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Abstract

In a continuing program of research in robotic control of intermittent dynamical tasks, we
have constructed a three degree of freedom robot capable of “juggling” a ball falling freely
in the earth’s gravitational field. This work is a direct extension of that previously reported
in [7, 3, B, 4]. The present paper offers a comprehensive description of the new experimental
apparatus and a brief account of the more general kinematic, dynamical, and computational
understanding of the previous work that underlie the operation of this new machine.

1 Introduction

In our continuing research on dynamically dexterous robots we have recently completed the
construction of a second generation juggling machine. Its forebear, a mechanically trivial system
that used a single motor to rotate a bar parallel to a near-vertical frictionless plane was capable
of juggling one or two pucks sensed by a grid of wires into a specified stable periodic motion
through repeated batting {7, 3, 6]. In this second generation machine, a three degree of freedom
direct drive arm (Figure 1) relies on a field rate stereo vision system to bat an artificially
illuminafed ping-pong ball into a specified periodic vertical motion. Despite the considerably
greater kinematic, dynamical, and computational complexity of the new machine, its principle
of operation represents a straightforward generalization of the ideas introduced in the previous
planar study. Moreover, its empirical performance reveals strong robust stability properties
similar to those predicted and empirically demonstrated in the original machine. The arm will
successfully bring a wide diversity of initial conditions to the specified periodic veritical motion
through repeated batting. Recovery from significant perturbations introduced by unmodeled
external forces applied during the ball’s free flight is quite reliable. We typically log thousands
and thousands of successive impacts before a random imperfection in the wooden paddle drives
the ball out of the robot’s workspace.

The work presented here represents the first application of the controllers developed in [3] to
a multi-axis robot, and demonstrates the capabilities of the Biighler arm and the Cyclops vision
system. Both of these systems have been developed at the Yale University Robotics Laboratory
to facilitate our investigations into robot control of intermittent dynamical tasks. Thus, the
present paper takes on the strong aspect of displaying the fruits of previous research. We offer
a comprehensive description of the components of the new apparatus in Section 2. Section 3
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Figure 1: The Yale Spatial Juggling System

briefly reviews the notion of a mirror algorithm, the sole repository of all “juggling intelligence”
in our system, and displays its generalization to the present kinematics. Section 4 provides a
system level *tour” describing the manner in which the machine’s physical and computational
architecture is coordinated to realize the desired task. The paper concludes with a brief outline
of our near-term future research directions,

2 Juggling Apparatus

This section describes the constituent pieces of our juggling machine. The system, pictured in
Figure 1, consists of three major components: an environment (the ball); the robot; and an
environmental sensor (the vision system). We now describe in fairly specific terms the hardware
underlying each component and propose a (necessarily simplified) mathematical model in each
case that describes its properties in isolation.

2.1 Environment: Striking a Ball in Flight

The two properties of the ball relevant to juggling are its flight dynamics (behavior while away
from the paddle), and its impact dynamics (how it interacts with the paddle/robot). For sim-
plicity we have chosen to model the ball’s flight dynamics as a point mass under the influence
of gravity. This gives rise to the flight model

B:&, (1

where b € B =IR®, and @ = (0,0, ~4)T is the acceleration vector experienced by the ball due to
gravity.

Suppose a ball with trajectory b(t) collides with the paddle in robot configuration ¢ € Q at
some point, p on the paddle which has a linear velocity v. Letting 7 2 B x Q denote the total
configuration space of the problem, we seek a deseription of how the hall’s phase, (b, b) € TB is
changed by the robot’s phase, (g, ¢) € T'Q at an impact,

As in {7, 6] we will assume that the components of the ball’s velocity tangent to the paddle
at instant of contact are unchanged, while the normal component is governed by the simplistic
(but standard {14]) ceefficient of restitution law. For some « € [0, 1] this impact model can be




expressed as

(é:l - ”:1) = _a(bn - 1"n)a (2)
where b, and 2/, denote the normal components of the ball and paddle velocities immediately
after impact, while b, and v, are the velocities prior to impact. Assuming that the paddle
is much more massive than the ball (or that the robot has large torques at its disposal), we
conclude that the velocity of the paddle will remain constant throughout the impact (v' = v).
It follows that the coefficient of restitution law can now be re-written as

by = by + (1 + @)(vn — by). (3)

and, hence, _ ) )
¥ =b+ 1+ a)nnt(v-b), (4)

where n denotes the unit normal vector to the paddle.

2.2 Robot Kinematics: An Almost Spherical Arm

At the heart of the juggling system resides a three degree of freedom robot — the Biihgler
Arm! - equipped at its end eflector with a paddle. The revolute joints give rise to the familiar
difficulties in computing and analyzing the robot’s inverse kinematics. Moreover, as in our
carlier work, the presence of revolute kinematics introduces a strongly nonlinear component
to the “environmental control system”, an abstract discrete dynamical system with respect to
which we find it effective to encode the juggling task.

The robot kinematics relevant to the task of batting a ball relates the machine’s configu-
ration to the normal vector at a point in its paddle, In order to represent this formally we
parametrize the paddle’s surface geometry. Let 7 represent {in homogeneous coordinates) a

planar transformation taking points in the unit box, § & {0,1] x [0,1] diffeomorphically onto
the paddle’s (finite) surface area expressed with respect to the gripper frame, F,. Associated
with each point on the paddle’s surface, p(s) is the unit normal, (s}, again, the homogeneous
coordinate representation of the vector with respect to F,. The paddle’s “Gauss map” [15] is
now parametrized as ?

N : 8 — N(3): 5+ [0(s),p(s)]; N(3)=1R3x 52 (5)

Denote by H(g) the robot’s forward kinematic map taking a configuration, ¢ € Q, to the
homogeneous matrix representation of the gripper frame with respect to the base. The world
frame representation of any paddle normal at a point is thus specified by the extended forward
kinematic map,

G:Q - N(3):(g,8)~ [n(g,8),p(0,9)] = H()N(s); Q=@QxS5. (6)
At the cost of a little more notation, it will prove helpful to define the projections,
ﬂ-Q(q’ S) =4q “TS(Q:S) = 8.

The linear velocity of the hit point due the robot’s motion may now be written explicitly as

dimQ
. . . A Iy H
v= ) GDyH (q)p(s) = Dep§=Dpllog;  Hg=[Dmg]' = [ oo ] » (D
i=1 dimSxXdimQ

Pronounced bysog'—ler.
2The appearance of n in (4) suggests that it is really a force vector, thus we will define the possible normal

vectors at a prescribed spatial point, A(3) 2 W3 x S? as lying in the space dual to the infinitesimal velocities at
the point, N(3) C T*B.




Additionally lying in the total configuration space is the contact submanifold, C, — the set of
ball/robot configurations where the ball is in contact with the paddle — given by

CE{(h,q)eT:3s€5,b=p(g,5)}.

which is evidently the only place that the normal appearing in (4) becomes relevant, Since pis
one-to-one by assumption there is a map s, : C — & such that

b = p(g, se(b, 4))- (8)

Combining (7), and (8) we may now rewrite the impact event (4) in terms of a “collision map”
c:IC -+ THB, as

i” = B'*' c(bai’:% 'I)
i oy A : .

o(b,b,4,8) = (1 + 0)n(g, (b, ))n™(q, (6, 0)) (b — DpTgg).

Choosing a gripper frame, 7, for the Biihgler Arm depicted in Figure 1 located at the base

of the of the paddle (the point of intersection of the second and third joints) whose z-axis is

aligned with the paddie’s normal and whose z-axis is directed along the paddle’s major axis, we
have

(9)
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and we will artificially set s, = 0,32 = s € [s, 5] for reasons to be made clear below. The frame
transformation, H(q), is developed in [13], and yields a forward kinematic map of the form

G(g,s) = [n{q:9),p(4,9)] (10)

N(s) =

(==

cos(g1) cos(gz) cos(gs) — sin(q1) sin(gs)
n(g,s) = | ©0a2)cos(gs)sin(q) + cos(qr) sin(gs)
! — cos{ga) sin(q2)
| 0
[ — (sin{q1)d2) + (cos(g1) cos(q2) cos(ga) ~ sin(q1) sin(ga)) dy + cos{q1) sin(gz)s,
»g,8) = cos{q1)da + (cos(q2) cos(gs) sin(qy) + cos{qy ) sin(gs)) dg + sin(q1) sin(gz)sz
’ ~ (cos(g3) sin(qgl)dg) + cos(gz2)s2

Analysis of the jacobian of p shows that it is rank three away from the surface defined by

A .
6p(q,8) = (82 + cos?(ga) cos®(gz))(sin?{q;) + cos?(g3)) = 0,
thus away from 6, = 0 we can define Dp!, the right inverse of Dp, and the workspace is
now given by W = p(Q ~ H) where
A (. o~ .
H = {ged:6,(3) =0}

Finally the inverse kinematic image of a point & € W may be readily computed as

] . si d.
ArcTan2(—by, —by) + ArcSin ( ;n?bgibgz)

_r 2 2 o 2) . cos{ga)dy
p 1) = %+ ArcTan2 (bg, \/bz + b3 s1nq(3q3)d2) ArcSin (m) g5 € S,
0
i \/67b ~ sin?(gs)d3 — cos?(gs)d2
(11)




with the freely chosen parameter, g3, describing the one dimensional set of robot configurations
capable of reaching the point b. Having simplified the kinematics via the artificial joint con-
straint, s; = 0, the paddle contact map may simply be read off the inverse kinematics function,

0
_ -1y —
so(b, ) = ms 0 p~' () = { T = sin*(ga)dg — cos?(as)d |

2.3 Sensors: A Field Rate Stereo Vision System

Two RS-170 CCD television cameras with 1/2000sec. electronic shutters constitute the “eyes”
of the juggling system. In order to make this task tractable we have simplified the environment
the vision system must interpret. The “world” as seen by the cameras contains only one white
ball against a black background. The CYCLOPS vision system, described in Section 2.4, allows
the straightforward integration of these cameras into the larger system,

Following Andersson’s experience in real-time visual servoing [1] we employ the result of
a first order moment computation applied to a small window of a threshold-sampled (that is,
binary valued) image of each camera’s output. Thresholding, of course, necessitates a visually
structured environment, and we presently illuminate white ping-pong balls with halogen lamps
while putting black matte cloth cowling on the robot, floor, and curtaining off any background
scene.

2.3.1 ‘Triangulation

In order to simplify the construction of a trangulator for this vision system, we have employed a
simple projective camera model. Let F, be a frame of reference whose origin is at the focal point
and whose z-axis is directed toward the image plane of this camera. Let %9 = [pg,py, P2, 1]T
denote the homogeneous representation with respect to this frame of some spatial point. Then
the camera, with focal length f, transforms this quantity as

P=/p:
W= | PP 2p (9, (12)
0

Here, u € IR? is the homogeneous vector, with respect to F,, joining the oragin of F, to the
image plane coordinates of 9. Thus, for a camera whose position and orientation relative to
the base frame, Fo are described by the homogeneous matrix °H,, the projection of a point, %
is

w=ps(Hop).

Given two such cameras separated in space, whose frames of reference with respect to Fo
are represented by °®H; and °H, , it is straightforward to derive a friangulation function, pf,
capable of reconstructing the spatial location of a point, given its projection in both images. In
particular if projection onto the right and leff image planes is given by

rul‘ e pfr(lHo ﬂp )l

and
i = pg(*Ho %)

respectively, a (by no means unique) triangulation function is given by

al
pf( 7w, by ) = 3 (OH,. (04 t,."u. )+ °H; (0 + ti'y )) , (13)




where
i ] & TP AT rgr. O
[tl]—(c C) C(Om HU Hgo)
and
oé[o 0 o 1]%; Cg[—”u,!"u;]; Yw = "Ho °Hy

This amounts to finding the midpoint of the biperpendicular line segment joining the two lines
defined by "u, and Ty . Note that there is considerable freedom in the definition of p? since it
maps a four dimensional space (the two image plane vectors) onto a space of dimension three
(ball position).

Finally it is worth noting that although the implementation of a triangulation system of this
type is simple, the measurement of the parameters required for its construction is quite difficult.
A short description of the automatic method of calibration we have chosen to use ir the juggling
system can be found in Appendix A.

2.3.2 Signal Processing

In practice it is necessary to associate a signal processing system with the sensor to facilitate
interpretation of the data. For the vision system in use here, sensor interpretation consists of
estimating the ball’s position and velocity, correcting for the latency of the vision system, and
improving the data rate out of the sensor system — the 60 Iiz of the vision system is far below
the bandwidth of the robot control system.

Given reports of the ball’s position from the triangulator it is straightforward to build a
linear observer for the full state — positions and velocities — since the linear dynamical system
defined by (1) is observable. In point of fact, it is not the ball’s position, b,,, which is input to the
observer, but the result of a series of computations applied to the cameras’ image planes, and
this “detail” comprises the chief source of difficulty in building cartesian sensors of this nature.

2.4 Controller: A Flexibly Reconfigurable Computational Network

All of the growing number of experimental projects within the the Yale University Robotics
Laboratory are controlled by widely various sized networks of Transputers produced by the
INMOS division of SGS-Thomson. Pricing and availability of both hardware and software
tools make this a natural choice as the building block for what we have come to think of as
a computational “patch panel.” The recourse to parallel computation considerably boosts the
processing power per unit cost that we can bring to bear on any laboratory application. At
the same time the serial communication links have facilitated quick network development and
modification.

The choice of the INMOS product line represents a strategy which standardizes and places
the burden of parallelism — inter-processor communications support, software, and development
environment — around a commercial product, while customizing the computational “identity”
of particular nodes by recourse to special purpose hardware. We provide here a brief sketch of
the XP/DCS family of boards, a line of I/O and memory customized Transputer nodes devel-
oped within the Yale Robotics Lab and presently employed in all our control experiments. The
backbone of this system is the XP/DCS CPU, providing a transputer and bus extender. By
coupling an XP/DCS to an I0/MOD a computational node can be customized for interfacing
to moderate bandwidth hardware. Similarly joining up to eight XP/DCSs to individual CY-
CLOPS frame memory boards, then ganging these together under a single video digitizer forms
a programmable field rate monocular vision system.
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The XP/DCS processor The XP/DCS (produced by Evergreen Designs) was designed in
conjunction with the Yale Robotics Laboratory in 1987 [9] in order to meet both the
computational and 1/O requirements presented by robotic tasks. The board is based on
the INMOS T800 processor, a 32 bit scalar processor capable of 10 MIPS and 1.5 MFLOP
(sustained) with four bidirectional 20MHz DMA driven communication links and 4 Kbytes
of internal (1 cycle) RAM. The processor is augmented with an additional 1-4 Mbytes of
dynamic RAM (3 cycle), and an I/O connector which presents the T800's bus to a daughter
board.

I0/MOD The I0/MOD (also produced by Evergreen Designs) allows an XP/DCS to “com-
municate” with custom hardware in a simple fashion. In order to properly implement
the ideal “processing path panel” it is essential that the integration of new sensors and
actuators be simple and fast. The IO/MOD augments an XP/DCS by providing a 32 bit
latched bidirectional data bus, six 4 bit wide digital output ports, and eight digital input
signals, all of which are mapped directly into the memory space of the T800.

CYCILOPS Vision System Much like the I0/MOD the CYCLOPS system has been designed
to augment a set of XP/DCS boards for a particular sensing task — vision. In actuality
there are three major components to the vision system {8}:

Digitizer: Digitizes an incoming RS-170 video signal and outputs it in digital form over
a pixel bus.

Filter: A filter board capable of performing real-time 2D convolution on an image may
be placed on the pixel bus.

Frame Memory: In much the same fashion as the I0/MOD the CYCLOPS Memory
Board augments an XP/DCS with 128 Kbytes of video memory. By associating up
to eight memory boards with a pixel bus it becomes easy to construct a real-time
parallel processing vision system.

3 Juggling Algorithm

This section offers a brief review of how the juggling analysis and control methodology originally
introduced for the planar system (7] may be extended in a straightforward manner to the present
apparatus. After introducing the “environmental control system,” an abstract dynamical sys-
temn formed by composing the free flight and impact models, it becomes possible to encode an
elementary dexterous task, the “vertical one juggle,” as an equilibrium state — a fixed point. A
simple computation reveals that every achievable vertical one juggle can be made a fixed point,
and conversely, the only fixed points of the environmental control system are those that encode a
vertical one juggle. Leapfrogging the intermediate linearized analysis of our planar work {3], we
" then immediately follow with a description of a continuous robot reference trajectory generation
strategy, the “mirror law,” whose implementation gives rise to the juggling behavior.

3.1 Task Encoding

Denote by ¥ the robot’s choices of impact normal velocity for each workspace location. Suppose
that the robot strikes the ball in state w; = (b;, ;) at time s with a velocity at normal v; =
(g,4) € V and allows the ball to fly freely until time s +¢;. According to (9) derived in the
previous section, composition with time of flight yields the “environmental control system”

A t; is ¥
Wip1 = f(wj3vj$tj) = Afjwj +ay; + { .L:(E'(wij‘:;;%) ] ’ (14)
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that we will now be concerned with as a controlled system defined by the dynamics
fiTBXxV xR —-TB,

with control inputs in V X IR (v; and ;).

Probably the simplest systematic behavior of this system imaginable (beyond the ball at rest
on the paddle), is a periodic vertical motion of the ball. In particular, we want to be able to
specify an arbitrary “apex” point, and from arbitrary initial conditions, force the ball to attain
a periodic trajectory which passes through that apex point. This corresponds exactly to the
choice of a fixed point, w*, in (14), of the form

- 0
w* = [z*l; b*eR3 b={0]|; velR (15)
YV

denoting a ball state-at-impact occurring at a specified location, with a velocity which implies
purely vertical motion and whose magnitude is sufficient to bring it to a pre-specified height
during free flight. Denote this four degree of freedom set of vertical one-juggles by the symbol
J.

The question remains as to which tasks in 7 can be achieved by the robot’s actions. In
particular we wish to determine which elements of 7 can be made fixed points of (14). Analysis
of the fixed point conditions imposes the following requirements on w*:

b = %,\a (16)

and for some (g,¢) € 7’Q and A € IR*,
p(a,5.(6%,q)) = b* and c(b*,4*,¢,§) = —)a. (17

Every element of 7 satisfies (16), since this simply enforces that the task be a vertical one-
juggle. For the Biihgler Arm (17) necessitates that n be aligned with & so as not to impart some
horizontal velocity on the ball. From (10) it is clear that this will only be the case when ¢ € Q*,

where A
Q* = {g€ Q: cos(ga)sin(gq2) = —1}.

Thus, we can conclude that only those elements of 7 satisfying the condition b* € p(Q*) will be
fixable. In particular, @* corresponds to the paddle being positioned parallel to the floor, and
thus p(Q*) is an annulus above the floor, as is intuitively expected,

This simple analysis now furnishes the means of tuning the spatial locus and height of the
desired vertical one juggle. The fixed-point input satisfying these conditions, u*, is given by

. 2lo
%= a—1 tix| "
(s58) D18
3.2 Controlling the Vertical One-Juggle via a Mirror Law

Say that the abstract feedback law for (14), g : W — V X IR, is a verticle one-juggle strategy if
it induces a closed loop system,
fg(w) = f(wag(w))a (18)

for which w* € J is asymptotically stable fixed point. For our original planar machine [3] it
was shown that the linearization of the analogous system to (14) was controllable around every




vertical one juggle task. A similar analysis has not yet been completed for the Biithgler Arm,
although a similar result is expected. Experiments with the planar system revealed that the
linearized perspective was inadequate: the domain of attraction resulting from locally stabilizing
linear state feedback was smaller than the resolution of the robot’s sensors [3].

Instead, in [7] a rather different juggling strategy was proposed that implicitly realized an
effective discrete feedback policy, g, by requiring the robot to track a distorted reflection of
the ball’s continuous trajectory. This policy, the “mirror law,” may be represented as a map
m : TB — Q, so that the robot’s reference trajectory is determined by

g(t) = m(w(t))-

For a one degree of freedom environment it is not hard to show that this policy results in a
(essentially) globally asymptotically stable fixed point [5]. For a two degree of freedom envi-
ronment, we have shown that local asymptotic stability results [3]. The spatial analysis is in
progress.

The juggling algorithm used in the present work is a direct extension of this “mirror” law
to the spatial juggling problem. In particular begin by using (11) to define the the joint space
position of the ball

&b
By
()

3

2 p (). (19)

We now seek to express formulaically a robot strategy that causes the paddle to respond to the
motions of the ball in four ways:

(i} gq1 = ¢» causes the paddle tracks under the ball at all times.

(ii) The paddle “mirrors” the vertical motion of the ball through the action of 8, on ¢4 as
expressed by the original planar mirror law {7].

(iii) Radial motion of the ball causes the paddle to raise and lower, resulting in the normal
being adjusted to correct for radial deviation in the ball position.

(iv) Lateral motion of the ball causes the paddle to roll, again adjusting the normal so as to
correct for lateral position errors.

To this end, define the ball’s vertical energy and radial distance as
1, ,
S yb + 262 and, py 2 sin(6))ss (20)

respectively. The complete mirror law combines these two measures with a set point description
(7, p, and @) to form the function

[ 0 |

~~

b

7 _ T )
=5 — (ko +K1(n —n)) (49& + 5) + roo(ps — Ps) + Ko1 e
o ] | (iif)
fm(ﬁbb — ¢p) + mi¢§
(iv)

(21)

ga = m(w) 2
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Figure 2: One-Juggle ball trajectory: (i) X-Y projection (ii) X-Z projection and (iii) Y-Z pro-
jection.

For implementation, the on-line reference trajectory formed by passing the ball’s state tra-
jectory, w(i), through this transformation must be passed to the robot tracking controlier.
As described in Section 4.4, the high performance inverse dynamics tracking schemes that we
presently employ require the availability of a target velocity and acceleration profile as well. By
design m(w) is differentiable and the time derivatives of w are known — at least away from an
impact event. Thus, denoting by

ot 7]

the spatial vector field corresponding to the ball’s continuous free flight dynamics (1), we know
that g4(t) = m({w(t)) implies

Ggo=DmF

and

§a=DmDF F+[FQI]' D*m F

In practice, these terms are computed symbolically from (21) and F.

We have succeeded in implementing the one-juggle task as defined above on the Biihgler
arm. The overall performance of the constituent pieces of the system — vision module, juggling
algorithm, and robot controller — have each been outstanding, allowing for performance that is
gratifyingly similar to the impressive robustness and reliability of the planar juggling system. We
typically record thousands of impacts (hours of juggling) before random system imperfections
(electrical noise, paddle inconsistencies) result in failure. Figure 2 shows the three projections
of the ball’s trajectory for a typical run. As can be seen the system is capable of containing the
ball within roughly 15cm of the target position above the floor and 10cm of the target height of
GOcm.

It is worth noting that in the x-z and y-z projections there is evidently spurious acceleration of
the ball in both the x and y directions. Tracing this phenomenon through the system confirmed
an earlier suspicion; our assumption that gravity is exactly aligned with the axis of rotation of
the base motor is indeed erroneous. Correction of this calibration error requires the addition
of trivial workspace cues {a plumb bob) to allow the direction of the gravitational force to be
calibrated along with the remainder of the system. This correction is now in progress.
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4 The Yale Spatial Juggling System

This section describes how we have combined the components of Section 2 to produce a coordi-
nated juggling robot system. An engineering block diagram for this system is depicted in Figure
3. Its implementation in a network of XP/DCS nodes is depicted in Figure 4, The juggling al-
gorithm these diagrams realize is a straightforward application of contemporary robot tracking
techniques to the mirror law presented in Section 3 as driven by the output of the vision system,
Thus, there is no explicit pre-planning of robot motions. Instead, the ball’s natural motion as
perceived through the stereo vision system stimulates a “reflex” reaction in the robot that gives
rise to intermittent collisions. In turn, these “geometrically programmed” collisions elicit the
proper juggling behavior.

Sensor Signal Jugsling Control Mator
Algerlthm 1 Optralion
f

o
g
2
i
B

Figure 4: The Juggling System Network Diagram.
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4.1 Vision: Environmental Sensing

The vision system must provide sufficient information regarding the state of the environment.
In our present implementation we have so structured the visual environment as to make the task
conceptually trivial and computationally tractable. In particular, the vision system need only
extract the three dimensional position of a single white ball against a black background.

To perform even this apparently trivial task in real time we require two CYCLOPS vision
systems — one for each “eye” — introducing a total of four nodes. In both Cyclops systems
two memory boards, each with an associated XP/DCS processor, are attached to the digitizer.
Computational limitations currently allow the system to process “windows” of less than 3000
pixels out of an image of 131,072 pixels (a 256 X 512 image).

Figure 5 depicts the flow of events on the five processors used for vision processing during
an image cycle. The cycle begins with a field being delivered to one memory board associated
with each camera (two of processors 20, 21, 30, 31). Note that these two events are guaranteed
to occur simultaneously through the use of synchronized cameras. After the images have been
deposited in the memory boards the centroid of the ball is estimated by calculating the first order
moments over a window centered around the position of the ball, as determined by the most
recent field (depicted by arrows in Figure 5). Upon completion, the image coordinate locations
are passed to the neighboring pixel processors, for use in determining window location for the
next field, and up to the triangulation process which is located on processor 00 of Figure 4.
Once the low-level pixel processors have determined the ball location in a pair of images, stereo
triangulation introduced in Section 2.3 locates the position of the ball in space with respect to
a fixed reference coordinate system.

Memory Board 30

2
L ksl

?miﬁﬁﬁiﬁ%
S ¢

—

1_?,%‘%‘%315{%."74//,?{?
N I G {

|&<——e 22 <

TRI =Trisogulation
0BS = Linear Observer

Figure 5: Timing for CYCLOPS vision system

4.2 Signal Processing

The signal processing block must “interpret” the environment and present it in a fashion that
is acceptable for use by the remainder of the system. In this simple context, “interpretation”
means producing good estimates of the ball’s position and velocity at the current time. This is
accomplished by connecting the output of the triangulator to a standard linear observer,

The timing diagram in Figure 5 shows that the vision block adds an unavoidable 1/30 sec.
delay between the time an image is captured and the time a spatial position measurement has
been formed. The ball’s flight model presented in Section 2.1 is a sufficiently simple dynamical
system that its future can be predicted with reasonable accuracy and, accordingly, a current
estimate of the state is formed by integrating that delayed state estimate forward in time one
field interval.
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The data must now be passed to the interpolator. The task here involves stepping up the
unacceptably slow data rate of the vision block (60 Hz): the time constant of the actuators is
near 200 Hz. This interpolation stage uses the flight model of the ball, integrating the current
state estimate of the ball forward over small time steps allows the data rate to be boosted from
60 Hz to 1 kHz.

This sequence of calculations is carried out on processor 00, (the coincidence with the tri-
angulation process is incidental). The implementation of these signal processing functions is
divided into two independent event driven processes. The first of these runs the observer and
predictor, which are synchronized with the triangulation system and thereby with the cameras.
Thus the sampling rate for the observer is set by the field rate of the cameras, The second
process increases the effective data rate by scheduling itself at 1 msec intervals and updates its
estimates of the ball state at each interval.

4.3 Juggling

The execution of the jugling algorithms developed in {7, 4] and Section 3 are implemented in
this segment of the network. The evaluation of (21) is again carried out on processor 00, where
both the high-level vision and signal processing are performed. The implementation consists
of a single process which evaluates g4, ¢4, and ¢z whenever new state information is received
— yet another example of how we use naturally occuring events within the system fo initiate
computation. Since the input of this process is connected to the output of the interpolator the
reference trajectory fed to the controller will be updated at the same rate as the output of the
interpolator (1 kHz).

4.4 Robot Control

The geometric transformation introduced in Section 3, when applied to the joint space coordinate
representation of the ball’s flight, results in a desired profile of joint locations over time, g4(t). For
the planar juggling robot we have shown that if the robot were to track exactly this “reference
signal,” then collisions with the ball would occur in such a fashion that the desired periodic
motion is asymptotically achieved [7, 3]. We conjecture the same will be true in the present
case. It now falls to the robot control block to ensure that the joint angles, ¢(t), track the
reference signal, gq(t).

We have implemented a large collection of feedback controllers on the Bithgler Arm, as re-
ported in [17). We find that as the juggling task becomes more complicated - e.g. simultaniously
juggling two balls — that it becomes necessary to move to a more capable controller. We have
had good succes with an inverse dynamics control law [17] of the form developed in [11},

T = C(q,¢)d + M(q)[da] + Ku(§ — ga) + Kp{qd — qa). (22)

At the present time, all experiments have all been run with a robot control block that
includes the three nodes (10, 11, and 12 in Figure 4). The model based portion of the control
algorithms are implemented on processor 11 with update rate of 400 Hz, while the feedback
portion (along with uninteresting housekeeping and logging functions) is implemented on 10
with update rate of 1 KHz, and a variety of message passing and buffering processes run on 12
which is really included in the network only for purposes of increasing the number of Transputer
links converging on this most busy intersection of the entire network. There are two motivations
for this seemingly lavish expenditure of hardware, First, in the interests of keeping the cross
latency of the intrinsic data as low as possible [16), the increased number of links permits direct
connectivity of the controller block with each node of the actuator block. Second, in the interests
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of maintaining the “orthogonality” of the real-time and logging data flows, we gain a sufficient
number of links at the controller to permit the dedicated assignment of logging channels back
toward the user interface.

Nonblocking communication between this collection of processors is implemented through
the use small input buffer processes. These buffer processes, which are situated at the inputs
to each computational process, allow the various elements of the controller to receive data from
cach other and other elements of the system asynchronously. Thus far we have found that the
reduction of effort required for software development and maintenance resulting from the use
of this architecture has outweighed the performance costs imposed by the necessarily increased
network latencies.

4.5 Actuator Management

The primary task associated with operating a particular actuator is to present a standard simple
interface to the remainder of the system, thereby hiding the often unpleasant details of operating
a particular motor from the remainder of the system. Since our interest is in developing systems
which respect the dynamics of the robot, it follows that the actuator inferface must receive
torque commands and report state (position and velocity). In addition to this basic task we
have found it desirable to include a strong system of safety interlocks at the lowest possible level,
50 as to ensure safe operation at all times.

5 Conclusion

This paper provides a comprehensive description of the generalization to three space of our
carlier juggling work {7, 6]. To those familiar with that previous body of work, it may be
apparent that the generalization begins to shed greater light on what went before. In particular,
we are now able explicitly to show how the spatial juggling law and its planar predecessor
are based on applying the mirroring notion of the “gedanken” line juggler [5] to the inverse
kinematic image of the ball’s workspace trajectory. In the case of the line juggler we had shown
(using the “Singer-Guckenheimer” theory of unimodal return maps {5]) that the global stability
mechanism this mirror law induces is a change of coordinates away from that which we had
argued [10] stabilizes Raibert’s [12] vertical hopping motion. In the case of the planar juggler,
we were able to demonstrate that the mirror law results in local asymptotic stability, but, since
an analytical expression for the effective closed loop dynamics {14) remained elusive, no global
stability analysis has yet been possible,

The absence of an explicit closed form expression is a consequence of the transcendental
system of equations that emerge when “PD” terms are added to the simple gedanken robot’s
mirror law. The same terms appear in the present algorithm (21). Thus, we do not believe that a
global stability analysis will be any easier for our current spatial version of this idea. We believe,
however, that an empirically transparent modification of these terms that re-expresses them with
respect to the joint space coordinate system (as does the application of inverse kinematics to
the ball’s flight) may result in tractable closed loop dynamics and, thereby, the possibility of a
global stability proof for the more interesting kinematics.

A Vision System Calibration

In the course of getting started with spatial juggling, we have been led to re-formulate a very
attractive coordinated camera-arm calibration scheme originally proposed by Hollerbach [2]. At
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calibration time, one supposes that some point on the robot’s gripper (that we willl take to be
the origin of the “tool” frame) is marked with a light reflecting material in such a fashion as to
produce an unmistakable camera observation — a four vector, ¢ € IR* comprised of the two image
plane measurements. The problem is to determine the kinematic parameters, k& € IR3+3(m+1)
that characterize the chain as well as the relative camera frame relationship and camera focal
lengths by comparing measured camera values with the joint space locations that produced
them.

The Setting Denote by g4, the forward kinematic transformation of the kinematic chain that
expresses the robot’s tip marking with respect to the base frame (that we take to be the frame
of the “right” hand camers with no loss of generality). According to the Denavit-Hartenburg
convention, the parameter vector, (k1,...,kny1) € R3(m+1) that characterizes this function
appears in the form

-0 oo

3
] Hi(6;) £ exp {&Z«L‘jka} ,

i=1

m+1
gr(q) = (H Hi(f?i))

i=1

where 6; is a joint variable and J;; is a constant 4 X 4 array whose exponent yields the ho-
mogeneous matrix representation of the unit screw scaled by parameter k;;. H these 3(m + 1)
parameters were known then g; would yield for every jointspace location, ¢ = (64, ...,Bn)T € Q,
the homogeneous representation of the tool frame origin in base frame coordinates.

Now denote by Hp the homogeneous matrix representation of the screw relating the “left”
hand camera frame to the base frame,

6
Hg = exp {E kﬁon;‘} )

i=1

where Jy; constitutes an arbitrary basis for the Lie Algebra corresponding to the group of
rigid transformations and ko € IR® parametrizes the relative camera frame transformation ma-
trix accordingly. The camera transformation is now characterized by the parameters ky =
(Koo, kb, ko) € TR® that appear in the the stereo projective transformation, py, : R® — R%, that
for a given camera pair associates with each spatial point a pair of { “left” and “right” camera-)
planar points. Specifically, let II, 7 denote the projections from IR? that pick out, respectively,
the first two, and the third coordinate, of a homogeneous representation of a point. The camera
transformation may be written as

: II(w)/koom
Pho (W) = n(ﬂgw;;kooﬂg}vfl@ '

This function admits a family of pseudo-inverses p,to : IR* — IR3, whose effect on the camera
image plane, py, (IR®) C IR4, returns the original spatial point —— that is pLO 0 Py, is the identity
transformation of IR* — and whose effect off the camera image plane is to return the “closest”
spatial point to that four-vector with respect to a suitable metric.

A Modified Procedure Hollerbach’s proposed procedure tested in simulation of a planar
arm, [2], calls for recording some number of joint-space/camera-image pairs, D = {{¢, &1)}1=,

15




and then performing a Newton-like numerical descent algorithm on the cost function
- H
>_lIpi, (er) — gia)ll®.
i=1

When we attempted to implement this procedure for the three degree of freedom Biihgler arm,
we found that the procedure was extremely sensitive numerically.
Instead, we have had great success with a variant on this idea that substitutes a cost function

in the stereo camera image space,
n
> llet = pao © g(an)ll?,
i=1

for the previously defined workspace objective. We have been using this procedure on average
several times 2 month (the experimental apparatus is frequently torn down and put back together
again to incorporate new hardware, necessitating continual re-calibration) for the last six months
with very good results, Starting from eyeball guesses of k = (kg, k1, kg, k3, k4), we have been able
to achieve parameter estimates that give millimeter accuracy in workspace after two or three
hours of gradient descent farmed out on a network of eight 1.5 Mflop microcomputers (Inmos
T800 TRAMS). We have experienced similar reliable convergence properties with a variety of
algorithms — standard gradient descent; Newton Raphson; Simplex descents — none of which
seemed to avail (either singly or in more clever combination) using the original ob jective function.
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