posterior retraction loading of isolated human cadaveric facets, and tensile loading of 

isolated rat facet capsules has been defined by our lab (Quinn and Winkelstein 2009; Quinn 

and Winkelstein 2010; Quinn et al. 2010; Quinn and Winkelstein 2008; Quinn and 

Winkelstein 2011). Other groups have used polarized light imaging techniques to define 

how fibroblasts seeded in collagen regulate their network structure and composition 

(Chandran and Barocas 2004; Sander et al. 2011). The studies in this chapter integrate 

QPLI as was introduced in the studies in Chapter 5 (Figure 5.7) to define the effect of FLS 

concentration on collagen fiber microstructure and kinematics in the gel model. QPLI 

enables comparisons between changes in the local fiber reorganization and neuronal 

protein expression to elucidate possible mechanotransduction cascades that are triggered 

by loading.  

Complementary studies are presented in this chapter that: (1) define the effects of 

FLS concentration on the mechanics of collagen gels and the physiologic responses of cells 

in the co-culture model under failure loading and (2) interrogate MMP-9 responses in the 

context of MMP-1 and failure loading, as well as probe neuronal activity in response to 

MMP-1 exposure. The first study (Section 6.3) defines the multiscale mechanical response 

to failure loading of collagen gels, and the associated total MMP-1 and neuronal substance 

P expression in those co-cultures. Experiments test co-cultures using a high FLS 

concentration and a low FLS concentration to match the experiments with FLS-seeded 

collagen gels in the studies in Chapter 5, and also include collagen gels without FLS cells 

(and only DRGs) as a control for the effects of FLS on the collagen matrix and cell 
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signaling. Based on the outcomes of those studies, a collection of three complementary 

experiments (Section 6.4) probed the MMP-9 response and neuronal responses. The 

quantification of MMP-9 in the studies in this chapter provides insight into the mechanistic 

role of the MMP-9 that was detected in the ligamentous capsule and disc from 

temporomandibular joints with chronic disorders in Chapter 3 (Ita et al. 2020a). Because 

those studies provide evidence that MMP-9 expression correlates with both MMP-1 

expression (Figure 3.3) and with patient-reported pain scores (Figure 3.4) (Ita et al. 2020a), 

its expression was probed in co-cultures following the same stretch to failure insult that 

was found to increase MMP-1 and neuronal substance P expression in the studies in the 

first portion of this chapter. Furthermore, the effect of exogenous MMP-1 exposure on 

MMP-9 expression was investigated to test the mechanistic relationship between those two 

proteases that is suggested by their positive correlation in innervated joint tissues (Figure 

3.3) (Ita et al. 2020a). The studies in Chapter 5 demonstrate that an exposure to an enzyme 

with collagenolytic activity alters neuronal firing profiles in the co-culture model (Figure 

5.15) (Ita et al. 2020b); the studies in this chapter build off of that work and test the effect 

of MMP-1 exposure on DRG monolayer cultures to determine if MMP-1 affects neuronal 

activity absent a collagen substrate. A combined background section (Section 6.2) sets up 

both sets of studies, and they are jointly discussed (Section 6.5) to integrate findings that 

cross both studies together. Collectively, the studies in this chapter address Aim 3 and 

findings begin to put forth a mechanistic relationship between MMP-1 and MMP-9, and 

implications for nociception, in the DRG-FLS co-culture model.  



153 

 

6.2. Relevant Background 

Joint pain is a leading cause of chronic pain (Institute of Medicine 2011), affecting 

27 million adults in the US with an annual cost of $100 billion expected by 2020 (Oliviero 

et al. 2010). Synovial joints can become painful with aging or from trauma due to repeated 

and/or supra-physiologic loading, any of which can initiate tissue damage and degeneration 

(Mow et al. 1993). For example, neck and low back pain are among the most prevalent 

chronic syndromes (Hogg-Johnson et al. 2008), and can be due to pathology of the spinal 

facet joints which themselves are susceptible to trauma (Elliott et al. 2009; Manchikanti et 

al. 2004) and degeneration (Gellhorn et al. 2013; Suri et al. 2013). Abnormal loading of a 

joint’s ligamentous capsule can initiate pathophysiological pain cascades by activating the 

nociceptive fibers that innervate the capsule (Kallakuri et al. 2008; Lee et al. 2008; Lu et 

al. 2005). 

In vitro models have been developed using either dissociated neurons or DRGs 

seeded in three-dimensional (3D) collagen gels to replicate both the sensory innervation 

and network microstructural organization of the ligamentous capsule of the synovial spinal 

facet joint (Zhang et al. 2016; Zhang et al. 2017; Zhang et al. 2018a). Using that model, 

the strain threshold for collagen fiber realignment was defined and found to co-exist with 

the strain threshold for elevated expression of phosphorylated extracellular signaling 

kinase (pERK) (Ji et al. 1999; Zhang et al. 2016). In addition, regional strains and increased 

expression of each of pERK and the neurotransmitter substance P are related in DRG axons 

(Zhang et al. 2017; Zhang et al. 2018a). Collectively, the findings from those studies 

demonstrate that in collagen networks, non-physiologic loading mediates neuronal 
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signaling (Zhang et al. 2016; Zhang et al. 2017; Zhang et al. 2018a) and begin to define 

mechanisms by which traumatic joint loading causes pain (Elliott et al. 2009; Ita et al. 

2017). A degradation-induced loss of collagen fibers has also been shown to decrease 

failure properties and alter network reorganization under tension (Sperry et al. 2017); yet, 

if, and how, a degradation-induced loss of collagen alters the relationship between load and 

neuronal signaling is not known. 

In vitro fibroblast-collagen gel models have also defined mechanisms by which 

fibroblasts regulate, and are regulated by, their local microenvironment (Dallon and Ehrlich 

2008; Grinnell and Petroll 2010; Kural and Billiar 2013). For example, in free-floating 

matrices, fibroblasts exist in a “low-tension” environment and reorganize collagen fibers 

circumferentially around the edge of the gel, if at all (Dallon and Ehrlich 2008; Kural and 

Billiar 2013); in anchored matrices, fibroblasts exist in a “high-tension” environment and 

reorganize collagen fibers according to the gel geometry and the direction of applied 

tension (Grinnell and Petroll 2010; Kural and Billiar 2013; Sander et al. 2011). Although 

that body of work suggests that fibroblasts alter their local collagen network in a manner 

that is concentration-dependent, no culture system has integrated neurons or DRGs 

together with FLS to capture the anatomy and/or physiology of human joint capsules. 

Accordingly, despite their co-existence in capsular ligaments, very little is known about 

the interactions of afferent fibers and FLS with each other and their surrounding collagen 

network. 

Matrix-metalloproteinase-1 (MMP-1) is a likely mediator of joint pain given its role 

in mediating ECM degradation. For example, since collagen degradation alters the 
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biomechanics and microstructure of joint tissues (Otterness et al. 2000; Varady and 

Grodzinsky 2016), and MMP-1 can degrade Type I collagen (Visse and Nagase 2003), it 

is possible that MMP-1 may alter the local microenvironment and initiate mechano-

regulated responses in afferent fibers (Zarei et al. 2017; Zhang et al. 2016; Zhang et al. 

2018b; Zhang et al. 2018a). Since mechanical loading increases secretion of MMP-1 by 

dermal fibroblasts and upregulates MMP-1 gene expression in patellar tendon fibroblasts 

(Petersen et al. 2012; Yang et al. 2005), it is possible that abnormal loading of a joint’s 

ligamentous capsule may modulate FLS regulation of MMP-1. 

MMP-1 has also been implicated in pain since it also binds to receptors involved in 

nociception in both catabolically active and inactive states (Allen et al. 2016; Boire et al. 

2005; Conant et al. 2002; Conant et al. 2004); MMP-1 can bind to several non-ECM 

substrates that are also involved in pain signaling, including substance P, which regulates 

nociception in culture (Basbaum et al. 2009; Cheng and Ji 2008; Zhang et al. 2017) and in 

joint pain (Kras et al. 2015). In the extracellular space, MMP-1 also cleaves the bait region 

of the MMP-9 gelatinase, rendering it active (Visse and Nagase 2003). MMP-9 has an 

established role in neuropathic pain (Kawasaki et al. 2008) and its activation can further 

lead to increases in substance P and subsequent nociceptive transmission (Diekmann and 

Tschesche 1994). MMP-9 is elevated along with MMP-1 in the synovial fluid of post-

traumatic and painful knee joints (Haller et al. 2015). Despite this growing body of 

literature, the responses of MMP-1 and MMP-9 in painful joint disease, and whether MMP-

1 regulates MMP-9 in the joint, are unknown. 
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Regional strains of cell-embedded in vitro constructs directly relate to neuronal 

nociceptive signaling (Zhang et al. 2016; Zhang et al. 2017; Zhang et al. 2018a) and ECM 

remodeling by fibroblasts, including collagen synthesis, collagen deposition, and protease 

secretion (Hsieh et al. 2000; Petersen et al. 2012; Sander et al. 2011). Collagen fiber 

organization and reorganization also regulate those same load-induced pathological 

responses in cell-embedded networks (Sander et al. 2011; Zarei et al. 2017; Zhang et al. 

2016; Zhang et al. 2018a). Under tension, fibers reorganize in the direction of loading, and 

the extent of fiber reorganization increases with increasing strain (Abhilash et al. 2014; 

Hadi et al. 2012; Hadi and Barocas 2013; Munster et al. 2013; Sperry et al. 2017; Vader et 

al. 2009; Zhang et al. 2016). On the cellular level, a “switch-like” response has been 

observed for fiber alignment, whereby fibers reorganize together with neuronal 

dysfunction that occurs with loading, with strains above 11.3% being a critical strain above 

which collagen fibers reorient and neurons express greater levels of pERK (Zhang et al. 

2016). However, that work was absent any consideration of the physiologically relevant 

effects of fibroblasts on either the ECM and/or the neuronal function. 

 

6.3. Effects of FLS Concentration on Collagen Gel Multiscale 

Biomechanics & Neuronal Signaling 

This study used the DRG-FLS co-culture collagen gel model described in Chapter 

5 to understand the effects of FLS on multiscale collagen gel mechanics and neuron 

physiology in response to gel distraction to failure. The overall objectives of this study 
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were to: (1) determine if FLS alter macroscopic failure properties, regional strains, and/or 

collagen microstructural kinematics and (2) measure if the presence and extent of FLS in 

the gel alters MMP-1 expression and/or neuronal nociceptive signaling. Since capsular 

ligaments exhibit variable FLS densities in different regions of the capsule (Yamashita et 

al. 1996), and the mechanical properties of fibroblast-embedded collagen gels depend on 

the initial fibroblast concentration (Evans and Barocas 2009), FLS were seeded in collagen 

gels at two concentrations to simulate the extremes of the physiologic range (Yahia and 

Garzon 1993; Yamashita et al. 1996). Further, since active MMP-1 stabilizes by six-eight 

days in ligament fibroblasts embedded in gels (Attia et al. 2014), the effects of failure 

loading on MMP-1 expression was tested after seven and nine days of culture. Day-in-vitro 

(DIV) 7 was chosen because DRGs exhibit neurite outgrowth nearly twice the diameter of 

their soma by that time (Zhang et al. 2017; Zhang et al. 2018a);  DIV9 was selected because 

total active and inactive MMP-1 reaches a steady state before DIV10 (Attia et al. 2014). 

To determine if the longer time in culture affects FLS-induced gel organization and/or 

baseline cell responses, expression of MMP-1 or substance P before any gel loading was 

compared between those two days (DIV7; DIV9). Macroscopic gel mechanics were 

quantified by failure properties and gel stiffness, and regional strains and collagen 

alignment and organization were analyzed to assess effects of FLS on regional kinematics. 

Fiber alignment data were measured during loading by QPLI, which quantifies dynamic 

fiber reorganization (Lake et al. 2011; Quinn and Winkelstein 2009; Sander et al. 2009b; 

Tower et al. 2002). Using fiber angle distributions, collagen organization was quantified 

by the circular variance (CV) of the spread of fiber angles, describing the clustering of 
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angles, with a lower CV indicating a tighter clustering and a higher degree of fiber 

alignment (Zhang et al. 2016; Zhang et al. 2018a). After failure, gels were assayed for total 

MMP-1 and neuronal substance P protein in the context of multiscale mechanical 

outcomes. 

6.3.1. Methods  

6.3.1.1. Co-Culture System, Mechanical Testing, & Data Acquisition 

All cells were harvested from Sprague-Dawley male rats under approved conditions 

and using sterile procedures. DRGs were harvested from all spinal levels of embryonic day 

18 rats (from the CNS Cell Culture Service Center of the Mahoney Institute of 

Neuroscience) and stored in Hibernate-E medium supplemented with 1% GlutaMAX and 

2% B-27 at 4°C until plating (Cullen et al. 2012; Zhang et al. 2018a). Following the 

protocols detailed in Chapter 5 (Section 5.3.1), FLS were harvested from both hind knees 

of a sexually mature adult rat (384g) and resuspended at passages 3 or 4 in two separate 

groups with different concentrations, based on densities found in the facet capsule 

(Yamashita et al. 1996): 5x104 cells/mL (low; n=10) to simulate regions with low FLS cell 

density and 1x105 cells/mL (high; n=9) to simulate denser regions. Collagen gels without 

any FLS were included as controls (none; n=8) for their effects on mechanics, MMP-1 

and/or neuronal substance P. 

On DIV1, DMEM medium was removed from the top of the gels, and DRGs were 

seeded on the gel surface for all samples (6-10/gel) in 100µL of Neurobasal feeding 

medium supplemented with 1% GlutaMAX, 2% B-27, 5% FBS, 10ng/ml 2.5S nerve 

growth factor, 2mg/ml glucose, 10mM FdU, and 10mM uridine (Cullen et al. 2012; Zhang 
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et al. 2018a) (Figure 6.1). After 12-24hrs, fresh Neurobasal feeding medium was added to 

all gels and then changed every other day; all gels were cultured in the supplemented 

Neurobasal feeding medium for the remainder of the study. On DIV6, an additional layer 

of collagen (150µL) was added to encapsulate the DRGs in half of the samples (none n=4; 

low n=4; high n=3). For the remaining samples (n=4/group), DRGs were encapsulated with 

collagen using the same protocol but on DIV8 (Figure 6.1).  

 Gels underwent distraction to failure on DIV7 (none n=4; low n=4; high n=3) or 

DIV9 (n=4/group) (Figure 6.1). On the day of testing, gels were stamped into a strip 

(21mmX8mm), and a 4X4 grid of markers was drawn on the surface in the center of each 

 

Figure 6.1. Experimental timeline for co-culture conditions, set-up for mechanical testing, and analyses 

of elemental strain and collagen organization. Fibroblast-like synoviocytes (FLS) were seeded into a 

collagen gel solution on day-in-vitro (DIV) 0 at either a low or high concentration, or were omitted (none), 

followed by seeding DRGs onto all gels at DIV1. On either DIV7 or DIV9 gels were loaded in a planar 

test device with an integrated polarized light imaging system. During loading, each gel was affixed in 

grips for uniaxial tension to failure and marked with a grid of dots for strain tracking. The corresponding 

strain map of maximum principal strain (MPS) is shown extracted from three elements on the 

representative low FLS gel. The corresponding vector map is also shown displaying the raw fiber 

alignment data for an element, which is used to calculate circular variance (CV). 
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gel to establish regional elements and enable strain tracking (Zhang et al. 2018a). Using 

the grid of markers, each group of four nodes was designated as an element (Figure 6.1) 

and used for data analyses. Using a planar testing machine (574LE2; TestResources; 

Shakopee, MN), gels were loaded into grips attached to actuators equipped with 500g load 

cells attached to each grip and immersed in a 37°C PBS bio-bath (Figure 6.1). The 

mechanical system was integrated with a polarized light imaging system (Quinn et al. 2010; 

Quinn and Winkelstein 2008; Tower et al. 2002; Zhang et al. 2016) and high-speed cameras 

(Phantom-v9.1; Vision Research, Inc.; Wayne, NJ) that acquired collagen alignment maps 

and tracked marker locations and displacements during loading. Force and displacement 

data (200Hz) were synchronized with high-speed imaging (500Hz). Gels were pre-loaded 

until slack was removed (less than 2mN) in either arm, and then distracted at 0.5mm/sec to 

failure. Immediately following the distraction, gels were removed from the grips and fixed 

for two hours in 4% paraformaldehyde, washed, and stored in 30% sucrose at 4°C. To 

assess the effect of days in culture and FLS concentration on protein expression, additional 

gels were fabricated for all three FLS concentrations (none; low; high). Those control gels 

were not loaded (n=2/group/DIV) and were removed from culture on DIV7 or DIV9 for 

chemical fixation and storage.  

6.3.1.2. Immunolabeling of MMP-1 & Neuronal Substance P 

Gels were immunolabeled after loading for MMP-1, substance P, and βIII tubulin 

to evaluate effects on MMP-1 and neuronal substance P. Gels were blocked in PBS with 

10% normal goat serum (Vector Laboratories; Burlingame, CA) and 0.3% Triton-X100 

(Bio-Rad Laboratories; Hercules, CA) for two hours at room temperature and incubated 



161 

 

overnight at 4°C with primary antibodies to MMP-1 (anti-rabbit; 1:200; Proteintech; 

Rosemont, IL), substance P (anti-guinea pig; 1:200; Neuromics Inc.; Minneapolis, MN), 

and βIII tubulin (anti-mouse; 1:300; Biolegend; San Diego, CA). Gels were then washed 

in PBS and incubated with the secondary antibodies goat anti-guinea pig Alexa Fluor 633, 

goat anti-rabbit Alexa Fluor 555, and goat anti-mouse Alexa Fluor 488 for two hours at 

room temperature (all 1:1000; Life Technologies; Carlsbad, CA). Finally, gels were 

incubated in DAPI solution (1:200; ThermoFisher; Waltham, MA) at room temperature for 

15 minutes to stain cell nuclei, washed in PBS, washed in distilled water, and then cover-

slipped. Labeled gels were imaged using the 40X objective of a Leica TCS SP8 confocal 

microscope (1024X1024 pixels; Leica Microsystems; Wetzlar, Germany). Stacks of six 

confocal images were acquired for each gel (5 stacks/gel) at 1µm increments up to a depth 

of 5µm. Since MMP-1 and substance P can localize to DRG axons and cell bodies (somas) 

(Kallakuri et al. 2004; Lee and Winkelstein 2009; Zhang et al. 2017), images were acquired 

from both regions, with at least n=2/region of the five stacks acquired for each gel and each 

stack acquired from a distinct region, with no DRG soma or its axons imaged twice. The 

location of each image was registered with the regional elements from each gel in order to 

relate cellular outcomes with the strain and collagen organization data. Image stacks were 

also acquired for control gels that did not undergo any loading but were fixed at either 

DIV7 or DIV9 containing either the low or high FLS concentration (n=1/group/day) in 

order to evaluate whether FLS concentration alters the baseline expression of 

immunolabeled proteins.  

6.3.1.3. Data & Statistical Analyses 
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Force data were filtered using a 10-point moving average filter (Zhang et al. 2018a) 

and the maximum force detected was extracted and taken as the failure point (Figure 6.2A). 

Stiffness was calculated using the force-displacement curves and defined as the slope of 

the curve at between 20% and 80% of the maximum force (Lee et al. 2006) (Figure 6.2A). 

The locations of the fiducial markers on the gel captured by high-speed imaging were 

digitized with FIJI software (NIH) (Schindelin et al. 2012) for the unloaded image before 

any distraction (reference) and in the image immediately prior to failure. Grid position data 

were processed in LS-DYNA (Livermore Software Technology Corp.; Livermore, CA) to 

calculate the maximum principal strain (MPS) for each element for each loaded gel (Figure 

6.1). Pixel-wise fiber alignment maps were created using 20 consecutive high-speed 

images acquired both before distraction (reference) and immediately prior to failure using 

a custom script based on a harmonic equation in MATLAB (R2018; MathWorks Inc., 

Natick, MA) (Quinn et al. 2010; Quinn and Winkelstein 2008; Tower et al. 2002). The CV 

was quantified from the spread of fiber angles detected for each element separately (Figure 

6.1) (Zhang et al. 2016); CV at failure was normalized to the reference CV for all elements 

analyzed.  

To quantify the amount of positive protein labeling in the immunolabeled gels, the 

average intensity projection of each stack was generated using Fiji, and a custom 

MATLAB script (found in Appendix B) quantified the number of positive pixels above the 

threshold for positive MMP-1, substance P, and βIII tubulin labeling in naïve controls, 

separately (Kartha et al. 2018; Zhang et al. 2016). Thresholds were determined from pilot 

studies with naïve FLS and DRG cultures, and samples with no primary antibodies added 
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to control for labeling procedures were included as controls to verify the specificity of each 

antibody. The overall percentage of positive MMP-1 labeling was quantified without 

discriminating by cell type (neurons and FLS) in order to account for total MMP-1 in the 

overall culture system, from both cell sources. In order to compare neuronal substance P, 

the co-localization of βIII tubulin and substance P was computed; the co-localization of 

pixels positive for each was normalized to the total βIII tubulin for each image, separately, 

to account for differences in neuronal labeling.  

All statistical analyses were performed in JMP (Pro 14; SAS Institute; Cary, NC) 

with α=0.05. To test the effect of day-in-vitro on collagen fiber organization, separate t-

tests compared CV at reference between DIV7 and DIV9 for each concentration. Further, 

a one-way analysis of variance (ANOVA) was used to assess the effect of FLS 

concentration on reference CV separately for each day in vitro. Similarly, the total MMP-

1 and neuronal substance P quantification in non-distracted control gels were compared 

across the two days (DIV7 and DIV9) for each concentration using separate t-tests, to 

determine if the difference in the length of time in culture alters baseline protein expression. 

An ANOVA assessed the effect of FLS concentration on baseline expression of total MMP-

1 and neuronal substance P quantification. Statistical comparisons between day-in-vitro 

and across groups for baseline protein expression were calculated with each quantified 

image as a statistical unit; this justification was rationalized since control gels that were 

used for baseline protein expression were non-distracted, so there was no variation in the 

local biomechanical environment as is the case with stretched gels. The effect of FLS 

concentration on force at failure, displacement at failure, and stiffness was tested with a 
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one-way ANOVA comparing the different FLS concentration groups (none; low; high). 

The MPS values and normalized CV quantification for those elements in which confocal 

images were acquired (n=5/gel) were extracted and compared at failure between gels with 

different FLS concentrations (none; low; high); the effect of concentration on elemental 

MPS, elemental CV, total MMP-1, and neuronal substance P was tested with separate one-

way ANOVAs and post-hoc Tukey tests for each outcome.  

6.3.2. Results 

Overall, neither FLS concentration nor time in culture affect collagen 

microstructure before undergoing distraction. Although gels with FLS at either 

concentration spontaneously released from the culture plate wall by DIV2; the presence of 

FLS at either concentration does not change the collagen organization compared to gels 

without any FLS (Table 6.1). This is true regardless of the length in culture, with the CV 

at reference not different between no (none), low, and high concentrations at either DIV7 

(p=0.56) or DIV9 (p=0.45) (Table 6.1). Further, the reference CV is also not different 

between DIV7 and DIV9, regardless of group (Table 6.1); there is no difference between 

the two DIV culture times detected in the microstructure of collagen for gels without any 

FLS (p=0.41), with the low FLS concentration (p=0.35), or with the high FLS 

concentration (p=0.28) (Table 6.1).  

As with the collagen microstructure, neither the concentration of FLS nor the time 

in culture alter baseline expression levels of MMP-1 or neuronal substance P in gels. The 

time in culture from DIV7 to DIV9 does not influence the baseline protein expression of 
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either MMP-1 or neuronal substance P in unloaded gels. Specifically, the amount of MMP-   

1 on DIV7 is not different from the quantification of MMP-1 on DIV9 for gels with no 

FLS (none) (p=0.62), low (p=0.39) or high (p=0.15) FLS concentrations (Table 6.2). The 

same relationship exists for neuronal substance P between DIV7 and DIV9 for the none 

Table 6.1. Summary of macroscale biomechanics and microstructure before distraction and after failure 

Group Gel ID Unloaded Force Displacement Stiffness Normalized 

  CV (×103)* (mN) (mm) (mN/mm) CV*+ 

DIV7 

high FLS 28 0.13±0.07 13.60 4.47 4.14 17.48±15.13 

29 N/A 20.43 6.34 3.57 N/A 

31 N/A 16.82 6.06 5.02 N/A 

37 0.39±0.15 11.68 5.97 1.56 2.37±1.35 

Mean 0.28 15.63 5.71 3.57 8.85 

SD 0.18 3.83 0.84 1.47 11.93 

low FLS 7 0.34±0.08 20.42 2.00 9.82 1.07±1.18 

8 0.31±0.17 37.13 4.63 8.83 2.25±1.08 

13 1.86±2.20 65.61 4.26 18.53 2.83±1.39 

34 0.27±0.22 16.02 5.47 3.78 5.66±2.17 

Mean 0.62 34.79 4.09 10.24 3.15 

SD 0.99 22.47 1.47 6.13 2.24 

none 3 0.62±0.51 4.74 2.53 2.00 1.37±0.48 

9 0.12 11.70 6.06 2.42 3.59 

11 0.33±0.12 22.40 4.40 4.41 4.97±2.06 

38 0.29±0.28 11.48 5.71 3.64 7.04±7.28 

Mean 0.37 12.58 4.68 3.12 4.14 

SD 0.29 7.30 1.60 1.11 3.69 

DIV9 

high FLS 43 1.43±0.27 15.96 6.00 2.92 16.30±17.29 

44 0.20±0.12 15.91 6.08 3.32 43.28±34.12 

46 0.28±0.10 15.20 4.95 3.89 24.10±12.01 

Mean 0.50 15.69 5.68 3.38 30.89 

SD 0.54 0.42 0.63 0.48 25.64 

low FLS 3 0.13±0.10 6.49 5.36 1.10 13.74±9.60 

4 1.97 11.91 4.26 1.89 1.91 

7 0.13±0.11 20.71 5.92 6.47 7.42±3.34 

11 0.19±0.16 15.84 7.94 4.34 36.33±21.42 

Mean 0.28 13.74 8.33 2.44 25.57 

SD 0.52 6.03 3.41 1.22 5.96 

none 28 1.04±0.58 72.46 8.09 13.63 9.93±7.54 

29 N/A 12.32 4.43 3.92 N/A 

30 0.41±0.20 21.65 3.42 7.70 2.76±0.86 

33 0.25±0.14 5.12 2.14 2.77 2.45±1.36 

Mean 0.49 27.89 4.52 7.01 4.23 

SD 0.42 30.48 2.56 4.89 4.56 

*elemental data are presented as mean ± standard deviation for all elements for that sample 

+normalized CV is calculated by dividing raw CV at reference by raw CV at failure 

N/A data were not collected due to technical problems with data capture 
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(p=0.14), low (p=0.06) and high (p=0.07) FLS concentrations (Table 6.2). Furthermore, 

MMP-1 expression in gels is not different across groups (none vs. low vs. high) (p≥0.31), 

regardless of DIV (Table 6.2); the same is evident for neuronal substance P expression 

(p≥0.05), with no difference based on concentration of FLS (Table 6.2). Since the overall 

time in culture does not influence any outcome of the gel properties between DIV7 and 

DIV9, those groups were combined for each concentration condition in order to investigate 

effects of the three different concentrations on the biomechanical and physiological 

responses during and after failure.  

Neither the presence nor amount of FLS in the culture system alters the 

macromechanical responses of gels at failure (Table 6.1 & Figure 6.2). None of the force 

or displacement at failure, or gel stiffness (p≥0.30) are different across the three 

concentration groups (none; low; high) (Figure 6.2B). In contrast, there are differences in 

the elemental responses; there are FLS concentration-dependent differences in both 

elemental MPS and collagen organization (Figure 6.3). Despite undergoing similar 

deformations and forces at failure (Figure 6.2), the gels that incorporate FLS experience 

Table 6.2. Summary of protein expression in unloaded controls 

Group Total MMP-1 Neuronal substance P 

 (% positive pixels)* (% positive pixels)* 

DIV7 

high FLS 0.08±0.15 0.009±0.007 

low FLS 0.04±0.03 0.006±0.006 

none 0.04±0.02 0.001±0.001 

DIV9 

high FLS 0.01±0.01 0.003±0.003 

low FLS 0.08±0.13 0.002±0.002 

none 0.05±0.06 0.020±0.036 

*elemental data are presented as mean ± standard deviation 

for all elements for that sample 
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higher strains at failure than gels without any FLS, with both the low (p<0.01) and the high  

(p=0.01) FLS concentration gels sustaining strains that are nearly twice the strains 

sustained in gels with no FLS (Figure 6.3). Further, for the greater FLS concentration (high 

FLS group), the collagen network shows a higher degree of reorganization at failure, with 

a graded normalized CV increasing with increasing FLS concentration (Figure 6.3). 

However, the difference in normalized CV at failure is only significant (p<0.01) between 

the high FLS concentration (21.2±23.1) and the group with no FLS (none; 4.3±4.2) (Figure 

6.3). The force-displacement curves and strain fields for all gels in this study are 

summarized in Appendix H.  

 

Figure 6.2. Analysis of macromechanics after tensile distraction to failure show no differences between 

FLS concentration groups. (A) Force-displacement data for representative gels with high (Gel 44; DIV9), 

low (Gel 7; DIV9), and no (none; Gel 30; DIV9) FLS included. For each gel, peak force defines the 

failure; stiffness (k) is calculated as the linear slope of the force-displacement curve between 20% and 

80% of the peak force. (B) There are no differences between the FLS concentration groups for any of 

force at failure (p=0.63), displacement at failure (p=0.42), or stiffness (p=0.30). DIV7 and DIV9 data are 

pooled in bar plots.  
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As with the regional micromechanics outcomes (Figure 6.3), the physiological 

effects of the presence, and amount, of FLS cells after tensile gel failure are differentially 

altered (Figure 6.4). In fact, the stretch-induced expression of both total MMP-1 in the 

culture system and neuronal substance P generally follow each other with the low 

concentration of FLS having the greatest expression, at either DIV7 or DIV9 (Figure 6.4). 

MMP-1 expression is observed in both the DRG somas and axons and appears to label in 

concentrated or compacted masses in contrast to a more diffuse label (Figure 6.4A); there 

is little MMP-1 in gels with only DRGs (Figure 6.4A). Despite positive labeling in gels 

with either concentration of FLS, those with a low FLS concentration (35.4±27.4%) 

express significantly greater levels (p<0.01) of MMP-1 after stretch to failure than gels 

without FLS (none; 13.1±16.3%) (Figure 6.4A). In addition, neuronal substance P in the 

 

Figure 6.3. Regional strain and collagen microstructure at failure are FLS concentration-dependent. 

Stretch-induced maximum principal strain (MPS) in gels with FLS at both concentrations (low; high) are 

significantly higher than the MPS at failure in gels without FLS (*p≤0.01). Circular variance (CV) 

normalized to the corresponding reference CV is also significantly greater (*p≤0.01) in gels with high 

FLS concentration than in those without FLS (none). Bar graphs show summary data with DIV7 and 

DIV9 pooled and overlaid with individual data points, each representing an element (open circles). 

Histograms show the probability that collagen will orient at a given angle for reference and at failure for 

representative elements from each of the high (Gel 44; DIV9), low (Gel 7; DIV9), and no FLS (Gel 33; 

DIV9). A larger spread of angles is evident with the high FLS gel element at failure and corresponds to 

a larger CV value, indicating a large degree of fiber reorganization relative to the network microstructure 

prior to loading.   
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low FLS group is higher than expression in gels with no FLS and only DRGs (none;  

p=0.02) and those with the high FLS concentration (p<0.01) (Figure 6.4B). Neuronal 

substance P appears to be more evident in the soma and surrounding many cell bodies 

(Figure 6.4B). Immunolabeled images and quantification for MMP-1 and neuronal 

substance P are detailed in Appendix I for both the stretched and unstretched control gels 

from this study.  

 

 

Figure 6.4. Stretched gels with a low FLS concentration exhibit the greatest expression of total MMP-1 

and neuronal substance P, with representative images from gels in all three groups including regions with 

soma and/or axons. Images are shown for high FLS (Gel 44; DIV9), low FLS (Gel 11; DIV9), and none 

(Gel 11; DIV7), respectively, for MMP-1 images. Neuronal substance P images are of Gels 31 (DIV7), 

7 (DIV9), and 11 (DIV7) for high FLS, low FLS, and none, respectively. (A) Total MMP-1 labeling is 

greatest in gels with the low FLS concentration, but is only significantly higher than the expression in 

gels with no FLS (*p<0.01). (B) Neuronal substance P labeling is also observed in both DRG soma and 

axons, but is more diffuse than MMP-1 labeling. The co-localization (yellow) of positive substance P 

labeling (red) with the marker βIII tubulin (green), for neurons is significantly greater in the low FLS 

group than in the other two groups (*p=0.02 vs. none; #p<0.01 vs. high FLS). The scale bar is 100μm in 

both panels and applies to all images. Bar graphs show summary data for each group with DIV7 and 

DIV9 pooled, overlaid with individual data points, each representing confocal images from a single 

element (open circle). Y-axes indicate percent positive pixels from 0 (0%) to 1.0 (100%). 
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6.4. Investigating Relationships between Load-Induced MMP-1, MMP-9 

& Neuronal Firing   

Since total MMP-1 increases with gel distraction to failure (Figure 6.4A), and 

MMP-1 regulates MMP-9 (Conant et al. 2002; Visse and Nagase 2003), it was 

hypothesized that MMP-9 also increases in parallel with MMP-1 in response to gel failure. 

To test that hypothesis, a subset of gels were assayed for MMP-1 and MMP-9 protein 

expression in the low FLS concentration group (5x104 cells/mL), since MMP-1 increases 

significantly with low FLS concentration over co-cultures without FLS (Figure 6.4A). 

Since the primary goal with this set of experiments was to evaluate the effect of distraction 

to failure on MMP-1 and MMP-9 expression, no stretch controls were also included. 

Parallel increases in MMP-1 and substance P may indicate substance P mediation 

via MMP-1 by two possible mechanisms; MMP-1 can increase neuronal firing via ligand-

substrate interactions with cell surface receptors on DRG somas or axons, and subsequently 

trigger neurotransmitter release (Allen et al. 2016; Conant et al. 2002; Dumin et al. 2001), 

and/or extracellular MMP-1 may activate any MMP-9 present in the co-culture 

environment and lead to downstream regulation of substance P by MMP-9 (Diekmann and 

Tschesche 1994; Visse and Nagase 2003). Further, although assaying MMP-9 after failure 

loading addresses the unknown of how load regulates MMP-9 expression, coincident with 

MMP-1 (Figure 6.4A), it does not elucidate whether MMP-1 causes any change detected 

in MMP-9 expression.  

Two sets of experiments were conducted to investigate if MMP-1 directly regulates 

neuronal activity and/or increases MMP-9 expression in neurons. Separate experiments 



171 

 

exposed monolayer cultures containing only DRGs to exogenous MMP-1 and measured 

calcium signaling fluorescence traces as a proxy for action potentials or MMP-9 expression 

(Figure 6.5). To first define the temporal effects of exogenous MMP-1 on neuronal firing, 

calcium imaging time-lapse images were captured immediately, at one hour, and at 24 

hours after the application of exogenous MMP-1 (Figure 6.5). Based on outcomes from the 

calcium imaging data, a second set of experiments probed MMP-9 expression at 24 hours 

after the addition of MMP-1 into the DRG culture media. Because MMP-1 exposure alone 

has also been shown to be cytotoxic to cortical neurons (Vos et al. 2000), cytotoxicity 

assays were also conducted on culture media.  

 

Figure 6.5. Study design for experiments testing the effect of exogenous MMP-1 on neuronal responses. 

In one set of experiments (timeline on top; blue arrows), dissociated DRG cultures were transduced with 

GCaMP6f to visualize calcium transients. Time-lapse images were acquired prior to MMP-1 application 

(baseline; BL), immediately after application (3mins), and at 1hr and 24hrs. Time-lapse images were 

manually segmented to delineate neurons and the normalized fluorescence traces (ΔF/F) were computed 

for each segmented neuron. Colored regions and neuron colors in the segmentation panel correspond to 

the y-axis colors and neuronal traces in the ΔF/F traces panel, respectively. In a second set of experiments 

(timeline on bottom; red arrows), cytotoxicity and MMP-9 expression were assayed at 24hrs after the 

application of exogenous MMP-1.  
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6.4.1. Immunolabeling of MMP-1 & MMP-9 in Co-Culture Gels After Failure 

Loading 

6.4.1.1. Methods 

A subset of co-culture collagen gels from DIV7 with a low concentration of FLS 

(n=3; 5x104 cells/mL) (Figure 6.1) were prepared for immunolabeling immediately 

following distraction to failure as described earlier (Section 6.3.1). Gels were blocked and 

incubated overnight at 4°C with antibodies to MMP-1 (1:300; Proteintech) and MMP-9 

(1:300; ThermoFisher). Gels were then washed in PBS and incubated at room temperature 

with the secondary antibodies goat anti-rabbit 633, goat anti-mouse 555 (1:1000; Alexa 

Fluor Life Technologies), and DAPI (1:200; ThermoFisher) to stain cell nuclei. Gels were 

imaged using a Leica confocal microscope focusing on FLS- and DRG-rich regions (n=7-

8/each). A control gel with no stretch was also included. The number of pixels positive for 

each MMP immunolabel above levels in naïve cultures was quantified using MATLAB 

(code provided in Appendix B) and compared to the number in unstretched control using 

t-tests. 

6.4.1.2. Results 

The subset of gels immunolabeled for MMP-1 and MMP-9 fail at a peak force of 

35±22mN at 4.1±1.5mm; this failure stretch increases expression of both MMP-1 (p<0.01) 

and MMP-9 (p=0.04) (Figure 6.6). Positive MMP-1 and MMP-9 labeling is observed in 

both the FLS- and DRG-rich regions of gels (Figure 6.6). Although MMP-1 labeling is 

more pronounced in DRG-rich regions, MMP-9 labeling appears equally distributed 
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between the two types of regions of the gel (Figure 6.6). The confocal images and their 

densitometric quantification for this study are summarized in Appendix I. 

6.4.2. Calcium Imaging with Exogenous MMP-1 in Neuronal Cultures 

6.4.2.1. Methods 

  DRGs were harvested from day 18 embryonic rats, dissociated, and plated at 

3.0x105 cells/mL (Figure 6.5) (Cullen et al. 2012). One day after plating, neurons were 

transduced with the adeno-associated virus GCaMP6f (#AAV1.Syn. 

GCaMP6f.WPRE.SV40; 1:6000) that fluoresces with increases in intracellular calcium 

using protocols described in Chapter 5 (Section 5.5.2.3) (Chen et al. 2013). After five days 

to allow for viral expression (Chen et al. 2013; Patel et al. 2015), separate dishes were 

treated with MMP-1 in deionized water (100μL; 30μg/mL; Worthington; n=5) or water 

alone (control; n=2) (Figure 6.5). Fields of view containing the same neurons in each dish 

were imaged using a spinning disk confocal microscope (Nikon Eclipse TE2000U; 20Hz 

for one minute) before the addition of MMP-1 and then immediately and at one and 24 

 

Figure 6.6. Expression of MMP-1 and MMP-9 in stretched gels with a low FLS concentration. Total 

MMP-1 and MMP-9 expression increase after stretch compared to expression in unstretched control gels 

(*p≤0.04). Images show MMP-1 and MMP-9 labeling in DRG-rich and FLS-rich regions of co-cultures. 

MMP-1 is primarily localized to DRGs, whereas elevated MMP-9 may be expressed by both DRG and 

FLS cells. The scale bars apply to all other images within their panel. Bar graphs show summary data 

overlaid with individual data points, each representing confocal images from a single gel element (open 

circle).  
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hours after the addition of activated human MMP-1 enzyme in order to define the temporal 

neuronal activity (Figure 6.5) (Patel et al. 2015). The MATLAB software script 

FluoroSNNAP was used to analyze images by segmenting neurons, normalizing their 

fluorescence, and using a template-matching algorithm to count calcium events in 60 

second periods (Patel et al. 2015; Schultz et al. 2009). Neurons with no calcium activity at 

any time were omitted from analyses. Changes in the number of events for each neuron 

over time and across groups were compared by a multivariate analysis of variance 

(MANOVA) with matched pairs. A repeated-measures ANOVA compared the magnitude 

of events over time within groups. 

6.4.2.2. Results 

Of the total 159 neurons imaged, calcium activity was detected in 18 neurons from 

controls and 52 neurons exposed to MMP-1. In matched comparisons with neurons across 

groups, there is no difference (p>0.05) in activity from baseline detected immediately in 

either group, or in the controls from baseline to one hour (-0.78±1.99 events) or to 24 hours 

(-0.28±2.93 events) (Figure 6.7). MMP-1 increases calcium activity from baseline (p<0.01) 

at both one hour (+0.74±1.65 events) and 24 hours (+2.13±2.73 events) (Figure 6.7), which 

is significantly different from the response of control neurons (p<0.01). The number of 

calcium events does not change over time for the control or MMP-1 group immediately or 

after one hour, but does change (p<0.01) at 24 hours after MMP-1 exposure, with increased 

activity in over 60% of the neurons (n=36/52) (Figure 6.7).  
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6.4.3. Neuronal MMP-9 Expression & Viability with Exogenous MMP-1 

6.4.3.1. Methods 

DRGs were harvested from day 18 embryonic rats, dissociated, and plated as full 

explants (6-10) on PDL-laminin treated glass in Neurobasal media (Figure 6.5) (Cullen et 

al. 2012). On DIV8, dishes were treated with MMP-1 (100μL; 30μg/mL; Worthington; 

n=4) or left untreated (n=2) for 24 hours since neuronal calcium signaling peaks at that 

time after MMP-1 exposure (Figure 6.7). After 24 hours, media aliquots were sampled and 

stored at -20°C for the viability assay. Cultures were fixed in 4% PFA for 15 minutes and 

stored in 1XPBS for immunolabeling. Cultures were incubated overnight at 4°C with an 

MMP-9 antibody (1:200; ThermoFisher), washed, and incubated at room temperature with 

goat anti-mouse Alexa Fluor 555 (1:1000) and DAPI (1:200). Confocal images (n=5-

6/plate) were taken. The number of pixels positive for MMP-9 immunolabeling above 

levels in naïve cultures was quantified using densitometry analyses in MATLAB 

 

Figure 6.7. Neuronal firing with exposure to exogenous MMP-1. Neurons treated with MMP-1 exhibit 

significant increases in activity at 1 hour (1hr) and 24 hours (24hrs) (*p<0.01) compared to changes in 

control neurons. Over time, the magnitude of the number of event changes is significant only for MMP-

1 at 24hrs (+p<0.01), with most neurons increasing their activity.   
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(Appendix B). MMP-9 labeling in treated cultures was compared to that in controls using 

a t-test. 

Cell viability was assessed by an LDH assay (Kartha et al. 2017). Matched 

untreated cultures were included as assay controls. The percent cell death between treated 

and untreated cultures was compared using a t-test.  

6.4.3.2. Results  

 An exposure to exogenous MMP-1 for 24 hours increases MMP-9 protein 

expression in DRG cultures compared to naïve DRG cultures (Figure 6.8). LDH assayed 

in cell culture media that same time (24 hours) shows an increase in cell death, indicating 

a potentially cytotoxic effect of MMP-1 accompanying that elevated MMP-9 (Figure 6.8). 

MMP-9 labeled images and their quantifications, as well as LDH data, are detailed in 

Appendix I.  

   

   

 

Figure 6.8. MMP-9 expression and cellular cytotoxicity after 24 hours of exogenous MMP-1 exposure. 

(A) Exogenous MMP-1 increases MMP-9 in DRG cells after 24 hours (*p=0.03), paralleled by an 

increase in cell death (*p=0.02) (B). The scale bar applies to both images; bar graphs show summary data 

overlaid with individual data points, each representing confocal images from an element (open circle) in 

(A). 
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6.5. Discussion  

Given that human ligamentous joint capsules include fibroblast-like synoviocytes 

and afferent nerve fibers in a collagenous matrix (Burgeson and Nimni 1992; Kallakuri et 

al. 2012; Yahia and Garzon 1993; Yamashita et al. 1996), the DRG-FLS co-culture 

collagen gel system used here provides a novel platform to better mimic the human 

anatomy, biomechanics, and physiology. Not surprisingly, because fibroblasts exert 

mechanical forces on their surrounding microenvironment (Dallon and Ehrlich 2008; 

Grinnell and Petroll 2010; Sander et al. 2011), including FLS in the DRG-collagen gel 

model increases the regional strains and the extent of microstructural reorganization at 

failure (Figure 6.3), despite not altering fiber organization before loading nor changing the 

macroscale failure properties (Table 6.1 & Figure 6.2). Although total MMP-1 and 

neuronal substance P are the same regardless of FLS concentration before any load (Table 

6.1), both of those proteins are mediated after gel failure by FLS concentration (Figure 

6.4). In fact, the increased protein expression exhibits differential patterns from both the 

strain responses and the fiber reorganization (Figures 6.3 & 6.4), which suggests that either 

or both cell types (FLS, DRG) is sensitive to the local surroundings in this system during 

failure loading.    

The behavior of fibroblasts in fibrous networks and their subsequent effect on gel 

mechanics varies with the culture conditions (i.e. free-floating or constrained boundary 

conditions) (Grinnell 2003; Kural and Billiar 2013; Mohammadi et al. 2015). Fibroblasts 

in anchored collagen gels weaken the gel under tension after six days (Saddiq et al. 2009); 

whereas fibroblasts in free-floating collagen gels strengthen it under tension after one day 
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(Evans and Barocas 2009). In the current study, gels were cultured in 12-well plastic non-

treated tissue-culture plates and could freely contract on their own. Indeed, gels with either 

the low or the high FLS concentrations contracted over the culture period, spontaneously 

detaching from the well wall and demonstrating contractile function throughout their time 

in culture. In fact, in pilot studies using low and high FLS concentrations and the same 

culture conditions as used in this study, gels decreased their diameter by approximately 46-

50% after seven days in culture (Figure 6.9). In addition, although FLS were not visualized 

explicitly in each individual gel in this study, separate pilot studies confirmed the presence, 

phenotypic morphology, and viability of low and high FLS embedded in 2mg/mL collagen 

gels with immunolabeling and live-dead cell assays presented in Chapter 5.  

 Dermal fibroblasts cultured with the same collagen concentration (2mg/mL) and 

seeded at the same concentrations as used here, increase the gel modulus by between 1.12- 

and 3-times depending on the concentration (Evans and Barocas 2009). Although that 

 

Figure 6.9. Collagen gel compaction by FLS cells over one week in culture. Although collagen gel 

compaction was consistently observed with a high concentration of FLS (target density of 1x105 

cells/mL), compaction was not always observed in gels with a low concentration of FLS (target density 

of 5x104 cells/mL). 

 

 

 

 

 

2 days 3 days 5 days 7 days

h
ig

h
 F

L
S

lo
w

 F
L

S

1 day



179 

 

finding does not corroborate the lack of effect on stiffness observed for the same FLS 

concentrations (Figure 6.2), the difference may be due to functional differences between 

FLS and dermal or 3T3 fibroblasts, as well as the different culture times since the short 

culture time of one day used in the dermal fibroblast study has been hypothesized to not 

allow for collagen synthesis or degradation (Evans and Barocas 2009). In contrast, in gels 

seeded separately with either human dermal or mouse 3T3 fibroblasts, the failure force 

under uniaxial tension is decreased (Saddiq et al. 2009), for a similar loading rate 

(~0.16mm/sec) and time in culture (six days) but a lower cellular concentration (2.5x104 

cells/mL). Since in that study the dermal and 3T3 fibroblast-seeded gels were anchored in 

culture (Saddiq et al. 2009) and the cell-mediated gel contraction would be minimal, any 

decrease in failure properties would likely be due to fibroblast-mediated remodeling via 

enzyme degradation (Saddiq et al. 2009). Although the gels in the current study with the 

higher FLS concentration do exhibit a lower failure force and stiffness than gels without 

FLS, those differences are not significant (Figure 6.2). Taken together, these studies 

suggest that early in culture strengthening of free-floating gels may be driven by cell 

contraction (Evans and Barocas 2009), and the weakening of stretched gels at later times 

in culture may be due to degradation (Saddiq et al. 2009). It is possible that by the time of 

mechanical testing (DIV7, DIV9), FLS-mediated collagen degradation may have occurred, 

which would explain why the FLS do not change the macroscale biomechanics (Figure 

6.2). Further, despite the similar morphology and ability to synthesize and degrade ECM 

components across FLS, dermal, and 3T3 fibroblasts (Rinn et al. 2006), their differences 

in contractile behavior may differentially regulate their surrounding local microstructure. 
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Both experimental (Vader et al. 2009; Zhang et al. 2016) and computational 

(Abhilash et al. 2014; Hadi and Barocas 2013) investigations of collagen networks under 

tension demonstrate fiber realignment in the direction of loading, with load redistributed 

as fibers parallel to the applied tension align and those perpendicular to it buckle, 

facilitating a transition from a bending-dominated to a stretching-dominated response. The 

distribution of fibers in all groups regardless of the amount of FLS exhibit a distribution 

with more variance at failure than at reference (Figure 6.3), which likely captures the 

redistribution as fibers reorient towards the direction of loading (Figure 6.3). 

Reorganization of collagen fibers along the loading direction likely also reorients the DRGs 

embedded in that network. Since neurons are more compliant than collagen fibers, any 

change in collagen fiber kinematics can compress and/or stretch the neurons (Cullen et al. 

2007; Sander et al. 2009a; Zhang et al. 2016). In fact, for this same neuron-collagen gel 

system under tension, the greatest extent of fiber alignment and elongation corresponds to 

the largest reorientation of neurons towards the loading direction and increased neuronal 

expression of pERK, an indicator of signal transduction caused by a noxious stimuli (Obata 

and Noguchi 2004; Zhang et al. 2016). That finding also suggests that DRGs in all of the 

gel constructs used here are likely being deformed since all gels exhibit some extent of 

fiber reorganization, with the greatest being in the high FLS gels (Figure 6.3). However, 

the protein expression is not increased in the gels with high FLS in which the fibers 

reorganize the most (Figures 6.3 & 6.4). This observation is contrary to the finding that 

pERK increases when fibers reorganize the most in the collagen gels with neurons only 

(Zhang et al. 2016). Although fiber reorganization may be responsible for some degree of 



181 

 

the increases in MMP-1 and substance P that are evident in all gels (Figure 6.4), the 

disconnect between fiber reorganization and protein increases brings to the forefront the 

notion that the different concentrations of FLS are likely interacting with their collagen 

microstructure differently. 

FLS do not alter the organization of the collagen network during culture at the 

concentrations and days-in-vitro tested here (Table 6.1); but, under tension the collagen 

matrix reorganizes to different extents in a concentration-dependent manner (Figure 6.3). 

This may be due to the FLS contracting the network by different mechanisms depending 

on their concentration, leading to differential load distribution and fiber reorganization. For 

free-floating circular gels, fibroblasts contract their matrix either by tractional-force 

locomotion during cell migration, in which the fibers become aligned parallel to the 

fibroblasts around the circumference of the gel, and not in its center, or by 

elongation/spreading, which has no effect on the fiber organization (Dallon and Ehrlich 

2008; Grinnell and Petroll 2010; Kural and Billiar 2013). During tractional-force 

locomotion, cytoplasmic microfilaments in fibroblasts contract, and pull on cell surface 

integrin-collagen fibril complexes through a myosin ATPase dependent mechanism 

(Dallon and Ehrlich 2008). In the cell elongation/spreading mechanism, fibroblasts reach 

out in all directions as they are introduced into a collagen matrix and pull collagen fibrils 

towards them (Dallon and Ehrlich 2008). Since at a low, but not high, fibroblast 

concentration, cells transition from the elongation/spreading to the locomotion mechanism 

(Dallon and Ehrlich 2008; Kural and Billiar 2013), it is likely that above a critical cell 

concentration threshold, fibroblasts start to reorganize collagen fibers circumferentially. 
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Although that concentration threshold is not defined for FLS, it is possible that the same 

mechanisms are at play and that the high FLS concentration is orienting collagen via the 

elongation and spreading mechanism. If this is the case, it may explain the graded 

reorganization response at failure that is concentration-dependent (Figure 6.3) and it would 

imply that the distribution of forces across fibers and the embedded cells also differs 

between groups. Differential force distribution could affect the soft embedded DRGs 

differently, and it is even possible that the greater fiber recruitment in the high FLS gels 

might lower the loads experienced by the DRGs. Although this could explain the 

disconnect between fiber reorganization and MMP-1 and neuronal substance P increases 

(Figures 6.3 & 6.4), quantifying gel contracture and the microstructure across the entire gel 

is needed to more fully elucidate the FLS-collagen fiber interactions that may also directly 

and/or indirectly affect neurons.  

 MMP-1 is expressed by both FLS and neurons in response to mechanical stimuli 

(Petersen et al. 2012; Yang et al. 2005; Zhou et al. 2014) and by FLS in inflammatory states 

(Bartok and Firestein 2010; Saravanan et al. 2014). Yet, since total MMP-1 was measured 

here (Figures 6.4 & 6.6), it is not known which proportion is attributable solely to FLS or 

to DRGs. Since MMP-1 was quantified only in regions containing DRG somas and/or 

axons in the first study presented in this chapter (Figure 6.4), it is probable that positive 

MMP-1 immunolabeling represents extracellular MMP-1 that is co-localized to DRG cells, 

or that MMP-1 that is sequestered in the cytosol of DRG cells (Craig et al. 2015; Murphy 

2017). However, MMP-1 is also detected in FLS-rich regions of the gels after stretch 

(Figure 6.6), suggesting its increase could be driven by FLS. Ultimately, it is likely that 
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load regulates MMP-1 in both DRG and FLS cells since both have been found to express 

MMP-1 when they are mechanically stimulated (Ghasemi et al. 2018; Yang et al. 2005; 

Zhou et al. 2014).  

Given the quick fixation of cells after stretch, it is likely that differences in MMP-

1 protein between groups indicate differential MMP-1 regulation via cellular localization, 

cell sequestration, endocytic/exocytotic processes, or even stretch-induced cell rupture 

(Craig et al. 2015; Murphy 2017; Visse and Nagase 2003), not regulation on the 

transcriptional or post-translational levels which take hours to days (Petersen et al. 2012; 

Yang et al. 2005). Although MMP-1 is quantified in DRG-biased images (Figure 6.4), it 

may be FLS-secreted (Figure 6.6) and could depend on FLS proliferation throughout the 

gel (Evans and Barocas 2009; Petersen et al. 2012). In fact, pilot studies co-labeling MMP-

1 either with the intermediate filament vimentin, which structurally identifies fibroblasts, 

or with the neuronal microtubule βIII tubulin, show that MMP-1 co-localizes with both 

FLS and neurons (Figure 6.10), supporting the notion that stretch increases FLS-produced  

MMP-1 in addition to the MMP-1 that co-localizes to DRGs (Figures 6.4 & 6.6).  

 

Figure 6.10. The co-localization (yellow) of vimentin or βIII tubulin (green) and MMP-1 (red) shows 

MMP-1 co-localized with FLS and DRG axons in a co-culture gel from DIV9. The insets show a cell 

labeled positively (white arrows) for MMP-1 that is clearly co-localized with vimentin, not βIII tubulin, 

suggesting MMP-1 is from the FLS cell type in this specific cell. The scale bar for the low magnification 

images is 100μm and is 50μm in the insets. 
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 Although neither cell-specific MMP-1 nor FLS proliferation analyses were 

included in the present study since the primary goal was to investigate neuronal outcomes 

in the context of nociception, those findings highlight the need to evaluate MMP-1 

expression by cell type in order to understand if it is being secreted by FLS (Petersen et al. 

2012) and/or neurons (Zhou et al. 2014). Furthermore, along with neurons, DRG somas 

may contain Schwann cells, microglia, and resident macrophages (Melli and Höke 2009), 

which may contribute to stretch-induced changes in cell physiology, although these cell 

populations were not investigated in this study.   

Although MMP-1 is elevated after failure in the presence of FLS, it is only different 

from gels with no FLS at the lower (5x104 cells/mL) FLS concentration (Figure 6.4), 

despite similar force and strains at failure in both groups with FLS (Figures 6.2 & 6.3). 

This disconnect between the biomechanical and MMP-1 outcomes in the low and high FLS 

gels supports the assertion that the force distribution and deformations on the embedded 

cells are concentration-dependent and contribute to differential MMP-1 expression (Figure 

6.4). An alternative hypothesis is that FLS-mediated degradation occurs by the time of the 

mechanical testing (Saddiq et al. 2009), resulting in a less dense collagen network at the 

time of gel stretch; such an altered gel composition could lead to cell-secreted MMP-1 that 

is trapped in the collagen matrix to be released to the gel surface where the DRGs are, 

making the MMP-1 more available for antibody detection via immunolabeling; it could 

also be released out of the gel into the testing bath, making it non-detectable via 

immunolabeling (Attia et al. 2014). If either or both mechanisms occur then the levels of 

secreted and/or trapped MMP-1 would depend on the degree of matrix degradation, an 
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effect which might be FLS concentration-dependent since fibroblasts model and remodel 

their surrounding ECM (Dallon and Ehrlich 2008; Grinnell and Petroll 2010; Kural and 

Billiar 2013; Wang et al. 2007). Assaying secreted MMP-1 in the culture medium, together 

with quantifying MMP-1 proximal to cells (Figure 6.4), would provide insight(s) into the 

effects of such factors on the local biochemical environment of joint tissues. Finally, 

although neither overall time in culture nor FLS concentration influence the baseline 

protein levels (Table 6.1), assessing cell-localized, gel entrapped, and secreted proteins, 

and in larger sample sizes, would provide a more complete understanding of the cellular 

environment in the resting state before stretch.  

Elevated total MMP-1, regardless of the cellular source, can increase neuronal 

excitability (Figure 6.7) (Allen et al. 2016) and/or contribute to receptor- or cytokine-

mediated nociceptive signaling (Boire et al. 2005; Conant et al. 2002; Conant et al. 2004; 

Miller et al. 2014; Visse and Nagase 2003). Exposure to exogenous MMP-1 alone causes 

an influx of intracellular calcium in DRG neurons (Figure 6.7) and also has a cytotoxic 

effect (Figure 6.8), an effect that has also been demonstrated in cortical neurons (Allen et 

al. 2016; Chen et al. 2013; Patel et al. 2015; Vos et al. 2000). The ability of exogenous 

MMP-1 to increase neuronal firing (Figure 6.7) indicates more action potentials and 

increased neuronal excitability, and suggests that MMP-1 that is increased by stretch 

(Figure 6.4) may also excite DRG neurons independent of the stretch itself and may even 

have an excitotoxic effect (Figure 6.8). Since increased afferent activity and neuronal 

hyperexcitability are characteristic of pain from joint trauma (Crosby et al. 2015), it is 

possible that MMP-1 may have a role in vivo by potentiating afferent hyperexcitability.  
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Further, both pro-MMP-1 and MMP-1 bind to the α2β1-integrin complex (Conant 

et al. 2004) and the PAR-1 receptor (Allen et al. 2016; Conant et al. 2002) on neurons, 

which are both involved in nociception and painful facet joint injury (Dong et al. 2013; 

Smith and Winkelstein 2017; Zhang et al. 2017). This suggests that elevated MMP-1 

(Figures 6.4 & 6.6) in the low FLS concentration gels may increase neuronal excitability 

or propagate nociceptive signaling (via increased substance P) through an α2β1-integrin 

and/or PAR-1 receptor mediated mechanism. In fact, inhibiting the α2β1-integrin complex 

has been shown to prevent the strain-induced increases in axonal substance P in this same 

DRG-collagen model under equibiaxial stretch injury (~20% strain) (Zhang et al. 2017). 

Since total MMP-1 and neuronal substance P together increase in low FLS concentration 

gels (Figure 6.4), it is possible that the increase in neuronal substance P may be due to the 

concomitant increase in MMP-1 via integrin interactions. Probing MMP-1 co-expression 

with other pain-related neuronal receptors to which MMP-1 can bind (Boire et al. 2005; 

Conant et al. 2002; Conant et al. 2004; Visse and Nagase 2003) would provide important 

physiological insight. 

The higher neuronal substance P expression that is evident in the low FLS gels 

(Figure  6.4) provides a proxy for indicators of a heightened state of nociceptive signaling 

(Lee and Winkelstein 2009; Zhang et al. 2017; Zhang et al. 2018a) and may also contribute 

to a further upstream neuronal signaling role of MMP-1 (Conant et al. 2002; Visse and 

Nagase 2003). In addition to its ability to bind to the α2β1-integrin complex and to affect 

downstream signaling cascades (Conant et al. 2004), MMP-1 stimulation of release and/or 

activation of other MMPs is also directly involved in substance P signaling (Conant et al. 
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2002; Visse and Nagase 2003). Most notably, MMP-1 stimulates neuronal MMP-9 

secretion (Conant et al. 2002) and activates pro-MMP-9 (Visse and Nagase 2003). Indeed, 

the ability of MMP-1 exposure alone to increase MMP-9 in DRG cultures (Figure 6.8) 

suggests that MMP-1 may be directly responsible for the simultaneous increase in MMP-

9 along with MMP-1 that is evident after failure (Figure 6.6). Since MMP-9 directly 

cleaves substance P (Diekmann and Tschesche 1994), it may also contribute to neural 

regulation in vivo (Mitchell et al. 2013). MMP-9, like MMP-1, can sensitize peripheral 

neurons (Kawasaki et al. 2008), and is necessary for early-phase acute pain (Kawasaki et 

al. 2008). Whether the increased neuronal substance P (Figure 6.4) is MMP-1-independent 

or MMP-1-dependent, that finding implies incorporating FLS not only better mimics the 

anatomy and physiology of ligaments in a culture system but also alters cell-cell 

interactions to dysregulate neuronal signaling.  

Although MMP-1 may act independent of regulating the ECM, it is also possible 

that MMP-1 alters the microstructural environment via collagen degradation much like 

bacterial collagenase (Figures 5.14 & 5.15) (Visse and Nagase 2003), and by doing so, it 

triggers afferent signaling, including upregulation of substance P (Chan et al. 2018; Zarei 

et al. 2017; Zhang et al. 2016; Zhang et al. 2018a). However, MMP-1-mediated 

degradation depends on MMP-1 enzyme kinetics and diffusion (Flynn et al. 2010), which 

likely occurs over longer time scales than does MMP-1 signaling. Since cellular assays 

were made within minutes of the mechanical stimulus in this study, it is more likely that if 

MMP-1 mediates neuronal substance P, it is through an ECM-independent mechanism.  
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The finding that the mechanical effect of FLS on the collagen network is not 

resolved at the macroscale (Figure 6.2) and varies with FLS concentration on smaller scales 

(Figure 6.3) has implications for injury thresholds. This is further complicated for DRGs 

in a stretched heterogeneous network, since the microenvironment in capsular ligaments 

can vary with anatomical location (Kallakuri et al. 2012; Yahia and Garzon 1993; 

Yamashita et al. 1996). Even in simple cases, uniaxial tension produces spatial variability 

in strain fields and fiber organization (Zhang et al. 2016); as such, the local 

microenvironment of the embedded cells, and subsequently their mechano-regulated 

responses, also varies. In fact, computational models of the ligamentous capsule report 

altered strains and fiber kinematics experienced by neurons in a stretched fibrous network 

that are not predicted by macroscale mechanics (Chan et al. 2018; Zarei et al. 2017). 

Furthermore, those models find that embedded cells can sustain strains much greater than 

the bulk gel stretch (Chan et al. 2018), and that “strain amplification” depends on the 

direction and angle of loading, cell geometry and orientation, and fiber volume and 

organization (Chan et al. 2018; Zarei et al. 2017). Of note, effects of FLS have not been 

considered in those models.  

The current finding that FLS have differential effects on regional strains and 

microstructure (Figure 6.3) supports the need to include FLS or other contractile cells into 

computational models to fully capture their physiological effects, improve model fidelity, 

and perhaps help elucidate FLS-fiber interactions that are not yet able to be probed 

experimentally. The concentration-dependent effect of FLS on collagen gel microstructure 

is particularly relevant since the ligamentous capsule regions have different FLS densities 
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and show regional variability (Yamashita et al. 1996). Together, these findings imply there 

is a high likelihood that variable mechanosensitive properties may be conferred to 

innervating fibers based on the regional anatomical FLS cell density. Since microstructure 

reorganization at failure and loading-induced protein expression are both concentration-

dependent (Figures 6.3 & 6.4), it is likely that the nerve fibers in FLS-dense regions of the 

ligament reside in a microstructural and cellular environment that is unique from than those 

in FLS-sparse regions.  

In summary, this study presents considerations for in vitro modeling of the complex 

biomechanical and physiological anatomic structures to better understand their multiscale 

behavior. Addition of FLS into an existing DRG-collagen gel model (Zhang et al. 2017; 

Zhang et al. 2018a) not only alters the regional microenvironment in a concentration-

dependent manner but also modulates the physiologic cellular responses (Figures 6.3 & 

6.4). Load-induced increases in MMP-1 may act upstream of MMP-9 (Figure 6.8) and/or 

directly influence neuronal firing (Figure 6.7). Certainly, there are also cell-specific 

variations that must be considered when incorporating fibroblasts with neurons and an 

ECM. The biomechanical and physiological effects of cell-cell and cell-fiber interactions 

are themselves mediated by the presence, and extent of, FLS present. Nevertheless, this 

study demonstrates that FLS mechanically alter the local DRG microenvironment and 

affect load-induced protein expression in neurons, and are thus critical in understanding 

nociceptive mechanisms in capsular ligaments. Certainly, expanding experimental 

techniques and applications to better visualize both the collagen microstructure and the 

cells within the matrix, along with quantifying bulk gel contracture is needed to fully 
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describe the FLS-collagen fiber interactions and how they relate to cellular and 

microstructural function and dysfunction, especially under load. Nevertheless, this study 

provides important information about mechanical and physiological interactions between 

afferent fibers and FLS, with each other, and their surrounding collagenous network, 

emphasizing the importance of considering the FLS cell type in modeling ligamentous 

capsules.  

 

6.6. Integration & Conclusions 

 The studies in this chapter support the hypothesis that FLS regulate the 

microstructure of their surrounding collagen network under stretch (Figure 6.3). Moreover, 

the outcomes presented here demonstrate that FLS-regulation of collagen network 

kinematics under load is concentration dependent. Similar to the result that FLS-seeded 

collagen gels are not biomechanically stronger than 3T3-seeded gels (Figure 5.10), DRG-

FLS gels do not have stronger biomechanical properties than collagen gels with only DRGs 

(Table 6.1 & Figure 6.2). The similar macroscale biomechanics of gels with and without 

FLS could be due to the ECM remodeling by FLS cells (Saddiq et al. 2009). Yet, the effect 

of FLS on network composition is not assayed in this study. Nonetheless, differential 

effects of the presence and extent of FLS on collagen microstructure and neuronal 

physiology, and not on macroscale gel biomechanics, strengthens the assertion that 

interactions on a local cell- and fiber- level drive neuronal increases in substance P and 

MMP-1 localized to DRG soma and axons (Figure 6.4). Nociceptive regulation by MMP-
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1 is further supported by the finding that exogenous MMP-1 exposure increases neuronal 

firing in DRG cultures (Figure 6.7). 

The results presented in this chapter demonstrate that FLS cells influence neuronal 

expression of the nociceptive neuropeptide substance P (Figure 6.4B), supporting the 

hypothesis for Aim 3. Together with the evidence in Chapter 5 supporting a distinct 

functional role of FLS as a fibroblast phenotype, increased substance  P in the presence of 

fibroblasts underscores the importance of including FLS in models of the capsular 

ligament, especially in the context of nociception and understanding MMP-related 

signaling pathways.  

MMP-1 is detectable at baseline in gels with and without FLS (Table 6.2), with no 

difference in MMP-1 levels assayed by immunolabeling. That finding supports the 

hypothesis in Aim 3 that fibroblasts secrete low levels of MMPs at baseline, but does not 

suggest that MMP levels are any different than cultures without FLS, at least for protein 

localized to DRG somas and axons. FLS are known to secrete MMPs in normal and healthy 

remodeling processes (Bartok and Firestein 2010), and it is very likely that MMP-1 

expression may be elevated in gels with FLS but that the MMP-1 is localized to the FLS 

cells, trapped within the matrix but distant from DRGs, or in the culture media (Attia et al. 

2014). Indeed, elevated MMP-1 in regions not probed in this study (FLS-localized or in 

culture media) could explain why more MMP-1 is localized to DRG soma and axons 

immediately after stretch (Figures 6.4 & 6.6). 

The findings in this chapter that an exposure to exogenous MMP-1 alone increases 

neuronal activity (Figure 6.7) and neuronal MMP-9 expression (Figure 6.8) were 
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conducted in DRG-only monolayer cultures absent a collagen substrate and FLS cells. As 

such, those findings support that MMP-1 directly regulates neuronal responses, at least in 

part, via pathways that are independent of the surrounding collagen network. Taken 

together with the findings from Chapter 5 that bacterial collagenase decreases collagen 

density in concert with altered neuronal signaling (Figures 5.14 & 5.15) and the fact that 

bacterial collagenase and MMP-1 have similar collagenolytic functionality (Fields 2013), 

it is likely that MMP-1 mediates neuronal responses via collagen-independent and 

collagen-dependent pathways. The studies that are presented in Chapter 7 test the effect of 

exogenous intra-articular MMP-1 in the rat and assay both the biomechanical effect of 

MMP-1 on the collagen network of the capsular ligament and the physiological effect of 

MMP-1 on substance P expression in DRG neurons and the spinal cord. Studies in the rat 

quantify behavioral sensitivity in order to determine if any effects of MMP-1 on ligament 

biomechanics and/or neuronal physiology are relevant to the manifestation of pain. The 

ability of MMP-1 to directly alter MMP-9 levels and firing patterns in neurons (Figures 6.7 

& 6.8) also has implications for the MMP-1 that is detected in tissues from patients with 

painful TMJ disorders (Chapter 3) (Ita et al. 2020a), and supports that the correlations 

between MMP-1 with MMP-9 (Figure 3.3) and pain scores (Figure 3.4) may indeed be 

driven by mechanistic relationships between MMP-1 and MMP-9, and between MMP-1 

and nociceptive signaling, respectively.  

The studies in the chapter assay MMP-1 and MMP-9 immediately after distraction 

to failure. Given the fixation of co-cultures which minutes, differences in MMP-1 and 

MMP-9 expression (Figures 6.4 & 6.6) are almost certainly due to rapid cellular re-
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localization of MMPs via endocytosis, exocytosis, or cell rupture (Craig et al. 2015; 

Murphy 2017; Visse and Nagase 2003). Although the rapid re-localization of MMPs in 

response to stretch, especially to neuronal-rich regions (Figures 6.4 & 6.6) may have 

implications on downstream nociceptive signaling (Allen et al. 2016; Conant et al. 2002; 

Dumin et al. 2001; Vos et al. 2000), any load-induced changes at the MMP transcriptional 

and/or post-translational level cannot occur in the matter of minutes (Petersen et al. 2012; 

Yang et al. 2005). Studies in Chapter 8 assay MMP-1, MMP-9, and substance P protein 

expression at 24 hours after a painful stretch to allow for MMP regulatory mechanisms to 

take place. Further, failure loading in uniaxial tension was imposed in the studies in this 

chapter, yet imposing sub-failure stretch to this co-culture model will provide further 

quantitative measures of how FLS may modulate biomechanical thresholds for nociceptive 

signaling previously defined in the DRG-collagen gel model absent FLS (Zhang et al. 

2017; Zhang et al. 2018a). Moreover, imposing sub-failure loading in a biaxial 

configuration better mimics the bony boundaries of the capsular ligament in situ. 

Accordingly, studies in Chapter 8 utilize a sub-failure painful stretch in equibiaxial tension. 
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  Chapter 7 

Effects of Intra-Articular MMP-1 on Pain, Facet 

Joint Tissue Structure-Function, & Neuronal 

Dysregulation 
 

This chapter has been adapted from: 

Ita ME, Winkelstein BA. Intraarticular MMP-1 is sufficient to induce pain & substance P 

regulation in DRG afferents absent any structural damage. Cervical Spine Research Society 

Annual Meeting, Abstract #40, November 2019. New York, NY. 

 

Ita ME, Leavitt OME, Winkelstein BA. MMP-1 induces joint pain that may be mediated 

by increased activity in peripheral neurons. Orthopaedic Research Society Annual Meeting, 

Abstract #2184, March 2018. New Orleans, LA.  

 

Ita ME, Singh S, Welch RL, Troche HR, Ghimire P, Winkelstein BA. Intra-articular 

MMP-1 induces long-lasting pain accompanied by altered capsular structure, 

biomechanical function, & nociceptive responses. Osteoarthritis & Cartilage, submitted. 

 

 

7.1. Overview 

Although the studies presented in this thesis demonstrate that MMP-1 levels track 

with patient-reported pain in human patients (Chapter 3) and increase in response to both 

biomechanical and biochemical stimuli coincident with the nociceptive neurotransmitter 

substance P in vitro and in vivo (Chapters 4-6), they do not enable answering the question 

of whether MMP-1 alone is sufficient to initiate nociception from the joint. The studies 

presented in this chapter align with parts of Aim 2 and define the effect of exogenous intra-

articular MMP-1, absent other painful exogenous stimuli, on pain-like behaviors in the rat 
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as well as begin to test the hypothesis that MMP-1 may be implicated in trauma and/or 

degenerative joint pain (Cohen et al. 2007; Elliott et al. 2009; Haller et al. 2015; Ita et al. 

2017; Kim et al. 2015; Loeser et al. 2012). The studies in this chapter use the same 

behavioral, histological, and immunohistochemical assays that are reported with intra-

articular bacterial collagenase in Chapter 4 (Ita et al. 2020b), including evaluating the 

expression of substance P and MMP-9 protein in peripheral neurons. Substance P and 

MMP-9 expression were also evaluated in the spinal cord since changes in central 

processing are also associated with joint-mediated chronic pain (Finan et al. 2013; Lluch 

et al. 2014). These studies also expand prior work with collagenase to augment evaluation 

of C6/C7 capsular ligament functional and structural responses to mechanical testing with 

integrated polarized light imaging. Fiber alignment maps and the corresponding dihedral 

angles of the fibers are extracted from polarized light images and quantified using the 

circular variance (CV), which measures the heterogeneity of fiber directions, where a lower 

CV indicates the alignment of many collagen fibers in a common direction and a higher 

CV indicates that the angles of collagen fibers have a larger spread (Ita and Winkelstein 

2019; Miller et al. 2012; Zhang et al. 2016). By integrating these techniques, studies 

provide more comprehensive insight into how exogenous MMP-1 affects the joint 

structure-function relationships at both the whole joint macroscale and at the 

microstructural level of the collagenous capsular fiber network.  

  Studies using polarized light collectively demonstrate that areas of the facet 

capsule with the highest fiber reorganization correspond to those regions that exhibit 

microstructural damage to the collagen matrix (Quinn and Winkelstein 2008; Quinn and 
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Winkelstein 2009; Quinn and Winkelstein 2010; Quinn et al. 2010a; Quinn and 

Winkelstein 2011). Furthermore, regions with the greatest fiber realignment are correlated 

with subsequent tissue rupture (Quinn and Winkelstein 2009; Quinn et al. 2010a), but do 

not necessarily correspond to the regions with the greatest maximum principal or shear 

strain (Quinn and Winkelstein 2008). That work also defines how the microstructure of the 

capsular ligament contributes to the biomechanical function and potential for injury in the 

context of loading known to be painful in otherwise unaltered ligaments (Quinn and 

Winkelstein 2009; Quinn et al. 2010a). Although there are substantial and growing studies 

that describe the potential for injury and/or altered local mechanics, little is known about 

what factors may predispose the capsular ligament to altered biomechanical responses 

during loading. In the current study, polarized light techniques are integrated with 

mechanical loading to define how intra-articular exposure to exogeneous MMP-1 alters the 

microstructure of the capsular ligament in situ and in response to loading. A particular 

focus is placed on assessing the macro- and microstructural kinematics at the first 

occurrence of anomalous fiber realignment, ligament yield, ligament failure, and ultimate 

rupture of the tissue since those events collectively represent mechanical events both above 

and below the strain threshold for painful loading. The studies in this chapter begin to 

elucidate mechanisms by which MMP-1-induced alterations to the ligament’s 

microstructure compromises integrity of the collagen network. Furthermore, the 

implications of intra-articular MMP-1 on the ligament’s microstructure are contextualized 

with MMP-1’s effects on behavioral sensitivity and nociceptive dysregulation in the 

peripheral and central nervous systems. 
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7.2. Relevant Background 

  Musculoskeletal pain is the most common single type of chronic pain and reported 

cause of disability, with neck and low back pain being among the most prevalent sources 

of pain (Institute of Medicine 2011). Over 15% of adults report neck pain in a three-month 

span, and it is estimated that the cervical facet joints are the source of pain in 28% of neck-

pain cases (Manchikanti et al. 2004; Manchikanti et al. 2015; Schofferman et al. 2007). 

The facet joints of the spine act as movement and pain sensors owing to their innervation 

by mechanoreceptors and nociceptors, respectively (Bogduk and Marsland 1988; Kallakuri 

et al. 2012; McLain 1994).  

  The ligamentous facet capsule is one of the innervated facet joint tissues and is 

capable of transmitting pain sensation under pathologic conditions (Cavanaugh et al. 2006; 

Ita et al. 2017; Jaumard et al. 2011; Manchikanti et al. 2004). For example, excess stretch 

of the capsular ligament resulting from either direct trauma to the facet joint or its 

mechanical injury due to altered spine kinematics can initiate physiological cascades that 

induce sensitivity and modifications in neuronal signaling (Crosby et al. 2014; Crosby et 

al. 2015; Ita et al. 2017; Lu et al. 2005; Sperry et al. 2017). In addition to injury, joint-

mediated pain occurs with tissue degeneration that is characteristic of diseases like 

osteoarthritis (Neogi 2013; Torrie and Adams 2012). Joint pain can also manifest 

seemingly spontaneously in the absence of injury and degeneration (Hunter et al. 2013; 

Sharma 2016). Both molecular mechanisms that cause joint-mediated pain across 

etiologies including injury, non-injurious degeneration, or by other mechanisms, and the 

degree of involvement of the capsular ligament across etiologies, are not well defined. 
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Degeneration is caused by a complex combination of biomechanical and biological 

cascades that initiate nociception in innervated joint tissues (Loeser et al. 2012; Malfait 

and Miller 2016; Varady and Grodzinsky 2016), and there is evidence that neuropathic and 

inflammatory cascades accompany degeneration to maintain pain (Malfait et al. 2013). Yet, 

if, and which, biologic mediators regulate the pathophysiological cascades that transmit 

nociceptive signals in joint-mediated pain etiologies is unknown. 

Matrix metalloproteinases (MMPs) are ubiquitous proteases with roles in healthy 

and disease states that may regulate the mechanical, structural, and/or cellular responses of 

resident nerves and/or fibroblasts in the capsular ligament in painful joint pathology 

(Agrawal et al. 2008; Huntley 2012; Rosenberg 2002; Sbardella et al. 2012). The interstitial 

collagenase MMP-1 is a likely mediator of pathophysiological cascades in joint tissues 

since it is in the joint synovium, fluid, and capsule after trauma (Cohen et al. 2007; Haller 

et al. 2015; Konttinen et al. 1999) and with degeneration (Kim et al. 2015; Loeser et al. 

2012). Moreover, MMP-1 functions as a direct regulator of structure and cell-signaling, 

and as an indirect regulator of joint mechanics. For example, MMP-1 degrades 

extracellular matrix (ECM) components of innervated joint tissues, including the synovium 

and capsular ligament (Visse and Nagase 2003), and in doing so can alter the biomechanics 

of the overall joint (Grenier et al. 2014; Otterness et al. 2000). In addition to catabolism of 

the ECM and independent of its proteolytic activation, MMP-1 acts on several neuronal 

receptors involved in nociception (Allen et al. 2016; Dumin et al. 2001) and has substrates 

to neuropeptides and cytokines that mediate pain (Visse and Nagase 2003). However, 

despite growing evidence of increased MMP-1 in painful diseases, its role in joint pain is 
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not defined. Moreover, it is unknown if MMP-1 alone, absent trauma or degeneration, is 

enough to induce pain.  

As such, an in vivo study tested whether intra-articular MMP-1 induces pain when 

introduced in the rat C6/C7 facet joint. This study tests the hypothesis that exogenous intra-

articular MMP-1 in the facet joint induces behavioral sensitivity via its mediation of the 

capsular ligament’s collagen network and its regulation of both substance P and MMP-9. 

Behavioral sensitivity was measured using mechanical hyperalgesia for 28 days after its 

injection. After 28 days, the cartilage, bone, and capsular ligament of the injected joints 

were assessed using histology to evaluate the extent of structural degradation. The 

macroscale biomechanics, surface strain fields, and microstructural kinematics of the 

capsular ligament under tensile load were also tested in isolated joints. Quantitative 

polarized light imaging (QPLI) was integrated with that testing to quantify microstructural 

changes in the collagen fiber kinematics prior to, and at relevant mechanical events during, 

tensile loading (Quinn and Winkelstein 2009; Quinn et al. 2010a; Tower et al. 2002). To 

evaluate effects of intra-articular MMP-1 on unwound collagen chains in the capsular 

ligament, a collagen hybridizing peptide (CHP) was used to detect degraded triple-helical 

collagen in capsular ligament tissue homogenates from samples taken at day 28 (Lin et al. 

2019). Substance P, a neurotransmitter involved in nociception (Basbaum et al. 2009; 

Zhang et al. 2017), and MMP-9, a  gelatinase implicated in neuropathic pain and regulated 

by MMP-1 (Conant et al. 2002; Kawasaki et al. 2008), were both assayed in dorsal root 

ganglia neurons (DRG) and the spinal cord at the same time point (day 28). 
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7.3. Methods 

7.3.1. Intra-Articular Injection, Mechanical Hyperalgesia & Tissue Harvest 

All procedures were approved by the University of Pennsylvania IACUC and 

performed under the Committee for Research and Ethical Issues of the IASP guidelines 

(Zimmermann 1983). Studies used Male Holtzman rats (Envigo; Indianapolis) with 

surgeries performed under inhalation isoflurane anesthesia (4% induction; 2.5% 

maintenance). To expose the cervical facet joints, a midline incision was made over the 

C4-T2 vertebrae and the paraspinal musculature was cleared as described in Section 4.3.2 

(Figure 4.2). The bilateral C6/C7 facet joints were further finely cleared of musculature 

and injected bilaterally with either 10μL of human recombinant MMP-1 (n=18) dissolved 

in sterile water (30μg/mL; SRP3117; Sigma; St. Louis, MO) or only sterile water (10μL; 

vehicle n=13) (Figure 7.1). Immediately after injection, wounds were sutured and stapled, 

and rats were recovered in room air. Weight gain and animal welfare were monitored daily, 

and the surgical staples were removed after 14 days.  

To measure pain responses, behavioral sensitivity was assessed by measuring 

mechanical hyperalgesia in the bilateral forepaws of each rat before surgery (baseline) and 

at post-operative days 1, 3, 5, 7, 11, 14, 17, 21, 25, and 28 (Figure 7.1). A tester blinded to 

procedures measured the paw withdrawal threshold (PWT) in the bilateral forepaws in 

response to stimulation using a series of von Frey filaments (Stoelting; Wood Dale, IL) of 

increasing strength (1.4, 2, 4, 6, 8, 10, 15, and 26 grams) (Figure 7.1) (Crosby et al. 2014; 

Crosby et al. 2015; Ita et al. 2020b; Kras et al. 2015; Quinn et al. 2010b). Each filament 

was separately applied five times to each forepaw, and a positive response was recorded if 
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the rat exhibited licking, shaking, or withdrawing the forepaw in response to stimulation. 

Once a positive response was recorded for two consecutive filaments, the lower strength 

filament was taken as the PWT for that testing session. Three rounds of testing were 

completed on each designated day, separated by at least 10 minutes; all rounds were 

averaged across rats for both the left and right PWTs on each day.  

On day 28, immediately after behavior testing, rats were anesthetized with sodium 

pentobarbital (65mg/kg; i.p.) and underwent transcardial perfusion with phosphate-

buffered saline (PBS; 250ml) followed by 4% paraformaldehyde (PFA; 250ml) (MMP-1 

n=12; vehicle n=8), or PBS only (n=6 MMP-1; n=5 vehicle). Spinal columns from the 

occiput to T2 (MMP-1 n=6; vehicle n=4) or cervical DRG and spinal cord tissues (MMP-

 

Figure 7.1. Schematic depicting the study design and specifics for each outcome measure. Rats 

underwent an intra-articular injection of either MMP-1 or vehicle at baseline (BL); the photograph shows 

a rat with its wound sutured immediately after injection. Mechanical hyperalgesia quantified behavioral 

sensitivity for 28 days. On day 28, tissue was harvested from separate groups of rats for: joint histology, 

mechanical testing of isolated joint tissue, a collagen degradation assay, or immunohistochemical assays 

of neural tissues.  
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1 n=6; vehicle: n=4) were harvested from separate groups of rats after perfusion with PFA 

(Figure 7.1). Fixed spinal columns were post-fixed in 4% PFA for 24 hours, held in sucrose 

(Sigma; St. Louis, MO) dissolved in PBS (30%) for seven days, and decalcified in 10% 

EDTA (Thermo Fisher; Waltham, MA) for three weeks (Ita et al. 2020b; Kras et al. 2015). 

The C6/C7 facet joint segment was embedded in Tissue-Tek OCT Compound (Fisher 

Scientific; Waltham, MA), coronally cryosectioned (16μm), and thaw-mounted onto 

Superfrost Plus slides (Fisher Scientific). Fixed DRGs and spinal cord tissues were post-

fixed in PFA for 24 hours, held in 30% sucrose for seven days, and embedded in OCT. 

Axial cryosections (14μm; 6-8/rat) of DRG and spinal cord sections were thaw-mounted 

onto Superfrost Plus slides. Joint and neural tissue sections from naïve rats (n=2) were 

included in all analyses in order to provide un-operated tissues as control samples.  

Fresh, unfixed matched spinal columns from occiput to T2 (MMP-1 n=6; vehicle 

n=5) were separately harvested from rats that received perfusion with only PBS for 

biomechanical testing and the CHP assay (Figure 7.1). Fresh cervical spinal columns were 

wrapped in saline-soaked gauze and stored at -20ºC; a fresh spinal column from a naïve rat 

was also processed for biomechanical testing and the CHP assay and served as a normal 

comparison for an un-operated facet joint. 

7.3.2. Histological Assessment of Joint Tissues 

Separate C6/C7 coronal joint tissue sections were stained with Safranin O/Fast 

Green to visualize cartilage and bone and Picrosirius Red/Alcian Blue to visualize collagen 

fibers (Schmitz et al. 2010); stained sections were imaged with the 20x objective of an 

EVOS FL Auto Imaging microscope as described in Chapter 4 (Ita et al. 2020b). Stained 



203 

 

Safranin O/Fast Green articular surfaces (n=3-6/rat) were scored by blinded graders using 

the modified Mankin score (Table 4.1) (Xu et al. 2009; Yeh et al. 2007); in the case that 

the inferior and superior articular surfaces could not be imaged simultaneously with the 

20x objective, the superior and inferior articular surfaces were imaged and graded 

separately. Regions of interest (ROIs; n=2-4/image) throughout the Picrosirius Red/Alcian 

Blue stained images (n=3-9 images/rat) were analyzed using the Fourier transform method 

to calculate anisotropy index detailed in Section 4.3.3 (Figure 4.3) (Ita et al. 2020b; Sander 

and Barocas 2009). 

7.3.3. Tensile Testing of Isolated Facet Capsules & Analyses of Mechanical & Optical 

Data 

To prepare samples for mechanical testing, harvested spines from the occiput to T2 

were dissected en bloc and the facet joints were isolated by finely dissecting them and 

removing the superficial musculature (Quinn and Winkelstein 2007; Singh and 

Winkelstein 2020). The in situ length across the C6/C7 motion segment was measured from 

the rostral-caudal midpoint of each vertebra’s laminae using micro-calipers (Figure 7.2A 

& Table 7.1) (Singh and Winkelstein 2020). Dissected spines were carefully bisected, with 

one side prepared to undergo biomechanical testing and the other side prepared for the 

biochemical CHP assay; left and right sides were assigned to assays at random. The 

capsular ligament of the isolated C6/C7 facet joint was marked with fiducial markers to 

enable strain tracking during loading. The unilateral C6/C7 facet was then mounted in an 

Instron 5865 (Instron; Norwood, MA) by gripping each of the laminae and transverse 

processes of the C6 and C7 vertebrae with micro-forceps (Figure 7.2A) (Quinn and 
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Winkelstein 2007; Singh and Winkelstein 2020). The in situ length was re-established in 

the Instron loading device and taken as the unloaded reference position (Figure 7.2A).  

Isolated ligament specimens underwent tensile loading at 0.08mm/sec to failure. 

Force and displacement data were collected at 500Hz during loading, along with high-

speed imaging by a Phantom v9.1 camera (500Hz; 40pixels/mm; Vision Research; Wayne, 

NJ). The Instron mechanical testing setup was equipped with a QPLI imaging system that 

acquired pixel-wise collagen fiber alignment maps both prior to, and during, loading 

(Quinn and Winkelstein 2009; Quinn and Winkelstein 2011; Singh and Winkelstein 2020; 

Tower et al. 2002; Zhang et al. 2016). 

 

Figure 7.2. Specimen preparation, mechanical testing, and analysis of biomechanical and optical data. 

(A) Harvested spines were finely dissected and the in situ length across the C6/C7 motion segment was 

measured; that length was set as the unloaded reference position during grip-mounting in the Instron. (B) 

An exemplary force-displacement response of a ligament from a vehicle-injected joint (Rat #54) showing 

the identification of the first occurrence of anomalous realignment (+), yield (*), and first failure (x). 

Stiffness was calculated as a linear fit from 20% to 80% of first failure (blue circles); the line fit to 

calculate stiffness is shown by the red line. (C) Exemplary high-speed images with corresponding 

maximum principal strain (MPS) maps, collagen fiber alignment maps, and the detection of anomalous 

fiber reorganization events (yellow circles in insets) at first occurrence of anomalous realignment, yield, 

and first failure for the specimen curve depicted in (B). 

.  

Force, displacement, and optical data were used to define several events of interest throughout the 

tensile stretch: the first evidence of the occurrence of anomalous collagen fiber 

realignment, yield, the first evidence of failure, and ultimate rupture of the tissue (Figure 

7.2B). Ultimate rupture, first failure, and yield were defined from the mechanical data. 

Prior to the analysis for event detection, force data were digitally filtered using a ten-

point moving average (Ita and Winkelstein 2019; Quinn et al. 2010a). Ultimate rupture 

was defined by the maximum force sustained during loading and first failure was 

defined by a decrease in force with increasing displacement between any two data points 

prior to ultimate rupture (Figure 7.2B); for some specimens, first failure and ultimate 

rupture occurred simultaneously (Table 7.1). Yield was defined by any decrease in the 

maximum tangent stiffness of at least 10% (Figure 7.2B) (Quinn et al. 2010a; Quinn 

and Winkelstein 2008). Ligament stiffness was calculated as a linear slope of the force-

displacement curve from 20% to 80% of the force value at first failure (Figure 7.2B) 

(Ita and Winkelstein 2019; Lee et al. 2006). 

Collagen fiber alignment maps were generated during loading and used to 

determine the first occurrence of anomalous realignment (Quinn and Winkelstein 2009; 

Quinn et al. 2010a). Briefly, vector correlations were generated for every acquired 

alignment map to identify fiber alignment changes in the maps immediately preceding 

and following it based on pixel-by-pixel correlation calculations (Quinn et al. 2010a). 

Anomalous collagen realignment was defined by a decrease of 0.35 or more in the 

alignment vector correlation between maps, and a single region was defined as 

sustaining anomaly when at least nine pixels were connected to one another (Figure 

7.2C) (Quinn et al. 2010a). Alignment maps were also generated in the unloaded 

reference state to measure microstructural organization of the ligament prior to loading.  

Force values, displacement values, collagen fiber alignment maps, and high-speed 

images were extracted at the evidence of first anomaly, yield, first failure, and 

ultimate rupture. At the unloaded reference state and each of those events, fiducial 

markers were digitized on high-speed images using the centroid of every capsule 
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Force, displacement, and optical data were used to define several events of interest 

throughout the stretch to failure: the first occurrence of anomalous collagen fiber 

realignment, yield, the first failure, and ultimate rupture of the ligament (Figure 7.2B). 

Force data were digitally filtered using a ten-point moving average (Ita and Winkelstein 

2019; Quinn et al. 2010a). Ultimate rupture, first failure, and yield were defined using the 

mechanical data. First failure was defined by a decrease in force with increasing 

displacement between any two data points prior to ultimate rupture (Figure 7.2B). Ultimate 

rupture was defined as the maximum force sustained during loading (Figure 7.2B). For 

Table 7.1. Summary of in situ length, degraded collagen, macroscale biomechanics, maximum principal 

strain, microstructure, and anomalous events at mechanical events during tensile failure 

       reference  first anomalous fiber realignment  yield 

Rat   CV CHP/mg length  force disp MPS CV #Ev   force disp MPS CV #Ev 

14 
M

M
P

-1
 

0.127 1191.7 2.25  0.177 0.771 0.082 0.141 1   1.255 1.648 0.165 0.163 2 

15 0.063 450.0 2.82  0.478 1.664 0.126 0.115 1   2.589 2.622 0.254 0.147 5 

19 0.083 747.4 3.34  0.490 0.889 0.104 0.139 1   0.910 2.355 0.154 0.147 3 

55 0.119 796.3 2.66  0.065 0.738 0.105 0.157 1   1.161 1.783 0.210 0.148 4 

56 0.149 1225.0 2.45  0.244 1.054 0.092 0.177 1   0.755 1.366 0.118 0.163 2 

59 0.136 1437.2 2.27  0.546 1.069 0.117 0.216 1   2.521 2.918 0.380 0.195 4 

 avg 0.113 974.6 2.63  0.333 1.031 0.104 0.158 1.00   1.532 2.115 0.213 0.161 3.33 

 SD 0.033 369.5 0.41  0.198 0.339 0.016 0.035 0.00   0.813 0.608 0.094 0.019 1.21 

54 

v
e
h

ic
le

 

0.126 1710.0 3.13  0.132 0.637 0.110 0.188 1   1.341 1.587 0.224 0.202 3 

57 0.102 560.7 2.66  2.208 0.750 0.138 0.122 2   2.791 1.088 0.197 0.189 8 

58 0.098 963.6 2.88  1.449 0.844 0.071 0.159 1   2.006 1.374 0.121 0.188 2 

61 0.093 574.2 2.33  0.462 1.881 0.194 0.143 1   0.539 1.934 0.287 0.138 2 

62 0.156 786.3 2.74  0.823 0.551 0.188 0.179 2   1.441 0.789 0.269 0.205 1 

 avg 0.115 918.9 2.75  1.015 0.933 0.140 0.158 1.40   1.624 1.354 0.220 0.184 3.20 

 SD 0.026 472.4 0.29  0.827 0.542 0.052 0.027 0.54   0.836 0.442 0.066 0.027 2.77 

65 naive 0.143 358.2 2.91  0.852 1.047 0.188 0.213 2   1.549 1.422 0.367 0.228 4 

                

  first failure  ultimate rupture    

Rat  force disp MPS CV #Ev  force disp MPS CV #Ev  stiffness  

14 

M
M

P
-1

 

2.153 2.047 0.230 0.243 11  2.153 2.047 0.230 0.243 11  1.880  

15 2.674 2.918 0.379 0.154 7  2.674 2.918 0.379 0.154 7  2.553  

19 2.662 3.152 0.182 0.272 9  2.662 3.152 0.182 0.272 9  0.335  

55 1.874 2.314 0.206 0.287 6  1.874 2.314 0.206 0.287 6  1.452  

56 2.805 2.187 0.278 0.259 8  2.825 2.191 0.287 0.263 8  2.382  

59 2.735 3.396 0.366 0.265 7  2.735 3.396 0.366 0.265 7  0.797  

 avg 2.484 2.669 0.273 0.247 8.00  2.487 2.670 0.275 0.247 8.00  1.566  

 SD 0.378 0.560 0.083 0.048 1.78  0.382 0.560 0.083 0.048 1.78  0.879  

54 
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e
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2.348 2.406 0.263 0.266 6  2.451 2.770 0.609 0.281 11  1.740  

57 2.791 1.088 0.197 0.189 8  2.966 1.165 0.312 0.206 9  4.424  

58 2.958 2.951 0.251 0.254 8  2.958 2.951 0.251 0.254 8  1.255  

61 2.044 2.587 0.225 0.263 9  2.301 2.859 0.273 0.282 7  1.519  

62 1.536 0.835 0.289 0.248 6  1.730 1.158 0.305 0.255 8  2.584  

 avg 2.335 1.973 0.245 0.244 7.40  2.481 2.181 0.350 0.256 8.60  2.304  

 SD 0.574 0.949 0.035 0.032 1.34  0.515 0.933 0.147 0.031 1.51  1.285  

65 naive 1.701 1.738 0.532 0.238 8  1.728 1.795 0.415 0.238 8  1.231  

CV: circular variance; CHP: collagen hybridizing peptide; length is in situ reference in mm: force is in N; disp: displacement in mm  
MPS: maximum principal strain; #Ev: number of anomalous events; stiffness is in N/mm 

shaded cells in ultimate rupture indicate capsules with first failure and ultimate rupture as the same event  
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some specimens, first failure and ultimate rupture occurred at the same point (Table 7.1). 

Yield was defined by the first occurrence of a decrease in the maximum tangent stiffness 

of at least 10% (Figure 7.2B) (Quinn et al. 2010a; Quinn and Winkelstein 2008). Ligament 

stiffness was calculated as a linear slope of the force-displacement curve fit from 20% to 

80% of the force value at first failure (Figure 7.2B) (Ita and Winkelstein 2019; Lee et al. 

2006). 

Collagen fiber alignment maps were generated during loading and used to 

determine the first occurrence of anomalous realignment (Quinn and Winkelstein 2009; 

Quinn et al. 2010a). Briefly, vector correlations were generated for every acquired 

alignment map in order to identify changes in the fiber alignment maps immediately 

preceding and following the alignment map based on pixel-by-pixel correlation 

calculations (Quinn et al. 2010a). Anomalous collagen realignment was defined by a 

decrease of 0.35 or more in the alignment vector correlation between maps, and a single 

region was defined as sustaining anomalous realignment when at least nine pixels were 

connected to one another (Figure 7.2C) (Quinn et al. 2010a). Alignment maps were also 

generated in the unloaded reference state in order to measure microstructural organization 

of each ligament prior to loading.  

Force, displacement, collagen fiber alignment, and high-speed images were 

extracted at the first occurrence of anomalous fiber realignment, yield, first failure, and 

ultimate rupture. At the unloaded reference state and each of those events, fiducial markers 

were digitized from the high-speed images using the centroid of each capsule marker. 

Marker coordinates were transformed into x-y coordinates using ProAnalyst (Xcitex, Inc.; 
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Cambridge, MA) and maximum principal strains were computed relative to the unloaded 

reference at each event using a customized mapping program in MATLAB (Matlab 7.2; 

Mathworks Inc., Natick, MA)  (Figure 7.2C) (Quinn and Winkelstein 2010; Quinn et al. 

2007). The number of anomalous events (Quinn et al. 2010a; Singh and Winkelstein 2020) 

and the circular variance (CV) was calculated at each event, as well as at the unloaded 

reference state (Miller et al. 2012; Zhang et al. 2016). Circular variance quantified the 

spread of collagen fiber angles, with a lower CV indicating a tighter clustering and a higher 

degree of fiber alignment (Miller et al. 2012; Zhang et al. 2016).  

7.3.4. CHP Assessment for Degraded Collagen  

To quantify the amount of degraded collagen, the capsular ligament of the isolated 

C6/C7 facet joint from the other side was finely dissected away from the surrounding bone. 

The wet weight of each isolated capsular ligament was taken as the average of three 

measurements. Ligaments were lyophilized overnight and then incubated in 15μM of 5-

FAM conjugate of CHP (3Helix; Salt Lake City, UT) overnight, triple-washed in PBS for 

30 minutes for each wash, then incubated in 1mg/mL Proteinase K for 3 hours at 60ºC (Lin 

et al. 2019). After homogenization, the fluorescence of 200μL duplicates of the 

homogenate solution were measured using a microplate reader (Lin et al. 2019); 

fluorescence measurements were normalized to the wet weight of the sample as a metric 

of degraded collagen per ligament weight.  
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7.3.5. Substance P & MMP-9 Immunohistochemistry in Neural Tissue 

To assess substance P and MMP-9 expression in DRG neurons and the spinal cord, 

cryosections of C7 DRGs and spinal cord (n=6/rat) were co-labeled with a primary 

antibody to MAP-2 (chicken; 1:400; Abcam; Cambridge, MA) and either a primary 

antibody to substance P (guinea pig; 1:400; Neuromics; Edina, MN) or MMP-9 (mouse; 

1:200; Thermo Fisher). Immunolabeling protocols were performed as described in Section 

4.3.5 with Alexa Fluor goat anti-chicken 488 and goat anti-guinea pig 633 secondary 

antibodies used for the MAP-2-substance P co-label, and Alexa Fluor goat anti-chicken 

647 and goat anti-mouse 488 secondary antibodies used for the MAP-2-MMP-9 co-label 

(all secondary antibodies at 1:1,000; Thermo Fisher).  

Fluorescently labeled tissue sections were imaged with the 20x objective of a Leica 

TCS SP8 confocal microscope (n=6-8 images/rat). The mean signal pixel intensity of 

substance P (n=6-8 images/rat) and MMP-9 (n=2 images/rat) was separately quantified in 

MAP-2-positive neurons (n=10 neurons/image) identified by a blinded scorer as described 

in Chapter 4 (Figure 4.4). Neurons were categorized as small- (<21μm), medium- (21-

40μm), or large- (>40μm) diameter neurons (Kras et al. 2014; Weisshaar et al. 2010) to 

enable comparing protein expression by neuron size. Spinal cord images were cropped to 

isolate the superficial dorsal horn (700x300 pixels); substance P and MMP-9 were 

quantified, separately, by counting the number of pixels above the threshold for expression 

in naïve tissue using the custom MATLAB densitometry script found in Appendix B (Lee 

and Winkelstein 2009). 
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7.3.6. Statistical Analyses 

All statistical analyses were performed with α=0.05 using JMP Prov14 (SAS 

Institute Inc.; Cary, NC). Normality was tested using a Shapiro-Wilk goodness-of-fit test 

for a normal continuous fit on the residuals of all outcomes. The average paw withdrawal 

thresholds per rat were compared between groups of rats receiving either intra-articular 

MMP-1 or vehicle using a repeated-measures ANOVA with post-hoc Tukey HSD tests. 

Differences between Mankin score and anisotropy index in groups were assessed with 

Wilcoxon tests. Separate repeated-measures ANOVA with post-hoc Tukey tests assessed 

differences in force, displacement, strain, CV, and the number of anomalous events across 

events within the MMP-1 and vehicle injection groups, separately; comparisons for those 

same outcomes between groups were tested with Wilcoxon Rank Sum tests. A t-test 

compared stiffness and CHP fluorescence between the two groups. Correlations between 

CHP and CV at reference, first occurrence of anomalous fiber realignment, and yield were 

separately analyzed using linear regressions and an ANOVA to assess the goodness of fit. 

Differences in the signal intensity of substance P and MMP-9 labeling were tested using 

Wilcoxon tests between groups. The effect of neuronal size on DRG immunolabeling was 

analyzed within groups, separately, using a one-way ANOVA with an effect of size and 

post-hoc Tukey HSD tests. Separate t-tests assessed differences in each protein expression 

outcome in the spinal cord between groups.   

7.4. Results 

MMP-1 decreases PWT within one day of injection that lasts for at least 28 days 

(p<0.001) (Figure 7.3). That MMP-1-induced increase in sensitivity (decrease in PWT) is 
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significantly different from the response to a vehicle injection beginning at day 3 

(p≤0.025), an effect which is sustained through day 28 (Figure 7.3). Although rats initially 

show sensitivity after injection of the vehicle (p≤0.027), that sensitivity resolves by day 7. 

The PWTs between rats injected with MMP-1 and those injected with vehicle are not 

different at baseline (p=1.00), prior to injection, so any differences between groups after 

day 0 (baseline) are due to the injection itself (Figure 7.3). PWTs are itemized for each rat 

in Appendix C. 

Despite significant effects on sensitivity thresholds, the effects of intra-articular 

MMP-1 on the structure of joint tissues are not as evident. Joints injected with the vehicle 

appear healthy with normal pericellular and background Safranin O labeling and no 

 

Figure 7.3. Paw withdrawal thresholds for 28 days after intra-articular injection of MMP-1 or vehicle 

with a decrease in threshold indicating greater sensitivity in the forepaw. MMP-1 significantly decreases 

the threshold from baseline (day 0) for all days (#p<0.001) and decreases from vehicle responses 

beginning on day 3 (*p≤0.025). Rats initially show sensitivity after a vehicle injection (&p≤0.027) but it 

resolves by day 7. Withdrawal thresholds at baseline (day 0) is not different between MMP-1 and vehicle 

groups (p=1.00). 
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evidence of cartilage fibrillation (Figure 7.4). Although there are occasional occurrences 

of lighter Safranin O labeling in the articular cartilage and mild surface fibrillations in joint 

injected with MMP-1 (Figure 7.4), such observations are not consistent across the MMP-1 

group. In fact, the large variability in Mankin score after MMP-1 illustrates this 

inconsistency; there is no significant difference between MMP-1 and vehicle groups 

(p=0.105) (Figure 7.4). Like the Mankin score, the primary alignment of the collagen 

microstructure is unchanged in the capsular ligament (p=0.448), with anisotropy indices 

being the same between the MMP-1 (0.45±0.18) and vehicle (0.47±0.20) groups (Figure 

7.5). The detailed histology-stained images, Mankin score, and anisotropy index 

measurements for each sample are summarized for each rat in Appendix D.  

 The force-displacement response of capsular ligaments that received a vehicle 

injection appear like the response of the C6/C7 ligament from a naïve rat, with the force-

displacement responses of the naïve ligament fully within the range of curves for the 

 

Figure 7.4. Structural assessment of the facet joint cartilage and bone at 28 days after intra-articular 

injection. Low and high magnification images show overall healthy and non-degraded cartilage. The 

bottom panel of the MMP-1-injected joint shows lighter Safranin O staining and surface defects and has 

a 4.25 Mankin score. Degenerative features are not observed consistently across joints with MMP-1; as 

such, there is no difference in Mankin score between groups (p=0.105). Box-and-whisker plot shows 

horizontal lines representing the first (lower) quartile, median, and third (upper) quartile of the scores. 

Whiskers represent the minimum and maximum of the data set. Data points showing the mean value from 

individual joints are superimposed on boxplots. The scale bars on the low and high magnification images 

apply to all images with the corresponding magnification.  
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vehicle injected capsules (Figure 7.6). The loading curves of ligaments after an intra-

articular MMP-1 injection have forces at rupture similar to the forces at rupture in loading 

curves of ligaments after vehicle injection, but displacements that are lower in magnitude 

(Figure 7.6). Indeed, the force-displacement curves for the joints with MMP-1 injection are 

shifted to the right compared to vehicle responses (Figure 7.6). The displacement at yield 

is significantly greater for intra-articular MMP-1 than for vehicle (p=0.040) (Table 7.1 & 

Figure 7.7). Despite the different displacements at yield and nearly a 1.5-fold decrease in 

stiffness between the MMP-1 (1.56±0.87) and vehicle (2.30±1.28) groups, a statistically 

significant difference in stiffness is not detected (p=0.312) (Figure 7.7 & Table 7.1). The 

occurrence of first failure and ultimate rupture are coincident for five of the six ligaments 

that received MMP-1 and were loaded to failure, but for only one of the five ligaments with 

vehicle treatment (Table 7.1).  

 

 

Figure 7.5. Evaluation of the collagen microstructure of the capsular ligament. Images show Picrosirius 

Red-stained collagen fibers in the ligament. Yellow boxes show three regions of interest (ROIs) 

throughout each tissue section. ROIs next to each stained image are overlaid with the principal orientation 

axes of the stained collagen fibers and are used to calculate the anisotropy index, with 1 indicating aligned 

orientation and 0 indicating isotropic orientation. The anisotropy index is unchanged with MMP-1 

(p=0.448). Box-and-whisker plots show horizontal lines representing the first (lower) quartile, median, 

and third (upper) quartile of the data. Whiskers represent the minimum and maximum of the data set. 

Data points showing the mean value from individual joints are superimposed on boxplots. The scale bar 

applies to both Picrosirius Red stained images.  
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Ligaments from joints with a vehicle injection exhibit a smooth increase in force, 

displacement, and strain with the progression of the different mechanical events (Figure 

7.7). Intra-articular MMP-1, however, appears to induce a “step-like” change around the 

events of first anomalous fiber realignment and yield (Figure 7.7). For example, the force 

sustained at yield with an MMP-1 injection is significantly different from the force at every 

other mechanical event (p≤0.008); this is also true for displacements for intra-articular 

 

Figure 7.6. Force-displacement curves of C6/C7 facet capsular ligaments failed in tension, showing the 

response through the ultimate rupture. The bottom panel shows the mean and standard deviation of the 

force and displacement by group at each event: first anomalous fiber realignment (circles), yield 

(squares), first failure (triangles), and ultimate rupture (hexagons). Note that for MMP-1 injected 

ligaments, the first failure and ultimate rupture occur at very similar forces and displacements, so only 

the event of first failure is shown. 
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MMP-1 at the first occurrence of anomalous fiber realignment (p≤0.007) (Figure 7.7). That 

step-like behavior is also observed in the maximum principal strain response with strain 

being significantly different between first anomalous realignment and first failure after an 

MMP-1 injection (p=0.001) (Figure 7.7). For all outcomes with intra-articular vehicle 

treatment, no event is significantly different from any of the others for any of force, 

displacement, or maximum principal strain (Figure 7.7). The full-field strain maps for each 

tested ligament are summarized in Appendix J. 

 

Figure 7.7. Force, displacement, and average maximum principal strain (MPS) at each mechanical event 

by group show smooth patterns with the intra-articular vehicle injection and a step-like response for the 

intra-articular MMP-1 (ref: reference; anom: first anomalous fiber realignment; yield; fail: first failure; 

rupt: ultimate rupture). The force at yield (^p≤0.008) and the displacement at first anomalous realignment 

(^p≤0.007) are significantly different than that at every other event with intra-articular MMP-1. Average 

MPS increases from first anomalous realignment to first failure with MMP-1 (^p=0.001). Stiffness is not 

different between the MMP-1 and vehicle group (p=0.312), although ligaments in the MMP-1 group have 

greater displacements at yield (&p=0.040) than ligaments in the vehicle group at that same event. The 

blue dashed line on the stiffness plot shows the stiffness of a ligament from an un-operated rat. Box-and-

whisker plots show horizontal lines representing the first (lower) quartile, median, and third (upper) 

quartile of the data with whiskers as the minimum and maximum. Superimposed data points show the 

mean value from individual ligaments on boxplots. 
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There are also subtle, but detectable differences between groups in the 

microstructural kinematics across the mechanical events. For intra-articular vehicle 

treatment, the circular variance at ligament yield and reference are significantly different 

from each other (p≤0.026) (Figure 7.8A). However, for an MMP-1 injection, the collagen 

fibers do not reorganize until the first failure (p≤0.001) (Figure 7.8A). Despite this, the 

 

Figure 7.8. Collagen microstructural kinematics and relationships to the extent of degraded collagen at 

different mechanical events (ref: reference; anom: first anomalous fiber realignment; yield; fail: first 

failure; rupt: ultimate rupture). (A) Circular variance (bar plots; left axis) is different from reference at 

yield, failure, and ultimate rupture with the vehicle group (*p≤0.026 vs. ref), and at failure and ultimate 

rupture relative to reference for the MMP-1 group (*p≤0.001). The number of anomalous events (mean 

± standard deviation; right axis) is significantly different between yield and failure with vehicle 

(#p=0.003) and MMP-1 (#p=0.026) treatment and also between the first occurrence of anomalous fiber 

realignment and yield only in the MMP-1 group (#p<0.001). (B) The correlations between collagen 

hybridizing peptide (CHP) and circular variance (CV) show significant associations between CHP and 

CV with intra-articular MMP-1 at reference before loading (*p=0.015), at the first occurrence of 

anomalous fiber realignment (*p=0.035), and at yield (*p=0.027). However, those relationships are not 

significant for vehicle treatment (reference: p=0.626; first anomalous realignment: p=0.125; yield: 

p=0.387). R2 values show goodness-of-fit on each correlation plot and the blue data point represents data 

from an un-operated naïve rat. 
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number of anomalous events increases significantly from the first occurrence of anomalous 

realignment to yield after an MMP-1 injection (p=0.026) (Figure 7.8A). In contrast, the 

number of anomalous events within the fibers of vehicle-injected ligament capsules is not 

different between the first occurrence of anomalous realignment and yield, but differs 

between yield and first failure (p=0.003) (Figure 7.8A). The MMP-1-injected capsules also 

experience more anomalous events at failure than at yield (p<0.001) (Figure 7.8A). 

 Before loading, in the reference configuration, neither the amount of degraded 

collagen measured by CHP fluorescence (MMP-1 974.6±369.4; vehicle 918.9±472.3; 

p=0.835) nor the microstructural organization of the capsule quantified by CV (MMP-1 

0.112±0.033; vehicle 0.115±0.026; p=1.000) are different. Yet, the relationships between 

the magnitude of damaged collagen before loading and the microstructural kinematics 

depend on whether the ligament had been exposed to MMP-1 or vehicle (Figure 7.8B). The 

relationship between CHP and CV at reference is significant for all ligaments, regardless 

of what the injected solution was (p=0.048); yet, this relationship is driven by a significant 

association between CHP and reference CV only with intra-articular MMP-1 (p=0.015; 

R2=0.80) and not with intra-articular vehicle (p=0.626; R2=0.08) (Figure 7.8B). That 

significant positive association between CHP and CV in the unloaded state with intra-

articular MMP-1 is maintained at both the first occurrence of anomalous fiber realignment 

(p=0.035; R2=0.71) and yield (p=0.027; R2=0.74) (Figure 7.8B). 

 Intra-articular MMP-1 significantly increases substance P expression that is 

localized to peripheral neurons in the DRG (p<0.001) (Figure 7.9). Moreover, substance P 

increases in neurons of all sizes (p<0.001) (Figure 7.9). Across the different sizes of the 



217 

 

neurons from MMP-1-injected rats, neuron size has a significant effect on substance P 

expression, with large-diameter neurons having significantly more expression than 

medium-diameter neurons (p=0.001) (Figure 7.9). Neuronal MMP-9 expression follows a 

different pattern, with expression levels significantly lower for DRGs exposed to MMP-1 

treatment compared to vehicle (p=0.014) (Figure 7.9). The difference in MMP-9 labeling 

between injection groups is only evident in medium-sized neurons (p=0.029) (Figure 7.9).  

The effect of intra-articular MMP-1 on spinal substance P expression is different 

than the effect of intra-articular MMP-1 on spinal MMP-9 expression (Figure 7.10). MMP-

 

Figure 7.9. Substance P and MMP-9 labeling in dorsal root ganglia (DRG) neurons at day 28 after intra-

articular vehicle or MMP-1. Images show immunolabeled DRG tissue sections with channels for the 

neuronal marker MAP-2 (red) and the protein of interest (substance P or MMP-9; green) merged. Intra-

articular MMP-1 significantly increases total substance P (*p<0.001) and significantly decreases total 

MMP-9 (*p=0.014) compared to vehicle treatment. The MMP-1-induced increase in substance P is 

evident in neurons of all sizes (*p<0.001); yet, the decrease in MMP-9 is detected only in medium-

diameter neurons (*p=0.029). Neuronal size has a significant effect on substance P expression with 

MMP-1 injection, with large-diameter neurons expressing significantly more substance P than medium-

diameter neurons (#p=0.001). Box-and-whisker plots show horizontal lines representing the first (lower) 

quartile, median, and third (upper) quartile of the data. Whiskers represent the minimum and maximum 

of the data set. Data points showing the mean value from each rat are superimposed. The scale bar applies 

to all images. 
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1 injection in the facet increases substance P in the superficial dorsal horn at day 28 

(p=0.002) and has no effect on MMP-9 expression in the spinal cord (p=0.333) (Figure 

7.10). Substance P labeling in the dorsal horn is punctate in the most superficial layers and 

MMP-9 labeling is more diffuse, with labeling extending into the deeper laminae than 

substance P (Figure 7.10). Immunolabeled images and their quantifications for each label 

are itemized for each rat in Appendix E. 

 

 

Figure 7.10. Immunohistochemical labeling of substance P and MMP-9 in the superficial dorsal horn of 

the spinal cord at day 28. Substance P labeling appears punctate and increases with intra-articular MMP-

1 (*p=0.002) compared to vehicle. MMP-9 labeling is evident as a more diffuse label but is not changed 

from vehicle (p=0.333). The insets are magnified regions of the yellow boxes on the merged images. 

Box-and-whisker plots show horizontal lines representing the first (lower) quartile, median, and third 

(upper) quartile of the data. Whiskers represent the minimum and maximum of the data set. Data points 

showing the mean value from each rat. The scale bars also apply to the image directly above it. 
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7.5. Discussion  

  This study demonstrates that intra-articular MMP-1 alone is sufficient to induce 

immediate and sustained behavioral sensitivity in the rat (Figure 7.3), and that the 

mechanism of MMP-1-induced sensitivity may involve altered microstructural kinematics 

of the capsular ligament (Figure 7.8) and/or sensitization of the embedded neurons in the 

capsule, the periphery, and/or spinal cord (Figures 7.9 & 7.10). The result that sensitivity 

(Figure 7.3) and elevated substance P (Figures 7.9 & 7.10) occur in the absence of any 

significant modifications in the joint structure and/or function (Figures 7.4 & 7.5) mirror 

the results observed with intra-articular bacterial collagenase (Figures 4.5 & 4.6) (Ita et al. 

2020b). Together, these similarities suggest that exogenous proteases with collagenolytic 

functions have similar effects on tissue structure regardless of the protease source. Bacterial 

collagenase is hypothesized to induce sensitivity by degrading the collagen fibers in the 

capsular ligament and subsequently triggering afferent signaling via altering the 

microenvironment of the afferents in the ligament (Ita et al. 2020b). The current study 

provides additional evidence supporting that hypothesis by demonstrating that MMP-1, 

likely via its collagenolytic capabilities, alters the collagen organization and reorganization 

during loading (Figure 7.8). The decreased peripheral MMP-9 (Figure 7.9) and unchanged 

MMP-9 in the spinal cord (Figure 7.10), however, counter the hypothesis that pain from 

MMP-1 involves MMP-9 upregulation, at least at 28 days following injection. However, 

the finding that MMP-9 expression decreases in medium-sized DRG neurons (Figure 7.9) 

suggests that MMP-1 may downregulate MMP-9 in nociceptors that transmit “fast pain” 

via Aδ myelinated fibers (Basbaum et al. 2009).  
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MMP-1 may degrade collagen in several regions of the capsule and in doing so 

predispose ligaments to altered kinematics on both the macroscale and microscale (Figures 

7.6-7.8). For example, it is possible that MMP-1 localizes to Type I collagen in its local 

vicinity (near the injection site), cleaves triple-helical collagen strands, and those local 

regions respond differently to load than their surrounding unaffected neighboring regions 

of the capsular ligament. That conjecture is supported by the correlation between CHP, a 

metric of degraded and/or partially unwound collagen (Lin et al. 2019) and the spread of 

collagen fibers (i.e. CV), observed for joints in the unloaded state after intra-articular 

MMP-1 (Figure 7.8B). That positive correlation suggests that more damaged collagen 

fibers correlate to more disorganized (less-aligned) fibers even in the unloaded state. Of 

course, whether less-aligned fibers indicate a deviation from normal depends on the region 

of the capsule since the collagen fiber orientation has been shown to vary across capsule 

layers and anatomic regions (Ban et al. 2017; Yahia and Garzon 1993; Yamashita et al. 

1996). Of note, the CHP measurements are made using whole capsular tissue homogenates 

and so lack the resolution to define regional variations. Nonetheless, the significant 

relationship between CHP and CV holds at both the first detection of anomalous fiber 

realignment and yield (Figure 7.8B), supporting that the microstructural state of the facet 

capsule is different after MMP-1 exposure and remains as such during its loading. 

 The proposed schema that the ligament is predisposed by MMP-1 degradation with 

“hot-spots” of anomalous collagen fiber reorganization may also explain the differential 

responses to loading between ligaments exposed to MMP-1 and ligaments exposed to 

vehicle (Figures 7.6-7.8), particularly at the first occurrence of anomalous realignment and 
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yield. A greater displacement at yield for MMP-1 ligaments may indicate the development 

of laxity in those ligaments (Figure 7.3) (Quinn and Winkelstein 2011). Although laxity is 

not quantified is this study, greater laxity in ligaments could explain the decreased paw 

withdrawal threshold in rats treated with MMP-1 (Figure 7.3), since ligaments with greater 

laxity may be more prone to injury during physiologic movements. This assertion is 

supported by prior work with a rat model of facet capsule stretch-induced pain that found 

that facet joint displacements that produce persistent pain symptoms also induce laxity and 

collagen fiber disorganization in the capsular ligament (Lee et al. 2008; Lee and 

Winkelstein 2009; Quinn et al. 2007). It is also expected that the MMP-1-injected 

ligaments would exhibit decreased stiffness compared to those receiving a vehicle; 

however, this was not the case here. Since the average ligament stiffness with MMP-1 

treatment is nearly 50% lower than with vehicle treatment (Figure 7.7), a power analysis 

was conducted to test the required sample size needed for statistical significance. Power 

analyses shows the least significant number for significance as twice that of the current 

sample size (n=6 MMP-1; n=5 vehicle), suggesting that a meaningful difference could be 

detected with more samples. 

It is possible that the MMP-1 injection produces partial collagen degradation across 

regions of the capsule and those may result in the anomalous realignment that is observed 

earlier, or at severe conditions during tensile loading. This is supported by the significant 

jump in the number of anomalous events at yield for MMP-1-injected samples (Figure 7.8); 

in contrast, a significant increase in the number of anomalous events is not evident until 

failure in the vehicle samples (Figure 7.8). The first occurrence of anomalous realignment 
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of the collagen fibers has been associated with ligament yield in otherwise unaltered native 

ligaments (Quinn et al. 2010a). Although the CV differs between yield and reference with 

vehicle treatment, the CV is not different between yield and reference with MMP-1 

treatment (Figure 7.8). In other words, vehicle-injected ligaments experience a 

reorganization of the collagen network at yield and that response is the same as the response 

of unaltered native ligaments (Quinn et al. 2010a). Thus, the finding that collagen in the 

MMP-1-injected ligaments does not reorganize until failure (Figure 7.8) differs from the 

response of healthy ligaments (Quinn et al. 2010a). That finding suggests that the collagen 

fibers of ligaments exposed to MMP-1 may abruptly reorganize at failure and raises the 

question of which regions or properties of the capsule’s collagen network drive this 

response. 

In fact, the number of collagen anomalous reorganization events may be a more 

sensitive indicator of the ligament’s kinematic response under load than either CV or strain. 

Maximum principal strain quantifies the greatest relative deformation at the resolution of 

fiducial-marked elements (~0.1mm). Optical data are acquired at a greater resolution of 

~25μm; yet, CV quantifies the spread of fiber angles at that resolution over the entire 

surface area of the imaging field of view and through the tissue thickness (Quinn and 

Winkelstein 2009; Tower et al. 2002). Therefore, both strain and CV are coarser 

measurements than the number of anomalous events, which resolves anomalous 

realignment to nine connected pixels corresponding to ~75x75μm regions (Quinn and 

Winkelstein 2009; Quinn et al. 2010a). As such, it is conceivable that the total surface areal 

CV measurements may not differ between the two treatment groups at any mechanical 
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event, because the resolution for single occurrences of anomalous realignment is much 

smaller than the resolution for the CV measured over the visible surface area. Since the 

microstructure of the capsular ligament dictates its biomechanical function and potential 

for injury (Ita et al. 2017; Quinn et al. 2010a; Quinn and Winkelstein 2011; Zhang et al. 

2018), any variation in the tissue’s microstructure will likely correspond to its ability to 

guide, function, and/or limit motions of the overall joint (Jaumard et al. 2011). Taken 

together with the current results, the occurrence of isolated, yet frequent, anomalous events 

that is observed with MMP-1 treatment (Figure 7.8) highlights the possibility that afferent 

fibers embedded in those regions may be more susceptible to activation if they are located 

in regions where the collagenous matrix undergoes abnormal kinematics. 

Intra-articular bacterial collagenase is hypothesized to generate small collagen 

fragments via microscale collagen degradation of the Type I collagen network (Ita et al. 

2020b); it is also possible that intra-articular MMP-1 may generate small collagen 

fragments when injected into the joint space. This notion is supported by evidence of 

collagen degradation products in the synovial fluid that has been observed within 15 

minutes of the injection of MMP-13 into the hamster knee joint (Otterness et al. 2000). 

Collagen fragments generated by MMP-1-mediated degradation can act as cell signaling 

agents on both fibroblasts and afferent nerves that reside in the ligament (Leeming et al. 

2011; Siebert et al. 2010). For example, the collagen fragment known as C1M binds to 

integrin receptors that are expressed by fibroblast-like synoviocyte cells and afferent nerves 

in the capsular ligament (Leeming et al. 2011; Siebert et al. 2010). Integrin interactions at 

the cell surface can trigger intracellular signaling cascades, such as the activation of MAPK 



224 

 

signaling pathways (Campos et al. 2004) and the dysregulation of neuropeptides (Zhang et 

al. 2017). Since both neurotransmitters and MAPK signaling are implicated in nociception 

(Basbaum et al. 2009; Chen et al. 2015; Ji et al. 2009; Zieglgänsberger 2019), the activation 

of those pathways by collagen degradation products may contribute to the development of 

pain from intra-articular MMP-1.  

Furthermore, load is known to mediate the rate of enzymatic breakdown of collagen 

by protecting strained fibers from degradation (Bhole et al. 2009; Camp et al. 2011; Flynn 

et al. 2010; Ruberti and Hallab 2005; Wyatt et al. 2009; Zareian et al. 2010). Since the 

collagen network of the fibers in the facet capsule has varied orientations and undergoes 

heterogeneous strains under load (Ban et al. 2017), regions with collagen fibers that are 

less strained may be preferentially degraded by MMP-1. The preferential degradation of 

collagen fibers that are unstrained, and likewise, bear less load, could explain the 

simultaneous absence of overt structural damage (Figures 7.4 & 7.5), with subtle, but 

measurable effects of intra-articular MMP-1 on multiscale kinematics (Figures 7.6-7.8). 

In addition to the possibility that MMP-1 may initiate afferent signaling via its role 

as a biomechanical regulator of the capsule’s collagenous network, it may also induce 

nociception by initiating extracellular cell-signaling and/or intracellular protein regulatory 

pathways that are independent of collagen regulated mechanotransduction pathways 

(Bartok and Firestein 2010; Chakrabarti et al. 2020; Miller et al. 2014). For example, 

MMP-1 cleaves the pro-inflammatory cytokines tumor necrosis factor α (TNFα) and 

interleukin-1β (IL-1β) into their bioactive forms that can function as messengers in the 

extracellular space (Visse and Nagase 2003). Both of those cytokines can potentiate 
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nociceptive signaling by interacting with neurons (Basbaum et al. 2009); for example, 

TNFα stimulation increases the amount of spontaneous firing in peripheral neurons 

(Chakrabarti et al. 2020). Furthermore, there are positive feedback loops between MMPs 

(including MMP-1) and cytokines that are regulated by the fibroblast-like synoviocytes 

that are embedded in the capsular ligament (Bartok and Firestein 2010). Those feedback 

loops lead to cytokine-initiated production of MMPs by fibroblasts, recruitment of new 

fibroblasts to the synovial lining, and increases in the production of inflammatory 

mediators, including cytokines (Bartok and Firestein 2010; Bottini and Firestein 2013; 

Sluzalska et al. 2017). As such, it is possible that exogenous MMP-1 localizes to fibroblasts 

in the capsular ligament and can initiate the synthesis and activation of cytokines and/or 

other MMPs, like the collagenase MMP-13 and the stromelysin MMP-3 (Bartok and 

Firestein 2010). The possibility that cytokines are involved in MMP-1-induced pain is 

supported by their detection in the synovial fluid of patients with painful osteoarthritis 

(Miller et al. 2014). 

Notably, both intra-articular MMP-1 and intra-articular bacterial collagenase 

increase the expression of peripheral and spinal neuronal substance P (Figures 4.7-4.8 & 

7.9-7.10) (Ita et al. 2020b). Both MMP-1 and bacterial collagenase share collagenolytic 

activity, and not ECM-independent functional roles in cell signaling. Taken together, those 

findings suggest that the mechanism by which MMP-1 induces and mediates behavioral 

sensitivity is not completely independent of the ECM. In fact, it is possible that aberrant 

recruitment of mechanoreceptors in nociception may contribute to the behavioral 

sensitivity since substance P increases in large-diameter neurons (Figure 7.9). The 
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recruitment of mechanoreceptors in pain processing only occurs in the presence of tissue 

injury (Basbaum et al. 2009; Obata and Noguchi 2004). So, it is possible that the altered 

microstructural kinematics (Figure 7.8) injure proprioceptive fibers embedded in the 

collagen network. In fact, a loss of proprioception, and a corresponding increase in pain 

symptoms, is observed in patients with knee osteoarthritis (Malfait and Schnitzer 2013), 

suggesting that mechanoreceptors may adopt nociceptive roles in states of degenerated 

pathology.  

Although MMP-1 may mediate MMP-9 early after intra-articular administration or 

within the capsular tissue itself, neither early times nor tissue-localized MMP-9 were 

investigated in the current study. It is well-established that MMP-9 is required only for the 

initiation, and not the maintenance, of neuropathic pain induced by nerve injury in the rat 

(Ji et al. 2008; Kawasaki et al. 2008). So, it is not surprising that a strong regulatory role 

of MMP-1 on MMP-9 is not supported at this late time after a single injection (Figures 7.9 

& 7.10). Contrary to findings in the rat, MMP-9 levels in the capsular ligament tissue from 

patients with late-stage chronic joint disease do correlate with pain symptoms (Chapter 3) 

(Ita et al. 2020a), suggesting that MMP-9 may play a regulatory role in pain maintenance 

in at least some patient populations. So, it is possible that MMP-9 protein may indeed be 

elevated in capsular tissue at day 28; the distribution of MMP-9 from peripheral neurons 

to axonal projections in the capsular tissue may even explain the decrease in substance P 

that is observed with intra-articular MMP-1 in medium-sized DRG neurons (Figure 7.9). 

MMP-1 likely regulates MMP-9 at least early after its injection, since MMP-1 has been 

shown to activate and stimulate the release of MMP-9 (Conant et al. 2002), and MMP-9 
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subsequently cleaves substance P (Diekmann and Tschesche 1994). Ultimately, it is likely 

that the mechanisms by which MMP-1 initiates sensitivity are different than those that 

maintain sensitivity. 

 

7.6. Integration & Conclusions 

  The studies in this chapter demonstrate that intra-articular MMP-1 alone is 

sufficient to induce immediate and sustained pain-like behaviors (Figure 7.3), altered 

microstructural ligament kinematics (Figure 7.8), and dysregulation of substance P in 

peripheral and spinal neurons (Figures 7.9 & 7.10). In the parallel study from Aim 2 

(Chapter 4), the assertion that microscale degradation drives bacterial collagenase-induced 

sensitivity is largely speculative (Ita et al. 2020b); yet, the findings presented in this chapter 

demonstrate an effect of MMP-1 on the multiscale kinematics of the ligament under tension 

(Figures 7.6-7.8). Since both intra-articular bacterial and human collagenases induce 

behavioral sensitivity absent overt tissue degradation, the collective findings from both of 

those studies implicate collagenases, and more specifically their collagenolytic function, 

as a regulator of the ligament’s collagen network and support the hypothesis of Aim 2. 

These studies also reveal collagenase involvement in a joint structure-function relationship, 

whereby structural alterations may only be detectable on a microscopic level.  

  The experiments in this chapter demonstrate that intra-articular MMP-1 increases 

substance P and decreases MMP-9 in peripheral neurons (Figure 7.9), providing support 

for the hypothesis that MMP-1 regulates nociceptive mediators but lacking support for the 

hypothesis that MMP-1 does this via MMP-9. Although MMP-9 and MMP-1 do not appear 
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mechanistically related at day 28 in this in vivo study, both increase in parallel with each 

other and with pain in the innervated soft tissues from patients (Figure 3.3) and in response 

to load (Figure 6.6) (Ita et al. 2020a; Ita and Winkelstein 2019). Whether the decrease in 

MMP-9 at day 28 observed here (Figure 7.9) is a result of MMP-9 accumulation in a region 

other than peripheral neurons is unknown. The studies in Chapter 8 expand this work by 

defining the effects of MMP-1-targeted inhibition on MMP-9 and begin to explore the 

mechanistic relationship between MMP-1 and MMP-9 in nociception that is derived from 

the innervated ligament.  
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  Chapter 8 

Effects of Sub-Failure Stretch & MMP Inhibition 

on MMP-1, MMP-9, & Substance P  
 

Portions of this chapter have been adapted from the following abstract: 

Ita ME, Winkelstein BA. MMP-regulation is dependent on the presence of fibroblasts in 

a ligament model of sub-failure, painful stretch. Orthopaedic Research Society Annual 

Meeting, February 2021, accepted. 

 

8.1. Overview 

Matrix metalloproteinases (MMPs) are involved in a wide range of pathologies 

across many organ systems (Sbardella et al. 2012; Vandenbroucke and Libert 2014). 

Owing to this ubiquity, over 50 MMP inhibitors have been investigated in clinical trials 

(Vandenbroucke and Libert 2014), with the majority targeting MMPs as catalysts of tumor 

growth in cancer progression (Coussens et al. 2002). Unfortunately, most of those clinical 

trials have been unsuccessful, with their failure explained in part by poor metabolic 

stability and bioavailability, poor substrate specificity between inhibitors and their 

intended MMP targets, and unwanted side effects due to the role of MMPs in healthy 

processes (Vandenbroucke and Libert 2014). Yet, the growing understanding of the role of 

MMPs in physiology and disease, primarily with respect to their non-tissue remodeling 

functions, has led to recent successes of MMP inhibition in inflammatory diseases 

(Vandenbroucke and Libert 2014). Moreover, small molecule MMP inhibitors selective to 
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MMP-13 show promise in their ability to interfere with inflammatory and degenerative 

milieu in animal models of both rheumatoid arthritis and osteoarthritis (Baragi et al. 2009; 

Gege et al. 2012; Jüngel et al. 2010). For example, small molecule MMP-13 inhibitors have 

been shown to decrease the extent of cartilage erosion and to reduce the release of matrix 

degradation products both in human cartilage explant cultures and in rodent models of knee 

degeneration (Baragi et al. 2009; Jüngel et al. 2010). 

Hydroxamate-based inhibitors are a class of MMP inhibitors that competitively 

inhibit substrate binding at the Zn2+-containing catalytic domain (Galardy et al. 1994; 

Grobelny et al. 1992; Vandenbroucke and Libert 2014). This class of inhibitors is designed 

with the basic chemical backbone of collagen and a hydroxamate group (-CONHOH) 

(Vandenbroucke and Libert 2014). To inhibit MMP activity, the hydroxamate group binds 

to the catalytic Zn2+ site and creates a distorted 3D geometry around the Zn2+ ion. Then, 

the –NH group forms a short, strong hydrogen bond with the neighboring carbonyl oxygen, 

and hydrophobically stabilizes the inhibitor-enzyme complex (Vandenbroucke and Libert 

2014). Examples of hydroxamate-based inhibitors include marimastat, batimastat, and 

ilomastat, also known as GM6001 (Galardy et al. 1994; Grobelny et al. 1992; 

Vandenbroucke and Libert 2014). Studies in this chapter use the hydroxamate-based 

inhibitor ilomastat to target inhibition of MMP-1 in the co-culture model described in 

Chapters 5 and 6 to determine if, and how, MMP-1 inhibition may alter neuronal 

expression of substance P and/or MMP-9 expression.  

Since the Zn2+-containing catalytic domain is preserved across many MMPs (Visse 

and Nagase 2003), hydroxamate-based inhibitors act on several MMPs depending on their 
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chemical structure; as such, they are considered to be broad-spectrum inhibitors (Galardy 

et al. 1994; Grobelny et al. 1992; Vandenbroucke and Libert 2014). However, the Ki 

inhibitor dissociation constant, an indication of inhibitor potency for a given enzyme, 

varies for different MMPs (Galardy et al. 1994). As such, the concentration can be tuned 

to make the inhibitors more selective and less broad-spectrum. For example, ilomastat 

inhibits MMP-8, MMP-9, MMP-1, MMP-2, and MMP-3 with Ki values ranging from 

0.1nM for MMP-8 (most potent) to 27nM for MMP-3 (least potent) (Grobelny et al. 1992). 

The studies presented in this chapter utilize a 25nM ilomastat dose, which was intentionally 

chosen to optimize MMP-1 inhibition while preventing unnecessary inhibition of other 

MMPs with higher Ki values. Unfortunately, ilomastat also inhibits MMP-9 since that has 

a lower (more potent) Ki than MMP-1 (Grobelny et al. 1992), so the 25nM concentration 

of ilomastat is also expected to interact with the Zn2+ catalytic site on MMP-9. Accordingly, 

any changes in MMP-9 expression that may be observed could be attributed to direct 

MMP-9 inhibition or be due to indirect effects of MMP-1-ilomastat inhibition and the 

resulting less bioavailable MMP-1 that would normally activate MMP-9 in normal 

environments absent ilomastat (Conant et al. 2002; Visse and Nagase 2003). Despite the 

difficulties in selectively inhibiting MMP-1 and the caveat that both MMP-1 and MMP-9 

could  be directly impacted by ilomastat, the pilot studies in this chapter are helpful in 

beginning to identify putative effects of MMP inhibition, albeit broadly, on stretch-induced 

substance P expression.  

Collectively, the studies in this chapter address Aim 4. A combined background 

section (Section 8.2) motivates the use of a sub-failure equibiaxial mechanical stretch. The 
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three sub-aims of Aim 4 are all addressed in the studies which are then presented in order 

with separate methods and results sections for each sub-aim. The studies in Section 8.3 

(Aim 4a) define whether sub-failure strains that induce nociceptive signaling in the 

previous neuron-collagen gel model (Zhang et al. 2017; Zhang et al. 2018) also increase 

substance P in the co-culture model (Ita and Winkelstein 2019b). That study also 

characterizes the expression of both MMP-1 and MMP-9 resulting from a sub-failure 

equibiaxial stretch of a magnitude that induces facet-mediated behavioral sensitivity in the 

rat (Dong et al. 2012; Lee et al. 2006). The equibiaxial stretch studies in this chapter assay 

protein expression and/or MMP-1 activity at 24 hours after the stretch is imposed, unlike 

the failure stretch studies in Chapters 5 and 6 that assayed outcomes immediately following 

stretch. The later timepoint was chosen to allow for the MMP transcriptional and/or post-

translational regulation that occurs on the scale of hours to days (Petersen et al. 2012; Yang 

et al. 2005). Section 8.4 includes studies that utilize the MMP inhibitor ilomastat. Studies 

in Section 8.4.1 (Aim 4b) test the effect of several ilomastat dosing regimens on MMP 

expression using a biochemical exposure to bacterial collagenase; studies in Section 8.4.2 

(Aim 4c) utilize the stretch and dosing parameters defined from the earlier sections to 

define if, and how, ilomastat inhibition alters MMP expression and/or prevents increases 

in substance P in the sub-failure painful loading regime. A combined discussion (Section 

8.5) integrates the outcomes from all of these studies collectively and elaborates on how 

these findings can be expanded to strengthen conclusions about the regulatory roles of 

MMP-1 and MMP-9 in stretch-induced nociceptive signaling and about how those MMP 

regulatory roles differ between cell types. 
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8.2. Relevant Background 

Studies of facet capsule stretch in vivo and in vitro support that aspects, and 

consequences, of sub-failure biomechanical loading to the intact facet capsule have critical 

contributions to the development of pain and nociceptive transmission that depend on the 

magnitude of strain. For example, the extent of pain is directly related to the magnitude of 

strain across the facet capsular ligament (Dong et al. 2012; Panjabi et al. 1998; Pearson et 

al. 2004), as are neuronal expression of substance P and activated signaling kinase 

phosphorylated ERK (pERK) (Zhang et al. 2016; Zhang et al. 2017), and neuronal activity 

(Chen et al. 2006; Crosby et al. 2015; Lu et al. 2005; Quinn et al. 2010). Strains during 

ligament stretch that induce pain (8-31% at 500%/sec) (Dong et al. 2012) align with those 

measured in painful neck injury scenarios (29-40%) (Panjabi et al. 1998; Pearson et al. 

2004). Similarly, a strain threshold of 11-40% (at 1%-7%/sec) has been identified in 

neuron-collagen gels for generating an increase in pERK and substance P expression 

(Zhang et al. 2016; Zhang et al. 2017; Zhang et al. 2018). Although capsular stretch-

induced pain symptoms in the rat depend on capsular strain magnitude (Dong et al. 2012; 

Dong and Winkelstein 2010; Lee and Winkelstein 2009), pain is not further increased if 

the capsule is stretched until it fails (Lee et al. 2008; Winkelstein and Santos 2008). Despite 

the counterintuitive finding that a more severe injury (i.e. failure) is less detrimental than 

a sub-failure mechanical injury (Lee et al. 2008; Winkelstein and Santos 2008), those 

behavioral studies further amplify that afferent fiber signaling is requisite for 

mechanotransduction in the capsular ligament and necessary for both the development and 

maintenance of injury-induced pain.  
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Stretching the facet capsule beyond its physiologic limit can alter a variety of  

responses in the afferent neurons that innervate the ligamentous capsule, like 

hyperexcitability and persistent firing, altered expression of neurotransmitters and 

nociceptive molecules, and morphological changes, all of which can contribute to the 

transmission of pain (Cavanaugh et al. 2006; Crosby et al. 2014; Dong et al. 2012; 

Kallakuri et al. 2008; Lu et al. 2005; Quinn et al. 2010). In characterizing neuronal changes 

in the supraphysiologic regime, that body of work collectively presents possible 

mechanisms by which sub-failure facet capsule stretch may induce pain. Prior studies have 

demonstrated that MMP-1 and MMP-9 increase with the nociceptive-related neuropeptide 

substance P in a co-culture system mimicking the innervated facet capsule stretched in 

tension to failure (Chapter 6) (Ita and Winkelstein 2019a; Ita and Winkelstein 2019b). 

Although failure stretch induces strains across the gel that are sufficient to modulate MMP-

1 and MMP-9 (Ita and Winkelstein 2019a; Ita and Winkelstein 2019b), whether a sub-

failure stretch affects MMPs and/or substance P in the co-culture model is unknown despite 

that regime being relevant for pain. 

 

8.3. Sub-Failure Biaxial Stretch in the Co-Culture Model  

A sub-failure equibiaxial stretch that has been defined to be painful in DRG-

collagen gels (Zhang et al. 2017; Zhang et al. 2018) is imposed on the new DRG-FLS co-

culture collagen gel model. Although uniaxial tension is a simple loading modality with 

utility of defining the effects of tissue mechanics on the cellular and fiber-level responses 

(Lake and Barocas 2011; Roeder et al. 2002; Vader et al. 2009), biaxial loading 
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configurations better mimic the physiological boundaries and constraints of the ligament-

bone complex and simulate the complex loading profiles of the facet capsular ligament in 

vivo (Dong et al. 2012; Ita et al. 2017; Jaumard et al. 2011). Sub-failure stretch was 

hypothesized to increase MMP-9 and substance P expression in parallel, since MMP-9 

cleaves substance P and both are involved in neuronal transmission of noxious stimuli 

(Diekmann and Tschesche 1994; Kawasaki et al. 2008). Sub-failure stretch was also 

expected to elevate MMP-1 in gels containing FLS more than those without FLS since FLS 

secrete MMP-1 during culture and in response to failure (Attia et al. 2014; Ita and 

Winkelstein 2019b).  

8.3.1. Methods 

  Type I collagen gels (2mg/mL) were fabricated as co-cultures with passage four rat 

FLS (~5x104 cells/mL) and DRGs (6-10/gel) (co-culture; n=12) or with DRGs only (DRG-

only; n=10), as previously detailed (Figures 5.3 & 6.1) (Ita and Winkelstein 2019b). On 

DIV6, gels were triple-rinsed with 1XPBS, and an additional layer of collagen (125μL) 

was added to encapsulate the DRGs (Figure 6.1). After the PBS washes, media was 

changed to supplemented Neurobasal media without serum (Attia et al. 2014). On DIV7, 

gels were cut into a cruciform shape with each arm having the dimensions of 6.25mm by 

8mm (Zhang et al. 2017) and marked with grid of fiducial markers using black India ink 

(Koh-I-Noor). The arms of the gels were loaded into grips attached to actuators with 500g 

load cells immersed in a 37°C 1XPBS bio-bath (Figure 6.1). Gels were pre-loaded until 

taut (less than 2mN/arm) and then stretched in equibiaxial tension at 4mm/sec to 

1.5mm/arm (co-culture n=6; DRG-only n=5) in a planar testing machine (574LE2; 
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TestResources) to impose strains that induce pain in vivo and also increase nociceptive 

modulators in vitro (Dong et al. 2012; Zhang et al. 2017). 

  Force data were acquired at 200Hz from each arm and high-speed cameras 

(Phantom-v9.1; 500Hz) tracked the grid of fiducial markers to enable strain calculations 

(Ita and Winkelstein 2019b). Immediately after loading, gels were released from the grips, 

washed with 1XPBS with 1% Pen-Strep, and transferred to pre-warmed serum-free 

supplemented Neurobasal culture media with 1% Pen-Strep (Zhang et al. 2017). After 24 

hours, gels were washed, and half of each gel was frozen at -80°C for homogenization and 

the other half was fixed in 4% PFA for immunolabeling. The post-stretch culture media 

(1mL) was stored at -80°C for an MMP-1 ELISA. Matched gels for each type (co-culture 

n=6; DRG-only n=5) underwent the same protocol but did not undergo any stretch and 

served as unloaded controls. The maximum magnitude of force during a gel stretch 

recorded by any of the four load cells was taken as the peak force for that gel. The marker 

locations in the unloaded reference image and the image immediately after the maximum 

force were digitized with FIJI software (NIH) and position data were processed in LS-

DYNA (LSTC) to calculate the maximum principal strain (MPS) for each element of each 

gel (Ita and Winkelstein 2019b). The largest magnitude MPS sustained out of all elements 

within a gel was taken as the peak MPS for that gel.  

  Fixed gels were blocked in 1XPBS with 10% goat serum and 0.03% Triton-X and 

incubated overnight at 4°C with primary antibodies to substance P (anti-guinea pig, 1:250, 

Neuromics), MMP-1 (anti-rabbit, 1:400, Proteintech), and MMP-9 (anti-mouse, 1:250, 

Invitrogen). Gels were then washed and incubated with the secondary antibodies goat anti-
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guinea pig 633, goat anti-rabbit 488, and goat anti-mouse 568 (all Alexa Fluor 1:1000; 

Invitrogen) and DAPI (1:750, ThermoFisher). Confocal images were acquired for each gel 

(6 images/gel) in regions containing DRG soma and/or axons (Ita and Winkelstein 2019b). 

In a subset of the co-cultures (n=4 stretched; n=4 unstretched), 6-image confocal stacks 

were acquired at 5μm steps throughout a 20μm depth in regions manually selected to 

contain only FLS cells; no DRG soma or axons were visualized in those regions. The 

amount of positive labeling was quantified using densitometry and a custom MATLAB 

script (Appendix B) in each image; for the FLS-localized images, the maximum intensity 

projection of each stack was generated prior to quantification with densitometry. For each 

image, substance P, MMP-1, and MMP-9 were normalized to DAPI to account for different 

cell densities in each image, and then normalized to the unloaded control gel, separately 

for each label.  

  Since secreted MMP-1 can be retained in the gel or released into the culture media 

(Attia et al. 2014), MMP-1 was measured in both the gel homogenate and media by ELISA. 

Gels were homogenized and their supernatants and the media were spun down (15 minutes, 

10kg, 4°C) according to the kit protocol from the manufacturer (Sensolyte Plus 520 MMP-

1 Assay Kit; Anaspec). MMP-1 values were quantified using a standard curve ranging from 

20-0.625ng that was optimized for the range of MMP-1 concentrations expected in cell 

culture media. An APMA-activation step was used to activate any pro-MMP-1 in the 

samples so that total MMP-1 was assayed (Attia et al. 2014). 

  Separate two-tail t-tests compared the peak force and the peak MPS between the 

stretched culture types. Differences in substance P labeling, MMP-1 labeling, and MMP-9 
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labeling in DRG-localized images were tested using a two-way ANOVA by stretch (sub-

failure; unstretched control) and culture type, and post-hoc Tukey HSD tests; differences 

in labeling in the FLS-localized images were analyzed between stretched and unstretched 

co-cultures with t-tests. A two-way ANOVA by stretch and culture type tested MMP-1 

levels separately in media supernatant and gel homogenate. 

8.3.2. Results 

  There is no evidence of visible tears or macroscopic gel rupture for any gel during 

the 1.5mm/arm equibiaxial stretch imposed here. Equibiaxial stretch generates greater peak 

forces in the co-culture (11.17±4.79mN) than DRG-only (4.22±2.35mN) gels (p=0.015); 

yet, similar peak maximum principal strains are sustained across the gel surface (co-

cultures 18.64±6.57%; DRG-only 23.08±7.85%; p=0.387) (Figure 8.1). Force- 

displacement curves, strain maps, and quantification of the mechanical data are 

summarized for each gel in Appendix K.  

 

Figure 8.1. Peak force and maximum principal strain (MPS) with a sub-failure equibiaxial stretch of 

1.5mm/arm at 4mm/sec. Peak forces are lower in the DRG-only gels that lack FLS (*p=0.015); yet, peak 

MPS does not differ by culture type (p=0.387). 
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  Sub-failure stretch increases substance P labeling (p=0.005) in both culture types 

(Figure 8.2), with substance P levels in DRGs 2.5-fold over levels in unstretched control 

gels in DRGs. Substance P labeling is primarily evident in the cell bodies of the DRG soma 

(Figure 8.2). There is almost no detectable substance P labeling in the FLS cells, with less 

than 0.5% of pixels detected as positive in all images taken in the FLS regions (Figure 8.2). 

As such, substance P was not assessed in FLS cells in subsequent inhibitor studies (Section 

8.4). 

  The average percentage of positive MMP-1 labeling in all co-culture gels, 

regardless of stretch condition, is 25.8% positive pixels, which is nearly 1.7-fold greater 

than the average positive labeling in all DRG-only gels (15.3%). Abundant MMP-1 

labeling is observed in the DRG soma of gels with both cell types and is also prevalent in 

cells surrounding the DRG axons in the co-culture gels (Figure 8.3). Despite more overall 

 

Figure 8.2. Substance P protein expression in co-culture and DRG-only collagen gels at 24 hours after a 

sub-failure equibiaxial stretch. Images show regions of most abundant labeling with substance P in the 

soma of both culture types. Stretch elevates substance P in the co-cultures and DRG-only collagen gels 

(*p=0.005). Essentially no positive substance P labeling is observed in FLS; protein quantification in the 

FLS cells is quantified as percent of positive pixels (on the right y-axis) instead of normalized to the 

unstretched control because labeling magnitudes near zero in the FLS resulted in artificially high fold 

changes. Superimposed data points represent quantification in each confocal image acquired. Solid 

bars=stretched; hashed bars= unstretched control. The scale bar in the DRG soma image applies to all 

images of DRG soma; the scale bar in the FLS image applies to both sets images with FLS. 
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labeling in the co-culture than the DRG-only gels, stretch only significantly elevates MMP-

1 in the DRG-only group (p=0.035) (Figure 8.3). Furthermore, the increase in MMP-1 

labeling in DRG-only gels with stretch is greater than that caused by stretch to co-cultures 

(p=0.024) (Figure 8.3). The average positive MMP-9 labeling, unlike MMP-1, is similar 

 

Figure 8.3. MMP-1 protein expression in co-culture and DRG-only collagen gels at 24 hours after a sub-

failure equibiaxial stretch. Images show regions with positive labeling in DRG soma, DRG axons, and 

FLS cells. MMP-1 levels in the stretched DRG-only gels are greater than the levels in the unstretched 

DRG-only gels (*p=0.035) and greater than the levels in the stretched co-cultures (#p=0.024). Sub-failure 

stretch increases MMP-1 by 1.9-fold in FLS. Superimposed data points represent quantification in each 

confocal image acquired. Solid bars=stretched; hashed bars= unstretched control. The scale bar in the 

DRG soma image applies to all images of DRG soma or axons; the scale bar in the FLS image applies to 

both images of FLS. 
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between the co-culture (13.7%) and the DRG-only (15.2%) groups (Figure 8.4). Yet, the 

effect of stretch is the same for MMP-1 as MMP-9, with stretch significantly elevating 

MMP-9 in gels that only have DRGs (p=0.003), and that stretch-induced MMP-9 increase 

over unstretched controls is greater than what is observed in the co-cultures (p=0.002) 

(Figure 8.4). 

 

Figure 8.4. MMP-9 protein expression in co-culture and DRG-only collagen gels at 24 hours after a sub-

failure equibiaxial stretch. The images show regions with positive labeling in DRG soma, DRG axons, 

and FLS cells. MMP-9 levels in the stretched DRG-only gels are greater than levels in the unstretched 

DRG-only gels (*p=0.003) and greater than the levels in the stretched co-cultures (#p=0.002). Sub-failure 

stretch increases MMP-9 by 1.2-fold in FLS. Superimposed data points represent quantification in each 

confocal image acquired. Solid bars=stretched; hashed bars= unstretched control. The scale bar in the 

DRG soma image applies to all images of DRG soma or axons; the scale bar in the FLS image applies to 

both images of FLS. 
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  MMP-1 and MMP-9 immunolabeling is evident in FLS-rich regions after a sub-

failure stretch in the co-cultures (Figures 8.3 & 8.4). Although MMP-1 increases 1.9-fold 

over the unstretched control level (Figure 8.3), and MMP-9 increases 1.2-fold (Figure 8.4), 

the sample size (n=4 images/group) is too small to detect meaningful differences between 

culture type and/or stretch condition. Power analyses indicate that a total sample size of 18 

gels is required to detect significant differences in MMP-1, and a sample size of 98 gels is 

needed for MMP- 9. The concentration of MMP-1 levels within the gel homogenate are 

not different with stretch or culture conditions (Figure 8.5); yet, the MMP-1 concentration 

is lower (p=0.027) in the culture media after stretch for the DRG-only group (Figure 8.5). 

Immunolabeled images and their quantification, as well as the quantification for MMP-1 

measured by ELISA, are summarized in Appendix L.  

 

Figure 8.5. Concentration of MMP-1 in cell culture media and captured within the gel homogenate at 24 

hours after sub-failure stretch. Superimposed data points represent quantification for each gel. There is a 

significant effect of stretch in the DRG-only gels in the culture media, with stretch decreasing MMP-1 

concentration (*p=0.027). Neither culture nor stretch type alter MMP-1 levels in gel homogenate 

(p=0.620). Solid bars=stretched; hashed bars= unstretched control.  
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8.4. MMP-1 Inhibition  

8.4.1. Optimization of Inhibitor Dosing Using Bacterial Collagenase Exposure 

8.4.1.1. Methods 

Type I collagen gels (2mg/mL) were fabricated as co-cultures with rat FLS (~5x104 

cells/mL) from passages three to five and DRGs (6-10/gel) for all experiments  as described 

earlier (Figures 5.3 & 6.1) (Ita and Winkelstein 2019b). On DIV6, all gels were triple-

rinsed with 1XPBS and media was changed to supplemented Neurobasal media without 

serum (Attia et al. 2014). On DIV7, all gels underwent an incubation with 60U of purified 

bacterial collagenase (CLSPANK; Worthington) in DMEM for 20 minutes at 37°C since 

that exposure increases MMP-1 in DRG and FLS cells when exposed in co-cultures (Figure 

5.16) (Ita et al. 2020b). Immediately following the exposure, gels were washed in 1XPBS, 

and half of each gel was frozen at -80°C for homogenization and the other half was fixed 

in 4% PFA for immunolabeling. The culture media was also saved and stored at -80°C for 

future assays.  

In two separate experiments, co-cultures underwent different ilomastat dosing 

regimens prior to bacterial collagenase exposure on DIV7 (Table 8.1). In the first 

experiment, the co-culture media was treated from DIV3 until DIV7 with either a 25nM 

dose of the MMP inhibitor ilomastat, an equal volume dose of sterile H2O vehicle, or a 

combination of each at different days in vitro (Table 8.1). A 25nM ilomastat dose 

(GM6001; Millipore Sigma) was prepared from a 2.5mM stock solution in dimethyl 

sulfoxide (DMSO) (5μL) dissolved into sterile cell culture H2O to a concentration of 0.5μM 

(Conant et al. 2004; Rogers et al. 2014); 25μL of the 0.5μM dilution was then added to the 
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media to achieve a final concentration of 25nM. Accordingly, the H2O vehicle dose 

consisted of 25μL of sterile H2O. Separate co-cultures received either: ilomastat daily and 

one hour before exposure (daily), with every media change and one hour before exposure 

(media ∆), only one hour before exposure (1hr before), or not at all (H2O veh) (n=4/group) 

(Table 8.1). Water vehicle doses were added to media whenever a dosing regimen did not 

call for ilomastat (Table 8.1).  

A second experiment utilized the dosing regimen with ilomastat given at every 

media change (media ∆) and a matched vehicle group with DMSO instead of water (DMSO 

veh), since the purchased stock ilomastat was stored in DMSO. The 25nM ilomastat dose 

was prepared as described above for the first experiment, and the DMSO vehicle was 

prepared identically to the ilomastat with sterile DMSO (Invitrogen) dissolved in sterile 

H2O to a concentration of 25nM (n=2/group) (Table 8.1). 

  In order to determine how various treatments of this MMP inhibitor effect MMP-1 

and MMP-9 expression after an exposure previously shown to increase MMP-1 (Figure 

5.16) (Ita et al. 2020b), gels were immunolabeled after 20 minutes of exposure to bacterial 

collagenase for MMP-1 (anti-rabbit, 1:400, Proteintech), MMP-9 (anti-mouse, 1:250, 

Invitrogen), and substance P (anti-guinea pig, 1:250, Neuromics) as described in Section 

8.3.1. Although the primary goal of this study was to optimize the inhibitor regimen to 

attenuate and/or abolish MMP-1, substance P was also labeled to track the neuronal 

nociceptive-signaling response in parallel with any effect of exposure and/or treatment on 

MMP expression. Confocal images were acquired for each gel in regions containing DRG 

soma and/or axons (n=5-6 images/gel) (Ita and Winkelstein 2019b). Confocal image stacks 
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(6X 5μm steps through a 20μm depth) were also acquired in regions containing FLS cells 

and no DRGs (n=2 images/gel). The amount of positive protein labeling was quantified 

using densitometry and a custom MATLAB script (Appendix B) for each image; for the 

FLS-localized images, the maximum intensity projection of each stack was generated prior 

to quantification by densitometry. Positive labeling across all images (DRGs & FLS) was 

compared for MMP-1 and MMP-9 to quantify total MMP in the system; substance P was 

only compared in the DRG images since FLS do not show positive labeling for substance 

P (Figure 8.2). Student’s t-tests compared the percentage of positive pixels of each protein 

between groups, separately for each of the first and second experiments (Table 8.1). 

8.4.1.2. Results 

 Total MMP-1 protein expression is significantly attenuated in co-cultures receiving 

ilomastat at every media change compared to co-cultures with only one dose at one hour 

before the exposure (p=0.031) and compared to co-cultures with matched volume H2O 

doses (p=0.044) (Figure 8.6). Despite that difference in MMP-1 levels between ilomastat 

with media changes and H2O vehicle, ilomastat with media changes does not change MMP-

1 levels from those treated with the DMSO vehicle (Figure 8.6). Administration of daily 

ilomastat doses increases MMP-9 expression relative to its expression in co-cultures 

receiving doses only on DIV3, DIV6, and prior to exposure (p=0.009) (Figure 8.6). Yet, 

results from the second experiment show that inhibitor doses with every media change 

significantly decrease MMP-9 expression from expression in the co-cultures with DMSO 
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vehicle (p=0.023) (Figure 8.6). Substance P expression follows the same trends as MMP-

1 expression (Figures 8.6 & 8.7); co-cultures treated with ilomastat at every media change 

have lower levels of substance P than those receiving only one dose of ilomastat prior to 

exposure (p=0.038) and those receiving H2O vehicle (p=0.019) (Figure 8.7). Ilomastat does 

Table 8.1. Ilomastat dosing regimens with bacterial collagenase exposure on day-in-vitro (DIV) 7 

Group Description Regimen 

Experiment 1 

daily 

25nM ilomastat dose given daily 

starting on DIV3 & 1 hour before 

exposure on DIV7 

DIV3 - ilomastat 

DIV4 - ilomastat 

DIV5 - ilomastat 

DIV6 - ilomastat 

DIV7 - ilomastat 

media ∆ 

25nM ilomastat dose given during 

every media change beginning on 

DIV3 & 1 hour before exposure on 

DIV7; an H2O vehicle dose given on 

DIV4 & DIV5 

DIV3 - ilomastat 

DIV4 - H2O  

DIV5 - H2O 

DIV6 - ilomastat 

DIV7 - ilomastat 

1hr before 

H20 vehicle dose given on DIV3 

through DIV6; 25nM ilomastat dose 

given 1 hour before exposure on DIV7 

DIV3 - H2O 

DIV4 - H2O  

DIV5 - H2O 

DIV6 - H2O 

DIV7 - ilomastat 

H20 veh 

H20 vehicle dose given daily starting on 

DIV3 & 1 hour before exposure on 

DIV7 

DIV3 - H2O  

DIV4 - H2O  

DIV5 - H2O 

DIV6 - H2O 

DIV7 - H2O 

Experiment 2 

media ∆ 

25nM ilomastat dose given during 

every media change beginning on 

DIV3 & 1 hour before exposure on 

DIV7 

DIV3 - ilomastat 

DIV4 - none 

DIV5 - none 

DIV6 - ilomastat 

DIV7 - ilomastat 

DMSO veh 

25nM DMSO vehicle dose given 

during every media change beginning 

on DIV3 & 1 hour before exposure on 

DIV7 

DIV3 - DMSO 

DIV4 - none 

DIV5 - none 

DIV6 - DMSO 

DIV7 - DMSO 
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not change substance P expression from levels with the matched DMSO vehicle treatment  

(Figure 8.7). Immunolabeled images and their quantification are summarized in Appendix 

L. 

 

Figure 8.6. Level of positive immunolabeling for MMP-1 and MMP-9 with dosing regimens of the MMP 

inhibitor ilomastat after 20 minutes of exposure to bacterial collagenase. The dotted line demarcates 

protein outcomes that are quantified from the two separate experiments. Co-cultures with the “media ∆” 

regimen have less MMP-1 expression than co-cultures receiving the “1hr before” and “H2O veh” 

regimens (*p≤0.044). MMP-9 is greater in co-cultures with daily inhibitor administration than with doses 

every media change (*p=0.009). MMP-9 expression is lower with ilomastat treatment than with the 

DMSO vehicle in the second study (*p=0.023).  

 

 

 

 

 

 

 

dai
ly

m
ed

ia
 Δ

1h
r b

ef
ore

H 2
O
 v

eh

m
ed

ia
 Δ

D
M

S
O
 v

eh

0

10

20

30

40

50

M
M

P
-1

 (
%

 p
o

s
it

iv
e

 p
ix

e
ls

)

m
e

a
n

 +
 S

D

✱

✱

dai
ly

m
ed

ia
 Δ

1h
r b

ef
ore

H 2
O
 v

eh

m
ed

ia
 Δ

D
M

S
O
 v

eh

0

5

10

15

20

M
M

P
-9

 (
%

 p
o

s
it

iv
e

 p
ix

e
ls

)

m
e

a
n

 +
 S

D

✱

✱

 

Figure 8.7. Positive immunolabeling for substance P with dosing regimens of ilomastat after 20 minutes 

of bacterial collagenase exposure. The dotted line demarcates protein outcomes that are quantified from 

two separate experiments. The “media ∆” regimen decreases substance P expression from co-cultures 

receiving the “1hr before” and “H2O veh” regimens (*p≤0.038).  
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8.4.2. Sub-Failure Biaxial Stretch with MMP Inhibition 

8.4.2.1. Methods 

 The primary goal of this study was to impose a sub-failure painful stretch in the 

presence of MMP inhibition and characterizing effects on MMP-1, MMP-9, and substance 

P protein expression. Since a 1.5mm/arm equibiaxial stretch increases substance P 

expression by 2.5-fold in co-cultures (Figure 8.2), that same mechanical insult was imposed 

in this study. The ilomastat dosing regimens used in stretch experiments most closely 

followed the regimen of dosing on every media change, that is on day-in-vitro (DIV) 3, 6, 

and one hour before the stimulus (Table 8.1). Although the effectiveness of ilomastat 

dosing to reduce total MMP-1 is not evident in comparisons with the DMSO vehicle 

(Figure 8.6), the “media ∆” dosing regimen decreases total MMP-1 compared to a matched 

H2O vehicle (Figure 8.6). Furthermore, dosing at every media change decreases total 

MMP-9 from DMSO vehicle (Figure 8.6) and substance P from H2O vehicle (Figure 8.7). 

Therefore, the “media ∆” dosing regimen was chosen as the most promising inhibitor 

treatment procedure to reduce MMP levels in the current study. Further, to determine if 

such an inhibitor intervention after a painful sub-failure stretch affects protein outcomes, 

groups were included with and without an inhibitor dose immediately following the painful 

stretch.  

 Therefore, co-cultures were fabricated with rat FLS (~5x104 cells/mL) from 

passages three to five and DRGs (6-10/gel) (Figures 5.3 & 6.1) (Ita and Winkelstein 

2019b), and underwent one of four different dosing regimens with ilomastat and/or DMSO 

vehicle (Figure 8.8). Ilomastat and DMSO vehicle doses were prepared for a final 
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concentration of 25nM as described in Section 8.4.1.1. Doses added to the culture media 

on DIV7 before the sub-failure stretch were given one hour prior to the stretch, and post-

stretch doses were added to media five minutes after the stretch (Figure 8.8). Separate co-

cultures received either: DMSO vehicle at every dosing time (vehicle; n=10), ilomastat 

leading up to the stretch and DMSO after the stretch (pre; n=16), ilomastat only after the 

stretch (post; n=12), or ilomastat at every dosing time (pre/post; n=14) (Figure 8.8). All 

co-culture gels were prepared for mechanical testing as described in section 8.3.1 (Zhang 

et al. 2017); half of the gels in each group were stretched in equibiaxial tension at 4mm/sec 

to 1.5mm/arm (Section 8.3.1), and the other half underwent the same protocol without any 

imposed stretch, serving as unstretched controls. 

  Force and high-speed imaging data were acquired as described in Section 8.3.1 

(Figure 6.1) (Ita and Winkelstein 2019b). Immediately after loading, gels were released 

 

Figure 8.8. Study design of the dosing regimens for MMP inhibition with sub-failure equibiaxial stretch 

experiments. Co-cultures either received DMSO vehicle at every timepoint (vehicle; n=10), ilomastat 

leading up to the stretch and DMSO after the stretch (pre; n=16), ilomastat only after the stretch (post; 

n=12), or ilomastat at every dose (pre/post; n=14). All ilomastat and DMSO vehicle doses were given at 

25nM concentration. Co-culture doses prior to stretch on DIV7 were given one hour before stretch, and 

doses after the stretch were given after five minutes. 
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from the grips, washed with 1XPBS with 1% Pen-Strep, and transferred to pre-warmed 

serum-free supplemented Neurobasal culture media with 1% Pen-Strep (Zhang et al. 2017); 

all post-stretch ilomastat and/or DMSO vehicle doses were added directly into the fresh 

media (Figure 8.8). After 24 hours, gels were washed, and half of each gel was stored at -

80°C and the other half was fixed in 4% PFA for immunolabeling. The post-stretch culture 

media (1mL) was also saved and stored at -80°C for future use. The peak force and peak 

maximum principal strain were computed per gel as described earlier (Section 8.3.1). 

  Fixed gels were blocked in 1XPBS with 10% goat serum and 0.03% Triton-X and 

incubated overnight at 4°C with primary antibodies to substance P (anti-guinea pig, 1:250, 

Neuromics), MMP-1 (anti-rabbit, 1:400, Proteintech), and MMP-9 (anti-mouse, 1:250, 

Invitrogen). Gels were then washed and incubated with the secondary antibodies goat anti-

guinea pig 633, goat anti-rabbit 488, and goat anti-mouse 568 (all Alexa Fluor 1:1000; 

Invitrogen) and DAPI (1:750, ThermoFisher). Labeled gels were imaged using the 20x 

objective of a Leica TCS SP8 confocal microscope (1024x1024 pixels, Leica 

Microsystems). Images were acquired for each gel (6 images/gel) in regions containing 

DRG soma and/or axons (Ita and Winkelstein 2019b). In a subset of the co-cultures (n=3-

4/group/stretch condition), 6-image confocal stacks (1-2 images/gel) were acquired at 5μm 

steps throughout a 20μm depth in regions manually selected to contain only FLS cells. The 

location of each image was registered with the elements from each gel to relate cellular 

outcomes to the elemental strain. The amount of positive protein labeling was quantified 

using densitometry (Appendix B); for the FLS-localized images, the maximum intensity 

projection of each stack was generated prior to quantification with densitometry. For each 
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image, substance P, MMP-1, and MMP-9 were normalized to DAPI to account for different 

cell densities, and then normalized to the unloaded control gel, separately for each label. 

  One-way ANOVAs by dosing group with post-hoc Tukey HSD tests compared 

peak force, peak MPS, and the fold-change in protein expression over unstretched controls. 

Differences in MMP-1, MMP-9, and substance P were tested separately for images taken 

in the DRG regions and for MMP-1 and MMP-9 in images taken in the FLS regions. 

Protein outcomes in the neuronal images were further binarized based on whether they 

were acquired in elements that sustained MPS below or above 11.7% strain, the threshold 

for increasing phosphorylated ERK and collagen matrix reorganization in stretched 

neuron-collagen cultures (Zhang et al. 2016). Neuronal protein expression below and above 

that 11.7% strain threshold was compared for each protein label in each group separately 

using t-tests.  

8.4.2.2. Results 

Neither the force (p=0.439) nor the maximum principal strain (p=0.229) is different 

across groups (Figure 8.9). The average peak force (15.1±9.0mN) and MPS (23.3±12.3%) 

across all groups are similar to those detected in co-cultures receiving the same sub-failure 

stretch (force 15.8±4.2mN; MPS 18.6±6.5%) in the earlier study (Figure 8.1). Force-

displacement curves, strain maps, and quantification of mechanical data are summarized 

for each gel in these experiments Appendix K. 

In neuronal regions, there is a significant effect of inhibitor treatment on MMP-1 

labeling, with the post group having significantly more expression after sub-failure stretch 

than the vehicle (p=0.004), pre (p=0.002), and pre/post (p=0.025) groups (Figure 8.10). 
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Despite elevated MMP-1 with post-exposure inhibition, there are no differences in the fold- 

change of MMP-9 expression (p=0.130) across any of the inhibitor regimens (Figure 8.10). 

As with MMP-1, neuronal regions in the group with post treatment also have the highest 

levels of substance P, with expression levels significantly greater expression than in co-

cultures with pre treatment only (p=0.005) (Figure 8.10). MMP-1 and MMP-9 expression 

 

Figure 8.9. Peak force and maximum principal strain (MPS) with sub-failure equibiaxial stretch. Neither 

peak force (p=0.439) nor peak MPS (p=0.229) differs across treatment groups. Superimposed data points 

represent quantification in each gel; blue corridors represent 95% confidence intervals around the mean 

of stretched co-cultures from the study in Section 8.3 for reference. 
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Figure 8.10. Protein expression over unstretched controls for MMP-1, MMP-9, and substance P in DRG 

soma and axons 24 hours after a sub-failure equibiaxial stretch. DRGs in co-cultures receiving the post 

inhibitor regimen have significantly more MMP-1 than those with vehicle (&p=0.004), pre inhibition 

(*p=0.002), and pre/post inhibition (#p=0.025). Stretch does not cause differential MMP-9 expression 

across groups (p=0.130). The post inhibition group has increased substance P with sub-failure stretch 

compared to the pre inhibition only (p=0.005). Superimposed data points represent quantification in each 

confocal image acquired; blue corridors represent 95% confidence intervals around the mean of stretched 

co-cultures from the study in Section 8.3 for reference. 
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in FLS cells are not different between the different inhibitor regimens (MMP-1 p=0.524; 

MMP-9 p=0.722) (Figure 8.11), although power analyses indicate that increasing the 

sample of confocal images to 3 images/gel and 6 images/gel are sufficient to reveal 

differences in MMP-1 and MMP-9 expression across groups, respectively. Immunolabeled 

images and their quantification are summarized in Appendix L. 

 There are no differences in protein expression between DRGs that sustain strains 

below 11.7% and DRGs that sustained strains above that threshold with the DMSO vehicle 

(p≥0.292) (Figure 8.12). Yet, each of the inhibitor treatment groups have some differential 

expression based on analyses by the strain threshold. The most significant differential 

expression across the 11.7% strain threshold is observed in the post group, with lower 

protein expression in the DRGs located in the elements with strains above 11.7% for MMP-

1 (p=0.017), MMP-9 (p=0.046), and substance P (p=0.008). With the pre inhibition only 

 

Figure 8.11. Protein expression over unstretched controls for MMP-1 and MMP-9 in FLS cells at 24 

hours after a sub-failure equibiaxial stretch. No differences are detected across groups for MMP-1 

(p=0.524) nor for MMP-9 (p=0.722). Superimposed data points represent quantification in each confocal 

image acquired; blue corridors represent the maximum and minimum of protein expression quantified in 

stretched co-cultures from the study in Section 8.3 for reference. 
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regimen, MMP-1 is significantly elevated in elements above the strain threshold (p=0.026)  

(Figure 8.12). Strains above the threshold also have more substance P labeling in co-

cultures receiving the pre/post treatment (p=0.015) (Figure 8.12). 

 

 

Figure 8.12. Protein expression by group binarized by whether DRGs reside in elements sustaining 

maximum principal strain above or below 11.7%. Protein expression does not vary across the threshold 

groups with vehicle (p≥0.292). In the pre group, MMP-1 is elevated for strains above the threshold 

(*p=0.020). In the post group, MMP-1 (p=0.017), MMP-9 (p=0.046), and substance P (sub P) (p=0.008) 

are decreased with strains above the threshold. In the pre/post group, substance P is greater with strains 

above the threshold (p=0.015). Superimposed data points represent quantification in each confocal image 

acquired. 
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8.5. Discussion  

  This study demonstrates that a sub-failure, biaxial stretch is sufficient to induce 

nociceptive signaling in a co-culture model of the capsular ligament (Figure 8.2). Increased 

substance P coincident with peak maximum principal strains of 18-23% for DRG-FLS co-

cultures and DRG-only cultures is consistent with prior reports that strain magnitudes from 

8-40% relate to pain and substance P protein expression (Dong et al. 2012; Zhang et al. 

2017). The peak forces induced by sub-failure biaxial stretch range from 2.0-18.6mN and 

are lower in magnitude than the peak forces reported with the same sub-failure uniaxial 

distraction (21.1±6.5mN) (Zhang et al. 2018), demonstrating that uniaxial and equibiaxial 

distractions can impose similar strains yet differential force. That finding suggests that any 

force-regulated cellular responses may be different between uniaxial and biaxial stretch 

modalities and emphasizes the importance of modeling the in-situ ligament boundaries in 

defining cellular responses to stretch.  

  In response to a sub-failure stretch, DRG-only gels express more MMP-1 and 

MMP-9 (Figures 8.3 & 8.4) and experience lower peak forces than co-culture gels (Figure 

8.1). In contrast, co-culture gels sustain higher peak forces than DRG-only gels (Figure 

8.1), but stretch does not alter MMP expression (Figures 8.3 & 8.4); it is possible that the 

higher peak forces sustained by co-culture gels is related to the finding that stretch does 

not alter MMP expression in DRGs. Moreover, MMP-1 and MMP-9 appear to increase in 

neurons only when FLS are not present (Figure 8.4). Since force regulates signaling 

pathways in ligament fibroblasts (Kook et al. 2009), it is possible that FLS regulate MMPs 

in the co-culture group via MMP sequestration and/or retention (Bartok and Firestein 2010; 
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Bottini and Firestein 2013); but, altered MMP expression is not detected in the neuronal 

regions where images are taken. The possibility that FLS retain MMPs is supported by the 

fact that MMP-1 and MMP-9 localize to FLS cells after failure stretch in this same co-

culture model (Figure 6.6) (Ita and Winkelstein 2019a). Although stretch does not increase 

either MMP-1 or MMP-9 in FLS (Figures 8.3 & 8.4), if more images and larger sample 

sizes were used then differences in MMP expression with stretch may be revealed. For 

example, increasing image sampling to n=5 images/gel for MMP-1 expression may enable 

detecting differences as indicated by power analyses. Similarly, power analyses show that 

increasing the sample size to 12 gels for each stretch condition may reveal differences in 

MMP-9 expression between the FLS cells in stretched and unstretched co-culture gels. 

  The lack of changes in MMP-1 in co-culture media with stretch (Figure 8.5) could 

also be explained by FLS retention of MMPs or differences in the relative amounts of the 

pro- and active forms of MMP-1. For example, the proportion of MMP-1 that is retained 

within the gel relative to the amount secreted into the culture media changes over time with 

normal growth in culture secreted by ligament fibroblasts seeded in collagen gels (Attia et 

al. 2014). Furthermore, the proportion of pro- and active MMP-1 in both gel homogenate 

and media varies over time (Attia et al. 2014; Daniels et al. 2003). Since the ELISA assay 

utilized in these studies includes an APMA-activation step to activate any latent MMP-1, 

total MMP-1 in the system is quantified. Since that measurement does not distinguish 

between pro- and active forms of MMP-1, there may be effects on MMP-1 activation with 

stretch and/or culture type that are not detected. Of note, pilot studies were run to use the 

ELISA assay without the APMA-activation step, but MMP-1 signals were below the noise 
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threshold and not detected; pooling samples by group and/or densifying protein with 

additional extraction protocols could address this technical difficulty. Nonetheless, stretch 

appears to modulate MMP-1 in the media in gels in which MMP-1, MMP-9, and substance 

P expression are elevated (Figures 8.2-8.6), suggesting all of these proteins to be related in 

stretch-induced neuronal signaling. 

  The lack of robust effects of ilomastat on MMP expression with bacterial 

collagenase exposure (Figure 8.6) may be due to technical details of the immunolabeling 

assays or the 25nM dose of ilomastat. The primary antibodies used to visualize MMP-1 

and MMP-9 bind to the pro- and active forms of the enzyme; further, the antibody 

interaction is not expected to be altered if the MMP is in a bound state with the ilomastat 

inhibitor. As such, MMP expression levels measured by immunolabeling cannot 

distinguish between inhibitor bound MMP nor between pro- and active forms. Nonetheless, 

ilomastat inhibition may lower the total MMP levels in the system, regardless of their state, 

especially in the regimens with multiple ilomastat doses during time in culture (Table 8.1). 

This notion is supported by the decreased MMP-1 and MMP-9 observed with ilomastat for 

every media change (Figure 8.6). Although a 25nM ilomastat dose was chosen as the 

minimum dose expected to inhibit MMP-1 (Galardy et al. 1994; Grobelny et al. 1992), it 

is possible that this concentration is too low to consistently lower expression of MMPs. 

Concentrations of ilomastat between 1μM and 100μM reduce the contractile function and 

collagen production of smooth muscle cells and fibroblasts in a dose-dependent manner 

(Daniels et al. 2003; Rogers et al. 2014). So, it is possible that higher doses of ilomastat 

may have more robust effects on MMP expression levels.  
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  Despite those challenges, ilomastat treatment differentially alters MMP-1 and 

substance P expression induced by a painful sub-failure stretch (Figure 8.10). Since neither 

the peak force nor the peak maximum principal strain differ between groups (Figure 8.9), 

changes in the proteins can be attributed to the presence or absence of ilomastat. A single 

dose of ilomastat produces the most prominent differences in proteins, with that group 

(post) having significantly more MMP-1 than all other groups (Figure 8.10) and greater 

levels of all proteins with strains below a threshold for the increase of pERK (Figure 8.12). 

The fact that MMP-1, MMP-9, and substance P increase with lower strains when co-

cultures receive one dose of ilomastat after stretch (Figure 8.12) is unexpected since 11.7% 

strain is considered as the threshold for noxious stimuli in neurons and coincident with 

reorganization of the local collagen matrix that can trigger nociceptive responses (Zhang 

et al. 2016).  

  The counterintuitive finding that MMP and substance P expression increases with 

strains below 11.7% in the post-treatment co-cultures (Figure 8.12) may be explained by 

that group having higher amounts of total MMP-1 at the time of stretch that lead to altered 

collagen-neuron adhesion sites and/or result in the post-stretch ilomastat dose incompletely 

blocking MMP-1 activity. FLS cells synthesize and secrete MMP-1 during normal culture 

that plateaus after 7-10 days (Attia et al. 2014). As such, it is likely that baseline synthesis 

and secretion of MMP-1 leading up to DIV7 is inhibited by the earlier ilomastat doses (on 

DIV3, DIV6, and DIV7) that are given to the “pre” and “pre/post” co-cultures (Daniels et 

al. 2003), which corresponds to less total MMP-1 in “pre” and “pre/post” than in “post” 

and vehicle co-cultures. More MMP-1 activity in the “post” and vehicle groups may mean 
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that collagen networks of those groups have a different microstructure than the networks 

of the groups that received ilomastat prior to the sub-failure stretch, since MMP-1 has a 

role in remodeling the collagen structure and matrix composition (Sbardella et al. 2012; 

Visse and Nagase 2003). As such, it is possible that the collagen-neuron adhesion sites that 

transduce local deformations in to nociceptive signals (Zarei et al. 2017; Zhang et al. 2017; 

Zhang et al. 2018) are altered in the “post” group and may explain why there is less MMP 

and substance P expression with higher magnitude strains (Figure 8.12). Furthermore, a 

post-stretch 25nM ilomastat dose may be able to inhibit all active MMP-1 in the “pre” and 

“pre/post” co-cultures, but not in the “post” and vehicle co-cultures. So, it is possible that 

active MMP-1 is only partially inhibited in the “post” co-cultures, or at least to a lesser 

extent than in the “pre” and “pre/post” co-culture groups. A different extent of post-stretch 

MMP-1 inhibition in the “post” co-cultures from the “pre” and “pre/post” co-cultures might 

mean that there are differential ratios of pro-MMP-1 to active MMP-1 across groups. 

Consequences of this could be that non-mechanotransduction compensatory and/or 

feedback pathways, such as FLS-regulated cytokine “storms” (Bartok and Firestein 2010; 

Chakrabarti et al. 2020; Sluzalska et al. 2017), may be triggered in the “post” co-cultures. 

However, the fact that the protein expression with vehicle does not follow the same patterns 

as the post-treatment group suggests that treating with ilomastat after a stretch may actually 

have a detrimental effect, causing increases in MMP-1 and substance P expression, as 

opposed to the “pre” and “pre/post” ilomastat dosing regimens attenuating protein 

expression (Figure 8.10). 
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  To further explore the relationships between MMP-1 and each of MMP-9 and 

substance P after sub-failure stretch, linear regressions and strength of correlations were 

separately tested within each dosing regimen group; stretched co-cultures from the first 

study in this chapter (Section 8.3) were included in this analysis as a comparator “naïve” 

group not receiving any vehicle and/or ilomastat. A significant correlation exists between 

MMP-1 and MMP-9 only in the naïve co-cultures 24 hours after sub-failure stretch 

(p<0.001) (Figure 8.13). That finding is consistent with the positive correlation between 

active MMP-1 and active MMP-9 detected in innervated soft tissues from patients with 

painful TMJ disorders (Figure 3.3) (Ita et al. 2020a) and further supports a possible 

mechanistic relationship between those two proteases. Significant correlations are detected 

between MMP-1 and substance P only in the groups with no pre-inhibition dosing (Figure 

8.13), supporting the notion that ilomastat may regulate MMP-1 during normal co-culture 

growth (Attia et al. 2014; Daniels et al. 2003; Rogers et al. 2014). That is, substance P 

increases with MMP-1 in the vehicle (p=0.012) and post (p<0.001) groups (Figure 8.13). 

Although that positive trend is also evident in naïve stretched gels, the relationship is not 

significant (p=0.058) (Figure 8.13). The stretch-induced increase in MMP-1 coincident 

with substance P expression in the vehicle and post groups is consistent with parallel 

increases in MMP-1 and substance P immediately after failure stretch (Figure 6.4) (Ita and 

Winkelstein 2019b) and with bacterial collagenase exposure in groups with no ilomastat or 

with only one ilomastat dose preceding exposure (Figures 8.6 & 8.7). Collectively, those 

findings show that the expression level of substance P follows the expression of MMP-1 

immediately after a biomechanical stretch to gel failure, at 24 hours after a sub-failure 
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biomechanical stretch, and after 20 minutes of biochemical degradation. Taken together 

 

Figure 8.13. Linear regressions between MMP-1 and MMP-9 and between MMP-1 and substance P; all 

protein outcomes represent measurements in stretched co-cultures normalized to unstretched controls. 

Samples included in the co-culture naïve group (top left) are the cohort of gels tested in studies comparing 

co-cultures to DRG-only gels in Section 8.3; samples in all boxes are the cohort of gels tested in ilomastat 

inhibition studies in Section 8.4.2. There is a significant correlation between MMP-1 and MMP-9 only 

in the naïve co-culture gels after sub-failure stretch (p<0.001; R2=0.30). Significant correlations are 

detected between MMP-1 and substance P in co-cultures with vehicle (p=0.012; R2=0.20) and post 

(p<0.001; R2=0.72) treatment regimens.  
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with the lack of association between MMP-1 and substance P in cultures that were given 

ilomastat at DIV3, DIV6, and DIV7 during culture (Figure 8.13), those findings suggest 

that broad spectrum inhibition of MMPs (including MMP-1 and MMP-9) suppresses an 

interaction between MMP-1 and substance P that is triggered by noxious stimuli.  

  The protein expression outcomes in this study must be considered with the 

supposition that any inhibitory effect of ilomastat is likely only acting on the collagenolytic 

functionality of MMP-1, suggesting that the myriad cell signaling roles of MMP-1 (Allen 

et al. 2016; Boire et al. 2005; Conant et al. 2002; Conant et al. 2004; Dumin et al. 2001; 

Visse and Nagase 2003; Vos et al. 2000) are not altered. This supposition is due to the fact 

that hydroxamate-based inhibitors like ilomastat bind to the Zn2+-containing catalytic 

domain of MMPs, and so, can presumably only bind to MMPs in its active form, when the 

Zn2+ site is biochemically available to the inhibitor (Grobelny et al. 1992; Visse and Nagase 

2003; Yong et al. 2001). As such, the inhibitor theoretically only interferes with MMP 

functionality that requires the Zn2+ binding site. For the case of an MMP-1-ilomastat 

enzyme-inhibitor complex, the collagenolytic activity of MMP-1 would be inhibited; yet, 

any functional role of MMP-1 not requiring the Zn2+ binding site may still biochemically 

occur in the presence of the ilomastat inhibitor. So, the finding that none of the ilomastat 

dosing regimens significantly attenuate stretch-induced substance P expression (Figure 

8.10) could indicate that the non-Zn2+-dependent functions of MMP-1 are sufficient alone 

to trigger stretch-induced nociceptive signaling. Although there is no evidence that 

ilomastat alters the force and/or regional strains due to sub-failure stretch (Figure 8.9), the 

collagen organization and kinematics of the fiber network were not evaluated in this study. 
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Yet, it is possible that ilomastat treatment alters the collagen network’s response to stretch 

by suppressing MMP-mediated collagen degradation that occurs during normal culture or 

that is induced by the sub-failure stretch. Assaying the composition and structure of the 

collagen matrix before and after stretch would help determine if the ilomastat dose used 

here influences collagenolytic effects on the collagen fibers and define if those effects 

occur in parallel with elevated nociceptive signaling in DRGs.  

  Experiments testing the ability of ilomastat to reduce MMP expression levels were 

optimized using a biochemical exposure to bacterial collagenase intentionally used because 

of its ability to robustly increase MMP-1 in the same co-culture model used here (Figure 

5.16) (Ita et al. 2020b). Although biomechanical and biochemical stimuli increase MMP-1 

(see Chapter 5), the magnitude of change in MMP-1 expression depends on the type of 

noxious stimuli and the length of time after the stimuli (Allen et al. 2016; Ita et al. 2020b; 

Ita and Winkelstein 2019b). As such, it is possible that an equivalent ilomastat dosing 

regimen has different effects on MMP expression immediately after a bacterial collagenase 

exposure than 24 hours after a sub-failure equibiaxial stretch. For example, a collagenase-

induced increase in MMP-1 within minutes (Ita et al. 2020b) may occur via FLS-mediated 

secretion of sequestered MMP-1 in response to positive MMP feedback loops (Aghvami 

et al. 2016; Craig et al. 2015; Murphy 2017; Visse and Nagase 2003), whereas a stretch-

induced increase in MMP-1 after one day may occur as a result of transcriptional regulatory 

mechanisms in FLS cells and/or peripheral neurons (Bartok and Firestein 2010; Bottini and 

Firestein 2013; Nishida et al. 2008; Zhou et al. 2014). As such, a dose of ilomastat given 

one hour before collagenase exposure is presumed to effectively reduce MMP-1 activity 



264 

 

and/or expression. However, there may have different, or no, effect on any transcriptional 

regulatory mechanisms induced by a sub-failure stretch. Thus, an ilomastat dose and 

frequency of dosing regimen should be optimized for reducing MMP-1 expression and/or 

activity specifically for a sub-failure stretch for the purpose of defining the effect of MMP-

1 inhibition on stretch-induced nociceptive signaling. 

  Overall, the studies in this chapter show that MMP-1 and MMP-9 are involved in 

nociceptive signaling from sub-failure ligament injury in a fibroblast-dependent manner 

(Figures 8.2-8.5). Further, 25nM of ilomastat likely partially inhibits MMP-1 and MMP-9 

(Figures 8.6 & 8.8), and the frequency of that dose alters stretch-regulation of MMPs and 

substance P in the painful and sub-failure regime (Figures 8.9-8.13). The immunolabeling 

data presented in this chapter do not completely capture FLS-localized expression 

responses for MMP-1 and MMP-9 (Figures 8.3, 8.4 & 8.11); studies should quantify MMP 

expression localized to fibroblasts to determine if the effects of ilomastat inhibition on FLS 

cells are similar to the effects on peripheral neurons (Figure 8.10) and to elucidate if MMP 

expression in FLS cells is regulated by strain magnitude (Figure 8.12). Study designs 

should also explore more selective inhibition of MMP-1 by methodologies such as siRNA 

silencing (Rogers et al. 2014) in order to block the translation of active MMP-1 and pro-

MMP-1, thus providing a means to interfere in Zn2+ binding site-dependent and 

independent pathways. MMP-1 inhibition via siRNA techniques would also enable 

answering questions about MMP-1’s regulation of MMP-9 that is not possible with the 

broad-spectrum ilomastat inhibitor. Investigating techniques that selectively inhibit MMP-

1 is particularly important if inhibition studies are pursued in vivo, since broad-spectrum 
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MMP inhibitors like ilomastat are known to cause side effects like widespread 

musculoskeletal pain due to off-target effects of the ilomastat intervention (Fingleton 

2008). Indeed, off-target side effects of ilomastat are a primary reason that clinical trials of 

MMP inhibitors have failed (Coussens et al. 2002; Vandenbroucke and Libert 2014). Of 

note, musculoskeletal pain induced by hydroxamate-based inhibitors has since been 

determined to be caused by off-target interactions with a disintegrin and metalloproteinases 

with thrombospondin motifs (ADAMTS) in human trials, and not MMPs (Fingleton 2008). 

The widespread musculoskeletal pain in cancer trials attributed to ilomastat-ADAMTS 

interactions is hypothesized to be due to systemic administration of the ilomastat drug 

(Fingleton 2008), and those mechanisms are not expected to be at play in the co-culture 

model here given the less complex nature of the in vitro model relative to a whole organism. 

Nonetheless, ilomastat may also have off-target effects in the co-culture model like binding 

to non-MMP enzymes that contain metals or interfering with ADAMTS released by 

fibroblasts (Bottini and Firestein 2013; Ernberg 2017; Fingleton 2008). Although no 

selective inhibitors for MMP-1 exist currently, selective inhibition of MMP-13 has been 

successfully achieved without evidence of musculoskeletal pain by targeting regions other 

than the preserved Zn2+ binding site (Baragi et al. 2009; Gege et al. 2012; Jüngel et al. 

2010). Pursuing MMP-1 inhibition by this same selective approach may provide a fruitful 

opportunity to define the effect of isolated blocking of MMP-1 activity on other MMPs, 

like MMP-9, and to determine if selective MMP-1 inhibition in vivo has the potential to 

reduce pain without clinical side effects. 
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8.6. Integration & Conclusions 

The studies in this chapter support the hypothesis that sub-failure stretch of the 

DRG-FLS co-culture collagen gel model above the magnitude of strain that increases 

substance P in peripheral neurons also regulates MMP-1 and MMP-9 expression in 

peripheral neurons (Figures 8.2-8.4). The presence of FLS, however, prevents the increase 

in MMP expression compared to DRG-only cultures (Figures 8.2-8.4); that is the opposite 

regulatory pattern than what was expected. This may be explained by incompletely 

captured measurements of MMPs in the culture media and/or gel homogenate (Figure 8.5) 

or by localization of MMP-1 and MMP-9 to the fibroblast-like synoviocyte cells in the co-

cultures which were not fully assessed. Although larger group sizes are needed, pilot data 

suggest that sub-failure stretch regulates MMP-1 and MMP-9 expression in fibroblast-like 

synoviocytes, as well as in neurons (Figures 8.3-8.4). Despite the fact that sub-failure 

stretch does not increase MMP-1 nor MMP-9 in co-cultures (Figures 8.3 & 8.4), MMP-1 

and MMP-9 are positively correlated in stretched DRGs (Figure 8.13), corroborating the 

notion put forth in Chapters 3 and 6 that those two MMPs are mechanistically related. 

Collectively, the studies assaying protein expression immediately after failure stretch 

(Chapter 6) and those presented here assaying proteins at 24 hours after sub-failure stretch 

implicate MMP-1 and MMP-9 in the rapid nociceptive response to severe injury and in a 

delayed response to sub-failure injury.  

Because ilomastat inhibits MMP-9 in addition to MMP-1 at the concentrations used 

in these studies (Galardy et al. 1994; Grobelny et al. 1992; Vandenbroucke and Libert 

2014), whether MMP-1 mediates stretch-induced nociceptive responses via its regulation 
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of MMP-9 cannot be determined. Furthermore, experiments with ilomastat treatment do 

not support the hypothesis that MMP-1 inhibition decreases stretch-induced MMP-9 and/or 

substance P. Instead, results demonstrate an interesting effect of ilomastat timing on protein 

expression and strain-dependence of those protein outcomes (Figures 8.10 & 8.12), 

whereby a single ilomastat dose following a painful sub-failure stretch appears to increase 

MMP-1 and substance P in DRGs that experience lower magnitude strains during the 

stretch. The finding that a post-stretch dose of ilomastat results in greater MMP-1, MMP-

9, and substance P expression in neurons that underwent a strain below a threshold for 

noxious stimuli (Figure 8.12) (Zhang et al. 2016) suggests that blocking MMP activity after 

a painful stretch may disrupt the collagen-neuron adhesion sites that transduce 

biomechanical stimuli to physiological signals in neurons. Together these findings are 

integrated with those from studies in the co-culture model (Chapters 5 & 6), in the rat 

(Chapters 4 & 7), and in the human (Chapter 3) in the final chapter to put forth a 

mechanistic role for MMP-1 in nociceptive transmission from the capsular ligament, with 

suggestions for future directions. 
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Chapter 9 

Synthesis & Future Work 
 

 

9.1. Introduction 

Chronic joint pain presents an enormous healthcare challenge affecting the daily 

lives of nearly one-fifth of Americans and costing the United States hundreds of billions 

of dollars annually (IBM Corporation 2019; Institute of Medicine 2011; National 

Academies of Sciences, Engineering, and Medicine 2020). Although matrix 

metalloproteinases (MMPs) are present in the tissues of joints with painful disorders, either 

due to trauma (Cohen et al. 2007; Haller et al. 2015; Konttinen et al. 1999; Lattermann et 

al. 2017) or degeneration (Kim et al. 2015; Loeser et al. 2012), whether their presence is 

relevant to pain transmission from those joints is unknown. Early studies of MMPs 

elucidated their role in regulating constituent components of the extracellular matrix 

(ECM) (Evanson et al. 1967; Sellers et al. 1977); in the context of degenerative joint 

disease, MMPs play a large role in the transition of ECM turnover from healthy to 

pathological (Freedman et al. 2015a; Kraus et al. 2015; Murphy and Nagase 2009). In the 

last few decades, a myriad of ECM-independent roles for MMPs in cellular interactions 

with the external microenvironment have emerged (Murphy 2017; Sbardella et al. 2012), 

many of which include cellular interactions in and across the peripheral and central nervous 

systems (Agrawal et al. 2008; Huntley 2012; Rosenberg 2002). MMP-1, for example, has 
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defined roles in degrading triple helical collagen (Evanson et al. 1967; Visse and Nagase 

2003) and interactions with neurons and their receptors have emerged recently (Allen et al. 

2016; Boire et al. 2005; Conant et al. 2002; Conant et al. 2004; Dumin et al. 2001; Vos et 

al. 2000). However, despite evidence that MMP-1 is involved in tissue degradation and 

neuronal signaling cascades, whether MMP-1 has a mechanistic role in nociceptive 

transmission from innervated peripheral joint tissues, or what functional roles of MMP-1 

may be involved, has not been defined.   

 Therefore, the goal of this thesis was to define the biomechanical and biochemical 

actions of MMP-1 in the nociceptive transmission that causes pain with joint diseases. To 

accomplish this goal, the studies in this thesis establish the clinical relevance of MMP-1 in 

association with pain symptoms, define possible stimuli that may lead to increased levels 

of MMP-1 in capsular ligament tissue, and quantify the behavioral, biomechanical, and 

physiological consequences of excess MMP-1 in the joint space (Figure 9.1). The major 

findings are summarized in this chapter and discussed in the context of the broader 

literature related to chronic joint pain (Section 9.2). Broadly, the integrated findings across 

studies support the hypothesis that MMP-1 mediates collagen-neuron interactions in the 

capsular ligament by changing the biomechanical environment of the ligament and by 

acting as a biochemical mediator of MMP-9. MMP-1 was also hypothesized to mediate 

fibroblast-neuron interactions in the capsular ligament in the context of tissue loading. 

Although outcomes indirectly support this claim, findings more strongly support that the 

fibroblast-like synoviocytes (FLS) themselves found in capsular ligaments mediate the 

extent of load-induced MMP-1 in the ligament; as such, any consequences of MMP-1 on 
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peripheral neurons depend on FLS functionality. This chapter also discusses the limitations 

across the collection of studies presented here and elaborates on areas for future work that 

would build upon these current findings (Section 9.3). 

 

9.2. Summary & Synthesis of Major Findings 

Intra-articular purified bacterial collagenase and MMP-1 both induce immediate 

and sustained behavioral sensitivity and increases in the neurotransmitter substance P in 

 

Figure 9.1. Integration of findings across studies. Characterization of MMPs in innervated capsular tissue 

from patients with painful temporomandibular joint disorders implicate MMP-1 and MMP-9 as positive 

correlates with pain symptoms. Studies in the co-culture collagen gel model of the capsular ligament 

reveal that biomechanical stretch and biochemical degradation are both mechanisms that increase MMP-

1 expression in parallel with increased expression of the nociceptive neurotransmitter substance P. 

Studies that introduce exogenous intra-articular MMP-1 in the rat demonstrate that MMP-1 is sufficient 

alone to induce pain-like behaviors without degenerated joint structure that is reminiscent of findings in 

the patient population. Studies in the rat further define the implications of pathologically increased levels 

of MMP-1 on the structure and biomechanical function of the capsular ligament, as well as on neuronal 

dysfunction.   
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peripheral neurons and the spinal dorsal horn (Chapters 4 & 7) (Ita et al. 2020b); together, 

those findings suggest that the collagenolytic function of MMP-1 alone is sufficient to 

cause pain from the peripheral synovial facet joint. This reasoning is supported by the fact 

that the only theoretical function of purified bacterial collagenase in the capsular ligament 

is to act on collagen molecules, directly influencing the Type I collagen network of the 

capsular ligament (Fields 2013). Despite that assumed role of collagenase in the joint space, 

there is no obvious effect on the tissue-level structure of either the cartilage or the capsular 

ligament, for either intra-articular bacterial collagenase (Chapter 4) or MMP-1 (Chapter 7). 

Although the lack of overt structural changes in joint tissues might initially lend more 

weight to mechanisms not related to the ECM components as being important in pain 

signaling, the detectable alterations in the collagen fiber kinematics and biomechanical 

responses of ligaments with MMP-1 treatment suggest that, indeed, collagen structure is 

altered on a scale that is undetectable by histological assays (Chapter 7).   

Those findings suggest that the elevated MMP-1 in the joints of patients after 

traumatic injury or with age-related degeneration may also function in the joint space to 

initiate and/or mediate pain (Chapter 3) (Cohen et al. 2007; Haller et al. 2015; Ita et al. 

2020a; Kim et al. 2015; Konttinen et al. 1999; Lattermann et al. 2017; Loeser et al. 2012). 

In fact, MMP-1 correlates with clinical pain symptoms (Chapter 3) and neuronal levels of 

substance P expression in response to stretch and degradation (Chapters 5 & 6), further 

implicating MMP-1 in nociception on a clinical and molecular level. 

Placing the findings of this thesis in the context of previous studies begins to 

suggest mechanisms by which MMP-1 may be involved in the transmission of pain from 
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the capsular ligament due to noxious stretch and/or pathological collagen degradation 

(Figures 9.2-9.5). Within minutes of a stretch in the supraphysiologic regime, MMP-1 and 

MMP-9 expression increases in regions localized to both FLS and peripheral neurons 

(Figures 6.4 & 6.6) (Ita and Winkelstein 2019c) that is likely due to rapid cellular re-

localization of MMPs via endocytosis, exocytosis, or cell rupture (Figure 9.3) (Craig et al. 

2015; Murphy 2017; Visse and Nagase 2003). Increased MMP-1 in the presence of neurons 

can co-localize with α2β1-integrin in its pro- and active forms (Conant et al. 2004; Dumin 

et al. 2001). The trimeric complex formed by α2β1-integrin, pro-MMP-1, and type I 

collagen spatially confines proteolysis to promote migratory mechanisms in keratinocytes 

(Figures 9.2 & 9.3) (Dumin et al. 2001). 

 The formation of this trimeric complex on peripheral neurons could initiative 

nociceptive-related cascades directly via integrin interactions or indirectly via collagen 

 

Figure 9.2. Schematic showing possible partial mechanisms for MMP-1 protein regulation in the capsular 

ligament during the resting state. A peripheral axonal terminal is depicted in a network of collagen fibers 

(green fibers) and fibroblast-like synoviocytes (not to scale). In healthy states, levels of active MMP-1 

are very low. In response to stimuli of the local environment, plasmin and/or other proteases can activate 

pro-MMP-1 and trigger signaling and/or catabolic cascades. 
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catabolism (Figure 9.3). For example, localization of pro-MMP-1 to α2β1-integrin receptors  

on peripheral neurons may function to directly trigger intracellular integrin-dependent 

cascades, such as activation of the ERK pathway (Campos et al. 2004). Furthermore, 

MMP-1 proteolysis localized at the binding sites of collagen with peripheral axon 

terminals, like in keratinocytes (Dumin et al. 2001), could indirectly disrupt neuronal 

adhesion sites with collagen by first catabolizing the collagen molecules focal to neuronal 

receptors. Integrin-collagen binding sites have been directly implicated in strain-induced 

increases in substance P in a DRG-collagen gel model (Zhang et al. 2017); so, MMP-1 

interaction with integrin could lead to nociceptive transmission. Moreover, inhibiting the 

α2-integrin blocks the intracellular cascades initiated by the integrin-MMP-1-collagen 

complex, but inhibiting MMPs with an hydroxamate-based inhibitor does not (Conant et 

 

Figure 9.3. Schematic showing possible partial mechanisms for MMP-1 protein regulation in the capsular 

ligament immediately after a biomechanical stretch. Severe capsular stretch increases MMP-1 protein 

expression that may be regulated by fibroblast-like synoviocytes and act on neuronal surface receptors to 

transmit nociceptive signals. Plasmin and/or other proteases such as MMP-3 activate pro-MMP-1 in the 

extracellular space. 
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al. 2004). That finding suggests that integrin-MMP-1-collagen mechanisms depend on the 

availability of the α2-integrin binding site but not on collagenolytic activity of MMP-1. 

That finding further supports that the hydroxamate-based MMP inhibitor ilomastat used in 

the studies in Chapter 8 may not inhibit the functional ability of MMP-1 to bind to and/or 

act on cell surface receptors.  

MMP-1 leads to increases in intracellular calcium within minutes of its introduction 

into the extracellular space via cleavage of the protease-activated receptor-1 (PAR-1) 

(Allen et al. 2016; Conant et al. 2002). Since PAR-1 is expressed on nociceptive neurons 

(Vellani et al. 2010), increased MMP-1 in the capsular ligament (Figures 6.4 & 6.6) may 

cleave PAR-1 on afferent fibers and increase intracellular calcium concentrations in 

peripheral neurons (Figure 9.3). This mechanism could lead to increased neuronal signaling 

and contribute to peripheral sensitization (Basbaum et al. 2009); indeed, PAR-1 activation 

by MMP-1 could explain the finding observed that exogenous MMP-1 exposure to DRG 

cultures increases their calcium firing (Figure 6.7) (Ita et al. 2018a). Notably, MMP-1’s 

interaction with PAR-1 has only been demonstrated with the active form of the enzyme 

(Allen et al. 2016; Conant et al. 2002), suggesting that inhibiting the Zn2+ active site of 

MMP-1, like with ilomastat, may intervene in PAR-1 interactions. PAR-1 is also expressed 

on dorsal horn neurons in the spinal cord and is required for the development of neuropathic 

pain from a nerve root compression injury (Smith and Winkelstein 2017), so any MMP-1 

that is transported on axonal terminals to spinal synapses may also have similar 

consequences on PAR-1 receptors on dorsal horn neurons. 
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At 24 hours after a noxious stretch, the gene and protein expression levels of MMP-

1 and MMP-9 may increase from transcriptional and/or post-translational regulation of 

MMPs (Bartok and Firestein 2010; Murphy and Nagase 2009; Petersen et al. 2012; Yang 

et al. 2005). Although an increase in MMP-1 protein could amplify any of MMP-1’s 

interactions with cell surface receptors on afferent fibers as described above (Figure 9.4), 

stretch in the painful sub-failure regime does not appear to increase MMP-1 or MMP-9 on 

the cell surface of peripheral neurons when FLS are present in the microenvironment 

(Figures 8.3 & 8.4). Therefore, it is likely that mechanisms other than those between MMP-

1 and neuronal receptors may dominate nociceptive transmission 24 hours after capsular 

stretch. For example, active MMP-1 activates the zymogen form of pro-MMP-9 into active 

MMP-9 (Visse and Nagase 2003), and even if MMP-1 is not elevated on peripheral neurons 

(Figure 8.3), its extracellular activity may activate any latent MMP-9 within the collagen  

 

Figure 9.4. Schematic showing possible partial mechanisms for MMP-1 protein regulation in the capsular 

ligament 24 hours after a biomechanical stretch. One day after a painful stretch, MMP-1 may regulate 

pain transmission via MMP-9 and its downstream effects on substance P and/or via feedback mechanisms 

with inflammatory cytokines.  
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network surrounding the resident cells (Figure 9.4). This notion is supported by the positive 

correlations between active MMP-1 and active MMP-9 in innervated soft tissues from 

painful joint disorders (Figure 3.3) and after a sub-failure stretch in the DRG-FLS co-

culture model (Figure 8.13). Moreover, direct stimulation with active MMP-1 increases 

MMP-9 expression in DRG cultures (Figure 6.8), an effect that corroborates previous 

findings in cortical neurons (Conant et al. 2002). Elevated active MMP-9 has many 

implications for pain signaling, including downstream interactions with substance P 

(Diekmann and Tschesche 1994) and subsequent propagation of excitatory signaling that 

contributes to nociceptive transmission from facet capsular stretch injury (Crosby et al. 

2014).  

If transported centrally, MMP-9 can impair the integrity of the blood brain barrier 

(BBB) and/or blood spinal cord barrier (BSCB) by degrading matrix components of the 

basement membrane and inducing abnormal vascular permeability (Lee et al. 2014; Noble 

et al. 2002; Rosenberg 2002). Increased permeability of the BSCB allows for the 

extravasation of serum molecules into the spinal cord, including leakage of the circulating 

cytokines that promote inflammation into the central nervous system (Ren and Dubner 

2008). Cytokines can facilitate excitatory glutamate signaling by activating kinases that 

phosphorylate ion channels, and separately induce aberrant signaling between spinal 

neurons and glia (Ren and Dubner 2008); both of those mechanisms can amplify neuronal 

outputs when activated and can lead to central sensitization and persistent pain (Ji et al. 

2018; Latremoliere and Woolf 2009). Moreover, even a transient breakdown of the BSCB 

is sufficient to induce behavioral sensitivity via cytokine trafficking into the spinal cord 
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(Smith et al. 2016). As such, even a transient increase in MMP-9 in peripheral DRGs may 

induce neuroinflammatory cascades and sensitize spinal neurons if that MMP-9 is 

transported to the central terminals of the afferent fibers. Indeed, MMP-9 may play a role 

in the central sensitization that is evident with joint pain from  stretch injury (Crosby et al. 

2013; Crosby et al. 2014; Crosby et al. 2015; Van Oosterwijck et al. 2013) and with non-

traumatic degenerative disorders (Lluch Girbés et al. 2016; Perrot 2015). Together, the 

finding that MMP-9 is detectable in the innervated soft tissue from TMJ patients (Figures 

3.2 & 3.3), and the fact that it is correlated with patient-reported pain (Figure 3.4), further 

support this notion.  

MMP-1 and MMP-9 in the capsular space may also regulate, or be regulated by, 

pro-inflammatory cytokines (Bartok and Firestein 2010; Rosenberg 2002; Schonbeck et al. 

1998; Visse and Nagase 2003). Neuronal injury promotes the release of numerous 

cytokines that may interact directly with nociceptors and/or increase cellular production of 

algesic agents (Basbaum et al. 2009); although microglia are the primary producers of 

cytokines in the nervous system (Basbaum et al. 2009), fibroblast-like synoviocytes have 

a key role in producing inflammatory cytokines that perpetuate inflammation in the 

synovial membrane tissues (Bartok and Firestein 2010). Indeed, inflammatory cytokines 

are regulated in the spinal cord by painful stretch after seven days (Lee et al. 2008), 

contribute to synovial inflammation within the first few days after intra-articular crude 

bacterial collagenase (Adães et al. 2014; Yeh et al. 2008), and are abundant in the synovial 

fluid of patients with painful degenerative joint disorders (Miller et al. 2014). Tumor 

necrosis factor α (TNFα) and interleukin 1β (IL-1β) are both substrates to MMP-1 and 
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MMP-9 (Schonbeck et al. 1998; Visse and Nagase 2003) and can convert those two 

cytokines into their biologically active forms, further promoting inflammatory damage 

and/or positive feedback loops that promote additional synthesis of MMPs by FLS cells 

(Figure 9.4). 

Exposure of the capsular ligament to exogenous collagenolytic enzyme (purified 

bacterial collagenase) in the rat (Chapter 4) and in the DRG-FLS co-culture model (Chapter 

5) leads to increased expression levels of the human collagenase MMP-1 localized to 

peripheral neurons. Because MMP-1 has no known direct interactions with purified 

bacterial collagenase, it is most likely that MMP-1 increases as a result of collagen 

molecule catabolism in the peripheral joint tissues (Figure 9.5). Homeostatic and 

pathological remodeling of the extracellular matrix regulates the production and secretion 

of MMPs by fibroblasts (Bartok and Firestein 2010; Camelliti et al. 2005; Hsieh et al. 2000; 

 

Figure 9.5. Schematic showing possible partial mechanisms for MMP-1 protein regulation in the capsular 

ligament in the presence of biochemical degradation of the collagen fibers. Collagenolytic activity in the 

capsular ligament, even absent a macroscale biomechanical stimulus, increases MMP-1 that may 

contribute to neuronal dysregulation via collagen degradation fragments.  
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Kim et al. 2002; Provenzano and Vanderby 2006; Wang et al. 2007), so collagen 

breakdown by bacterial collagenase presumably also leads to increases in MMP-1 

production by fibroblast-like synoviocytes.  

 Although the mechanism by which bacterial collagenase increases MMP-1 

expression is not completely clear, the resulting elevation in MMP-1 protein may act in the 

peripheral space by any one of the mechanisms described for stretch injury (Figures 9.3 & 

9.4). Furthermore, it is possible that collagen catabolism results in small collagen fragments 

that may be involved in cellular signaling (Figure 9.5). Upon the initial cleavage of 

collagen molecules, human collagenases produce one-quarter (~100-116kDa) and three-

quarter (~23-38kDa) collagen fragments (Amar et al. 2017; Fields 2013), and those 

collagen fragments are often subsequently cleaved in vivo to produce even smaller 

fragments (Otterness et al. 2000). Bacterial collagenases produce 35kDa and 62kDa 

collagen fragments. So, although native interstitial collagenases initially produce larger 

collagen fragments than bacterial ones, native post-processing likely produces collagen 

fragments that are similar in size to those produced by bacterial collagenases.  

Whether collagen fragments interact directly with neurons is not known, although 

prior work indicates that collagen fragment-to-neuron interactions are possible (Figure 9.5) 

(Siebert et al. 2010; Zhang et al. 2017). Studies have measured collagen fragments in serum 

and synovial fluid coincident with evidence of nociceptive responses, including elevated 

substance P (Gou et al. 2019), and more severe disease progression in patients with painful 

degeneration (Arendt-Nielsen et al. 2014; Siebuhr et al. 2014). Small collagen fragments 

ranging between 2.7-15.6kDa bind directly to the α2A-domain of integrin, depending on if 



280 

 

they are single or triple-stranded (Siebert et al. 2010). Since peripheral neurons express this 

receptor (Zhang et al. 2017), it is possible that small collagen fragments may also bind to 

neuronal receptors, or indirectly influence neuronal signaling through their regulation of 

integrin (Figure 9.5). In fact, the most specific collagen fragment to measure collagen 

breakdown in the capsular ligament is C01-764, also known as C1M, and has a very small 

size of 10 amino acids and 0.93kDa (Leeming et al. 2011). C1M is a Type I collagen 

fragment that is specific for connective tissue and produced natively by MMPs (Leeming 

et al. 2011). It is possible that C1M interacts with neuronal integrins (Siebert et al. 2010) 

and is involved in integrin-mediated nociception.  

 The MMP-1-dependent mechanisms described here are put forth as local 

interactions between peripheral neurons, fibroblast-like synoviocytes, and collagen 

molecules that provide possible explanations of how biomechanical and/or biochemical 

stimuli, in the form of loading on, or degradation of, collagen molecules can trigger 

nociceptive signaling. Yet, the proposed mechanisms have implications for capsular 

ligaments where MMP-1 protein is detected (Cohen et al. 2007; Haller et al. 2015; Ita et 

al. 2020a; Kim et al. 2015; Konttinen et al. 1999; Lattermann et al. 2017; Loeser et al. 

2012), regardless of the mechanism underlying its increase. For example, exogenous 

MMP-1 in the capsular ligament may initiate pain by the mechanisms posited to occur after 

stretch (Figures 7.3 & 9.2-9.5), even though a supraphysiologic stretch is not involved in 

the injection of exogenous MMP-1. MMP-1 binds to neuronal surface receptors (Allen et 

al. 2016), increases expression of active MMP-9 (Figure 6.8) (Conant et al. 2002; Vos et 

al. 2000), and increases calcium signaling in neurons (Figure 6.7) (Allen et al. 2016) within 
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minutes to hours. Because of this, it is likely that each or all of these interactions are at play 

in the initiation of pain at one day after MMP-1 injection (Figure 7.3). Initial degradation 

at the site of MMP-1 localization (Figure 9.5) may trigger pathological ECM remodeling 

by FLS and/or synthesis of MMPs, including more MMP-1 and/or MMP-9 (Bartok and 

Firestein 2010; Freedman et al. 2015b; Petersen et al. 2012). Pathological ECM remodeling 

likely contributes to the atypical biomechanical responses of ligaments at 28 days after 

their treatment with MMP-1 (Figures 7.6-7.8); as such, abnormal biomechanics may have 

more of a prominent role in maintaining pain at later times than in initiating pain early. 

Collectively, these findings support the assertion that increased MMP-1 in the joint space, 

over time, may predispose the collagen network to altered biomechanics that may alter the 

threshold for mechanically evoked pain.  

The findings presented in this thesis establish MMP-1 as a biologic mediator in the 

nociceptive, inflammatory, and neuropathic cascades known to play a role in pain related 

to degenerative joint diseases (Fu et al. 2018; Gellhorn et al. 2013; Malfait et al. 2013; 

Zhang et al. 2013). These studies also implicate MMP-1-mediated mechanisms in the 

understudied painful and degenerative conditions of the spinal facet and 

temporomandibular joints (relative to the knee and hip) (Gellhorn et al. 2013; Zhang et al. 

2013). OA-pain presents with several phenotypes defined by symptom frequency and 

severity, the extent and progression of joint destruction, and co-morbidities that vary 

temporally with disease progression (Pan and Jones 2018). Furthermore, different pain 

phenotypes are almost certainly mediated by the relative extents of contributions of 

inflammation, degeneration, and neural injury since patients with different phenotypes 
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respond differently to analgesic therapeutics, like NSAIDs and opioids, which target 

inflammatory and neuropathic pathways, differentially (Fu et al. 2018). The many animal 

models used to study osteoarthritis of joints mirror the varied pain phenotypes and have 

begun to define the molecular cascades that drive the signs and symptoms of OA (Hong et 

al. 2020; Malfait et al. 2013). For example, intra-articular chemical injections of 

monosodium iodoacetate induces rapid joint degeneration and immediate mechanical 

allodynia in rats and mice that is mediated by pro-inflammatory cytokines and chemokines 

that flood joint tissues within days and diminish after two weeks when neuropathic 

mechanisms appear to dominate (Hong et al. 2020; Kim et al. 2011; Rahman and 

Dickenson 2015). In contrast, surgical destabilization models, such as meniscal 

destabilization and ligament transection, show time-dependent cartilage lesions that take 

two to 12 weeks to develop, with pain symptoms not being consistently evident until after 

12 weeks, mirroring a more progressive onset of OA-pain than the chemically induced OA 

(Inglis et al. 2008; Miotla Zarebska et al. 2017; Syx et al. 2020). In destabilization models, 

the onset of pain is paralleled by the sensitization of DRG neurons (Miller et al. 2020; 

Obeidat et al. 2019), suggesting that neuropathic mechanisms occur coincident with the 

onset of cartilage lesions.  

The schema for MMP-1 that is proposed based on the findings in this thesis does 

align with the clinical presentation of degenerative joint pain whereby pain is experienced 

during normal activities and evidence of structural degeneration is subtle or absent (Hunter 

et al. 2013; Kraus et al. 2015; Pan and Jones 2018). As such, intervening in the MMP-1-

mediated pathways defined in this thesis - local collagen degradation and/or MMP-9 
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activation - may be particularly relevant for patients with that clinical presentation of OA 

pain. Furthermore, although it is unknown if the microscale evidence of biomechanical 

changes that are observed after intra-articular MMP-1 injection (Figures 7.6-7.8) leads to 

more evident cartilage lesions at later times after 28 days, as occurs with destabilization 

OA models (Hong et al. 2020), the upregulation of substance P both peripherally and 

centrally at 28 days after intra-articular injection in the rodent (Figures 7.9 & 7.10) suggests 

that neuropathic pain mechanisms contribute to the maintenance of pain.  

 

9.3. Limitations & Future Work   

Together, the studies in this thesis demonstrate a role for MMP-1 in nociceptive 

signaling from the capsular ligament of joints. The in vitro studies presented here show 

that the co-localization of MMP-1 to peripheral neurons, as well the kinematic behavior of 

collagen fibers in response to loading, both depend on the presence of fibroblast-like 

synoviocytes. Yet, even the DRG-FLS co-culture model, which is simpler than the in vivo 

milieu, does not fully recapitulate the heterogenous in vivo cellular environment nor 

capture how cell-cell and cell-matrix interactions in the co-culture translate to a whole 

organism. The in vivo and clinical studies that were presented also have limitations and 

considerations that must be considered in order to contextualize their outcomes within the 

broader literature about pain mechanisms in degenerative joint diseases. This section 

highlights important limitations of the studies utilizing the DRG-FLS co-culture model and 

the intra-articular injections in vivo, and identifies additional studies that would both 



284 

 

expand the utility for clinically relevant translation and also further clarify the mechanistic 

role of MMP-1 in nociceptive signaling. 

  Including fibroblast-like synoviocytes in the co-culture model enabled defining the 

relative effects of FLS on neuronal signaling and collagen reorganization under load 

(Chapters 5 & 6). Yet, how FLS interact locally with their surrounding collagen network 

remains undefined in this system. For example, failure stretch of the co-culture collagen 

gels in the studies in Chapter 6 elicits concentration-dependent increases in collagen fiber 

reorganization under load (Figure 6.3). But, the greatest amount of load-induced protein 

expression in DRG neurons does not correspond to the greatest extent of fiber 

reorganization in the fiducial-marked elements where those same DRG neurons reside 

(Figure 6.4) (Ita and Winkelstein 2019c). The lack of association between the extent of 

collagen network reorganization and the greatest neuronal protein expression (Figure 6.4) 

contradicts prior results observed in neuron-collagen gels absent any fibroblasts in which 

the greatest extent of fiber alignment under sub-failure uniaxial tension corresponds to the 

largest increase in neuronal expression of pERK (Zhang et al. 2016). The disconnect 

between load-induced network reorganization and protein expression observed here 

(Figures 6.3 & 6.4) may be due to the concentration-dependent restructuring of the collagen 

network even before it undergoes any loading (Figure 9.6A) (Dallon and Ehrlich 2008; 

Grinnell and Petroll 2010; Kural and Billiar 2013). For example, above a critical density 

threshold, fibroblasts compact their surrounding matrix via a tractional-force locomotion 

mechanism that results in fibers that are aligned circumferentially around the periphery of 

free-floating gels (Dallon and Ehrlich 2008; Grinnell and Petroll 2010; Kural and Billiar 
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2013); below that density threshold, fibroblasts compact their surrounding matrix via an 

elongation-and-spreading mechanism that has no effect on the original fiber reorganization 

(Dallon and Ehrlich 2008; Grinnell and Petroll 2010; Kural and Billiar 2013). Although 

the  concentration threshold for the transition from an elongation-and-spreading 

mechanism to a tractional-force locomotion mechanism is not defined for the FLS cell type, 

 

Figure 9.6. Concentration-dependent effects of fibroblast-like synoviocytes (FLS) on collagen fiber 

microstructure, gel compaction, and extracellular matrix remodeling. (A) Higher concentrations of FLS 

in the collagen gel can produce greater microstructural reorganization of the collagen matrix under load. 

Differential collagen fiber kinematics in the gel center following a stretch to failure may be due to low 

and high FLS organizing their matrix via different mechanisms; low FLS may compact the network and 

leave it isotropic in orientation and high FLS may align fibers circumferentially. (B) Photographs of free-

floating FLS-seeded collagen gels with low (5x104 cells/mL) or high (1x105 cells/mL) FLS concentration 

show the compaction of gels induced by the FLS over seven days in culture. A pilot study using two 

different broad-spectrum protease inhibitors (1:200) in culture media suggests compaction is attenuated 

with blocking protease activity. 
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it is possible that the threshold lies between the low (target density of 5x104 cells/mL) and 

high (target density of 1x105 cells/mL) concentrations used in the studies in this thesis, and 

that the low FLS- and high FLS-seeded gels reorganize their surrounding networks 

differentially.  

Despite the proposition that low and high densities of FLS may reorganize their 

local collagen network differently, the in vitro stretch-to-failure studies in Chapter 6 did 

not detect differences in collagen microstructure before loading with the polarized light 

techniques (Table 6.1), suggesting that the low or high densities of FLS do not reorganize 

their collagen network differentially during free-floating culture. However, the polarized 

light measurements in those experiments were acquired at the center of the collagen gel 

(Figure 6.1) (Ita and Winkelstein 2019c). The tractional-force locomotion mechanism 

posited to occur in high concentration FLS-seeded gels produces circumferential collagen 

fiber alignment at the outer radius of the gel and not in the center of the gel (Figure 9.6A) 

(Dallon and Ehrlich 2008; Grinnell and Petroll 2010; Kural and Billiar 2013). As such, the 

imaging approach used here may not have captured appropriate regional measures of the 

collagen microstructure in the FLS-seeded gels even if compaction was occurring via 

differential concentration-dependent mechanisms. Imaging gels around the edges and/or 

taking high-resolution confocal tile scans would help determine whether FLS align 

collagen fibers circumferentially. Further, techniques like scanning electron microscopy 

could also be used to capture high resolution images of the collagen fibers within and 

throughout the network (Lake and Barocas 2011; Yang and Kaufman 2009). Indeed, free-

floating fibroblast-populated collagen gels using NIH/3T3 immortalized fibroblasts from 
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mice have been to found to align collagen fibers circumferentially, with robust 

circumferential alignment at the outer edge of the gel and no realignment in the gel’s center 

(Kural and Billiar 2013; Simon et al. 2012). If concentration-specific FLS compaction 

mechanisms were occurring in this DRG-FLS co-culture model, it may explain the graded 

fiber reorganization response that is observed at failure and appears to be concentration-

dependent (Figure 6.3). If this conjecture is true it would imply that the force distribution 

during loading across embedded cells also varies with FLS concentration. Differential 

force distribution could affect the very weak and compliant embedded DRGs differently 

and could explain the disconnect between the regions of greatest stretch-induced fiber 

reorganization and those regions of greatest MMP-1 and substance P protein expression 

(Figure 6.4) (Ban et al. 2017; Vader et al. 2009; Zhang et al. 2018b). 

 The mechanisms by which FLS are hypothesized to restructure their collagen 

network during culture also produce compaction of the collagen gel (Figure 9.6). Although 

collagen gel compaction was consistently observed in gels with the high concentration of 

FLS (target density of 1x105 cells/mL), it was not always observed in the gels with a low 

concentration of FLS (target density of 5x104 cells/mL) (Ita and Winkelstein 2019c). 

Importantly, the absence of collagen gel compaction is not believed to be attributable to 

decreased cell viability (Figure 5.5), further supporting that there might be a density 

threshold above which FLS-collagen interactions switch from tractional-force locomotion 

to elongation-and-spreading (Dallon and Ehrlich 2008; Grinnell and Petroll 2010; Kural 

and Billiar 2013). Moreover, since MMP-1 inhibition has been reported in fibroblast- and 

smooth muscle-seeded collagen gels to decrease the radial compaction of free-floating 
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collagen gels over time (Daniels et al. 2003; Rogers et al. 2014), MMP-1 is likely involved 

in the mechanism of FLS-mediated collagen gel compaction. The finding that MMP-1 

inhibition decreases fibroblast-mediated collagen gel compaction in free-floating collagen 

gels (Daniels et al. 2003; Rogers et al. 2014) suggests that MMP-1 is a likely mediator of 

the collagen microstructure absent any external biomechanical stimuli and supports the 

notion that MMP-1 regulates interactions between fibroblasts and collagen fibers in the 

local environment of the FLS cells.  

Pilot studies using broad-spectrum protease inhibitors also suggest that proteases, 

in general, are involved in collagen gel compaction. Experiments used two broad spectrum 

protease inhibitor cocktails in the media of FLS-seeded collagen gels (a 1:200 daily dose) 

and tracked compaction over seven days in culture by quantifying the change in gel 

diameter (Figure 9.6B); one inhibitor cocktail (Inhibitor 1) had broad specificity to serine, 

cysteine, aspartic and aminopeptidases, and the other inhibitor cocktail (Inhibitor 2) had 

broad specificity to serine, cysteine, and metalloproteinases, including the MMPs (Figure 

9.6B). Both broad-spectrum inhibitor cocktails attenuated collagen gel compaction over 

one week in culture (Figure 9.6B). Furthermore, protease inhibitors attenuated the 

magnitude of gel compaction in collagen gels made using both the low and high FLS 

concentrations (Figure 9.6B). Those pilot data suggest that FLS remodel the composition 

of their surrounding matrix and that FLS remodeling mechanisms depend on proteases. 

Therefore, the DRG-FLS co-culture collagen gel likely has a different matrix composition 

than a gel made only with DRGs. For example, FLS may secrete Type I and Type III 

collagen (Kim et al. 2002; Wang et al. 2007), resulting in different proportions of 
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constituent matrix components than in gels where FLS are absent. Indeed, there is evidence 

in the literature supporting that fibroblast-seeded gels have different compositions than 

collagen gels without fibroblasts (Bartok and Firestein 2010; Dallon and Ehrlich 2008; 

Grinnell and Petroll 2010; Kural and Billiar 2013; Petersen et al. 2012; Wang et al. 2007; 

Yang et al. 2005). An altered gel composition from the original Type I collagen formulation 

in which the co-cultures are cast (Figure 5.3) could also alter neuronal signaling, since the 

outgrowth and receptor expression of neurons varies with their matrix substrate (Cullen et 

al. 2007). Moreover, since matrix composition affects the local and global mechanical 

properties of collagen gels (Kural and Billiar 2013; Lake and Barocas 2011; Lake et al. 

2011), FLS-mediated remodeling could explain why collagen gels with FLS exhibit higher 

forces than collagen gels without FLS in response to an equibiaxial sub-failure stretch 

(Figure 8.1). Consequently, since the compositional variation depends on the distribution 

and/or proliferation of FLS throughout the gel, any effect of altered composition on 

neuronal signaling would also exhibit regional variability.  

The implications of FLS-dependent network restructuring, collagen gel 

compaction, and ECM remodeling on the function of peripheral neurons when they are 

cultured in the same microenvironment as FLS were not fully investigated in this thesis. 

However, ongoing studies are exploiting the ability of computational modeling to 

manipulate network parameters that are acquired experimentally in order to probe cell-cell 

and cell-matrix interactions (Figure 9.7). Those studies build off of a computational 

neuron-in-gel model (Zarei et al. 2017), and are further developed using parameters 
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informed by collagen and MMP-3 protein expression after co-culture failure stretch (Figure  

9.7) to simulate the stretch experiments presented in Chapter 6. Although these 

computational studies investigate MMP-3 for its role in regulating the activation of other 

MMPs, including MMP-1 and MMP-9 (Visse and Nagase 2003), and because it is 

upregulated with painful facet capsular stretch in vivo (Singh et al. 2017), findings will 

help inform about mechanistic relationships between the collagen network and the MMPs 

(-1 and -9) investigated in this thesis. More specifically, results from those experimentally-

 

Figure 9.7. Collagen and MMP-3 protein expression data from co-culture collagen gel stretch 

experiments are integrated in computational studies to investigate relationships between the heterogenous 

properties of the collagen network and MMP expression. The top image on the left shows dorsal root 

ganglia axonal projections (green) with expression of the matrix metalloproteinase-3 (MMP-3) (red) and 

cell nuclei (blue). The bottom image shows the collagen fiber network in which the axons are embedded. 

Each of the axonal and collagen labeled images are divided into 9x9 higher resolution regions, from 

which MMP-3 expression, DAPI quantification, collagen labeling intensity, and axonal and/or fiber 

alignment data are extracted; the difference in primary alignment of axons from that of collagen fibers 

matched by region is computed as the difference in principal alignment angle. Scatter plots on the right 

show relationships from five such images between MMP-3 labeling and collagen density (top) and 

between MMP-3 labeling and the difference in alignment between axons and collagen fibers (bottom). 

Colored data points show regions from different images; the maximum principal strain (MPS) sustained 

by the axons and network varies across images from 32.04-136.56%. Ongoing studies are use 

computational models that replicate the range of collagen network parameters (collagen density and fiber 

organization) and the imposed strains to elucidate relationships between local collagen network 

heterogeneities and MMP-3 expression. 
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informed simulations will provide additional insight into how FLS- and/or collagenase-

induced changes to the collagen microstructure and density may alter collagen-neuron 

mechanotransduction responses.  

 The studies in this thesis could be expanded to define the cell source of MMP and 

the localization of MMPs to relevant cell types. Indeed, those effects would inform about 

cellular mechanotransduction in this system and would help guide design of studies 

probing, and even intervening in, cell signaling pathways. For example, if FLS secrete the 

majority of MMP-1 in this system, then silencing the translation of MMP-1 in FLS or 

blocking vesicular secretion of MMP-1 may be most effective in understanding the 

mechanistic role of MMP-1 in nociceptive signaling. In fabricating the co-culture model, 

FLS are seeded throughout the gel and DRGs are plated on a monolayer surface near the 

gel’s center; as such, confocal imaging was focused to capture immunolabeling in regions 

with only DRG soma and/or axons or only FLS cells. Although DRGs and FLS cells can 

be easily distinguished to enable assessment by cell type under the microscope to acquire 

expression data by cell type, co-labeling for cell-specific proteins along with MMP-1 

and/or MMP-9 would determine with which cell(s) MMPs localize (Figure 6.10). For DRG 

neurons, βIII tubulin is a robust protein and is often used to achieve this goal (Cullen et al. 

2012; Ita et al. 2020b; Ita and Winkelstein 2019c; de Luca et al. 2015; Mehnert et al. 2014; 

Zhang et al. 2018a). The studies in Chapter 5 that co-localized MMP-1 to FLS used the 

cytoskeletal protein vimentin since it is a matrix protein expressed by FLS cells (Figure 

5.16) (Varani et al. 2008). However, other non-fibroblast cells, like glial cells, also express 

vimentin and may remain in the culture due to the methods of DRG harvest and may also 
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therefore be present in the co-culture model (Pekny and Nilsson 2005). As such, localizing 

proteins of interest to vimentin does not necessarily imply that proteins co-localize to FLS 

cells. Utilizing a protein that is expressed exclusively by FLS cells, like CD90 (Figure 5.1) 

(Ahn et al. 2008; Bartok and Firestein 2010; Neidhart et al. 2003; Rosengren et al. 2007), 

would more specifically distinguish FLS-localized proteins from those localized to other 

vimentin-expressing cell types, like glial cells. Since there is evidence that fibroblasts 

produce and secrete MMP-1 during healthy states (Attia et al. 2014), in response to 

inflammatory stimuli (Bartok and Firestein 2010; Bottini and Firestein 2013), and in 

response to external loading (Petersen et al. 2012), it is anticipated that FLS cells are the 

primary cell source of MMP-1 in the studies in this thesis. Furthermore, since the findings 

in this thesis demonstrate that MMP-1 clearly localizes to peripheral neurons in vivo 

(Figure 4.9) and in vitro (Figures 5.8, 5.16, 6.4, & 6.6), it is expected that much of that 

MMP-1 in neuronal-rich regions is produced by FLS and localizes to peripheral neurons in 

response to noxious stimuli. Assays utilizing the co-localization of immunolabels to cell-

specific proteins and MMPs would help test this hypothesis.  

Indeed, the multicellular environment of the co-culture model contains more cell 

types than only peripheral DRG neurons and FLS, since DRG somas may contain Schwann 

cells, microglia, and resident macrophages (Melli and Höke 2009). This heterogenous cell 

population should be considered in the context of MMP synthesis and regulation under 

load and in degenerative states because cells other than the FLS and DRG neurons can also 

interact with MMPs (Kobayashi et al. 2008; Muir et al. 2002; Sbardella et al. 2012; 

Schurigt et al. 2008). Furthermore, although the FLS cultures were intentionally optimized 
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to contain over 95% purity for the FLS cell type (Figure 5.1), with passages high enough 

(greater than 3 passages) to eliminate macrophages from the culture, fluorescence-activated 

cell sorting (FACS) could be used to characterize the population of cells harvested directly 

from the capsular ligament (Ahn et al. 2008). Using FACS also with cells derived from the 

capsular ligament of human patients, like in the specimens characterized from patients with 

painful temporomandibular joint disorders in Chapter 3, would define the population of 

cells expressed in capsular ligaments to which innervating fibers of the ligament are 

exposed during degenerative and painful joint states.  

Collectively, characterizing the population of primary-harvested cells, and their 

secreted factors, would provide information about the cellular environment in pathologic 

joint tissues, and offer insight into how to better recapitulate that pathogenesis in the DRG-

FLS co-culture model. Furthermore, primary-harvested cells from the capsular ligament of 

human patients with joint diseases could be harnessed in studies with DRG cultures in vitro 

to investigate how FLS from a pathogenic and/or degenerated ligament influence neuronal 

regulation and/or dysregulation in vitro. For example, FLS cells derived from patients with 

inflammatory rheumatoid arthritis have unique phenotypes and secrete disease-specific 

inflammatory and immune regulators (Ahn et al. 2008; Bartok and Firestein 2010; Bottini 

and Firestein 2013). FLS derived from capsules of joints with inflammation or degenerative 

pathology, and conditioned-media from those FLS cultures, increase spontaneous action 

potential firing and enhance the function of transient receptor potential vanilloid 1 

(TRPV1) ion channels in DRG cultures (Chakrabarti et al. 2020). As such, studies 

integrating patient-derived FLS cells in co-cultures would recapitulate the in vivo 



294 

 

pathological multicellular environment and enable measuring how peripheral neurons 

respond to that environment. It is expected that those experiments would define a distinct 

population of MMP proteases (including MMP-1, -9, and -3) and inflammatory cytokines 

(including TNFα and IL-1β) secreted by cells from the capsular ligament of degenerated 

joints, and that action potential firing and neurotransmitter expression would increase in 

peripheral neurons in response to an exposure to those secreted proteases and cytokines.  

The studies in Chapter 3 using human tissues separately quantify the pro- and active 

forms of MMPs (Figures 3.2 & 3.3) (Ita et al. 2020a); yet, MMP quantification in the other 

studies in this thesis do not distinguish between those pro- and active forms of MMP-1 and 

MMP-9. The inability to distinguish pro- and active MMPs in the in vivo and in vitro 

studies is due to technical limitations. The antibodies used in both rat tissue and in cells in 

those studies bind to amino acid sequences on both enzyme forms. This limitation hampers 

conclusions about the mechanistic roles of the latent and catabolically active forms of the 

proteases since only the total MMP expression (including both latent (pro-) and 

catabolically active enzyme states) can be measured. Since pro- and active forms of MMPs 

have different roles in mediating cell-cell and cell-matrix interactions (Sbardella et al. 

2012; Visse and Nagase 2003), it is not possible to attribute changes in MMP expression 

to specific mechanistic pathways - for example, degrading ECM proteins or acting on cell-

surface receptors. For example, the catabolic degradation of Type I collagen and cleavage 

of the PAR-1 cell-surface receptor can be performed exclusively by active MMP-1 (Boire 

et al. 2005; Conant et al. 2002); in contrast, both pro- and active MMP-1 can interact with 

integrin receptors (Conant et al. 2004; Dumin et al. 2001). For MMP-9, only the active 
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form of the enzyme is able to degrade basement membrane proteins required for breakdown 

of the BSCB (Visse and Nagase 2003). Furthermore, antibodies that lack the ability to 

distinguish between the pro- and active MMP forms are also used to assess the efficacy of 

MMP inhibition by the ilomastat inhibitor in the studies in Chapter 8; so while ilomastat-

induced changes in total MMP were determined, the immunolabeling assays cannot 

conclude whether the activity of MMP-1 and/or MMP-9 is altered by ilomastat. Since 

ilomastat inhibits MMP activity by binding to the Zn2+ binding site of MMP-1 and MMP-

9 (Galardy et al. 1994; Grobelny et al. 1992), it is expected that ilomastat decreases the 

amount of active enzyme forms and does not affect the amount of pro-enzymes.  

Assaying MMPs using zymography Western Blot techniques and/or ELISA-based 

methods could be used in parallel with immunolabels to quantify the relative amounts of 

pro- and active MMPs, separately (Attia et al. 2014; Nascimento et al. 2013). For example, 

the ELISA-based assay used in the studies in Chapter 8 (Figure 8.5) quantifies active 

MMP-1 by quantifying the fluorescence signal excited upon active MMP-1 cleavage of a 

FRET substrate (Attia et al. 2014). If wells are included in that assay to both include 

APMA-activation steps (quantifies total MMP-1) in one set of samples and separate wells 

are included in that assay to exclude APMA-activation steps (quantifies only active MMP-

1) in a second replicate set of the same samples, then the relative amount of pro-MMP-1 

can be determined by subtracting the amount of active MMP-1 from the total MMP-1 (Attia 

et al. 2014). In the studies in this thesis that quantified MMP-1 in gels by ELISA after the 

sub-failure stretch (Figure 8.5), the APMA-activation step was always included due to low 

signal-to-noise ratios with the gel homogenate and media supernatant samples used in that 
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experiment. However, that same ELISA was successfully utilized in pilot studies to 

validate the activity of the human recombinant MMP-1 that was used in the intra-articular 

studies in the rat; because the results from that study demonstrated that the ELISA can 

unequivocally distinguish between latent pro-MMP-1 and active MMP-1, that approach 

has utility for future assays for higher-concentration samples. Further, optimizing a 

protocol for consistent and reliable quantification of MMP-1 by ELISA would be beneficial 

to assess gel-entrapped and secreted proteins. Complementing that approach with 

localizing MMPs to cell type by immunolabeling would provide a more complete 

understanding of where MMPs localize and how they are altered by stimuli in the cellular 

microenvironment. The immunolabeling studies in this thesis demonstrate that MMPs 

localize to neurons in response to stimuli; yet, additional quantification of MMPs in co-

culture media would provide information about whether secreted MMPs are also altered in 

response to stimuli. Quantifying secreted MMPs would also help determine whether those 

secreted MMPs might be available for transport along axonal stalks and/or to innervated 

joint tissues other than the capsular ligament, such as the synovium or bone. Moreover, 

quantifying the regional localization of gel-entrapped MMPs would reveal if matrix sites 

undergo MMP-mediated remodeling and/or degradation. Areas with MMP-mediated 

alterations could have consequences on the bulk mechanics of the collagen gel and change 

microstructural collagen fiber kinematics under load. Indeed, such experiments would be 

useful for probing both the collagen gel of the DRG-FLS co-culture model or the capsular 

ligament tissue following intra-articular injection of collagenase. 
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 The ilomastat inhibitor used in the gel studies in Chapter 8 does not selectively 

inhibit MMP-1 nor does it interfere with functions of MMP-1 that do not depend on the 

Zn2+ binding site (Galardy et al. 1994; Grobelny et al. 1992). Since ilomastat also inhibits 

MMP-9 at a higher affinity than MMP-1 (Galardy et al. 1994; Grobelny et al. 1992), 

ilomastat is not the optimal inhibition tool to use to evaluate and define mechanistic 

relationships between MMP-1 and MMP-9. One obstacle in developing an effective and 

specific MMP-1 inhibitor is the 53-63% homology between interstitial collagenase in the 

human and the rodent (Balbín et al. 2001). Although interstitial collagenases in the rodent 

exhibit structural features characteristic of human archetypal MMPs, those sequence 

differences from the human have hindered development of MMP-1 knockout mice and 

present difficulties in confidently testing MMP-1 inhibition in mouse and/or rat models 

(Löffek et al. 2011; Vandenbroucke and Libert 2014). However, studies utilizing siRNA 

silencing techniques in cell cultures could be exploited to target MMP-1 synthesis (Rogers 

et al. 2014). siRNA-induced post transcriptional silencing would suppress the translation 

of MMP-1 (Agrawal et al. 2003), selectively removing MMP-1 production by cells without 

the off-target effects on other MMPs that occurs with the ilomastat synthetic inhibitor. A 

beneficial study design could separately silence MMP-1 synthesis in FLS cultures and/or 

DRG cultures before their co-culture in order to fully define the role of cell-specific MMP-

1 in nociceptive responses. Those studies would also be able to directly determine if the 

complete obliteration of MMP-1 affects the pro- and/or active levels of MMP-9. That 

proposed approach would answer the question of whether MMP-1 is required for the 

increase in substance P expression that is observed after stretch (Figures 6.4 & 8.2), 
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maintenance of neuronal firing with a degradative stimulus (Figure 5.15), and/or for the 

initiation and maintenance of mechanical hyperalgesia after intra-articular bacterial 

collagenase (Figure 4.5). 

 Collectively, the studies in this thesis begin to define a role for MMP-1 at different 

times following a biomechanical or biochemical stimulus, including immediately after a 

noxious stimulus in the studies utilizing the co-culture model (Chapter 6) (Ita and 

Winkelstein 2019c), weeks after exogenous intra-articular MMP-1 exposure in the rat facet 

joint (Chapter 7), and very late in disease progression with painful joint disorders in 

humans (Chapter 3) (Ita et al. 2020a). However, each study reports on findings from only 

one timepoint and provides limited information about the temporal regulation of MMPs. 

Examining MMP-9 in the DRG early after exogenous injection in the rat is needed because 

MMP-9 is required for the initiation of behavioral sensitivity (i.e. pain) from nerve root 

injury (Kawasaki et al. 2008). Since the increase in MMP-9 in the DRG is transient, 

returning to baseline values three days after the nerve injury (Kawasaki et al. 2008), it is 

likely that the assessment at day 28 after intra-articular MMP-1 (Figure 7.9) is too late to 

detect MMP-1-induced changes in MMP-9 expression in DRG neurons. As such, it is 

hypothesized that MMP-9 increases early, but transiently, after MMP-1 is introduced in 

the intra-articular space (Figures 9.3 & 9.4). Furthermore, since MMP-1 and MMP-9 are 

significantly correlated in the innervated soft tissue very late in disease progression (Figure 

3.3) (Ita et al. 2020a), exogenous MMP-1 may actually increase MMP-9 in peripheral 

tissues early after injection; MMP-9 distribution from DRG neurons to peripheral tissues 

may, in fact, explain the later (day 28) decrease in MMP-9 in the DRG neurons after MMP-
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1 treatment (Figure 7.9). If this transport of MMP-9 from DRG neurons to the periphery 

occurs, then MMP-9 may be available to sensitize afferent nerve terminals embedded 

within the capsular ligament (Jiang et al. 2017) or to interact with inflammatory cytokines 

in signaling pathways in the joint tissues (Muir et al. 2002; Visse and Nagase 2003). 

Indeed, clinical studies have shown that there is ongoing nociceptive input from the joint 

tissues even in late-stage chronic joint disease (Malfait and Schnitzer 2013), so elucidating 

either of these roles for MMP-9 in peripheral joint tissues would support targeting MMP-

9 locally in the joint. 

The studies in this thesis measure changes in the protein expression of substance P 

and phosphorylated ERK, and/or alterations in intracellular calcium levels as indicators of 

neuronal dysregulation that have a known role in pain mechanisms. However, those 

outcomes represent only a subset of mechanisms by which pain can be transmitted from 

the periphery and sensed in the brain. For example, substance P is expressed only in 

peptidergic nociceptors and not in nonpeptidergic nociceptors (Basbaum et al. 2009). 

Peptidergic and nonpeptidergic nociceptors terminate in distinct regions of the spinal cord 

(Basbaum et al. 2009) and engage different and independent ascending pathways to the 

brain (Braz et al. 2005). So, although the increases in neuronal substance P detected after 

intra-articular collagenase (Figures 4.7 & 4.8), intra-articular MMP-1 (Figures 7.9 & 7.10), 

and mechanical stretch in vitro (Figures 6.4 & 8.2) suggest that peptidergic circuits are 

involved in nociception in all of those studies, any pain processing occurring via 

nonpeptidergic circuitry is not captured. Probing neurotrophic factors that target 

nonpeptidergic nociceptors, such as glial-derived neurotrophic factor (GDNF), neurturin, 
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and artemin (Basbaum et al. 2009; Skaper 2012), would reveal if MMPs also engage 

nonpeptidergic nociceptive circuits along with the peptidergic circuits identified in this 

thesis. In addition, probing responses in the brain would inform about whether such circuits 

that are known to be modulated in painful chronic joint disorders (Sperry et al. 2020) also 

play a role in the development and/or maintenance of pain in the clinical and/or rat studies 

in this thesis. Indeed, since several MMPs, including MMP-1, MMP-9, and MMP-2, are 

implicated in pathologies of the nervous system that involve the brain (Rosenberg 2002; 

Sbardella et al. 2012), it is likely that any mechanistic role of MMPs in mediating the pain 

experience also extend to brain circuits.  

Substance P is only one of the neurotransmitters released by peptidergic neurons in 

response to stimuli and/or neuronal injury (Basbaum et al. 2009; Zieglgänsberger 2019). 

Defining responses of other neurotransmitters involved in pain, like calcitonin-gene related 

peptide (CGRP), glutamate, and adenosine triphosphate (ATP), would further inform the 

breadth of interaction of MMPs with the full pain axis. Indeed, studies inducing OA via 

monosodium iodoacetate injection in the rat report an increase in CGRP in primary neurons 

innervating the injected knee (Fernihough et al. 2005; Hong et al. 2020). Further, CGRP is 

upregulated in the capsular ligament of the hip joint in patients with painful OA (Saxler et 

al. 2007). Together, these studies suggest that the neuropeptide CGRP also facilitates 

nociception from peripheral degenerated tissues. 

 The phosphorylation of ERK (pERK), a mitogen-activated protein kinase (MAPK), 

in the spinal cord has been shown to play a critical role in the development of central 

sensitization by regulating the activity of glutamate receptors and potassium channels (Ji 
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et al. 1999; Ji et al. 2009). As such, the increase in pERK in DRG neurons observed 21 

days after injection of intra-articular bacterial collagenase (Figure 4.7) (Ita et al. 2020b) 

suggests that ERK at least partially facilitates nociceptive input from joint tissues to the 

DRG and may alter expression of receptors and/or ion channels of DRG neurons. However, 

pERK does not increase in the spinal cord at that same time (day 28) (Figure 4.8) (Ita et al. 

2020b), suggesting that ERK signaling may not alter the central processing induced by 

bacterial collagenase injection in that study. However, it is possible that the other MAPKs, 

p38 and c-Jun N-terminal kinase (JNK), may contribute to nociceptive signaling 

peripherally and/or centrally, since in addition to ERK, both p38 and JNK are also 

modulated by nerve injury (Chen et al. 2016; Ji et al. 2002; Ji et al. 2009; Obata and 

Noguchi 2004). Indeed, inhibiting all three MAPK signaling pathways attenuates 

behavioral sensitivity from inflammatory stimuli and neuronal injury in animal models (Ji 

et al. 2009), so it is expected that p38 and JNK may also be upregulated after MMP-1 and 

bacterial collagenase injection in the rat facet joint (Chapters 4 & 7) (Ita et al. 2020b). 

Studies in this thesis measure changes in intracellular calcium using the adeno-

associated virus GCaMP6f (Figures 5.5 & 6.7) (Ita et al. 2018a; Ita et al. 2020b), and 

analyze GCaMP6f-regulated fluorescence with a technique that is optimized to detect 

action potentials (Patel et al. 2015; Schultz et al. 2009). Since the mechanisms of calcium 

influx from the extracellular space that result in GCaMP6f-regulated fluorescence in 

neurons are associated with the exocytosis of neurotransmitter-containing synaptic vesicles 

and the subsequent action potentials (Grienberger and Konnerth 2012), calcium imaging 

outcomes represent the extent to which neurons are excitable. Changes in neuronal 
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excitability within a population of neurons, and/or the recruitment of new excitable 

neurons, occur by several mechanisms with pain, including the sensitization of neurons 

peripherally and centrally (Basbaum et al. 2009; Latremoliere and Woolf 2009). As such, 

calcium imaging is a useful tool to determine whether neurons are sensitized to an extent 

that is applicable broadly to known pain mechanisms. Yet, calcium imaging cannot 

necessarily resolve the mechanism by which the neurons become or remain sensitized. 

Integrating immunolabeling with proteins specific to nociceptor type, cell surface 

receptors, and/or MMPs with live-cell calcium imaging could harness the broad utility of 

GCaMP6f-transduction to answer mechanism-specific questions. For example, one 

mechanism by which MMP-1 exposure increases MMP-9 expression and calcium 

signaling in DRG neurons (Figures 6.7 & 6.8) could be via cleavage of the PAR-1 receptor 

(Boire et al. 2005; Conant et al. 2002); if calcium imaging outcomes were matched by 

neuron with immunolabeling of PAR-1 and MMP-9, then that hypothesis could be directly 

tested. Furthermore, using analyses of neuronal synchronization, interspike interval 

computation, and stochastic point processes (Broussard et al. 2014; Tomar 2019) that 

expand on the spike detection and template-matching algorithms (Patel et al. 2015) could 

provide insight about how MMPs influence the connectivity and firing patterns across 

entire neural networks. Indeed, synchronization analyses have been employed to detect 

changes in functional connectivity between neurons using GCaMP6f data (Broussard et al. 

2014; Patel et al. 2015), and so those techniques would enable expanding analyses from 

the individual neuron to the network scale. 
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Evidence across studies of FLS-DRG co-cultures (Chakrabarti et al. 2020), joint 

degeneration in vivo (Adães et al. 2017; Miotla Zarebska et al. 2017), and biomarker and 

imaging characterization of joint disease in human patients (Arendt-Nielsen et al. 2014; 

Siebuhr et al. 2014) all point to a prominent role of inflammation in degenerative joint pain. 

Furthermore, the regulation of MMPs and inflammatory cascades are tightly 

interconnected (Bartok and Firestein 2010; Murphy and Nagase 2009; Rosenberg 2002). 

As such, it is likely that inflammatory cascades play a role in nociceptive transmission from 

the capsular ligament in painful joint disorders. Indeed, there is evidence that inflammatory 

changes in the joints of patients with painful joint disorders, such as synovitis and effusion, 

correlate more strongly with reported pain than do structural changes like joint space 

narrowing and cartilage thinning (Emshoff et al. 2003; Hunter et al. 2013; Torres et al. 

2006). As such, it is possible that the discordance between tissue-level evidence of 

degeneration and pain symptoms observed with intra-articular bacterial collagenase 

(Chapter 4) and with intra-articular MMP-1 (Chapter 7) may be explained by inflammatory 

changes in the joint (Wang et al. 2017). Remarks on whether there was evidence of 

inflammation were limited in the MRI reports scored in the clinical study in Chapter 3 

(Table 3.1); yet, this does not preclude the possibility that synovitis and/or effusion may 

contribute to the pain reported by patients in that study (Table 3.1). Indeed, that notion 

could explain the lack of association between osseous damage scores and patient reported 

pain (Figure 3.5).   

Although inflammatory cascades were not examined in the studies in this thesis, 

pilot studies in cells and in the rat collectively begin to suggest that collagenases induce an 
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immediate inflammatory response that may last for at least one week in the rat. For 

example, the astrocytic protein glial fibrillary acidic protein (GFAP) does not increase in 

the spinal cord at 28 days after intra-articular MMP-1 (Figure 9.8A), suggesting that at that 

timepoint, MMP-1 does not induce astrocyte infiltration or proliferation. However, other 

cells in the nervous system, such as microglia, also drive neuroinflammation in the 

peripheral and central nervous systems (Ji et al. 2018), so the fact that spinal GFAP is  

unchanged does not preclude the possibility that inflammation has a role in DRG neurons, 

within innervated joint tissues, or at earlier timepoints. Indeed, separate pilot data support 

that seven days after administration of intra-articular purified bacterial collagenase, mRNA 

 

Figure 9.8. Studies investigating a possible role for inflammation with intra-articular MMP-1 in the 

spinal cord (A) and testing changes in mRNA for pro-inflammatory, degenerative, and nociceptive 

regulators with intra-articular bacterial collagenase in the dorsal root ganglia (DRG) (B), or with bacterial 

collagenase exposure in DRG neurons (C). (A) Glial fibrillary acidic protein (GFAP), an intermediate 

filament expressed primarily by astrocytes, is unchanged in the spinal dorsal horn with intra-articular 

MMP-1 (vehicle n=4; MMP-1 n=6). (B) Gene expression for substance P (SP), GFAP, pro-inflammatory 

cytokines (IL-1β, CCL2), the tissue inhibitor of metalloproteinase (TIMP) 1, matrix metalloproteinases 

(MMP) 2, 8, and 14, and the extracellular matrix proteins thrombospondins (TSP) 1 and 4 in the DRG 

seven days after a single 60U injection of purified bacterial collagenase into the C6/C7 cervical facet 

joint (collagenase n=3; vehicle n=3). At day 7 after collagenase injection, gene expression of substance 

P in the DRG is lower than vehicle, and IL-1β and TIMP-1 expression are higher in rats that receive 

collagenase than those receiving vehicle (*p≤0.04). (C) Gene expression for the neuropeptides SP and 

calcitonin gene-related peptide (CGRP), signaling kinases p38 and ERK, and pro-inflammatory cytokines 

TNFα, IL-1β, and IL-1α in DRG cultures after a one hour exposure to 60U of purified bacterial 

collagenase (collagenase n=5; vehicle n=5). Only mRNA for TNFα (p=0.046) and IL-1β (p=0.016) 

increases immediately after one hour of collagenase exposure. Gene levels in (B) and (C) are calculated 

as the fold change over the housekeeping gene CyA. 
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levels of the pro-inflammatory cytokine IL-1β increase in the C7 DRG (p=0.039) (Figure 

9.8B) (Ita et al. 2018b). Notably, that study also found increases in the tissue inhibitor of 

metalloproteinase 1 (TIMP-1) (p<0.010) (Figure 9.8B) (Ita et al. 2018b), one of the 

endogenously expressed MMP inhibitors, which may be an early indicator of degeneration 

since TIMPs regulate ECM degradation (Loeser et al. 2012; Visse and Nagase 2003). Yet, 

degradation as a cause for upregulated TIMP-1 is not supported by the absence of changes 

in joint structure at day 21 (Figure 4.6). Since TIMP-1 also protects neurons from toxic 

injury (Tan et al. 2003), its increase may reflect an injurious neuronal stimulus. Levels of 

mRNA for TNFα (p=0.046) and IL-1β (p=0.016) are also elevated immediately in 

dissociated DRG cultures after a one hour exposure to 60U of purified bacterial collagenase 

(Figure 9.8C) (Ita et al. 2017). Collectively, those two pilot studies (Figures 9.8B & 9.8C) 

suggest that intra-articular collagenase, and thus the collagenolytic function of MMP-1, 

may initiate at least an early inflammatory response in peripheral neurons.  

Inflammation after intra-articular collagenase may also affect the central nervous 

system, in addition to the periphery (Kras et al. 2014; Lee et al. 2008). This notion is 

supported by the finding that painful facet joint injury in the rat increases the pro-

inflammatory markers IL-1α and prostaglandin E2 in the spinal cord after one day (Kras et 

al. 2014), and increases mRNA levels of  TNFα and IL-1β in the spinal cord after seven 

days (Lee et al. 2008). Yet, it is likely that the profile of inflammatory cytokines and 

chemokines varies with the progression of degeneration in painful joint diseases, since 

different types of painful injuries initiate differential cytokine profiles (Rothman and 

Winkelstein 2010). Nonetheless, these pilot data provide evidence that inflammatory 
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cytokines, and their interactions with MMPs, may play a role in nociceptive transmission 

from the capsular ligament (Figure 9.4). 

 

9.4. Summary 

  Together, the studies in this thesis begin to provide a schema by which MMP-1 is 

a biomechanical and biochemical regulator in painful joint disorders. Findings in the rat 

demonstrate that exogenous MMP-1 in the joint space is sufficient alone to induce 

behavioral sensitivity that is immediate and long-lasting (Ita and Winkelstein 2019a). 

Parallel studies using intra-articular bacterial collagenase in the rat support that the 

behavioral sensitivity and neuronal dysregulation induced by intra-articular MMP-1 is due, 

at least in part, to the collagenolytic function of MMP-1 (Ita et al. 2020b). Indeed, MMP-

1 alters how the collagen fiber network of the capsular ligament responds to load, despite 

not inducing degradation of the cartilage or bone (Ita and Winkelstein 2019a). Those 

alterations of the collagen microenvironment can trigger nociceptive signaling in 

peripheral neurons and the dysregulation of MMP-9 that leads to the initiation and 

development of behavioral sensitivity (Ita et al. 2020b; Ita and Winkelstein 2019b).  

  Studies in the neuron-fibroblast co-culture model of the capsular ligament support 

that both painful loading in the supraphysiologic regime and biochemical degradation of 

the collagen fibers in which neurons are embedded are possible mechanisms that increase 

MMP-1 in the capsular ligament (Ita et al. 2020b; Ita and Winkelstein 2019c). Moreover, 

fibroblast-like synoviocytes appear to regulate the extent of MMP-1 induced by 

biomechanical and biochemical stimuli. Analyses of MMP levels in the innervated tissues 
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from temporomandibular joints from patients with chronic and painful joint disorders 

implicate MMP-1 and MMP-9 in the clinical presentation of joint pain without 

radiographic evidence of structural damage (Ita et al. 2020a). Indeed, the fact that intra-

articular MMP-1 in the rat induces persistent pain and inconsistent degenerative changes 

at the tissue-level mirrors clinical reports in that patients with chronic pain have 

inconsistent structural degeneration (Bedson and Croft 2008; Finan et al. 2013); that 

similarity, together with a strong correlation between MMP-1 levels and patient-reported 

pain, supports a role for MMP-1 in clinically relevant joint pain.  

  Collectively, the findings in this thesis support that MMP-1-mediated cascades 

contribute to both the initial transmission of noxious stimuli from the periphery and the 

late-stage mechanisms that maintain pain with severe disease progression. With the advent 

of more selective MMP inhibitors, especially for the interstitial collagenases, MMP-1 

inhibitors could have potential as a therapeutic intervention for degenerative joint pain, 

since the local abrogation of MMP-1 could provide effective interference in the neuronal 

signaling that mediates nociceptive transmission. Indeed, blocking MMP-1-mediated 

extracellular signaling pathways and the collagenolytic functions of MMP-1 could mitigate 

both the immediate transmission of external noxious stimuli in the capsular ligament and 

also the long-term deficits in joint structure and function, respectively. Furthermore, the 

findings in this body of research emphasize that both treatment and diagnostic tools for 

degenerative joint pain could have improved utility by targeting the microscopic anatomic 

damage in parallel with pain symptoms.  
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  APPENDIX A 

Clinical Data, Imaging Reports & MMP 

Quantification in Soft Tissue from Studies of 

TMJs with Painful Joint Disorders  
 

 

 This appendix contains human subjects information, clinical and imaging data, and 

MMP quantification for the clinical studies presented in Chapter 3 of this thesis. The 

collection of the information contained in this appendix was approved by the Institutional 

Review Board (IRB; protocol #828997) of the University of Pennsylvania. 

Table A.1 details the data collected during patient consent at the time of study 

enrollment, which was the same day as the scheduled surgery and prior to the start of 

surgery. Data include the patient age, patient sex, surgery details, and tissue type(s) 

collected during surgery. The Wilkes stage assigned by the surgeon (Wilkes 1989) and the 

pain score reported by the patient at the time of consent on a Likert scale (Wolford et al. 

2015) are also included. The maximal incisal opening (MIO) measured was also collected 

prior to surgery and represents the greatest distance between the incisal edge on the 

maxillary and mandibular central incisors (Leonardi et al. 2016). The medical history and 

list of medications reported by the patient are listed in the last columns of Table A.1; a 

“simple” description of the medications is also listed and designates any group of 
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medications (i.e. NSAID, opioid, analgesic) that are used to mitigate pain symptoms 

(National Academies of Sciences, Engineering, and Medicine 2020). 

Table A.2 contains the information from the magnetic resonance imaging (MRI) 

reports that were available from five of the patients in the study cohort. The clinical 

impression and scan type from the MRI reports is directly transcribed in the second and 

third columns of Table A.2, respectively. The last column contains the side (left, right, or 

both) that was taken for MMP quantification and is included so that the clinical impressions 

from the matching side can be compared with MMP levels. The damage scores that were 

assigned to the report details in Table A.2 are listed in Table 3.1 in Chapter 3.  

Table A.3 details the protein expression quantified by Western Blots of pro-MMP-

1, active MMP-1, active MMP-9, pro-MMP-2, and active MMP-2 normalized to the 

housekeeping protein β-actin for each sample. The quantification of MMPs normalized to 

β-actin and β-actin levels are separately tabulated.  
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Table A.1. Clinical data by subject collected during IRB consent 

Subject Age Sex Surgery 

Surgery 

Tissue Wilkes Pain MIO Medical Medications 

Med ID (yrs) 
 

type date type stage score (mm) history all simple 

S01 53 M TJR 
01/08/ 

2018 
disc 5 10 20 

high blood 

pressure, 

previous disc 

removal 

amlodipine-

benazepril 

none 

 

S02 52 F ART 
01/09/ 

2018 
lig 4 9 48 

asthma, 

depression, OA 

albuterol, 

escitalopram, 

percocet,senna, 

singulair 

NSAID 

opioid 

S03 61 F TJR 
02/12/ 

2018 
disc 5 6 40 

anemia, 

depression, 

scoliosis, TMJ 

OA 

bupropion, 

clonazepam, 

escitalopram, 

ibuprofen, omega-3 

(fish-oil), tylenol, 

vitamin A 

NSAID, 

analgesic 

S04 39 F ART 
02/27/ 

2018 

disc & 

lig 
5 8 26 

anemia, anxiety, 

chronic lower 

back pain, 

chronic pain, 

depression, 

glomerulonephri

tis, lumbar 

stenosis, 

substance abuse 

amitriptyline, 

fentanyl, 

gabapentin, 

oxycodone, tylenol, 

senna, zofran 

analgesic, 

opioid, 

anti-

convulsant 

 

S06 33 F TJR 
04/02/ 

2018 
lig 5 10 28 TMJ OA etodulac NSAID 

S09 29 F ART 
10/29/ 

2018 

disc & 

lig 
3 6 28 

irritable bowel, 

TMJ OA 

meclizine, nuva 

ring, voltaren gel 
NSAID 

S10 66 F TJR 

12/03/ 

2018 

 

lig 5 6 35 

anosmia, 

anxiety, 

arthralgia, 

cervicalgia, 

degenerated 

lumbosacral 

disc, depression, 

hyperthyroidism

, osteopenia, 

radiculopathy, 

TMJ OA 

baclofen, 

buproprion, 

buspirone, 

citalopram, 

compazine, 

ibuprofen, 

levothyroxine, 

lorezopam, 

oxycodone, senna, 

tylenol, vitamin D 

NSAID, 

analgesic, 

opioid 

 

S12 44 F TJR 
08/05/ 

2019 
disc 5 8 33 depression, OA 

fluoxetine, 

meloxicam 
NSAID 

S13 29 F TJR 
09/30/ 

2019 

disc & 

lig 5 9 44 

maxillary 

sinusitis, TMJ 

OA 

flagyl, naproxen, 

nuva ring 

NSAID 

 

M, male; F, female; TJR, total joint replacement; ART, arthroplasty; MIO, maximal incisal opening. 

lig, ligament; TMJ, temporomandibular joint; OA, osteoarthritis.  

NSAID, nonsteroidal anti-inflammatory drug. 
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Table A.2. Transcribed clinical impression reports for patients with MR imaging 

ID transcription from MR imaging report scan type side taken 

S01 

RIGHT *articular disc mouth closed: mild displacement anteriorly. disc has 

dysmorphic appearance with the normal bioconcave appearance not seen; 
*articular disc mouth open: normal position consistent with recapture; 

*rotation: normal rotation and translation of the mandibular condyle with 

respect to the articular eminence; *bone: there is susceptibility at the lateral 
aspect of the mandibular condyle consistent with reported surgery. there is mild 

to moderate flattening of the mandibular condylar head, no fracture seen; 

*effusion; there is none evident. LEFT *articular disc mouth closed: normal 
position, disc has dysmorphic appearance with the normal bioconcave 

appearance not seen; *articular disc mouth open: normal position; *rotation: 

normal rotation and translation of the mandibular condyle with respect to the 
articular eminence; *bone: there is susceptibility at the lateral aspect of the 

mandibular condyle consistent with reported surgery. there is mild to moderate 

flattening of the mandibular condylar head, no fracture seen; *effusion; there 
is none evident. SUMMARY 1. On the R, mild displacement of the disc 

anteriorly with recapture on open mouth positioning. 2. Postsurgical changes 

involving both mandibular condyles consistent with prior surgery. 3. Mild-to-
moderate flattening of both mandibular condyles consistent with degenerative 

changes. 

MR OF THE TMJS WO 

CONTRAST. Multiplanar, 

multisequence MR on 
1.5T. Patient was unable to 

tolerate the open-mouth 

sagittal T2-weighted 
sequence and was therefore 

not obtained. also CT 

available 

samples 

from the 

LEFT side 

S03 

Prominent soft tissue in both condylar fossas and there is marked flattening of 
both condylar articular surfaces visible on the sequences. There is also 

remodeling of the skull base in the region of the mandibular fossa at the joints. 

The articular discs are not well-seen bilaterally and presumably are 
degenerated. There is also increased fluid in doth TMJs, especially the left. 

There is debris or synovial proliferation in both joints. There is minimal, if any, 

condylar translation. Markedly abnormal bilateral TMJs with sclerosis and 
remodeling of the joints, flattening of the condyles, increased joint fluid and 

debris or synovial proliferation in both joints, along with poor depiction of the 

articular discs and minimal, if any, condylar translation. 

TMJ MRI acquired on a 3T 

scanner. Angled sagittal 
and angled coronal T1 and 

T2 sequences were 

acquired with the mouth 
closed and open. A cine 

sequence was then 

acquired in the angled 
sagittal plane. 

tissue 

samples 
from the 

LEFT and 

RIGHT 
sides 

S06 

RIGHT The articular disc is within normal position with the mouth open and 
closed with intermediate zone positioned between the mandibular condyle and 

articular eminence. Normal anterior translation with mouth opening. No 

degenerative changes or fluid in the joint. LEFT Flattening and spurring of the 

mandibular condyle with mild joint space loss. With the mouth closed, the 

posterior band of the disc appears thin and atrophic. There is mild partial 

anterior displacement of the disc. With the mouth open the disc is no longer 
displaced however there is incomplete anterior translation of the mandibular 

condyle. Impression 1. ID of the left with partial anterior displacement of the 
disc with reduction and incomplete anterior translation of the left mandibular 

condyle. Degenerative changes in left TMJ. 2. Normal right TMJ. 

Bilateral MR of the TMJs 

with 1.5T. also CT 

available 

tissue 

sample 
from the 

LEFT side 

S09 

Impression Markedly limited mouth opening without appropriate translocation 
of the mandibular condyles. In the closed mouth position, the right meniscus is 

deformed and anterior inferiorly subluxed. No evidence of recapture of the disc 

with attempted mouth opening. The left meniscus appears mildly distorted but 
is normally located in the closed mouth position. Narrative In closed mouth, 

left meniscus somewhat distorted but normally located; On the right, closed 

mouth, the meniscus is deformed and anteriorly and inferiorly subluxed; Only 
very limited mouth opening occurred without appropriate translocation of the 

mandibular condyles and without evidence of disc recapture on the right; 

Mandibular condyles normal in appearance; Scattered intraparotid lymph 

nodes are seen. There are multiple bilateral top normal sized cervical lymph 

nodes are present, likely reactive in a patient of this age. 

MR TMJ WO IV 

CONTRAST; MRI at 1.5T, 
oblique sagittal and axial 

and coronal T1-weighted 

images of the TMJs 
obtained with closed mouth 

positions. Subsequently 

oblique sagittal T2-
weighted images obtained 

in the open and closed 

mouth position and coronal 

T1-weighted images in the 

open mouth position. also 

NM bone spect available 

tissue 

sample 
from the 

RIGHT 

side 

Note: Table is continued on the next page. 
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S13 

1. Advanced OA and severe ID in the right TMJ; 2. Moderate OA with articular 

disc degeneration but w/o disc displacement in the left TMJ; RIGHT With the 
mouth closed, the R mandibular condyle is seated in fossa. The articular disc 

is fragmented and anteriorly displaced. The condyle is abnormal with the 

articular surface irregularity. There is subchondral sclerosis of the eminence. 
With the mouth opening, the condyle translates minimally, and the articular 

disc remains anteriorly displaced with recapture and translates in normal 

relation to the condyle. LEFT With the mouth closed, the left mandibular 
condyle is seated in the fossa. The articular disc is attenuated and 

heterogeneous in signal in keeping with degeneration but is not anteriorly 

displaced. The condyle is abnormal with articular surface irregularity. With the 
mouth opening, the condyle translates minimally, and the articular disc remains 

in normal anatomic relationship to the condyle. There is moderate 

osteosclerosis with articular disc in the left TMJ. 
 

MR TMJ WO IV 
CONTRAST; MR imaging 

of the TMJ performed at 

1.5T. Oblique sagittal T1, 
proton-density- and heavily 

T2-weighted images and 

coronal T1-weighted 
images were obtained with 

the mouth closed. With the 

mouth open, additional 
oblique sagittal T1-

weighted images were 

obtained. 

tissue 

sample 

from the 
RIGHT 

side 

 

 

 

 

 

Table A.3. Western Blot quantification of MMPs normalized to the housekeeping protein β-actin 

  MMP-1 MMP-9 MMP-2 

Subject 

ID 
Tissue 

pro 

MMP-1 

/β-actin 

active 

MMP-1 

/β-actin 

β-actin 

active 

MMP-9 

/β-actin 

β-actin 

pro 

MMP-2   

/ β-actin 

active 

MMP-2 

/β-actin 

β-actin 

S01 disc 0.920 10.120 25.000 0.000 0.000    

S02 retro 128.500 180.250 4.000 4.227 485.000 9.777 0.262 359.000 

S03 left disc 0.795 2.055 1460.000 1.444 2500.000 13.060 1.700 1466.000 

S03 right disc 0.363 0.423 2810.000 1.103 2710.000 6.017 1.739 1150.000 

S03  disc average 0.579 1.239 2135.000 1.274 2605.000 9.539 1.720 1308.000 

S04 disc 5.915 35.775 71.000 23.032 155.000 50.976 0.366 123.000 

S04 ligament 1.543 1.914 700.000 1.822 1740.000 13.852 1.469 488.000 

S06 ligament 1.541 3.941 85.000 6.894 264.000 2.737 0.249 811.000 

S09 ligament 0.377 0.892 1300.000 1.377 1460.000 1.867 0.164 1960.000 

S09 disc 0.654 0.447 7490.000 1.569 2760.000 4.000 0.160 2050.000 

S10 ligament 0.157 1.113 2560.000 5.465 904.000 4.775 1.018 1110.000 

S12 disc 1.757 2.057 734.000 2.328 1890.000 2.520 0.009 1980.000 

S13 ligament 1.568 0.585 1690.000 0.936 5170.000 3.043 0.106 3680.000 

S13 retro 0.831 3.677 189.000 6.215 428.000 6.802 0.091 494.000 

S13  
ligament 

average 
1.199 2.131 939.500 3.576 2799.000 4.923 0.099 2087.000 

S13 disc -0.099 -0.890 182.000 8.923 455.000 22.308 0.638 520.000 

Retro, retrodiscal ligament: retrodiscal ligaments make up a portion of the entire capsular ligament; since 

there were not enough retrodiscal ligament samples to justify its own tissue type subgroup, retrodiscal 

samples were grouped with the ligament tissue type for all analyses. 

Yellow shading indicates samples for which no housekeeping protein β-actin was detected. 

Red shading indicates samples for which the β-actin protein was detected but no MMP-1 protein was 

detected.  

Blue shading indicates the patients (S03 and S13) for which MMP levels were averaged; for S03, since discs 

from  both sides were assayed, MMP levels were averaged for all analyses except for analyses with MR 

damage scores since separate damage scores were assigned from side-specific clinical impressions from 

the MRI reports. For S13, a ligament sample and retrodiscal ligament sample were assayed; since 

retrodiscal ligaments were grouped with the ligament subgroup, MMP levels for the ligament and 

retrodiscal ligament were averaged for patient S13. 
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  APPENDIX B 

MATLAB Code for Densitometry and Co-

Localization 
 

 

 This appendix contains the MATLAB scripts that perform the automated 

densitometry analyses on immunolabeled images. The first script titled “Single Channel 

Densitometry” inputs .tif images that are uniformly cropped to the same pixel size and 

contain an immunolabel for a single wavelength channel (e.g. 488nm, 568nm, etc.). Users 

of this script must specify the following variables: D, the file directory indicating the 

images to analyze as designated by filename; pos_thresh, the threshold for positive pixels 

from 0-250 determined from no primary controls and naïve animal tissue and/or in vitro 

controls, depending on the experiment; and whiteSpace, the parameter that determines the 

amount of background defined in an image. The main output variables of this script are 

percpos and percpos_nobackg; percpos subtracts out pixels defined as background and 

percpos_nobackg does not account for background subtraction. The Single Channel 

Densitometry script was used to quantify substance P, pERK, and MMP-1 immunolabels 

in the rat spinal cord in the studies in Chapter 4, as well as used to calculate the positive 

labeling for MMP-1 in the rat DRG in the studies in Chapter 4. Spinal substance P and 

MMP-9 labeling in the Chapter 7 rat studies was also quantified using the Single Channel 

Densitometry script. Finally, the Single Channel script was used in the analyses of MMP-
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1, MMP-9, and substance P immunolabels in the in vitro studies described in Chapters 6 

and 8.  

 The second script in this Appendix titled “Co-localization Densitometry” calculates 

the percent positive pixels for two separate wavelength channels from the same multi-

channel image (e.g. a 488nm and 568nm co-labeled sample) and then computes the 

regional co-localization of positive pixels between the two channels. Users of this script 

must specify separate directories for the two channels (D1, D2) with corresponding names 

(D1_name, D2_name), thresholds for positive labeling (D1_thresh, D2_thresh) and 

whiteSpace parameters (y_background_D1, y_background_D2). The channel designated 

as D1 should be the structural marker (e.g. a neuronal or fibroblast structural protein) and 

the channel designated as D2 should be the protein of interest. The primary output variables 

of this script are per_co, the total percent of co-localized pixels using the number of 

positive pixels in D1 for the percentage calculation, and col_per_area, which divides 

per_co by the number of positive pixels in the D1 channel. The Co-localization 

Densitometry script was used to quantify the amount of neuronal MMP-1 (βIII tubulin and 

MMP-1 co-localized pixels) and the amount of fibroblastic MMP-1 (vimentin and MMP-

1 co-localized pixels) in the studies in Chapter 5.  
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Single Channel Densitometry 

This script was written to calculate and visualize percent positive pixels per image. To 

run the file, you want to create an excel file that has the detailed information about the 

images to be analyzed, then number those images with a common name that has an 

ordered numerical (1, 2...) ending. NOTE: for the excel file, please have the following 

columns (in order): rat #, tissue type, injury type, image no., threshold, raw results, 

normalized results. Number normals last. 

% requires MATLAB 7.0 (or higher) and imaging toolbox. 

 

% Written by Ling Dong (modified from K. Quinn) on Feb 2, 2009. 

% Modified by Kristen Nicholson December 2009 

% Nate - no background subtraction 

% Modified by Meagan Ita 06/19/18 

Begin script 

clear all; 

close all; 

clc 

 

D = dir('*.tif'); % specify which images to analyze (* = wildcard character) 

i=1; 

intensity = zeros(1, length(D)); 

 

for k=1:length(D)  % all do 1:length(D); 

 

 

    % reads file in 

    file=D(k).name; 

 

    % load the image 

    imag_orig = imread(file); 

    % converts to grayscale 

    % imag_orig = imag_orig(:,:,1);%grab the red labeled image (doesn't 

    % apply to single channel) 

    % imag_orig = imag_orig(:,:,1);%grab the green labeled image (doesn't 

    % apply to single channel 

    % imag_orig = rgb2gray(imag_orig); 

    imag = imag_orig; 

    intensity(k) = mean(mean(imag)); 

    invImag = 255-imag; 

    imag = invImag; 

 

    % Calc number of pixels 
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    [a, b]=size(imag); 

    tsize=a*b; 

    low=double(min(imag(:))); 

    high=double(max(imag(:))); 

    % INPUTS REQUIRED HERE - whiteSpace is the parameter that will affect the 

    % background, and pos_thresh is your parameter that will defines the 

    % threshold at which pixels are considered positively labeled 

    whiteSpace = 0.985*high; % usually .985*high 

    pos_thresh = 240; % input based on normal run, remember for DAB staining 

    % higher value corresponds to a higher positive threshold. 

 

    backg=sum(sum(imag>whiteSpace)); 

    posp=sum(sum(imag<pos_thresh)); 

 

    % Calc percent of positive pixels in tissue 

    percpos(k) = posp/(tsize-backg) 

    percpos_nobackg(k) = posp/(tsize) 

    tpost(k) = posp; 

    Iname(k) = {file}; 

 

    % Map out pos and neg pixels 

    pmap=(imag<pos_thresh); 

    nmap=(imag>whiteSpace); 

 

    % Make figure for each image, if you are processing a bunch of images, you 

    % may want to comment this part out 

 

    % Make positive pixels more green, and background pixels less blue 

    imag1(:,:,1)=double(imag)/255; 

    imag1(:,:,2)=(1-pmap).*double(imag)/255+pmap; 

    imag1(:,:,3)=double(imag)/255.*(1-nmap); 

 

    h = figure(i); 

    subplot(1,3,3); 

    subimage(imag); 

    title('Inverted Image') 

    axis image 

    axis off 

    subplot(1,3,2); 

    subimage(imag1); 

    title('Positive Pixels Green') 

    axis image 

    axis off 

    colormap gray 

    subplot(1,3,1); 

    subimage(imag_orig) 

    title('Original Image') 

    axis image 

    axis off 

    drawnow 
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    i=i+1; 

 

    % Save the gray-scale, inverted, and pos/neg images as a new figure 

    % Uncomment below if you want to save each image 

    % saveas(h, ['dens-' D(k).name], 'jpg') 

 

    % clear imag imag1 

    % clf 

end 

 

percpos=percpos' 

percpos_nobackg=percpos_nobackg' 

avg=mean(percpos) 

Published with MATLAB® R2018b 

  

https://www.mathworks.com/products/matlab
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Co-localization Densitometry 

This script was written to calculate the positive pixels per image in two separate channels 

and then to calculate and visualize the co-localization of the positive pixels between the 

two channels. 

% requires MATLAB 7.0 (or higher) and imaging toolbox. 

 

% Written by Ling Dong (modified from K. Quinn) on Feb 2, 2009. 

% Modified 06/21/2018 by MEI 

 

clear all; 

close all; 

clc; 

Load files and input thresholds and write file 

% file1 should be the "reference" label (a structural marker, like MAP2, or 

% beta III tubulin, something you don't expect would change across groups) 

% file2 should be the label that you would consider your "protein of 

% interest" or in other words you might expect this to change across groups 

 

D1 = dir('B*.tif'); %common prefix for all images 

D2 = dir('MMP*.tif'); %common prefix for all images 

%D3 = dir('R*.tif'); %common prefix for all UNMERGED images (this is only to display in 

the subplot at the end) 

D1_name = 'betaIII'; 

D2_name = 'MMP1'; 

 

% input thresholds here - should be based on normal run 

% higher value corresponds to MORE positive pixels 

D1_thresh = 170; 

D2_thresh = 220; 

 

% input whitespace parameter here - multiplier of high will affect background 

% detection, a higher multiplier (e.g. 0.99) will result in LESS pixels 

% labeled as background, a lower multiplier (e.g. 0.85) will result in MANY 

% pixels being labeled as background 

y_background_D1 = 0.930; 

y_background_D2 = 0.982; 

 

% name the excel output file 

IPfname = 'E4_betaIII_MMP1_colocal'; 

OPfile = strcat(IPfname, '.xls'); 

fid = fopen(OPfile, 'w'); % opens the excel file to write 
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h1 = waitbar(0,'Please wait...'); 

Calculate percent positive pixels for each image 

for k=1:length(D1); 

    % D1 and D2 should be the same length 

    % reads both D1 and D2 files in 

     file1 = D1(k).name; 

     file2 = D2(k).name; 

 

     imag_D2 = imread(file2); 

%      imag_D2 = rgb2gray(imag_D2); 

     imag_D1 = imread(file1); 

%      imag_D1 = rgb2gray(imag_D1); 

 

    % take the inverse of the image 

    % imag_red = uint8(-double(imag_red) + 255); 

    % imag_green = uint8(-double(imag_green) + 255); 

     invImag_D2 = 255-imag_D2; 

     imag_D2 = invImag_D2; 

     invImag_D1 = 255-imag_D1; 

     imag_D1 = invImag_D1; 

 

    % calculate number of pixels of the D1 image 

     [a b] = size(imag_D1); 

     tsize = a*b; 

     %low = double(min(imag_D1(:))); 

     high_D1 = double(max(imag_D1(:))); 

     high_D2 = double(max(imag_D2(:))); 

     whiteSpace_D1 = y_background_D1*high_D1; 

     whiteSpace_D2 = y_background_D2*high_D2; 

 

    % calculate the background in D1, then D2 

     backg_D1 = sum(sum(imag_D1 > whiteSpace_D1)); 

     backg_D2 = sum(sum(imag_D2 > whiteSpace_D2)); 

    % calculate the positive pixels in D1, then D2 

     posp_D1 = sum(sum(imag_D1 < D1_thresh)); 

     posp_D2 = sum(sum(imag_D2 < D2_thresh)); 

    % calculate percent of positive pixels in D1, then D2 

     percpos_D1(k) = posp_D1/(tsize-backg_D1) 

     percpos_D2(k) = posp_D2/(tsize-backg_D2) 

 

    % map out pos and neg pixels 

    pmap_D2 = (imag_D2 < D2_thresh); 

    nmap = (imag_D1 > whiteSpace_D1); 

    pmap_D1 = (imag_D1 < D1_thresh); 
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    % make positive pixels green, and background pixels black 

    % D1 image 

    imag1(:,:,1) = zeros(a,b); 

    imag1(:,:,2) = pmap_D1; 

    imag1(:,:,3) = zeros(a,b); 

    % D2 image 

    imag2(:,:,1) = zeros(a,b); 

    imag2(:,:,2) = pmap_D2; 

    imag2(:,:,3) = zeros(a,b); 

Set all non-D1/D2-positive-labeled pixels in the D1 image to zero and 

create a new image for the co-localization 

    [R, C] = find(pmap_D2 == 0);% finds all pixels not positive in D2 

    imag_co = imag1; 

    for ind = 1:length(R) 

        imag_co(R(ind),C(ind),2) = 0; %imag_co(:,:,2) is map of D1 positive pixels so 

finds all such pixels not also positive in D2 to 0 

    end 

Calculate the number of colocalized positive pixels 

    tot_co(k) = length(find(imag_co(:,:,2) == 1)); 

    perc_co(k) = tot_co(k)/(tsize-backg_D1); % percent colocalized, using D1 background 

for total pixels 

    col_per_area(k) = tot_co(k)/posp_D1; % amount colocalized per D1 POSITIVE pixels 

Save data and make plots 

    fprintf(fid, '%s \n', D1(k).name); % D1 file names 

    fprintf(fid, 'percent+ D1 : \t\t%7.4d\n', percpos_D1(k)); 

    fprintf(fid, 'percent+ D2 : \t\t%7.4d\n', percpos_D2(k)); 

    fprintf(fid, 'percent colocalized : \t\t%7.4d\n', perc_co(k)); 

    fprintf(fid, 'percent colocalized per D1+ label : \t\t%7.4d\n', col_per_area(k)); 

 

    h = figure(k); 

    subplot(3,2,1); % D1 in gray scale 

      subimage(imag_D1); 

      axis image; axis off 

      title(D1_name) 

    subplot(3,2,2); % D2 in gray scale 

      subimage(imag_D2); 

      axis image; axis off 
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      title(D2_name) 

    subplot(3,2,3); % D1 positive pixels 

       subimage(imag1); 

       axis image; axis off; 

       title('D1 positive') 

    subplot(3,2,4); % D2 positive pixels 

       subimage(imag2); 

       axis image; axis off; 

       title('D2 positive') 

%     subplot(3,2,5); 

%        file3 = D3(k).name; 

%        imag_orig = imread(file3); 

%        subimage(imag_orig); 

%        axis image; axis off 

%        title('original image - all channels') 

    subplot(3,2,6); 

       subimage(imag_co) 

       axis image; axis off 

       title('colocalized pixels') 

       drawnow 

 

    %saveas(h, ['colocalize-' D1(k).name], 'jpg') 

    waitbar(k/length(D1)) 

    clear imag imag1 imag2 R C 

end 

 

close(h1) 

status = fclose(fid); 

Published with MATLAB® R2018b 

 

 

 

https://www.mathworks.com/products/matlab
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  APPENDIX C 

Mechanical Hyperalgesia 
 

 

 This appendix summarizes the behavioral responses for each rat included in the 

studies presented in Chapters 4 and 7.  In those in vivo studies, behavioral sensitivity was 

quantified using mechanical hyperalgesia which was measured by the paw withdrawal 

threshold of each rat’s bilateral forepaws in response to von Frey filament stimulation 

(Crosby and Smith 2015; Kras et al. 2015; Lee et al. 2006). Table C.1 details withdrawal 

thresholds for the studies in Chapter 4 for rats injected bilaterally in the C6/C7 facet joint 

with either purified bacterial collagenase (collagenase) or a saline vehicle (vehicle). 

Thresholds were measured before (day 0) intra-articular administration of collagenase or 

the vehicle solution and on days 1, 3, 5, 7, 11, 14, 17, and 21 after the injection. Withdrawal 

thresholds for the studies in Chapter 7 are summarized in Table C.2 and include thresholds 

measured before (day 0) the intra-articular injection of exogenous MMP-1 (MMP-1) or a 

sterile H2O vehicle (vehicle) into the bilateral C6/C7 facet joints and on days 1, 3, 5, 7, 11, 

14, 17, 21, 25, and 28 after the injection. For both studies, withdrawal thresholds are listed 

separately for the left and the right forepaw and represent the average of three rounds of 

testing conducted 10 minutes apart for each timepoint.  
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Table C.1. Forepaw withdrawal thresholds for rats with intra-articular injection of bacterial collagenase 

or vehicle (Chapter 4) 

  baseline (day 0) day 1 day 3 day 5 day 7 

Rat # Group right left right left right left right left right left 

10 

co
ll

ag
en

as
e 

20.67 22.33 20.00 4.67 4.67 3.33 6.00 4.00 4.67 3.33 
11 13.33 11.67 4.67 7.33 7.33 6.00 4.67 5.33 7.33 7.33 

12 5.33 4.67 1.40 1.40 1.13 0.60 1.80 1.80 1.60 1.60 

22 20.67 26.00 14.00 8.33 15.67 13.33 15.00 15.00 26.00 22.33 
23 22.33 20.67 9.67 3.80 6.67 7.33 6.67 7.33 9.67 8.00 

25 26.00 20.00 8.00 9.33 8.67 8.00 7.33 6.00 7.33 8.67 

28 20.67 17.00 7.33 6.67 6.00 6.67 8.00 6.67 6.67 7.33 
29 10.33 13.33 5.33 4.67 8.67 7.33 4.67 4.67 8.67 8.67 

30 11.00 10.33 9.00 9.67 7.33 6.00 6.00 8.00 7.33 5.33 

33 14.00 11.00 13.33 6.67 7.33 3.33 8.00 6.67 6.67 8.00 
34 8.00 7.33 6.00 4.67 7.33 5.33 6.67 7.33 6.67 6.67 

36 8.00 7.33 4.00 3.33 8.00 7.33 8.00 8.00 6.67 5.33 

24 

v
eh

ic
le

 

22.33 12.67 13.33 7.33 11.00 6.67 9.33 7.33 18.67 6.67 
26 26.00 15.33 22.33 9.00 18.67 10.00 8.00 11.00 13.33 22.33 

27 17.00 20.67 8.67 8.00 17.00 17.00 13.33 16.33 12.67 12.67 

31 26.00 13.33 12.67 8.00 17.00 15.33 15.00 10.00 15.00 9.33 
32 12.67 12.67 6.00 6.00 7.33 8.67 10.33 16.33 7.33 11.00 

35 8.00 8.67 9.67 7.33 7.33 7.33 17.00 15.00 10.00 17.00 

            

  day 11 day 14 day 17 day 21   

Rat # Group right left right left right left right left 

10 

co
ll

ag
en

as
e 

7.33 6.67 1.80 8.00 2.67 6.00 4.00 6.00 

11 7.33 5.33 1.80 5.33 4.00 7.33 8.00 2.47 
12 1.13 1.33 1.60 1.33 2.47 2.47 2.00 2.47 

22 14.00 15.00 11.00 11.67 20.00 17.00 20.67 22.33 

23 7.33 8.00 6.67 7.33 6.67 10.33 6.67 5.33 
25 11.67 9.00 7.67 6.00 6.67 7.33 7.33 8.67 

28 7.33 5.33 7.33 6.67 10.00 9.33 8.67 8.00 

29 10.00 6.67 9.00 8.00 10.33 7.33 7.33 8.00 
30 4.67 5.33 5.33 6.00 4.67 7.33 6.00 6.00 

33 5.33 8.67 6.00 6.00 6.00 4.67 3.33 4.00 

34 5.33 6.00 7.33 4.00 7.33 6.67 5.33 4.67 
36 4.00 3.33 4.67 2.67 3.33 3.33 4.00 2.67 

24 

v
eh

ic
le

 

13.33 7.33 11.00 6.67 11.67 8.00 15.33 8.00 

26 26.00 12.67 14.67 9.33 17.00 18.67 26.00 22.33 
27 20.00 14.00 8.00 13.33 22.33 22.33 11.67 11.67 

31 18.67 8.00 11.67 15.33 18.67 14.67 11.00 11.67 

32 11.00 17.00 7.33 20.67 8.00 20.67 8.67 11.00 
35 8.67 13.33 11.00 11.00 10.33 20.00 11.67 15.33 
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Table C.2. Forepaw withdrawal thresholds for rats with intra-articular MMP-1 or vehicle (Chapter 7) 

  baseline (day 0) day 1 day 3 day 5 day 7   

Rat # Group right left right left right left right left right left   

13 

M
M

P
-1

 

14.67 26.00 26.00 11.00 12.67 9.67 9.33 6.00 9.67 6.00   
14 15.67 16.33 14.00 6.67 15.33 10.00 10.00 8.33 6.67 11.00   

15 22.33 20.67 5.33 7.33 14.67 17.00 14.00 11.00 8.67 11.00   

16 14.67 26.00 3.33 7.33 6.00 9.00 3.33 5.33 10.33 8.00   

17 20.67 22.33 6.67 9.67 10.33 8.00 7.33 20.67 9.33 11.67   

18 17.00 16.33 6.00 8.67 5.33 6.67 9.00 7.33 5.33 7.00   

19 26.00 26.00 14.67 13.33 17.00 12.67 14.67 7.33 8.67 10.00   

20 9.33 18.67 2.67 5.33 5.33 7.33 5.33 4.67 4.67 6.67   
21 14.00 17.00 4.00 4.67 4.67 7.33 6.00 6.00 4.00 6.67   

37 1.40 1.40 2.67 1.33 0.87 0.60 1.60 1.60 1.60 1.13   

38 11.67 13.33 8.67 6.67 4.67 6.67 4.67 6.67 2.00 4.00   

43 22.33 22.33 26.00 8.00 8.67 7.33 8.67 8.00 7.00 6.00   

44 11.00 22.33 11.00 9.00 8.67 3.33 6.67 4.00 5.33 4.67   

46 17.00 20.67 3.33 8.67 5.33 6.00 4.67 3.33 3.13 4.67   

47 11.00 11.67 6.67 4.00 5.33 6.00 4.67 6.00 7.33 5.33   

55 22.33 22.33 26.00 6.00 14.00 6.00 6.00 4.00 16.33 4.67   
56 20.67 9.00 9.00 3.80 7.33 2.67 8.67 8.00 4.67 3.33   

59 16.33 11.00 7.33 3.33 7.33 3.33 8.00 6.67 4.67 7.33   

42 

v
eh

ic
le

 

22.33 16.33 5.33 4.67 8.00 4.67 7.33 6.00 8.00 8.00   

45 20.67 17.00 8.00 6.67 8.67 10.33 13.33 11.33 9.00 17.00   

48 18.67 17.00 6.67 26.00 20.67 14.67 9.67 13.33 20.67 10.33   

49 15.00 11.00 15.00 7.00 8.00 11.00 10.67 16.33 11.00 12.67   

50 12.67 14.67 11.00 6.67 7.33 7.33 8.67 7.33 10.33 8.67   

51 9.33 8.67 8.67 8.00 14.00 8.00 10.00 8.00 16.33 14.67   

52 10.00 8.67 7.33 5.33 11.00 6.00 10.33 7.33 6.67 5.67   
53 11.67 11.67 13.33 8.67 16.33 9.33 11.67 11.00 13.33 11.00   

54 26.00 26.00 20.50 8.00 14.00 20.67 20.67 14.67 22.33 8.67   

57 26.00 20.00 22.33 12.67 18.67 12.67 18.67 13.33 26.00 20.00   

58 15.00 13.33 6.00 6.67 6.00 6.67 8.67 7.33 9.33 12.67   

61 22.33 26.00 26.00 26.00 26.00 26.00 22.33 9.33 16.33 22.33   

62 22.33 14.00 9.67 17.00 9.67 17.00 22.33 15.33 17.00 20.67   

              

  day 11 day 14 day 17 day 21 day 25 day 28 

Rat # Group right left right left right left right left right left right left 

13 

M
M

P
-1

 

6.00 6.67 4.67 4.67 4.00 4.67 7.33 3.33 6.00 7.33 5.33 3.33 

14 8.00 9.67 5.13 5.33 8.00 11.00 6.67 5.33 4.67 6.67 3.33 3.33 

15 6.67 10.33 8.67 8.67 6.67 11.67 8.67 14.67 9.67 8.00 8.00 4.67 

16 6.00 6.00 8.67 9.67 6.67 6.67 7.33 8.67 6.00 6.00 6.00 3.13 

17 8.00 9.00 4.67 5.33 6.67 8.67 6.00 6.67 5.33 5.33 6.67 6.00 

18 6.00 13.33 6.00 7.33 4.00 7.33 2.67 5.33 6.67 3.13 8.00 8.00 

19 18.67 12.67 15.67 10.33 9.33 17.00 7.33 6.67 6.67 8.00 10.33 5.33 
20 7.33 8.67 3.33 6.00 7.33 7.33 4.00 6.00 5.33 8.67 6.67 6.67 

21 10.33 15.00 6.00 8.67 10.33 17.00 4.67 5.33 6.67 13.33 3.33 6.67 

37 1.60 1.40 2.47 1.60 1.40 1.13 1.33 1.60 1.80 1.13 1.40 0.60 

38 4.00 3.33 4.00 4.00 1.40 2.67 1.40 2.00 2.67 1.80 3.33 2.67 

43 9.33 8.00 11.67 5.33 8.67 16.33 8.00 12.67 11.67 10.33 8.67 5.33 

44 7.00 2.00 8.00 6.00 8.00 5.33 14.67 7.33 6.67 3.80 6.00 9.33 

46 2.00 6.00 2.67 2.67 4.67 8.00 2.27 4.67 1.60 6.67 7.33 5.33 

47 6.67 6.00 7.33 6.00 7.33 6.67 8.00 7.33 8.67 7.33 6.00 2.67 
55 6.00 9.00 4.67 4.47 8.00 4.00 8.00 4.67 4.00 2.47 2.47 2.47 

56 6.00 3.33 4.67 3.33 8.00 4.00 4.67 2.47 6.67 2.47 6.67 2.47 

59 4.67 5.33 4.67 3.13 4.00 4.67 6.67 4.00 4.47 2.67 6.67 5.13 

42 

v
eh

ic
le

 

8.00 22.33 15.00 8.00 10.33 8.67 20.67 11.67 11.00 11.67 13.33 8.67 

45 8.67 22.33 14.67 11.00 7.33 22.33 7.33 16.33 9.33 14.67 6.67 16.33 

48 20.67 20.67 18.67 11.00 22.33 20.67 15.00 13.33 18.67 16.33 16.33 8.67 

49 15.67 7.33 20.67 18.67 22.33 17.00 17.00 8.67 8.67 8.00 9.67 8.67 

50 11.67 8.67 6.67 6.67 6.67 9.33 11.67 8.00 5.33 8.00 7.33 10.33 

51 14.67 26.00 14.67 17.00 20.67 22.33 26.00 15.00 22.33 18.67 9.33 20.00 
52 12.67 13.33 15.33 11.00 15.33 22.33 11.00 11.00 17.00 10.33 17.00 10.00 

53 14.67 6.00 22.33 15.00 17.00 12.67 8.67 7.33 10.33 9.00 13.33 7.33 

54 17.00 26.00 22.33 26.00 20.67 18.67 14.67 26.00 22.33 20.67 11.67 12.67 

57 10.00 9.00 22.33 8.00 20.67 9.67 22.33 15.33 26.00 26.00 18.67 22.33 

58 5.33 20.67 14.67 5.33 8.00 4.67 6.67 6.67 6.00 5.33 6.00 6.00 

61 19.67 20.00 26.00 14.00 11.67 22.33 14.67 22.33 22.33 26.00 26.00 22.33 
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APPENDIX D 

Joint Histology & HIF-1α Immunolabeling in the 

Facet Joint for Intra-Articular Rat Studies 
 

 

 This appendix summarizes the histological and immunohistochemical assays 

performed on facet joint tissues from the in vivo rat studies that are detailed in Chapters 4 

and 7. All assays of tissues exposed to bacterial collagenase, MMP-1, and/or the matched 

vehicle were performed using the injected C6/C7 facet joints; data from naïve rats are also 

included and are from un-injected C6/C7 facet joints. In each of the tables and figures 

detailed in this appendix, data are identified by their injection group and rat number. Labels 

above each image within the figures list the rat number followed by the image number (e.g. 

“R10 – 01” indicates image 1 from rat 10); the image number in the labels matches the 

image numbers listed in the corresponding data table.  

Table D.1 details the anisotropy index that was calculated from each Picrosirius 

Red/Alcian Blue stained image of the capsular ligament (detailed in Figure D.1) for the in 

vivo studies detailed in Chapter 4 that utilized intra-articular injection of bacterial 

collagenase or a saline vehicle. Tissue sections were stained with Picrosirius Red/Alcian 

Blue (Schmitz et al. 2010) to visualize collagen fibers in the capsular ligament. Separate 

regions of interest (ROIs) containing only the ligament were randomly selected from each 

image of the stained ligament (2-4 ROIs/image); the number of ROIs selected for each 
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image in Figure D.1 are detailed in Table D.1. Fiber orientation was quantified by 

computing the anisotropy index as the ratio of the principal axes to describe orientation on 

a continuous scale from isotropic (random; 0) to aligned (1) (Sander and Barocas 2009). In 

addition to anisotropy (ani) index, Table D.1 also details the estimated depth into the joint 

at which the section was taken, measured from the posterior surface of the spinous process, 

in microns. 

Table D.2 details the Mankin scores for each Safranin O/Fast Green image (Figure 

D.2) taken of the articular cartilage and surrounding bone for the in vivo studies detailed 

in Chapter 4. The Safranin O/Fast Green stain visualizes cartilage and bone (Schmitz et al. 

2010). The Mankin score assesses cartilage degradation based on cellular and background 

staining, chondrocyte arrangement, and structural surface condition, with scores ranging 

from normal (0) to maximally degenerate (10) (Xu et al. 2009). The Mankin score was 

assigned by two blinded graders, also detailed in Table D.2. Since Safranin O/Fast Green 

images in Figure D.2 may contain only the top articular surface, only the bottom articular 

surface, or both, Table D.2 details the articular surface (top or bottom) for which the 

Mankin score corresponds.  

Data acquired from the immunohistochemical label of HIF-1α in chondrocytes are 

detailed in Table D.3 and Figure D.3 for the in vivo studies using intra-articular bacterial 

collagenase that are detailed in Chapter 4. Immunolabeling for HIF-1α expression was used 

to evaluate the health of chondrocytes in the C6/C7 articular cartilage (Kartha et al. 2016; 

Sperry et al. 2020b). An assessor blinded to groups counted both the number of cells 

positive for HIF-1α and the total number of cells in each image, using images shown in 
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Figure D.3 (Sperry et al. 2020b); the percentage of HIF-1α-positive cells based on that 

analysis is summarized in Table D.3.   

Table D.4 and Figure D.4 summarize the anisotropy index that was calculated for 

each Picrosirius Red/Alcian Blue stained capsular ligament for the in vivo rat studies using 

intra-articular MMP-1 or its vehicle that are detailed in Chapter 7. Similarly, Table D.5 and 

Figure D.5 summarize the Mankin scoring and Safranin O/Fast Green images of the 

articular cartilage and surrounding bones from those intra-articular MMP-1 rat studies 

found in Chapter 7. The data analyses and summary of data in figures and tables for 

anisotropy index and Mankin score for the Chapter 7 studies in this appendix match those 

outlined above for the Chapter 4 studies.  
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Table D.1. Anisotropy (ani) indices computed from Picrosirius Red/Alcian Blue stained capsular 

ligaments injected with bacterial collagenase or vehicle (Chapter 4) 

Rat Group image no. ROI 
depth 

(μm) 

ani 

index 
 Rat Group image no. ROI 

depth 

(μm) 

ani 

index 

R10 

co
ll

ag
en

as
e 

1 1 240 0.050  R12 

co
ll

ag
en

as
e 

1 1 1056 0.544 

R10 1 2 240 0.154  R12 1 2 1056 0.723 

R10 2 1 240 0.891  R12 2 1 1056 0.546 

R10 2 2 240 0.438  R12 2 2 1056 0.215 

R10 2 3 240 0.221  R12 2 3 1056 0.367 

R10 3 1 240 0.115  R12 3 1 1056 0.541 

R10 3 2 240 0.454  R12 3 2 1056 0.582 

R10 4 1 240 0.747  R12 3 3 1056 0.661 

R10 4 2 240 0.265  R12 4 1 1216 0.516 

R10 5 1 240 0.122  R12 4 2 1216 0.081 

R10 5 2 240 0.314  R12 5 1 1392 0.367 

R10 6 1 464 0.358  R12 5 2 1392 0.424 

R10 6 2 464 0.549  R12 6 1 1392 0.484 

R10 7 1 464 0.239  R12 6 2 1392 0.517 

R10 7 2 464 0.399  R12 6 3 1392 0.534 

R10 8 1 464 0.524  R12 7 1 1392 0.577 

R10 8 2 464 0.415  R12 7 2 1392 0.411 

R10 9 1 656 0.272  R12 8 1 1712 0.411 

R10 9 2 656 0.557  R12 8 2 1712 0.429 

R10 10 1 656 0.227  R12 9 1 1712 0.419 

R10 10 2 656 0.335  R12 9 2 1712 0.209 

R10 11 1 1072 0.299  R12 10 1 2032 0.742 

R10 12 1 1072 0.382  R12 11 1 2528 0.757 

R10 12 2 1072 0.681  R22 
co

ll
ag

en
as

e 
1 1 512 0.422 

R10 13 1 1072 0.719  R22 1 2 512 0.316 

R11 

co
ll

ag
en

as
e 

1 1 112 0.089  R22 2 1 512 0.434 

R11 1 2 112 0.145  R22 2 2 512 0.511 

R11 2 1 112 0.758  R22 3 1 512 0.296 

R11 2 2 112 0.677  R22 3 2 512 0.554 

R11 2 3 112 0.409  R22 3 3 512 0.774 

R11 3 1 112 0.583  R22 3 4 512 0.509 

R11 3 2 112 0.703  R22 4 1 512 0.140 

R11 4 1 432 0.687  R22 4 2 512 0.418 

R11 4 2 432 0.504  R22 5 1 864 0.340 

R11 4 3 432 0.704  R22 5 2 864 0.282 

R11 5 1 432 0.486  R24 

v
eh

ic
le

 

1 1 144 0.273 

R11 5 2 432 0.499  R24 1 2 144 0.371 

R11 5 3 432 0.338  R24 2 1 144 0.225 

R11 6 1 672 0.814  R24 2 2 144 0.488 

R11 6 2 672 0.878  R24 2 3 144 0.713 

R11 7 1 672 0.185  R24 3 1 368 0.501 

R11 7 2 672 0.486  R24 3 2 368 0.718 

R11 8 1 1024 0.743  R24 4 1 368 0.286 

R11 9 1 1024 0.571  R24 4 2 368 0.355 

R11 10 1 1024 0.485  R24 5 1 368 0.401 

Note: Table is continued on the next page. 
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Table D.1. continued 

Rat Group 
image 

no. 
ROI 

depth 

(μm) 

ani 

index 
 Rat Group 

image 

no. 
ROI 

depth 

(μm) 

ani 

index 

R24 

v
eh

ic
le

 

5 2 368 0.408  R33 

co
ll

ag
en

as
e 

1 1 64 0.574 

R24 6 1 560 0.652  R33 1 2 64 0.385 

R24 6 2 560 0.416  R33 1 3 64 0.747 

R24 7 1 1360 0.211  R33 2 1 64 0.107 

R24 7 2 1360 0.275  R33 2 2 64 0.561 

R24 8 1 944 0.562  R33 3 1 336 0.282 

R24 8 2 944 0.570  R33 3 2 336 0.419 

R24 9 1 944 0.120  R33 4 1 336 0.673 

R24 9 2 944 0.649  R33 4 2 336 0.557 

R27 

v
eh

ic
le

 

1 1 288 0.659  R33 4 3 336 0.654 

R27 1 2 288 0.452  R33 5 1 624 0.500 

R27 1 3 288 0.235  R33 5 2 624 0.338 

R27 2 1 288 0.526  R33 6 1 624 0.403 

R27 2 2 288 0.330  R33 6 2 624 0.343 

R27 2 3 288 0.521  R33 6 3 624 0.245 

R27 3 1 288 0.329  R33 7 1 624 0.213 

R27 3 2 288 0.485  R33 7 2 624 0.254 

R27 3 3 288 0.506  R33 8 1 784 0.503 

R27 4 1 640 0.227  R33 8 2 784 0.510 

R27 5 1 640 0.451  R33 9 1 784 0.716 

R27 6 1 944 0.366  R33 9 2 784 0.723 

R27 6 2 944 0.527  R33 10 1 784 0.331 

R27 6 3 944 0.542  R33 10 2 784 0.240 

R27 7 1 944 0.641  R33 10 3 784 0.319 

R27 7 2 944 0.589  R33 11 1 944 0.077 

R27 8 1 1184 0.835  R33 11 2 944 0.212 

R27 8 2 1184 0.697  R33 12 1 944 0.621 

R27 9 1 1184 0.781  R33 12 2 944 0.625 

R27 9 2 1184 0.547  R33 13 1 1104 0.308 

R27 10 1 1792 0.155  R33 13 2 1104 0.029 

R32 

v
eh

ic
le

 

1 1 256 0.786  R34 

co
ll

ag
en

as
e 

 

1 1 400 0.780 

R32 1 2 256 0.470  R34 1 2 400 0.212 

R32 1 3 256 0.605  R34 2 1 400 0.457 

R32 2 1 256 0.434  R34 2 2 400 0.761 

R32 2 2 256 0.230  R34 2 3 400 0.364 

R32 3 1 464 0.426  R34 2 4 400 0.724 

R32 3 2 464 0.233  R34 3 1 400 0.405 

R32 4 1 464 0.438  R34 3 2 400 0.818 

R32 4 2 464 0.428  R34 3 3 400 0.634 

R32 5 1 704 0.644  R34 4 1 864 0.139 

R32 6 1 704 0.309  R34 4 2 864 0.907 

R32 6 2 704 0.495  R34 5 1 864 0.384 

R32 6 3 704 0.284  R34 5 2 864 0.501 

R32 7 1 1056 0.322  R34 5 3 864 0.461 

R32 7 2 1056 0.157  R34 6 1 1296 0.603 

Note: Table is continued on the next page. 
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Table D.1. continued 

Rat Group 
image 

no. 
ROI 

depth 

(μm) 

ani 

index 

R34 collagenase 6 2 1296 0.523 

R443 

n
aï

v
e 

 

1 1 1264 0.520 

R443 1 2 1264 0.329 

R443 1 3 1264 0.433 

R443 2 1 1280 0.584 

R443 2 2 1280 0.786 

R443 3 1 1296 0.561 

R443 3 2 1296 0.501 

R444 

n
ai

v
e 

1 1 1312 0.662 

R444 1 2 1312 0.726 

R444 1 3 1312 0.533 

R444 2 1 1328 0.245 

R444 2 2 1328 0.091 

R444 3 1 1376 0.344 

R444 3 2 1376 0.169 
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Figure D.1. Picrosirius Red/Alcian Blue stained capsular ligaments injected with bacterial collagenase 

or vehicle as designated in Table D.1 (Chapter 4) 

 

Note: Figure is continued on the next page. 
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Figure D.1. continued 

 

Note: Figure is continued on the next page. 
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Figure D.1. continued 

 

Note: Figure is continued on the next page. 
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Figure D.1. continued 

 

Note: Figure is continued on the next page. 
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Figure D.1. continued 

 

Note: Figure is continued on the next page. 

 

 

 

 

 

 



336 

 

 

Figure D.1. continued 
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Table D.2. Mankin score assigned from Safranin O/Fast Green stained facet joints injected with bacterial 

collagenase or vehicle (Chapter 4) 

Rat  Group 

image 

no. 

Mankin 

score 

articular 

surface grader 
 

Rat  Group 

image 

no. 

Mankin 

score 

articular 

surface grader 

R10 

co
ll

ag
en

as
e 

1 3 bottom PG  R24 

v
eh

ic
le

 

1 3 bottom RW 

R10 1 5 top PG  R24 1 3 top RW 

R10 1 1 bottom RW  R24 2 6 bottom PG 

R10 1 2 top RW  R24 2 7 bottom RW 

R10 2 4 bottom PG  R24 3 6 top PG 

R10 2 4 top PG  R24 3 2 top RW 

R10 2 1 bottom RW  R24 4 2 bottom PG 

R10 2 4 top RW  R24 4 2 top PG 

R10 3 2 bottom PG  R24 4 3 bottom RW 

R10 3 2 top PG  R24 4 3 top RW 

R10 3 1 bottom RW  R24 5 6 bottom PG 

R10 3 0 top RW  R24 5 6 top PG 

R10 4 2 bottom PG  R24 5 1 bottom RW 

R10 4 4 top PG  R24 5 4 top RW 

R10 4 0 bottom RW  R24 6 4 bottom PG 

R10 4 4 top RW  R24 6 4 top PG 

R11 

co
ll

ag
en

as
e 

1 4 bottom PG  R24 6 2 bottom RW 

R11 1 4 top PG  R24 6 1 top RW 

R11 1 0 bottom RW  R24 7 4 bottom PG 

R11 1 5 top RW  R24 7 4 top PG 

R11 2 5 bottom PG  R24 7 1 bottom RW 

R11 2 5 top PG  R24 7 3 top RW 

R11 2 1 bottom RW  R27 
v

eh
ic

le
 

1 3 bottom PG 

R11 2 2 top RW  R27 1 0 top PG 

R11 3 2 bottom PG  R27 1 3 bottom RW 

R11 3 6 top PG  R27 1 1 top RW 

R11 3 1 bottom RW  R27 2 5 bottom PG 

R11 3 3 top RW  R27 2 1 bottom RW 

R12 

co
ll

ag
en

as
e 

1 6 top PG  R32 

v
eh

ic
le

 

1 5 bottom PG 

R12 1 4 top RW  R32 1 6 top PG 

R12 2 2 bottom PG  R32 1 1 bottom RW 

R12 2 2 top PG  R32 1 3 top RW 

R12 2 1 bottom RW  R32 2 5 bottom PG 

R12 2 0 top RW  R32 2 4 top PG 

R12 3 5 bottom PG  R32 2 5 bottom RW 

R12 3 3 top PG  R32 2 6 top RW 

R12 3 1 bottom RW  R32 3 6 bottom PG 

R12 3 2 top RW  R32 3 5 top PG 

R12 4 2 bottom PG  R32 3 2 bottom RW 

R12 4 4 top PG  R32 3 1 top RW 

R12 4 1 bottom RW  R32 4 2 bottom PG 

R12 4 3 top RW  R32 4 3 top PG 

R22 

co
ll

ag
en

as
e 

1 6 top PG  R32 4 2 bottom RW 

R22 1 2 top RW  R32 4 2 top RW 

R22 2 5 top PG  R33 

co
ll

ag
en

as
e 

1 4 bottom PG 

R22 2 3 bottom RW  R33 1 4 top PG 

R22 3 5 top PG  R33 1 0 bottom RW 

R22 3 3 top RW  R33 1 3 top RW 

R24 
vehicle 

1 7 bottom PG  R33 2 4 bottom PG 

R24 1 7 top PG  R33 2 4 top PG 

RW: Rachel Welch; PG: Prabesh Ghimire 

Note: Table is continued on the next page. 
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Table D.2. continued 

Rat  Group 

image 

no. 

Mankin 

score 

articular 

surface grader 
 

Rat  Group 

image 

no. 

Mankin 

score 

articular 

surface grader 

R33 

co
ll

ag
en

as
e 

2 2 bottom RW  R443 

n
ai

v
e 

3 2 bottom PG 

R33 2 2 top RW  R443 3 2 top PG 

R33 3 2 bottom PG  R443 3 2 bottom RW 

R33 3 4 top PG  R443 3 3 top RW 

R33 3 0 bottom RW  R443 4 3 bottom PG 

R33 3 3 top RW  R443 4 3 top PG 

R33 4 2 bottom PG  R443 4 2 bottom RW 

R33 4 2 top PG  R443 4 2 top RW 

R33 4 0 bottom RW  R444 

n
ai

v
e 

1 1 bottom PG 

R33 4 3 top RW  R444 1 1 top PG 

R33 5 2 bottom PG  R444 1 2 bottom RW 

R33 5 2 top PG  R444 1 3 top RW 

R33 5 0 bottom RW  R444 2 3 bottom PG 

R33 5 1 top RW  R444 2 3 top PG 

R33 6 2 bottom PG  R444 2 1 bottom RW 

R33 6 2 top PG  R444 2 1 top RW 

R33 6 2 bottom RW  R444 3 4 bottom PG 

R33 6 3 top RW  R444 3 4 top PG 

R33 7 1 bottom PG  R444 3 1 bottom RW 

R33 7 2 top PG  R444 3 2 top RW 

R33 7 0 bottom RW  R444 4 4 bottom PG 

R33 7 2 top RW  R444 4 4 top PG 

R33 8 2 bottom PG  R444 4 2 bottom RW 

R33 8 2 top PG  R444 4 5 top RW 

R33 8 2 bottom RW        

R33 8 2 top RW        

R34 

co
ll

ag
en

as
e 

1 2 bottom PG        

R34 1 2 top PG        

R34 1 2 bottom RW        

R34 1 2 top RW        

R34 2 2 top PG        

R34 2 1 bottom RW        

R34 3 6 top PG        

R34 3 1 top RW        

R34 4 2 bottom PG        

R34 4 2 top PG        

R34 4 0 bottom RW        

R34 4 4 top RW        

R34 5 4 bottom PG        

R34 5 6 top PG        

R34 5 0 bottom RW        

R34 5 1 top RW        

R443 

n
ai

v
e 

1 2 bottom PG        

R443 1 2 top PG        

R443 1 3 bottom RW        

R443 1 2 top RW        

R443 2 1 bottom PG        

R443 2 1 top PG        

R443 2 2 bottom RW        

R443 2 2 top RW        

RW: Rachel Welch; PG: Prabesh Ghimire 
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Figure D.2. Safranin O/Fast Green stained facet joints injected with bacterial collagenase or vehicle as 

designated in Table D.2 (Chapter 4) 

 

Note: Figure is continued on the next page. 
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Figure D.2. continued 

 

Note: Figure is continued on the next page. 
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Figure D.2. continued 

 

Note: Figure is continued on the next page. 
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Figure D.2. continued 
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Table D.3. Percent positive chondrocytes for HIF-1α expression in bacterial collagenase or vehicle-

injected facet joints (Chapter 4) 

Rat Group image no. % positive cells  Rat  Group image no. % positive cells 

R10 

collagenase 

1 90.48%  R41A naive 5 24.14% 

R10 2 61.11%  R64 

naive 

1 43.93% 

R10 3 45.95%  R64 2 35.96% 

R10 4 65.38%  R64 3 3.25% 

R10 5 60.00%  R64 4 11.86% 

R11 

collagenase 

1 44.09%  R64 5 0.00% 

R11 2 48.45%      

R11 3 63.64%      

R11 4 91.26%      

R11 5 83.81%      

R12 

collagenase 

1 55.65%      

R12 2 59.12%      

R12 3 2.56%      

R12 4 70.19%      

R12 5 49.38%      

R22 

collagenase 

1 10.29%      

R22 2 59.29%      

R22 3 14.68%      

R22 4 36.84%      

R22 5 33.33%      

R24 collagenase 1 74.50%      

R27 

collagenase 

 

1 89.19%      

R27 2 80.49%      

R27 3 31.34%      

R27 4 20.95%      

R27 5 70.11%      

R32 

vehicle 

1 57.00%      

R32 2 59.30%      

R32 3 40.19%      

R32 4 40.78%      

R32 5 22.62%      

R33 

collagenase 

1 63.33%      

R33 2 70.27%      

R33 3 52.80%      

R33 4 38.64%      

R33 5 51.12%      

R34 

collagenase 

1 25.20%      

R34 2 61.47%      

R34 3 8.11%      

R34 4 21.67%      

R34 5 0.00%      

R41 

naive 

1 18.63%      

R41 2 0.00%      

R41 3 0.00%      

R41 4 61.36%      

R41 5 16.53%      

R41A 

naive 

1 51.82%      

R41A 2 30.46%      

R41A 3 57.28%      

R41A 4 18.02%      
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Figure D.3. HIF-1α immunolabeling in chondrocytes of the articular cartilage of bacterial collagenase 

or vehicle-injected facet joints as designated in Table D.3 (Chapter 4) 

 

Note: Figure is continued on the next page. 
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Figure D.3. continued 

 

Note: Figure is continued on the next page. 

 

 

 

 

 

 

 



346 

 

 

Figure D.3. continued 
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Table D.4. Anisotropy (ani) indices computed from Picrosirius Red/Alcian Blue stained capsular 

ligaments injected with MMP-1 or vehicle (Chapter 7) 

Rat Group image no. ROI 
depth 

(μm) 

ani 

index 
 Rat Group image no. ROI 

depth 

(μm) 

ani 

index 

R20  

M
M

P
-1

 

1 1 368 0.768  R42  

v
eh

ic
le

 

1 3 192 0.442 

R20  1 2 368 0.756  R42  2 1 192 0.780 

R20  1 3 368 0.546  R42  2 2 192 0.421 

R20  2 1 624 0.143  R42  2 3 192 0.506 

R20  2 2 624 0.463  R42  2 4 192 0.304 

R20  2 3 624 0.456  R42  3 1 400 0.654 

R20  3 1 992 0.324  R42  3 2 400 0.223 

R20  3 2 992 0.534  R42  4 1 400 0.372 

R20  3 3 992 0.401  R42  4 2 400 0.669 

R21 

M
M

P
-1

 

1 1 112 0.391  R42  4 3 400 0.847 

R21 1 2 112 0.214  R42  5 1 400 0.435 

R21 1 3 112 0.131  R42  5 2 400 0.719 

R21 2 1 112 0.756  R42  6 1 592 0.291 

R21 2 2 112 0.647  R42  6 2 592 0.140 

R21 3 1 750 0.360  R42  6 3 592 0.579 

R21 3 2 750 0.176  R42  7 1 592 0.146 

R21 3 3 750 0.711  R42  7 2 592 0.645 

R21 4 1 1624 0.376  R42  7 3 592 0.608 

R21 4 2 1624 0.418  R42  8 1 848 0.100 

R21 5 1 1624 0.689  R42  8 2 848 0.221 

R21 5 2 1624 0.630  R42  9 1 848 0.824 

R37 

M
M

P
-1

 

1 1 464 0.349  R42  9 2 848 0.525 

R37 1 2 464 0.412  R43 

v
eh

ic
le

 

1 1 144 0.692 

R37 1 3 464 0.510  R43 1 2 144 0.720 

R37 2 1 720 0.177  R43 2 1 144 0.728 

R37 2 2 720 0.668  R43 2 2 144 0.414 

R37 2 3 720 0.611  R43 3 1 144 0.724 

R37 3 1 944 0.191  R43 3 2 144 0.530 

R37 3 2 944 0.320  R43 3 3 144 0.394 

R37 3 3 944 0.362  R43 4 1 400 0.579 

R37 4 1 1504 0.345  R43 4 2 400 0.245 

R37 4 2 1504 0.803  R43 4 3 400 0.429 

R38 

M
M

P
-1

 

1 1 176 0.030  R43 5 1 400 0.565 

R38 1 2 176 0.441  R43 5 2 400 0.418 

R38 1 3 176 0.396  R43 5 3 400 0.334 

R38 1 4 176 0.056  R43 6 1 1040 0.495 

R38 2 1 176 0.447  R43 6 2 1040 0.496 

R38 2 2 176 0.335  R43 7 1 1264 0.323 

R38 2 3 176 0.410  R45 

v
eh

ic
le

 

1 1 192 0.651 

R38 3 1 176 0.360  R45 1 2 192 0.433 

R38 3 2 176 0.583  R45 1 3 192 0.417 

R38 4 1 724 0.404  R45 1 4 192 0.464 

R38 4 2 724 0.384  R45 2 1 192 0.542 

R38 4 3 724 0.422  R45 2 2 192 0.255 

R38 5 1 724 0.469  R45 2 3 192 0.095 

R38 5 2 724 0.346  R45 2 4 192 0.143 

R38 6 1 1602 0.702  R45 3 1 192 0.267 

R38 6 2 1602 0.529  R45 3 2 192 0.487 

R42  
vehicle 

1 1 192 0.331  R45 3 3 192 0.213 

R42  1 2 192 0.649  R45 4 1 444 0.472 

Note: Table is continued on the next page. 
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Table D.4. continued 

Rat Group image no. ROI 
depth 

(μm) 

ani 

index 
 Rat Group image no. ROI 

depth 

(μm) 

ani 

index 

R45 

v
eh

ic
le

 

4 2 444 0.675  R53 

v
eh

ic
le

 

6 3 432 0.643 

R45 4 3 444 0.222  R53 7 1 912 0.359 

R45 5 1 444 0.500  R53 7 2 912 0.588 

R45 5 2 444 0.199  R53 7 3 912 0.702 

R45 5 3 444 0.279  R53 8 1 1120 0.603 

R45 5 4 444 0.496  R53 8 1 1120 0.712 

R45 6 1 864 0.383  R53 8 2 1120 0.556 

R45 6 2 864 0.311  R443 

n
ai

v
e 

1 1 1264 0.520 

R45 6 3 864 0.557  R443 1 2 1264 0.329 

R45 7 1 864 0.407  R443 1 3 1264 0.433 

R45 7 2 864 0.449  R443 2 1 1280 0.584 

R45 7 3 864 0.191  R443 2 2 1280 0.786 

R52 

v
eh

ic
le

 

1 1 384 0.721  R443 3 1 1296 0.561 

R52 1 2 384 0.717  R443 3 2 1296 0.501 

R52 1 3 384 0.707  R444 

n
ai

v
e 

1 1 1312 0.662 

R52 1 4 384 0.178  R444 1 2 1312 0.726 

R52 2 1 384 0.678  R444 1 3 1312 0.533 

R52 2 2 384 0.540  R444 2 1 1328 0.245 

R52 2 3 384 0.396  R444 2 2 1328 0.091 

R52 3 1 384 0.246  R444 3 1 1376 0.344 

R52 3 2 384 0.369  R444 3 2 1376 0.169 

R52 3 3 384 0.445        

R52 3 4 384 0.248        

R52 4 1 640 0.730        

R52 4 2 640 0.330        

R52 4 3 640 0.544        

R52 4 4 640 0.563        

R52 5 1 640 0.165        

R52 5 2 640 0.706        

R52 5 3 640 0.564        

R52 6 1 640 0.686        

R52 7 1 992 0.385        

R52 7 2 992 0.726        

R52 8 1 1424 0.723        

R52 8 2 1424 0.736        

R53 

v
eh

ic
le

 

1 1 160 0.406        

R53 1 2 160 0.672        

R53 1 3 160 0.525        

R53 2 1 160 0.712        

R53 2 2 160 0.368        

R53 2 3 160 0.239        

R53 3 1 432 0.366        

R53 4 1 432 0.761        

R53 4 2 432 0.221        

R53 4 3 432 0.718        

R53 5 1 432 0.200        

R53 5 2 432 0.352        

R53 5 3 432 0.703        

R53 6 1 432 0.676        

R53 6 2 432 0.727        
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Figure D.4. Picrosirius Red/Alcian Blue stained capsular ligaments injected with MMP-1 or vehicle as 

designated in Table D.4 (Chapter 7) 

 

Note: Figure is continued on the next page. 
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Figure D.4. continued 

 

Note: Figure is continued on the next page. 
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Figure D.4. continued 

 

Note: Figure is continued on the next page. 
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Figure D.4. continued 

 

Note: Figure is continued on the next page. 
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Figure D.4. continued 
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Table D.5. Mankin score assigned from Safranin O/Fast Green stained facet joints injected with MMP-1 

or vehicle (Chapter 7) 

Rat Group 

image 

no. 

Mankin 

score 

articular 

surface 
 

Rat  Group 

image 

no. 

Mankin 

score 

articular 

surface 

R20 
MMP-1 

 

1 3 top  R53 

vehicle 

5 3 top 

R20 2 4 top  R53 6 3 bottom 

R20 3 3 bottom  R53 7 7 bottom 

R21 

MMP-1 

1 2 top  R53 8 3 top 

R21 2 0 bottom  R53 9 6 top 

R21 3 1 bottom  R53 10 5 bottom 

R37 

MMP-1 

1 5 bottom  R53 11 1 bottom 

R37 1 5 top  R53 12 4 top 

R37 2 3 bottom  R443 

naive 

1 3 top 

R37 2 4 top  R433 2 2 bottom 

R38 

MMP-1 

1 4 bottom  R443 3 2 bottom 

R38 2 1 bottom  R443 3 2 top 

R38 2 3 top  R433 4 3 top 

R38 3 6 top  R443 5 4 bottom 

R42 

vehicle 

1 5 bottom  R444 

naive 

1 3 bottom 

R42 1 5 top  R444 2 5 bottom 

R42 2 3 bottom  R444 3 2 top 

R42 2 4 top  R444 4 2 bottom 

R42 3 6 top  R444 4 3 top 

R42 3 6 bottom       

R42 4 3 bottom       

R42 4 4 top       

R43 

MMP-1 

1 5 bottom       

R43 2 5 top       

R43 3 5 bottom       

R43 3 6 top       

R43 4 4 bottom       

R43 5 4 top       

R43 6 6 bottom       

R43 6 5 top       

R43 7 2 bottom       

R43 7 5 top       

R45 

vehicle 

1 3 bottom       

R45 1 3 top       

R45 2 6 top       

R45 2 7 bottom       

R45 3 3 bottom       

R45 3 4 top       

R45 4 4 bottom       

R45 4 6 top       

R52 

vehicle 

1 4 bottom       

R52 1 6 top       

R52 2 4 top       

R52 2 6 bottom       

R52 3 3 bottom       

R52 3 3 top       

R53 

vehicle 

1 3 bottom       

R53 2 6 top       

R53 3 6 bottom       

R53 4 5 top       
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Figure D.5. Safranin O/Fast Green stained facet joints injected with MMP-1 or vehicle as designated in 

Table D.5 (Chapter 7) 

 

Note: Figure is continued on the next page. 
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Figure D.5. continued 

 

Note: Figure is continued on the next page. 
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Figure D.5. continued 
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APPENDIX E 

Immunohistochemistry in the DRG and Spinal 

Cord for Intra-Articular Rat Studies 
 

 

 This appendix summarizes the immunohistochemical assays performed on DRG 

and spinal cord tissues from the in vivo rat studies that are detailed in Chapters 4 and 7. All 

assays of neural tissues from rats exposed to bacterial collagenase, MMP-1, and/or the 

matched vehicle were performed using DRG and/or spinal cord tissue from the C7 level; 

data in the naïve group are also included and are also from the C7 level of an un-injected 

rat. In each of the tables and figures detailed in this appendix, data are identified by their 

injection group and rat number. Labels above each image within the figures list the rat 

number followed by the image number (e.g. “R10 – 01” indicates image 1 from rat 10); the 

image number in the labels matches the image numbers listed in the corresponding data 

table.  

 The in vivo studies that are detailed in Chapter 4 assayed substance P, 

phosphorylated ERK (pERK), and MMP-1 in the DRG and spinal cord of rats injected with 

bacterial collagenase or a matched vehicle. To assess substance P and pERK, a triple 

immunolabel was performed with substance P, pERK, and microtubule-associated protein 

2 (MAP-2); MAP-2 was used to visualize neuronal somata and dendrites in parallel with 

the proteins of interest. Figure E.1 contains confocal images of the triple-label in the DRG; 
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green fluorescence is MAP-2, red is substance P, and blue is pERK. Figure E.2 contains 

confocal images of that same triple-label in the superficial dorsal horn of the spinal cord. 

MMP-1 was assessed in separate tissue sections using 3,3’-diaminobenzidine (DAB) 

development and imaged using a bright-field microscope; images of the MMP-1 labeling 

in the DRG and the superficial dorsal horn of the spinal cord are summarized in Figures 

E.3 and E.4, respectively.  

To quantify substance P and pERK labeling intensity in neurons, MAP-2 positive 

cells were identified by a blinded grader to select neurons; then, the signal intensity of 

substance P and pERK labeling in the MAP-2 selected neurons was separately quantified 

by manually outlining the neurons and quantifying the average pixel brightness, using FIJI 

(NIH; Bethesda, MD). Expression data in DRG neurons were further assessed by neuronal 

size by calculating the cell diameter as the average of the length and width of each selected 

cell using FIJI. Neurons were categorized (by bin) as small- (S; <21μm), medium- (M; 21-

40μm), and large- (L; >40μm) diameter (φ) neurons (Kras et al. 2014; Weisshaar et al. 

2010), based on the known different functional roles across neurons of different sizes 

(Basbaum et al. 2009; Dai et al. 2002). Pixel intensity and neuronal size quantifications are 

detailed for substance P and pERK in Tables E.1 and E.2, respectively. 

To quantify substance P and pERK in the superficial dorsal horn where nociceptive 

afferent fibers synapse (Basbaum et al. 2009), spinal cord images were cropped to include 

only the superficial dorsal horn. Substance P and pERK were quantified, separately, by 

counting the number of pixels above the threshold for expression in naïve tissue using the 

custom MATLAB densitometry script that is detailed in Appendix B. The densitometric 
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analysis of substance P and pERK labeling in the spinal cord is detailed in Table E.3 for 

the studies in Chapter 4. MMP-1 labeling in the DRG and spinal cord was also quantified 

using densitometry, and that quantification is summarized in Table E.4 for the DRG and in 

Table E.5 for the spinal cord. 

 The in vivo studies that are detailed in Chapter 7 assayed substance P and MMP-9 

in the DRG and spinal cord of rats injected with MMP-1 or a matched vehicle. Fluorescent 

labeling was performed in separate sections for substance P and MMP-9. As such, confocal 

images of labeling in the DRG are summarized separately for the two labels in Figure E.5 

for substance P and in Figure E.6 for MMP-9. The signal intensity of substance P and 

MMP-9 labeling was performed as described above for the studies in Chapter 4. The 

quantification of pixel intensity and cell size are detailed in Tables E.6 and E.7 for 

substance P and MMP-9, respectively. Likewise, Figures E.7 and E.8 contain confocal 

images of substance P and MMP-9 in the superficial dorsal horn of the spinal cord, 

respectively. Densitometry was used to quantify the percentage of pixels positive for 

labeling with both proteins, separately; Table E.7 summarizes that quantification for 

substance P and Table E.8 contains densitometric analysis for MMP-9. 
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Table E.1. Pixel intensity of substance P labeling in DRG neurons by size from rats injected with bacterial 

collagenase or vehicle (Chapter 4) 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R03 naive 1 1 10.28 37.59 M  R03 naive 9 1 20.46 25.02 M 

R03 naive 1 2 21.95 39.52 M  R03 naive 9 2 13.42 21.12 M 

R03 naive 1 3 25.58 26.54 M  R03 naive 9 3 25.42 28.27 M 

R03 naive 1 4 12.14 28.85 M  R03 naive 9 4 13.66 20.29 S 

R03 naive 1 5 7.15 51.17 L  R03 naive 9 5 17.53 33.94 M 

R03 naive 1 6 8.94 36.85 M  R03 naive 9 6 15.14 29.72 M 

R03 naive 2 1 11.77 30.89 M  R03 naive 10 1 14.65 29.44 M 

R03 naive 2 2 7.26 45.48 L  R03 naive 10 2 25.32 27.30 M 

R03 naive 2 3 17.62 39.22 M  R03 naive 10 3 27.70 29.64 M 

R03 naive 2 4 10.79 25.42 M  R03 naive 10 4 17.68 23.40 M 

R03 naive 2 5 12.70 33.64 M  R03 naive 10 5 9.76 27.52 M 

R03 naive 2 6 13.25 29.49 M  R03 naive 10 6 15.48 38.55 M 

R03 naive 3 1 13.17 32.77 M  R03 naive 8 4 22.57 30.28 M 

R03 naive 3 2 12.20 38.59 M  R03 naive 8 5 10.09 42.48 L 

R03 naive 3 3 18.89 36.31 M  R03 naive 8 6 14.60 27.67 M 

R03 naive 3 4 13.06 30.45 M  R03 naive 9 1 20.46 25.02 M 

R03 naive 3 5 8.40 25.77 M  R23 col 1 1 10.31 40.80 L 

R03 naive 3 6 11.89 43.13 L  R23 col 1 2 11.67 38.03 M 

R03 naive 4 1 13.12 31.30 M  R23 col 1 3 8.98 39.24 M 

R03 naive 4 2 13.83 35.09 M  R23 col 1 4 9.82 23.94 M 

R03 naive 4 3 14.96 23.26 M  R23 col 1 5 6.41 36.68 M 

R03 naive 4 4 13.24 32.39 M  R23 col 1 6 5.57 47.73 L 

R03 naive 4 5 8.56 32.88 M  R23 col 1 7 9.36 40.51 L 

R03 naive 4 6 12.88 39.87 M  R23 col 1 8 12.91 32.89 M 

R03 naive 5 1 13.90 31.03 M  R23 col 2 1 8.02 36.15 M 

R03 naive 5 2 12.22 25.82 M  R23 col 2 2 16.95 26.91 M 

R03 naive 5 3 16.25 18.42 S  R23 col 2 3 6.46 43.07 L 

R03 naive 5 4 11.81 61.83 L  R23 col 2 4 19.11 41.47 L 

R03 naive 5 5 10.52 32.65 M  R23 col 2 5 6.09 22.42 M 

R03 naive 5 6 9.50 44.41 L  R23 col 2 6 6.32 37.94 M 

R03 naive 6 1 12.95 33.24 M  R23 col 2 7 11.42 36.74 M 

R03 naive 6 2 10.67 19.46 S  R23 col 2 8 11.81 33.07 M 

R03 naive 6 3 18.41 30.08 M  R23 col 3 1 9.34 39.90 M 

R03 naive 6 4 10.55 42.30 L  R23 col 3 2 10.39 32.08 M 

R03 naive 6 5 9.17 37.96 M  R23 col 3 3 7.83 33.34 M 

R03 naive 6 6 10.24 41.49 L  R23 col 3 4 9.06 41.08 L 

R03 naive 7 1 13.51 30.66 M  R23 col 3 5 7.36 37.16 M 

R03 naive 7 2 15.51 16.05 S  R23 col 3 6 7.03 38.57 M 

R03 naive 7 3 17.85 34.57 M  R23 col 3 7 13.78 29.98 M 

R03 naive 7 4 25.93 32.93 M  R23 col 3 8 12.91 41.68 L 

R03 naive 7 5 11.16 36.17 M  R23 col 4 1 9.23 38.34 M 

R03 naive 7 6 15.20 27.89 M  R23 col 4 2 11.09 29.20 M 

R03 naive 8 1 17.62 39.06 M  R23 col 4 3 8.32 37.99 M 

R03 naive 8 2 17.27 36.45 M  R23 col 4 4 9.73 46.10 L 

R03 naive 8 3 20.79 35.64 M  R23 col 4 5 6.98 26.72 M 

R03 naive 8 4 22.57 30.28 M  R23 col 4 6 5.71 22.65 M 

R03 naive 8 5 10.09 42.48 L  R23 col 4 7 8.59 38.38 M 

R03 naive 8 6 14.60 27.67 M  R23 col 4 8 23.53 34.99 M 

        φ: diameter; col: collagenase; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.1. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R23 col 5 1 9.19 47.19 L  R25 col 1 3 8.76 30.56 M 

R23 col 5 2 11.66 42.64 L  R25 col 1 4 12.20 42.91 L 

R23 col 5 3 6.08 23.29 M  R25 col 1 5 11.45 35.08 M 

R23 col 5 4 9.36 40.47 L  R25 col 1 6 9.65 21.67 M 

R23 col 5 5 6.64 44.46 L  R25 col 2 1 5.58 41.33 L 

R23 col 5 6 7.97 21.93 M  R25 col 2 2 15.83 40.19 L 

R23 col 5 7 8.48 31.67 M  R25 col 2 3 7.56 21.43 M 

R23 col 5 8 11.55 29.20 M  R25 col 2 4 12.72 39.17 M 

R23 col 6 1 11.03 30.21 M  R25 col 2 5 15.74 26.16 M 

R23 col 6 2 12.07 34.94 M  R25 col 2 6 5.82 37.60 M 

R23 col 6 3 8.62 27.34 M  R25 col 3 1 6.20 43.23 L 

R23 col 6 4 12.07 37.16 M  R25 col 3 2 11.40 54.30 L 

R23 col 6 5 8.51 32.98 M  R25 col 3 3 5.79 23.45 M 

R23 col 6 6 6.56 35.35 M  R25 col 3 4 12.93 32.27 M 

R23 col 6 7 10.93 37.77 M  R25 col 3 5 10.20 39.42 M 

R23 col 6 8 12.34 33.27 M  R25 col 3 6 5.07 42.26 L 

R23 col 7 1 9.15 36.75 M  R25 col 4 1 6.66 42.30 L 

R23 col 7 2 11.54 35.88 M  R25 col 4 2 15.38 38.74 M 

R23 col 7 3 6.35 37.12 M  R25 col 4 3 9.75 20.40 S 

R23 col 7 4 11.83 40.18 L  R25 col 4 4 14.38 25.66 M 

R23 col 7 5 6.61 26.68 M  R25 col 4 5 11.86 30.66 M 

R23 col 7 6 7.81 25.66 M  R25 col 4 6 7.28 47.70 L 

R23 col 7 7 8.71 30.49 M  R25 col 5 1 6.34 24.67 M 

R23 col 7 8 16.61 31.20 M  R25 col 5 2 19.32 24.14 M 

R23 col 8 1 9.32 28.83 M  R25 col 5 3 7.86 39.66 M 

R23 col 8 2 12.09 37.49 M  R25 col 5 4 12.89 27.98 M 

R23 col 8 3 6.07 42.10 L  R25 col 5 5 15.86 39.67 M 

R23 col 8 4 10.38 37.55 M  R25 col 5 6 7.06 40.08 L 

R23 col 8 5 6.77 33.68 M  R25 col 6 1 7.24 44.40 L 

R23 col 8 6 8.09 25.65 M  R25 col 6 2 21.17 25.80 M 

R23 col 8 7 8.91 21.45 M  R25 col 6 3 7.85 23.19 M 

R23 col 8 8 9.84 24.71 M  R25 col 6 4 18.57 28.17 M 

R23 col 9 1 13.15 44.19 L  R25 col 6 5 17.97 25.95 M 

R23 col 9 2 10.78 41.49 L  R25 col 6 6 6.97 37.69 M 

R23 col 9 3 7.49 33.37 M  R25 col 7 1 7.72 35.53 M 

R23 col 9 4 9.27 35.12 M  R25 col 7 2 23.82 21.54 M 

R23 col 9 5 9.20 27.06 M  R25 col 7 3 8.30 39.99 M 

R23 col 9 6 7.59 28.30 M  R25 col 7 4 13.08 31.97 M 

R23 col 9 7 9.12 47.28 L  R25 col 7 5 9.30 32.34 M 

R23 col 9 8 12.06 18.74 S  R25 col 7 6 7.20 29.80 M 

R23 col 10 1 7.88 37.45 M  R25 col 8 1 5.39 39.73 M 

R23 col 10 2 9.67 30.93 M  R25 col 8 2 19.37 20.16 S 

R23 col 10 3 8.53 44.41 L  R25 col 8 3 7.44 26.49 M 

R23 col 10 4 10.92 39.46 M  R25 col 8 4 12.43 43.13 L 

R23 col 10 5 5.62 23.22 M  R25 col 8 5 21.23 28.63 M 

R23 col 10 6 5.94 45.51 L  R25 col 8 6 8.51 32.45 M 

R23 col 10 7 8.27 47.10 L  R25 col 9 1 6.24 45.44 L 

R23 col 10 8 11.17 22.51 M  R25 col 9 2 14.26 33.55 M 

R25 col 1 1 3.50 61.60 L  R25 col 9 3 9.83 43.52 L 

R25 col 1 2 18.41 60.10 L  R25 col 9 4 14.01 38.05 M 

        φ: diameter; col: collagenase; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.1. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R25 col 9 5 10.72 28.98 M  R26 vehicle 6 3 5.77 42.26 L 

R25 col 9 6 10.32 34.08 M  R26 vehicle 6 4 4.97 36.96 M 

R25 col 10 1 7.46 45.04 L  R26 vehicle 6 5 4.55 34.87 M 

R25 col 10 2 14.00 33.13 M  R26 vehicle 6 6 7.09 30.40 M 

R25 col 10 3 8.46 40.79 L  R26 vehicle 6 7 8.63 36.45 M 

R25 col 10 4 14.17 31.07 M  R26 vehicle 6 8 5.72 25.99 M 

R25 col 10 5 11.67 25.96 M  R26 vehicle 7 1 5.12 42.81 L 

R25 col 10 6 20.01 39.88 M  R26 vehicle 7 2 8.43 29.80 M 

R26 vehicle 1 1 5.62 29.75 M  R26 vehicle 7 3 12.59 38.15 M 

R26 vehicle 1 2 5.22 46.08 L  R26 vehicle 7 4 6.60 39.06 M 

R26 vehicle 1 3 5.41 28.78 M  R26 vehicle 7 5 4.21 36.97 M 

R26 vehicle 1 4 6.33 44.57 L  R26 vehicle 7 6 9.68 33.65 M 

R26 vehicle 1 5 3.36 32.74 M  R26 vehicle 7 7 4.95 46.89 L 

R26 vehicle 1 6 5.34 32.39 M  R26 vehicle 7 8 5.92 29.86 M 

R26 vehicle 1 7 6.29 37.96 M  R26 vehicle 8 1 7.09 35.97 M 

R26 vehicle 1 8 6.74 29.54 M  R26 vehicle 8 2 4.68 24.95 M 

R26 vehicle 2 1 4.52 50.01 L  R26 vehicle 8 3 5.06 18.15 S 

R26 vehicle 2 2 4.42 50.75 L  R26 vehicle 8 4 5.96 39.80 M 

R26 vehicle 2 3 4.57 34.16 M  R26 vehicle 8 5 5.44 40.63 L 

R26 vehicle 2 4 5.51 32.80 M  R26 vehicle 8 6 10.83 34.73 M 

R26 vehicle 2 5 3.81 43.68 L  R26 vehicle 8 7 5.74 34.23 M 

R26 vehicle 2 6 5.95 30.44 M  R26 vehicle 8 8 8.41 28.18 M 

R26 vehicle 2 7 7.13 33.73 M  R26 vehicle 9 1 4.88 38.93 M 

R26 vehicle 2 8 6.05 43.12 L  R26 vehicle 9 2 6.35 47.62 L 

R26 vehicle 3 1 5.42 30.78 M  R26 vehicle 9 3 5.58 29.01 M 

R26 vehicle 3 2 5.55 61.31 L  R26 vehicle 9 4 4.99 36.11 M 

R26 vehicle 3 3 3.68 25.93 M  R26 vehicle 9 5 5.60 33.73 M 

R26 vehicle 3 4 5.74 30.97 M  R26 vehicle 9 6 10.80 29.28 M 

R26 vehicle 3 5 3.84 37.10 M  R26 vehicle 9 7 7.18 29.53 M 

R26 vehicle 3 6 6.33 23.35 M  R26 vehicle 9 8 6.77 33.88 M 

R26 vehicle 3 7 4.82 41.76 L  R26 vehicle 10 1 6.14 27.97 M 

R26 vehicle 3 8 6.04 36.04 M  R26 vehicle 10 2 7.17 53.96 L 

R26 vehicle 4 1 5.14 34.23 M  R26 vehicle 10 3 4.96 24.64 M 

R26 vehicle 4 2 6.12 40.65 L  R26 vehicle 10 4 5.63 41.80 L 

R26 vehicle 4 3 7.43 33.00 M  R26 vehicle 10 5 5.64 29.38 M 

R26 vehicle 4 4 6.70 36.92 M  R26 vehicle 10 6 12.85 32.10 M 

R26 vehicle 4 5 3.84 49.25 L  R26 vehicle 10 7 15.06 25.40 M 

R26 vehicle 4 6 6.57 30.88 M  R26 vehicle 10 8 7.90 33.42 M 

R26 vehicle 4 7 5.20 33.36 M  R28 col 1 1 27.99 34.77 M 

R26 vehicle 4 8 6.82 42.87 L  R28 col 1 2 34.60 31.45 M 

R26 vehicle 5 1 5.60 46.15 L  R28 col 1 3 27.19 38.67 M 

R26 vehicle 5 2 3.96 48.07 L  R28 col 1 4 17.58 39.18 M 

R26 vehicle 5 3 9.25 28.01 M  R28 col 1 5 15.75 23.31 M 

R26 vehicle 5 4 4.89 40.44 L  R28 col 1 6 20.35 43.89 L 

R26 vehicle 5 5 5.30 42.06 L  R28 col 1 7 27.49 39.81 M 

R26 vehicle 5 6 5.10 23.87 M  R28 col 1 8 9.97 27.82 M 

R26 vehicle 5 7 7.45 34.36 M  R28 col 2 1 18.99 33.26 M 

R26 vehicle 5 8 6.57 46.76 L  R28 col 2 2 36.00 33.38 M 

R26 vehicle 6 1 5.82 40.11 L  R28 col 2 3 25.63 37.53 M 

R26 vehicle 6 2 6.23 40.97 L  R28 col 2 4 16.59 34.29 M 

        φ: diameter; col: collagenase; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.1. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R28 col 2 5 15.11 22.51 M  R28 col 8 7 32.61 22.59 M 

R28 col 2 6 22.67 30.85 M  R28 col 8 8 7.01 31.21 M 

R28 col 2 7 30.16 31.11 M  R28 col 9 1 17.31 15.61 S 

R28 col 2 8 8.66 25.85 M  R28 col 9 2 28.65 14.40 S 

R28 col 3 1 16.81 41.83 L  R28 col 9 3 25.72 25.06 M 

R28 col 3 2 29.39 24.15 M  R28 col 9 4 24.42 24.13 M 

R28 col 3 3 21.33 43.89 L  R28 col 9 5 20.19 40.78 L 

R28 col 3 4 14.01 37.06 M  R28 col 9 6 20.00 22.91 M 

R28 col 3 5 11.69 36.92 M  R28 col 9 7 22.46 40.60 L 

R28 col 3 6 19.13 29.42 M  R28 col 9 8 8.60 29.83 M 

R28 col 3 7 27.04 41.34 L  R28 col 10 1 18.36 20.20 S 

R28 col 3 8 9.29 35.98 M  R28 col 10 2 34.04 33.26 M 

R28 col 4 1 26.66 25.54 M  R28 col 10 3 26.79 25.42 M 

R28 col 4 2 30.23 34.98 M  R28 col 10 4 19.37 28.15 M 

R28 col 4 3 29.74 36.36 M  R28 col 10 5 18.28 36.51 M 

R28 col 4 4 13.57 33.83 M  R28 col 10 6 27.18 33.36 M 

R28 col 4 5 18.02 32.93 M  R28 col 10 7 30.66 29.27 M 

R28 col 4 6 17.06 54.88 L  R28 col 10 8 10.01 28.88 M 

R28 col 4 7 26.22 42.25 L  R30 col 1 1 7.77 33.54 M 

R28 col 4 8 10.05 31.80 M  R30 col 1 2 6.07 42.20 L 

R28 col 5 1 18.45 40.03 L  R30 col 1 3 5.60 49.18 L 

R28 col 5 2 32.56 25.57 M  R30 col 1 4 5.81 37.41 M 

R28 col 5 3 21.53 32.97 M  R30 col 1 5 7.16 55.89 L 

R28 col 5 4 14.59 23.04 M  R30 col 1 6 8.17 38.35 M 

R28 col 5 5 19.81 44.80 L  R30 col 1 7 16.85 39.03 M 

R28 col 5 6 20.18 27.63 M  R30 col 1 8 19.75 29.92 M 

R28 col 5 7 26.89 17.53 S  R30 col 2 1 7.47 32.96 M 

R28 col 5 8 7.17 37.05 M  R30 col 2 2 7.11 35.54 M 

R28 col 6 1 18.71 27.16 M  R30 col 2 3 5.60 51.99 L 

R28 col 6 2 31.63 17.22 S  R30 col 2 4 6.23 31.06 M 

R28 col 6 3 20.17 24.27 M  R30 col 2 5 6.82 49.03 L 

R28 col 6 4 14.62 32.04 M  R30 col 2 6 8.47 43.68 L 

R28 col 6 5 17.27 35.03 M  R30 col 2 7 14.61 22.27 M 

R28 col 6 6 26.35 38.43 M  R30 col 2 8 22.95 27.11 M 

R28 col 6 7 34.02 41.54 L  R30 col 3 1 6.81 30.31 M 

R28 col 6 8 7.93 37.02 M  R30 col 3 2 6.83 50.12 L 

R28 col 7 1 21.76 24.47 M  R30 col 3 3 5.01 25.02 M 

R28 col 7 2 32.30 26.02 M  R30 col 3 4 5.83 52.07 L 

R28 col 7 3 18.34 40.88 L  R30 col 3 5 16.90 26.07 M 

R28 col 7 4 15.51 34.37 M  R30 col 3 6 6.47 26.66 M 

R28 col 7 5 21.25 21.17 M  R30 col 3 7 15.33 18.20 S 

R28 col 7 6 19.38 22.06 M  R30 col 3 8 20.28 25.49 M 

R28 col 7 7 36.31 28.90 M  R30 col 4 1 9.04 26.31 M 

R28 col 7 8 28.88 36.69 M  R30 col 4 2 5.91 36.55 M 

R28 col 8 1 20.65 23.43 M  R30 col 4 3 4.91 50.18 L 

R28 col 8 2 27.23 27.14 M  R30 col 4 4 4.78 44.46 L 

R28 col 8 3 27.51 27.89 M  R30 col 4 5 10.82 35.00 M 

R28 col 8 4 19.43 25.37 M  R30 col 4 6 9.73 30.15 M 

R28 col 8 5 21.83 31.87 M  R30 col 4 7 16.88 35.98 M 

R28 col 8 6 20.57 25.65 M  R30 col 4 8 21.52 45.38 L 

        φ: diameter; col: collagenase; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.1. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R30 col 5 1 5.94 22.87 M  R31 vehicle 1 3 3.97 37.51 M 

R30 col 5 2 6.91 26.41 M  R31 vehicle 1 4 11.15 37.52 M 

R30 col 5 3 4.43 50.62 L  R31 vehicle 1 5 1.39 46.01 L 

R30 col 5 4 4.81 30.84 M  R31 vehicle 1 6 6.30 42.09 L 

R30 col 5 5 57.18 20.79 S  R31 vehicle 1 7 7.73 47.48 L 

R30 col 5 6 6.14 35.11 M  R31 vehicle 2 1 3.73 28.42 M 

R30 col 5 7 18.93 18.61 S  R31 vehicle 2 2 4.07 32.38 M 

R30 col 5 8 28.29 20.58 S  R31 vehicle 2 3 3.57 33.52 M 

R30 col 6 1 8.50 36.85 M  R31 vehicle 2 4 12.72 49.75 L 

R30 col 6 2 5.20 30.98 M  R31 vehicle 2 5 2.18 35.39 M 

R30 col 6 3 6.55 36.32 M  R31 vehicle 2 6 5.50 34.87 M 

R30 col 6 4 4.09 44.62 L  R31 vehicle 2 7 8.33 50.23 L 

R30 col 6 5 49.71 22.11 M  R31 vehicle 3 1 4.64 27.21 M 

R30 col 6 6 11.66 39.09 M  R31 vehicle 3 2 3.81 45.21 L 

R30 col 6 7 16.98 38.61 M  R31 vehicle 3 3 3.52 36.73 M 

R30 col 6 8 15.28 37.37 M  R31 vehicle 3 4 14.55 38.46 M 

R30 col 7 1 6.35 41.80 L  R31 vehicle 3 5 2.98 31.45 M 

R30 col 7 2 6.24 39.71 M  R31 vehicle 3 6 7.85 34.84 M 

R30 col 7 3 5.13 48.28 L  R31 vehicle 3 7 5.95 28.34 M 

R30 col 7 4 3.84 38.12 M  R31 vehicle 4 1 5.80 23.23 M 

R30 col 7 5 10.07 24.90 M  R31 vehicle 4 2 5.37 35.03 M 

R30 col 7 6 7.91 47.42 L  R31 vehicle 4 3 3.01 40.43 L 

R30 col 7 7 10.70 47.06 L  R31 vehicle 4 4 10.59 49.94 L 

R30 col 7 8 25.13 38.05 M  R31 vehicle 4 5 1.88 46.14 L 

R30 col 8 1 10.31 25.58 M  R31 vehicle 4 6 7.73 53.11 L 

R30 col 8 2 4.63 38.07 M  R31 vehicle 4 7 8.92 36.10 M 

R30 col 8 3 6.21 36.44 M  R31 vehicle 5 1 4.58 32.54 M 

R30 col 8 4 5.05 35.79 M  R31 vehicle 5 2 5.75 32.29 M 

R30 col 8 5 7.49 23.16 M  R31 vehicle 5 3 5.63 32.84 M 

R30 col 8 6 5.68 21.13 M  R31 vehicle 5 4 14.05 40.60 L 

R30 col 8 7 10.12 50.57 L  R31 vehicle 5 5 1.98 28.01 M 

R30 col 8 8 23.75 45.36 L  R31 vehicle 5 6 5.28 46.63 L 

R30 col 9 1 9.97 24.26 M  R31 vehicle 5 7 7.11 42.03 L 

R30 col 9 2 5.80 41.39 L  R31 vehicle 6 1 7.50 34.37 M 

R30 col 9 3 9.22 23.95 M  R31 vehicle 6 2 8.53 23.77 M 

R30 col 9 4 4.03 37.29 M  R31 vehicle 6 3 5.34 35.67 M 

R30 col 9 5 5.86 22.13 M  R31 vehicle 6 4 11.01 46.92 L 

R30 col 9 6 5.77 53.79 L  R31 vehicle 6 5 2.04 42.45 L 

R30 col 9 7 18.29 20.66 S  R31 vehicle 6 6 7.93 26.19 M 

R30 col 9 8 17.80 42.96 L  R31 vehicle 6 7 9.04 40.20 L 

R30 col 10 1 6.27 29.48 M  R31 vehicle 7 1 5.97 36.74 M 

R30 col 10 2 5.10 26.85 M  R31 vehicle 7 2 5.82 38.10 M 

R30 col 10 3 4.07 47.87 L  R31 vehicle 7 3 4.47 34.48 M 

R30 col 10 4 3.40 39.79 M  R31 vehicle 7 4 17.41 26.89 M 

R30 col 10 5 9.73 44.56 L  R31 vehicle 7 5 2.57 37.95 M 

R30 col 10 6 8.32 33.19 M  R31 vehicle 7 6 4.58 46.79 L 

R30 col 10 7 14.60 43.92 L  R31 vehicle 7 7 7.50 37.88 M 

R30 col 10 8 14.28 28.65 M  R31 vehicle 8 1 6.83 39.16 M 

R31 vehicle 1 1 7.06 34.14 M  R31 vehicle 8 2 8.02 41.13 L 

R31 vehicle 1 2 7.23 28.63 M  R31 vehicle 8 3 3.64 41.57 L 

        φ: diameter; col: collagenase; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.1. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R31 vehicle 8 4 13.42 17.98 S  R35 vehicle 5 5 10.62 41.85 L 

R31 vehicle 8 5 2.47 41.67 L  R35 vehicle 5 6 4.07 37.92 M 

R31 vehicle 8 6 6.70 42.27 L  R35 vehicle 5 7 20.87 23.33 M 

R31 vehicle 8 7 8.92 23.93 M  R35 vehicle 6 1 19.59 28.54 M 

R31 vehicle 9 1 9.41 27.96 M  R35 vehicle 6 2 5.25 31.21 M 

R31 vehicle 9 2 5.36 41.17 L  R35 vehicle 6 3 3.03 30.60 M 

R31 vehicle 9 3 5.47 29.69 M  R35 vehicle 6 4 10.66 36.60 M 

R31 vehicle 9 4 14.40 21.04 M  R35 vehicle 6 5 36.00 27.12 M 

R31 vehicle 9 5 3.37 36.02 M  R35 vehicle 6 6 6.54 37.82 M 

R31 vehicle 9 6 6.35 29.57 M  R35 vehicle 6 7 17.02 37.00 M 

R31 vehicle 9 7 7.55 43.12 L  R35 vehicle 7 1 23.50 47.90 L 

R31 vehicle 10 1 8.38 22.00 M  R35 vehicle 7 2 6.69 29.93 M 

R31 vehicle 10 2 9.07 25.65 M  R35 vehicle 7 3 4.47 21.75 M 

R31 vehicle 10 3 1.48 37.96 M  R35 vehicle 7 4 3.56 22.40 M 

R31 vehicle 10 4 23.00 23.06 M  R35 vehicle 7 5 5.65 46.66 L 

R31 vehicle 10 5 2.44 32.45 M  R35 vehicle 7 6 4.15 43.99 L 

R31 vehicle 10 6 5.12 47.13 L  R35 vehicle 7 7 17.69 37.13 M 

R31 vehicle 10 7 8.04 38.05 M  R35 vehicle 8 1 20.47 33.24 M 

R35 vehicle 1 1 22.22 46.13 L  R35 vehicle 8 2 7.44 38.80 M 

R35 vehicle 1 2 6.62 55.88 L  R35 vehicle 8 3 3.68 27.06 M 

R35 vehicle 1 3 4.51 37.88 M  R35 vehicle 8 4 5.02 25.52 M 

R35 vehicle 1 4 5.86 36.11 M  R35 vehicle 8 5 5.91 37.53 M 

R35 vehicle 1 5 15.39 32.89 M  R35 vehicle 8 6 4.88 24.43 M 

R35 vehicle 1 6 6.94 34.84 M  R35 vehicle 8 7 12.56 29.29 M 

R35 vehicle 1 7 18.24 37.18 M  R35 vehicle 9 1 22.81 45.65 L 

R35 vehicle 2 1 23.72 27.47 M  R35 vehicle 9 2 7.49 44.15 L 

R35 vehicle 2 2 5.23 36.63 M  R35 vehicle 9 3 3.91 44.38 L 

R35 vehicle 2 3 4.06 35.14 M  R35 vehicle 9 4 4.68 22.39 M 

R35 vehicle 2 4 7.45 39.30 M  R35 vehicle 9 5 6.82 20.90 S 

R35 vehicle 2 5 5.83 38.41 M  R35 vehicle 9 6 13.26 30.52 M 

R35 vehicle 2 6 5.94 41.21 L  R35 vehicle 9 7 13.06 32.08 M 

R35 vehicle 2 7 14.60 36.98 M  R35 vehicle 10 1 20.37 44.61 L 

R35 vehicle 3 1 21.09 39.72 M  R35 vehicle 10 2 6.54 26.71 M 

R35 vehicle 3 2 6.08 35.23 M  R35 vehicle 10 3 4.05 27.45 M 

R35 vehicle 3 3 5.69 30.43 M  R35 vehicle 10 4 7.11 43.65 L 

R35 vehicle 3 4 6.26 42.58 L  R35 vehicle 10 5 8.07 32.98 M 

R35 vehicle 3 5 7.49 37.44 M  R35 vehicle 10 6 5.99 37.24 M 

R35 vehicle 3 6 5.94 46.67 L  R35 vehicle 10 7 13.11 35.66 M 

R35 vehicle 3 7 15.97 43.02 L  R36 col 1 1 14.12 47.08 L 

R35 vehicle 4 1 18.13 34.72 M  R36 col 1 2 37.64 27.36 M 

R35 vehicle 4 2 6.79 33.53 M  R36 col 1 3 16.57 35.53 M 

R35 vehicle 4 3 5.35 32.68 M  R36 col 1 4 34.73 21.71 M 

R35 vehicle 4 4 6.37 39.26 M  R36 col 1 5 24.66 37.44 M 

R35 vehicle 4 5 5.74 29.29 M  R36 col 1 6 21.23 50.08 L 

R35 vehicle 4 6 4.40 43.06 L  R36 col 1 7 7.28 62.12 L 

R35 vehicle 4 7 15.14 30.38 M  R36 col 1 8 11.61 41.35 L 

R35 vehicle 5 1 19.48 23.84 M  R36 col 2 1 22.28 34.74 M 

R35 vehicle 5 2 6.57 31.43 M  R36 col 2 2 32.51 28.00 M 

R35 vehicle 5 3 3.14 29.18 M  R36 col 2 3 27.08 37.89 M 

R35 vehicle 5 4 8.42 35.47 M  R36 col 2 4 24.57 19.77 S 

        φ: diameter; col: collagenase; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.1. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R36 col 2 5 19.77 27.45 M  R36 z 8 7 7.68 30.60 M 

R36 col 2 6 20.36 37.17 M  R36 col 8 8 13.09 22.97 M 

R36 col 2 7 8.73 44.30 L  R36 col 9 1 15.94 31.10 M 

R36 col 2 8 11.41 41.77 L  R36 col 9 2 24.13 28.81 M 

R36 col 3 1 20.99 32.68 M  R36 col 9 3 31.47 34.45 M 

R36 col 3 2 29.00 32.63 M  R36 col 9 4 32.22 26.04 M 

R36 col 3 3 14.30 26.85 M  R36 col 9 5 29.51 36.88 M 

R36 col 3 4 21.64 21.15 M  R36 col 9 6 14.27 31.57 M 

R36 col 3 5 18.82 57.09 L  R36 col 9 7 10.34 43.26 L 

R36 col 3 6 26.06 21.09 M  R36 col 9 8 11.14 33.80 M 

R36 col 3 7 9.73 42.24 L  R36 col 10 1 13.12 31.22 M 

R36 col 3 8 10.39 60.39 L  R36 col 10 2 28.03 33.47 M 

R36 col 4 1 21.70 27.73 M  R36 col 10 3 24.69 34.29 M 

R36 col 4 2 42.87 34.06 M  R36 col 10 4 28.93 30.90 M 

R36 col 4 3 25.64 32.21 M  R36 col 10 5 23.01 32.17 M 

R36 col 4 4 36.61 19.15 S  R36 col 10 6 11.63 20.14 S 

R36 col 4 5 20.92 48.63 L  R36 col 10 7 7.62 29.96 M 

R36 col 4 6 14.51 19.03 S  R36 col 10 8 12.38 21.81 M 

R36 col 4 7 8.74 60.88 L  R40 naive 1 1 15.48 42.46 L 

R36 col 4 8 14.54 40.67 L  R40 naive 1 2 17.85 37.48 M 

R36 col 5 1 21.65 31.50 M  R40 naive 1 3 17.44 33.34 M 

R36 col 5 2 27.01 32.14 M  R40 naive 1 4 12.40 25.47 M 

R36 col 5 3 20.55 37.87 M  R40 naive 1 5 12.13 38.73 M 

R36 col 5 4 33.70 28.85 M  R40 naive 1 6 4.92 47.63 L 

R36 col 5 5 21.08 40.07 L  R40 naive 2 1 13.57 32.05 M 

R36 col 5 6 13.75 43.79 L  R40 naive 2 2 11.88 27.24 M 

R36 col 5 7 6.28 43.57 L  R40 naive 2 3 27.47 41.98 L 

R36 col 5 8 11.53 22.78 M  R40 naive 2 4 21.24 29.00 M 

R36 col 6 1 17.08 31.57 M  R40 naive 2 5 13.24 35.37 M 

R36 col 6 2 38.68 27.66 M  R40 naive 2 6 6.84 39.00 M 

R36 col 6 3 18.71 33.66 M  R40 naive 3 1 20.32 24.06 M 

R36 col 6 4 28.81 26.04 M  R40 naive 3 2 10.70 31.89 M 

R36 col 6 5 20.30 50.20 L  R40 naive 3 3 19.79 30.59 M 

R36 col 6 6 19.12 18.15 S  R40 naive 3 4 19.73 35.94 M 

R36 col 6 7 5.65 27.28 M  R40 naive 3 5 7.76 27.92 M 

R36 col 6 8 10.97 20.60 S  R40 naive 3 6 5.46 59.13 L 

R36 col 7 1 15.82 34.99 M  R40 naive 4 1 18.81 32.68 M 

R36 col 7 2 35.99 35.40 M  R40 naive 4 2 11.44 26.66 M 

R36 col 7 3 20.28 39.25 M  R40 naive 4 3 28.30 32.32 M 

R36 col 7 4 29.79 21.92 M  R40 naive 4 4 11.97 24.32 M 

R36 col 7 5 22.23 42.84 L  R40 naive 4 5 13.46 41.13 L 

R36 col 7 6 15.45 24.08 M  R40 naive 4 6 8.00 38.05 M 

R36 col 7 7 7.60 29.43 M  R40 naive 5 1 15.87 38.30 M 

R36 col 7 8 12.54 35.30 M  R40 naive 5 2 15.62 26.71 M 

R36 col 8 1 16.61 39.53 M  R40 naive 5 3 23.31 44.29 L 

R36 col 8 2 37.25 35.46 M  R40 naive 5 4 26.48 43.25 L 

R36 col 8 3 33.95 40.69 L  R40 naive 5 5 19.03 36.99 M 

R36 col 8 4 23.06 33.51 M  R40 naive 5 6 9.96 25.45 M 

R36 col 8 5 27.93 50.14 L  R40 naive 6 1 19.11 34.57 M 

R36 col 8 6 13.64 37.27 M  R40 naive 6 2 15.92 31.97 M 

        φ: diameter; col: collagenase; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.1. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R40 naive 6 3 25.00 28.92 M 

R40 naive 6 4 29.25 28.01 M 

R40 naive 6 5 6.77 46.14 L 

R40 naive 6 6 5.99 40.58 L 

R40 naive 7 1 12.54 29.77 M 

R40 naive 7 2 18.46 41.98 L 

R40 naive 7 3 27.49 38.62 M 

R40 naive 7 4 32.76 42.93 L 

R40 naive 7 5 11.22 54.11 L 

R40 naive 7 6 3.96 55.52 L 

R40 naive 8 1 16.49 44.41 L 

R40 naive 8 2 13.87 35.87 M 

R40 naive 8 3 22.44 43.32 L 

R40 naive 8 4 25.22 30.64 M 

R40 naive 8 5 14.13 40.25 L 

R40 naive 8 6 6.24 40.89 L 

R40 naive 9 1 14.31 44.68 L 

R40 naive 9 2 34.09 31.20 M 

R40 naive 9 3 25.76 38.73 M 

R40 naive 9 4 11.96 31.77 M 

R40 naive 9 5 18.67 38.11 M 

R40 naive 9 6 5.12 31.26 M 

R40 naive 10 1 17.25 37.41 M 

R40 naive 10 2 11.83 65.86 L 

R40 naive 10 3 24.56 43.32 L 

R40 naive 10 4 18.28 52.94 L 

R40 naive 10 5 12.78 31.42 M 

R40 naive 10 6 6.01 50.50 L 

    φ: diameter; col: collagenase; S: small; M: medium; L: large 
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Table E.2. Pixel intensity of pERK labeling in DRG neurons by size from rats injected with bacterial 

collagenase or vehicle (Chapter 4) 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R03 naive 1 1 26.34 41.23 L  R03 naive 5 9 27.96 30.46 M 

R03 naive 1 2 37.69 29.25 M  R03 naive 5 10 21.63 26.06 M 

R03 naive 1 3 36.63 27.91 M  R03 naive 6 1 26.95 35.43 M 

R03 naive 1 4 34.37 26.13 M  R03 naive 6 2 32.67 30.24 M 

R03 naive 1 5 38.04 31.22 M  R03 naive 6 3 34.69 38.91 M 

R03 naive 1 6 35.48 30.18 M  R03 naive 6 4 32.77 36.67 M 

R03 naive 1 7 36.01 31.37 M  R03 naive 6 5 25.60 41.04 L 

R03 naive 1 8 43.69 34.60 M  R03 naive 6 6 33.98 32.02 M 

R03 naive 1 9 46.15 23.66 M  R03 naive 6 7 37.08 26.37 M 

R03 naive 1 10 39.43 22.15 M  R03 naive 6 8 33.51 27.95 M 

R03 naive 2 1 29.59 39.88 M  R03 naive 6 9 37.59 28.31 M 

R03 naive 2 2 10.86 44.05 L  R03 naive 6 10 33.88 38.79 M 

R03 naive 2 3 27.19 39.09 M  R23 col 1 1 32.07 41.64 L 

R03 naive 2 4 37.45 35.17 M  R23 col 1 2 23.61 35.62 M 

R03 naive 2 5 23.23 24.46 M  R23 col 1 3 30.90 36.59 M 

R03 naive 2 6 15.69 18.20 S  R23 col 1 4 26.65 40.13 L 

R03 naive 2 7 16.21 20.77 S  R23 col 1 5 32.96 46.21 L 

R03 naive 2 8 28.09 39.55 M  R23 col 1 6 30.71 29.00 M 

R03 naive 2 9 14.39 20.72 S  R23 col 1 7 33.48 33.91 M 

R03 naive 2 10 37.85 27.86 M  R23 col 1 8 32.89 28.15 M 

R03 naive 3 1 32.64 30.03 M  R23 col 1 9 35.44 42.09 L 

R03 naive 3 2 43.79 34.09 M  R23 col 1 10 23.23 36.75 M 

R03 naive 3 3 43.81 32.98 M  R23 col 2 1 28.40 39.12 M 

R03 naive 3 4 28.88 22.30 M  R23 col 2 2 28.39 29.08 M 

R03 naive 3 5 28.21 15.56 S  R23 col 2 3 28.89 27.86 M 

R03 naive 3 6 38.11 30.01 M  R23 col 2 4 31.61 27.01 M 

R03 naive 3 7 40.25 32.68 M  R23 col 2 5 34.79 40.69 L 

R03 naive 3 8 36.64 36.96 M  R23 col 2 6 25.87 41.05 L 

R03 naive 3 9 40.65 27.03 M  R23 col 2 7 30.97 34.03 M 

R03 naive 3 10 39.79 29.50 M  R23 col 2 8 32.59 34.30 M 

R03 naive 4 1 30.64 27.83 M  R23 col 2 9 32.74 37.52 M 

R03 naive 4 2 27.70 21.03 M  R23 col 2 10 29.53 33.69 M 

R03 naive 4 3 34.71 29.86 M  R23 col 3 1 33.98 38.60 M 

R03 naive 4 4 33.17 31.16 M  R23 col 3 2 30.26 42.53 L 

R03 naive 4 5 36.34 57.92 L  R23 col 3 3 26.55 33.69 M 

R03 naive 4 6 29.72 41.87 L  R23 col 3 4 24.43 44.87 L 

R03 naive 4 7 45.68 33.47 M  R23 col 3 5 21.36 21.71 M 

R03 naive 4 8 44.04 30.29 M  R23 col 3 6 26.52 27.82 M 

R03 naive 4 9 29.80 20.29 S  R23 col 3 7 26.25 33.72 M 

R03 naive 4 10 30.83 24.05 M  R23 col 3 8 24.46 45.90 L 

R03 naive 5 1 19.34 47.02 L  R23 col 3 9 23.31 35.94 M 

R03 naive 5 2 29.41 32.36 M  R23 col 3 10 30.92 41.96 L 

R03 naive 5 3 12.55 23.40 M  R23 col 4 1 17.31 24.95 M 

R03 naive 5 4 12.69 31.56 M  R23 col 4 2 26.62 39.32 M 

R03 naive 5 5 20.24 32.81 M  R23 col 4 3 22.77 39.33 M 

R03 naive 5 6 15.86 39.12 M  R23 col 4 4 27.32 39.06 M 

R03 naive 5 7 21.81 37.07 M  R23 col 4 5 23.12 40.73 L 

R03 naive 5 8 18.15 39.11 M  R23 col 4 6 30.12 35.76 M 

        φ: diameter; col: collagenase; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.2. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R23 col 4 7 29.60 39.86 M  R23 col 5 3 10.22 28.51 M 

R23 col 4 8 35.53 36.63 M  R23 col 5 4 9.47 31.11 M 

R23 col 4 9 23.38 29.91 M  R23 col 5 5 9.54 43.78 L 

R23 col 4 10 26.21 38.32 M  R23 col 5 6 12.18 35.76 M 

R23 col 5 1 9.01 39.33 M  R23 col 5 7 8.16 30.74 M 

R23 col 5 2 7.09 26.13 M  R23 col 5 8 12.29 35.01 M 

R23 col 5 3 10.22 28.51 M  R23 col 5 9 20.09 34.61 M 

R23 col 5 4 9.47 31.11 M  R23 col 5 10 7.45 29.29 M 

R23 col 5 5 9.54 43.78 L  R23 col 6 1 15.99 42.34 L 

R23 col 5 6 12.18 35.76 M  R23 col 6 2 17.11 39.21 M 

R23 col 5 7 8.16 30.74 M  R23 col 6 3 17.05 39.29 M 

R23 col 5 8 12.29 35.01 M  R23 col 6 4 7.09 27.92 M 

R23 col 5 9 20.09 34.61 M  R23 col 6 5 12.64 21.21 M 

R23 col 5 10 7.45 29.29 M  R23 col 6 6 12.91 38.72 M 

R23 col 6 1 15.99 42.34 L  R23 col 6 7 22.84 22.19 M 

R23 col 6 2 17.11 39.21 M  R23 col 6 8 23.07 21.21 M 

R23 col 6 3 17.05 39.29 M  R23 col 6 9 20.46 27.10 M 

R23 col 6 4 7.09 27.92 M  R23 col 6 10 19.27 40.63 L 

R23 col 6 5 12.64 21.21 M  R23 col 7 1 22.35 39.74 M 

R23 col 6 6 12.91 38.72 M  R23 col 7 2 22.11 40.83 L 

R23 col 6 7 22.84 22.19 M  R23 col 7 3 27.67 31.09 M 

R23 col 6 8 23.07 21.21 M  R23 col 7 4 27.87 36.72 M 

R23 col 6 9 20.46 27.10 M  R23 col 7 5 19.57 32.69 M 

R23 col 6 10 19.27 40.63 L  R23 col 7 6 28.99 34.61 M 

R23 col 7 1 22.35 39.74 M  R23 col 7 7 19.60 35.40 M 

R23 col 7 2 22.11 40.83 L  R23 col 7 8 17.24 23.36 M 

R23 col 7 3 27.67 31.09 M  R23 col 7 9 26.90 42.99 L 

R23 col 7 4 27.87 36.72 M  R23 col 7 10 23.81 42.49 L 

R23 col 7 5 19.57 32.69 M  R23 col 8 1 22.39 36.66 M 

R23 col 7 6 28.99 34.61 M  R23 col 8 2 22.68 30.17 M 

R23 col 7 7 19.60 35.40 M  R23 col 8 3 23.55 40.55 L 

R23 col 7 8 17.24 23.36 M  R23 col 8 4 27.81 35.96 M 

R23 col 7 9 26.90 42.99 L  R23 col 8 5 22.16 32.33 M 

R23 col 7 10 23.81 42.49 L  R23 col 8 6 18.88 31.98 M 

R23 col 8 1 22.39 36.66 M  R23 col 8 7 28.28 31.58 M 

R23 col 8 2 22.68 30.17 M  R23 col 8 8 12.95 26.25 M 

R23 col 8 3 23.55 40.55 L  R23 col 8 9 11.49 23.20 M 

R23 col 8 4 27.81 35.96 M  R23 col 8 10 15.37 22.23 M 

R23 col 8 5 22.16 32.33 M  R25 col 1 1 7.41 57.63 L 

R23 col 8 6 18.88 31.98 M  R25 col 1 2 11.10 42.99 L 

R23 col 8 7 28.28 31.58 M  R25 col 1 3 14.76 43.22 L 

R23 col 8 8 12.95 26.25 M  R25 col 1 4 15.44 45.95 L 

R23 col 8 9 11.49 23.20 M  R25 col 1 5 15.86 28.91 M 

R23 col 8 10 15.37 22.23 M  R25 col 1 6 16.30 45.62 L 

R23 col 4 7 29.60 39.86 M  R25 col 1 7 16.58 36.89 M 

R23 col 4 8 35.53 36.63 M  R25 col 1 8 11.41 34.82 M 

R23 col 4 9 23.38 29.91 M  R25 col 1 9 16.76 41.60 L 

R23 col 4 10 26.21 38.32 M  R25 col 1 10 18.05 47.11 L 

R23 col 5 1 9.01 39.33 M  R25 col 2 1 16.80 48.33 L 

R23 col 5 2 7.09 26.13 M  R25 col 2 2 14.81 32.81 M 

        φ: diameter; col: collagenase; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.2. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R25 col 2 3 8.01 55.29 L  R26 vehicle 1 3 9.38 35.39 M 

R25 col 2 4 10.89 38.11 M  R26 vehicle 1 4 11.15 33.26 M 

R25 col 2 5 11.34 23.28 M  R26 vehicle 1 5 17.67 38.56 M 

R25 col 2 6 9.42 33.77 M  R26 vehicle 1 6 13.64 37.67 M 

R25 col 2 7 13.67 22.54 M  R26 vehicle 1 7 9.11 47.53 L 

R25 col 2 8 13.23 30.01 M  R26 vehicle 1 8 16.01 34.13 M 

R25 col 2 9 13.22 31.68 M  R26 vehicle 1 9 11.89 31.76 M 

R25 col 2 10 10.74 33.39 M  R26 vehicle 1 10 10.57 29.78 M 

R25 col 3 1 27.25 28.96 M  R26 vehicle 2 1 18.91 46.20 L 

R25 col 3 2 12.63 23.14 M  R26 vehicle 2 2 15.05 49.23 L 

R25 col 3 3 10.21 21.04 M  R26 vehicle 2 3 21.20 59.65 L 

R25 col 3 4 17.51 23.37 M  R26 vehicle 2 4 26.93 39.40 M 

R25 col 3 5 13.36 41.80 L  R26 vehicle 2 5 11.30 29.63 M 

R25 col 3 6 10.21 26.64 M  R26 vehicle 2 6 23.98 38.83 M 

R25 col 3 7 20.71 38.91 M  R26 vehicle 2 7 30.08 30.20 M 

R25 col 3 8 11.38 23.95 M  R26 vehicle 2 8 13.41 24.80 M 

R25 col 3 9 21.90 40.68 L  R26 vehicle 2 9 24.31 44.28 L 

R25 col 3 10 16.92 39.74 M  R26 vehicle 2 10 23.16 55.04 L 

R25 col 4 1 30.10 37.55 M  R26 vehicle 3 1 13.00 29.03 M 

R25 col 4 2 27.00 39.67 M  R26 vehicle 3 2 8.80 32.43 M 

R25 col 4 3 29.28 27.24 M  R26 vehicle 3 3 6.45 30.57 M 

R25 col 4 4 25.85 27.98 M  R26 vehicle 3 4 25.60 34.88 M 

R25 col 4 5 27.59 24.06 M  R26 vehicle 3 5 25.52 26.66 M 

R25 col 4 6 29.40 28.74 M  R26 vehicle 3 6 26.54 37.12 M 

R25 col 4 7 26.69 34.23 M  R26 vehicle 3 7 33.08 36.21 M 

R25 col 4 8 26.75 40.14 L  R26 vehicle 3 8 8.35 22.06 M 

R25 col 4 9 31.94 39.05 M  R26 vehicle 3 9 15.76 26.44 M 

R25 col 4 10 18.49 34.37 M  R26 vehicle 3 10 15.64 23.74 M 

R25 col 5 1 20.61 32.96 M  R26 vehicle 4 1 12.97 40.08 L 

R25 col 5 2 24.21 22.69 M  R26 vehicle 4 2 8.90 31.83 M 

R25 col 5 3 19.97 35.61 M  R26 vehicle 4 3 11.40 29.32 M 

R25 col 5 4 21.80 28.02 M  R26 vehicle 4 4 13.45 36.99 M 

R25 col 5 5 24.25 39.51 M  R26 vehicle 4 5 9.93 38.00 M 

R25 col 5 6 26.05 23.83 M  R26 vehicle 4 6 11.11 35.25 M 

R25 col 5 7 14.53 26.83 M  R26 vehicle 4 7 17.75 38.61 M 

R25 col 5 8 27.60 23.68 M  R26 vehicle 4 8 15.74 39.32 M 

R25 col 5 9 18.82 26.75 M  R26 vehicle 4 9 9.84 47.54 L 

R25 col 5 10 23.15 30.47 M  R26 vehicle 4 10 14.92 39.74 M 

R25 col 6 1 12.11 22.43 M  R26 vehicle 5 1 5.69 34.55 M 

R25 col 6 2 9.90 35.76 M  R26 vehicle 5 2 6.93 41.88 L 

R25 col 6 3 11.98 30.35 M  R26 vehicle 5 3 9.21 32.58 M 

R25 col 6 4 15.41 43.83 L  R26 vehicle 5 4 9.25 36.93 M 

R25 col 6 5 17.98 37.46 M  R26 vehicle 5 5 10.00 38.62 M 

R25 col 6 6 15.36 34.46 M  R26 vehicle 5 6 8.02 35.99 M 

R25 col 6 7 11.68 24.12 M  R26 vehicle 5 7 6.77 44.46 L 

R25 col 6 8 16.53 29.93 M  R26 vehicle 5 8 10.24 41.76 L 

R25 col 6 9 18.24 32.94 M  R26 vehicle 5 9 12.65 38.78 M 

R25 col 6 10 23.96 40.04 L  R26 vehicle 5 10 10.07 26.42 M 

R26 vehicle 1 1 13.28 29.71 M  R26 vehicle 6 1 14.93 32.82 M 

R26 vehicle 1 2 9.32 51.02 L  R26 vehicle 6 2 18.25 27.88 M 

        φ: diameter; col: collagenase; S: small; M: medium; L: large 

Note: Table is continued on the next page. 

 

 



372 

 

 

Table E.2. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R26 vehicle 6 3 13.84 26.14 M  R28 col 3 3 25.61 45.33 L 

R26 vehicle 6 4 16.94 31.58 M  R28 col 3 4 36.84 32.16 M 

R26 vehicle 6 5 12.03 22.02 M  R28 col 3 5 29.59 32.96 M 

R26 vehicle 6 6 18.68 28.12 M  R28 col 3 6 26.69 24.24 M 

R26 vehicle 6 7 27.29 38.03 M  R28 col 3 7 27.06 35.78 M 

R26 vehicle 6 8 25.21 33.11 M  R28 col 3 8 30.96 29.36 M 

R26 vehicle 6 9 25.59 27.76 M  R28 col 3 9 32.37 21.95 M 

R26 vehicle 6 10 31.78 27.91 M  R28 col 3 10 27.52 21.24 M 

R26 vehicle 7 1 11.50 35.41 M  R28 col 4 1 30.94 36.73 M 

R26 vehicle 7 2 12.57 28.83 M  R28 col 4 2 27.34 37.45 M 

R26 vehicle 7 3 6.61 43.22 L  R28 col 4 3 23.95 38.38 M 

R26 vehicle 7 4 8.27 29.67 M  R28 col 4 4 16.81 33.18 M 

R26 vehicle 7 5 8.22 33.11 M  R28 col 4 5 19.88 23.60 M 

R26 vehicle 7 6 16.81 33.10 M  R28 col 4 6 26.21 26.91 M 

R26 vehicle 7 7 10.22 35.78 M  R28 col 4 7 20.42 32.30 M 

R26 vehicle 7 8 15.30 29.66 M  R28 col 4 8 28.77 22.95 M 

R26 vehicle 7 9 18.59 34.38 M  R28 col 4 9 25.54 28.33 M 

R26 vehicle 7 10 10.03 24.81 M  R28 col 4 10 21.91 27.49 M 

R26 vehicle 8 1 21.75 29.04 M  R28 col 5 1 17.91 24.71 M 

R26 vehicle 8 2 17.66 41.36 L  R28 col 5 2 15.79 22.51 M 

R26 vehicle 8 3 11.18 36.79 M  R28 col 5 3 13.08 37.77 M 

R26 vehicle 8 4 15.80 40.00 L  R28 col 5 4 22.92 31.12 M 

R26 vehicle 8 5 19.15 42.98 L  R28 col 5 5 30.27 36.42 M 

R26 vehicle 8 6 9.97 24.72 M  R28 col 5 6 26.50 33.40 M 

R26 vehicle 8 7 9.55 29.54 M  R28 col 5 7 27.39 21.12 M 

R26 vehicle 8 8 16.24 27.60 M  R28 col 5 8 26.89 33.57 M 

R26 vehicle 8 9 13.96 33.91 M  R28 col 5 9 33.58 36.93 M 

R26 vehicle 8 10 16.05 34.11 M  R28 col 5 10 26.67 36.02 M 

R28 col 1 1 25.50 34.11 M  R28 col 6 1 27.03 41.46 L 

R28 col 1 2 15.86 33.05 M  R28 col 6 2 26.61 29.39 M 

R28 col 1 3 19.00 40.71 L  R28 col 6 3 24.00 28.47 M 

R28 col 1 4 30.55 24.40 M  R28 col 6 4 29.45 40.47 L 

R28 col 1 5 16.62 39.68 M  R28 col 6 5 22.97 31.41 M 

R28 col 1 6 17.00 26.14 M  R28 col 6 6 33.31 35.64 M 

R28 col 1 7 15.94 22.61 M  R28 col 6 7 18.10 20.24 S 

R28 col 1 8 17.02 22.99 M  R28 col 6 8 24.97 26.40 M 

R28 col 1 9 12.49 15.56 S  R28 col 6 9 21.72 22.99 M 

R28 col 1 10 11.95 17.31 S  R28 col 6 10 37.43 32.29 M 

R28 col 2 1 33.45 33.62 M  R28 col 7 1 35.52 38.22 M 

R28 col 2 2 39.98 33.86 M  R28 col 7 2 37.54 26.65 M 

R28 col 2 3 35.62 23.10 M  R28 col 7 3 30.77 29.54 M 

R28 col 2 4 32.21 35.32 M  R28 col 7 4 31.88 40.31 L 

R28 col 2 5 33.27 23.81 M  R28 col 7 5 24.45 16.65 S 

R28 col 2 6 29.91 16.34 S  R28 col 7 6 40.62 38.78 M 

R28 col 2 7 38.19 22.57 M  R28 col 7 7 41.78 29.52 M 

R28 col 2 8 34.18 22.07 M  R28 col 7 8 37.41 21.58 M 

R28 col 2 9 25.16 12.87 S  R28 col 7 9 25.54 36.05 M 

R28 col 2 10 32.12 36.90 M  R28 col 7 10 38.08 25.55 M 

R28 col 3 1 38.24 36.48 M  R28 col 8 1 20.85 28.12 M 

R28 col 3 2 34.25 34.62 M  R28 col 8 2 15.88 27.31 M 

        φ: diameter; col: collagenase; S: small; M: medium; L: large 

Note: Table is continued on the next page. 

 

 



373 

 

 

Table E.2. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R28 col 8 3 23.75 32.95 M  R30 col 5 3 17.06 27.44 M 

R28 col 8 4 22.48 30.42 M  R30 col 5 4 12.59 40.24 L 

R28 col 8 5 15.54 36.97 M  R30 col 5 5 15.20 19.81 S 

R28 col 8 6 19.13 28.53 M  R30 col 5 6 13.29 30.78 M 

R28 col 8 7 26.20 36.28 M  R30 col 5 7 16.71 26.87 M 

R28 col 8 8 16.09 30.42 M  R30 col 5 8 11.94 23.08 M 

R28 col 8 9 18.35 27.92 M  R30 col 5 9 11.18 19.81 S 

R28 col 8 10 19.34 25.02 M  R30 col 5 10 17.64 47.06 L 

R30 col 1 1 8.12 37.15 M  R30 col 6 1 23.17 39.80 M 

R30 col 1 2 8.73 30.34 M  R30 col 6 2 23.65 46.51 L 

R30 col 1 3 6.18 33.94 M  R30 col 6 3 18.13 28.61 M 

R30 col 1 4 13.31 30.70 M  R30 col 6 4 24.11 31.36 M 

R30 col 1 5 5.72 25.73 M  R30 col 6 5 17.39 44.98 L 

R30 col 1 6 7.47 48.82 L  R30 col 6 6 20.87 43.03 L 

R30 col 1 7 6.37 49.02 L  R30 col 6 7 22.72 47.46 L 

R30 col 1 8 7.55 29.86 M  R30 col 6 8 18.30 24.05 M 

R30 col 1 9 15.21 25.19 M  R30 col 6 9 22.07 48.96 L 

R30 col 1 10 5.62 46.08 L  R30 col 6 10 24.54 34.95 M 

R30 col 2 1 9.20 41.58 L  R30 col 7 1 21.96 40.95 L 

R30 col 2 2 10.69 39.16 M  R30 col 7 2 16.37 23.06 M 

R30 col 2 3 9.87 54.47 L  R30 col 7 3 16.82 18.36 S 

R30 col 2 4 13.94 38.45 M  R30 col 7 4 25.03 35.12 M 

R30 col 2 5 11.62 28.58 M  R30 col 7 5 17.36 20.33 S 

R30 col 2 6 9.04 32.34 M  R30 col 7 6 24.24 39.24 M 

R30 col 2 7 10.34 37.63 M  R30 col 7 7 13.46 54.33 L 

R30 col 2 8 9.22 41.22 L  R30 col 7 8 12.64 52.25 L 

R30 col 2 9 10.50 44.54 L  R30 col 7 9 16.49 24.30 M 

R30 col 2 10 8.79 27.23 M  R30 col 7 10 18.40 43.85 L 

R30 col 3 1 8.72 48.54 L  R30 col 8 1 23.59 30.82 M 

R30 col 3 2 9.50 49.18 L  R30 col 8 2 37.02 30.79 M 

R30 col 3 3 6.07 26.93 M  R30 col 8 3 25.60 31.68 M 

R30 col 3 4 6.86 44.86 L  R30 col 8 4 38.84 42.18 L 

R30 col 3 5 5.92 55.45 L  R30 col 8 5 29.74 21.06 M 

R30 col 3 6 8.48 41.03 L  R30 col 8 6 25.48 40.31 L 

R30 col 3 7 6.49 59.96 L  R30 col 8 7 48.03 35.74 M 

R30 col 3 8 7.70 38.12 M  R30 col 8 8 39.50 44.56 L 

R30 col 3 9 11.07 24.23 M  R30 col 8 9 26.29 45.02 L 

R30 col 3 10 6.69 47.53 L  R30 col 8 10 22.20 29.24 M 

R30 col 4 1 8.94 36.75 M  R31 vehicle 1 1 10.60 37.71 M 

R30 col 4 2 7.97 33.46 M  R31 vehicle 1 2 8.18 28.68 M 

R30 col 4 3 7.14 56.65 L  R31 vehicle 1 3 8.33 30.91 M 

R30 col 4 4 6.54 53.44 L  R31 vehicle 1 4 7.92 25.51 M 

R30 col 4 5 7.78 37.39 M  R31 vehicle 1 5 8.80 27.96 M 

R30 col 4 6 5.39 47.95 L  R31 vehicle 1 6 14.93 30.52 M 

R30 col 4 7 6.51 42.81 L  R31 vehicle 1 7 10.73 33.14 M 

R30 col 4 8 9.40 39.76 M  R31 vehicle 1 8 12.16 40.15 L 

R30 col 4 9 5.65 39.60 M  R31 vehicle 1 9 15.09 23.03 M 

R30 col 4 10 5.17 40.85 L  R31 vehicle 1 10 15.51 18.91 S 

R30 col 5 1 11.07 72.25 L  R31 vehicle 2 1 15.88 26.20 M 

R30 col 5 2 10.40 57.15 L  R31 vehicle 2 2 6.13 32.01 M 

        φ: diameter; col: collagenase; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.2. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R31 vehicle 2 3 7.24 43.86 L  R31 vehicle 7 3 10.33 24.49 M 

R31 vehicle 2 4 9.54 36.39 M  R31 vehicle 7 4 22.99 33.68 M 

R31 vehicle 2 5 10.42 31.65 M  R31 vehicle 7 5 15.11 40.50 L 

R31 vehicle 2 6 18.18 24.71 M  R31 vehicle 7 6 24.92 37.32 M 

R31 vehicle 2 7 12.07 36.24 M  R31 vehicle 7 7 17.67 33.78 M 

R31 vehicle 2 8 19.56 40.05 L  R31 vehicle 7 8 17.00 21.88 M 

R31 vehicle 2 9 13.14 39.98 M  R31 vehicle 7 9 16.43 40.82 L 

R31 vehicle 2 10 17.97 25.98 M  R31 vehicle 7 10 17.20 35.03 M 

R31 vehicle 3 1 19.40 29.40 M  R35 vehicle 1 1 27.51 42.11 L 

R31 vehicle 3 2 14.33 34.68 M  R35 vehicle 1 2 22.55 27.56 M 

R31 vehicle 3 3 18.49 32.99 M  R35 vehicle 1 3 21.12 39.86 M 

R31 vehicle 3 4 19.09 34.92 M  R35 vehicle 1 4 15.19 29.88 M 

R31 vehicle 3 5 20.69 28.09 M  R35 vehicle 1 5 12.50 25.36 M 

R31 vehicle 3 6 19.16 33.62 M  R35 vehicle 1 6 13.41 29.94 M 

R31 vehicle 3 7 18.62 31.80 M  R35 vehicle 1 7 19.33 46.33 L 

R31 vehicle 3 8 19.03 38.94 M  R35 vehicle 1 8 17.86 25.64 M 

R31 vehicle 3 9 23.67 28.75 M  R35 vehicle 1 9 16.68 41.84 L 

R31 vehicle 3 10 9.67 40.09 L  R35 vehicle 1 10 15.65 36.44 M 

R31 vehicle 4 1 8.77 40.78 L  R35 vehicle 2 1 12.41 54.83 L 

R31 vehicle 4 2 15.01 47.79 L  R35 vehicle 2 2 7.71 43.60 L 

R31 vehicle 4 3 15.64 38.71 M  R35 vehicle 2 3 10.81 33.87 M 

R31 vehicle 4 4 13.21 47.48 L  R35 vehicle 2 4 12.21 35.50 M 

R31 vehicle 4 5 14.03 40.27 L  R35 vehicle 2 5 11.82 30.43 M 

R31 vehicle 4 6 11.03 42.30 L  R35 vehicle 2 6 8.03 27.74 M 

R31 vehicle 4 7 20.25 26.27 M  R35 vehicle 2 7 10.09 29.26 M 

R31 vehicle 4 8 10.54 24.87 M  R35 vehicle 2 8 12.35 38.71 M 

R31 vehicle 4 9 9.40 19.54 S  R35 vehicle 2 9 14.96 43.57 L 

R31 vehicle 4 10 22.25 27.18 M  R35 vehicle 2 10 9.33 29.47 M 

R31 vehicle 5 1 7.03 47.28 L  R35 vehicle 3 1 20.90 40.39 L 

R31 vehicle 5 2 10.76 32.03 M  R35 vehicle 3 2 20.65 39.15 M 

R31 vehicle 5 3 10.27 36.22 M  R35 vehicle 3 3 25.60 32.60 M 

R31 vehicle 5 4 9.29 47.57 L  R35 vehicle 3 4 28.28 30.21 M 

R31 vehicle 5 5 7.32 33.97 M  R35 vehicle 3 5 15.55 27.63 M 

R31 vehicle 5 6 9.08 40.94 L  R35 vehicle 3 6 15.07 34.77 M 

R31 vehicle 5 7 11.00 35.09 M  R35 vehicle 3 7 26.01 22.76 M 

R31 vehicle 5 8 11.20 43.50 L  R35 vehicle 3 8 16.34 29.22 M 

R31 vehicle 5 9 12.45 34.77 M  R35 vehicle 3 9 25.16 32.83 M 

R31 vehicle 5 10 10.80 32.18 M  R35 vehicle 3 10 22.73 27.30 M 

R31 vehicle 6 1 10.72 41.38 L  R35 vehicle 4 1 13.12 34.88 M 

R31 vehicle 6 2 11.80 27.80 M  R35 vehicle 4 2 16.83 37.81 M 

R31 vehicle 6 3 10.47 37.64 M  R35 vehicle 4 3 17.41 39.44 M 

R31 vehicle 6 4 15.23 39.85 M  R35 vehicle 4 4 16.94 38.97 M 

R31 vehicle 6 5 9.16 46.95 L  R35 vehicle 4 5 23.93 34.32 M 

R31 vehicle 6 6 16.01 27.60 M  R35 vehicle 4 6 20.85 35.13 M 

R31 vehicle 6 7 9.71 46.40 L  R35 vehicle 4 7 7.30 20.72 S 

R31 vehicle 6 8 15.04 44.12 L  R35 vehicle 4 8 9.65 27.18 M 

R31 vehicle 6 9 11.72 31.65 M  R35 vehicle 4 9 9.89 23.41 M 

R31 vehicle 6 10 11.80 46.30 L  R35 vehicle 4 10 20.88 37.74 M 

R31 vehicle 7 1 25.40 37.12 M  R35 vehicle 5 1 14.94 29.48 M 

R31 vehicle 7 2 21.94 49.92 L  R35 vehicle 5 2 22.85 32.92 M 

        φ: diameter; col: collagenase; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.2. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R35 vehicle 5 3 24.27 34.05 M  R36 col 3 3 35.74 32.28 M 

R35 vehicle 5 4 17.04 29.82 M  R36 col 3 4 39.27 35.12 M 

R35 vehicle 5 5 33.84 42.65 L  R36 col 3 5 39.44 44.64 L 

R35 vehicle 5 6 39.57 22.31 M  R36 col 3 6 37.32 26.72 M 

R35 vehicle 5 7 23.89 47.95 L  R36 col 3 7 37.69 36.97 M 

R35 vehicle 5 8 25.37 38.10 M  R36 col 3 8 39.11 39.90 M 

R35 vehicle 5 9 15.67 23.31 M  R36 col 3 9 40.41 36.93 M 

R35 vehicle 5 10 27.78 33.48 M  R36 col 3 10 37.65 40.19 L 

R35 vehicle 6 1 15.81 33.44 M  R36 col 4 1 25.30 23.01 M 

R35 vehicle 6 2 17.40 37.35 M  R36 col 4 2 37.41 29.69 M 

R35 vehicle 6 3 19.11 41.48 L  R36 col 4 3 43.32 34.14 M 

R35 vehicle 6 4 13.96 33.76 M  R36 col 4 4 15.09 27.12 M 

R35 vehicle 6 5 11.02 32.54 M  R36 col 4 5 34.56 44.47 L 

R35 vehicle 6 6 17.97 38.28 M  R36 col 4 6 41.24 30.81 M 

R35 vehicle 6 7 10.72 41.57 L  R36 col 4 7 37.10 44.59 L 

R35 vehicle 6 8 11.96 24.82 M  R36 col 4 8 39.48 31.99 M 

R35 vehicle 6 9 28.22 30.46 M  R36 col 4 9 30.74 33.68 M 

R35 vehicle 6 10 16.41 34.59 M  R36 col 4 10 39.27 50.27 L 

R35 vehicle 7 1 16.42 33.99 M  R36 col 5 1 15.72 33.69 M 

R35 vehicle 7 2 13.53 34.04 M  R36 col 5 2 15.87 31.81 M 

R35 vehicle 7 3 15.23 47.77 L  R36 col 5 3 15.47 26.06 M 

R35 vehicle 7 4 11.80 26.16 M  R36 col 5 4 14.98 44.34 L 

R35 vehicle 7 5 19.21 22.97 M  R36 col 5 5 17.41 44.81 L 

R35 vehicle 7 6 16.03 37.87 M  R36 col 5 6 12.84 47.83 L 

R35 vehicle 7 7 13.70 32.31 M  R36 col 5 7 12.78 57.22 L 

R35 vehicle 7 8 9.87 28.26 M  R36 col 5 8 14.73 41.45 L 

R35 vehicle 7 9 11.57 31.87 M  R36 col 5 9 21.39 37.41 M 

R35 vehicle 7 10 10.54 33.86 M  R36 col 5 10 18.02 34.90 M 

R36 col 1 1 39.58 39.16 M  R36 col 6 1 9.30 58.06 L 

R36 col 1 2 29.47 31.41 M  R36 col 6 2 10.03 38.58 M 

R36 col 1 3 36.21 22.61 M  R36 col 6 3 9.65 57.46 L 

R36 col 1 4 45.97 30.46 M  R36 col 6 4 10.89 35.07 M 

R36 col 1 5 32.42 39.73 M  R36 col 6 5 12.50 32.90 M 

R36 col 1 6 42.27 34.58 M  R36 col 6 6 9.12 51.22 L 

R36 col 1 7 25.60 27.52 M  R36 col 6 7 6.64 56.29 L 

R36 col 1 8 37.02 44.13 L  R36 col 6 8 8.71 44.53 L 

R36 col 1 9 36.04 43.13 L  R36 col 6 9 6.29 39.29 M 

R36 col 1 10 35.37 35.36 M  R36 col 6 10 7.68 54.02 L 

R36 col 2 1 31.36 34.90 M  R36 col 3 3 35.74 32.28 M 

R36 col 2 2 18.03 35.29 M  R36 col 3 4 39.27 35.12 M 

R36 col 2 3 21.54 31.30 M  R36 col 3 5 39.44 44.64 L 

R36 col 2 4 21.28 30.18 M  R36 col 3 6 37.32 26.72 M 

R36 col 2 5 24.79 25.17 M  R36 col 3 7 37.69 36.97 M 

R36 col 2 6 32.79 32.35 M  R36 col 3 8 39.11 39.90 M 

R36 col 2 7 28.38 41.30 L  R36 col 3 9 40.41 36.93 M 

R36 col 2 8 22.15 33.60 M  R36 col 3 10 37.65 40.19 L 

R36 col 2 9 35.75 32.20 M  R36 col 4 1 25.30 23.01 M 

R36 col 2 10 22.99 66.83 L  R36 col 4 2 37.41 29.69 M 

R36 col 3 1 39.37 32.10 M  R36 col 4 3 43.32 34.14 M 

R36 col 3 2 39.11 41.39 L  R36 col 4 4 15.09 27.12 M 

        φ: diameter; col: collagenase; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.2. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R35 vehicle 5 3 24.27 34.05 M  R36 col 3 3 35.74 32.28 M 

R35 vehicle 5 4 17.04 29.82 M  R36 col 3 4 39.27 35.12 M 

R35 vehicle 5 5 33.84 42.65 L  R36 col 3 5 39.44 44.64 L 

R35 vehicle 5 6 39.57 22.31 M  R36 col 3 6 37.32 26.72 M 

R35 vehicle 5 7 23.89 47.95 L  R36 col 3 7 37.69 36.97 M 

R35 vehicle 5 8 25.37 38.10 M  R36 col 3 8 39.11 39.90 M 

R35 vehicle 5 9 15.67 23.31 M  R36 col 3 9 40.41 36.93 M 

R35 vehicle 5 10 27.78 33.48 M  R36 col 3 10 37.65 40.19 L 

R35 vehicle 6 1 15.81 33.44 M  R36 col 4 1 25.30 23.01 M 

R35 vehicle 6 2 17.40 37.35 M  R36 col 4 2 37.41 29.69 M 

R35 vehicle 6 3 19.11 41.48 L  R36 col 4 3 43.32 34.14 M 

R35 vehicle 6 4 13.96 33.76 M  R36 col 4 4 15.09 27.12 M 

R35 vehicle 6 5 11.02 32.54 M  R36 col 4 5 34.56 44.47 L 

R35 vehicle 6 6 17.97 38.28 M  R36 col 4 6 41.24 30.81 M 

R35 vehicle 6 7 10.72 41.57 L  R36 col 4 7 37.10 44.59 L 

R35 vehicle 6 8 11.96 24.82 M  R36 col 4 8 39.48 31.99 M 

R35 vehicle 6 9 28.22 30.46 M  R36 col 4 9 30.74 33.68 M 

R35 vehicle 6 10 16.41 34.59 M  R36 col 4 10 39.27 50.27 L 

R35 vehicle 7 1 16.42 33.99 M  R36 col 5 1 15.72 33.69 M 

R35 vehicle 7 2 13.53 34.04 M  R36 col 5 2 15.87 31.81 M 

R35 vehicle 7 3 15.23 47.77 L  R36 col 5 3 15.47 26.06 M 

R35 vehicle 7 4 11.80 26.16 M  R36 col 5 4 14.98 44.34 L 

R35 vehicle 7 5 19.21 22.97 M  R36 col 5 5 17.41 44.81 L 

R35 vehicle 7 6 16.03 37.87 M  R36 col 5 6 12.84 47.83 L 

R35 vehicle 7 7 13.70 32.31 M  R36 col 5 7 12.78 57.22 L 

R35 vehicle 7 8 9.87 28.26 M  R36 col 5 8 14.73 41.45 L 

R35 vehicle 7 9 11.57 31.87 M  R36 col 5 9 21.39 37.41 M 

R35 vehicle 7 10 10.54 33.86 M  R36 col 5 10 18.02 34.90 M 

R36 col 1 1 39.58 39.16 M  R36 col 6 1 9.30 58.06 L 

R36 col 1 2 29.47 31.41 M  R36 col 6 2 10.03 38.58 M 

R36 col 1 3 36.21 22.61 M  R36 col 6 3 9.65 57.46 L 

R36 col 1 4 45.97 30.46 M  R36 col 6 4 10.89 35.07 M 

R36 col 1 5 32.42 39.73 M  R36 col 6 5 12.50 32.90 M 

R36 col 1 6 42.27 34.58 M  R36 col 6 6 9.12 51.22 L 

R36 col 1 7 25.60 27.52 M  R36 col 6 7 6.64 56.29 L 

R36 col 1 8 37.02 44.13 L  R36 col 6 8 8.71 44.53 L 

R36 col 1 9 36.04 43.13 L  R36 col 6 9 6.29 39.29 M 

R36 col 1 10 35.37 35.36 M  R36 col 6 10 7.68 54.02 L 

R36 col 2 1 31.36 34.90 M  R36 col 3 3 35.74 32.28 M 

R36 col 2 2 18.03 35.29 M  R36 col 3 4 39.27 35.12 M 

R36 col 2 3 21.54 31.30 M  R36 col 3 5 39.44 44.64 L 

R36 col 2 4 21.28 30.18 M  R36 col 3 6 37.32 26.72 M 

R36 col 2 5 24.79 25.17 M  R36 col 3 7 37.69 36.97 M 

R36 col 2 6 32.79 32.35 M  R36 col 3 8 39.11 39.90 M 

R36 col 2 7 28.38 41.30 L  R36 col 3 9 40.41 36.93 M 

R36 col 2 8 22.15 33.60 M  R36 col 3 10 37.65 40.19 L 

R36 col 2 9 35.75 32.20 M  R36 col 4 1 25.30 23.01 M 

R36 col 2 10 22.99 66.83 L  R36 col 4 2 37.41 29.69 M 

R36 col 3 1 39.37 32.10 M  R36 col 4 3 43.32 34.14 M 

R36 col 3 2 39.11 41.39 L  R36 col 4 4 15.09 27.12 M 

        φ: diameter; col: collagenase; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.2. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R36 col 4 5 34.56 44.47 L  R40 naive 4 2 28.39 20.21 S 

R36 col 4 6 41.24 30.81 M  R40 naive 4 3 32.83 21.48 M 

R36 col 4 7 37.10 44.59 L  R40 naive 4 4 38.64 23.28 M 

R36 col 4 8 39.48 31.99 M  R40 naive 4 5 44.41 29.62 M 

R36 col 4 9 30.74 33.68 M  R40 naive 4 6 39.64 28.76 M 

R36 col 4 10 39.27 50.27 L  R40 naive 4 7 26.95 19.54 S 

R36 col 5 1 15.72 33.69 M  R40 naive 4 8 35.18 31.05 M 

R36 col 5 2 15.87 31.81 M  R40 naive 4 9 30.35 27.29 M 

R36 col 5 3 15.47 26.06 M  R40 naive 4 10 37.94 31.82 M 

R36 col 5 4 14.98 44.34 L  R40 naive 5 1 37.47 34.40 M 

R36 col 5 5 17.41 44.81 L  R40 naive 5 2 35.70 24.68 M 

R36 col 5 6 12.84 47.83 L  R40 naive 5 3 36.14 49.44 L 

R36 col 5 7 12.78 57.22 L  R40 naive 5 4 36.03 46.86 L 

R36 col 5 8 14.73 41.45 L  R40 naive 5 5 39.31 36.52 M 

R36 col 5 9 21.39 37.41 M  R40 naive 5 6 34.79 45.68 L 

R36 col 5 10 18.02 34.90 M  R40 naive 5 7 33.32 37.94 M 

R36 col 6 1 9.30 58.06 L  R40 naive 5 8 42.40 44.88 L 

R36 col 6 2 10.03 38.58 M  R40 naive 5 9 35.33 37.32 M 

R36 col 6 3 9.65 57.46 L  R40 naive 5 10 29.21 31.98 M 

R36 col 6 4 10.89 35.07 M  R40 naive 6 1 25.66 45.94 L 

R36 col 6 5 12.50 32.90 M  R40 naive 6 2 31.69 34.13 M 

R36 col 6 6 9.12 51.22 L  R40 naive 6 3 26.64 21.18 M 

R36 col 6 7 6.64 56.29 L  R40 naive 6 4 15.80 17.07 S 

R36 col 6 8 8.71 44.53 L  R40 naive 6 5 17.32 40.46 L 

R36 col 6 9 6.29 39.29 M  R40 naive 6 6 26.92 21.60 M 

R36 col 6 10 7.68 54.02 L  R40 naive 6 7 18.95 20.75 S 

R36 col 7 1 15.35 62.06 L  R40 naive 6 8 19.64 36.30 M 

R36 col 7 2 15.22 46.08 L  R40 naive 6 9 21.74 31.35 M 

R36 col 7 3 16.57 46.13 L  R40 naive 6 10 19.13 19.87 S 

R36 col 7 4 17.32 45.82 L         

R36 col 7 5 11.40 47.80 L         

R36 col 7 6 7.89 33.59 M         

R36 col 7 7 13.22 30.81 M         

R36 col 7 8 12.33 28.74 M         

R36 col 7 9 16.93 45.10 L         

R36 col 7 10 12.09 36.88 M         

R36 col 8 1 18.57 44.61 L         

R36 col 8 2 21.03 32.84 M         

R36 col 8 3 20.88 50.20 L         

R36 col 8 4 19.20 41.46 L         

R36 col 8 5 14.79 28.83 M         

R36 col 8 6 15.74 19.99 S         

R36 col 8 7 17.52 34.97 M         

R36 col 8 8 16.25 23.68 M         

R36 col 8 9 14.51 33.33 M         

R36 col 8 10 19.54 27.55 M         

R40 naive 1 1 19.82 48.94 L         

R40 naive 1 2 31.43 37.26 M         

R40 naive 1 3 29.94 31.92 M         

R40 naive 1 4 27.44 27.54 M         

        φ: diameter; col: collagenase; S: small; M: medium; L: large 
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Figure E.1. Immunolabeling of substance P (red), pERK (blue), and MAP-2 (green) in DRG neurons as 

designated in Table E.1 (substance P) and Table E.2 (pERK) (Chapter 4) 

 

Note: Figure is continued on the next page. 
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Figure E.1. continued 
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Table E.3. Densitometry of substance P and pERK in the superficial dorsal horn of the spinal cord from 

rats injected with bacterial collagenase or vehicle (Chapter 4) 

Rat Group image substance P pERK  Rat Group image substance P pERK 

  no. (% positive) (% positive)    no. (% positive) (% positive) 

R03 naive 1 1.88% 5.36%  R30 col 1 7.37% 0.43% 

R03 naive 2 4.30% 5.78%  R30 col 2 6.54% 12.81% 

R03 naive 3 24.07% 10.52%  R30 col 3 10.57% 0.78% 

R03 naive 4 3.25% 23.19%  R30 col 4 15.79% 0.54% 

R03 naive 5 1.98% 0.13%  R30 col 5 0.43% 0.21% 

R03 naive 6 7.29% 5.84%  R30 col 6 4.24% 1.17% 

R23 col 1 19.75% 40.83%  R35 vehicle 1 2.76% 0.25% 

R23 col 2 5.45% 21.24%  R35 vehicle 2 0.76% 0.16% 

R23 col 3 2.80% 22.12%  R35 vehicle 3 2.28% 0.54% 

R23 col 4 15.35% 10.61%  R35 vehicle 4 5.89% 3.42% 

R23 col 5 8.61% 13.78%  R35 vehicle 5 4.26% 2.07% 

R23 col 6 5.47% 14.15%  R35 vehicle 6 11.87% 8.25% 

R23 col 7 5.22% 11.17%  R36 col 1 3.28% 2.97% 

R23 col 8 8.36% 12.94%  R36 col 2 28.40% 17.68% 

R23 col 9 7.88% 7.51%  R36 col 3 4.02% 9.54% 

R25 col 1 36.46% 28.45%  R36 col 4 0.71% 1.77% 

R25 col 2 19.76% 11.89%  R36 col 5 14.66% 32.10% 

R25 col 3 16.08% 0.19%  R36 col 6 2.56% 1.50% 

R25 col 4 11.43% 1.38%  R36 col 7 5.78% 1.01% 

R25 col 5 12.86% 5.83%  R36 col 8 2.64% 4.11% 

R26 vehicle 1 2.40% 0.29%  R36 col 9 1.52% 1.30% 

R26 vehicle 2 2.49% 3.76%  R40 naive 1 11.25% 0.14% 

R26 vehicle 3 4.94% 1.62%  R40 naive 2 3.26% 0.18% 

R26 vehicle 4 13.19% 3.51%  R40 naive 3 3.79% 0.19% 

R26 vehicle 5 12.90% 2.62%  R40 naive 4 5.70% 0.13% 

R28 col 1 10.94% 0.24%  R40 naive 5 5.93% 0.25% 

R28 col 2 8.52% 0.06%  R40 naive 6 6.02% 0.15% 

R28 col 3 9.43% 0.58%  R40 naive 7 12.43% 0.47% 

R28 col 4 9.18% 0.13%  R40 naive 8 11.37% 1.10% 

R28 col 5 6.60% 0.11%  R40 naive 9 13.86% 2.86% 

R28 col 6 10.63% 0.28%  R40 naive 10 24.57% 6.10% 

R28 col 7 6.21% 4.12%       

R29 col 1 17.69% 0.34%       

R29 col 2 9.73% 8.28%       

R29 col 3 13.27% 9.36%       

R29 col 4 11.56% 18.48%       

R29 col 5 3.41% 19.27%       

R29 col 6 6.80% 22.77%       

R29 col 7 6.13% 1.79%       

R29 col 8 13.73% 0.66%       

R29 col 8 6.55% 1.40%       

R29 col 9 22.33% 5.10%       

R29 col 10 7.76% 1.82%       

      col: collagenase 
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Figure E.2. Immunolabeling of substance P (red), pERK (blue), and MAP-2 (green) in the superficial 

dorsal horn of the spinal cord as designated in Table E.3 (Chapter 4) 

 

Note: Figure is continued on the next page. 
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Figure E.2. continued 
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Table E.4. Densitometry of MMP-1 immunolabeling in DRGs from rats injected with bacterial collagenase 

or vehicle (Chapter 4) 

Rat Group 
image 

no. 

MMP-1 

(% positive) 
 Rat Group 

image 

no. 

MMP-1 

(% positive) 

R03 naïve 1 12.89%  R30 col 1 44.89% 

R03 naïve 2 15.15%  R30 col 2 77.11% 

R03 naïve 3 8.39%  R30 col 3 35.28% 

R03 naïve 4 2.38%  R30 col 4 118.54% 

R03 naïve 5 8.22%  R30 col 5 230.98% 

R03 naïve 6 8.25%  R31 vehicle 1 13.20% 

R23 col 1 2.85%  R31 vehicle 2 12.74% 

R23 col 2 22.34%  R31 vehicle 3 31.70% 

R23 col 3 7.85%  R31 vehicle 4 1.46% 

R23 col 4 11.07%  R31 vehicle 5 9.21% 

R23 col 5 14.18%  R35 vehicle 1 5.94% 

R23 col 6 8.18%  R35 vehicle 2 16.18% 

R25 col 1 11.00%  R35 vehicle 3 22.57% 

R25 col 2 37.57%  R35 vehicle 4 27.88% 

R25 col 3 8.25%  R35 vehicle 5 8.76% 

R25 col 4 14.48%  R35 vehicle 6 25.94% 

R25 col 5 13.79%  R35 vehicle 7 4.01% 

R25 col 6 8.87%  R36 col 1 6.08% 

R25 col 7 10.58%  R36 col 2 18.53% 

R26 vehicle 1 7.14%  R36 col 3 2.51% 

R26 vehicle 2 22.51%  R36 col 4 10.75% 

R26 vehicle 3 2.15%  R36 col 5 72.49% 

R26 vehicle 4 6.59%  R36 col 6 77.37% 

R26 vehicle 5 3.22%  R36 col 7 66.18% 

R26 vehicle 6 3.86%  R36 col 8 35.01% 

R28 col 1 4.38%  R36 col 9 62.00% 

R28 col 2 18.61%  R40 naïve 1 5.08% 

R28 col 3 19.70%  R40 naïve 2 4.19% 

R28 col 4 22.68%  R40 naïve 3 12.91% 

R28 col 5 12.36%  R40 naïve 4 12.94% 

R28 col 6 9.15%  R40 naïve 5 7.58% 

R28 col 7 19.92%  R40 naïve 6 19.56% 

R28 col 8 30.73%      

                                col: collagenase 
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Figure E.3. Immunolabeling of MMP-1 in the DRG as designated in Table E.4 (Chapter 4) 

 

Note: Figure is continued on the next page. 
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Figure E.3. continued 
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Table E.5. Densitometry of MMP-1 immunolabeling in the superficial dorsal horn of the spinal cord from 

rats injected with bacterial collagenase or vehicle (Chapter 4) 

Rat Group 
image 

no. 

MMP-1 

(% positive) 
 Rat Group 

image 

no. 

MMP-1 

(% positive) 

R03 naïve 1 5.62%  R29 col 1 0.16% 

R03 naïve 2 1.51%  R29 col 2 0.07% 

R03 naïve 3 9.18%  R29 col 3 0.94% 

R03 naïve 4 14.87%  R29 col 4 5.56% 

R03 naïve 5 34.25%  R29 col 5 1.37% 

R03 naïve 6 20.84%  R29 col 6 0.05% 

R23 col 1 13.05%  R29 col 7 28.36% 

R23 col 2 0.58%  R29 col 8 13.56% 

R23 col 3 1.34%  R30 col 1 11.82% 

R23 col 4 0.34%  R30 col 2 1.47% 

R23 col 5 22.51%  R30 col 3 4.08% 

R23 col 6 1.64%  R30 col 4 7.91% 

R25 col 1 6.18%  R35 vehicle 1 0.54% 

R25 col 2 8.67%  R35 vehicle 2 3.45% 

R25 col 3 2.07%  R35 vehicle 3 6.32% 

R25 col 4 19.14%  R35 vehicle 4 5.34% 

R25 col 5 2.02%  R35 vehicle 5 0.30% 

R25 col 6 8.40%  R35 vehicle 6 1.97% 

R26 vehicle 1 3.54%  R35 vehicle 7 9.22% 

R26 vehicle 2 0.30%  R36 col 1 5.76% 

R26 vehicle 3 2.28%  R36 col 2 5.00% 

R26 vehicle 4 0.16%  R36 col 3 3.25% 

R26 vehicle 5 2.91%  R36 col 4 4.33% 

R26 vehicle 6 2.33%  R36 col 5 0.78% 

R26 vehicle 7 0.00%  R36 col 6 1.49% 

R28 col 1 30.61%  R36 col 7 20.27% 

R28 col 2 13.06%  R40 naïve 1 21.33% 

R28 col 3 23.87%  R40 naïve 2 20.73% 

R28 col 4 9.34%  R40 naïve 3 44.82% 

R28 col 5 13.32%  R40 naïve 4 2.53% 

R28 col 6 4.42%  R40 naïve 5 7.48% 

R28 col 7 0.52%  R40 naïve 6 7.80% 

                col: collagenase 
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Figure E.4. Immunolabeling of MMP-1 in the superficial dorsal horn of the spinal cord as designated 

in Table E.5 (Chapter 4) 

 

Note: Figure is continued on the next page. 
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Figure E.4. continued 
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Table E.6. Pixel intensity of substance P labeling in DRG neurons by size from rats injected with MMP-1 

or vehicle (Chapter 7) 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R03 naïve 1 1 84.57 35.09 M  R03 naïve 5 9 49.70 34.22 M 

R03 naïve 1 2 52.15 35.52 M  R03 naïve 5 10 34.73 34.00 M 

R03 naïve 1 3 55.59 29.61 M  R13 MMP-1 1 1 73.75 33.35 M 

R03 naïve 1 4 52.62 33.87 M  R13 MMP-1 1 2 47.17 34.47 M 

R03 naïve 1 5 56.07 25.45 M  R13 MMP-1 1 3 31.43 21.81 M 

R03 naïve 1 6 59.96 24.05 M  R13 MMP-1 1 4 73.78 25.89 M 

R03 naïve 1 7 62.07 41.89 L  R13 MMP-1 1 5 122.46 29.58 M 

R03 naïve 1 8 66.09 30.39 M  R13 MMP-1 1 6 107.42 31.52 M 

R03 naïve 1 9 72.99 36.19 M  R13 MMP-1 1 7 74.68 32.58 M 

R03 naïve 1 10 58.62 31.88 M  R13 MMP-1 1 8 72.97 37.02 M 

R03 naïve 2 1 52.18 28.62 M  R13 MMP-1 1 9 55.27 20.05 S 

R03 naïve 2 2 93.47 38.96 M  R13 MMP-1 1 10 60.96 34.03 M 

R03 naïve 2 3 73.78 40.16 L  R13 MMP-1 2 1 77.83 34.83 M 

R03 naïve 2 4 105.21 28.41 M  R13 MMP-1 2 2 67.55 38.92 M 

R03 naïve 2 5 89.54 43.76 L  R13 MMP-1 2 3 57.01 30.65 M 

R03 naïve 2 6 76.14 38.88 M  R13 MMP-1 2 4 65.93 25.45 M 

R03 naïve 2 7 69.94 26.80 M  R13 MMP-1 2 5 75.55 33.64 M 

R03 naïve 2 8 41.10 40.27 L  R13 MMP-1 2 6 64.30 29.64 M 

R03 naïve 2 9 65.37 36.92 M  R13 MMP-1 2 7 52.95 29.88 M 

R03 naïve 2 10 78.01 40.71 L  R13 MMP-1 2 8 48.47 36.44 M 

R03 naïve 3 1 50.12 19.51 S  R13 MMP-1 2 9 44.80 26.08 M 

R03 naïve 3 2 77.89 27.06 M  R13 MMP-1 2 10 47.31 30.90 M 

R03 naïve 3 3 116.24 44.39 L  R13 MMP-1 3 1 52.87 34.82 M 

R03 naïve 3 4 102.38 37.64 M  R13 MMP-1 3 2 60.75 43.37 L 

R03 naïve 3 5 72.94 26.31 M  R13 MMP-1 3 3 48.54 37.83 M 

R03 naïve 3 6 94.03 43.15 L  R13 MMP-1 3 4 43.76 22.21 M 

R03 naïve 3 7 105.16 39.97 M  R13 MMP-1 3 5 52.95 26.36 M 

R03 naïve 3 8 83.21 30.66 M  R13 MMP-1 3 6 46.27 26.21 M 

R03 naïve 3 9 91.65 27.41 M  R13 MMP-1 3 7 44.65 21.64 M 

R03 naïve 3 10 96.99 42.00 L  R13 MMP-1 3 8 41.16 28.66 M 

R03 naïve 4 1 58.72 31.72 M  R13 MMP-1 3 9 34.48 26.09 M 

R03 naïve 4 2 69.96 42.98 L  R13 MMP-1 3 10 53.65 21.35 M 

R03 naïve 4 3 65.67 39.77 M  R13 MMP-1 4 1 82.47 33.22 M 

R03 naïve 4 4 49.37 33.96 M  R13 MMP-1 4 2 74.63 36.32 M 

R03 naïve 4 5 50.79 22.38 M  R13 MMP-1 4 3 55.09 35.58 M 

R03 naïve 4 6 75.40 33.37 M  R13 MMP-1 4 4 53.19 46.70 L 

R03 naïve 4 7 60.83 37.06 M  R13 MMP-1 4 5 99.53 27.71 M 

R03 naïve 4 8 46.43 24.07 M  R13 MMP-1 4 6 76.62 42.50 L 

R03 naïve 4 9 48.65 21.32 M  R13 MMP-1 4 7 65.14 37.85 M 

R03 naïve 4 10 59.48 45.39 L  R13 MMP-1 4 8 50.09 24.16 M 

R03 naïve 5 1 16.97 31.43 M  R13 MMP-1 4 9 46.47 44.99 L 

R03 naïve 5 2 24.99 34.61 M  R13 MMP-1 4 10 62.29 30.38 M 

R03 naïve 5 3 32.07 26.08 M  R13 MMP-1 5 1 72.06 34.41 M 

R03 naïve 5 4 48.22 32.05 M  R13 MMP-1 5 2 73.30 39.89 M 

R03 naïve 5 5 23.20 31.63 M  R13 MMP-1 5 3 77.99 16.54 S 

R03 naïve 5 6 30.28 34.72 M  R13 MMP-1 5 4 66.52 43.21 L 

R03 naïve 5 7 28.41 32.67 M  R13 MMP-1 5 5 70.81 25.97 M 

R03 naïve 5 8 17.31 22.19 M  R13 MMP-1 5 6 74.42 35.93 M 

        φ: diameter; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.6. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R13 MMP-1 5 7 71.06 26.43 M  R13 MMP-1 6 3 51.88 41.24 L 

R13 MMP-1 5 8 61.87 32.69 M  R13 MMP-1 6 4 67.27 20.76 S 

R13 MMP-1 5 9 62.33 32.54 M  R13 MMP-1 6 5 49.07 22.79 M 

R13 MMP-1 5 10 87.46 36.80 M  R13 MMP-1 6 6 53.41 18.05 S 

R13 MMP-1 6 1 50.07 19.63 S  R13 MMP-1 6 7 56.57 36.70 M 

R13 MMP-1 6 2 61.76 32.48 M  R13 MMP-1 6 8 54.31 34.59 M 

R13 MMP-1 6 3 51.88 41.24 L  R13 MMP-1 6 9 72.39 29.59 M 

R13 MMP-1 6 4 67.27 20.76 S  R13 MMP-1 6 10 61.85 31.95 M 

R13 MMP-1 6 5 49.07 22.79 M  R13 MMP-1 7 1 54.16 37.11 M 

R13 MMP-1 6 6 53.41 18.05 S  R13 MMP-1 7 2 52.27 37.98 M 

R13 MMP-1 6 7 56.57 36.70 M  R13 MMP-1 7 3 49.12 23.13 M 

R13 MMP-1 6 8 54.31 34.59 M  R13 MMP-1 7 4 85.38 30.39 M 

R13 MMP-1 6 9 72.39 29.59 M  R13 MMP-1 7 5 80.97 35.94 M 

R13 MMP-1 6 10 61.85 31.95 M  R13 MMP-1 7 6 59.04 36.51 M 

R13 MMP-1 7 1 54.16 37.11 M  R13 MMP-1 7 7 51.17 22.41 M 

R13 MMP-1 7 2 52.27 37.98 M  R13 MMP-1 7 8 67.40 47.92 L 

R13 MMP-1 7 3 49.12 23.13 M  R13 MMP-1 7 9 67.83 30.98 M 

R13 MMP-1 7 4 85.38 30.39 M  R13 MMP-1 7 10 56.42 38.96 M 

R13 MMP-1 7 5 80.97 35.94 M  R16 MMP-1 1 1 56.81 31.49 M 

R13 MMP-1 7 6 59.04 36.51 M  R16 MMP-1 1 2 81.08 23.10 M 

R13 MMP-1 7 7 51.17 22.41 M  R16 MMP-1 1 3 85.05 37.26 M 

R13 MMP-1 7 8 67.40 47.92 L  R16 MMP-1 1 4 161.73 30.64 M 

R13 MMP-1 7 9 67.83 30.98 M  R16 MMP-1 1 5 84.85 30.64 M 

R13 MMP-1 7 10 56.42 38.96 M  R16 MMP-1 1 6 71.65 23.72 M 

R16 MMP-1 1 1 56.81 31.49 M  R16 MMP-1 1 7 123.25 33.44 M 

R16 MMP-1 1 2 81.08 23.10 M  R16 MMP-1 1 8 112.64 25.27 M 

R16 MMP-1 1 3 85.05 37.26 M  R16 MMP-1 1 9 102.63 43.51 L 

R16 MMP-1 1 4 161.73 30.64 M  R16 MMP-1 1 10 113.79 25.21 M 

R16 MMP-1 1 5 84.85 30.64 M  R16 MMP-1 2 1 94.54 17.42 S 

R16 MMP-1 1 6 71.65 23.72 M  R16 MMP-1 2 2 110.68 29.95 M 

R16 MMP-1 1 7 123.25 33.44 M  R16 MMP-1 2 3 80.68 24.00 M 

R16 MMP-1 1 8 112.64 25.27 M  R16 MMP-1 2 4 116.58 30.47 M 

R16 MMP-1 1 9 102.63 43.51 L  R16 MMP-1 2 5 105.78 42.71 L 

R16 MMP-1 1 10 113.79 25.21 M  R16 MMP-1 2 6 86.84 30.35 M 

R16 MMP-1 2 1 94.54 17.42 S  R16 MMP-1 2 7 108.51 24.60 M 

R16 MMP-1 2 2 110.68 29.95 M  R16 MMP-1 2 8 85.53 32.06 M 

R16 MMP-1 2 3 80.68 24.00 M  R16 MMP-1 2 9 93.96 27.07 M 

R16 MMP-1 2 4 116.58 30.47 M  R16 MMP-1 2 10 91.14 40.89 L 

R16 MMP-1 2 5 105.78 42.71 L  R16 MMP-1 3 1 119.68 31.75 M 

R16 MMP-1 2 6 86.84 30.35 M  R16 MMP-1 3 2 173.19 23.40 M 

R16 MMP-1 2 7 108.51 24.60 M  R16 MMP-1 3 3 129.80 37.81 M 

R16 MMP-1 2 8 85.53 32.06 M  R16 MMP-1 3 4 113.68 30.27 M 

R16 MMP-1 2 9 93.96 27.07 M  R16 MMP-1 3 5 163.61 35.01 M 

R16 MMP-1 2 10 91.14 40.89 L  R16 MMP-1 3 6 139.47 24.54 M 

R13 MMP-1 5 7 71.06 26.43 M  R16 MMP-1 3 7 178.36 34.04 M 

R13 MMP-1 5 8 61.87 32.69 M  R16 MMP-1 3 8 167.60 38.92 M 

R13 MMP-1 5 9 62.33 32.54 M  R16 MMP-1 3 9 111.83 27.05 M 

R13 MMP-1 5 10 87.46 36.80 M  R16 MMP-1 3 10 134.33 41.16 L 

R13 MMP-1 6 1 50.07 19.63 S  R16 MMP-1 4 1 90.35 39.53 M 

R13 MMP-1 6 2 61.76 32.48 M  R16 MMP-1 4 2 100.74 30.73 M 

        φ: diameter; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.6. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R16 MMP-1 4 3 80.12 22.81 M  R17 MMP-1 3 3 55.75 18.47 S 

R16 MMP-1 4 4 69.65 41.38 L  R17 MMP-1 3 4 71.02 40.27 L 

R16 MMP-1 4 5 85.82 31.06 M  R17 MMP-1 3 5 73.84 36.13 M 

R16 MMP-1 4 6 106.26 25.76 M  R17 MMP-1 3 6 107.18 21.59 M 

R16 MMP-1 4 7 60.12 38.77 M  R17 MMP-1 3 7 42.93 38.46 M 

R16 MMP-1 4 8 79.33 33.15 M  R17 MMP-1 3 8 40.31 43.46 L 

R16 MMP-1 4 9 65.55 26.67 M  R17 MMP-1 3 9 77.64 32.97 M 

R16 MMP-1 4 10 99.51 35.25 M  R17 MMP-1 3 10 75.32 24.46 M 

R16 MMP-1 5 1 59.58 45.07 L  R17 MMP-1 4 1 58.23 25.03 M 

R16 MMP-1 5 2 87.78 31.22 M  R17 MMP-1 4 2 65.60 48.50 L 

R16 MMP-1 5 3 76.61 29.88 M  R17 MMP-1 4 3 50.44 25.73 M 

R16 MMP-1 5 4 55.91 38.80 M  R17 MMP-1 4 4 77.13 36.92 M 

R16 MMP-1 5 5 69.29 40.99 L  R17 MMP-1 4 5 76.82 28.35 M 

R16 MMP-1 5 6 58.97 28.37 M  R17 MMP-1 4 6 72.45 40.91 L 

R16 MMP-1 5 7 69.23 34.32 M  R17 MMP-1 4 7 77.15 29.95 M 

R16 MMP-1 5 8 74.36 30.80 M  R17 MMP-1 4 8 91.37 40.48 L 

R16 MMP-1 5 9 85.81 26.22 M  R17 MMP-1 4 9 66.98 27.90 M 

R16 MMP-1 5 10 60.14 36.59 M  R17 MMP-1 4 10 83.95 37.24 M 

R16 MMP-1 6 1 142.31 28.19 M  R17 MMP-1 5 1 88.36 41.26 L 

R16 MMP-1 6 2 105.28 29.82 M  R17 MMP-1 5 2 56.36 20.82 S 

R16 MMP-1 6 3 117.95 34.71 M  R17 MMP-1 5 3 129.16 40.22 L 

R16 MMP-1 6 4 95.32 38.66 M  R17 MMP-1 5 4 131.05 38.62 M 

R16 MMP-1 6 5 82.72 46.55 L  R17 MMP-1 5 5 155.42 22.70 M 

R16 MMP-1 6 6 100.71 40.94 L  R17 MMP-1 5 6 138.80 21.65 M 

R16 MMP-1 6 7 86.38 39.49 M  R17 MMP-1 5 7 128.66 40.04 L 

R16 MMP-1 6 8 69.23 44.99 L  R17 MMP-1 5 8 129.67 37.23 M 

R16 MMP-1 6 9 86.04 37.05 M  R17 MMP-1 5 9 116.68 18.51 S 

R16 MMP-1 6 10 130.14 26.37 M  R17 MMP-1 5 10 153.16 34.28 M 

R17 MMP-1 1 1 117.68 19.41 S  R17 MMP-1 6 1 140.80 40.56 L 

R17 MMP-1 1 2 88.95 42.47 L  R17 MMP-1 6 2 183.07 35.13 M 

R17 MMP-1 1 3 106.12 32.80 M  R17 MMP-1 6 3 113.41 26.29 M 

R17 MMP-1 1 4 177.67 30.96 M  R17 MMP-1 6 4 67.87 54.39 L 

R17 MMP-1 1 5 116.14 20.90 S  R17 MMP-1 6 5 144.54 29.09 M 

R17 MMP-1 1 6 81.43 22.98 M  R17 MMP-1 6 6 174.90 37.72 M 

R17 MMP-1 1 7 105.27 52.80 L  R17 MMP-1 6 7 92.81 22.44 M 

R17 MMP-1 1 8 88.14 18.80 S  R17 MMP-1 6 8 71.12 24.81 M 

R17 MMP-1 1 9 76.94 28.42 M  R17 MMP-1 6 9 88.17 46.87 L 

R17 MMP-1 1 10 82.92 32.76 M  R17 MMP-1 6 10 165.87 44.45 L 

R17 MMP-1 2 1 57.56 26.13 M  R40 naïve 1 1 25.78 21.00 M 

R17 MMP-1 2 2 85.63 23.11 M  R40 naïve 1 1 102.81 35.26 M 

R17 MMP-1 2 3 61.72 33.47 M  R40 naïve 1 2 45.67 24.87 M 

R17 MMP-1 2 4 127.16 43.74 L  R40 naïve 1 2 93.49 32.47 M 

R17 MMP-1 2 5 119.92 44.14 L  R40 naïve 1 3 43.37 44.28 L 

R17 MMP-1 2 6 109.84 21.96 M  R40 naïve 1 3 113.39 34.95 M 

R17 MMP-1 2 7 98.09 22.80 M  R40 naïve 1 4 59.94 29.57 M 

R17 MMP-1 2 8 168.16 35.54 M  R40 naïve 1 4 89.68 31.55 M 

R17 MMP-1 2 9 118.55 45.64 L  R40 naïve 1 5 54.97 22.46 M 

R17 MMP-1 2 10 94.88 29.14 M  R40 naïve 1 5 71.66 34.74 M 

R17 MMP-1 3 1 79.04 29.53 M  R40 naïve 1 6 38.36 40.32 L 

R17 MMP-1 3 2 57.77 32.06 M  R40 naïve 1 6 154.48 25.58 M 

        φ: diameter; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.6. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R40 naïve 1 7 63.08 40.61 L  R40 naïve 4 2 54.29 29.15 M 

R40 naïve 1 7 109.63 35.71 M  R40 naïve 4 2 85.05 33.48 M 

R40 naïve 1 8 71.41 29.26 M  R40 naïve 4 3 105.96 22.56 M 

R40 naïve 1 8 69.54 31.14 M  R40 naïve 4 3 58.94 26.59 M 

R40 naïve 1 9 32.55 25.49 M  R40 naïve 4 4 63.84 22.75 M 

R40 naïve 1 9 60.74 37.17 M  R40 naïve 4 4 143.38 29.59 M 

R40 naïve 1 10 61.14 41.10 L  R40 naïve 4 5 62.94 25.87 M 

R40 naïve 1 10 28.35 29.29 M  R40 naïve 4 5 52.31 36.39 M 

R40 naïve 2 1 61.77 36.53 M  R40 naïve 4 6 46.13 40.36 L 

R40 naïve 2 1 66.64 19.39 S  R40 naïve 4 6 72.64 34.54 M 

R40 naïve 2 2 60.81 25.04 M  R40 naïve 4 7 41.55 28.20 M 

R40 naïve 2 2 55.34 27.16 M  R40 naïve 4 7 149.05 29.13 M 

R40 naïve 2 3 47.55 24.99 M  R40 naïve 4 8 80.37 40.59 L 

R40 naïve 2 3 42.15 28.53 M  R40 naïve 4 8 76.32 41.33 L 

R40 naïve 2 4 41.93 25.86 M  R40 naïve 4 9 46.65 29.78 M 

R40 naïve 2 4 65.18 27.23 M  R40 naïve 4 9 87.80 18.36 S 

R40 naïve 2 5 32.39 26.73 M  R40 naïve 4 10 74.66 22.56 M 

R40 naïve 2 5 64.17 30.48 M  R40 naïve 4 10 51.02 28.96 M 

R40 naïve 2 6 79.15 35.49 M  R40 naïve 5 1 32.11 18.67 S 

R40 naïve 2 6 46.92 18.59 S  R40 naïve 5 2 43.16 25.12 M 

R40 naïve 2 7 45.65 27.24 M  R40 naïve 5 3 37.48 23.79 M 

R40 naïve 2 7 71.86 14.49 S  R40 naïve 5 4 37.87 24.88 M 

R40 naïve 2 8 31.82 25.35 M  R40 naïve 5 5 38.07 32.43 M 

R40 naïve 2 8 71.95 25.81 M  R40 naïve 5 6 35.07 36.07 M 

R40 naïve 2 9 68.95 26.90 M  R40 naïve 5 7 30.10 27.13 M 

R40 naïve 2 9 50.71 15.86 S  R40 naïve 5 8 34.61 25.71 M 

R40 naïve 2 10 46.94 49.39 L  R40 naïve 5 9 30.31 21.11 M 

R40 naïve 2 10 76.88 31.30 M  R40 naïve 5 10 40.04 35.87 M 

R40 naïve 3 1 59.63 23.98 M  R40 naïve 6 1 58.12 30.59 M 

R40 naïve 3 1 54.37 18.82 S  R40 naïve 6 2 50.82 19.24 S 

R40 naïve 3 2 45.03 27.30 M  R40 naïve 6 3 70.12 29.95 M 

R40 naïve 3 2 46.92 18.37 S  R40 naïve 6 4 55.91 35.78 M 

R40 naïve 3 3 44.87 31.75 M  R40 naïve 6 5 42.68 25.45 M 

R40 naïve 3 3 50.37 20.28 S  R40 naïve 6 6 43.03 31.27 M 

R40 naïve 3 4 70.21 38.86 M  R40 naïve 6 7 39.80 24.12 M 

R40 naïve 3 4 41.79 17.13 S  R40 naïve 6 8 50.04 22.97 M 

R40 naïve 3 5 76.93 32.56 M  R40 naïve 6 9 47.91 23.10 M 

R40 naïve 3 5 58.44 35.23 M  R40 naïve 6 10 39.11 25.74 M 

R40 naïve 3 6 35.67 18.27 S  R40_S2 naïve 1 1 107.94 20.23 S 

R40 naïve 3 6 48.95 20.59 S  R40_S2 naïve 1 2 160.76 19.13 S 

R40 naïve 3 7 45.87 26.08 M  R40_S2 naïve 1 3 77.74 20.18 S 

R40 naïve 3 7 79.25 19.71 S  R40_S2 naïve 1 4 101.60 36.38 M 

R40 naïve 3 8 60.24 35.00 M  R40_S2 naïve 1 5 161.88 18.75 S 

R40 naïve 3 8 58.95 36.32 M  R40_S2 naïve 1 6 97.45 37.14 M 

R40 naïve 3 9 47.15 41.56 L  R40_S2 naïve 1 7 161.51 30.59 M 

R40 naïve 3 9 31.30 19.18 S  R40_S2 naïve 1 8 94.39 18.18 S 

R40 naïve 3 10 51.41 27.38 M  R40_S2 naïve 1 9 76.93 34.63 M 

R40 naïve 3 10 70.74 18.80 S  R40_S2 naïve 1 10 101.72 36.92 M 

R40 naïve 4 1 73.37 27.50 M  R40_S2 naïve 2 1 104.24 27.71 M 

R40 naïve 4 1 74.59 35.87 M  R40_S2 naïve 2 2 89.93 18.42 S 

        φ: diameter; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.6. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R40_S2 naïve 2 3 159.10 34.56 M  R44 MMP-1 3 3 137.95 44.04 L 

R40_S2 naïve 2 4 67.48 44.21 L  R44 MMP-1 3 4 109.64 46.12 L 

R40_S2 naïve 2 5 102.08 26.52 M  R44 MMP-1 3 5 142.92 30.53 M 

R40_S2 naïve 2 6 57.80 45.51 L  R44 MMP-1 3 6 115.43 21.47 M 

R40_S2 naïve 2 7 100.43 26.46 M  R44 MMP-1 3 7 130.94 42.03 L 

R40_S2 naïve 2 8 121.35 22.58 M  R44 MMP-1 3 8 135.14 33.56 M 

R40_S2 naïve 2 9 68.69 30.46 M  R44 MMP-1 3 9 159.19 48.77 L 

R40_S2 naïve 2 10 68.28 43.36 L  R44 MMP-1 3 10 99.48 38.63 M 

R40_S2 naïve 3 1 84.35 22.18 M  R44 MMP-1 4 1 223.39 23.85 M 

R40_S2 naïve 3 2 108.46 19.65 S  R44 MMP-1 4 2 202.41 31.32 M 

R40_S2 naïve 3 3 132.08 36.31 M  R44 MMP-1 4 3 217.80 39.99 M 

R40_S2 naïve 3 4 127.54 24.34 M  R44 MMP-1 4 4 168.32 29.15 M 

R40_S2 naïve 3 5 148.04 45.35 L  R44 MMP-1 4 5 194.03 29.93 M 

R40_S2 naïve 3 6 61.67 27.89 M  R44 MMP-1 4 6 184.29 46.80 L 

R40_S2 naïve 3 7 121.05 34.23 M  R44 MMP-1 4 7 206.72 27.13 M 

R40_S2 naïve 3 8 95.87 23.25 M  R44 MMP-1 4 8 204.67 39.89 M 

R40_S2 naïve 3 9 69.93 28.53 M  R44 MMP-1 4 9 225.59 45.08 L 

R40_S2 naïve 3 10 133.45 36.45 M  R44 MMP-1 4 10 123.65 51.35 L 

R40_S2 naïve 4 1 46.84 19.04 S  R44 MMP-1 5 1 146.04 18.07 S 

R40_S2 naïve 4 2 70.49 36.53 M  R44 MMP-1 5 2 100.98 18.98 S 

R40_S2 naïve 4 3 104.32 20.85 S  R44 MMP-1 5 3 168.88 34.89 M 

R40_S2 naïve 4 4 81.53 32.11 M  R44 MMP-1 5 4 135.88 29.27 M 

R40_S2 naïve 4 5 91.81 36.59 M  R44 MMP-1 5 5 180.63 21.38 M 

R40_S2 naïve 4 6 104.81 31.09 M  R44 MMP-1 5 6 109.88 27.78 M 

R40_S2 naïve 4 7 106.01 40.08 L  R44 MMP-1 5 7 111.11 31.36 M 

R40_S2 naïve 4 8 73.37 45.21 L  R44 MMP-1 5 8 141.80 46.54 L 

R40_S2 naïve 4 9 57.80 21.58 M  R44 MMP-1 5 9 135.46 36.86 M 

R40_S2 naïve 4 10 86.96 19.48 S  R44 MMP-1 5 10 73.83 27.53 M 

R44 MMP-1 1 1 96.55 28.74 M  R44 MMP-1 6 1 83.84 27.42 M 

R44 MMP-1 1 2 135.43 45.28 L  R44 MMP-1 6 2 73.91 26.80 M 

R44 MMP-1 1 3 141.92 37.02 M  R44 MMP-1 6 3 106.27 35.36 M 

R44 MMP-1 1 4 196.87 47.25 L  R44 MMP-1 6 4 61.08 31.81 M 

R44 MMP-1 1 5 205.65 53.10 L  R44 MMP-1 6 5 119.84 30.52 M 

R44 MMP-1 1 6 191.65 44.19 L  R44 MMP-1 6 6 114.01 31.26 M 

R44 MMP-1 1 7 201.44 46.15 L  R44 MMP-1 6 7 90.85 24.70 M 

R44 MMP-1 1 8 161.20 44.44 L  R44 MMP-1 6 8 76.21 40.02 L 

R44 MMP-1 1 9 179.85 49.80 L  R44 MMP-1 6 9 92.38 22.90 M 

R44 MMP-1 1 10 135.78 46.38 L  R44 MMP-1 6 10 76.01 42.31 L 

R44 MMP-1 2 1 88.64 36.66 M  R46 MMP-1 1 1 29.10 19.36 S 

R44 MMP-1 2 2 181.25 43.89 L  R46 MMP-1 1 2 28.15 29.65 M 

R44 MMP-1 2 3 211.47 37.50 M  R46 MMP-1 1 3 40.61 30.09 M 

R44 MMP-1 2 4 119.09 35.98 M  R46 MMP-1 1 4 38.05 33.18 M 

R44 MMP-1 2 5 178.87 37.07 M  R46 MMP-1 1 5 33.81 31.63 M 

R44 MMP-1 2 6 175.98 47.47 L  R46 MMP-1 1 6 32.12 22.49 M 

R44 MMP-1 2 7 154.68 39.96 M  R46 MMP-1 1 7 26.45 27.91 M 

R44 MMP-1 2 8 156.49 36.90 M  R46 MMP-1 1 8 23.57 28.81 M 

R44 MMP-1 2 9 60.30 39.60 M  R46 MMP-1 1 9 23.51 27.25 M 

R44 MMP-1 2 10 100.84 37.80 M  R46 MMP-1 1 10 31.13 34.98 M 

R44 MMP-1 3 1 153.20 24.64 M  R46 MMP-1 2 1 19.87 26.84 M 

R44 MMP-1 3 2 142.13 28.21 M  R46 MMP-1 2 2 20.94 29.08 M 

             φ: diameter; S: small; M: medium; L: large 

 

Note: Table is continued on the next page. 
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Table E.6. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R46 MMP-1 2 3 22.45 32.16 M  R47 MMP-1 1 3 66.95 21.35 M 

R46 MMP-1 2 4 20.71 27.61 M  R47 MMP-1 1 4 64.81 36.94 M 

R46 MMP-1 2 5 25.06 29.53 M  R47 MMP-1 1 5 50.83 32.72 M 

R46 MMP-1 2 6 13.19 30.19 M  R47 MMP-1 1 6 59.44 46.89 L 

R46 MMP-1 2 7 24.78 41.42 L  R47 MMP-1 1 7 76.94 34.14 M 

R46 MMP-1 2 8 34.75 35.24 M  R47 MMP-1 1 8 62.13 40.90 L 

R46 MMP-1 2 9 17.09 34.71 M  R47 MMP-1 1 9 52.23 36.01 M 

R46 MMP-1 2 10 22.30 31.63 M  R47 MMP-1 1 10 53.04 22.89 M 

R46 MMP-1 3 1 22.01 31.03 M  R47 MMP-1 2 1 50.46 32.55 M 

R46 MMP-1 3 2 28.90 23.28 M  R47 MMP-1 2 2 62.05 31.32 M 

R46 MMP-1 3 3 29.94 41.11 L  R47 MMP-1 2 3 51.37 47.98 L 

R46 MMP-1 3 4 27.98 28.98 M  R47 MMP-1 2 4 50.73 26.69 M 

R46 MMP-1 3 5 22.29 32.78 M  R47 MMP-1 2 5 40.49 38.09 M 

R46 MMP-1 3 6 35.61 45.50 L  R47 MMP-1 2 6 71.55 38.69 M 

R46 MMP-1 3 7 23.72 31.01 M  R47 MMP-1 2 7 41.78 29.63 M 

R46 MMP-1 3 8 19.48 33.51 M  R47 MMP-1 2 8 48.94 31.48 M 

R46 MMP-1 3 9 34.38 39.94 M  R47 MMP-1 2 9 40.34 27.10 M 

R46 MMP-1 3 10 30.44 34.43 M  R47 MMP-1 2 10 55.10 46.09 L 

R46 MMP-1 4 1 23.64 36.31 M  R47 MMP-1 3 1 24.32 22.23 M 

R46 MMP-1 4 2 29.11 35.03 M  R47 MMP-1 3 2 20.07 29.30 M 

R46 MMP-1 4 3 24.20 44.05 L  R47 MMP-1 3 3 27.66 39.66 M 

R46 MMP-1 4 4 20.96 30.08 M  R47 MMP-1 3 4 16.15 33.04 M 

R46 MMP-1 4 5 30.32 36.51 M  R47 MMP-1 3 5 23.42 31.43 M 

R46 MMP-1 4 6 31.52 41.89 L  R47 MMP-1 3 6 21.87 32.15 M 

R46 MMP-1 4 7 40.59 39.07 M  R47 MMP-1 3 7 15.14 48.15 L 

R46 MMP-1 4 8 32.58 24.62 M  R47 MMP-1 3 8 31.59 27.53 M 

R46 MMP-1 4 9 35.23 41.25 L  R47 MMP-1 3 9 20.83 30.02 M 

R46 MMP-1 4 10 26.46 36.43 M  R47 MMP-1 3 10 23.44 42.65 L 

R46 MMP-1 5 1 25.99 29.86 M  R47 MMP-1 4 1 40.59 26.25 M 

R46 MMP-1 5 2 29.44 32.32 M  R47 MMP-1 4 2 34.69 22.93 M 

R46 MMP-1 5 3 27.98 26.55 M  R47 MMP-1 4 3 38.66 36.45 M 

R46 MMP-1 5 4 27.86 26.35 M  R47 MMP-1 4 4 50.28 45.25 L 

R46 MMP-1 5 5 43.34 34.84 M  R47 MMP-1 4 5 42.44 24.84 M 

R46 MMP-1 5 6 28.57 32.58 M  R47 MMP-1 4 6 39.20 44.01 L 

R46 MMP-1 5 7 24.53 26.52 M  R47 MMP-1 4 7 42.29 34.72 M 

R46 MMP-1 5 8 18.57 34.91 M  R47 MMP-1 4 8 40.02 27.32 M 

R46 MMP-1 5 9 44.46 37.07 M  R47 MMP-1 4 9 37.29 25.74 M 

R46 MMP-1 5 10 36.72 24.55 M  R47 MMP-1 4 10 35.92 43.37 L 

R46 MMP-1 6 1 30.08 29.44 M  R47 MMP-1 5 1 25.62 29.69 M 

R46 MMP-1 6 2 41.28 32.71 M  R47 MMP-1 5 2 26.27 29.31 M 

R46 MMP-1 6 3 23.75 31.41 M  R47 MMP-1 5 3 25.36 28.83 M 

R46 MMP-1 6 4 35.37 36.93 M  R47 MMP-1 5 4 40.80 38.92 M 

R46 MMP-1 6 5 24.25 40.50 L  R47 MMP-1 5 5 32.14 24.46 M 

R46 MMP-1 6 6 31.73 44.16 L  R47 MMP-1 5 6 29.03 44.54 L 

R46 MMP-1 6 7 39.54 41.68 L  R47 MMP-1 5 7 17.72 28.54 M 

R46 MMP-1 6 8 28.67 25.89 M  R47 MMP-1 5 8 20.55 32.96 M 

R46 MMP-1 6 9 25.06 27.39 M  R47 MMP-1 5 9 23.56 26.71 M 

R46 MMP-1 6 10 16.89 30.77 M  R47 MMP-1 5 10 35.52 25.01 M 

R47 MMP-1 1 1 53.44 22.69 M  R47 MMP-1 6 1 60.14 45.27 L 

R47 MMP-1 1 2 58.05 30.36 M  R47 MMP-1 6 2 38.03 28.65 M 

               φ: diameter; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.6. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R47 MMP-1 6 3 94.81 41.54 L  R48 MMP-1 4 3 27.03 22.14 M 

R47 MMP-1 6 4 71.27 24.51 M  R48 MMP-1 4 4 43.24 38.29 M 

R47 MMP-1 6 5 65.65 35.78 M  R48 MMP-1 4 5 26.71 26.06 M 

R47 MMP-1 6 6 79.46 29.81 M  R48 MMP-1 4 6 26.99 33.86 M 

R47 MMP-1 6 7 86.57 38.34 M  R48 MMP-1 4 7 30.05 37.63 M 

R47 MMP-1 6 8 80.14 27.59 M  R48 MMP-1 4 8 33.75 35.54 M 

R47 MMP-1 6 9 124.63 31.95 M  R48 MMP-1 4 9 22.10 32.04 M 

R47 MMP-1 6 10 69.12 44.52 L  R48 MMP-1 4 10 27.27 26.28 M 

R47 MMP-1 7 1 52.83 25.82 M  R48 MMP-1 5 1 28.97 28.18 M 

R47 MMP-1 7 2 54.25 25.97 M  R48 MMP-1 5 2 29.88 32.80 M 

R47 MMP-1 7 3 52.81 31.09 M  R48 MMP-1 5 3 20.43 22.03 M 

R47 MMP-1 7 4 62.46 40.52 L  R48 MMP-1 5 4 32.92 35.87 M 

R47 MMP-1 7 5 57.13 21.78 M  R48 MMP-1 5 5 33.52 41.17 L 

R47 MMP-1 7 6 48.23 26.93 M  R48 MMP-1 5 6 21.63 25.97 M 

R47 MMP-1 7 7 68.97 44.95 L  R48 MMP-1 5 7 36.66 40.78 L 

R47 MMP-1 7 8 64.12 25.67 M  R48 MMP-1 5 8 25.90 27.17 M 

R47 MMP-1 7 9 62.43 33.38 M  R48 MMP-1 5 9 39.63 37.19 M 

R47 MMP-1 7 10 59.11 41.11 L  R48 MMP-1 5 10 36.37 29.75 M 

R48 MMP-1 1 1 64.28 56.40 L  R48 MMP-1 6 1 62.75 36.44 M 

R48 MMP-1 1 2 47.87 19.39 S  R48 MMP-1 6 2 57.68 32.16 M 

R48 MMP-1 1 3 90.13 31.73 M  R48 MMP-1 6 3 45.00 20.60 S 

R48 MMP-1 1 4 52.69 28.22 M  R48 MMP-1 6 4 54.08 25.26 M 

R48 MMP-1 1 5 69.71 30.86 M  R48 MMP-1 6 5 46.92 39.17 M 

R48 MMP-1 1 6 53.64 22.88 M  R48 MMP-1 6 6 40.96 21.79 M 

R48 MMP-1 1 7 48.53 26.63 M  R48 MMP-1 6 7 38.76 28.84 M 

R48 MMP-1 1 8 50.68 29.32 M  R48 MMP-1 6 8 46.07 27.69 M 

R48 MMP-1 1 9 53.05 38.21 M  R48 MMP-1 6 9 56.55 30.24 M 

R48 MMP-1 1 10 57.49 32.40 M  R48 MMP-1 6 10 72.94 37.44 M 

R48 MMP-1 2 1 45.42 26.75 M  R48 MMP-1 7 1 45.56 30.47 M 

R48 MMP-1 2 2 41.18 20.93 S  R48 MMP-1 7 2 51.18 37.86 M 

R48 MMP-1 2 3 71.50 38.70 M  R48 MMP-1 7 3 40.59 25.40 M 

R48 MMP-1 2 4 42.75 33.46 M  R48 MMP-1 7 4 88.38 40.37 L 

R48 MMP-1 2 5 53.71 52.54 L  R48 MMP-1 7 5 132.86 43.93 L 

R48 MMP-1 2 6 55.39 31.66 M  R48 MMP-1 7 6 59.48 29.34 M 

R48 MMP-1 2 7 54.41 36.77 M  R48 MMP-1 7 7 33.40 30.97 M 

R48 MMP-1 2 8 78.11 37.73 M  R48 MMP-1 7 8 44.16 45.20 L 

R48 MMP-1 2 9 41.91 31.70 M  R48 MMP-1 7 9 58.83 31.99 M 

R48 MMP-1 2 10 50.21 34.83 M  R48 MMP-1 7 10 43.37 29.09 M 

R48 MMP-1 3 1 73.54 27.78 M  R49 vehicle 1 1 21.95 24.67 M 

R48 MMP-1 3 2 73.97 28.31 M  R49 vehicle 1 2 18.58 20.85 S 

R48 MMP-1 3 3 84.80 28.25 M  R49 vehicle 1 3 21.27 43.64 L 

R48 MMP-1 3 4 69.70 27.78 M  R49 vehicle 1 4 30.85 22.25 M 

R48 MMP-1 3 5 63.88 26.82 M  R49 vehicle 1 5 20.68 24.04 M 

R48 MMP-1 3 6 74.95 44.12 L  R49 vehicle 1 6 34.07 45.12 L 

R48 MMP-1 3 7 52.91 25.39 M  R49 vehicle 1 7 18.34 31.80 M 

R48 MMP-1 3 8 72.62 37.84 M  R49 vehicle 1 8 27.35 28.33 M 

R48 MMP-1 3 9 57.13 22.13 M  R49 vehicle 1 9 19.72 23.56 M 

R48 MMP-1 3 10 67.50 47.76 L  R49 vehicle 1 10 35.06 40.05 L 

R48 MMP-1 4 1 29.86 22.09 M  R49 vehicle 2 1 24.99 28.26 M 

R48 MMP-1 4 2 50.09 40.80 L  R49 vehicle 2 2 33.00 34.56 M 

               φ: diameter; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.6. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R49 vehicle 2 3 35.56 43.07 L  R50 vehicle 1 3 33.18 25.95 M 

R49 vehicle 2 4 31.27 24.17 M  R50 vehicle 1 4 26.94 24.00 M 

R49 vehicle 2 5 26.84 32.13 M  R50 vehicle 1 5 34.38 26.79 M 

R49 vehicle 2 6 30.57 38.75 M  R50 vehicle 1 6 19.11 27.29 M 

R49 vehicle 2 7 15.10 27.63 M  R50 vehicle 1 7 38.48 27.57 M 

R49 vehicle 2 8 23.36 25.41 M  R50 vehicle 1 8 39.30 42.08 L 

R49 vehicle 2 9 24.04 35.16 M  R50 vehicle 1 9 39.30 50.56 L 

R49 vehicle 2 10 24.07 23.66 M  R50 vehicle 1 10 47.22 23.72 M 

R49 vehicle 3 1 33.76 19.34 S  R50 vehicle 2 1 22.06 26.79 M 

R49 vehicle 3 2 16.44 23.30 M  R50 vehicle 2 2 27.41 49.62 L 

R49 vehicle 3 3 20.87 32.10 M  R50 vehicle 2 3 27.82 43.72 L 

R49 vehicle 3 4 20.84 27.17 M  R50 vehicle 2 4 29.89 30.89 M 

R49 vehicle 3 5 37.51 31.09 M  R50 vehicle 2 5 21.30 39.42 M 

R49 vehicle 3 6 20.84 35.46 M  R50 vehicle 2 6 31.50 25.26 M 

R49 vehicle 3 7 22.51 39.37 M  R50 vehicle 2 7 20.36 39.95 M 

R49 vehicle 3 8 15.61 23.67 M  R50 vehicle 2 8 17.47 28.46 M 

R49 vehicle 3 9 14.70 26.24 M  R50 vehicle 2 9 18.21 34.81 M 

R49 vehicle 3 10 24.82 26.54 M  R50 vehicle 2 10 29.39 37.77 M 

R49 vehicle 4 1 21.33 47.49 L  R50 vehicle 3 1 28.52 33.41 M 

R49 vehicle 4 2 29.59 34.31 M  R50 vehicle 3 2 25.69 48.04 L 

R49 vehicle 4 3 19.52 28.63 M  R50 vehicle 3 3 24.25 30.16 M 

R49 vehicle 4 4 24.89 34.52 M  R50 vehicle 3 4 30.33 32.59 M 

R49 vehicle 4 5 27.80 16.23 S  R50 vehicle 3 5 28.02 26.73 M 

R49 vehicle 4 6 20.50 39.45 M  R50 vehicle 3 6 14.94 26.37 M 

R49 vehicle 4 7 16.59 33.51 M  R50 vehicle 3 7 29.64 36.03 M 

R49 vehicle 4 8 32.69 30.20 M  R50 vehicle 3 8 20.11 25.98 M 

R49 vehicle 4 9 21.80 28.42 M  R50 vehicle 3 9 18.96 35.19 M 

R49 vehicle 4 10 13.47 30.56 M  R50 vehicle 3 10 26.58 36.55 M 

R49 vehicle 5 1 26.23 20.09 S  R50 vehicle 4 1 34.43 36.90 M 

R49 vehicle 5 2 23.46 21.32 M  R50 vehicle 4 2 44.25 29.54 M 

R49 vehicle 5 3 32.49 33.04 M  R50 vehicle 4 3 43.59 30.47 M 

R49 vehicle 5 4 32.00 32.86 M  R50 vehicle 4 4 47.89 35.45 M 

R49 vehicle 5 5 21.32 32.97 M  R50 vehicle 4 5 33.19 30.10 M 

R49 vehicle 5 6 34.88 33.98 M  R50 vehicle 4 6 21.14 26.30 M 

R49 vehicle 5 7 18.37 24.20 M  R50 vehicle 4 7 39.92 33.96 M 

R49 vehicle 5 8 26.89 33.12 M  R50 vehicle 4 8 26.82 39.19 M 

R49 vehicle 5 9 19.29 38.13 M  R50 vehicle 4 9 30.30 39.50 M 

R49 vehicle 5 10 21.29 43.59 L  R50 vehicle 4 10 12.82 42.24 L 

R49 vehicle 6 1 51.93 26.77 M  R50 vehicle 5 1 53.21 26.06 M 

R49 vehicle 6 2 46.15 28.20 M  R50 vehicle 5 2 34.79 28.08 M 

R49 vehicle 6 3 61.78 38.26 M  R50 vehicle 5 3 42.75 25.32 M 

R49 vehicle 6 4 26.50 25.27 M  R50 vehicle 5 4 49.61 38.27 M 

R49 vehicle 6 5 47.40 38.85 M  R50 vehicle 5 5 46.40 45.59 L 

R49 vehicle 6 6 45.58 37.11 M  R50 vehicle 5 6 37.37 28.55 M 

R49 vehicle 6 7 31.85 27.86 M  R50 vehicle 5 7 28.42 37.24 M 

R49 vehicle 6 8 38.95 33.91 M  R50 vehicle 5 8 35.29 25.25 M 

R49 vehicle 6 9 41.13 24.57 M  R50 vehicle 5 9 26.49 29.28 M 

R49 vehicle 6 10 43.59 35.71 M  R50 vehicle 5 10 35.62 33.59 M 

R50 vehicle 1 1 30.69 30.09 M  R50 vehicle 6 1 45.15 21.76 M 

R50 vehicle 1 2 38.91 25.47 M  R50 vehicle 6 2 55.48 20.45 S 

φ: diameter; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.6. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R50 vehicle 6 3 27.42 30.42 M  R51 vehicle 5 3 117.79 32.67 M 

R50 vehicle 6 4 47.44 27.57 M  R51 vehicle 5 4 82.11 35.48 M 

R50 vehicle 6 5 52.08 40.81 L  R51 vehicle 5 5 50.71 38.48 M 

R50 vehicle 6 6 41.11 29.76 M  R51 vehicle 5 6 43.36 34.57 M 

R50 vehicle 6 7 41.86 49.75 L  R51 vehicle 5 7 49.19 29.37 M 

R50 vehicle 6 8 50.89 40.50 L  R51 vehicle 5 8 74.07 37.93 M 

R50 vehicle 6 9 32.97 33.00 M  R51 vehicle 5 9 38.63 33.54 M 

R50 vehicle 6 10 29.73 26.35 M  R51 vehicle 5 10 64.04 33.16 M 

R51 vehicle 1 1 42.07 29.48 M  R51 vehicle 6 1 70.95 22.31 M 

R51 vehicle 1 2 26.61 20.84 S  R51 vehicle 6 2 32.06 23.08 M 

R51 vehicle 1 3 37.62 27.91 M  R51 vehicle 6 3 75.01 32.01 M 

R51 vehicle 1 4 47.98 24.60 M  R51 vehicle 6 4 52.41 35.31 M 

R51 vehicle 1 5 34.82 26.38 M  R51 vehicle 6 5 49.12 20.78 S 

R51 vehicle 1 6 39.99 35.70 M  R51 vehicle 6 6 57.39 34.15 M 

R51 vehicle 1 7 72.43 32.80 M  R51 vehicle 6 7 58.40 43.39 L 

R51 vehicle 1 8 40.30 31.04 M  R51 vehicle 6 8 46.97 33.08 M 

R51 vehicle 1 9 42.90 25.00 M  R51 vehicle 6 9 39.22 26.13 M 

R51 vehicle 1 10 19.93 33.41 M  R51 vehicle 6 10 53.91 32.42 M 

R51 vehicle 2 1 60.81 27.89 M         

R51 vehicle 2 2 61.96 33.80 M         

R51 vehicle 2 3 38.53 27.00 M         

R51 vehicle 2 4 70.75 32.09 M         

R51 vehicle 2 5 43.28 24.65 M         

R51 vehicle 2 6 71.87 32.76 M         

R51 vehicle 2 7 25.13 22.25 M         

R51 vehicle 2 8 38.83 29.74 M         

R51 vehicle 2 9 46.13 43.19 L         

R51 vehicle 2 10 51.87 25.00 M         

R51 vehicle 3 1 28.75 24.94 M         

R51 vehicle 3 2 34.59 28.62 M         

R51 vehicle 3 3 26.80 24.10 M         

R51 vehicle 3 4 54.93 31.01 M         

R51 vehicle 3 5 41.73 24.10 M         

R51 vehicle 3 6 49.44 26.22 M         

R51 vehicle 3 7 21.27 26.34 M         

R51 vehicle 3 8 35.48 32.18 M         

R51 vehicle 3 9 53.64 32.56 M         

R51 vehicle 3 10 51.66 34.09 M         

R51 vehicle 4 1 31.07 18.96 S         

R51 vehicle 4 2 58.67 36.73 M         

R51 vehicle 4 3 60.91 21.91 M         

R51 vehicle 4 4 41.29 25.48 M         

R51 vehicle 4 5 67.68 37.60 M         

R51 vehicle 4 6 76.91 28.02 M         

R51 vehicle 4 7 54.19 24.49 M         

R51 vehicle 4 8 26.02 30.06 M         

R51 vehicle 4 9 31.52 34.53 M         

R51 vehicle 4 10 72.08 33.68 M         

R51 vehicle 5 1 37.29 21.89 M         

R51 vehicle 5 2 80.55 33.25 M         

φ: diameter; S: small; M: medium; L: large 
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Figure E.5. Immunolabeling of substance in DRG neurons as designated in Table E.6 (Chapter 7) 

 

Note: Figure is continued on the next page. 
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Figure E.5. continued 

 

Note: Figure is continued on the next page. 
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Figure E.5. continued 
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Table E.7. Pixel intensity of MMP-9 labeling in DRG neurons by size from rats injected with MMP-1 or 

vehicle (Chapter 7) 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R13 MMP-1 5 1 41.60 24.48 M  R17 MMP-1 4 9 50.07 21.11 M 

R13 MMP-1 5 2 30.23 40.48 L  R17 MMP-1 4 10 61.99 38.88 M 

R13 MMP-1 5 3 23.92 27.65 M  R17 MMP-1 5 1 55.72 20.40 S 

R13 MMP-1 5 4 28.26 27.16 M  R17 MMP-1 5 2 47.58 25.31 M 

R13 MMP-1 5 5 35.29 25.47 M  R17 MMP-1 5 3 44.42 26.60 M 

R13 MMP-1 5 6 41.98 33.21 M  R17 MMP-1 5 4 62.45 22.76 M 

R13 MMP-1 5 7 27.67 29.54 M  R17 MMP-1 5 5 66.23 17.81 S 

R13 MMP-1 5 8 37.03 39.03 M  R17 MMP-1 5 6 90.22 24.08 M 

R13 MMP-1 5 9 49.23 26.96 M  R17 MMP-1 5 7 68.61 22.89 M 

R13 MMP-1 5 10 31.88 34.50 M  R17 MMP-1 5 8 74.43 26.35 M 

R13 MMP-1 6 1 44.31 23.28 M  R17 MMP-1 5 9 59.93 38.65 M 

R13 MMP-1 6 2 41.09 23.28 M  R17 MMP-1 5 10 62.97 30.00 M 

R13 MMP-1 6 3 46.87 25.03 M  R40 naïve 5 1 49.27 21.61 M 

R13 MMP-1 6 4 62.96 22.79 M  R40 naïve 5 2 45.88 17.88 S 

R13 MMP-1 6 5 65.12 25.31 M  R40 naïve 5 3 43.36 15.13 S 

R13 MMP-1 6 6 49.72 25.74 M  R40 naïve 5 4 60.88 31.19 M 

R13 MMP-1 6 7 49.87 21.71 M  R40 naïve 5 5 49.13 28.43 M 

R13 MMP-1 6 8 37.99 19.94 S  R40 naïve 5 6 60.14 18.36 S 

R13 MMP-1 6 9 26.11 18.18 S  R40 naïve 5 7 54.61 22.36 M 

R13 MMP-1 6 10 40.07 25.06 M  R40 naïve 5 8 34.74 22.07 M 

R16 MMP-1 3 1 77.35 21.75 M  R40 naïve 5 9 42.25 25.35 M 

R16 MMP-1 3 2 66.48 26.84 M  R40 naïve 5 10 63.31 22.11 M 

R16 MMP-1 3 3 61.54 48.20 L  R40-S9 naïve 4 1 23.32 18.18 S 

R16 MMP-1 3 4 105.42 37.66 M  R40-S9 naïve 4 2 24.12 17.59 S 

R16 MMP-1 3 5 85.72 25.18 M  R40-S9 naïve 4 3 25.34 18.18 S 

R16 MMP-1 3 6 58.24 25.14 M  R40-S9 naïve 4 4 24.21 18.56 S 

R16 MMP-1 3 7 64.78 27.79 M  R40-S9 naïve 4 5 14.47 26.87 M 

R16 MMP-1 3 8 94.20 23.01 M  R40-S9 naïve 4 6 19.63 22.78 M 

R16 MMP-1 3 9 87.54 37.95 M  R40-S9 naïve 4 7 23.09 21.44 M 

R16 MMP-1 3 10 118.35 26.08 M  R40-S9 naïve 4 8 19.69 26.77 M 

R16 MMP-1 6 1 46.07 29.97 M  R40-S9 naïve 4 9 20.53 14.75 S 

R16 MMP-1 6 2 35.71 17.72 S  R40-S9 naïve 4 10 26.40 21.62 M 

R16 MMP-1 6 3 62.95 20.66 S  R44 MMP-1 4 1 62.38 28.23 M 

R16 MMP-1 6 4 48.38 20.94 S  R44 MMP-1 4 2 51.79 20.14 S 

R16 MMP-1 6 5 50.21 13.32 S  R44 MMP-1 4 3 95.27 18.62 S 

R16 MMP-1 6 6 60.50 34.67 M  R44 MMP-1 4 4 44.20 22.58 M 

R16 MMP-1 6 7 56.68 28.95 M  R44 MMP-1 4 5 37.06 24.02 M 

R16 MMP-1 6 8 50.72 13.67 S  R44 MMP-1 4 6 23.14 34.41 M 

R16 MMP-1 6 9 60.69 27.21 M  R44 MMP-1 4 7 47.34 35.48 M 

R16 MMP-1 6 10 64.76 18.69 S  R44 MMP-1 4 8 46.38 23.35 M 

R17 MMP-1 4 1 71.35 46.90 L  R44 MMP-1 4 9 34.95 24.83 M 

R17 MMP-1 4 2 79.29 33.27 M  R44 MMP-1 4 10 80.31 16.67 S 

R17 MMP-1 4 3 73.06 32.50 M  R44 MMP-1 5 1 28.77 15.49 S 

R17 MMP-1 4 4 89.84 21.85 M  R44 MMP-1 5 2 22.95 16.15 S 

R17 MMP-1 4 5 79.49 29.78 M  R44 MMP-1 5 3 30.55 26.68 M 

R17 MMP-1 4 6 70.26 38.55 M  R44 MMP-1 5 4 27.99 20.14 S 

R17 MMP-1 4 7 36.80 24.53 M  R44 MMP-1 5 5 22.03 27.02 M 

R17 MMP-1 4 8 47.18 17.98 S  R44 MMP-1 5 6 25.57 21.36 M 

        φ: diameter; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.7. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin  Rat Group 

image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R44 MMP-1 5 7 38.92 22.70 M  R48 vehicle 5 7 71.72 24.35 M 

R44 MMP-1 5 8 43.73 30.06 M  R48 vehicle 5 8 48.80 16.46 S 

R44 MMP-1 5 9 51.75 20.62 S  R48 vehicle 5 9 55.06 26.48 M 

R44 MMP-1 5 10 28.81 17.99 S  R48 vehicle 5 10 55.63 38.18 M 

R46 MMP-1 3 1 66.84 61.91 L  R48 vehicle 6 1 54.78 20.17 S 

R46 MMP-1 3 2 55.56 41.04 L  R48 vehicle 6 2 90.61 20.48 S 

R46 MMP-1 3 3 73.94 27.60 M  R48 vehicle 6 3 61.31 23.05 M 

R46 MMP-1 3 4 51.70 25.36 M  R48 vehicle 6 4 59.50 45.73 L 

R46 MMP-1 3 5 75.08 62.48 L  R48 vehicle 6 5 47.85 18.38 S 

R46 MMP-1 3 6 70.27 54.43 L  R48 vehicle 6 6 60.61 19.92 S 

R46 MMP-1 3 7 53.87 40.69 L  R48 vehicle 6 7 67.42 46.15 L 

R46 MMP-1 3 8 52.64 27.86 M  R48 vehicle 6 8 59.38 20.48 S 

R46 MMP-1 3 9 64.93 45.08 L  R48 vehicle 6 9 51.13 19.59 S 

R46 MMP-1 3 10 99.27 30.88 M  R48 vehicle 6 10 51.44 14.82 S 

R46 MMP-1 6 1 52.37 21.56 M  R49 vehicle 2 1 123.30 19.75 S 

R46 MMP-1 6 2 57.10 23.66 M  R49 vehicle 2 2 154.49 13.98 S 

R46 MMP-1 6 3 35.68 30.70 M  R49 vehicle 2 3 114.78 20.91 S 

R46 MMP-1 6 4 85.23 28.92 M  R49 vehicle 2 4 128.32 21.52 M 

R46 MMP-1 6 5 49.46 42.16 L  R49 vehicle 2 5 106.50 29.45 M 

R46 MMP-1 6 6 46.58 14.30 S  R49 vehicle 2 6 106.53 21.67 M 

R46 MMP-1 6 7 51.12 30.63 M  R49 vehicle 2 7 111.63 30.44 M 

R46 MMP-1 6 8 44.57 31.05 M  R49 vehicle 2 8 119.24 21.33 M 

R46 MMP-1 6 9 57.86 23.28 M  R49 vehicle 2 9 96.66 14.81 S 

R46 MMP-1 6 10 50.13 22.15 M  R49 vehicle 2 10 102.64 21.67 M 

R47 MMP-1 3 1 73.27 24.99 M  R49 vehicle 6 1 59.78 21.37 M 

R47 MMP-1 3 2 108.52 29.45 M  R49 vehicle 6 2 84.73 21.29 M 

R47 MMP-1 3 3 98.54 15.89 S  R49 vehicle 6 3 56.74 25.26 M 

R47 MMP-1 3 4 104.82 16.35 S  R49 vehicle 6 4 39.47 27.68 M 

R47 MMP-1 3 5 76.63 17.45 S  R49 vehicle 6 5 86.42 23.45 M 

R47 MMP-1 3 6 88.22 18.97 S  R49 vehicle 6 6 55.22 20.45 S 

R47 MMP-1 3 7 88.25 50.32 L  R49 vehicle 6 7 46.54 18.61 S 

R47 MMP-1 3 8 85.59 41.55 L  R49 vehicle 6 8 71.28 29.83 M 

R47 MMP-1 3 9 88.77 46.23 L  R49 vehicle 6 9 58.95 41.97 L 

R47 MMP-1 3 10 98.61 16.87 S  R49 vehicle 6 10 64.05 24.91 M 

R47 MMP-1 5 1 82.21 27.15 M  R50 vehicle 4 1 61.96 23.23 M 

R47 MMP-1 5 2 84.28 27.35 M  R50 vehicle 4 2 45.58 24.56 M 

R47 MMP-1 5 3 67.20 27.77 M  R50 vehicle 4 3 35.73 28.63 M 

R47 MMP-1 5 4 61.22 17.02 S  R50 vehicle 4 4 60.51 25.82 M 

R47 MMP-1 5 5 80.13 18.81 S  R50 vehicle 4 5 35.52 22.83 M 

R47 MMP-1 5 6 59.53 17.38 S  R50 vehicle 4 6 34.36 22.92 M 

R47 MMP-1 5 7 71.76 22.16 M  R50 vehicle 4 7 35.16 22.07 M 

R47 MMP-1 5 8 86.83 25.11 M  R50 vehicle 4 8 47.67 22.49 M 

R47 MMP-1 5 9 73.93 31.40 M  R50 vehicle 4 9 36.37 29.61 M 

R47 MMP-1 5 10 80.63 21.52 M  R50 vehicle 4 10 56.00 24.19 M 

R48 vehicle 5 1 73.66 33.48 M  R50 vehicle 6 1 42.31 48.48 L 

R48 vehicle 5 2 71.33 44.51 L  R50 vehicle 6 2 80.71 19.53 S 

R48 vehicle 5 3 39.07 40.10 L  R50 vehicle 6 3 82.63 17.16 S 

R48 vehicle 5 4 64.10 25.93 M  R50 vehicle 6 4 60.88 20.32 S 

R48 vehicle 5 5 71.49 24.98 M  R50 vehicle 6 5 82.41 11.56 S 

R48 vehicle 5 6 89.46 26.86 M  R50 vehicle 6 6 63.06 42.84 L 

        φ: diameter; S: small; M: medium; L: large 

Note: Table is continued on the next page. 
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Table E.7. continued 

Rat Group 
image 

no. 

cell 

no. 
intensity 

φ  

(μm) 
bin 

R50 vehicle 6 7 55.83 36.84 M 

R50 vehicle 6 8 74.57 43.10 L 

R50 vehicle 6 9 50.13 30.29 M 

R50 vehicle 6 10 72.03 43.93 L 

R51 vehicle 3 1 38.99 28.38 M 

R51 vehicle 3 2 65.45 31.41 M 

R51 vehicle 3 3 48.71 20.87 S 

R51 vehicle 3 4 59.06 20.81 S 

R51 vehicle 3 5 76.17 32.66 M 

R51 vehicle 3 6 77.26 38.10 M 

R51 vehicle 3 7 74.27 40.94 L 

R51 vehicle 3 8 65.33 31.35 M 

R51 vehicle 3 9 47.62 40.64 L 

R51 vehicle 3 10 40.31 18.24 S 

R51 vehicle 6 1 62.56 24.27 M 

R51 vehicle 6 2 81.87 16.34 S 

R51 vehicle 6 3 108.06 21.31 M 

R51 vehicle 6 4 69.39 22.31 M 

R51 vehicle 6 5 92.90 26.77 M 

R51 vehicle 6 6 56.38 35.84 M 

R51 vehicle 6 7 96.75 37.14 M 

R51 vehicle 6 8 89.08 37.70 M 

R51 vehicle 6 9 58.68 28.81 M 

R51 vehicle 6 10 74.41 20.97 S 

    φ: diameter; S: small; M: medium; L: large 
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Figure E.6. Immunolabeling of MMP-9 in DRG neurons as designated in Table E.7 (Chapter 7) 
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Table E.8. Densitometry of substance P immunolabeling in the superficial dorsal horn of the spinal cord 

from rats injected with MMP-1 or vehicle (Chapter 7) 

Rat Group 
image 

no. 

substance P 

(% positive) 
 Rat Group 

image 

no. 

substance P 

(% positive) 

R03 naïve 1 3.11%  R44 MMP-1 1 12.71% 

R03 naïve 2 9.11%  R44 MMP-1 2 25.47% 

R03 naïve 3 6.01%  R44 MMP-1 3 10.31% 

R03 naïve 4 12.28%  R44 MMP-1 4 25.79% 

R03 naïve 5 6.28%  R46 MMP-1 1 2.58% 

R03 naïve 6 3.34%  R46 MMP-1 2 1.43% 

R13 MMP-1 1 0.27%  R46 MMP-1 3 1.85% 

R13 MMP-1 2 9.45%  R46 MMP-1 4 2.75% 

R13 MMP-1 3 22.58%  R46 MMP-1 5 3.16% 

R13 MMP-1 4 7.35%  R46 MMP-1 6 38.48% 

R13 MMP-1 5 0.56%  R47 MMP-1 1 7.29% 

R16 MMP-1 1 7.93%  R47 MMP-1 2 23.07% 

R16 MMP-1 2 6.58%  R47 MMP-1 3 9.82% 

R16 MMP-1 3 4.64%  R47 MMP-1 4 1.07% 

R16 MMP-1 4 1.96%  R47 MMP-1 5 2.69% 

R16 MMP-1 5 11.51%  R47 MMP-1 6 2.46% 

R16 MMP-1 6 60.23%  R48 vehicle 1 10.81% 

R17 MMP-1 1 12.82%  R48 vehicle 2 13.17% 

R17 MMP-1 2 23.78%  R48 vehicle 3 13.17% 

R17 MMP-1 3 19.67%  R48 vehicle 4 6.22% 

R17 MMP-1 4 14.92%  R48 vehicle 5 6.26% 

R17 MMP-1 5 23.78%  R48 vehicle 6 9.43% 

R17 MMP-1 6 18.03%  R49 vehicle 1 5.62% 

R40_s1 naïve 1 1.26%  R49 vehicle 2 4.09% 

R40_s1 naïve 2 2.29%  R49 vehicle 3 3.57% 

R40_s1 naïve 3 1.46%  R49 vehicle 4 3.27% 

R40_s1 naïve 4 5.74%  R49 vehicle 5 3.28% 

R40_s1 naïve 5 2.59%  R49 vehicle 6 2.63% 

R40_s1 naïve 6 13.76%  R50 vehicle 1 2.41% 

R40_s2 naïve 1 15.49%  R50 vehicle 2 2.56% 

R40_s2 naïve 2 19.50%  R50 vehicle 3 2.60% 

R40_s2 naïve 3 5.90%  R50 vehicle 4 2.75% 

R40_s2 naïve 4 8.11%  R50 vehicle 5 3.87% 

R40_s2 naïve 5 24.54%  R50 vehicle 6 3.76% 

R40_s2 naïve 6 7.51%  R51 vehicle 1 0.78% 

R40_s3 naïve 1 1.96%  R51 vehicle 2 1.89% 

R40_s3 naïve 2 2.47%  R51 vehicle 3 3.10% 

R40_s3 naïve 3 43.15%  R51 vehicle 4 6.65% 

R40_s3 naïve 4 29.96%  R51 vehicle 5 2.83% 

R40_s3 naïve 5 4.81%  R51 vehicle 6 5.35% 

R40_s3 naïve 6 6.99%      
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Figure E.7. Immunolabeling of substance P in the superficial dorsal horn of the spinal cord as 

designated in Table E.8 (Chapter 7) 

 

Note: Figure is continued on the next page. 
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Figure E.7. continued 
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Table E.9. Densitometry of MMP-9 immunolabeling in the superficial dorsal horn of the spinal cord from 

rats injected with MMP-1 or vehicle (Chapter 7) 

Rat Group 
image 

no. 

substance P 

(% positive) 
 Rat Group 

image 

no. 

substance P 

(% positive) 

R13 MMP-1 1 0.33%  R46 MMP-1 1 47.40% 

R13 MMP-1 2 1.52%  R46 MMP-1 2 2.76% 

R13 MMP-1 3 0.23%  R46 MMP-1 3 11.23% 

R13 MMP-1 4 0.90%  R46 MMP-1 4 24.95% 

R13 MMP-1 5 1.68%  R46 MMP-1 5 0.76% 

R13 MMP-1 6 0.06%  R46 MMP-1 6 0.07% 

R16 MMP-1 1 0.24%  R47 MMP-1 1 63.20% 

R16 MMP-1 2 7.54%  R47 MMP-1 2 73.19% 

R16 MMP-1 3 43.89%  R47 MMP-1 3 29.59% 

R16 MMP-1 4 15.13%  R47 MMP-1 4 2.30% 

R16 MMP-1 5 28.99%  R47 MMP-1 5 35.20% 

R16 MMP-1 6 0.10%  R47 MMP-1 6 57.17% 

R17 MMP-1 1 75.60%  R48 vehicle 1 0.09% 

R17 MMP-1 2 74.21%  R48 vehicle 2 20.39% 

R17 MMP-1 3 9.27%  R48 vehicle 3 42.21% 

R17 MMP-1 4 6.53%  R48 vehicle 4 32.03% 

R17 MMP-1 5 21.16%  R48 vehicle 5 1.93% 

R17 MMP-1 6 34.93%  R48 vehicle 6 11.03% 

R40 naïve 1 72.62%  R49 vehicle 1 0.88% 

R40 naïve 2 61.41%  R49 vehicle 2 0.05% 

R40 naïve 3 11.50%  R49 vehicle 3 35.56% 

R40 naïve 4 22.52%  R49 vehicle 4 35.90% 

R40 naïve 5 44.50%  R49 vehicle 5 28.64% 

R40 naïve 6 4.02%  R49 vehicle 6 1.32% 

R40_S9 naïve 1 1.26%  R50 vehicle 1 19.39% 

R40_S9 naïve 2 2.13%  R50 vehicle 2 19.37% 

R40_S9 naïve 3 42.18%  R50 vehicle 3 0.12% 

R40_S9 naïve 4 0.67%  R50 vehicle 4 1.10% 

R40_S9 naïve 5 5.21%  R50 vehicle 5 0.33% 

R40_S9 naïve 6 21.57%  R50 vehicle 6 2.78% 

R44 MMP-1 1 0.82%  R51 vehicle 1 20.98% 

R44 MMP-1 2 11.06%  R51 vehicle 2 11.16% 

R44 MMP-1 3 0.18%  R51 vehicle 3 10.55% 

R44 MMP-1 4 4.40%  R51 vehicle 4 31.89% 

R44 MMP-1 5 0.35%  R51 vehicle 5 9.36% 

R44 MMP-1 6 0.19%  R51 vehicle 6 4.97% 
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Figure E.8. Immunolabeling of MMP-9 in the superficial dorsal horn of the spinal cord as designated 

in Table E.9 (Chapter 7) 

 

Note: Figure is continued on the next page. 
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Figure E.8. continued 
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APPENDIX F 

Mechanical & Immunolabeling Data for Bacterial 

Collagenase Exposure Studies in the Co-Culture 

Model 
 

 

 This appendix summarizes the force, strain, and immunolabeling data acquired for 

the studies presented in Section 5.5 of Chapter 5 that define the effects of bacterial 

collagenase exposure in the DRG-FLS co-culture model of the capsular ligament. In each 

of the tables and figures detailed in this appendix, data are identified by their sample ID 

number and the experimental group (collagenase; vehicle). Labels above each image within 

the figures that contain confocal images list the sample number followed by the image 

number (e.g. “S03 – 01” indicates image 1 from sample 3); the image number in the labels 

matches the image numbers listed in the corresponding data table.  

 The studies corresponding to the data summarized in this appendix incubated co-

culture collagen gels in purified bacterial collagenase in DMEM (collagenase) or DMEM 

only (vehicle) for 20 minutes. In those studies, separate co-cultures were designated to 

exposure experiments performed under a physiological, constrained hold or under free-

floating conditions. Table F.1 contains the force data acquired after 20 minutes of a biaxial 

physiological hold with collagenase or vehicle exposure; force data are presented as the 

change from baseline for the four load cells corresponding to each of the four actuator arms 
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on the planar biaxial test device. Figure F.1 summarizes the force traces versus time, for 

each load cell, for those same studies. Marker positions of fiducial markers were also 

digitized (Fiji software; NIH) before the addition of collagenase or vehicle solution and 

after the 20-minute hold for elemental strain analyses. LS-DYNA (LSTC) software was 

used to calculate the maximum principal strain (MPS) for each gel. Elemental MPS data 

are detailed in Table F.2 and the corresponding surface strain maps are visualized in Figure 

F.2. 

 Tables F.3 and F.4 and Figures F.3-F.6 summarize the data acquired from 

immunolabeling assays performed on co-culture collagen gels after 20 minutes of free-

floating exposure to bacterial collagenase or a vehicle solution. Table F.3 and Figure F.3 

detail the collagen immunolabel. Fiber orientation was quantified on the immunolabeled 

images by computing the anisotropy index as the ratio of the principal axes to describe 

orientation on a continuous scale from isotropic (random; 0) to aligned (1) (Sander and 

Barocas 2009). Densitometry computed the percent of positive collagen pixels using the 

script in Appendix B. Both of the quantified metrics of the anisotropy index and percent 

positive pixels are summarized in Table F.3. 

Table F.4 details the neuronal and fibroblast-localized MMP-1 quantified using co-

localization of βIII tubulin or vimentin, respectively, with MMP-1. Images of a βIII tubulin 

(Figure F.4), vimentin (Figure F.5), and MMP-1 (Figure F.6) triple-label were acquired in 

regions of the DRG axons and somas and in regions with only FLS cells. Labeling above 

a threshold for positive MMP-1, βIII tubulin, and vimentin was separately quantified, and 

MMP-1 co-localization to βIII tubulin and vimentin was computed, separately, to quantify 
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neuronal and fibroblast-localized MMP-1 using the co-localization densitometry script in 

Appendix B. MMP-1-βIII tubulin co-localized pixels were normalized to total βIII tubulin, 

and MMP-1-vimentin co-localized pixels to total vimentin as a measure of neuronal and 

fibroblast-localized MMP-1.  
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Table F.2. Elemental maximum principal strain after a 20-minute biaxially-constrained hold of collagen 

gels during exposure to bacterial collagenase or a vehicle solution (Chapter 5) 

Sample Group element MPS  Sample Group element MPS 

S01 collagenase 1 0.047  S04 vehicle 1 0.154 

S01 collagenase 2 0.033  S04 vehicle 2 0.134 

S01 collagenase 3 0.055  S04 vehicle 3 0.044 

S01 collagenase 4 0.047  S04 vehicle 4 0.045 

S01 collagenase 5 0.004  S04 vehicle 5 0.110 

S01 collagenase 6 0.023  S04 vehicle 6 0.334 

S01 collagenase 7 0.049  S04 vehicle 7 0.037 

S01 collagenase 8 0.025  S04 vehicle 8 0.175 

S01 collagenase 9 0.016  S04 vehicle 9 0.051 

S01 collagenase 10 0.085  S04 vehicle 10 0.036 

S01 collagenase 11 0.049  S04 vehicle 11 0.053 

S01 collagenase 12 0.021  S04 vehicle 12 0.006 

S02 collagenase 1 0.000  S05 vehicle 1 0.040 

S02 collagenase 2 0.014  S05 vehicle 2 0.013 

S02 collagenase 3 0.035  S05 vehicle 3 0.000 

S02 collagenase 4 0.074  S05 vehicle 4 0.047 

S02 collagenase 5 0.076  S05 vehicle 5 0.042 

S02 collagenase 6 0.000  S05 vehicle 6 0.052 

S02 collagenase 7 0.004  S05 vehicle 7 0.035 

S02 collagenase 8 0.013  S05 vehicle 8 0.022 

S02 collagenase 9 0.026  S05 vehicle 9 0.056 

S02 collagenase 10 0.023  S05 vehicle 10 0.023 

S02 collagenase 11 0.060  S05 vehicle 11 0.020 

S02 collagenase 12 0.057  S05 vehicle 12 0.062 

S03 collagenase 1 0.054  S06 vehicle 1 0.024 

S03 collagenase 2 0.026  S06 vehicle 2 0.031 

S03 collagenase 3 0.025  S06 vehicle 3 0.000 

S03 collagenase 4 0.008  S06 vehicle 4 0.040 

S03 collagenase 5 0.085  S06 vehicle 5 0.050 

S03 collagenase 6 0.063  S06 vehicle 6 0.026 

S03 collagenase 7 0.071  S06 vehicle 7 0.007 

S03 collagenase 8 0.116  S06 vehicle 8 0.030 

S03 collagenase 9 0.024  S06 vehicle 9 0.005 

                                 MPS: maximum principal strain 

 

 

Table F.1. Force readings after a 20-minute biaxially-constrained hold of collagen gels during exposure to 

bacterial collagenase or a vehicle solution (Chapter 5) with each of the X and Y arms labeled 

Sample Group X1L (mN) X2L (mN) Y1L (mN) Y2L (mN) 

S01 collagenase 6.2 -11.4 6.0 -6.9 

S02 collagenase 5.5 -10.5 2.8 -9.0 

S03 collagenase 5.7 3.5 13.2 -5.3 

S04 vehicle 12.0 -4.2 9.6 28.2 

S05 vehicle 1.2 -2.9 4.7 -23.8 

S06 vehicle 3.7 -1.3 -23.6 -12.8 
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Figure F.1. Force traces shown separately for each load cell affixed to each actuator arm (X1, X2, Y1, 

Y2) during a 20-minute biaxially-constrained hold of collagen gels during exposure to bacterial 

collagenase or a vehicle solution as designated in Table F.1 (Chapter 5) 
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Figure F.2. Surface strain maps after a 20-minute biaxially-constrained hold of collagen gels during 

exposure to bacterial collagenase or a vehicle solution as designated in Table F.2 (Chapter 5). Elements 

are numbered sequentially from the bottom left to top right, as shown in sample S01. 
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Table F.3. Anisotropy indices and percent positive pixels computed from collagen immunolabeling 

performed on co-culture gels after 20 minutes of collagenase exposure (Chapter 5) 

Sample Group 
image 

no. 

anisotropy 

index 

collagen (% 

positive) 

S01 collagenase 1 0.3999 7.78% 

S01 collagenase 2 0.1630 1.91% 

S02 collagenase 1 0.0512 0.76% 

S02 collagenase 2 0.0302 1.09% 

S02 collagenase 3 0.1183 3.84% 

S02 collagenase 4 0.2581 3.60% 

S03 collagenase 1 0.1567 12.91% 

S03 collagenase 2 0.0364 0.83% 

S03 collagenase 3 0.1226 0.59% 

S04 collagenase 1 0.3302 4.32% 

S04 collagenase 2 0.2207 28.80% 

S04 collagenase 3 0.1062 4.87% 

S04 collagenase 4 0.2325 3.64% 

S05 vehicle 1 0.2336 1.15% 

S06 vehicle 1 0.0450 3.65% 

S06 vehicle 2 0.0909 46.61% 

S07 vehicle 1 0.1308 28.72% 

S07 vehicle 2 0.2578 56.80% 

S07 vehicle 3 0.0722 8.40% 

S07 vehicle 4 0.2471 82.88% 

S08 vehicle 1 0.0867 42.31% 

S08 vehicle 2 0.0792 58.55% 

S08 vehicle 3 0.1083 33.73% 
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Figure F.3. Confocal images showing the collagen immunolabel as designated in Table F.3 (Chapter 5) 
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Table F.4. Densitometry analyses of DRG- and FLS- co-localized MMP-1 in co-culture gels after 20 

minutes of collagenase exposure (Chapter 5) 

Sample Group 
image 

no. 

DRG-localized MMP-1 (% 

positive co-localized pixels) 

FLS-localized MMP-1 (% positive 

co-localized pixels) 

G01 collagenase 1 63.08% 60.77% 

G01 collagenase 2 4.78% 4.16% 

G01 collagenase 3 10.22% 11.05% 

G01 collagenase 4 12.46% 20.00% 

G01 collagenase 5 10.67% 15.67% 

G01 collagenase 6 N/A 32.99% 

G01 collagenase 7 N/A 48.46% 

G01 collagenase 8 N/A 32.10% 

G02 collagenase 1 10.93% 14.71% 

G02 collagenase 2 11.79% 25.14% 

G02 collagenase 3 27.38% 24.17% 

G02 collagenase 4 18.23% 27.96% 

G02 collagenase 5 18.97% 33.50% 

G02 collagenase 6 N/A 15.69% 

G02 collagenase 7 N/A 38.57% 

G02 collagenase 8 N/A 54.01% 

G03 collagenase 1 27.42% 44.33% 

G03 collagenase 2 32.46% 47.24% 

G03 collagenase 3 16.26% 24.75% 

G03 collagenase 4 46.84% 71.03% 

G03 collagenase 5 3.00% 7.31% 

G03 collagenase 6 N/A 18.90% 

G03 collagenase 7 N/A 15.68% 

G03 collagenase 8 N/A 2.72% 

G04 collagenase 1 70.32% 78.23% 

G04 collagenase 2 35.20% 50.56% 

G04 collagenase 3 6.34% 20.33% 

G04 collagenase 4 6.07% 16.55% 

G04 collagenase 5 82.75% 88.91% 

G04 collagenase 6 N/A 25.73% 

G04 collagenase 7 N/A 24.13% 

G04 collagenase 8 N/A 26.43% 

R01 vehicle 1 2.35% 14.64% 

R01 vehicle 2 1.74% 3.12% 

R01 vehicle 3 1.12% 1.03% 

R01 vehicle 4 6.15% 3.62% 

R01 vehicle 5 2.76% 3.13% 

R01 vehicle 6 N/A 9.08% 

R01 vehicle 7 N/A 21.70% 

R01 vehicle 8 N/A 4.19% 

R02 vehicle 1 2.47% 5.48% 

R02 vehicle 2 0.00% 0.00% 

R02 vehicle 3 0.05% 0.27% 

R02 vehicle 4 0.15% 0.35% 

R02 vehicle 5 N/A 3.64% 

DRG: dorsal root ganglia; FLS: fibroblast-like synoviocyte 

N/A indicates images taken in regions with FLS cells only and no evidence of βIII tubulin labeling 
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Figure F.4. Confocal images showing the βIII tubulin immunolabel as designated in Table F.4  

(Chapter 5) 
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Figure F.5. Confocal images showing the vimentin immunolabel as designated in Table F.4  

(Chapter 5) 
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Figure F.6. Confocal images showing the MMP-1 immunolabel as designated in Table F.4 (Chapter 5) 
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APPENDIX G 

Mechanical & MMP-1 Immunolabeling Data for 

Comparative Studies of FLS vs. 3T3 Fibroblasts 
 

 

 This appendix summarizes the force, strain, polarized light imaging, and MMP-1 

immunolabeling data acquired for the studies presented in Section 5.4 of Chapter 5 that 

defined the response of FLS cells to stretch. Parallel experiments were performed in 

parallel with fibroblasts from the NIH 3T3 immortalized cell line; 3T3 outcomes served as 

a comparison group for the FLS cells as a more extensively studied cell type (Mohammadi 

et al. 2015; Simon et al. 2012). In each of the tables and figures detailed in this appendix, 

data are identified by their sample ID number and the experimental group (FLS, 3T3; 

stretched, unstretched). Labels above and/or to the left of each image within the figures list 

the sample number followed by the group name and/or image number (e.g. “3T3 CTRL – 

01” indicates image 1 from sample 3T3 CTRL).  

 Table G.1 and Figures G.1-G.3 contain the mechanical and microstructural data 

from uniaxial stretch-to-failure tests performed with FLS-collagen gels and 3T3-collagen 

gels. Two fibroblast concentrations of 5x104 (low) and 1x105 (high) cells/mL were also 

used to test the effect of cell concentration and to simulate the variable region-dependent 

concentrations in the capsular ligament (Yamashita et al. 1996). Figure G.1 summarizes 

the force-displacement curves acquired during failure loading. The maximum force 
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detected was taken as the failure point and is depicted as a pink circle. Stiffness was 

calculated using the force-displacement curves and defined as the slope of the curve from 

between 20% and 80% of the maximum force (Lee et al. 2006); in Figure G.1, 20% and 

80% of the maximum force are designated by red data points and the dashed line indicates 

the linear fit between those two points that is used to calculate stiffness. The force, strain, 

and polarized light imaging data were compared at several displacement points during 

loading: 20% of the maximum force, 80% of the maximum force, and at the maximum 

force (failure). Quantification of all metrics at those displacement points are detailed in 

Table G.1. 

Figure G.2 details the maximum principal strain (MPS) computed at the three 

displacement points (20%, 80%, and failure). MPS was computed by digitizing the 

locations of the fiducial markers on the gel for the unloaded image before any distraction 

and in the image immediately prior to the displacement points of interest. Grid position 

data were processed in LS-DYNA (Livermore Software Technology Corp.) to calculate 

the MPS for each element for each loaded gel (Figure G.2).  

Figure G.3 depicts histograms that show the probability that collagen is oriented at 

a given angle for reference and at each displacement point. Histograms are computed from 

pixel-wise fiber alignment maps created using 20 consecutive high-speed images acquired 

both before distraction (reference) and immediately prior to the event of interest using 

polarized light imaging (Quinn et al. 2010; Quinn and Winkelstein 2008; Tower et al. 

2002). The circular variance (CV) is computed from the spread of the collagen fiber angles 

that are depicted in the histograms; a larger spread of angles corresponds to a larger CV 
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value (Miller et al. 2012; Zhang et al. 2016). Table G.1 summarizes the raw CV values at 

reference that correspond to the data in Figure G.3 as well as the normalized CV over the 

reference value at 20%, 80%, and 100% of the maximum force. 

 Table G.2, Figure G.4, and Figure G.5 contain MMP-1 immunolabeling data 

acquired immediately after the stretch-to-failure for DRG-fibroblast co-culture gels 

fabricated with a low concentration of either FLS cells or 3T3 cells following a uniaxial 

stretch-to-failure. MMP-1 labeling was rated by five blinded graders as either absent (0) or 

present (1) (Villasmil et al. 2017), with the determination of MMP-1 taken as the majority 

rating. The majority rating for each image is detailed as the “score” in Table G.2. Figures 

G.4 and G.5 summarize confocal images of the MMP-1 immunolabeling in DRG-localized 

and fibroblast-localizes regions, respectively. 
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Table G.1. Summary of force, maximum principal strain (MPS), and microstructure (CV) at several 

displacement points during uniaxial stretch-to-failure experiments with FLS- or 3T3-collagen gels at a low 

or high concentration (Chapter 5) 

   reference  20% of failure force  80% of failure force 

Sample Group  CV (x102)  force (mN) MPS (%) CV / ref  force (mN) MPS (%) CV / ref 

S02 low FLS  0.054  6.686 0.087 2.331  26.817 0.199 10.531 

S05 low FLS  0.111  4.107 0.048 1.606  16.479 0.125 2.283 

S08 low FLS  0.037  2.415 0.060 1.339  9.656 0.130 4.346 
S17 low FLS  0.441  5.116 0.067 1.683  20.384 0.146 3.353 

S19 low FLS  0.026  7.136 0.058 3.229  28.481 0.143 9.421 

S49 low FLS  0.076  7.603 0.076 2.522  30.362 0.246 18.605 
S15 low 3T3  0.096  6.122 0.066 1.313  24.486 0.125 1.961 

S16 low 3T3  0.073  1.340 0.038 0.931  5.302 0.081 0.993 

S21 low 3T3  0.103  1.987 0.042 0.943  7.968 0.086 1.295 
S25 low 3T3  0.064  4.689 0.081 2.759  18.659 0.141 4.160 

S55 low 3T3  0.019  3.178 0.095 2.141  12.689 0.149 6.377 

S38 high FLS  N/A  0.540 0.056 N/A  2.166 0.430 N/A 
S39 high FLS  0.128  0.225 0.110 1.340  0.896 0.402 2.476 

S41 high FLS  21.593  1.432 0.105 0.628  5.693 0.353 0.171 

S48 high FLS  2.493  2.913 0.076 2.158  11.709 0.445 3.361 
S50 high FLS  26.470  4.172 0.040 0.967  16.637 0.320 0.229 

S36 high 3T3  0.088  2.795 0.090 1.118  11.160 0.130 1.698 

S37 high 3T3  0.156  13.515 0.073 1.542  54.045 0.166 31.630 
S40 high 3T3  0.104  2.715 0.053 1.162  10.941 0.104 1.499 

S42 high 3T3  1.024  12.163 0.071 N/A  48.635 0.162 0.369 

S51 high 3T3  7.418  2.604 0.048 0.236  10.394 0.102 0.177 
S52 high 3T3  0.069  11.997 0.120 3.772  47.966 0.249 4.952 

            

   failure       
Sample Group  force (mN) MPS (%) CV / ref  stiffness (mN/mm) 

S02 low FLS  33.490 0.275 10.152  8.66 

S05 low FLS  20.575 0.203 4.534  4.82 

S08 low FLS  12.060 0.131 7.366  2.69 
S17 low FLS  25.500 0.173 3.314  7.88 

S19 low FLS  35.607 0.187 18.375  10.45 

S49 low FLS  37.960 0.358 15.749  5.96 
S15 low 3T3  30.605 0.172 1.544  8.94 

S16 low 3T3  6.613 0.096 1.149  1.38 
S21 low 3T3  9.964 0.103 1.783  3.51 

S25 low 3T3  23.278 0.185 7.238  6.24 

S55 low 3T3  15.844 0.177 10.138  5.05 
S38 high FLS  2.708 0.469 N/A  0.16 

S39 high FLS  1.121 0.369 5.654  0.40 

S41 high FLS  7.125 0.390 0.151  0.87 
S48 high FLS  14.638 0.605 2.779  3.06 

S50 high FLS  20.796 0.371 0.115  4.30 

S36 high 3T3  13.958 0.146 5.701  3.64 
S37 high 3T3  67.515 0.217 N/A  15.04 

S40 high 3T3  13.647 0.115 1.489  3.65 

S42 high 3T3  60.787 0.191 0.722  11.80 
S51 high 3T3  13.016 0.130 N/A  4.12 

     FLS: fibroblast-like synoviocyte; MPS: maximum principal strain; CV: circular variance 

     CV / ref is normalized to the reference CV 

     N/A data were not collected due to technical problems with data capture 
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Figure G.1. Force-displacement data during tensile loading to failure as designated in Table G.1 

(Chapter 5). Red data points show 20 and 80% of maximum force; the pink data point shows the 

maximum force; the dotted line is a linear fit between 20 and 80% and calculates stiffness. 

 

Note: Figure is continued on the next page. 
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Figure G.1. continued 
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Figure G.2. Maximum principal strains sustained on the gel surface at 20% of maximum force, 80% of 

maximum force, and at the point of failure as designated in Table G.1 (Chapter 5). Elements are 

numbered sequentially from the bottom left to top right, as shown in sample S02 for 80%.

 

Note: Figure is continued on the next page. 
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Figure G.1. Immunolabeling of MMP-1 in DRGs as designated in Table I.1 (Chapter 6). Gels tested on 

day-in-vitro 7 are detailed before the red-dashed line; gels tests on day-in-vitro 9 are detailed after the 

line. 

 

Note: Figure is continued on the next page. 

 

 

Figure G.1. continued 

 

 

 

 

 

 

 

 

 

 

 

Figure G.2. continued 

 

Note: Figure is continued on the next page. 
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Figure G.2. continued 

 

Note: Figure is continued on the next page. 
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Figure G.2. continued 

 

Note: Figure is continued on the next page. 
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Figure G.2. continued 
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Figure G.3. Histograms of collagen fiber orientation angle at reference, 20% of maximum force, 80% 

of maximum force, and at the point of failure as designated in Table G.1 (Chapter 5) 

 

Note: Figure is continued on the next page. 
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Figure G.1. Immunolabeling of MMP-1 in DRGs as designated in Table I.1 (Chapter 6). Gels tested on 

day-in-vitro 7 are detailed before the red-dashed line; gels tests on day-in-vitro 9 are detailed after the 

line. 

 

Note: Figure is continued on the next page. 

 

 

Figure G.1. continued 

 

 

 

 

 

 

 

 

 

 

 

Figure G.3. continued 

 

Note: Figure is continued on the next page. 
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Figure G.3. continued 

 

Note: Figure is continued on the next page. 
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Figure G.3. continued 
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Table G.2. Scoring of MMP-1 immunolabeling in DRG- and fibroblast-localized regions in stretched and 

unstretched co-cultures with DRGs and a low concentration of FLS or 3T3 cells (Chapter 5) 

DRG images (Figure G.4) Fibroblast images (Figure G.5) 

Sample Group image no. score  Sample Group image no. score 

3T3 CTRL 3T3 unstretched 1 1  3T3 CTRL 3T3 unstretched 1 1 

FLS CTRL FLS unstretched 1 2  3T3 CTRL 3T3 unstretched 2 2 

FLS CTRL FLS unstretched 2 0  3T3 CTRL 3T3 unstretched 3 2 

FLS CTRL FLS unstretched 3 0  3T3 CTRL 3T3 unstretched 4 0 

FLS CTRL FLS unstretched 4 0  3T3 CTRL 3T3 unstretched 5 1 

FLS CTRL FLS unstretched 5 0  3T3 CTRL 3T3 unstretched 6 2 

S04 3T3 stretched 1 1  3T3 CTRL 3T3 unstretched 7 2 

S04 3T3 stretched 2 0  3T3 CTRL 3T3 unstretched 8 0 

S04 3T3 stretched 3 1  FLS CTRL FLS unstretched 1 2 

S04 3T3 stretched 4 1  FLS CTRL FLS unstretched 2 2 

S04 3T3 stretched 5 0  FLS CTRL FLS unstretched 3 0 

S04 3T3 stretched 6 0  FLS CTRL FLS unstretched 4 0 

S05 3T3 stretched 1 1  FLS CTRL FLS unstretched 5 1 

S05 3T3 stretched 2 1  FLS CTRL FLS unstretched 6 2 

S05 3T3 stretched 3 0  FLS CTRL FLS unstretched 7 2 

S05 3T3 stretched 4 0  S04 3T3 stretched 1 1 

S07 FLS stretched 1 2  S04 3T3 stretched 2 0 

S07 FLS stretched 2 1  S05 3T3 stretched 1 0 

S07 FLS stretched 3 1  S05 3T3 stretched 2 0 

S07 FLS stretched 4 1  S05 3T3 stretched 3 0 

S08 FLS stretched 1 0  S07 FLS stretched 1 1 

S08 FLS stretched 2 0  S07 FLS stretched 2 2 

S08 FLS stretched 3 0  S07 FLS stretched 3 1 

S08 FLS stretched 4 0  S08 FLS stretched 1 2 

S08 FLS stretched 5 0  S08 FLS stretched 2 2 

S12 3T3 stretched 1 0  S08 FLS stretched 3 0 

S12 3T3 stretched 2 0  S12 3T3 stretched 1 1 

S12 3T3 stretched 3 0  S12 3T3 stretched 2 0 

S12 3T3 stretched 4 0  S12 3T3 stretched 3 0 

S34 FLS stretched 1 2  S13 FLS stretched 1 1 

S34 FLS stretched 2 1  S13 FLS stretched 2 1 

S34 FLS stretched 3 1  S13 FLS stretched 3 2 

S34 FLS stretched 4 0  S34 FLS stretched 1 1 

S35 FLS unstretched 1 2  S34 FLS stretched 2 1 

S35 FLS unstretched 2 1  S34 FLS stretched 3 1 

S35 FLS unstretched 3 1  S35 FLS unstretched 1 2 

S35 FLS unstretched 4 1  S35 FLS unstretched 2 2 

       DRG: dorsal root ganglia; FLS: fibroblast-like synoviocyte 
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Figure G.4. Immunolabeling of MMP-1 in DRG-localized regions of stretched and unstretched co-

cultures as designated in Table G.2 (Chapter 5) 
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Figure G.5. Immunolabeling of MMP-1 in fibroblast-localized regions of stretched and unstretched co-

cultures as designated in Table G.2 (Chapter 5) 
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APPENDIX H 

Multiscale Collagen Gel Mechanics in Response to 

Gel Distraction to Failure 
 

 

This appendix summarizes the mechanical, strain, and collagen fiber alignment data 

acquired during tensile failure tests of co-culture collagen gels from the studies presented 

in Chapter 6. In the figures detailed in this appendix, data are identified by their sample ID 

number and the experimental group. Experimental groups include collagen gels seeded 

with only DRGs (none), DRGs and a low concentration of FLS (5x104 cells/mL; low FLS), 

or DRGs and a high concentration of FLS (1x105 cells/mL; high FLS). Gels were tested on 

either day-in-vitro (DIV) 7 or DIV9. Labels above each image within the figures list the 

DIV of testing, sample number, and experimental group (e.g. “DIV7: Sample S03: none” 

indicates sample 3 tested on DIV7 from a collagen gel with DRGs only).  

Figure H.1 summarizes the force-displacement curves acquired during failure 

loading. The maximum force detected was taken as the failure point and is depicted as a 

pink circle for the curves in Figure H.1. Stiffness was calculated using the force-

displacement curves and defined as the slope of the curve from between 20% and 80% of 

the maximum force (Lee et al. 2006); in Figure H.1, 20% and 80% of the maximum force 

are designated by red data points and the dashed line indicates the linear fit between those 

two points that is used to calculate stiffness.  
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Figure H.2 summarizes the maximum principal strain (MPS) computed at the point 

of failure. MPS was computed by digitizing the locations of the fiducial markers on the gel 

for the unloaded image before any distraction and in the image immediately prior to failure. 

Grid position data were processed in LS-DYNA (Livermore Software Technology Corp.) 

to calculate the MPS for each element for each loaded gel (Figure H.2).  

Figure H.3 depicts histograms that show the probability that collagen is oriented at 

a given angle for reference and at failure, separately for each loaded gel. Histograms are 

computed from pixel-wise fiber alignment maps created using 20 consecutive high-speed 

images acquired both before distraction (reference) and immediately prior to failure using 

polarized light imaging (Quinn et al. 2010; Quinn and Winkelstein 2008; Tower et al. 

2002). The circular variance (CV) is computed from the spread of the collagen fiber angles 

that are depicted in the histograms; a larger spread of angles corresponds to a larger CV 

value (Miller et al. 2012; Zhang et al. 2016).  

Table 6.1 in Chapter 6 details the quantification of force, displacement, and 

normalized CV at failure, as well as the stiffness calculated for each stretched gel. Protein 

expression data were also acquired from the gel samples summarized in this appendix; the 

location of each image taken to acquire protein expression data was registered with the 

regional elements from each gel to relate physiological outcomes with the strain and 

collagen organization data. As such, the quantification of that elemental MPS and CV data 

are summarized with their corresponding protein expression data, by gel and element, in 

the following Appendix I.  
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Figure H.1. Force-displacement data during tensile loading to failure as designated in Table 6.1 

(Chapter 6). Red data points show 20 and 80% of maximum force; the pink data point shows the 

maximum force; the dotted line is a linear fit between 20 and 80% and calculates stiffness.  

 

Note: Figure is continued on the next page. 
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Figure H.1. continued 
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Figure H.2. Maximum principal strains sustained on the gel surface at the point of failure as designated 

in Table 6.1 and Figure H.1 (Chapter 6) 

 

Note: Figure is continued on the next page. 
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Figure H.2. continued 
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Figure H.3. Histograms of collagen fiber orientation angle at reference and at failure as designated in 

Table 6.1 and Figure H.1 (Chapter 6) 

 

Note: Figure is continued on the next page. 
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Figure H.3. continued 
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APPENDIX I 

Immunolabeling of MMPs & Substance P in 

DRGs & DRG-FLS Co-Cultures & Cytotoxicity 

after Biomechanical or Biochemical Stimuli 
 

 

 This appendix summarizes the immunolabeling and cytotoxicity assays performed 

in the in vitro studies that are detailed in Chapter 6. In each of the tables and figures detailed 

in this appendix, data are identified by their sample ID number and the experimental group. 

Labels above each image within the figures list the sample number followed by the image 

number (e.g. “S03 – 01” indicates image 1 from sample 3); the image number in the labels 

matches the image numbers listed in the corresponding data table.  

 Table I.1 and Table I.2 summarize the immunolabeling assays performed to 

quantify total MMP-1 and neuronal substance P expression, respectively, in co-culture 

collagen gels immediately after uniaxial failure loading (Section 6.3). Experimental groups 

in those studies include collagen gels seeded with only DRGs (none), DRGs and a low 

concentration of FLS (5x104 cells/mL; low FLS), or DRGs and a high concentration of 

FLS (1x105 cells/mL; high FLS). Figure I.1 details the confocal images of the MMP-1 label 

and Figure I.2 details the confocal images of the substance P label. A custom MATLAB 

script for densitometry (found in Appendix B) was used to quantify the number of positive 

pixels above a threshold for positive labeling for MMP-1 and substance P, separately. 
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Confocal images were taken in regions with DRG soma or axons. The location of each 

image was also registered with the regional elements from each gel to relate cellular 

outcomes with the strain and collagen organization data. As such, the elemental maximum 

principal strain (MPS) and circular variance (CV) at failure are detailed in Tables I.1 and 

I.2 with the corresponding protein expression data. Appendix H contains the full-field MPS 

maps and the spread of the collagen fiber orientation angles that correspond to the data in 

Tables I.1 and I.2. 

Table I.3 summarizes the MMP-1 and MMP-9 immunolabels performed on a subset 

of co-culture collagen gels with DRGs and a low FLS concentration immediately after 

uniaxial failure loading (Section 6.4.1). Studies compared protein expression between co-

culture collagen gels stretched to failure with an unloaded control gel (unstretched). 

Confocal images were taken in regions with DRG soma, DRG axons, or FLS cells, and the 

cell type and/or cellular region for which images were acquired is detailed in Table I.3. 

MMP-1 and MMP-9 were quantified using densitometry (Appendix B). Figure I.3 

summarizes the corresponding confocal images for MMP-1, and Figure I.4 has those 

images for MMP-9. 

 Studies that are detailed in Section 6.4.3 test the effect of exogenous MMP-1 

exposure on MMP-9 expression and cytotoxicity in DRG monolayer cultures. Table I.4 

details the MMP-9 protein expression data acquired after a 24-hour exogenous MMP-1 

exposure and Table I.5 details the results from the cytotoxicity assay performed after that 

same 24-hour exogenous MMP-1 exposure. MMP-9 immunolabeling was quantified using 

densitometry (Appendix B) and the corresponding confocal images summarized in Figure 



451 

 

I.5. Cytotoxicity was assessed by quantifying the percent cell death using a lactate 

dehydrogenase (LDH) assay. MMP-9 protein expression and percent cell death were also 

quantified in DRG monolayer cultures that were not exposed to any treatment (naïve). 
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Table I.1. MMP-1 densitometry in stretched collagen gels with DRGs and no, low, or high FLS 

concentration with elemental MPS and CV at failure (Chapter 6) 

Sample DIV Group 
image 

no. 

total  

MMP-1 (% 

positive) 

MPS 

(%) 

CV at 

failure 
 Sample DIV Group 

image 

no. 

total  

MMP-1 (% 

positive) 

MPS 

(%) 

CV at 

failure 

S03 DIV7 none 1 18.30% 7.60% 1.03  S28 DIV9 none 1 0.10% N/A 21.22 

S03 DIV7 none 2 2.90% 6.60% 1.71  S28 DIV9 none 2 0.90% N/A 6.69 

S07 DIV7 low 1 14.90% 6.10% 0.24  S29 DIV9 none 1 4.00% N/A N/A 

S07 DIV7 low 2 73.00% 8.50% 1.90  S29 DIV9 none 2 0.90% N/A N/A 

S08 DIV7 low 1 57.30% 22.50% 1.74  S29 DIV9 none 3 4.50% N/A N/A 

S08 DIV7 low 2 25.50% 15.60% 1.52  S29 DIV9 none 4 5.10% N/A N/A 

S08 DIV7 low 3 19.60% 7.50% 3.50  S29 DIV9 none 5 11.20% N/A N/A 

S09 DIV7 none 1 26.40% 18.50% 3.59  S30 DIV9 none 1 1.20% 15.20% 2.45 

S11 DIV7 none 1 40.00% 0.00% 2.94  S30 DIV9 none 2 0.30% 16.30% 1.40 

S11 DIV7 none 2 56.90% 0.00% 4.92  S30 DIV9 none 3 2.80% 17.90% 2.85 

S11 DIV7 none 3 31.10% 27.60% 7.05  S33 DIV9 none 1 0.20% 4.20% 1.91 

S13 DIV7 low 1 20.80% 18.00% 3.82  S33 DIV9 none 2 3.70% 7.30% 5.39 

S13 DIV7 low 2 52.20% 7.50% 1.85  S33 DIV9 none 3 4.50% 12.10% 1.61 

S28 DIV7 high 1 5.00% 41.70% 7.68  S43 DIV9 high 1 5.40% 35.10% 4.08 

S28 DIV7 high 2 16.90% 30.00% 9.85  S43 DIV9 high 2 11.90% 13.20% 28.53 

S28 DIV7 high 3 55.90% 14.40% 34.91  S44 DIV9 high 1 36.10% 26.60% 10.94 

S29 DIV7 high 1 21.20% N/A N/A  S44 DIV9 high 2 46.40% 17.50% 19.54 

S29 DIV7 high 2 0.40% N/A N/A  S44 DIV9 high 3 2.30% 22.50% 58.89 

S29 DIV7 high 3 44.40% N/A N/A  S44 DIV9 high 4 68.90% 23.30% 83.77 

S29 DIV7 high 4 2.80% N/A N/A  S46 DIV9 high 1 8.80% 15.90% 37.84 

S29 DIV7 high 5 4.10% N/A N/A  S46 DIV9 high 2 1.40% 21.80% 18.84 

S31 DIV7 high 1 57.20% 25.90% N/A  S46 DIV9 high 3 1.70% 17.20% 15.62 

S31 DIV7 high 2 69.60% 34.40% N/A         

S31 DIV7 high 3 3.60% 38.10% N/A         

S31 DIV7 high 4 10.60% 9.70% N/A         

S34 DIV7 low 1 24.50% 3.70% 5.92         

S34 DIV7 low 2 12.50% 5.90% 7.69         

S34 DIV7 low 3 7.00% 29.90% 3.38         

S37 DIV7 high 1 14.90% 17.30% 0.94         

S37 DIV7 high 2 14.80% 11.00% 4.18         

S37 DIV7 high 3 5.00% 14.50% 1.95         

S37 DIV7 high 4 3.90% 11.70% 2.43         

S38 DIV7 none 1 34.00% 16.60% 12.18         

S38 DIV7 none 2 25.40% 13.00% 1.89         

S03 DIV9 low 1 21.90% 48.50% 3.82         

S03 DIV9 low 2 97.40% 49.20% 8.43         

S03 DIV9 low 3 8.80% 43.10% 25.46         

S03 DIV9 low 4 43.30% 45.70% 17.25         

S04 DIV9 low 1 16.20% 11.30% 1.91         

S07 DIV9 low 1 24.30% 17.40% 3.16         

S07 DIV9 low 2 69.10% 24.90% 7.03         

S07 DIV9 low 3 9.50% 14.30% 12.06         

S07 DIV9 low 4 66.10% 40.30% 8.99         

S07 DIV9 low 5 4.20% 38.30% 5.87         

S11 DIV9 low 1 9.40% 21.90% 45.80         

S11 DIV9 low 2 71.00% 20.20% 51.39         

S11 DIV9 low 3 67.30% 39.90% 11.81         

DRG: dorsal root ganglia; FLS: fibroblast-like synoviocyte 

DIV: day-in-vitro; MPS: maximum principal strain; CV: circular variance 

N/A data were not collected due to technical problems with data capture 

Note: Table is continued on the next page. 
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Figure I.1. Immunolabeling of MMP-1 in DRGs as designated in Table I.1 (Chapter 6). Gels tested on 

day-in-vitro 7 are detailed before the red-dashed line; gels tests on day-in-vitro 9 are detailed after the 

line. 

 

Note: Figure is continued on the next page. 
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Figure I.1. continued 
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Table I.2. Neuronal substance P densitometry in stretched collagen gels with DRGs and no, low, or high 

FLS concentration with elemental MPS and CV at failure (Chapter 6). 

Sample DIV Group 
image 

no. 

neuronal 

substance P 

(% positive) 

MPS 

(%) 

CV at 

failure 
 Sample DIV Group 

image 

no. 

neuronal 

substance P 

(% positive) 

MPS 

(%) 

CV at 

failure 

S03 DIV7 none 1 3.10% 7.60% 1.03  S29 DIV9 none 4 7.20% N/A N/A 

S03 DIV7 none 2 3.80% 6.60% 1.71  S29 DIV9 none 5 6.10% N/A N/A 

S07 DIV7 low 1 0.70% 6.10% 0.24  S30 DIV9 none 1 26.50% 15.20% 2.69 

S07 DIV7 low 2 23.70% 8.50% 1.90  S30 DIV9 none 2 1.00% 14.70% 3.87 

S08 DIV7 low 1 5.70% 22.50% 1.74  S30 DIV9 none 3 7.50% 20.00% 3.78 

S08 DIV7 low 2 11.70% 15.60% 1.52  S30 DIV9 none 4 2.50% 18.90% 2.26 

S08 DIV7 low 3 6.70% 7.50% 3.50  S33 DIV9 none 1 0.40% 4.20% 2.89 

S09 DIV7 none 1 19.20% 18.50% 3.59  S33 DIV9 none 2 2.20% 4.20% 1.91 

S11 DIV7 none 1 14.70% 0.00% 2.94  S33 DIV9 none 3 13.10% 8.10% 1.87 

S11 DIV7 none 2 46.30% 0.00% 4.92  S33 DIV9 none 4 3.20% 12.10% 1.61 

S11 DIV7 none 3 44.30% 27.60% 7.05  S43 DIV9 high 1 0.00% 35.10% 4.08 

S13 DIV7 low 1 1.50% 18.00% 3.82  S43 DIV9 high 2 0.10% 13.20% 28.53 

S13 DIV7 low 2 7.20% 7.50% 1.85  S44 DIV9 high 1 1.00% 26.60% 10.94 

S28 DIV7 high 1 1.30% 41.70% 7.68  S44 DIV9 high 2 1.40% 17.50% 19.54 

S28 DIV7 high 2 2.40% 30.00% 9.85  S44 DIV9 high 3 0.10% 22.50% 58.89 

S28 DIV7 high 3 67.30% 14.40% 34.91  S44 DIV9 high 4 1.90% 23.30% 83.77 

S29 DIV7 high 1 1.30% N/A N/A  S46 DIV9 high 1 0.40% 15.90% 37.84 

S29 DIV7 high 2 0.00% N/A N/A  S46 DIV9 high 2 0.00% 21.80% 18.84 

S29 DIV7 high 3 2.50% N/A N/A  S46 DIV9 high 3 0.00% 17.20% 15.62 

S29 DIV7 high 4 0.60% N/A N/A         

S29 DIV7 high 5 0.50% N/A N/A         

S31 DIV7 high 1 12.70% 25.90% N/A         

S31 DIV7 high 2 75.50% 34.40% N/A         

S31 DIV7 high 3 0.10% 38.10% N/A         

S31 DIV7 high 4 1.50% 9.70% N/A         

S34 DIV7 low 1 1.10% 3.70% 5.92         

S34 DIV7 low 2 2.30% 5.90% 7.69         

S34 DIV7 low 3 2.10% 29.90% 3.38         

S37 DIV7 high 1 1.70% 17.30% 0.94         

S37 DIV7 high 2 0.60% 11.00% 4.18         

S37 DIV7 high 3 0.20% 14.50% 1.95         

S37 DIV7 high 4 0.20% 11.70% 2.43         

S38 DIV7 none 1 0.80% 16.60% 12.18         

S38 DIV7 none 2 12.50% 13.00% 1.89         

S03 DIV9 low 1 92.10% 49.20% 8.43         

S03 DIV9 low 2 22.50% 43.10% 25.46         

S03 DIV9 low 3 32.50% 45.70% 17.25         

S07 DIV9 low 1 67.80% 24.90% 7.03         

S07 DIV9 low 2 38.10% 14.30% 12.06         

S07 DIV9 low 3 86.50% 40.30% 8.99         

S07 DIV9 low 4 20.70% 38.30% 5.87         

S11 DIV9 low 1 59.00% 20.20% 51.39         

S11 DIV9 low 2 56.40% 39.90% 11.81         

S28 DIV9 none 1 0.40% N/A 6.06         

S28 DIV9 none 2 2.40% N/A 5.74         

S29 DIV9 none 1 1.90% N/A N/A         

S29 DIV9 none 2 17.70% N/A N/A         

S29 DIV9 none 3 2.60% N/A N/A         

DRG: dorsal root ganglia; FLS: fibroblast-like synoviocyte 

DIV: day-in-vitro; MPS: maximum principal strain; CV: circular variance 

N/A data were not collected due to technical problems with data capture 

Note: Table is continued on the next page. 
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Figure I.2. Immunolabeling of substance P in DRGs as designated in Table I.2 (Chapter 6). Gels tested 

on day-in-vitro 7 are detailed before the red-dashed line; gels tests on day-in-vitro 9 are detailed after 

the line. 

 

Note: Figure is continued on the next page. 
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Figure I.2. continued 
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Table I.3. MMP-1 and MMP-9 densitometry in stretched and unstretched co-cultures with DRGs and a 

low concentration of FLS (Chapter 6) 

Sample Group image no. 
MMP-1  

(% positive) 

MMP-9  

(% positive) 
cell type 

S07 stretched 1 15.18% 15.17% axon 

S07 stretched 2 9.24% 12.28% axon 

S07 stretched 3 10.95% 23.03% FLS 

S07 stretched 4 10.65% 12.90% FLS 

S08 stretched 1 22.02% 0.18% soma 

S08 stretched 2 3.32% 0.61% axon 

S08 stretched 3 10.02% 0.25% soma 

S08 stretched 4 5.64% 1.22% axon 

S08 stretched 5 6.69% 2.37% axon 

S08 stretched 6 8.14% 10.63% FLS 

S08 stretched 7 3.85% 7.67% FLS 

S08 stretched 8 3.21% 10.42% FLS 

S13 stretched 1 13.96% 2.03% soma 

S13 stretched 2 8.97% 5.28% axon 

S13 stretched 3 6.13% 14.46% axon 

S13 stretched 4 24.70% 5.10% soma 

S13 stretched 5 3.61% 3.47% axon 

S13 stretched 6 7.82% 13.82% FLS 

S13 stretched 7 8.11% 10.90% FLS 

S13 stretched 8 4.78% 11.28% FLS 

S35 unstretched 1 0.70% 7.69% axon 

S35 unstretched 2 1.38% 4.65% axon 

S35 unstretched 3 0.88% 1.41% axon 

S35 unstretched 4 10.25% 5.06% soma 

S35 unstretched 5 6.00% 8.71% FLS 

S35 unstretched 6 2.77% 4.18% FLS 

S35 unstretched 7 5.19% 4.66% FLS 

                  DRG: dorsal root ganglia; FLS: fibroblast-like synoviocyte 
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Figure I.3. Immunolabeling of MMP-1 in stretched and unstretched co-cultures as designated in Table 

I.3 (Chapter 6) 
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Figure I.4. Immunolabeling of MMP-9 in stretched and unstretched co-cultures as designated in Table 

I.3 (Chapter 6) 
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Table I.4. MMP-9 densitometry in DRG cultures exposed to exogenous MMP-1 (Chapter 6) 

Sample Group image no. 
MMP-9  

(% positive) 

DRG  

region 

C01 MMP-1 1 71.22% soma 

C01 MMP-1 2 2.22% axons 

C01 MMP-1 3 49.48% soma 

C01 MMP-1 4 7.35% axons 

C01 MMP-1 5 21.02% soma 

C01 MMP-1 6 4.77% axons 

C02 MMP-1 1 52.70% soma 

C02 MMP-1 2 43.22% soma 

C02 MMP-1 3 42.12% soma 

C04 MMP-1 1 14.26% soma 

C04 MMP-1 2 8.53% soma 

C04 MMP-1 3 24.50% axons 

C04 MMP-1 4 20.19% soma 

C04 MMP-1 5 26.83% axons 

C05 MMP-1 1 9.19% soma 

C05 MMP-1 2 2.34% soma 

C05 MMP-1 3 1.51% soma 

C05 MMP-1 4 0.26% axons 

C05 MMP-1 5 2.38% soma 

C05 MMP-1 6 0.18% soma 

C05 MMP-1 7 0.60% axons 

C08 naïve 1 8.46% soma 

C08 naïve 2 11.05% soma 

C08 naïve 3 5.02% axons 

C08 naïve 4 0.64% soma 

C08 naïve 5 18.66% axons 

C09 naïve 1 12.08% axons 

C09 naïve 2 13.59% soma 

C09 naïve 3 15.63% axons 

C09 naïve 4 17.58% axons 

C09 naïve 5 5.04% soma 

C09 naïve 6 1.70% soma 

 

Table I.5. Percent cell death determined from cytotoxicity assays after exogenous MMP-1 exposure 

(Chapter 6) 

Sample Group % cell death 

C01 MMP-1 38.81 

C02 MMP-1 23.32 

C03 MMP-1 28.90 

C04 MMP-1 39.00 

C05 MMP-1 39.41 

C08 naïve 7.39 

C09 naïve 16.80 
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Figure I.5. Immunolabeling of MMP-9 in DRG cultures exposed to exogenous MMP-1 as designated 

in Table I.4 (Chapter 6) 
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APPENDIX J 

Mechanical, Strain, & Polarized Light Optical 

Data from Rat Facet Capsular Ligaments during 

Tensile Loading 
 

 

 This appendix summarizes the force-displacement, full-field surface strains, and 

collagen fiber kinematic data computed for the capsular ligaments tested from isolated 

joints under tensile load in the studies in Chapter 7. Capsular ligaments were isolated from 

the C6/C7 facet joints of rats 28 days after injection with MMP-1 or a matched vehicle and 

stretched to failure in tension. Mechanical, strain, and collagen fiber kinematic data in a 

capsular ligament from a naïve, un-operated rat are also included in this appendix. The 

behavioral data for rats included in this study are summarized in Appendix C. Histology 

and immunohistochemistry assays performed on the joint tissues of the rats from this study 

are summarized in Appendix D, and immunohistochemistry assays performed on the DRG 

and spinal cord tissues from those same rats are detailed in Appendix E. Data are identified 

by their injection group and rat number in the figures contained within this appendix. 

Force, displacement, and optical data were used to define several events of interest 

throughout the stretch to failure: the first occurrence of anomalous collagen fiber 

realignment, yield, the first failure, and ultimate rupture of the ligament. Figure J.1 

summarizes the force and displacement data that were acquired at 500Hz during loading, 
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separately for each stretched capsular ligament. Ultimate rupture, first failure, and yield 

were defined using the mechanical data in Figure J.1 for each test; first failure and yield 

are designated on the curves in Figure J.1 and the data are plotted to the event of ultimate 

rupture. The first occurrence of anomalous collagen fiber realignment is also shown on the 

force-displacement curves in Figure J.1; the first occurrence of collagen fiber realignment 

was computed from polarized light imaging data and that computation is described in detail 

below. Quantification of force and displacement at every event, as well as the stiffness 

computed from those curves (Ita and Winkelstein 2019; Lee et al. 2006), are summarized 

in Table 7.1 (Chapter 7).  

Figure J.2 shows the average maximum principal strain, by element, computed 

using fiducial markers that were digitized from high-speed images using the centroid of 

each capsule marker. Marker coordinates were transformed into x-y coordinates using the 

ProAnalyst software and maximum principal strains were computed relative to the 

unloaded reference (Quinn et al. 2007; Quinn and Winkelstein 2010). Strain data are shown 

at the first occurrence of anomalous collagen fiber realignment, yield, the first failure, and 

ultimate rupture of the ligament. Table 7.1 in Chapter 7 details the strain quantification that 

corresponds to the strain maps that are visualized in Figure J.2. 

Figure J.3 details the optical data acquired with polarized light imaging during the 

loading of capsular ligaments. In order to compute the first occurrence of anomalous 

collagen fiber realignment and to track microstructural kinematics throughout loading, 

vector correlations were generated for every acquired alignment map based on pixel-by-

pixel correlation calculations (Quinn et al. 2010a). Anomalous collagen realignment was 
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defined by a decrease of 0.35 or more in the alignment vector correlation between maps, 

and a single region was defined as sustaining anomalous realignment when at least nine 

pixels were connected to one another (Quinn et al. 2010a). Alignment maps were also 

generated in the unloaded reference state to measure microstructural organization of each 

ligament prior to loading. At reference and at every mechanical event, circular variance 

(CV) was computed from the spread of collagen fiber angles, with a lower CV indicating 

a tighter clustering and a higher degree of fiber alignment (Miller et al. 2012; Zhang et al. 

2016). Figure J.3 summarizes the vector correlation maps, histograms of the collagen fiber 

orientation angles, and the regions where anomalous collagen fiber realignment events 

were detected. Table 7.1 in Chapter 7 details the CV and the number of anomalous fiber 

realignment events that correspond to the data in Figure J.3. 
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Figure J.1. Force-displacement data during tensile loading to failure as designated in Table 7.1 

(Chapter 7). Curves terminate at ultimate rupture. 
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Figure J.2. Full-field strain maps showing the maximum principal strain in elements defined by 

fiducial markers on the surface of capsular ligaments injected with MMP-1 or a matched vehicle at 

mechanical events during tensile loading (Chapter 7). Asterisks indicate capsules with first failure and 

ultimate rupture as the same event.  

 

Note: Figure is continued on the next page. 
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Figure J.2. continued 

 

Note: Figure is continued on the next page. 
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Figure J.2. continued 
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Figure J.3. High-speed images with collagen fiber alignment vectors (yellow), corresponding 

histograms depicting the spread of collagen fiber orientation angles, and the detection of anomalous 

fiber reorganization events (yellow circles in insets). Data are shown at reference, the first occurrence 

of anomalous realignment, yield, first failure, and ultimate rupture for loaded capsular ligaments, 

separately by rat (Chapter 7). 

 

Note: Figure is continued on the next page. 
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Figure J.3. continued 

 

Note: Figure is continued on the next page. 

 

 

 

 

 

 



472 

 

 

Figure J.3. continued 

 

Note: Figure is continued on the next page. 
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Figure J.3. continued 

 

Note: Figure is continued on the next page. 

 

 

 

 

 

 

 



474 

 

 

Figure J.3. continued 

 

Note: Figure is continued on the next page. 
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Figure J.3. continued 
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APPENDIX K 

Collagen Gel Mechanics in Response to Sub-

Failure Biaxial Loading 
 

 

This appendix summarizes the force-displacement and strain data acquired during 

the sub-failure equibiaxial collagen gels from the studies presented in Section 8.3 and 

Section 8.4. In the figures detailed in this appendix, data are identified by their sample ID 

number and the experimental group. The studies in Section 8.3 defined whether sub-failure 

strains that induce nociceptive signaling in the previous neuron-collagen gel model (Zhang et 

al. 2017; Zhang et al. 2018) also increase substance P in the co-culture model. Experimental 

groups for the studies summarized in Section 8.3 include collagen gels seeded with only 

DRGs (DRG-only) or with DRGs and FLS cells (5x104 cells/mL; naïve). The studies in 

Section 8.4 utilized equibiaxial sub-failure loading and different dosing regimens of the 

MMP inhibitor ilomastat. Experimental groups for the studies summarized in Section 8.4 

include several ilomastat dosing regimens: DMSO vehicle at every dosing time (vehicle), 

ilomastat one hour prior to stretch and DMSO five minutes after the stretch (pre), ilomastat 

only five minutes after the stretch (post), or ilomastat at every dosing time (pre+post). 

Figure K.1 summarizes the force versus displacement traces, for each load cell (X1, 

X2, Y1, Y2), separately for the studies presented in Sections 8.3 and 8.4. The highest 

magnitude force acquired during sub-failure equibiaxial stretch was recorded for each load 
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cell trace and is detailed in Table K.1. The maximum magnitude of force during a gel stretch 

recorded by any of the four load cells was taken as the peak force for that gel and is also 

detailed in Table K.1. Figure K.2 details the maximum principal strain (MPS) computed 

by digitizing the locations of the fiducial markers in the unloaded reference image and the 

image immediately after the maximum force. Fiducial markers were digitized with FIJI 

software (NIH) and position data were processed in LS-DYNA (LSTC) to calculate the MPS. 

The largest magnitude MPS sustained out of all elements within a gel was taken as the peak 

MPS for that gel and is detailed in Table K.1. 

 

 

 

 

 

 

 

 



 

478 

 

 

Table K.1. Summary of force and maximum principal strain (MPS) recorded during an equibiaxial sub-

failure stretch (Chapter 8). The peak force recorded from each load cell is separately detailed (X1, X2, Y1, 

Y2); the maximum force from any given load cell is also listed. 

  peak force (mN)   

Sample Group X1 X2 Y1 Y2 max force (mN) peak MPS (%) 

E5-S01 DRG-only -0.43 4.75 13.98 10.29 13.98 N/A 

E5-S03 naive 13.79 23.56 18.41 18.93 23.56 7.39 

E5-S05 DRG-only 1.71 7.95 2.06 2.73 7.95 24.76 

E5-S08 naive 12.04 7.04 3.22 2.83 12.04 26.71 

E5-S09 naive 15.62 16.11 2.87 5.39 16.11 21.02 

E5-S11 DRG-only 2.17 3.34 0.45 2.02 3.34 25.32 

E5-S13 naive 6.84 12.41 3.28 2.17 12.41 16.34 

E5-S15 DRG-only 10.93 9.00 0.43 4.47 10.93 11.90 

E5-S18 naive 9.82 12.37 8.45 16.92 16.92 18.09 

E5-S19 DRG-only 0.03 1.00 5.48 2.00 5.48 30.31 

S09 pre 2.85 4.77 1.15 6.36 6.36 10.09 

S10 pre+post 1.90 2.43 0.61 2.12 2.43 25.94 

S11 pre 2.42 1.72 0.26 2.44 2.44 22.47 

S14 pre+post 5.93 4.91 5.35 11.47 11.47 10.89 

S17 pre 4.43 9.15 8.54 12.00 12.00 19.75 

S20 pre+post 6.71 6.97 7.98 12.06 12.06 19.74 

S21 pre 2.22 3.34 2.96 2.10 3.34 18.13 

S24 pre+post 3.71 6.90 4.49 8.21 8.21 10.83 

S27 pre+post 11.10 15.45 17.77 7.74 17.77 28.66 

S28 post 6.68 9.11 30.99 33.25 33.25 18.84 

S30 pre+post 27.26 25.45 36.08 26.05 36.08 15.43 

S33 pre+post 20.50 30.93 30.70 26.51 30.93 17.18 

S34 post 10.45 6.38 0.41 7.03 10.45 11.31 

S36 post 11.37 19.38 16.59 15.29 19.38 23.15 

S38 vehicle 2.03 3.60 3.91 3.44 3.91 19.97 

S41 pre 14.95 10.99 4.51 9.13 14.95 20.71 

S43 vehicle 10.64 7.62 20.51 7.23 20.51 51.80 

S44 pre 12.10 7.18 5.62 4.38 12.10 50.17 

S46 vehicle 10.33 10.45 18.44 7.20 18.44 23.27 

S49 pre 12.53 5.06 12.78 8.36 12.78 53.93 

S50 vehicle 13.68 14.94 22.35 7.63 22.35 40.69 

S53 post 13.35 15.48 3.39 16.86 16.86 15.39 

S54 vehicle 17.91 16.33 16.08 21.58 21.58 17.35 

S57 post 7.41 5.30 10.37 12.33 12.33 22.16 

S64 post 3.29 6.91 7.78 9.36 9.36 20.33 

S70 naive 13.99 9.25 12.80 6.51 13.99 22.28 

S72 pre 8.61 19.68 12.21 21.06 21.06 17.26 

                         DRG: dorsal root ganglia; MPS: maximum principal strain 

         N/A data were not collected due to technical problems with data capture 
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Figure K.1. Force-displacement traces shown separately for each load cell affixed to each actuator arm 

(X1, X2, Y1, Y2) during equibiaxial sub-failure stretch as designated in Table K.1 (Chapter 8)  

 

Note: Figure is continued on the next page. 
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Figure K.1. continued 

 

Note: Figure is continued on the next page. 
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Figure K.1. continued 
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Figure K.2. Maximum principal strains sustained on the gel surface immediately following an 

equibiaxial sub-failure stretch as designated in Table K.1 (Chapter 8). Elements are numbered 

sequentially from the bottom left to top right, as shown in sample E5-S11. 

 

Note: Figure is continued on the next page. 

 

 

 

 

 



 

483 

 

 

 

Figure K.2. continued 
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APPENDIX L 

MMP-1, MMP-9 & Substance P Expression After 

Sub-Failure Stretch & MMP Inhibition 
 

 

This appendix summarizes the immunolabeling and ELISA data acquired for the in 

vitro studies presented in Chapter 8. Data included in this appendix include those from the 

studies presented in Section 8.3 that utilized an equibiaxial sub-failure stretch, those from 

the studies presented in Section 8.4.1 that optimized the dosing regimen of the MMP 

inhibitor ilomastat using a bacterial collagenase exposure, and those from the studies 

presented in Section 8.4.2 that utilized equibiaxial sub-failure stretch with MMP inhibition. 

The immunolabeling data in this appendix are organized by whether gel samples underwent 

bacterial collagenase exposure (Section 8.4.1; Table L.1 and Figures L.1-L.3) or 

equibiaxial sub-failure stretch (Sections 8.3 and 8.4.2; Table L.2 and Figures L.4-L.8). 

Labels above each image within the figures list the gel sample number followed by the 

image number (e.g. “A1 – 01” indicates image 1 from gel sample A1); the image number 

in the labels matches the image numbers listed in the corresponding data table. 

Table L.1 details the densitometry results for the MMP-1, MMP-9, and substance 

P immunolabeling data acquired for the ilomastat optimization dosing studies presented in 

Section 8.4.1. Experimental groups for those studies include co-cultures that received one 

of the five following treatment paradigms: (1) ilomastat daily and one hour before a 
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collagenase exposure (daily), (2) with every media change and one hour before a 

collagenase exposure (media Δ), (3) only one hour before a collagenase exposure (1hr 

before), (4) a sterile water vehicle (H2O veh), or (5) a DMSO vehicle (DMSO veh). 

Confocal images of MMP-1 (Figure L.1), MMP-9 (Figure L.2), and substance P (Figure 

L.3) that were acquired immediately following 20 minutes of exposure to bacterial 

collagenase are summarized in Figure L.1, Figure L.2, and Figure L.3, respectively. Gel 

samples were named based on their placement in a 24-well culture plate; as such, the gel 

sample identification numbers in Table L.1 and Figures L.1-L.3 consist of a letter (A-D) 

and a number (1-4) (e.g. A1). Confocal images were acquired for each co-culture gel in 

regions containing DRG soma, DRG axons, and in regions containing FLS cells and no 

DRGs. The amount of positive protein labeling was quantified using densitometry and a 

custom MATLAB script (Appendix B) for each image and each label separately. The 

maximum intensity projection of each stack was generated prior to quantification by 

densitometry for the FLS-localized images.  

Table L.2 details the densitometry results for the MMP-1, MMP-9, and substance 

P immunolabeling data acquired for DRG-only or co-culture collagen gels subjected to 

equibiaxial sub-failure stretch presented in Sections 8.3 and 8.4.2. The corresponding 

force-displacement and strain data for those studies are detailed in Appendix K 

Experimental groups for the studies summarized in Section 8.3 include collagen gels 

seeded with only DRGs (DRG-only) or with DRGs and FLS cells (naïve) that underwent 

equibiaxial sub-failure stretch without MMP inhibition. Experimental groups for the 

studies summarized in Section 8.4.2 include several ilomastat dosing regimens given 
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before and/or after an equibiaxial sub-failure stretch: (1) DMSO vehicle at every dosing 

time (vehicle), (2) ilomastat one hour prior to stretch and DMSO five minutes after the 

stretch (pre), (3) ilomastat only five minutes after the stretch (post), or (4) ilomastat at every 

dosing time (pre/post). Confocal images were acquired to quantify immunolabeling 

performed for MMP-1 (Figure L.4), MMP-9 (Figure L.5), or substance P (Figure L.6) in 

DRG soma and/or axons in both of those studies. Separate confocal images were acquired 

in regions with FLS cells to measure FLS-localized protein expression of MMP-1 and 

MMP-9 and are summarized in Figure L.7 and Figure L.8, respectively. The amount of 

positive labeling was quantified using densitometry and the custom MATLAB script in 

Appendix B. For each image, MMP-1, MMP-9, and substance P were normalized to DAPI 

to account for different cell densities in each image, and then normalized to the unloaded 

control gel, separately for each label. Protein outcomes in the neuronal images for the 

studies presented in Section 8.4.2 were further binarized based on whether they were 

acquired in elements that sustained maximum principal strains (MPS) below or above 

11.7% strain, the threshold for increasing phosphorylated ERK and collagen matrix 

reorganization in stretched neuron-collagen cultures (Zhang et al. 2016). As such, Table 

L.2 details the elemental MPS that corresponds to each image and includes whether that 

strain was above (a) or below (b) the 11.7% strain threshold. 

Table L.3 summarizes the quantification for secreted MMP-1 levels measured 

using ELISA in the culture media (media) and trapped within the collagen gel (gel 

homogenate) in the studies that are presented in Section 8.3. For ELISA assays, culture 

media was sampled 24 hours after the sub-failure stretch. Gels were also homogenized at 
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that same time after stretch according to the kit protocol of the manufacturer (Sensolyte 

Plus 520 MMP-1 Assay Kit; Anaspec). MMP-1 values were quantified using a standard 

curve ranging from 20-0.625ng that was optimized for the range of MMP-1 concentrations 

expected in cell culture media; those data are summarized in Table L.3 in picograms/mL. 
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Table L.1. Densitometry of MMP-1, MMP-9, and substance P in DRGs and FLS cells from ilomastat 

inhibitor dosing studies using bacterial collagenase exposure (Section 8.4.1) 

Corresponding  Sample ID Group image no. anatomy MMP-1 MMP-9 substance P 

Studies     (% positive pixels) 

Section 8.4.1 A1 daily 1 DRG axon 6.44% 11.50% 0.85% 

Section 8.4.1 A1 daily 2 DRG axon 2.52% 6.60% 0.51% 

Section 8.4.1 A1 daily 3 DRG axon 2.53% 5.11% 0.69% 

Section 8.4.1 A1 daily 4 DRG soma 4.77% 6.74% 0.37% 

Section 8.4.1 A1 daily 5 DRG soma 2.92% 0.37% 2.38% 

Section 8.4.1 A1 daily 6 FLS 5.63% 4.01%  

Section 8.4.1 A1 daily 7 FLS 5.83% 4.55%  

Section 8.4.1 A2 media Δ 1 DRG axon 2.79% 3.61% 0.23% 

Section 8.4.1 A2 media Δ 2 DRG axon 3.91% 1.17% 0.11% 

Section 8.4.1 A2 media Δ 3 DRG axon 8.15% 2.71% 0.70% 

Section 8.4.1 A2 media Δ 4 DRG soma 3.69% 0.37% 0.81% 

Section 8.4.1 A2 media Δ 5 DRG soma 1.44% 0.15% 1.43% 

Section 8.4.1 A2 media Δ 6 FLS 3.05% 6.22%  

Section 8.4.1 A2 media Δ 7 FLS 4.07% 8.94%  

Section 8.4.1 A3 1hr before 1 DRG axon 3.26% 5.05% 1.12% 

Section 8.4.1 A3 1hr before 2 DRG axon 6.24% 2.29% 0.60% 

Section 8.4.1 A3 1hr before 3 DRG axon 20.46% 6.05% 7.09% 

Section 8.4.1 A3 1hr before 4 DRG soma 3.53% 6.64% 2.58% 

Section 8.4.1 A3 1hr before 5 DRG soma 5.29% 0.47% 12.11% 

Section 8.4.1 A3 1hr before 6 FLS 6.12% 4.29%  

Section 8.4.1 A3 1hr before 7 FLS 7.41% 3.53%  

Section 8.4.1 A4 H2O veh 1 DRG axon 6.57% 3.58% 1.84% 

Section 8.4.1 A4 H2O veh 2 DRG axon 6.68% 12.85% 2.04% 

Section 8.4.1 A4 H2O veh 3 DRG axon 17.84% 9.73% 5.63% 

Section 8.4.1 A4 H2O veh 4 DRG soma 2.39% 0.06% 7.30% 

Section 8.4.1 A4 H2O veh 5 DRG soma 19.59% 2.84% 10.31% 

Section 8.4.1 A4 H2O veh 6 FLS 7.29% 4.89%  

Section 8.4.1 A4 H2O veh 7 FLS 3.99% 2.93%  

Section 8.4.1 B1 media Δ 1 DRG axon 3.46% 1.23% 0.31% 

Section 8.4.1 B1 media Δ 2 DRG axon 6.69% 0.96% 0.36% 

Section 8.4.1 B1 media Δ 3 DRG axon 9.11% 0.93% 1.45% 

Section 8.4.1 B1 media Δ 4 DRG soma 2.72% 0.27% 1.65% 

Section 8.4.1 B1 media Δ 5 DRG soma 4.64% 1.01% 4.49% 

Section 8.4.1 B1 media Δ 6 FLS 3.42% 5.13%  

Section 8.4.1 B1 media Δ 7 FLS 10.38% 3.24%  

Section 8.4.1 B2 daily 1 DRG axon 6.53% 3.88% 0.56% 

Section 8.4.1 B2 daily 2 DRG axon 10.68% 1.51% 0.35% 

Section 8.4.1 B2 daily 3 DRG axon 20.51% 5.08% 9.70% 

Section 8.4.1 B2 daily 4 DRG soma 8.21% 0.44% 2.30% 

Section 8.4.1 B2 daily 5 DRG soma 4.34% 3.80% 1.74% 

Section 8.4.1 B2 daily 6 FLS 6.54% 2.00%  

Section 8.4.1 B2 daily 7 FLS 1.26% 1.95%  

            DRG: dorsal root ganglia; FLS: fibroblast-like synoviocyte 

            N/A data were not collected due to technical problems with data capture 

            Shaded cells indicate where data were not quantified because FLS do not express substance P 

 

Note: Table is continued on the next page. 
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Table L.1. continued 

Corresponding  Sample ID Group image no. anatomy MMP-1 MMP-9 substance P 

Studies     (% positive pixels) 

Section 8.4.1 B3 H2O veh 1 DRG axon 5.86% 3.40% 0.45% 

Section 8.4.1 B3 H2O veh 2 DRG axon 7.34% 1.20% 0.20% 

Section 8.4.1 B3 H2O veh 3 DRG axon 6.58% 0.50% 0.40% 

Section 8.4.1 B3 H2O veh 4 DRG soma 10.19% 0.39% 2.65% 

Section 8.4.1 B3 H2O veh 5 DRG soma 6.71% 0.23% 4.22% 

Section 8.4.1 B3 H2O veh 6 FLS 5.21% 2.12%  

Section 8.4.1 B3 H2O veh 7 FLS 12.39% 2.90%  

Section 8.4.1 B4 1hr before 1 DRG axon 3.93% 1.74% 0.16% 

Section 8.4.1 B4 1hr before 2 DRG axon 9.79% 2.26% 0.43% 

Section 8.4.1 B4 1hr before 3 DRG axon 9.19% 8.04% 6.17% 

Section 8.4.1 B4 1hr before 4 DRG soma 2.45% 2.92% 0.97% 

Section 8.4.1 B4 1hr before 5 DRG soma 12.81% 0.24% 0.50% 

Section 8.4.1 B4 1hr before 6 FLS 5.24% 8.23%  

Section 8.4.1 B4 1hr before 7 FLS 14.17% 4.09%  

Section 8.4.1 C1 1hr before 1 DRG axon 5.26% 2.29% 0.19% 

Section 8.4.1 C1 1hr before 2 DRG axon 7.65% 2.76% 0.56% 

Section 8.4.1 C1 1hr before 3 DRG axon 8.90% 1.96% 0.51% 

Section 8.4.1 C1 1hr before 4 DRG soma 9.08% 0.82% 1.89% 

Section 8.4.1 C1 1hr before 5 DRG soma 7.27% 0.49% 1.23% 

Section 8.4.1 C1 1hr before 6 FLS 4.92% 1.46%  

Section 8.4.1 C1 1hr before 7 FLS 4.77% 1.91%  

Section 8.4.1 C2 H2O veh 1 DRG axon 5.10% 8.62% 1.64% 

Section 8.4.1 C2 H2O veh 2 DRG axon 3.55% 3.67% 0.30% 

Section 8.4.1 C2 H2O veh 3 DRG axon 7.88% 2.54% 0.94% 

Section 8.4.1 C2 H2O veh 4 DRG soma 10.58% 1.20% 2.13% 

Section 8.4.1 C2 H2O veh 5 DRG soma 8.79% 0.71% 2.05% 

Section 8.4.1 C2 H2O veh 6 FLS 3.83% 1.94%  

Section 8.4.1 C2 H2O veh 7 FLS 2.07% 0.68%  

Section 8.4.1 C3 daily 1 DRG axon 6.22% 3.27% 0.45% 

Section 8.4.1 C3 daily 2 DRG axon 4.65% 11.41% 0.29% 

Section 8.4.1 C3 daily 3 DRG axon 7.90% 6.99% 1.23% 

Section 8.4.1 C3 daily 4 DRG soma 7.66% 2.37% 2.02% 

Section 8.4.1 C3 daily 5 DRG soma 2.71% 0.80% 1.74% 

Section 8.4.1 C3 daily 6 FLS 1.29% 1.49%  

Section 8.4.1 C3 daily 7 FLS 1.70% 3.23%  

Section 8.4.1 C4 media Δ 1 DRG axon 8.65% 0.77% 0.10% 

Section 8.4.1 C4 media Δ 2 DRG axon 5.62% 3.76% 0.19% 

Section 8.4.1 C4 media Δ 3 DRG axon 13.09% 0.74% 0.43% 

Section 8.4.1 C4 media Δ 4 DRG soma 4.01% 0.17% 0.41% 

Section 8.4.1 C4 media Δ 5 DRG soma 8.22% 0.70% 1.14% 

Section 8.4.1 C4 media Δ 6 FLS 7.33% 4.15%  

Section 8.4.1 C4 media Δ 7 FLS 7.41% 5.00%  

Section 8.4.1 D1 H2O veh 1 DRG axon 4.57% 4.42% 0.42% 

            DRG: dorsal root ganglia; FLS: fibroblast-like synoviocyte 

            N/A data were not collected due to technical problems with data capture 

            Shaded cells indicate where data were not quantified because FLS do not express substance P 

 

Note: Table is continued on the next page. 
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Table L.1. continued 

Corresponding  Sample ID Group image no. anatomy MMP-1 MMP-9 substance P 

Studies     (% positive pixels) 

Section 8.4.1 D1 H2O veh 2 DRG axon 10.59% 10.40% 6.22% 

Section 8.4.1 D1 H2O veh 3 DRG axon 24.18% 4.86% 4.68% 

Section 8.4.1 D1 H2O veh 4 DRG soma 1.96% 0.20% 0.37% 

Section 8.4.1 D1 H2O veh 5 DRG soma 19.88% 1.86% 0.75% 

Section 8.4.1 D1 H2O veh 6 FLS 0.90% 1.56%  

Section 8.4.1 D2 1hr before 1 DRG axon 10.77% 3.94% 0.62% 

Section 8.4.1 D2 1hr before 2 DRG axon 12.75% 2.24% 0.40% 

Section 8.4.1 D2 1hr before 3 DRG axon 10.69% 3.10% 2.60% 

Section 8.4.1 D2 1hr before 4 DRG soma 31.42% 5.90% 9.86% 

Section 8.4.1 D2 1hr before 5 DRG soma 5.45% 0.41% 0.62% 

Section 8.4.1 D2 1hr before 6 FLS 0.20% 2.84%  

Section 8.4.1 D2 1hr before 7 FLS 6.56% 1.58%  

Section 8.4.1 D3 media Δ 1 DRG axon 3.65% 1.99% 0.10% 

Section 8.4.1 D3 media Δ 2 DRG axon 6.14% 0.86% 0.04% 

Section 8.4.1 D3 media Δ 3 DRG axon 8.47% 0.19% 0.08% 

Section 8.4.1 D3 media Δ 4 DRG soma 5.30% 1.33% 1.72% 

Section 8.4.1 D3 media Δ 5 DRG soma 8.08% 0.32% 0.34% 

Section 8.4.1 D3 media Δ 6 FLS 0.45% 2.15%  

Section 8.4.1 D3 media Δ 7 FLS 0.62% 2.81%  

Section 8.4.1 D4 daily 1 DRG axon 10.76% 0.78% 0.46% 

Section 8.4.1 D4 daily 2 DRG axon 3.80% 7.19% 0.84% 

Section 8.4.1 D4 daily 3 DRG axon 11.59% 17.92% 5.88% 

Section 8.4.1 D4 daily 4 DRG soma 4.33% 0.27% 0.94% 

Section 8.4.1 D4 daily 5 DRG soma 7.44% 1.70% 1.17% 

Section 8.4.1 D4 daily 6 FLS 11.37% 2.49%  

Section 8.4.1 D4 daily 7 FLS 7.52% 3.83%  

Section 8.4.1 A2 media Δ 1 DRG axon 28.37% 0.98% 0.25% 

Section 8.4.1 A2 media Δ 2 DRG axon 26.89% 0.40% 0.26% 

Section 8.4.1 A2 media Δ 3 DRG axon 42.32% 1.88% 0.44% 

Section 8.4.1 A2 media Δ 4 DRG soma 56.61% 0.67% 1.77% 

Section 8.4.1 A2 media Δ 5 DRG soma 74.08% 0.11% 0.16% 

Section 8.4.1 A2 media Δ 6 FLS 4.22% 4.98%  

Section 8.4.1 A2 media Δ 7 FLS N/A 1.96%  

Section 8.4.1 B2 DMSO veh 1 DRG axon 5.51% 10.64% 0.32% 

Section 8.4.1 B2 DMSO veh 2 DRG axon 13.42% 10.78% 1.96% 

Section 8.4.1 B2 DMSO veh 3 DRG axon 7.46% 7.22% 0.12% 

Section 8.4.1 B2 DMSO veh 4 DRG soma 25.65% 15.45% 1.83% 

Section 8.4.1 B2 DMSO veh 5 DRG soma 63.21% 22.56% 6.02% 

Section 8.4.1 B2 DMSO veh 6 FLS 3.44% 1.61%  

Section 8.4.1 B2 DMSO veh 7 FLS 0.49% 1.01%  

Section 8.4.1 B3 media Δ 1 DRG axon 1.12% 0.08% 0.08% 

Section 8.4.1 B3 media Δ 2 DRG axon 4.16% 0.13% 0.16% 

Section 8.4.1 B3 media Δ 3 DRG axon 0.70% 0.09% 0.02% 

Section 8.4.1 B3 media Δ 4 DRG soma 5.84% 0.05% 0.57% 

Section 8.4.1 B3 media Δ 5 DRG soma 0.46% 0.08% 0.49% 

Section 8.4.1 B3 media Δ 6 DRG soma 9.07% 0.12% 0.55% 

Section 8.4.1 B3 media Δ 7 FLS 1.08% 1.95%  

Section 8.4.1 B3 media Δ 8 FLS 4.40% 3.12%  
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Figure L.1. Immunolabeling of MMP-1 in DRGs and FLS cells from ilomastat inhibitor dosing studies 

using bacterial collagenase exposure as designated in Table L.1 (Section 8.4.1) 

 

Note: Figure is continued on the next page. 
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Figure L.1. continued 

 

Note: Figure is continued on the next page. 
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Figure L.1. continued 

 

Note: Figure is continued on the next page. 
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Figure L.1. continued 
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Figure L.2. Immunolabeling of MMP-9 in DRGs and FLS cells from ilomastat inhibitor dosing studies 

using bacterial collagenase exposure as designated in Table L.1 (Section 8.4.1) 

 

Note: Figure is continued on the next page. 
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Figure L.2. continued 

 

Note: Figure is continued on the next page. 
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Figure L.2. continued 

 

Note: Figure is continued on the next page. 
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Figure L.2. continued 
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Figure L.3. Immunolabeling of substance P in DRGs and FLS cells from ilomastat inhibitor dosing 

studies using bacterial collagenase exposure as designated in Table L.1 (Section 8.4.1)

 

Note: Figure is continued on the next page. 
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Figure L.3. continued 

 

Note: Figure is continued on the next page. 
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Figure L.3. continued 

 

Note: Figure is continued on the next page. 
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Figure L.3. continued 
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Table L.2. Densitometry of MMP-1, MMP-9, and substance P in DRGs and FLS cells at 24 hours after 

equibiaxial sub-failure stretch (Sections 8.3 and 8.4.2) 

Corresponding Studies  Sample ID image no. Group MMP-1 MMP-9 substance P strain threshold 
Section 8.3 E5-S01 1 DRG only 0.56 0.34 0.20 NC NC 
Section 8.3 E5-S01 2 DRG only 0.11 0.03 0.23 NC NC 
Section 8.3 E5-S01 3 DRG only 0.39 0.31 0.52 NC NC 
Section 8.3 E5-S01 4 DRG only 0.38 0.22 0.07 NC NC 
Section 8.3 E5-S03 1 naïve 1.92 0.32 0.93 NC NC 
Section 8.3 E5-S03 2 naïve 2.25 0.18 0.11 NC NC 
Section 8.3 E5-S03 3 naïve 0.47 0.37 0.24 NC NC 
Section 8.3 E5-S03 4 naïve 3.15 12.73 4.42 NC NC 
Section 8.3 E5-S03 5 naïve 2.64 2.55 12.76 NC NC 
Section 8.3 E5-S05 1 DRG only 19.54 15.82 2.49 NC NC 
Section 8.3 E5-S05 2 DRG only 56.88 45.84 3.97 NC NC 
Section 8.3 E5-S05 3 DRG only 38.44 43.72 0.94 NC NC 
Section 8.3 E5-S05 4 DRG only 5.86 9.41 8.35 NC NC 
Section 8.3 E5-S05 5 DRG only 91.08 39.81 4.47 NC NC 
Section 8.3 E5-S08 1 naïve 0.43 0.46 1.05 NC NC 
Section 8.3 E5-S08 2 naïve 0.46 1.46 2.27 NC NC 
Section 8.3 E5-S08 3 naïve 0.64 1.52 2.16 NC NC 
Section 8.3 E5-S08 4 naïve 1.12 1.79 2.31 NC NC 
Section 8.3 E5-S08 5 naïve 0.55 0.68 0.70 NC NC 
Section 8.3 E5-S08 6 naïve 0.81 1.57 20.83 NC NC 
Section 8.3 E5-S08 7 naïve 1.27 2.14 1.57 NC NC 
Section 8.3 E5-S09 1 naïve 0.71 0.12 0.40 NC NC 
Section 8.3 E5-S09 2 naïve 1.23 0.66 0.40 NC NC 
Section 8.3 E5-S09 3 naïve 0.51 2.16 1.41 NC NC 
Section 8.3 E5-S09 4 naïve 0.70 0.86 1.63 NC NC 
Section 8.3 E5-S09 5 naïve 0.48 0.48 0.88 NC NC 
Section 8.3 E5-S09 6 naïve 0.74 0.75 1.30 NC NC 
Section 8.3 E5-S11 1 DRG only 0.01 0.86 0.69 NC NC 
Section 8.3 E5-S11 2 DRG only 0.02 0.09 0.46 NC NC 
Section 8.3 E5-S11 3 DRG only 0.02 0.05 0.42 NC NC 
Section 8.3 E5-S11 4 DRG only 0.12 0.54 0.66 NC NC 
Section 8.3 E5-S11 5 DRG only 6.36 37.70 9.75 NC NC 
Section 8.3 E5-S11 6 DRG only 0.13 3.39 1.06 NC NC 
Section 8.3 E5-S13 1 naïve 0.88 1.04 1.13 NC NC 
Section 8.3 E5-S13 2 naïve 0.90 0.32 0.73 NC NC 
Section 8.3 E5-S13 3 naïve 0.05 0.01 0.19 NC NC 
Section 8.3 E5-S13 4 naïve 0.19 0.20 0.67 NC NC 
Section 8.3 E5-S13 5 naïve 1.15 1.44 4.45 NC NC 
Section 8.3 E5-S15 1 DRG only 0.10 1.87 10.53 NC NC 
Section 8.3 E5-S15 2 DRG only 0.18 3.02 2.77 NC NC 
Section 8.3 E5-S15 3 DRG only 0.87 0.54 0.85 NC NC 
Section 8.3 E5-S15 4 DRG only 3.26 0.88 2.88 NC NC 
Section 8.3 E5-S15 5 DRG only 1.32 3.43 10.71 NC NC 
Section 8.3 E5-S18 1 naïve 0.85 0.48 0.34 NC NC 

Section 8.3 E5-S18 2 naïve 1.18 1.08 1.05 NC NC 
Section 8.3 E5-S18 3 naïve 1.20 1.20 2.44 NC NC 
Section 8.3 E5-S18 4 naïve 4.10 3.72 4.92 NC NC 

          DRG: dorsal root ganglia; FLS: fibroblast-like synoviocyte; a: above; b: below 

          N/A data were not collected due to technical problems with data capture 

          NC: not collected during imaging acquisition; protein values are fold-change over unstretched control 

 

Note: Table is continued on the next page. 
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Table L.2. continued 

Corresponding Studies  Sample ID image no. Group MMP-1 MMP-9 substance P strain threshold 
Section 8.3 E5-S18 5 naïve 1.24 1.25 2.34 NC NC 
Section 8.3 E5-S18 6 naïve 1.77 1.24 1.50 NC NC 
Section 8.3 E5-S19 1 DRG only 0.85 1.02 0.15 NC NC 
Section 8.3 E5-S19 2 DRG only 0.54 1.04 0.75 NC NC 
Section 8.3 E5-S19 3 DRG only 1.10 1.05 0.46 NC NC 
Section 8.3 E5-S19 4 DRG only 0.09 0.43 0.20 NC NC 
Section 8.3 E5-S19 5 DRG only 0.48 0.17 0.15 NC NC 

Section 8.4.2 S09 1 pre 1.05 0.52 0.34 6.7% b 
Section 8.4.2 S09 2 pre 1.13 0.77 0.89 6.7% b 
Section 8.4.2 S09 3 pre 0.69 0.20 0.41 6.7% b 
Section 8.4.2 S09 4 pre 1.46 0.37 1.87 10.1% b 
Section 8.4.2 S09 5 pre 0.69 0.12 0.11 6.1% b 
Section 8.4.2 S09 6 pre 1.50 0.14 0.26 6.1% b 
Section 8.4.2 S10 1 pre/post 1.10 0.26 0.98 4.8% b 
Section 8.4.2 S10 2 pre/post 0.61 0.01 0.14 25.9% a 
Section 8.4.2 S10 3 pre/post 0.57 0.03 0.18 25.9% a 
Section 8.4.2 S10 4 pre/post 0.87 1.82 2.01 25.9% a 
Section 8.4.2 S10 5 pre/post 1.09 2.09 3.16 25.9% a 
Section 8.4.2 S10 6 pre/post 1.51 0.22 0.07 4.8% b 
Section 8.4.2 S11 1 pre 2.30 1.68 2.39 16.7% a 
Section 8.4.2 S11 2 pre 2.84 0.71 0.10 17.8% a 
Section 8.4.2 S11 3 pre 3.94 1.02 1.11 16.5% a 
Section 8.4.2 S11 4 pre 1.02 3.53 0.05 16.5% a 
Section 8.4.2 S11 5 pre 2.01 0.90 0.98 14.5% a 
Section 8.4.2 S11 6 pre 1.92 1.19 0.10 12.0% a 
Section 8.4.2 S14 1 pre/post 0.91 0.23 0.15 9.1% b 
Section 8.4.2 S14 2 pre/post 0.67 0.04 0.07 7.2% b 
Section 8.4.2 S14 3 pre/post 0.63 0.71 0.37 7.7% b 
Section 8.4.2 S14 4 pre/post 0.49 0.04 0.03 5.0% b 
Section 8.4.2 S14 5 pre/post 0.77 0.27 0.57 10.9% b 
Section 8.4.2 S14 6 pre/post 0.85 0.23 0.22 8.4% b 
Section 8.4.2 S17 1 pre 1.11 7.57 4.45 7.6% b 
Section 8.4.2 S17 2 pre 1.09 12.08 7.03 19.8% a 
Section 8.4.2 S17 3 pre 0.71 9.45 11.11 17.3% a 
Section 8.4.2 S17 4 pre 0.63 2.30 0.17 7.6% b 
Section 8.4.2 S17 5 pre 0.97 6.34 1.53 12.4% a 
Section 8.4.2 S17 6 pre 1.12 8.28 3.01 12.4% a 
Section 8.4.2 S20 1 pre/post 3.28 16.48 3.29 19.7% a 
Section 8.4.2 S20 2 pre/post 1.34 30.34 1.41 7.7% b 
Section 8.4.2 S20 3 pre/post 1.69 31.53 0.31 10.0% b 
Section 8.4.2 S20 4 pre/post 2.19 22.03 1.48 7.7% b 
Section 8.4.2 S20 5 pre/post 1.89 15.89 0.31 19.7% a 
Section 8.4.2 S21 1 pre 1.00 0.15 0.59 14.8% a 
Section 8.4.2 S21 2 pre 1.16 0.38 0.24 16.0% a 

Section 8.4.2 S21 3 pre 0.98 0.59 0.40 16.0% a 
Section 8.4.2 S21 4 pre 0.94 0.16 0.62 14.3% a 
Section 8.4.2 S21 5 pre 1.11 0.30 0.43 16.0% a 

         DRG: dorsal root ganglia; FLS: fibroblast-like synoviocyte; a: above; b: below 

         N/A data were not collected due to technical problems with data capture 

         NC: not collected during imaging acquisition; protein values are fold-change over unstretched control 

 

Note: Table is continued on the next page. 
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Table L.2. continued 

Corresponding Studies  Sample ID image no. Group MMP-1 MMP-9 substance P strain threshold 
Section 8.4.2 S21 6 pre 0.30 0.70 0.08 12.7% a 
Section 8.4.2 S24 1 pre/post 1.28 0.14 0.63 8.5% b 
Section 8.4.2 S24 2 pre/post 0.38 1.55 0.65 8.7% b 
Section 8.4.2 S24 3 pre/post 0.97 1.04 0.50 7.6% b 
Section 8.4.2 S24 4 pre/post 0.21 5.62 0.18 7.6% b 
Section 8.4.2 S24 5 pre/post 1.14 0.50 0.44 3.6% b 
Section 8.4.2 S24 6 pre/post 1.16 0.43 1.20 3.6% b 
Section 8.4.2 S27 1 pre/post 0.94 1.64 13.64 12.7% a 
Section 8.4.2 S27 2 pre/post 0.94 1.03 9.29 13.6% a 
Section 8.4.2 S27 3 pre/post 1.03 0.68 10.13 13.6% a 
Section 8.4.2 S27 4 pre/post 0.78 1.21 9.75 13.6% a 
Section 8.4.2 S27 5 pre/post 0.82 0.44 12.80 13.6% a 
Section 8.4.2 S27 6 pre/post 1.45 0.29 14.81 5.7% b 
Section 8.4.2 S28 1 post 0.94 0.05 0.35 12.0% a 
Section 8.4.2 S28 2 post 0.86 0.17 0.23 14.2% a 
Section 8.4.2 S28 3 post 0.73 0.68 0.37 16.4% a 
Section 8.4.2 S28 4 post 0.94 0.23 0.41 16.4% a 
Section 8.4.2 S28 5 post 1.11 2.45 0.33 12.0% a 
Section 8.4.2 S28 6 post 0.94 0.28 0.61 12.0% a 
Section 8.4.2 S30 1 pre/post 0.66 0.74 0.02 8.2% b 
Section 8.4.2 S30 2 pre/post 0.62 0.19 0.04 6.9% b 
Section 8.4.2 S30 3 pre/post 0.56 0.03 0.02 6.9% b 
Section 8.4.2 S30 4 pre/post 0.57 0.26 0.09 8.2% b 
Section 8.4.2 S30 5 pre/post 0.60 0.14 0.04 8.1% b 
Section 8.4.2 S30 6 pre/post 0.71 0.23 0.20 11.4% a 
Section 8.4.2 S33 1 pre/post 5.93 0.38 0.59 4.9% b 
Section 8.4.2 S33 2 pre/post 4.44 0.20 0.81 17.2% a 
Section 8.4.2 S33 3 pre/post 5.86 0.86 3.03 17.2% a 
Section 8.4.2 S33 4 pre/post 4.81 0.35 1.70 1.5% b 
Section 8.4.2 S33 5 pre/post 1.68 3.42 0.19 1.5% b 
Section 8.4.2 S33 6 pre/post 2.28 4.61 0.15 1.5% b 
Section 8.4.2 S34 1 post 5.80 1.71 8.89 7.0% b 
Section 8.4.2 S34 2 post 15.56 3.45 24.95 8.1% b 
Section 8.4.2 S34 3 post 7.62 3.90 2.50 8.1% b 
Section 8.4.2 S34 4 post 16.61 1.45 28.32 7.5% b 
Section 8.4.2 S34 5 post 18.23 7.93 15.88 8.5% b 
Section 8.4.2 S34 6 post 15.53 4.43 11.10 9.4% b 
Section 8.4.2 S36 1 post 0.74 0.17 1.03 18.8% a 
Section 8.4.2 S36 2 post 0.81 0.57 1.12 8.1% b 
Section 8.4.2 S36 3 post 0.42 0.10 1.73 6.7% b 
Section 8.4.2 S36 4 post 0.44 0.22 0.99 6.7% b 
Section 8.4.2 S36 5 post 0.59 0.33 0.44 23.2% a 
Section 8.4.2 S36 6 post 1.30 1.84 1.38 7.9% b 
Section 8.4.2 S38 1 vehicle 0.96 0.11 0.41 13.0% a 

Section 8.4.2 S38 2 vehicle 1.14 0.03 0.68 9.6% b 
Section 8.4.2 S38 3 vehicle 0.55 0.09 0.57 8.8% b 
Section 8.4.2 S38 4 vehicle 0.37 0.01 0.18 2.4% b 

           DRG: dorsal root ganglia; FLS: fibroblast-like synoviocyte; a: above; b: below 

           N/A data were not collected due to technical problems with data capture 

           NC: not collected during imaging acquisition; protein values are fold-change over unstretched control 

 

Note: Table is continued on the next page. 
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Table L.2. continued 

Corresponding Studies  Sample ID image no. Group MMP-1 MMP-9 substance P strain threshold 
Section 8.4.2 S38 5 vehicle 0.64 0.83 0.15 2.4% b 
Section 8.4.2 S38 6 vehicle 1.20 0.08 0.37 8.8% b 
Section 8.4.2 S41 1 pre 0.86 0.07 0.16 13.9% a 
Section 8.4.2 S41 2 pre 0.26 0.01 0.04 15.3% a 
Section 8.4.2 S41 3 pre 0.68 0.28 0.73 8.8% b 
Section 8.4.2 S41 4 pre 0.26 1.30 1.05 7.0% b 
Section 8.4.2 S41 5 pre 0.52 1.85 1.74 7.0% b 
Section 8.4.2 S41 6 pre 0.40 0.20 0.10 7.0% b 
Section 8.4.2 S43 1 vehicle 0.09 0.04 0.04 12.9% a 
Section 8.4.2 S43 2 vehicle 0.77 0.08 0.26 13.3% a 
Section 8.4.2 S43 3 vehicle 1.38 0.27 0.34 20.3% a 
Section 8.4.2 S43 4 vehicle 0.37 0.15 0.16 51.8% a 
Section 8.4.2 S43 5 vehicle 0.99 2.13 0.24 38.0% a 
Section 8.4.2 S43 6 vehicle 0.11 0.53 0.07 12.9% a 
Section 8.4.2 S44 1 pre 0.61 0.31 0.30 19.9% a 
Section 8.4.2 S44 2 pre 0.76 0.26 0.35 9.0% b 
Section 8.4.2 S44 3 pre 0.40 0.19 0.73 9.6% b 
Section 8.4.2 S44 4 pre 1.17 1.88 0.84 9.3% b 
Section 8.4.2 S44 5 pre 0.61 0.56 0.55 14.4% a 
Section 8.4.2 S44 6 pre 0.57 0.09 0.13 17.5% a 
Section 8.4.2 S46 1 vehicle 0.64 1.29 0.74 19.5% a 
Section 8.4.2 S46 2 vehicle 0.82 0.18 0.82 11.5% a 
Section 8.4.2 S46 3 vehicle 0.67 0.21 0.84 11.5% a 
Section 8.4.2 S46 4 vehicle 0.70 0.10 0.49 7.2% b 
Section 8.4.2 S46 5 vehicle 1.01 0.28 0.36 7.2% b 
Section 8.4.2 S46 6 vehicle 1.24 0.51 1.04 8.0% b 
Section 8.4.2 S49 1 pre 0.22 0.20 0.96 35.7% a 
Section 8.4.2 S49 2 pre 1.25 1.01 1.67 35.7% a 
Section 8.4.2 S49 3 pre 1.12 0.67 1.02 17.4% a 
Section 8.4.2 S49 4 pre 1.12 3.38 2.04 17.4% a 
Section 8.4.2 S49 5 pre 0.62 0.13 0.45 35.7% a 
Section 8.4.2 S49 6 pre 0.64 1.96 0.10 14.6% a 
Section 8.4.2 S50 1 vehicle 0.46 0.71 4.45 14.3% a 
Section 8.4.2 S50 2 vehicle 1.37 0.98 9.75 14.3% a 
Section 8.4.2 S50 3 vehicle 1.21 0.32 13.69 17.7% a 
Section 8.4.2 S50 4 vehicle 2.23 1.14 16.08 11.2% b 
Section 8.4.2 S50 5 vehicle 1.83 0.38 11.39 14.4% a 
Section 8.4.2 S50 6 vehicle 0.55 5.56 1.28 17.7% a 
Section 8.4.2 S53 1 post 0.21 0.02 0.09 8.7% b 
Section 8.4.2 S53 2 post 0.90 0.13 0.05 8.7% b 
Section 8.4.2 S53 3 post 0.44 0.14 0.39 8.7% b 
Section 8.4.2 S53 4 post 0.83 0.08 0.08 8.7% b 
Section 8.4.2 S54 1 vehicle 4.48 1.18 4.32 7.0% b 
Section 8.4.2 S54 2 vehicle 0.38 0.23 1.11 16.0% a 

Section 8.4.2 S54 3 vehicle 1.08 0.65 2.67 17.4% a 
Section 8.4.2 S54 4 vehicle 0.95 3.94 0.29 6.3% b 
Section 8.4.2 S54 5 vehicle 0.29 0.67 1.91 9.3% b 

            DRG: dorsal root ganglia; FLS: fibroblast-like synoviocyte; a: above; b: below 

            N/A data were not collected due to technical problems with data capture 

            NC: not collected during imaging acquisition; protein values are fold-change over unstretched control 

 

Note: Table is continued on the next page. 
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Table L.2. continued 

Corresponding Studies  Sample ID image no. Group MMP-1 MMP-9 substance P strain threshold 
Section 8.4.2 S54 6 vehicle 0.36 0.49 2.21 9.3% b 
Section 8.4.2 S57 1 post 1.55 0.30 1.15 14.6% a 
Section 8.4.2 S57 2 post 0.66 0.14 6.56 14.6% a 
Section 8.4.2 S57 3 post 1.10 0.26 8.46 10.9% b 
Section 8.4.2 S57 4 post 0.79 0.24 7.23 10.9% b 
Section 8.4.2 S57 5 post 0.47 0.07 3.15 11.4% a 
Section 8.4.2 S57 6 post 0.71 0.77 1.02 11.4% a 
Section 8.4.2 S64 1 post 2.73 34.41 9.92 9.1% b 
Section 8.4.2 S64 2 post 2.74 13.08 8.51 6.5% b 
Section 8.4.2 S64 3 post 1.71 1.36 0.71 15.7% a 
Section 8.4.2 S64 4 post 1.29 0.41 0.21 15.7% a 
Section 8.4.2 S64 5 post 1.11 0.84 0.30 15.7% a 
Section 8.4.2 S64 6 post 1.97 1.49 3.09 15.7% a 
Section 8.4.2 S70 1 naïve 0.74 0.13 0.44 NC NC 
Section 8.4.2 S70 2 naïve 1.05 0.40 0.21 NC NC 
Section 8.4.2 S70 3 naïve 0.91 0.15 0.58 NC NC 
Section 8.4.2 S70 4 naïve 0.16 0.15 0.60 NC NC 
Section 8.4.2 S72 1 pre 1.50 1.41 0.30 17.3% a 
Section 8.4.2 S72 2 pre 0.46 0.73 0.07 17.3% a 
Section 8.4.2 S72 3 pre 2.22 1.65 0.43 17.3% a 
Section 8.4.2 S72 4 pre 1.62 1.17 0.36 17.3% a 
Section 8.4.2 S72 5 pre 1.86 0.48 1.11 12.7% a 
Section 8.4.2 S72 6 pre 2.00 1.24 0.46 17.3% a 
Section 8.3 E5-S03 FLS naïve 3.85 2.22 6.25 NC NC 
Section 8.3 E5-S08 FLS naïve 1.45 0.49 0.04 NC NC 
Section 8.3 E5-S18 FLS naïve 0.78 1.40 0.84 NC NC 

Section 8.4.2 S09 FLS pre 0.50 1.74 6.46 NC NC 
Section 8.4.2 S10 FLS pre/post 0.40 0.89 6.54 NC NC 
Section 8.4.2 S11 FLS pre 1.01 0.31 1.11 NC NC 
Section 8.4.2 S14 FLS-01 pre/post 1.48 0.60 0.94 NC NC 
Section 8.4.2 S14 FLS-02 pre/post 0.89 0.27 0.07 NC NC 
Section 8.4.2 S17 FLS pre 0.60 5.58 2.09 NC NC 
Section 8.4.2 S30 FLS pre/post 0.08 0.22 0.02 NC NC 
Section 8.4.2 S33 FLS pre/post 3.43 2.26 15.58 NC NC 
Section 8.4.2 S36 FLS post 0.18 0.23 0.87 NC NC 
Section 8.4.2 S38 FLS vehicle 0.53 0.31 1.02 NC NC 
Section 8.4.2 S41 FLS pre 0.35 0.78 #DIV/0! NC NC 
Section 8.4.2 S43 FLS vehicle 1.34 0.89 0.00 NC NC 
Section 8.4.2 S44 FLS pre 1.12 0.67 1.24 NC NC 
Section 8.4.2 S50 FLS vehicle 2.37 1.06 18.67 NC NC 
Section 8.4.2 S53 FLS post 0.58 0.23 0.04 NC NC 
Section 8.4.2 S54 FLS vehicle 0.30 0.27 0.01 NC NC 
Section 8.4.2 S57 FLS post 0.58 0.40 6.92 NC NC 
Section 8.4.2 S64 FLS post 1.07 4.64 0.48 NC NC 

Section 8.4.2 S70 FLS naïve 1.66 0.76 1.51 NC NC 
Section 8.4.2 S72 FLS pre 0.18 0.92 0.28 NC NC 

            DRG: dorsal root ganglia; FLS: fibroblast-like synoviocyte; a: above; b: below 

            N/A data were not collected due to technical problems with data capture 

            NC: not collected during imaging acquisition; protein values are fold-change over unstretched control 
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Figure L.4. Immunolabeling of MMP-1 in DRGs at 24 hours after equibiaxial sub-failure stretch as 

designated in Table L.2 (Sections 8.3 and 8.4.2) 

 

Note: Figure is continued on the next page. 
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Figure L.4. continued 
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Figure L.4. continued 

 

Note: Figure is continued on the next page. 

 

 

 

 

 



512 
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Figure L.4. continued 
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Figure L.5. Immunolabeling of MMP-9 in DRGs at 24 hours after equibiaxial sub-failure stretch as 

designated in Table L.2 (Sections 8.3 and 8.4.2) 

 

Note: Figure is continued on the next page. 
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Figure L.5. continued 
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Figure L.5. continued 
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Figure L.6. Immunolabeling of substance P in DRGs at 24 hours after equibiaxial sub-failure stretch as 

designated in Table L.2 (Sections 8.3 and 8.4.2) 

 

Note: Figure is continued on the next page. 
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Figure L.6. continued 
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Figure L.7. Immunolabeling of MMP-1 in FLS cells at 24 hours after equibiaxial sub-failure stretch as 

designated in Table L.2 (Sections 8.3 and 8.4.2) 
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Figure L.8. Immunolabeling of MMP-9 in FLS cells at 24 hours after equibiaxial sub-failure stretch as 

designated in Table L.2 (Sections 8.3 and 8.4.2) 
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Table L.3. MMP-1 ELISA data from media and gel homogenate at 24 hours after equibiaxial sub-failure 

stretch (Section 8.3). Quantification of MMP-1 in media represents the average of duplicate measurements; 

gel homogenate measurements were taken in single wells. 

 Corresponding Studies  Sample ID group stretch media (pg/mL) gel homogenate (pg/mL) 

 Section 8.3 E05_S04 naïve control 181.4 66.1 

 Section 8.3 E05_S07 naïve control 131.5 119.3 

 Section 8.3 E05_S10 naïve control 98.3 87.1 

 Section 8.3 E05_S14 naïve control 117.0 167.3 

 Section 8.3 E05_S17 naïve control 120.0 175.2 

 Section 8.3 E05_S03 naïve sub-failure 156.1 106.8 

 Section 8.3 E05_S08 naïve sub-failure 150.5 83.1 

 Section 8.3 E05_S09 naïve sub-failure 126.2 142.3 

 Section 8.3 E05_S13 naïve sub-failure 98.9 176.5 

 Section 8.3 E05_S18 naïve sub-failure 96.3 175.8 

 Section 8.3 E05_S02 DRG-only control 234.0 70.0 

 Section 8.3 E05_S06 DRG-only control 204.1 35.2 

 Section 8.3 E05_S12 DRG-only control 109.8 137.0 

 Section 8.3 E05_S16 DRG-only control 160.7 188.3 

 Section 8.3 E05_S20 DRG-only control 124.6 378.9 

 Section 8.3 E05_S01 DRG-only sub-failure -11.2 91.0 

 Section 8.3 E05_S05 DRG-only sub-failure 98.6 421.0 

 Section 8.3 E05_S11 DRG-only sub-failure 93.7 177.8 

 Section 8.3 E05_S15 DRG-only sub-failure 115.7 77.9 

 Section 8.3 E05_S19 DRG-only sub-failure 109.8 253.4 
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