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Abstract

We survey the use of weighted �nite�state transducers �WFSTs� in speech

recognition� We show that WFSTs provide a common and natural rep�

resentation for HMM models� context�dependency� pronunciation dictio�

naries� grammars� and alternative recognition outputs� Furthermore� gen�

eral transducer operations combine these representations �exibly and e��

ciently� Weighted determinization and minimization algorithms optimize

their time and space requirements� and a weight pushing algorithm dis�

tributes the weights along the paths of a weighted transducer optimally

for speech recognition�
As an example� we describe a North American Business News �NAB�

recognition system built using these techniques that combines the HMMs�

full cross�word triphones� a lexicon of forty thousand words� and a large

trigram grammar into a single weighted transducer that is only somewhat

larger than the trigram word grammar and that runs NAB in real�time

on a very simple decoder� In another example� we show that the same

techniques can be used to optimize lattices for second�pass recognition�

In a third example� we show how general automata operations can be

used to assemble lattices from di�erent recognizers to improve recognition

performance�

�� Introduction

Much of current large�vocabulary speech recognition is based on models such
as HMMs� tree lexicons� or n�gram language models that can be represented by
weighted �nite�state transducers� Even when richer models are used� for instance
context�free grammars for spoken�dialog applications� they are often restricted�
for e�ciency reasons� to regular subsets� either by design or by approximation
�Pereira and Wright� ����� Nederhof� �			� Mohri and Nederhof� �		�
�

�
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A �nite�state transducer is a �nite automaton whose state transitions are
labeled with both input and output symbols� Therefore� a path through the
transducer encodes a mapping from an input symbol sequence to an output
symbol sequence� A weighted transducer puts weights on transitions in addition
to the input and output symbols� Weights may encode probabilities� durations�
penalties� or any other quantity that accumulates along paths to compute the
overall weight of mapping an input sequence to an output sequence� Weighted
transducers are thus a natural choice to represent the probabilistic �nite�state
models prevalent in speech processing�
We present a survey of the recent work done on the use of weighted �nite�

state transducers �WFSTs
 in speech recognition �Mohri et al�� �			� Pereira
and Riley� ����� Mohri� ����� Mohri et al�� ����� Mohri and Riley� ����� Mohri
et al�� ����� Mohri and Riley� ����
� We show that common methods for combin�
ing and optimizing probabilistic models in speech processing can be generalized
and e�ciently implemented by translation to mathematically well�de�ned op�
erations on weighted transducers� Furthermore� new optimization opportunities
arise from viewing all symbolic levels of ASR modeling as weighted transducers�
Thus� weighted �nite�state transducers de�ne a common framework with shared
algorithms for the representation and use of the models in speech recognition
that has important algorithmic and software engineering bene�ts�
We start by introducing the main de�nitions and notation for weighted �nite�

state acceptors and transducers used in this work� We then present introductory
speech�related examples and describe the most important weighted transducer
operations relevant to speech applications� Finally� we give examples of the ap�
plication of transducer representations and operations on transducers to large�
vocabulary speech recognition� with results that meet certain optimality criteria�

�� Weighted Finite�State Transducer De�nitions and Al�

gorithms

The de�nitions that follow are based on the general algebraic notion of semiring
�Kuich and Salomaa� ����
� The semiring abstraction permits the de�nition of
automata representations and algorithms over a broad class of weight sets and
algebraic operations�
A semiring K consists of a set K equipped with an associative and com�

mutative operation � and an associative operation �� with identities 	 and ��
respectively� such that � distributes over �� and 	 � a � a � 	 � 	� In other
words� a semiring is similar to the more familiar ring algebraic structure �such
as the ring of polynomials over the reals
� except that the additive operation �
may not have an inverse� For example� �N ��� �� 	� �
 is a semiring�
The weights used in speech recognition often represent probabilities� the cor�

responding semiring is then the probability semiring �R��� �� 	� �
� For numerical
stability� implementations may replace probabilities with� log probabilities� The
appropriate semiring is then the image by � log of the semiring �R��� �� 	� �
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and is called the log semiring� When using � log probabilities with a Viterbi
�best path
 approximation� the appropriate semiring is the tropical semiring
�R� � f�g�min����� 	
�
In the following de�nitions� we assume an arbitrary semiring �K ����� 	� �
�

We will give examples with di�erent semirings to illustrate the variety of useful
computations that can be carried out in this framework by a judicious choice of
semiring�

���� Weighted Acceptors

Models such as HMMs used in speech recognition are special cases of weighted
�nite�state acceptors �WFSAs
� A WFSA A � ��� Q� E� i� F� �� �
 over the semir�
ing K is given by an alphabet or label set �� a �nite set of states Q� a �nite set
of transitions E � Q � �� � f�g
 � K � Q� an initial state i � Q� a set of �nal
states F � Q� an initial weight � and a �nal weight function ��
A transition t � �p�t
� ��t
� w�t
� n�t

 � E can be represented by an arc from the

source or previous state p�t
 to the destination or next state n�t
� with the label
��t
 and weight w�t
� In speech recognition� the transition weight w�t
 typically
represents a probability or a � log probability�
A path in A is a sequence of consecutive transitions t� � � � tn with n�ti
 � p�ti��
�

i � �� � � � � n� �� Transitions labeled with the empty symbol � consume no input�
A successful path � � t� � � � tn is a path from the initial state i to a �nal state
f � F � The label of the path � is the result of the concatenation of the labels of
its constituent transitions�

���
 � ��t�
 � � � ��tn


The weight associated to � is the ��product of the initial weight� the weights of
its constituent transitions and the �nal weight ��n�tn

 of the state reached by
��

w��
 � �� w�t�
� � � � � w�tn
� ��n�tn



A symbol sequence x is accepted by A if there exists a successful path � labeled
with x� ���
 � x� The weight associated by A to the sequence x is then the ��
sum of the weights of all the successful paths � labeled with x� Thus� a WFSA
provides a mapping from symbol sequences to weights �Salomaa and Soittola�
����� Berstel and Reutenauer� ����� Kuich and Salomaa� ����
�
Figure � gives some simple� familiar examples of WFSAs as used in speech

recognition� The automaton in Figure �a is a toy �nite�state language model� The
legal word sequences are speci�ed by the words along each complete path� and
their probabilities by the product of the corresponding transition probabilities�
The transducer in Figure �b gives the possible pronunciations of one of the word
data used in the language model� Each legal pronunciation is the sequence of
phones along a complete path� and its probability is given by the product of
the corresponding transition probabilities� Finally� the transducer in Figure �c
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Figure �� Weighted �nite�state acceptor examples� By convention� the states are represented
by circles and marked with their unique number� An initial state is represented by a bold
circle� �nal states by double circles� The label and weight of a transition t are marked on the
corresponding directed arc by ��t��w�t�� The �nal weight ��f� of a �nal state f � F is marked
by f���f� or just omitted when ��f� � 	 as in these examples� In all the �gures in this paper
the initial weight is not marked because � � 	�

encodes a typical left�to�right� three distribution�HMM structure for one phone�
with the labels along a complete path specifying legal sequences of acoustic
distributions for that phone�

���� Weighted Transducers

Weighted �nite�state transducers �WFSTs
 generalize WFSAs by replacing the
single transition label by a pair �i� o
 of an input label i and an output label o�
While a weighted acceptor associates symbol sequences and weights� a WFST
associates pairs of symbol sequences and weights� that is� it represents a weighted
binary relation between symbol sequences �Salomaa and Soittola� ����� Berstel
and Reutenauer� ����� Kuich and Salomaa� ����
��

Formally� a WFST T � ����� Q� E� i� F� �� �
 over the semiring K is given by
an input alphabet �� an output alphabet �� a �nite set of states Q� a �nite set of
transitions E � Q� �� � f�g
� �� � f�g
� K �Q� an initial state i � Q� a set
of �nal states F � Q� an initial weight � and a �nal weight function ��
A transition t � �p�t
� �i�t
� �o�t
� w�t
� n�t

 can be represented by an arc from

the source state p�t
 to the destination state n�t
� with the input label �i�t
� the
output label �o�t
 and the weight w�t
� The de�nitions of path� path input label

�In general� several paths may relate a given input sequence to possibly distinct output
sequences�
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Figure �� Weighted �nite�state transducer examples�

and path weight are those given earlier for acceptors� A path�s output label is
the concatenation of output labels of its transitions�
The examples in Figure � encode �a superset of
 the information in the WFSAs

of Figure �a�b as WFSTs� Figure �a represents the same language model as
Figure �a by giving each transition identical input and output labels� This adds
no new information� but is a convenient way of interpreting any acceptor as a
transducer that we will use often�
Figure �b represents a toy pronunciation lexicon as a mapping from phone

sequences to words in the lexicon� in this example data and dew� with proba�
bilities representing the likelihoods of alternative pronunciations� Since a word
pronunciation may be a sequence of several phones� the path corresponding to
each pronunciation has ��output labels on all but the word�initial transition� This
transducer has more information than the WFSA in Figure �b� Since words are
encoded by the output label� it is possible to combine the pronunciation trans�
ducers for more than one word without losing word identity� Similarly� HMM
structures of the form given in Figure �c can can be combined into a single
transducer that preserves phone model identity while sharing distribution sub�
sequences whenever possible�

���� Weighted Transducer Algorithms

Speech recognition architectures commonly give the run�time decoder the task
of combining and optimizing transducers such as those in Figure �� The decoder
�nds word pronunciations in its lexicon and substitutes them into the grammar�
Phonetic tree representations may be used to improve search e�ciency at this
point �Ortmanns et al�� ����
� The decoder then identi�es the correct context�
dependent models to use for each phone in context� and �nally substitutes them
to create an HMM�level transducer� The software that performs these opera�
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tions is usually tied to particular model topologies� For example� the context�
dependent models might have to be triphonic� the grammar might be restricted
to trigrams� and the alternative pronunciations might have to be enumerated
in the lexicon� Further� these transducer combinations and optimizations are
applied in a pre�programmed order to a pre�speci�ed number of levels�
Our approach� in contrast� uses a uniform transducer representation for n�gram

grammars� pronunciation dictionaries� context�dependency speci�cations� HMM
topology� word� phone or HMM segmentations� lattices and n�best output lists�
We then rely on a common set of weighted transducer operations to combine�
optimize� search and prune these automata �Mohri et al�� �			
� Each operation
implements a single� well�de�ned function that has its foundations in the mathe�
matical theory of rational power series �Salomaa and Soittola� ����� Berstel and
Reutenauer� ����� Kuich and Salomaa� ����
� Many of those operations are the
weighted transducer generalizations of classical algorithms for unweighted accep�
tors� We have brought together those and a variety of auxiliary operations in a
comprehensive weighted �nite�state machine software library �FsmLib
 available
for non�commercial use from the AT�T Labs � Research Web site �Mohri et al��
����
�
Basic union� concatenation� and Kleene closure operations combine transduc�

ers in parallel� in series� and with arbitrary repetition� respectively� Other oper�
ations convert transducers to acceptors by projecting onto the input or output
label set� �nd the best or the n best paths in a weighted transducer� remove
unreachable states and transitions� and sort acyclic automata topologically� We
refer the interested reader to the library documentation and an overview paper
�Mohri et al�� �			
 for further details on those operations� Here� we will focus
on a few key operations that support the ASR applications described in later
sections�

������ Composition and Intersection

As previously noted� a transducer represents a binary relation between symbol
sequences� The composition of two transducers represents their relational com�
position� In particular� the composition T � R 	 S of two transducers R and S
has exactly one path mapping sequence u to sequence w for each pair of paths�
the �rst in R mapping u to some sequence v and the second in S mapping v to w�
The weight of a path in T is the ��product of the weights of the corresponding
paths in R and S �Salomaa and Soittola� ����� Berstel and Reutenauer� �����
Kuich and Salomaa� ����
�
Composition is the transducer operation for combining di�erent levels of rep�

resentation� For instance� a pronunciation lexicon can be composed with a word�
level grammar to produce a phone�to�word transducer whose word sequences
are restricted to the grammar� A variety of ASR transducer combination tech�
niques� both context�independent and context�dependent� are conveniently and
e�ciently implemented with composition�
Our composition algorithm generalizes the classical state�pair construction for
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Figure �� Example of transducer composition�

�nite automata intersection �Hopcroft and Ullman� ����
 to weighted acceptors
and transducers� The composition R 	 S of transducers R and S has pairs of an
R state and an S state as states� and satis�es the following conditions� ��
 its
initial state is the pair of the initial states of R and S� ��
 its �nal states are pairs
of a �nal state of R and a �nal state of S� and ��
 there is a transition t from
�r� s
 to �r�� s�
 for each pair of transitions tR from r to r� and tS from s to s� such
that the output label of t matches the input label of t�� The transition t takes its
input label from tR� its output label from tS� and its weight is the ��product of
the weights of tR and tS when the weights correspond to probabilities� Since this
computation is local � it involves only the transitions leaving two states being
paired � it can be given a lazy �or on�demand
 implementation in which the
composition is generated only as needed by other operations on the composed
automaton� Transitions with � labels in R or S must be treated specially as
discussed elsewhere �Mohri et al�� ����� �			
�
Figure � shows two simple transducers over the tropical semiring� Figure �a

and Figure �b� and the result of their composition� Figure �c� The weight of
a path in the resulting transducer is the sum of the weights of the matching
paths in R and S since in this semiring � is de�ned as the usual addition �of
log probabilities
�
Since we represent weighted acceptors by weighted transducers in which the

input and output labels of each transition are identical� the intersection of two
weighted acceptors is just the composition of the corresponding transducers�
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Figure �� Non�deterministic weighted acceptor A��

������ Determinization

A weighted transducer is deterministic or sequential if and only if each of its
states has at most one transition with any given input label and there are no
input epsilon labels� Figure � gives an example of a non�deterministic weighted
acceptor� at state 	� for instance� there are several transitions with the same
label a�
Weighted determinization� which generalizes the classical subset method for

determinizing �nite automata �Aho et al�� ����
� applies to a weighted automa�
ton and outputs an equivalent deterministic weighted automaton� Two weighted
acceptors are equivalent if they associate the same weight to each input string�
weights may be distributed di�erently along the paths of two equivalent accep�
tors� Two weighted transducers are equivalent if they associate the same output
sequence and weights to each input sequence� the distribution of the weight or
output labels along paths needn�t be the same in the two transducers�
In contrast to the unweighted case� not all weighted automata can be de�

terminized� as explained rigorously elsewhere �Mohri� ����
� Fortunately� most
weighted automata used in speech processing can be either determinized directly
or easily made determinizable by simple transformations� as we shall discuss
later� In particular� any acyclic weighted automaton can be determinized�
Our discussion and examples of determinization and� later� minimization will

be illustrated with weighted acceptors� The more general weighted transducer
case can be shown to be equivalent to this case by interpreting weight�output
label pairs as new �weights� combined by the appropriate semiring �Mohri� ����
�
Determinization and minimization of �nite�state transducers can also be used to
give an e�cient and compact representation of a lexicon �Mohri� ����
�
The critical advantage of a deterministic automaton over equivalent nonde�

terministic ones is its irredundancy� it contains at most one path matching any
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Figure �� Equivalent weighted automaton A� obtained by weighted determinization of A��

given input sequence� thereby reducing the time and space needed to process an
input sequence�
To eliminate redundant paths� weighted determinization needs to calculate the

combined weight of all the paths for a given input sequence� which will depend
on the semiring used� We describe determinization in the case of the tropical
semiring� this account carries over easily to other semirings�
Figure � shows the weighted determinization in the tropical semiring of au�

tomaton A� from Figure �� In general� the determinization of a weighted au�
tomaton is equivalent to the original� that is� it associates the same weight to
each input string� For example� there are two paths corresponding to the input
string ae in A�� with weights f	 � 	 � 	� � � �	 � ��g� The minimum 	 is also
the weight associated by A� to the string ae�
In the classical subset construction for determinizing unweighted automata�

all the states reachable by a given input from the initial state are placed in
the same subset� In the weighted case� transitions with the same input label
can have di�erent weights� but only the minimum of those weights is needed
and the leftover weights must be kept track of� Thus� the subsets in weighted
determinization contain pairs �q� w
 of a state q of the original automaton and
a leftover weight w�
The initial subset is f�i� 	
g� where i is the initial state of the original au�

tomaton� For example� for automaton A� the initial subset is f�	� 	
g� Each new
subset S is processed in turn� For each element a of the input alphabet � label�
ing at least one transition leaving a state of S� a new transition t leaving S is
constructed in the result automaton� The input label of t is a and its weight is
the minimum of the sums w� l where w is s�s leftover weight and l is the weight
of an a�transition leaving a state s in S� The destination state of t is the subset
S � containing those pairs �q�� w�
 in which q� is a state reached by a transition
labeled with a from a state of S and w� is the appropriate leftover weight�
For example� state 	 inA� corresponds to the initial subset f�	� 	
g constructed

by the algorithm� The A� transition leaving 	 and labeled with a is obtained
from the two transitions labeled with a leaving the state 	 in A�� its weight is
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Figure �� Equivalent weighted automaton B� obtained by weight pushing from A��

the minimum of the weight of those two transitions� and its destination state is
the subset S � � f��� 	� 	 � 	
� ��� �� 	 � �
g� numbered � in A��
It is clear that the transitions leaving a given state in the determinization of

an automaton can be computed from the subset for the state and the transitions
leaving the states in the subset� as is the case for the classical non�deterministic
�nite automata �NFA
 determinization algorithm� In other words� the weighted
determinization algorithm is local like the composition algorithm� and can thus
be given a lazy implementation�

������ Minimization

Any deterministic automaton can be minimized using classical algorithms �Aho
et al�� ����� Revuz� ����
� In the same way� any deterministic weighted automa�
ton A can be minimized using our minimization algorithm �Mohri� ����
�
The resulting weighted automaton B is equivalent to the automaton A� and

has the least number of states and the least number of transitions among all
deterministic weighted automata equivalent to A�
Weighted minimization is quite e�cient� as e�cient in fact as classical deter�

ministic �nite automata �DFA
 minimization� linear in the acyclic case �O�m�
n

� and O�m logn
 in the general case� where n is the number of states and m
the number of transitions
We can view the deterministic weighted automaton A� as an unweighted au�

tomaton by interpreting each pair �a� w
 of a label a and a weight w as a single
label� We can then apply the standard DFA minimization algorithm to this au�
tomaton� But� since the pairs for di�erent transitions are all distinct� classical
minimization would have no e�ect on A��
The size of A� can still be reduced by using true weighted minimization� This

algorithm works in two steps� the �rst steps pushes weight among transitions� y

and the second applies the classical minimization algorithm to the result with
each distinct label�weight pair viewed as a distinct symbol� as described above�
Pushing is a special case of reweighting� We describe reweighting in the case

yThe weight pushing algorithm is described and analyzed in detail in �Mohri� 	

�� and its
applications to speech recognition are discussed in �Mohri and Riley� �

	a��
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Figure �� Equivalent weighted automaton A� obtained by weighted minimization from A��

of the tropical semiring� similar de�nitions can be given for other semirings�
A �non�trivial
 weighted automaton can be reweighted in an in�nite number of
ways that produce equivalent automata� To see how� assume for convenience that
the automaton A has a single �nal state fA�

z Let V � Q 
 R be an arbitrary
potential function on states� Update each transition weight as follows�

w�t
� w�t
 � �V �n�t

� V �p�t




and each �nal weight as follows�

��fA
� ��fA
 � �V �iA
� V �fA



It is easy to see that with this reweighting� each potential internal to any suc�
cessful path from the initial state to the �nal state is added and then subtracted�
making the overall change in path weight�

�V �fA
� V �iA

 � �V �iA
� V �fA

 � 	

Thus� reweighting does not a�ect the total weight of a successful path and the
resulting automaton is equivalent to the original�
To push the weight in A towards the initial state as much as possible� a speci�c

potential function is chosen� the one that assigns to each state the lowest path
weight from that state to the �nal state� After pushing� the lowest cost path
�excluding the �nal weight
 from every state to the �nal state will thus be 	�
Figure � shows the result of pushing for the input A�� Thanks to pushing� the

size of the automaton can then be reduced using classical minimization� Figure �
illustrates the result of the �nal step of the algorithm� No approximation or
heuristic is used� the resulting automaton A� is equivalent to A��

�� Weighted Finite�State Transducer Applications

We now describe several applications of weighted �nite�state transducer algo�
rithms to speech recognition�

zAny automaton can be transformed into an equivalent automaton with a single �nal state
by adding a super��nal state� making all previously �nal states non��nal� and adding an �
transition from each of the previously �nal states f to the super��nal state with weight ��f��
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Figure �� Context�dependent triphone transducer�

���� Transducer Combination

Consider the pronunciation lexicon in Figure �b� Suppose we form the union of
this transducer with the pronunciation transducers for the remaining words in
the grammar G of Figure �a and then take its Kleene closure by connecting an
��transition from each �nal state to the initial state� The resulting pronuncia�
tion lexicon L would pair any sequence of words from that vocabulary to their
corresponding pronunciations� Thus�

L 	G

gives a transducer that maps from phones to word sequences restricted to G�
We used composition here to implement a context�independent substitution�

However� a major advantage of transducers in speech recognition is that they gen�
eralize naturally the notion of context�independent substitution of a label to the
context�dependent case� The transducer of Figure � does not correspond to a sim�
ple substitution� since it describes the mapping from context�independent phones
to context�dependent triphonic models� denoted by phone�left context right context�
Just two hypothetical phones x and y are shown for simplicity� Each state en�
codes the knowledge of the previous and next phones� State labels in the �gure
are pairs �a� b
 of the past a and the future b� with � representing the start or end
of a phone sequence and � an unspeci�ed future� For instance� it is easy to see that
the phone sequence xyx is mapped by the transducer to x�� y y�x x x�y �
via the unique state sequence ��� �
�x� y
�y� x
�x� �
� More generally� when there
are n context�independent phones� this triphonic construction gives a transducer
with O�n�
 states and O�n�
 transitions� A tetraphonic construction would give a
transducer with O�n�
 states and O�n�
 transitions� In real applications� context�
dependency transducers will bene�t signi�cantly from determinization and mini�
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Figure 	� Context�dependent composition examples�

mization since many n�phones share the same HMM model due to the clustering
of contexts used to alleviate data sparseness�
The following simple example shows the use of this context�dependency trans�

ducer� A context�independent string can be represented by the obvious single�
path acceptor as in Figure �a� This can then be composed with the context�
dependency transducer in Figure ��x The result is the transducer in Figure �b�
which has a single path labeled with the context�independent labels on the input
side and the corresponding context�dependent labels on the output side�
The context�dependency transducer can be composed with more complex

transducers than the trivial one in Figure �a� For example� composing the
context�dependency transducer with the transducer in Figure �c results in the
transducer in Figure �d� By de�nition of relational composition� this must cor�
rectly replace the context�independent units with the appropriate context�dependent
units on all of its paths� Therefore� composition provides a convenient and gen�
eral mechanism for applying context�dependency to ASR transducers�

xBefore composition� we promote the acceptor in Figure 
a to the corresponding transducer
with identical input and output labels�
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If we let C represent a context�dependency transducer from context�dependent
phones to context�independent phones� then

C 	 L 	G

gives a transducer that maps from context�dependent phones to word sequences
restricted to the grammar G� Note that C is the inverse of a transducer such
as in Figure �� that is the input and output labels have been exchanged on
all transitions� For notational convenience� we adopt this form of the context�
dependency transducer when we use it in recognition cascades�
As we did for the pronunciation lexicon� we can represent the HMM set as H�

the closure of the union of the individual HMMs �see Figure �c
� Note that we
do not explicitly represent the HMM�state self�loops in H� Instead� we simulate
those in the run�time decoder� With H in hand�

H 	 C 	 L 	G

gives a transducer that maps from distributions to word sequences restricted to
G�
We thus can use composition to combine all levels of our ASR transducers

into an integrated transducer in a convenient� e�cient and general manner�
When these automata are statically provided� we can apply the optimizations
discussed in the next section to reduce decoding time and space requirements� If
the transducer needs to be modi�ed dynamically� for example by adding the re�
sults of a database lookup to the lexicon and grammar in an extended dialogue�
we adopt a hybrid approach that optimizes the �xed parts of the transducer
and uses lazy composition to combine them with the dynamic portions during
recognition �Mohri and Pereira� ����
�

���� Transducer Standardization

To optimize an integrated transducer� we use three additional steps� �a
 deter�
minization� �b
 minimization� and �c
 factoring�

������ Determinization

We use weighted transducer determinization at each step of the composition of
each pair of transducers� The main purpose of determinization is to eliminate
redundant paths in the composed transducer� thereby substantially reducing
recognition time� In addition� its use in intermediate steps of the construction
also helps to improve the e�ciency of composition and to reduce transducer size�
In general� the transducer L 	 G from phone sequences to words is not de�

terminizable� This is clear in the presence of homophones� But� even without
homophones� L 	 G may not be determinizable because the �rst word of the
output sequence might not be known before the entire input phone sequence is
scanned� Such unbounded output delays make L 	G non�determinizable�
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To make it possible to determinize L	G� we introduce an auxiliary phone sym�
bol� denoted ��� marking the end of the phonetic transcription of each word�
Other auxiliary symbols �� � � ��k�� are used when necessary to distinguish ho�
mophones� as in the following example�

r eh d �� read
r eh d �� red

At most P auxiliary phones are needed� where P is the maximum degree of ho�
mophony� The pronunciation dictionary transducer with these auxiliary symbols
added is denoted by  L�
For consistency� the context�dependency transducer C must also accept all

paths containing these new symbols� For further determinizations at the context�
dependent phone level and distribution level� each auxiliary phone must be
mapped to a distinct context�dependent�level symbol� Thus� self�loops are added
at each state of C mapping each auxiliary phone to a new auxiliary context�
dependent phone� The augmented context�dependency transducer is denoted by
 C�
Similarly� each auxiliary context�dependent phone must be mapped to a new

distinct distribution name� P self�loops are added at the initial state of H with
auxiliary distribution name input labels and auxiliary context�dependent phone
output labels to allow for this mapping� The modi�ed HMM model is denoted
by  H�
It is straightforward to see that the addition of auxiliary symbols guarantees

the determinizability of the transducer obtained after each composition� allowing
the application of weighted transducer determinization at several stages in our
construction�
First�  L is composed withG and determinized� yielding det� L	G
�� The bene�t

of this determinization is the reduction of the number of alternative transitions
at each state to at most the number of distinct phones at that state� while the
original transducer may have as many as V outgoing transitions at some states
where V is the vocabulary size� For large tasks in which the vocabulary has �	�

to �	� words� the advantages of this optimization are clear�
The context�dependency transducer might not be deterministic with respect

to the context�independent phone labels� For example� the transducer shown in
�gure � is not deterministic since the initial state has several outgoing transi�
tions with the same input label x or y� To build a small and e�cient integrated
transducer� it is important to �rst determinize the inverse of  C� k

�An n�gram language model G is often constructed as a deterministic weighted automaton
with back�o� states � in this context� the symbol � is treated as a regular symbol for the
de�nition of determinism� If this does not hold� G is �rst determinized �Mohri� 	

���

kTriphonic or more generally n�phonic context�dependency models can be built directly
with a deterministic inverse �Riley et al�� 	

��� They can also be computed by compilation of
context�dependent rules corresponding to each n�phonic context into �nite�state transducers
�Kaplan and Kay� 	

�� Karttunen� 	

�� Mohri and Sproat� 	

���
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 C is then composed with the resulting transducer and determinized� Similarly�
 H is composed with the context�dependent transducer and determinized� This
last determinization increases sharing among HMM models that start with the
same distributions� At each state of the resulting integrated transducer� there
is at most one outgoing transition labeled with any given distribution name�
reducing recognition time even more�
In a �nal step� we use the erasing operation �� that replaced the auxiliary

distribution symbols by ��s� The complete sequence of operations is summarized
by the following construction formula�

N � ���det�  H 	 det�  C 	 det� L 	G





where parentheses indicate the order in which the operations are performed� The
result N is an integrated recognition transducer that can be constructed even in
very large�vocabulary tasks and leads to a substantial reduction in recognition
time� as the experimental results below will show�

������ Minimization

Once we have determinized the integrated transducer� we can reduce it further by
minimization� The auxiliary symbols are left in place� the minimization algorithm
is applied� and then the auxiliary symbols are removed�

N � ���min�det�  H 	 det�  C 	 det� L 	G






Weighted minimization can be used in di�erent semirings� Both minimization in
the tropical semiring and minimization in the log semiring can be used in this
context� It is not hard to prove that the results of these two minimizations have
exactly the same number of states and transitions and only di�er in how weight
is distributed along paths� The di�erence in weights arises from di�erences in
the de�nition of the key pushing operation for di�erent semirings�
Weight pushing in the log semiring has a very large bene�cial impact on the

pruning e�cacy of a standard Viterbi beam search� In contrast� weight pushing
in the tropical semiring� which is based on lowest weights between paths de�
scribed earlier� produces a transducer that may slow down beam�pruned Viterbi
decoding many fold�
To push weights in the log semiring instead of the tropical semiring� the poten�

tial function is the � log of the total probability of paths from the each state to
the �super�
�nal state rather than the lowest weight from the state to the �super�

�nal state� In other words� the transducer is pushed in terms of probabilities
along all future paths from a given state rather than the highest probability
over the single best path� By using � log probability pushing� we preserve a
desirable property of the language model� namely that the weights of the transi�
tions leaving each state be normalized as in a probabilistic automaton �Carlyle
and Paz� ����
� We have observed that probability pushing makes pruning more
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e�ective �Mohri and Riley� �		�a
� and conjecture that this is because the acous�
tic likelihoods and the transducer probabilities are now synchronized to obtain
the optimal likelihood ratio test for deciding whether to prune� We further con�
jecture that this reweighting is the best possible for pruning� A proof of these
conjectures will require a careful mathematical analysis of pruning�
One step that has not been described yet is how to compute the reweighting

potential function� If the lowest cost path potential function is used� classical
single�source shortest path algorithms can be employed �Cormen et al�� ����
�
However� adopting the sum of probability mass potential function required sig�
ni�cant extensions of the classical algorithms� which are of independent interest
�Mohri� ����
�
We have thus standardized the integrated transducer in our construction �

it is the unique deterministic� minimal transducer for which the weights for all
transitions leaving any state sum to � in probability� up to state relabeling� If one
accepts that these are desirable properties of an integrated decoding transducer�
then our methods obtain the optimal solution among all integrated transducers�

������ Factoring

For e�ciency reasons� our decoder has a separate representation for variable�
length left�to�right HMMs� which we will call the HMM speci�cation� The in�
tegrated transducer of the previous section does not take good advantage of
this since� having combined the HMMs into the recognition transducer proper�
the HMM speci�cation consists of trivial one�state HMMs� However� by suitably
factoring the integrated transducer� we can again take good advantage of this
feature�
A path whose states other than the �rst and last have at most one outgoing and

one incoming transition is called a chain� The integrated recognition transducer
just described may contain many chains after the composition with  H� and after
determinization� As mentioned before� we do not explicitly represent the HMM�
state self�loops but simulate them in the run�time decoder� The set of all chains
in N is denoted by Chain�N
�
The input labels of N name one�state HMMs� We can replace the input of each

length�n chain in N by a single label naming an n�state HMM� The same label is
used for all chains with the same input sequence� The result of that replacement
is a more compact transducer denoted by F � The factoring operation on N leads
to the following decomposition�

N � H � 	 F

where H � is a transducer mapping variable�length left�to�right HMM state dis�
tribution names to n�state HMMs� Since H � can be separately represented in the
decoder�s HMM speci�cation� the actual recognition transducer is just F �
Chain inputs are in fact replaced by a single label only when this helps to

reduce the size of the transducer� This can be measured by de�ning the gain of
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the replacement of an input sequence � of a chain by�

G��
 �
X

��Chain�N	�i
����

j�j � jo��
j � �

where j�j denotes the length of the sequence �� i��
 the input label and o��
 the
output label of a path �� The replacement of a sequence � helps reduce the size
of the transducer if G��
 	 	�
Our implementation of the factoring algorithm allows one to specify the max�

imum number r of replacements done �the r chains with the highest gain are
replaced
� as well as the maximum length of the chains that are factored�
Factoring does not a�ect recognition time� It can however signi�cantly reduce

the size of the recognition transducer� We believe that even better factoring
methods may be found in the future�

������ Experimental Results � First�Pass Transducers

We applied the techniques outlined in the previous sections to build an inte�
grated� optimized recognition transducer for a �	� 			�word vocabulary North
American Business News �NAB
 task��� The following models were used�


 Acoustic model of ���	� distinct HMM states� each with an emission mix�
ture distribution of up to twelve Gaussians�


 Triphonic context�dependency transducer C with ����� states and �	����
transitions�


 �	� 			�word pronunciation dictionary L with an average of ��	�� pronun�
ciations per word and an out�of�vocabulary rate of ���! on the NAB Eval
��� test set�


 Trigram language model G with ������	�	 transitions built by Katz�s back�
o� method with frequency cuto�s of � for bigrams and � for trigrams� It was
shrunk with an epsilon of �	 using the method of Seymore and Rosenfeld
�����
� which retained all the unigrams� ����! of the bigrams and ����! of
the trigrams� The perplexity on the NAB Eval ��� test set was ����� ������
before shrinking
�

We applied the transducer optimization steps as described in the previous sec�
tion except that we applied the minimization and weight pushing after factoring
the transducer� Table � gives the size of the intermediate and �nal transducers�
Observe that the factored transducer min�F 
 has only about �	! more tran�

sitions than G� The HMM speci�cation H � consists of ��	���� HMMs with an
average of ��� states per HMM� It occupies only about �	! of the memory of

��Our speech recognition decoder library will soon be made available for non�commercial
use� It will include among other utilities the construction and optimization of the recognition
transducer described in the previous section and will be accessible from the AT�T Labs �
Research Web site �Mohri and Riley� �

	b��
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min�F 
 in the decoder �due to the compact representation possible from its
specialized topology
� Thus� the overall memory reduction from factoring is sub�
stantial�

transducer states transitions

G 	���
���� ��
���
	


L �G ���
����
 		��
����	

det�L �G� ��
����
� 
�������


C � det�L �G�� ������
�� 	
��
	���

det�H � C � L �G� 	���	����
 �	�����

�

F ��	������ ��	
��

�

min�F � ���	��
�� ���
��
��

Table �� Size of the �rst�pass recognition transducers in the NAB �
� 


�word vocabulary
task�

transducer � real�time

C � L �G 	���

C � det�L �G� 	��
det�H � C � L �G� 	�


min�F � 
��

Table �� Recognition speed of the �rst�pass transducers in the NAB �
� 


�word vocabulary
task at ��� word accuracy

We used these transducers in a simple� general�purpose� one�pass Viterbi de�
coder applied to the DARPA NAB Eval ��� test set� Table ����� shows the recog�
nition speed on a Compaq Alpha ����� processor for the various optimizations�
where the word accuracy has been �xed at ���	!� We see that the fully�optimized
recognition transducer� min�F 
� substantially speeds up recognition�
To obtain improved accuracy� we can widen the decoder beam yy and"or use

better models in the �rst pass� In particular� since the o#ine construction of
the recognition transducer used here required approximately an order of mag�
nitude more runtime memory than the size of resulting machine� we performed
our initial experiments using a signi�cant shrink of the LM� We are currently ex�
perimenting with much less shrunken NAB LMs having acquired more memory
and improved the memory usage of our construction�
Alternatively� we can use a two�pass system to obtain improved accuracy� as

described in the next section�
yyThese models have an asymptotic wide�beam accuracy of ������
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������ Experimental Results � Rescoring Transducers

We have applied the optimization techniques to lattice rescoring for a ��	� 			�
word vocabulary NAB task� The following models were used to build lattices in
a �rst pass�


 Acoustic model of ����	 distinct HMM states� each with an emission mix�
ture distribution of up to four Gaussians�


 Triphonic context�dependency transducer C with ����� states and �	����
transitions�


 ��	� 			�word pronunciation dictionary L with an average of ��	�� pronun�
ciations per word and an out�of�vocabulary rate of 	��! on the NAB Eval
��� test set�


 Bigram language model G with ������	�	 transitions built by Katz�s back�
o� method with frequency cuto�s of � for bigrams� It was shrunk with an
epsilon of ��	 using the method of Seymore and Rosenfeld �����
� which
retained all the unigrams and ����! of the bigrams� The perplexity on the
NAB Eval ��� test set was �	����

We used an e�cient approximate lattice generation method �Ljolje et al�� ����

to generate word lattices� These word lattices were then used as the �grammar�
in a second rescoring pass� The following models were used in the second pass�


 Acoustic model of ���	� distinct HMM states� each with an emission mix�
ture distribution of up to twelve Gaussians� The model was adapted to each
speaker using a single full�matrix MLLR transform �Leggetter and Wood�
land� ����
�


 Triphonic context�dependency transducer C with ����� states and �	����
transitions�


 ��	� 			�word stochastic� TIMIT�trained� multiple�pronunciation lexicon L
�Riley et al�� ����
�


 ��gram language model G with �	�������� transitions built by Katz�s back�
o� method with frequency cuto�s of � for bigrams and trigrams� � for
��grams� and � for ��grams and ��grams� It was shrunk with an epsilon
of � using the method of Seymore and Rosenfeld� which retained all the
unigrams� ����! of the bigrams� ����! of the trigrams� ����! of the ��
grams� ����! of the ��grams� and �����! of the ��grams� The perplexity
on the NAB Eval ��� test set was �������

We applied the transducer optimization steps described in the previous section
but only to the level of L 	 G �where G is each lattice
� Table � shows the
speed of second�pass recognition on a Compaq Alpha ����� processor for these
optimizations when the word accuracy is �xed at ���	! on the DARPA Eval ���
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test set�zz We see that the optimized recognition transducers again substantially
speed up recognition� The median number of lattice states and arcs was reduced
by � �	! by the optimizations�

transducer x real�time
C � L �G �	�

C � det�L �G� �	�

C �min�det�L �G�� �
�

Table �� Recognition speed of the second�pass transducers in the NAB 	�
� 


�word vocab�
ulary task at ��� word accuracy

���� Recognizer Combination

It is known that combining the output of di�erent recognizers can improve recog�
nition accuracy �Fiscus� ����
� We achieve this simply by adding together the
negative log probability estimates � logPn�s� x
 for sentence hypothesis s and
utterance x from each of the n recognizer lattices and then select the lowest
cost path in this combination� This can be implemented by taking the �nite�
state intersection of the lattices and then �nding the lowest cost path using the
acyclic single�source shortest path algorithm �Cormen et al�� ����
� �Recall that
the �nite�state intersection of two acceptors A��A� is identical to the �nite�state
composition of T� 	 T� where T� and T� are the corresponding transducers with
identical input and output labels
�

Model context gender cep� var� norm�
Mod� ��phone dep� yes
Mod� ��phone dep� no
Mod� ��phone indep� yes
Mod� ��phone indep� no
Mod� ��phone dep� yes
Mod� ��phone indep� no

Table �� Acoustic models used in the LVCSR��

 task

We used this combination technique in the AT�T submission to the NIST
Large Vocabulary Continuous Speech Recognition �LVCSR
 �			 evaluation
�Ljolje et al�� �			
� For that system� we used six distinct acoustic models to
generate six sets of word lattices� These acoustic models di�ered in their context�
dependency level �triphone vs� pentaphone
� whether they were gender�dependent

zzThe recognition speed excludes the o�ine transducer construction time�
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Word Error Rate �!

Model"pass Mod� Mod� Mod� Mod� Mod� Mod�
MLLR �	�� �	�� �	�� �	�� ���� ����
Combined �	�� ���� ���� ���� ���� ����

Table �� Word error rate on LVCSR��


 task before and after model combination

and whether they were cepstral variance normalized� as speci�ed in Table �� All
these models were MLLR�adapted� The system used a �	�			 word vocabulary
and a ��gram language model� Table � shows the word error rate on the LVCSR
Eval �		 test set using each of these models� Also shown are the word error rates
after the �nite�state intersection of the lattices for the �rst n acoustic models�
where n � � through ��y As we can see� the six�fold model combination gives an
absolute ���! word error rate reduction over the best single model�

�� Conclusion

We gave a brief overview of several weighted �nite�state transducer algorithms
and their application to speech recognition� The algorithms we described are
very general� Similar techniques can be used in various other areas of speech
processing such as speech synthesis �Sproat� ����� Beutnagel et al�� ����
� in other
areas of language technology such as information extraction and phonological
and morphological analysis �Kaplan and Kay� ����� Karttunen� ����
� in optical
character recognition� in biological sequence analysis and other pattern matching
and string processing applications �Crochemore and Rytter� ����
� and in image
processing �Culik II and Kari� ����
� just to mention some of the most active
application areas�
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