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ABSTRACT 

DIVERSE ROLES OF NUCLEAR INTERMEDIATE FILAMENTS IN 

PROLIFERATING CELLS 

Manasvita Vashisth 

Dennis E. Discher 

 

Embryonic tissues and cancer have in common the fact that they are both highly proliferative 

tissues rapidly moving through the cell cycle, as opposed to most other differentiated tissues in an 

adult. DNA damage can arrest some embryonic cells but genetic instability is a hallmark of cancer. 

This thesis studies the contrasting role of two nuclear intermediate filaments - Lamin A and Lamin 

B1 in the proliferating cells of embryonic hearts and cancer. Lamin B1 is upregulated together with 

proliferation genes in at least 15 cancers curated in The Cancer Genome Atlas (TCGA), whereas 

Lamin A trends align with ‘matrix mechanosensititve’ genes. With physicochemical principles in 

mind, we show Lamin B1 scales with many mitosis genes in cancer, and experiments reveal its 

role in promoting cell cycle and direct regulation by the cell cycle transcription factor FOXM1. The 

genes that scale are used in Scaling-informed Machine Learning (SIML) to better predict overall 

patient survival and to better identify cell lineage in single cell RNA profiles. A distinct role of Lamin 

A is revealed by experiments on the first organ in its first days – the heart – which show Lamin A 

levels are modulated in interphase cells through phosphorylation in response to acto-myosin stress. 

Lamin A levels determine the probability of nuclear rupture and subsequent DNA damage, telomere 

attrition, and cell cycle arrest. Nuclear lamins thus have different roles in responding to and 

regulating cell cycle. 
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Chapter	1 	Introduction	

 

 

 

Embryonic/developing tissues and cancer have in common the fact that they are both highly 

proliferative tissues rapidly moving through the cell cycle, as opposed to most other differentiated 

tissues in adult human. However, there are key difference in terms of regulation of proliferation in 

development and cancer. Heart disease and cancer combined caused 43.2% of the deaths in the 

US in 2019 (Kochanek, Xu and Arias, 2019), however their underlying pathophysiology has 

contrasting traits. The basis of heart failure can be attributed to the failure of the myocardium to 

regenerate itself, proliferative ability of cardiomyocytes drops sharply shortly after birth(Porrello et 

al., 2011, 2013). DNA damage including telomere defects, micronuclei etc arrest cardiomyocytes, 

in sharp contrast, chromosomal instability and DNA damage promote cancer development. This 

thesis studies the role of two nuclear intermediate filaments- Lamin A and Lamin B1 in the 

proliferating cells of embryonic hearts and cancer. Lamin A is mechanosensitive which plays a role 

in determining the probability of nuclear membrane rupture and subsequent accumulated DNA 

damage and cell cycle arrest. Lamin B1 in cancer cells acts as a functional marker for proliferation, 

regulated by FOXM1. 

1.1 Properties of Lamins 

Below the inner nuclear membrane exists a meshwork of proteins called the lamina that confers 

mechanical support and stiffness to the nuclear envelope(Ungricht and Kutay, 2017). Type V 

intermediate filament proteins called lamins form the majority of the lamina. Lamins undergo self-

assembly into filaments of protein that form the meshwork. We focus our study on two major groups 

of lamins- A type lamins and B type lamins. 
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Figure 1-1 Lamina disassembles during mitosis and reassembles in daughter cells 
63x magnified confocal images of lung adenocarcinoma epithelial cells-A549 with GFP tagged 
Lamin-A and Hoechst 33342 stained DNA 
 

1.1.1 Evolution 

Intermediate filament proteins evolved later than other cytoskeletal proteins like actin. Evidence 

suggests that B type lamins evolved before A type lamins given that Lamin B1 is constitutively 

expressed in all invertebrates unlike Lamin A(Dittmer and Misteli, 2011; Peter and Stick, 2012). 
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1.1.2 Structure 

Lamins have a nuclear localization signal (NLS), an immunoglobulin (Ig)-fold domain, and a CaaX 

motif at the C terminus(Gruenbaum and Aebi, 2014). There are predominantly four lamin isoforms 

in mammalian cells- two A-type lamins (LMNA and LMNC) and two B-type lamins (LMNB1 and 

LMNB2). Different lamins undergo different post translational modifications (PTMs) resulting in 

different biochemical and physical properties. The CaaX motif at the C terminus of LMNA, LMNB1 

and LMNB2 is farnesylated which is later proteolytically cleaved for LMNA(Hennekes and Nigg, 

1994). This results in only B-type lamins being permanently anchored to the INM, even during 

mitosis (in the form of fragments)(Gerace and Blobel, 1980).   

1.1.3 Mitosis 

The lamina, along with the nuclear membrane, reversibly dissociates (sometimes to monomeric 

units) at the beginning of mitosis and reassembles in the daughter cells (Gerace and Blobel, 1980). 

They are disassembled before mitosis by phosphorylation by specific kinases-CDK and PKC 

(Dechat et al., 2010) and reassembled beginning of interphase of daughter cells through 

dephosphorylation by phosphatases (Fig 1.1). This reversible phosphorylation and 

depolymerization of lamin proteins into a soluble state has also observed in interphase cells. We 

further study the role of this solubilization flux in interphase cells in Chapter 2. However, there are 

differences in the B-type lamins and and A-type lamins. The B-type lamins remain farnesylated to 

the lipids of the nuclear membrane. Lamin B1 accumulates at the chromatin during the anaphase-

telophase transition. In contrast, lamin-A begins polymerizing at the lamina much later and remains 

diffuse in the cytoplasm even during G1 phase of the cell cycle of the daughter cells(Moir, Yoon, et 

al., 2000). These differences in reassembly are illustrated Chapter 3 that shows LMNB1 in primary 

tumor tissues universally scales with mitosis associated genes like kinesins, unlike LMNA. 

1.1.4 Expression in healthy tissues 

Lamin-A expression increases as the stiffness of the resident tissue increases whereas Lamin B1 

is constitutively expressed and does not scale with stiffness (Swift et al., 2013). Embryonic tissues 
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stiffen overall as the embryo develops, Lamin B1 is high from the beginning and remains constant 

as the embryo develops whereas Lamin A is almost undetectable at the beginning but responds to 

the stiffening tissues and increases with time, indeed it is one the proteins that show the highest 

fold change as the embryo develops(S. Cho et al., 2019). In Chapter 2 we study the role of 

upregulation of Lamin A as the embryo develops. 

1.1.5 Rheological properties 

Nuclei have viscoelastic properties(Guilak, Tedrow and Burgkart, 2000; Dahl et al., 2005), meaning 

that they exhibit stress relaxation:  when a constant deformation is applied, the resulting mechanical 

stress on the nucleus decays over time. Micropipette aspiration experiments reveal that Lamin-A 

and Lamin B have different rheological properties with Lamin A being more viscous whereas Lamin 

B1 is more elastic(Swift et al., 2013). This can have consequences for constricted migration of cells. 

Constricted migration of cells is a physiologically important phenomena for many process in the 

healthy tissue like -embryo development(Kurosaka and Kashina, 2008), angiogenesis(Lamalice, 

Le Boeuf and Huot, 2007) and wound healing(Clark et al., 1982) as well as in malignant tissue - 

cancer metastasis (Liotta, Steeg and Stetler-Stevenson, 1991). The nucleus being the largest and 

stiffest cell organelle acts as a rate limiting factor in constricted migration. As the nucleus moves 

through tiny pores, the nuclear lamina can develop blebs (Fig 1.2). Some blebs can be Lamin B1 

negative since Lamin B1 is elastic and cannot sustain shear stress, whereas Lamin A being more 

viscous, ‘creeps’ into the blebbs(Pfeifer et al., 2018; Xia, Pfeifer, et al., 2018). 
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Figure 1-2 Lamin B1 negative blebb in nuclei after undergoing constrictive migration 

Confocal images of transfected GFP-LMNB1 osteosarcoma epithelial cells U2OS after undergoing 
constrictive migration through 3m transwell pores, immunostained with nuclear protein- Ku80, DNA 
stained with Hoechst 33342 

1.1.6 Mutation 

Diseases arising due to Lamin B1 mutations are rare, perhaps hinting at functional Lamin B1 being 

essential for early development of embryo. In contrast, Lamin A mutations are associated with 

many diseases – skeletal/cardiac muscles diseases (Emery Drefuss Muscular dystrophy (EMD), 

dilated cardiomyopathy (DCM), limb girdle muscular dystrophy (LGMD1B), redistribution of white 

fat (familial partial lipodystrophy (FPLD), mandibuloacral dysplasia (MAD)), charcot marietooth 

neuropathy (CMT2) and progeria (accelerated aging). 

1.1.7 Senescence 

Lamin B1 is drastically downregulated in senescent cells and a well-established marker of 

senescence(Shimi et al., 2011; Freund, R.-M. Laberge, et al., 2012; Shah et al., 2013), independent 

of Lamin A. 

1.2 Functions of Lamins 

Lamins have diverse roles including maintaining nuclear size and shape, mechanosensing, 

genomic organization, regulating transcription etc. Here we illustrate a few of them. 

!"#$$
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1.2.1 Maintaining compartmentalization in a cell  

Nuclear membrane plays the important role of separating the nucleoplasm from the cytoplasm to 

maintain the integrity of DNA, keeping DNA out of the way from dynamic events like trafficking 

along the cytoskeleton, compartmentalization of transcription and splicing steps away from 

translation, spatially organizing DNA metabolism events for efficiency and maintaining the 

concentration of nuclear proteins like DNA repair factors, transcription factors, spatially regulating 

transcription factors or signal transduction networks by modulating their nuclear to cytoplasmic 

ratio. However, all proteins are translated by ribosomes in the cytoplasm/endoplasmic reticulum. 

Proteins with molecular weight >~45 kDa need to be transported by the importin superfamily across 

the nuclear pore complexes (NPC) - ‘gates’ of nuclear membrane. Proteins that need to end up in 

the nucleus have a ‘nuclear localization signal’ (NLS) which is a sequence of amino acids that is 

recognized by an adaptor protein called Importin a which dimerizes with Importin b, which mediates 

interactions with the NPC. The analogous process involves the exportin protein family transporting 

proteins with a Nuclear Export Sequence (NES) out of the nuclear pore complex and into the 

cytoplasm, for example to transport the transcribed mRNA, tRNA, ribosomes and other proteins. 

Different proteins can have a wide variety of NLS/NES, moreover, there are 7 Importin as and >20 

Importin bs(Wagstaff et al., 2012). Some proteins can have both NLS and NES. There are two 

major types of NLS – monopartite (one continuous sequence of amino acids, for example the one 

present in SV40 virus) and bipartite (NLS present as two clusters of amino acids). For example, Ku 

heterodimer consisting of Ku80 (XRCC5) and Ku70 (XRCC6) play a central role in DNA repair. 

Anti-parasitic drug Ivermectin acts as a specific inhibitor of importin a/b mediated nuclear transport. 

Each of the monomers can independently transport to the nucleus through their respective 

monopartite NLS as well as heterodimerize for nuclear transport(Koike, Shiomi and Koike, 2001; 

Takeda et al., 2011). Exportin chromosome region maintenance 1 (CRM1) is the most common 

and exports many proteins and is inhibited by antifungal drug Leptomycin(Wagstaff et al., 2012). 
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Other exportins include Exportin-t that directly binds to tRNA to transport outside the nucleus(Arts 

et al., 1998). 

Nuclear membrane rupture 

This important and regulated compartmentalization by the nuclear membrane can be voided in cells 

undergoing constricted migration(Denais et al., 2016; Irianto, Charlotte R Pfeifer, et al., 2016; 

Irianto et al., 2017) and repair of the rupture through ESCORT III recruitment can be critical for 

subsequent cell proliferation due to accumulation of DNA damage(Raab et al., 2016). Interestingly, 

it is not the physical pulling apart of the DNA as the cell moves through confined spaces that causes 

increase in DNA damage since the tightly packed DNA unravels as it experiences shear 

stress(Irianto, Xia, et al., 2016) but the mis localization of DNA repair factors. Lamin A provides 

stiffness to the nucleus and plays an important role in constricted migration, Lamin A knockdown 

cells, migrate faster but are also more likely to undergo rupture which limits their survival (Harada 

et al., 2014a). Moreover, cancer cells on stiff plastic 2-D matrix can also exhibit nuclear membrane 

rupture and prolonged mis localization of DNA repair factors leads to eventual accumulation of DNA 

damage and cell cycle arrest(Xia, Ivanovska, et al., 2018). In chapter 2 and 4 we further expand 

this study by using nuclear import inhibitors specific to DNA repair proteins to verify this hypothesis. 

DNA damage induced cell cycle arrest can have biological significance as post-natal hearts 

permanently exit cell cycle shortly after birth, which has previously also been attributed to DNA 

damage due to oxidative stress(Puente et al., 2014). Interestingly Ku80 deficient mice show 

progeroid symptoms as well as early senescence similar to the disease progeria caused by Lamin 

A mutations (Vogel et al., 1999; Reiling et al., 2014). In chapter 2, we posit that increasingly stiff 

extra-cellular matrix (Sangkyun Cho, Vashisth, Abbas, Majkut, Vogel, Xia, Irena L. Ivanovska, et 

al., 2019) and acto-myosin stress in a developing embryo with deficient Lamin A increases the 

probability of nuclear rupture and accumulation of DNA damage, telomere attrition and cell cycle 

arrest. 
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1.2.2 Cancer progression and metastasis 

 
Dysmorphic nuclei are a hallmark of cancer and lamin levels are often dysregulated(Irianto, 

Charlotte R. Pfeifer, et al., 2016) but there is no consistent trend towards up or down regulation 

that pervades all cancers. Reduced expression of Lamin A in some malignant cancers may be 

resultant from an adaptive response to soften the nucleus for ease of constrictive migration. Lamin 

B1 is upregulated in many cancers with circulating Lamin B1 acting as a prognostic marker in Liver 

cancer (Sun et al., 2010; Abdelghany et al., 2018). In chapter 3, we strive to find ‘universal’ scaling 

laws that pervade across many cancer types and reveal transcriptional regulator of Lamin B1. 

1.2.3 Regulation of DNA transcription and replication 

Chromatin has various sub-structures through DNA being wrapped around histone octamers and 

exists in two forms: gene-rich euchromatin (low density, perhaps for easy access to transcription 

factors and RNA polymerase); and gene-poor heterochromatin (higher density). There are regions 

of the primarily heterochromatin that directly bind to the lamina called Lamin associated domains 

(LADs). LADs can change as an embryo develop and play a role in transcriptional regulation. 

Moreover, cell culture studies show Lamin-B1 depletion inhibits DNA replication and Lamin B1 foci 

n the nucleoplasm coincide with sites of DNA replication (Moir, Spann, et al., 2000)-(Moir, Montag-

Lowy and Goldman, 1994). Moreover, Lamin-B1 knockdown undermines early development of 

embryos, unlike Lamin-A (Harborth et al., 2001a). Chapter 3 shows Lamin B1 increases as the cell 

proceeds through the cell cycle and knockdown of Lamin B1 can reduce the number of cells that 

proceed through the cell cycle. However, the exact role of Lamin B1 in DNA replication remains 

unclear. 

 
1.3 Conclusion and outline 
 
Even though different types of lamins have a largely similar structure, they can have vastly different 

properties and functions. In Chapter 2, we first start with studying what is the role of Lamin-A 

upregulation in developing embryos. Lamin A mutations underly the disease of accelerated aging-
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progeria, concurrently Ku80 deficient mice show similar phenotype. We strive to find the role of 

Lamin A in aging and telomere maintenance. This can be contrasted to the lack of modulation and 

constitutive expression of Lamin B1 (except in senescent cells), perhaps hinting at its necessity in 

proliferating cells. This leads us to study Lamin B1 expression in cancer patients to find that LMNB1 

is upregulated in the tumor tissue across 15 different cancers, moreover higher expression of Lamin 

B1 significantly predicts poor survival in patients across 8 cancers, unlike LMNA that does not show 

consistent upregulation across cancers. 

Each cancer can have a very specific pathophysiology, indeed it is hard to find a ‘cure-all’ panacea 

for cancer, given each type of cancer is a very different disease altogether. As personalized 

medicine emerges and more and more patients get their genome sequenced, we find that within a 

cancer type also patients can have a multitude of different malignancies which evolve with time. 

There have been efforts by a massive collaboration through the National Cancer Institute (NCI) 

which formed The Cancer Genome Atlas to combine data from over 9112 patients across 32 cancer 

types in a pan-cancer atlas.  

In chapter 3, we aim to find ‘universal’ scaling laws that span across cancers and focus on 

expression of Lamin B1 based on its consistent upregulation across cancers. New methods in 

machine learning for dimensional reduction and visualization are unable to cluster patient 

transcriptomes based on patient survival. We use ‘universal’ scaling laws to make meaningful 

inferences of transcriptional regulation, patient survival prediction and identifying cell type markers 

in tumor tissue. 

One of the differences between normal cells and cancer cells is illustrated by the Hayflick limit 

which states that normal cells in culture can double only approximately 50 times, in contrast, cancer 

cells have no Hayflick limit(Hayflick and Moorhead, 1961). Cancer is a disease of old age that 

accumulates environmental stress as well as genetic pre-disposition, as you grow older, more and 

more mutations accumulate, even if you are genetically pre-disposed by a mutation, the cells have 

redundancies and at least two or more tumor suppressor genes need to be silenced for malignancy 
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to emerge as per the Knudson two hit hypothesis (Knudson, 1971). Hence, DNA damage to cells 

is an important factor in the emergence of cancer and genomic instability is a hallmark of cancer. 

Constitutively expressed Lamin B1 can be tagged with a fluorescent marker to track genomic 

changes in live cancer cells. We develop a pipeline for big data analysis of single cell sequencing 

which allows us to link genomic changes to mRNA sequencing profiles of cells and determine the 

lineage of genetically unstable cancer cells. 

Low levels of genetic instability and aneuploidy have also been reported in mammalian embryos 

that have sustained genetic mutations(Eggan et al., 2002; Knouse et al., 2014; Singla et al., 2020). 

We aim to use the pipeline developed above to study if the DNA damage sustained in embryonic 

hearts illustrated in Chapter 2, can lead to genetic rearrangements. This would attempt to 

rationalize the loss of regenerative capacity in post-natal hearts as perhaps a protective mechanism 

against cancer development, given that heart tumors are vanishingly rare. 

 

 

 

 



11 

 

Chapter	2 Mechanosensing	by	Lamin	A	

protects	against	nuclear	rupture,	DNA	Damage,	

cell	cycle	arrest	and	aging	

This chapter has been adapted from the published paper Cho S., Vashisth M., et al (2019) 
‘Mechanosensing by the Lamina Protects against Nuclear Rupture, DNA Damage, and Cell-Cycle 
Arrest’, Developmental Cell, 49(6). doi: 10.1016/j.devcel.2019.04.020 

Computational analysis in Max Quant Perseus of the mass spectrometry data in Fig 2.4d,e has 
been done by Sangkyun Cho. Mass spectrometry was performed at the Wistar Institute. hiPS-
cardiomyocyte organoid perturbations were done by Manu Tewari. Chicken embryonic hearts 
extraction was done by me in conjunction with Manu Tewari. Telomere Q-FISH experiments in Fig 
2.4i were done by Elisia Tichy. 

2.1 Abstract 

Whether cell forces can impact genome integrity is largely unclear. Here, acute perturbations (~1hr) 

to actomyosin stress cause rapid and reversible changes in lamin-A, DNA damage, and cell cycle. 

The findings are especially relevant to organs such as heart because DNA damage permanently 

arrests cardiomyocyte proliferation shortly after birth and thereby eliminates regeneration after 

subsequent injuries including heart attack. Concurrently, effects are also observed in proliferating 

immortalized cancer cell lines. Embryonic hearts, immortalized lung adenocarcinoma epithelial 

cells (A549) and immortalized osteosarcomia epithelial cells (U2OS) all show that actomyosin-

driven nuclear rupture causes cytoplasmic mis-localization of DNA repair factors and accumulation 

of DNA damage leading to eventual cell cycle arrest. Mislocalization of NHEJ DNA repair pathway 

protein Ku80 is shown to produce DNA damage specific to telomeres. Lamin A knockdown shows 

phenotype of increased DNA damage and cell cycle arrest similar to knockdown of DNA repair 

factors. This is mechanistically caused by increased frequency of nuclear membrane rupture when 

Lamin A is low but actomyosin stress is high. Lamin-A is thus stress-stabilized to mechano-protect 

the genome. 
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a2.2 Introduction 

Proliferation of many cell types slows dramatically shortly after birth and is absent in key adult 

tissues(Li et al., 1996), which presents a major challenge to regeneration. Cell growth in culture is 

modulated by the stiffness of extracellular matrix (ECM) which generally promotes actomyosin 

stress (Engler et al., 2006) and affects the conformation (Sawada et al., 2006), post-translational 

modification (PTM) (Guilluy et al., 2014) , localization (Dupont et al., 2011), and degradation 

(Dupont et al., 2011) of mechanosensitive proteins. Actomyosin links to ECM and to nuclei, such 

that rapid changes to ECM and tissue mechanics that result from chronic or acute injury or even 

drug therapies (e.g. cardiac arrest or cardiomyopathy treatment can in principle affect the nucleus 

(Kanellos et al., 2015; Takaki et al., 2017) and perhaps the DNA within. DNA damage and telomere 

shortening are indeed well-documented in injuries that affect heart(Oh et al., 2003; Higo et al., 

2017; Sharifi-Sanjani et al., 2017; Chang et al., 2018) as well as nonmuscle tissue – but DNA 

damage and repair are rarely studied in developing organs, and relationships to proliferation, ECM 

stiffness, and actomyosin stress are understudied.  

DNA damage and senescence increase with many disease-linked mutations, including those in the 

nucleoskeletal protein lamin-A (LMNA) that forms a structural meshwork around chromatin (Shimi 

et al., 2008; Gruenbaum and Aebi, 2014; Turgay et al., 2017). LMNA deficiencies associate with 

elevated DNA damage (Graziano, et al., 2018; Liu, et al., 2005) and result in accelerated aging of 

stiff tissues similar to deficiencies in DNA repair factors (e.g. KU80) (Li, et al., 2007). Moreover, 

progeroid syndromes are caused only by mutations in LMNA and DNA repair factors, but LMNA’s 

primary function in development remains hotly debated (Burke and Stewart, 2013), with suggested 

roles in gene positioning and regulation (Harr, et al., 2015) seeming at odds with largely normal 

development of human and mouse mutants until weeks after birth. Surprisingly, senescence or 

apoptosis of cells with LMNA defects is rescued by culturing cells on almost any ECM (versus rigid 

plastic (de La Rosa, et al., 2013; Hernandez, et al., 2010)) and by treatment with at least one drug 

affecting both cytoskeleton and nucleo-cytoplasmic trafficking (Larrieu, et al., 2018; Larrieu, et al., 
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2014). Relationships between lamins, actomyosin stress, ECM mechanics, and DNA damage are 

nonetheless obscure – especially in tissues.   

Embryonic hearts beat spontaneously for days after isolation from early chick embryos, and beating 

is acutely sensitive to myosin-II inhibition as well as enzymatic stiffening or softening of ECM 

(Majkut, et al., 2013). DNA damage is conceivably optimized in heart as it triggers a switch from 

proliferation to senescence in post-natal hearts (Puente, et al., 2014). DNA damage is also 

implicated in telomere attrition and binucleation of CMs that signal irreversible exit from cell cycle 

(Aix, et al., 2016). We postulated embryonic hearts with rapidly tunable mechanics could prove 

useful as a tissue model for clarifying protein-level mechanosensing mechanisms in vivo that could 

be studied thoroughly in vitro with many cell types.  

Although LMNA is reportedly ‘undetectable’ in early embryos (Stewart and Burke, 1987), it 

progressively accumulates in tissues such as heart, bone, and lung (Solovei, et al., 2013; Rober, 

et al., 1989; Lehner, et al., 1987) and is highest in adults within these mechanically stressed, stiff 

tissues that are collagen-rich (Swift, et al., 2013). LMNA deficiencies accordingly produce 

measurable defects weeks after birth in such tissues, including heart (Kubben, et al., 2011; Worman 

and Bonne, 2007). We therefore hypothesized that LMNA in normal embryos and proliferating 

cancer cells mechanosenses the microenvironment and increases not only to stiffen the nucleus 

(Osmanagic-Myers, et al., 2015; Dahl, et al., 2008; Pajerowski, et al., 2007) but also to regulate 

repair factors that confer resistance to both DNA damage and cell cycle arrest. 

2.3 Results 

2.3.1 Turnover of Lamin-A is affected by phosphorylation of the protein at specific sites 

Phosphorylation of LMNA by CDK1 and PKC at specific sites to disassemble the lamina at 

the onset of mitosis is well established(Dechat et al., 2010), however phosphorylation has 

also been observed during interphase. Transduction followed by clone isolation of point 

mutated LMNA A549 cell line was used to study the phenotype of phosphorylation on 
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LMNA. S22E LMNA is a phospho-mimetic LMNA with serine 22 site mutated to glutamic 

acid, whereas S22A mutant LMNA cannot be phosphorylated at serine 22 since alanine 

cannot be phosphorylated.  Fig 2.1a-i shows phosphor-mimetic LMNA shows equal LMNA 

distribution between the nuclear periphery and the nucleoplasm whereas S22A is 

concentrated on the periphery indicating that phosphorylation during the interphase causes 

LMNA to dissociate from the nuclear lamina. To show that this is not due to differences in 

protein translation but post-translational modification followed by degradation, we treat the 

cells with translation inhibitor – cycloheximide (Trx-i) for 24 hours and observe that there 

is no difference after treatment, with both S22E samples have consistently higher 

nucleoplasm to lamina ratio (Fig2.1a-ii,iii). Moreover, anti-GFP and anti-LMNA 

immunoblots of S22E mutant with or without cycloheximide treatment stain for fragments 

at lower molecular weight which are not present in the S22A mutant, indicating further 

degradation of the phosphor-mimetic LMNA after being solubilized in the nucleoplasm (Fig 

2.1b). In an interesting concurrence, we find that metalloproteases like MMP2 that cleave 

the extracellular matrix proteins like collagen-I, also degrade phosphorylated Lamin-A, as 

shown by the rescue of S22E LMNA levels by treating cells with MMP2-I (Fig 2.1c), 

exhibiting an interesting link between the extracellular matrix and lamin-A that has previous 

been studied as a scaling law across many different tissues with varying stiffness(Swift et 

al., 2013). Immunofluorescence with anti-LMNA show increased nuclear LMNA in S22E 

mutant LMNA cells treated with MMP-i indicating LMNA rescue at the individual cell level 

(Fig 2.1d). Since the cytoskeleton links the ECM to the nuclear membrane through LINC 

complex, we study if acto-myosin stress also affects the phosphor-mimetic LMNA 

phenotype. We use myosin II inhibitor- Blebbistatin to inhibit acto-myosin stress which has 

previously been shown to round up cells cultured on plastic (Fig 2.1e). We then stain the 

cells with gH2AX and observe the number of foci (indicator of double stranded DNA break) 

(Fig 2.1f). The functional consequence of depleted Lamin-A at the nuclear lamina due to 

its phosphor-mimetic form can be seen by the increase in gH2AX foci observed in cells 
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plated on stiff plastic (Fig 2.1g-i). This accumulation of DNA damage is rescued in both 

S22E and S22A LMNA mutant by treatment with blebbistatin, indicating the increased DNA 

damage consequences of increased nucleoplasmic LMNA are downstream of acto-myosin 

stress. Moreover, this increase in DNA Damage results in cell cycle arrest as seen by the 

increased accumulation of S22E LMNA cells in G1 phase of cell cycle (Fig 2.1g-ii). The 

cell cycle arrest is again rescued by acto-myosin stress inhibition. We determine that cells 

in G0/G1 phase of cell cycle are sensitive to acto-myosin stress inhibition and round up 

exhibiting decreased nuclear area, this effect is rescued by washing out of the drug (Fig 

1h). The phenotype of the S22E LMNA mutant can be compared to a cell line with 

knockdown of LMNA (shLMNA), with both cell lines showing increased DNA damage 

compared to the GFP WT LMNA (wild type/no mutation (WT) LMNA with GFP added at 

the beginning) and S22A LMNA, which is then rescued by acto-myosin inhibition. Given 

that acto-myosin stress inhibition can rescue effects of phosphor-mimetic LMNA, we further 

investigated if acto-myosin stress can itself affect LMNA levels. Moreover, what is the 

mechanistic cause of this accumulation of DNA damage and cell cycle arrest in phospho-

mimetic LMNA? 



16 

 

 

Figure 2-1 Phospho-mimetic LMNA cells show accumulated DNA damage and cell cycle arrest  
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a(i) Phospho-mimetic GFP-S22E LMNA shows higher intensity of GFP in the nucleoplasm 
compared to GFP-S22A LMNA mutant. (ii,iii) Inhibition of protein translation does not affect these 
differences indicating the cause to be post-translational modification b) Phospho-mimetic mutant 
GFP-S22E (± Trx-i, 3h) probed with (i)anti-LMNA and (ii) anti-GFP shows low LMNA versus GFP-
S22A cells. Stable lines were made within a stable shLMNA line to minimize both endogenous 
LMNA and overexpression artifacts. Low-MW fragments (green arrows) are not detected in GFP-
S22A cells. c) MMP2-i rescue S22E levels revealing MMP2 to play a role in degradation of LMNA 
d) Immunofluorescence with anti-LMNA confirms rescue of nuclear LMNA levels through MMP2-i 
at the individual cell level e) Schematic of A549 cells rounding up when treated with Blebbistatin f) 
Representative images of GFP LMNA A549 cells stained for anti-LMNA and anti-gH2AX (Scale 
bar=20µm) g(i) S22E LMNA cells show increased accumulated basal DNA damage compared to 
S22A cells which is then rescued by Blebbistatin and (ii) %4N cells are highest in S22E cells, but 
blebb minimizes differences h) S22E, S22A and WT LMNA in G0/G1 phase show more rounded 
nuclei with less area when treated with Blebbistatin which is then rescued by wash out of the drug 
i) Increased DNA damage in S22E cells is similar to that observed in cells with knockdown of LMNA 
which is then rescued by Blebbistatin (n>93 nuclei per cond.; t-test *p<0.05, **<0.01, ***<0.001; 
irrelevant blot lanes have been removed and is indicated by a blank space 

2.3.2 Lung Adenocarcinomic cells show increased mislocalization of DNA repair factors after 

LMNA knockdown 

To study how mechanical stress can cause accumulation of DNA damage in mutant Lamin-A cells, 

we hypothesize that one of the functions of Lamin-A is to maintain the integrity of the nuclear 

membrane, decreased Lamin-A at the lamina in combination with mechanical can increase the 

probability of nuclear membrane rupture, which might have adverse effects like mis-localization of 

nuclear proteins including DNA repair factors leading to accumulation of DNA damage. To test this 

hypothesis, we use a A549 cell-line with stable knockdown of LMNA - shLMNA A549 cells. We 

immunostain the cells with a nuclear protein – DNA repair factor which plays a key role in the NHEJ 

pathway- Ku80 (Fig 2.2a). We observe 5.8% of cells show Ku80 which is mis-localized to the 

cytoplasm. We also immunostain for Lamin-A to verify that this mis-localization is not due to mitosis 

and these cells are in interphase when the rupture occurs. We find that inhibiting the acto-myosin 

stress using Blebbistatin decreased the probability of observing cells with nuclear membrane 

rupture. Interestingly, however, when the Blebbistatin was washed away to restore acto-myosin 

stress, there was a significant spike in the number of ruptured nuclei observed.  Moreover, the 

spike is significantly increased when the cells are treated with a nuclear import inhibitor-Ivermectin 

(Imp-i). This increase in % of nuclei with mis-localized Ku80 is not observed when the cells are 
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treated with nuclear import inhibitor mifepristone which is specific to the Integrase nuclear import 

(HIV) but not Ku80. These studies are further elaborated in Chapter 4. 

2.3.3 Lamin-A levels modulated based on acto-myosin stress effects nuclear membrane 

rupture probability and subsequently DNA Damage and cell cycle arrest in ex-vivo embryonic 

hearts  

To study if Lamin-A and acto-myosin stress dependent nuclear membrane rupture is also observed 

in ex vivo somatic proliferating cells, we study embryonic chicken hearts which can independently 

beat ex-vivo for 4-5 days. To detect nuclear membrane rupture in the hearts, we transfect the hearts 

with GFP-Ku80 as well as mCherry-cGAS. cGAS (cyclic GMA-AMP synthase) is a cytosolic protein 

that binds DNA. It is part of the cGAS-STING pathway, which evolved as cellular immune system 

that triggers an inflammatory response (type I interferon response), by binding to viral DNA, 

intracellular bacteria DNA or even the DNA from the cell’s own nucleus. We use it to detect nuclear 

membrane rupture in ex-vivo hearts by identifying cells that are positive for Ku80 in the cytoplasm 

and puncta of c-GAS at the nuclear periphery. Confocal images show that hearts treated with 

Blebbistatin for 2 hours show significant reduction in the % of cells with nuclear membrane rupture 

(Fig 2.2b). Interestingly, immunostaining of Lamin A in those hearts also shows a significant drop, 

indicating that Lamin A is “mechanosensitive” and is acutely responsive to reduction in acto-myosin 

stress. We also find that sarcomeres in the heart are disrupted by myosin II inhibition, confirmed 

by staining of actinin a2, though they rapidly recover after 1 hour from washing out Blebbistatin. 

The hearts start beating again within minutes of washout of drug. However, Lamin-A levels do not 

recover after 1 hour of washout, presumably because reassembly of Lamin-A takes a longer time 

(it has previously been reported to be 90-180 minutes(Goldman et al., 1992)) or Lamin-A gets 

degraded in response to lack of acto-myosin stress. Interestingly, in this situation of acute 

reintroduction of acto-myosin stress with reduced Lamin-A at the lamina, there is a significant spike 

in the probability of observed nuclear membrane rupture. Moreover, when the hearts are treated 

with Imp-i after washing Blebbistatin out, we find that there is sustained increase in probability of 

observing mis-localized Ku80 after 24 hours (Fig 2.2c-i), though the drug washout hearts return to 



19 

 

control levels of nuclear membrane rupture. Embryonic hearts where LMNA has been knockdown 

using vivo-Morpholinos also show significantly increased mis-localized Ku80 probability which is 

rescued by inhibition of acto-myosin stress. Acute as well as prolonged mis-localization of DNA 

repair factors like Ku80 due to the rupture causes increase in double stranded DNA damage, 

indicated by increase gH2AX (Fig 2.2c-ii). The treatment with the two drugs does not significantly 

increase the number of apoptotic cells with fragmented DNA (Fig 2.2d). More importantly, this 

increase in DNA Damage results in cell cycle arrest in these beating hearts after blebbistatin 

treatment. Percentage of cells in different phases of the cell cycle can be measured by introducing 

EdU in the media one hour before fixing the heart tissue, cells in S phase incorporate EdU (which 

can be fluorescently labelled) since it is the analog of DNA base pair thymine (T). EdU positive cells 

can show puncta indicating sites of active DNA replication (Fig 2.2e). Using EdU intensity as well 

as DNA intensity, one can identify if the cell has 2N or 4N chromosomes, hence the cells can be 

identified as being in G1, S or G2 phase (Fig 2.2f). The blebbistatin washout hearts show significant 

accumulation of cells in the G2 phase indicating cell cycle arrest (Fig 2.2g). Hence, somatic tissue 

cells, unlike some tumor cells, are sensitive to accumulation of DNA damage in presence of 

impaired Lamin-A, resulting in cell cycle arrest.  

Reversibility of acto-myosin inhibition is illustrated not only in the sarcomeres of the heart, but also 

cell nuclei. In the absence of acto-myosin stress, the nuclei round up, exhibiting significantly 

increased circularity, however 1 hour after washing out blebbistatin, the cells return the prior 

circularity of beating heart (Fig 2.2h). This indicates that circularity of nuclei may depend on acto-

myosin stress more than Lamin-A levels since Lamin-A is still low 1 hour after Blebbistatin wash 

out. 
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Figure 2-2 ‘Mechanosensitive’ Lamin-A protects from mis-localization of DNA repair factors and 
subsequent DNA damage and cell cycle arrest 
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a) Representative image of mis-localized Ku80 in an interphase cell (Scale bar = 20µm). 
Blebbistatin washout results in an increase in rupture with cytoplasmic mis-localization of KU80. 
An excess of rupture is seen with washout plus a nuclear import inhibitor (ivermectin, ‘Imp-i', which 
inhibits Impα/β mediated import), but not with washout plus a specific inhibitor of integrase (IN) 
nuclear import (mifepristone, ‘Mifepr.’) that does not target KU80’s NLS. (t-test *p<0.05, **<0.01). 
All error bars indicate SEM. b(i) Images of E4 hearts transfected with GFP-KU80 and mCherry-
cGAS. Arrow: cell with low LMNA and ruptured nucleus, with cytoplasmic mis-localization of GFP-
KU80 and mCherry-cGAS puncta at nuclear envelope. (ii) Images of striation (α-actinin-2) before 
blebb, 2h after, and upon washout (1h). Blebbistatin treatment results in reversible inhibition of 
contractility. %-Ruptured nuclei (double +’s) decreases with myosin-II inhibition but increases upon 
washout. c(i) LMNA KD increases mis-localized KU80 and cGAS but is rescued by myosin-II 
inhibition. LMNA immunofluorescence with MOLMNA ± blebb. (n>139 cells per cond.). Mis-localized 
KU80 increases further with import inhibitor ivermectin, Imp-i. (n>111 double-transfected cells per 
cond’n.; t-test: *p<0.05)(ii) anti-γH2AX and (iii) anti-LMNA immunoblot of blebb-treated E4 hearts 
after washout ± Imp-i (8 hearts per lysate; t-test: *p<0.05). d) Blebbistatin treatment and washout 
have no significant effect on cell death/viability, as determined by %-transfected cells with 
fragmented DNA. e) Representative z-stack of confocal images of embryonic hearts showing EdU 
positive cells f) Representative plot of EdU vs DNA intensity for cell cycle phase (G1 vs S vs G2; 
or ‘2N’ vs ‘4N’). g) Blebb washout increases G2 and 4N cells (vs 2N). n>77 cells per cond.; t-test: 
**p<0.01. h) Cardiomyocytes in Blebb treated hearts are significantly more circular (****p<0.0001, 
n>638 cells analyzed per sample) 

 

2.3.4 Increase in DNA damage due to knockdown of Lamin A emulates knockdown of DNA 

repair factors 

Adding an external DNA damage source like etoposide which stabilizes topoisomerase IIA (a 

protein that nicks DNA during damage repair and transcription) and hence increases DNA damage 

allows us to establish the timeline of DNA repair. We find that U2OS cells which have transfected 

with siLMNA show similar impairment in DNA damage repair as cells where a combination of DNA 

repair factors have been knocked down- siKu80, siBRCA1, siBRCA2 or even just siKu80. This 

impairment persists even in the presence of an external DNA damage agent and returns to the 

steady state levels five hours after the induction of increased DNA damage (Fig 2.3a). Increased 

DNA damage can have functional consequences to the phenotype of the beating heart. We use 

human induced pluripotent stem (hiPS) cells and differentiate them into cardiomyocytes, which 

form organoids and ‘beat’ in the dish. Kymographs show that organoids treated with etoposide for 

2.5hrs show arrhythmia, moreover, after washing out the DNA damage agent, the beating does not 

regain original beats per minute (bpm) even after 24 hours (Fig 2.3b). 
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Figure 2-3 External DNA Damage agents impair beating heart phenotype 

a) KDs increase γH2AX before/during/after 10 μM etoposide (n>39 cells per cond). b) Kymograph 
of beating hiPS-CM organoids generated by tracing length along yellow line with time.  

 

2.3.5 Lamin A plays a role in telomere maintenance 

Non-phosphorylated(S22A) Lamin A (Fig 2.4a) and phosphorylated(S22E) Lamin B1 (Fig 2.4b) 

form structures that resemble puncta in the nucleoplasm which have been reported to be higher in 

number during G1/S phase of the cell cycle (Goldman et al., 1992). We posit the hypothesis that it 

is plausible for phosphorylated(solubilized) and non-phosphorylated(non-solubilized) form of Lamin 

A to directly associate with nuclear proteins like DNA repair proteins, even away from the 

membrane lamina. 

Given our studies on mis-localization of Ku80 with Lamin-A knockdown (Fig 2.4c), we decided to 

study if the Ku protein complex and other DNA repair proteins directly interact with Lamin-A, and if 

so, which form of Lamin-A (phosphorylated or non-phosphorylated) do they preferentially interact 

with. We conducted coimmunoprecipitation (Co-IP) experiments by pulling down GFP antibody and 

pS22 LMNA antibody on GFP WT LMNA, GFP S22E LMNA, GFP S22A LMNA, WT LMNA A549 

cell lines followed by mass spectrometry to analyze the proteins in the supernatant and pull-down. 

We used rabbit monoclonal antibodies, so we used rabbit immunoglobin (IgG) as the control 

antibody for pull-down. This is to check that any pull-down from the antibody is due to the specific 

interaction between the antibody and the precipitated protein, and not due to non-specific 

interactions with the rabbit protein. 71.5% of the proteins detected in the pull-down from GFP 

antibody are different from the pull-down from IgG, confirming that GFP pull down came from 
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unique interactions (Fig 2.4d). We found that 91.2% of the proteins detected in the supernatant of 

the pull down from GFP and IgG are common, again confirming that only GFP antibody specific 

interactions were pulled down. We found that while some DNA repair proteins like Ku70, RPA1 

interacted with both forms of LMNA, Ku80 preferentially interacted with only the non-

phosphorylated form of LMNA which is present in the nuclear lamina since Ku80 did not precipitate 

with the pS22 pull down of WT LMNA, neither did it precipitate with the GFP pull down of the GFP 

S22E cell line (Fig 2.4e). 

Hutchinson–Gilford progeria syndrome (HGPS) is a rare genetic disease caused by a mutation in 

LMNA gene which has symptoms of accelerated aging in which most patients suffer from 

cardiovascular problems. In an interesting synchronicity, Ku80 deficient mice show progeroid 

symptoms(Reiling et al., 2014). Moreover, Ku80 has been shown to be involved in maintaining 

telomere length as well as recruitment of an important shelterin complex protein TRF2(Boulton and 

Jackson, 1998; Melnikova, Biessmann and Georgiev, 2005; Fink et al., 2010). This prompted us to 

study the effect of mis-localization of Ku80 due to nuclear membrane rupture on telomere length 

(Fig 2.4f). We used Dox inducible gene edited mCherry TRF1 U2OS cells and measured intensity 

of TRF1 foci in ruptured and non-ruptured cells by developing our own algorithm. We observe that 

ruptured nuclei show greater telomere attrition which is similar to the effect seen in Ku80 

knockdown cells (Fig 2.4g,h). Moreover, when we do Telomere Q-FISH staining on 

cardiomyocytes which have knockdown of LMNA using morpholinos, we observe telomere attrition 

which is rescued by treatment with blebbistatin (Fig 2.4i). Hence LMNA a directly interacts with 

Ku80 and knockdown of LMNA results in telomere attrition which can contribute to accelerated 

aging. 
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Figure 2-4 Lamin-A knockdown cause telomere attrition 

Representative confocal images of a) GFP-S22A Lamin-A and b) GFP-S22E Lamin A showing foci 
in the nucleoplasm region c) Schematic: effect of repair factor mis-localization on telomeres d) 
Venn Diagram showing overlap of precipitated and supernatant proteins in GFP and IgG e) CoIP-
MS of WT LMNA, phosphorylated LMNA (anti-S22), and phospho-mimetic LMNA (GFP-S22E). f) 
Cartoon: LMNA-KU80-telomere interactions at the lamina g) U2OS expressing mCherry-TRF1. 
Ruptured nuclei (n=7) with cytoplasmic KU80 exhibit (i) lower TRF1 and (ii) smaller TRF1 foci (t-
test: *p<0.05). h) siKU80 and si-Combo decrease TRF1 (n>89 cells per cond.). i) Telomere Q-FISH 
in embryonic CMs shows MOLMNA shortens telomere unless rescued by blebb (n>81 nuclei per 
cond.). (Unless noted, one-way ANOVA: *p<0.05, ***<0.001) 
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2.4 Discussion 

LMNA thus mechano-protects by retaining DNA repair factors in the nucleus (Fig 2.2, 2.4), which 

thereby prevents excessive accumulation of DNA damage in stiff microenvironments and/or under 

conditions of high actomyosin contractility. Rapid change in LMNA protein independent of any 

transcription/translation (Trx-i) rules out many possible contributing pathways to the equally rapid 

DNA damage response. Such conclusions about causality are difficult to otherwise achieve with 

experiments conducted over many hrs/days such as with mouse mutants. Lack of protection by 

LMNA and consequent loss of DNA repair factors could compromise genome integrity when 

actomyosin stress is high (Fig. 2.2, 2.4), but a source of DNA damage might also increase upon 

rupture. Enhanced entry of cytoplasmic nucleases(Maciejowski et al., 2015) or other cytoplasmic 

factors (e.g. reactive oxygen species) cannot be ruled out. However, the γH2AX foci are typically 

distributed throughout the nucleoplasm (Fig 2.1f, 2.3a, 2.4g) – whereas localization of cytoplasmic 

proteins that bind DNA strongly (e.g. cGAS) are restricted to the rupture site. Rupture consistently 

results in ‘global’ mis-localization of multiple DNA repair factors in several pathways(Irianto et al., 

2017; Xia, Ivanovska, et al., 2018), and upon repair factor depletion, DNA damage is in excess 

before, during, and after a transient increase in damage (by 1h etoposide, Fig.2.3a). 

LMNA defects cause disease through “cell-extrinsic mechanisms” that likely include ECM and/or 

cytoskeletal stress. Mosaic mice in which 50% of the cells express defective LMNA maintain a 

normal lifespan, whereas mice with 100% defective cells die within weeks of birth(de la Rosa et al., 

2013). Cultures on rigid plastic of the same cells (and similar cell types(Hernandez et al., 2010)) 

exhibit premature senescence/apoptosis, as is common with excess DNA damage, but growth and 

viability are surprisingly rescued upon culture on almost any type of ECM. Reduced cytoskeletal 

stress and suppresses nuclear rupture and DNA damage in embryonic CMs and immortalized 

cancer lines with low LMNA (Fig 2.2a,b). The findings are further consistent with the observation 

that laminopathies spare soft tissues such as brain, independent of lineage or developmental origin, 

but generally affect stiff and mechanically stressed adult tissues including muscle or bone(Cho, 

Irianto and Discher, 2017). 
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2.5 Materials and Methods 

2.5.1 Embryonic chick hearts and cardiomyocytes 

White Leghorn chicken eggs (Charles River Laboratories; Specific Pathogen Free (SPF) Fertilized 
eggs, Premium #10100326) were used to extract embryonic hearts. SPF chicken eggs from 
Charles River are produced using filtered-air positive-pressure (FAPP) poultry housing and careful 
selection of layer flocks. Every flock’s SPF status is validated in compliance with USDA 
memorandum 800.65 and European Pharmacopoeia 5.2.2 guidelines. SPF eggs were incubated 
at 37˚C with 5% CO2 and rotated once per day until the desired developmental stage (e.g. four 
days for E4; Hamburger-Hamilton stage 23-24 (HH23-24)). Embryos were extracted at room 
temperature (RT) by windowing eggs, carefully removing extra-embryonic membranes with sterile 
sonicated forceps, and cutting major blood vessels to the embryonic disc tissue to free the 
embryo. The extracted embryo was then placed in a dish containing PBS on a 37˚C-heated plate, 
and quickly decapitated. For early E2-E5 embryos, whole heart tubes were extracted by severing 
the conotruncus and sino venosus. For more mature (>E5) embryos, embryonic discs were 
extracted by windowing the egg, cutting out the embryo with the overlying vitelline membrane intact, 
lifting out the embryo adherent to the vitelline membrane and placing in a dish of pre-warmed 
PBS. Extra-embryonic tissue was carefully cut away using dissection scissors and the embryo was 
teased away from the vitelline membrane using forceps. Whole hearts (>E5) were extracted by 
severing the aortic and pulmonary vessels. The pericardium was carefully sliced and teased away 
from the ventricle using extra-fine forceps. E10 brain and liver tissue were collected from the 
presumptive midbrain and hepatic diverticulum, respectively. All tissues were incubated at 37˚C in 
pre-warmed chick heart media (α-MEM supplemented with 10 % FBS and 1% penn-strep, Gibco, 
#12571) for at least 1 h for stabilization, until ready for use.    
 

2.5.2 Induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) 

Normal human iPS cells (obtained from Dr. Joseph Wu, Stanford Cardiovascular Institute (CVI) 
BioBank) were cultured following the protocol provided: Matrigel (BD Matrigel, hESC qualified: 
#354277) was suspended in cold 4°C DMEM/F12 medium 1:200 dilution (DMEM/F12 medium #10-
092-CM-Fisher), mixed gently, and 1ml of this suspension was added to one 6-well plate (Corning 
Catalog #353046) and incubated for 1hr at RT to allow Matrigel to coat the surface. The solution 
was gently aspirated and small aggregates of human iPS cells were added to each well in mTesr1 
medium containing 10 μM of ROCK inhibitor (Y27632, 2HCl – 50 mg: #50-863-7-Fisher). Culture 
medium was replaced daily (no ROCK inhibitor) until the cells reached ~85% confluency.   

Human induced pluripotent stem cells (hiPSCs) were differentiated into cardiomyocytes 
(hiPS-CMs) using the “Cardiomyocytes differentiation and maintenance kit” from Stem Cell 
technologies (#05010 & #05020). The differentiation process was followed as described by the 
manufacturer’s protocol. Briefly, the mTesr1 medium with ROCK inhibitor (10 μM) was replaced 
with differentiation medium A, cultured for 2 days (Day 0), then subsequently to medium B for 2 
days (Day 2) and again switched to medium C twice (Day 4 & 6). From Day 8 onwards, 
maintenance medium (Day 8) was added/refreshed every 2 days until spontaneous CM beating 
was observed through imaging.  

2.5.3 Cell lines  

A549 (human lung adenocarcinoma) cell lines were obtained from ATCC (American Type Culture 
Collection, Manassas, VA, USA) and U2OS cell lines were obtained from the laboratory of Roger 
Greenberg, University of Pennsylvania. ATCC provides cell line authentication test 
recommendations per Tech Bulletin number 8 (TB-0111-00-02; 2010). These include: microscopy-
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based cell morphology check, growth curve analysis, and mycoplasma detection (by DNA staining) 
which were conducted on all cell lines used in these studies. All cell lines maintained the expected 
morphology and standard growth rates with no mycoplasma detected. U2OS and A549 cell lines 
were cultured in DMEM high-glucose media and Ham’s F12 nutrient mixture (Gibco, Life 
Technologies), respectively, supplemented with 10% fetal bovine serum (FBS) and 1% penicillin 
and streptomycin (Sigma-Aldrich). 

2.5.4 Mass spectrometry (LC-MS/MS) of whole heart lysates 

Mass spectrometry (LC-MS/MS, or ‘MS’) samples were prepared using procedures outlined in Swift 
et al.. Briefly, ~1 mm3 gel sections were carefully excised from SDS–PAGE gels and were washed 
in 50% 0.2 M ammonium bicarbonate (AB), 50% acetonitrile (ACN) solution for 30 min at 37°C. 
The washed slices were lyophilized for >15 min, incubated with a reducing agent (20 mM TCEP in 
25 mM AB solution), and alkylated (40 mM iodoacetamide (IAM) in 25 mM AB solution). The gel 
sections were lyophilized again before in-gel trypsinization (20 mg/mL sequencing grade modified 
trypsin, Promega) overnight at 37°C with gentle shaking. The resulting tryptic peptides were 
extracted by adding 50% digest dilution buffer (60 mM AB solution with 3% formic acid) and injected 
into a high-pressure liquid chromatography (HPLC) system coupled to a hybrid LTQ-Orbitrap XL 
mass spectrometer (Thermo Fisher Scientific) via a nano-electrospray ion source. 

Raw data from each MS sample was processed using MaxQuant (version 1.5.3.8, Max 
Planck Institute of Biochemistry). MaxQuant’s built-in Label-Free Quantification (LFQ) algorithm 
was employed with full tryptic digestion and up to 2 missed cleavage sites. Peptides were searched 
against a FASTA database compiled from UniRef100 gallus gallus (chicken; downloaded from 
UniProt), plus contaminants and a reverse decoy database. The software’s decoy search mode 
was set as ‘revert’ and a MS/MS tolerance limit of 20 ppm was used, along with a false discovery 
rate (FDR) of 1%. The minimum number of amino acid residues per tryptic peptide was set to 7, 
and MaxQuant’s ‘match between runs’ feature was used for transfer of peak identifications across 
samples. All other parameters were run under default settings. The output tables from MaxQuant 
were fed into its bioinformatics suite, Perseus (version 1.5.2.4), for protein annotation and sorting.  
 

2.5.5 siRNA knockdown and GFP-repair factor rescue 

All siRNAs used in this study were purchased from Dharmacon (ON-TARGETplus SMARTpool; 
siBRCA1, L-003461-00; siBRCA2, L-003462-00; siKu80, L-010491-00; siRPA1, L-015749-01; 
siLMNA, L-004978-00 and non-targeting siRNA, D-001810-10). GFP-KU70 and GFP-KU80 were 
gifts from Dr. Stuart L Rulten from University of Sussex, Brighton, UK, and GFP-53BP1 was a gift 
from Dr. Roger Greenberg from University of Pennsylvania. Cells were plated 24 hours prior to 
transfection. Lipofectamine/nucleic acid complexes were prepared according to the manufacturer’s 
instructions (Lipofectamine 2000, Invitrogen), by mixing siRNA (25 nM) or GFPs (0.2-0.5ng/ml) with 
1 µg/ml Lipofectamine 2000. Final solutions were added to cells and incubated for 3 days (for 
siRNAs) or 24 hours (for GFPs) in corresponding media containing 10% FBS.  

2.5.6 mCherry D450A FOK1 TRF1 expression 

Death domain (DD)– Oestrogen receptor (ER)–mCherry–TRF1–FokI constructs were cloned and 
concentrated TRF1-FokI lentivirus with polybrene (8 mg/ml) diluted in media was added to U2OS 
cells at a minimum titer. Doxycycline-inducible TRF1–FokI lines were generated using the Tet-On 
3G system. Doxycycline was used at a concentration of 40 ng/ml for 16–24 h to induce expression 
of TRF1– D450A FokI. Shield-1 (Cheminpharma LLC) and 4-hydroxytamoxifen (4-OHT) (Sigma) 
were both used at a concentration of 1 μM for 2 h, to allow for TRF1–D450A FokI stabilization and 
translocation into the nucleus. 
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2.5.7 Quantitative Fluorescence In Situ Hybridization and Telomere Analysis 

Isolated cells were attached on slides, fixed and stained for PNA telomeric probe as we previously 
described in(Tichy et al., 2017). Images of mMuSCs were taken using a Nikon eclipse 90i wide-
field epifluorescence microscope equipped with a Prior Proscan III motorized stage, a Photometrics 
Coolsnap HQ2 14-bit digital camera, and a Nikon 100×/1.40 Plan Apo VC objective. Telomeres 
were analyzed with the investigators blinded to genotypes and/or conditions using open-source 
software Telometer, as previously described. The program generates statistics on the entire region 
of the nucleus. Analysis includes the intensity sum of all Cy5 telomere pixels for a given nucleus 
(proportional to the cell's total telomere length) and the intensity sum of all DAPI pixels for the 
nucleus (proportional to total cellular nuclear DNA content).  

2.5.8 Confocal Imaging 

For confocal imaging of embryonic heart tissue, heart samples were rinsed with PBS, fixed with 4% 
paraformaldehyde (PFA, Fisher) for 45 min, washed x3 with PBS, and permeabilized with 0.5% 
Triton-X (Fisher) in PBS for 3 hrs. Samples were then incubated overnight with primary antibodies 
in 0.5% BSA solution with gentle agitation at 4 °C (as described above), and washed x3 in 0.1% 
BSA and 0.05% Triton-X in PBS. Corresponding secondary antibodies were added at 1:500 dilution 
for 1.5 hrs at RT. Immunostained hearts were then mounted between glass coverslips with 
mounting media (Invitrogen ProLong Gold Antifade Reagent). Images were taken with Leica TCS 
SP8 system with either a 63×/1.4 NA oil-immersion or 40×/1.2 NA water-immersion objective.  
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Chapter	3 Scaling	concepts	in	‘omics:	Lamin	B1	

is	regulated	by	FOXM1	and	predicts	poor	

prognosis,	unlike	fibrosis	

This chapter has been adapted from a paper submitted and in revision to PNAS.  

Sangkyun Cho performed the mass spectrometry analysis on the 3 Liver cancer patient samples 
obtained with the help of Prof Rebecca Wells in Fig 3.2c,d. Jerome Irianto and Yuntao Xia 
performed the scRNA seq experiments on A549 cells in Fig 6. Brandon Hayes developed the 
CRISPR edited GFP-H2B A549 cell line and Mai Wang conducted the analysis in Fig 3.5a,b. 
Farshid Jafarpour in conjunction with Prof Andrea Liu wrote the supplementary theory section on 
Population scaling from single cell scaling 

 
 
 
 
 

3.1 Abstract  

Physicochemical principles such as stoichiometry and fractal assembly can give rise to 

characteristic scaling between components that potentially include co-expressed transcripts. For 

key structural factors within the nucleus and extracellular matrix (ECM), we discover specific gene-

gene scaling exponents across many of the 32 tumor types in The Cancer Genome Atlas (TCGA), 

and we demonstrate utility in predicting patient survival as well as Scaling-informed Machine 

Learning (SIML). All cancers show tumor-elevated proliferation genes, and some subsets show 

scaling with the nuclear filament LMNB1, including the transcription factor FOXM1 that we verify in 

cancer lines. SIML shows such regulated cancers cluster together with longer overall survival than 

dysregulated cancers, but high LMNB1 in half of regulated cancers surprisingly predicts poor 

survival, including for liver cancer. COL1A1 is also studied because it too increases in tumors; and 
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a pan-cancer set of fibrosis genes shows sub-stoichiometric scaling with COL1A1 but predicts 

patient outcome only for liver cancer -- unexpectedly predicting longer survival. Single-cell RNA-

seq data shows non-trivial scaling consistent with power laws from bulk RNA and protein analyses, 

with SIML segregating synthetic from contractile cancer fibroblasts. Our scaling approach thus 

yields fundamentals-based power laws relatable to survival, function, and experiments. 

3.2 Introduction 

Dysmorphic nuclei prevail in tumors and sometimes reflect changes in nuclear lamins that influence 

nuclear shape and stiffness (Dahl et al., 2005; Pajerowski et al., 2007; Harada et al., 2014a; Irianto, 

Charlotte R Pfeifer, et al., 2016). Tumors also generally display abnormal architecture and often 

differ palpably from normal tissues. Breast tumor stiffness, for example, can be felt in self-exams 

and can affect tumor growth in 3D models (Levental et al., 2009) (Meng et al., 2018), and fibrotic 

rigidity is a major risk factor for liver cancer (Pinter et al., 2016). Such physical changes are often 

attributed to fibrillar collagen accumulation in extracellular matrix (ECM), especially stoichiometric 

assembly of COL1A1 and COL1A2 proteins (Swift et al., 2013; Buxboim et al., 2014). In normal 

tissues, intriguingly, lamin-A/C (LMNA) scales with a characteristic power law versus collagen-I 

levels from soft brain to rigid bone, whereas Lamin-B1 (LMNB1) shows little variation normally but 

is elevated in some cancers including liver cancer(Sun et al., 2010) (Abdelghany et al., 2018). Here, 

in an analysis across all 32 tumor types in The Cancer Genome Atlas (TCGA) as well as the subset 

having both tumor and normal adjacent tissue data, we seek and indeed discover sets of genes 

that scale with the above nuclear and ECM factors, and we relate gene sets to patient survival and 

introduce scaling into machine learning. 

Scaling approaches are reasonable to pursue because lamin and collagen polymers 

assemble into fractals with properties including stiffness that lead to characteristic power law 

exponents versus concentration (Swift et al., 2013)(Yang, Leone and Kaufman, 2009) (e.g. 

Fig.3.1a). Correlative studies merely focus on ‘goodness of fit’ – whereas we seek specific scaling 

exponents that are reproducible and ‘universal’. Scaling pervades physics and includes, for 

example, fiber bending stiffness that scales with fiber thickness (~h3), and scaling in biology 
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includes Klieber’s power law(KLEIBER, 1947) (Thommen et al., 2019) for metabolic rate ~ (body 

mass)0.75. Scaling in chemistry can reflect stoichiometry (Fig.3.1b) and scaling might even apply to 

complex kinetics such as cell cycle (Fig.3.1c).   

The characteristic, non-trivial scaling that we discover between some genes in TCGA is supported 

by our further experiments on tumor proteomics, diverse cancer cell line studies, and single-cell 

RNA-seq. We show, for example, with two major fibrillar collagen genes that COL5A1 scales sub-

stoichiometrically with COL1A1a across all 32 cancers in TCGA with a = 0.84 (± 0.02, SEM) proving 

similar to bulk proteomics (a = 0.87) and single-cell RNA-seq (a = 0.88), thus illustrating a 

surprising universality across RNA, protein, bulk, and single cell measurements. We also present 

a novel means of Scaling-informed Machine Learning (SIML) that uses the small gene sets with 

characteristic scaling to better understand big data in TCGA (9112 patients) and single-cell RNA-

seq. 

3.3 Results 

3.3.1 Survival of cancer cohorts segregate with Scaling-Informed Machine Learning (SIML) 

TCGA’s 9112 patients across 32 cohorts of cancer types (Table 3.1) have primary tumor mRNA 

expression data for 20530 genes, generating a large matrix that is well-suited to dimensionality 

reduction and visualization by Uniform Manifold Approximation and Projection (UMAP) (McInnes, 

Healy and Melville, 2018). The machine-learned clusters of patient cohorts distribute based on 

organ systems (Fig.3.1d-i); all tumors of the digestive system, for example, appear as nearest 

neighbors. Survival is not an input and no pattern of overall survival of patients with a given tumor 

type is evident; colon cancer has very limited median survival, for example, compared to the nearby 

cohort of stomach cancer. Moreover, adding tumor-adjacent uninvolved tissue data for the 16 

cancers with matched data (Table 3.1), we find that the adjacent tissue clusters close to the 

corresponding primary tumor tissues (Fig.S3.1a). 

Scaling-informed machine learning (SIML) was performed by repeating the above UMAP 

analysis with a minimal set of genes that we show below scale with LMNB1 and that proves to be 
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cell cycle centric and includes one cell cycle transcription factor, FOXM1. Proliferation is of course 

a general hallmark of cancer, but such scaling will prove evident only in 19 tumor cohorts (of the 

32), which we denote as ‘regulated’ (Fig.3.1d-ii, Table 3.1). Compared to the remaining 13 

dysregulated tumor types, the regulated cancers show significantly longer median survival 

(Fig.3.1d-iii). SIML also better distinguishes adjacent univolved tissue for the 16 cancers with such 

data (Fig.S3.1b). This initial analysis motivates a stepwise elaboration of our scaling approach, 

with a further goal of assessing the relevance of gene-gene scaling to survival of a patient with a 

specific cancer type.  
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Figure 3-1 Physicochemical scaling concepts in gene-gene expression  

a) Factors A and B distribute differently and scale per fractal physics of a volume and its 
surrounding surface or according to branched, decorated networks. Mechanical properties that 
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scale with such factors can also yield new scaling relations. b) Stoichiometric scaling is expected 
for co-regulated factors that form complexes or share a promoter. c) Genes that follow power laws 
in time (defined by phase of cell cycle) can also scale with each other. d) UMAP clustering: i) of 
tumors relates to organ systems rather than patient survial, based on mRNA expression data for 
20530 genes in 9112 patients across 32 cohorts of cancer types (Table 3.1). However, ii) Scaling-
informed machine learning (SIML) reduces the genes to just those that scale with LMNB1 in 17 
cancer types, and these are then color coded as ‘regulated’ which also includes 2 more cancers 
for which transcription factor FOXM1 scales with LMNB1 expression. iii) The ‘regulated’ tumors 
show significantly longer median patient survival. 

3.3.2 Expression scaling across tumors and adjacent-uninvolved tissues 

The observed co-clustering of system-related organs (e.g. digestive system) (Fig.3.1d-i,S3.1a) 

implies a strong influence of normal tissue gene expression, and so we start with scaling analyses 

of all 16 cancer cohorts in TCGA (of the 32) that provide expression data for both adjacent-

uninvolved patient tissue and tumor (Table 3.1). Given that filaments of lamin-B1 assemble quickly 

around chromatin after mitosis (Fig.3.1a), the physics-motivated power law  

[mRNA	expression	of	gene]~[LMNB1]!!"#"    Eq.1 

was first applied to a marker of proliferation, MKI67 (Fig.3.2a). Representative tumors show lung 

and breast (not liver) exhibit a reasonably continuous trend from adjacent normal to tumor over a 

~26 range of apparent expression. All three tumor types show reasonable scaling with exponents 

from ~0.8 to ~1.3 (R2 = 0.6-0.8). The lack of scaling for normal liver and the very low MKI67 

suggests little to no proliferation.   

Similar analyses for COL1A2 versus COL1A1 (Fig.3.2b) yield exponents of aCOL1A2 = 0.83 ± 0.11 

(S.D.) when fit with: 

[mRNA	expression	of	gene]	~	[COL1A1]"!"#"   Eq.2 

Although the scaling is slightly lower than expected of stoichiometric scaling (a = 1), the R2 > 0.84 

suggests co-regulation over a large range of apparent expression (i.e. ~210 fold, which is much 

broader than LMNB1). COL4A2 versus COL4A1 was also examined because this main basement 

membrane collagen shares a promoter (Fig.1b) (unlike collagen-1), and scaling exponents are only 

~12% lower than stoichiometric scaling (R2 = 0.84 to 0.95) (Fig.S2a). Basement membrane 

COL4A1 does not scale well with fibrous COL1A1 (Fig.S2b), consistent with these ECM’s being 

distinct. 
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3.3.3 Heatmaps of high Cell Cycle, LMNB, and Collagen-I differ from varied Cytoskeleton-LMNA 

Conventional heatmaps of (tumor/adjacent) (Fig.3.2c-f) always show higher COL1A1 in tumors as 

well as higher B-type lamins (LMNB1 and LMNB2) and higher cell cycle plus DNA-repair genes for 

progression through cell cycle checkpoints(Dasika et al., 1999). Protein changes for liver 

(tumor/adjacent) conducted by quantitative Mass Spectrometry (MS) proteomics analyses (n=3 

patients) show very good concordance with TCGA transcriptome trends. Structural proteins are 

generally abundant and well-suited for accurate quantitation. Overall, >85% of proteins and RNA 

showed concurrent upregulation/downregulation (Fig.3.2f), and LMNB1 and LMNA were up in both 

analyses as were all three of the MS-detected, cell cycle related DNA repair factors.  

Unlike LMNB1, LMNA is lower than adjacent in about half the tumors, and shows roughly 

similar variability to some of the cytoskeleton and adhesion structure genes. To relate such 

observations to a limited literature, we focus on liver and its differences from lung and breast 

cancers (R2 = 0.4; Fig.S3.2c). Liver shows relatively higher basement membrane ECM (e.g. 

collagen-4), adhesions-cytoskeleton, and also LMNA, -- unlike lung and breast cancer. Low Lamin-

A/C in lung(Kaspi et al., 2017) and breast(Capo-chichi et al., 2011) cancers potentially facilitates 

invasion and growth based on knockdown studies in vitro and in vivo with a lung cancer line (Harada 

et al., 2014b). In various 2D cultures, LMNA promotes adhesive spreading and actomyosin 

assembly (Swift et al., 2013) downstream of the Serum Response Factor (SRF) pathway(Ho et al., 

2013; Buxboim et al., 2014), and high LMNA in a few cancers including liver cancer (Fig.3.2e) favor 

co-clustering with SRF co-activators MKL1, MKL2 and/or their target nonmuscle myosin-IIA 

(MYH9)(Buxboim et al., 2014). Paxillin (PXN) is very similar as are basement membrane collagen-

4’s (unlike collagen-1), but so is YAP1 in the Hippo pathway for growth(Dupont et al., 2011), 

differing from SRF and its target adhesion factor vinculin (VCL)(Miralles et al., 2003). Overall, the 

results are consistent with the known matrix mechanosensing pathway of LMNA-contractility-

adhesion downstream of basement membrane density (or stiffness) (Fig.3.2e-sketch), but 

importantly this pathway segregates from LMNB’s.  
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Figure 3-2 TCGA transcriptomes reveal pan-cancer increases in Cell Cycle, LMNB1, and Collagen-
1 
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a) RNA reads (RSEM) for proliferation marker MKI67 versus nuclear lamina factor, LMNB1, reveals 
scaling in all three tumor types (R2 > 0.62) but not adjacent Lung Adenocarcinoma or Liver tissue. 
For clarity, Lung Adenocarcinoma and Breast data are shifted up 5 and 10 units, respectively, b) 
RNA reads (RSEM) for the two subunits of the collagen-I heterotrimer scale together across all 
three cancers and corresponding adjacent tissue (R2 > 0.87). For each patient, tumor and adjacent 
tissue RNA are reported, and tumor shows more collagen-I on average. For clarity, Lung 
Adenocarcinoma and Breast data are shifted up 3 and 6 units, respectively c) Schematic polymer 
systems of main interest. d) Standard heatmap of log2(fold-change of RNA in tumor relative to 
adjacent tissue) averaged over all patients for the 16 tumors having >4 patients with adjacent tissue 
data. Yellow-blue heatmap of log2(fold-change of protein in tumor relative to adjacent tissue) as 
obtained in LFQ units from mass spectrometry (MS) for n=3 Liver Cancer patients. e) RNA changes 
for various matrix mechanosensitive factors including Lamin-A across the 16 cancers; such factors 
do not vary with either collagen-I or lamin-B. f) Ratios of (tumor/adjacent) for Liver protein and RNA 
show 85% of data in the first and third quadrants. 

 

3.3.4 Proliferative genes scale with LMNB1 and predict poor survival 

In analyzing all 32 cancer cohorts, scaling with LMNB1 across patients with a given tumor type is 

evident for some cancers (such as liver) for well-known cell cycle genes TOP2A, FOXM1 and 

MKI67 (Fig.3.3a-b,S3.2a, n=371). The results are consistent with the smaller dataset (Fig.3.2a, 

n=50). TOP2A is among the top-24 most upregulated genes (tumor versus adjacent normal) 

together with fifteen other genes (many associate with proliferation) that also scale well with LMNB1 

(Table 3.2). The anti-correlation for the hepatocyte-expressed, complement-related factor MASP2 

(Fig.3.3c) is consistent with a shift away from differentiation given that such genes accumlate in a 

protracted cell cycle(Palozola et al., 2017). Anti-correlations differ in lung cancer (Fig.S3.2b), 

consistent with a distinct lineage.  

Scaling exponents 𝛽#$%$ and R2 of the fits for all ~20k expressed genes (per Eqs.1,2) yield 

a ‘sideways-volcano plot’ (Fig.3.3d), and the most well-correlated genes (i.e. 𝛽#$%$>0.5, R2>0.5) 

are proliferation-related (83% of 168 genes for liver cancer). To assess whether LMNB1 transcript 

levels relate to the number of copies of the LMNB1 gene, genomic data for each liver cancer patient 

was analyzed(Mermel et al., 2011), noting that copy number variations are consistent with 

malignancy and can predict patient survival(Pfau and Amon, 2012; Sankaranarayanan et al., 2015; 

Aiello and Alter, 2016; Bradley et al., 2019). Transcript levels binned on gene copy number fit a 

power law of ~1 (Fig.3.3e) – although patients with one copy of the LMNB1 gene are bimodal 

distributed and only the low-expressors fit the trend. Consistent with gene dosage DNA à mRNA 
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à protein, our proteomics for liver cancer detected LMNB1 plus three proliferation factors that are 

all upregulated in tumors (Fig.3.2d,e). Experiments in cancer cells below will directly test whether 

LMNB1 DNA levels indeed affect proliferation. 

Scaling with respect to MKI67 yields a similar number of genes that are >95% identical to 

the LMNB1 gene set (Fig.S3.2c), underscoring invertibility of the scaling, whereas fits on linear 

scales (i.e. Pearson) yield <30% of these genes. When repeated for all 32 cancers, 25 show the 

mitotic factor KIF20A is the gene that scales most often with LMNB1, and a total of 866 unique 

genes also scale across 27 of the 32 (with 5 showing no scaling genes), with only 242 genes 

appearing in more than 1 tumor (Fig.3.3f). The number of genes that are shared across multiple 

cancers clearly decreases with the number of cancers considered, but the theoretical solution to 

the maximum number of common set of genes is an open problem in mathematics known as the 

Maximum k-Subset Intersection (MSI) problem which lacks even approximate solutions(Xavier, 

2012). To compute, for example, the maximum number of strongly scaling genes that overlap 

across 17 of the 32 cancers, the brute force method would be to consider all 32C17 = 565,722,720 

combinations.  

For an efficient computation in a heurtistic approach, we represented the genes in a matrix 

populated with indicator variables (per Supplementary Theory: Gene Overlap). For LMNB1 

scaling genes, it so happens that tumors that show maximum overlap of genes for a particular 

number of tumors (n) being considered, are also present in the group that shows maximum gene 

overlap in n+1 tumors with the addition of another tumor. We listed the cancer which, when added 

to a growing group of cancers, gives the maximum number of genes that overlap (Fig.3.3g). Based 

on this approach, for example, the maximum overlap of genes obtained from all combinations of 

choosing 17 tumors is 25 genes. Notable among the 25 genes that scale with LMNB1 is FOXM1 

(Fig.3.3e inset), which is the only transcription factor and a regulator of cell cycle(Chen et al., 2013; 

Grant et al., 2013). FOXM1 scales strongly with LMNB1 in the 17 cancers plus 2 more (thymoma 

and a lymphoma), and all were denoted as the “regulated” cancers among TCGA’s 32 cancers (per 
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Fig.3.1d-ii). TOP2A is also a notable mitotic gene regulated directly by FOXM1 (Nielsen et al., 

2020). 

The biological significance of these scaling results is best assessed by patient survival. For 

liver cancer (371 patients), median survival is ~3-4 yrs for high LMNB1 patients but almost twice 

as long for low LMNB1 (Fig.3.3h). This partitioning is independent of etiology including alcohol or 

hepatitis (Fig.S3.3d). Across all genes, the median survival for high/low expressors shows a 

significant hazard ratio for 3,464 genes, and among the genes that predict poor survival when 

expression is high (2,111), >95% of the genes scale with LMNB1 (Fig.3.3i). Staging of primary 

tumors in terms of size and invasion also shows LMNB1 increasing (Fig.S3.2e), whereas LMNA 

and COL1A1 show no trends. A sideways-volcano plot for LMNA shows only one gene that scales 

strongly (Fig.S3.2f), which underscores the distinctive significance of LMNB1. Across the 32 

cancers, LMNA shows strong scaling genes in very few cancers, with only 75 genes appearing in 

>1 cancer, dropping down to a maximum overlap of 1 gene in groups of 4 tumors (Fig.S3.3g), and 

does not predict patient survival (Fig.S3.3h). More generally, among the 17 cancers that are 

regulated with 25 overlapping genes or more scaling with LMNB1 (Fig.3.3g), patients with high 

expression of LMNB1, FOXM1, TOP2A are predicted to have poor survival in 7-9 cancers 

(Fig.3.3j). Only thymoma shows pro-survival with high LMNB1 and high TOP2A, which might reflect 

a role for Lamin-B1 in thymus development of T-cells(Yue, 2017; Wang et al., 2020). In contrast, 

only 1-2 cancers among the remaining 15 cancers show high expression of LMNB1, FOXM1, 

TOP2A has any significance in predicting (poor) survival, which highlights the regulated versus 

dysregulated distinction even for well-accepted cell cycle markers - FOXM1, TOP2A. 

Lamin-B2 is farnesylated like lamin-B1 but unlike mature lamin-A, and tight association of 

both LMNB’s with lipid in the nuclear envelope implies scaling with chromatin mass (Fig.3.1a). 

Indeed, recent studies of proliferating, embryonic cardiomyocytes suggest LMNB2 facilitates 

attachment of microtubules to centromeres(Han et al., 2020). In our scaling analyses, LMNB2 like 

LMNA quickly drops down to a maximum overlap of 1 gene in groups of 8 tumors, but genes that 

scale strongly with LMNB2 can predict poor survival similar to LMNB1 (Fig.S3.3i, S3.4a,b). 
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Moreover, the cell cycle transcription factor FOXM1 also scales with LMNB2 as with LMNB1 

(Fig.S3.4a,b), and thus further motivates experiments at for FOXM1 regulation of LMNB1. 
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Figure 3-3 Power law scaling of LMNB1 in Liver tumors (n=371 patients), and all 32 tumors  

a-c) Plots versus LMNB1 RNA for correlated cell cycle genes TOP2A and FOXM1 as well as for 
anti-correlated gene MASP2.  The R2 and scaling exponent (𝛽#$%$) are indicated. d) Genes that 
scale with LMNB1 RNA. i) For all 17,958 genes, 𝛽#$%$ versus R2 gives a sideways-volcano plot; 
168 genes scale strongly 𝛽#$%$> 0.5 and well R2 > 0.5, and most relate to mitosis.  e) Gene copy 
numbers of LMNB1 in liver cancer patients is almost linear in RNA expression, although patients 
with a single copy are bimodally distributed and only the lower mode fits the trend. f) Schematic 
Venn diagram of overlapping gene sets that scale with LMNB1 in 32 cancers. g) LMNB1 strong 
scaling genes show overlap across tumors, decreasing as the number of tumors being considered 
increases (see Gene Overlap). Inset: A maximum of 25 genes scale with LMNB1 across 17 tumors. 
The 19/32 tumors where transcription factor FOXM1 scales with LMNB1, denoted as ‘regulated’ 
tumors include the 17 tumors plus Testicular and Large B-cell Lymphoma. h) For patients with 
LMNB1 RNA levels that exceed the respective median levels for all patients, the median time for 
survival is significantly shorter (p < 0.05) by 2-3 yrs in Kaplan Meier (KM) plots. i) For all genes, 
similar KM analyses are summarized by the hazard ratio of the two cohorts plotted against the p-
value, yielding 3,464 genes that show significant differences, including 161 (of 168) genes that 
scale with LMNB1 and show poor survival when expression exceeds the median. j) High expression 
of FOXM1, TOP2A, LMNB1 predicts poor survival in 9,8, or 7 of the 17 tumor types, with the 7 
cancers being: Liver cancer, Pancreatic Cancer, Adrenocortical Carcinoma, Lower Grade Glioma, 
Sarcoma, Kidney Clear Cell and Kidney Papillary Cell. Among the other 15 cancers, only Melanoma 
for LMNB1, Mesothelioma for FOXM1, and both cancers for TOP2A show significantly poor survival 
in patients with higher expression 

3.3.5 FOXM1 directly regulates LMNB1 expression, but perturbing LMNB1 perturbs cancer cell 

cycle 

Chromatin-immunoprecipitation with anti-FOXM1 followed by sequencing (ChIP-Seq) shows 

FOXM1 binds the promotor regions of LMNB1 as well as cell cycle genes TOP2A, KIF20A, KIF11 

in two cell lines (see Methods). No signals were detected for either LMNA or the constitutive heat 

shock gene HSP90AA (Fig.3.4a). To test LMNB1 gene regulation by FOXM1, we designed a 

promoter-reporter plasmid and transfected it into A549 lung adenocarcinoma cells and U2OS 

osteosarcoma cells for detection and perturbation of GFP reporter signal (Fig.3.4b,c). Siomycin 

reduces FOXM1 expression and promotes its degradation (Radhakrishnan et al., 2006; Bhat, 

Halasi and Gartel, 2009), and FOXM1-i inhibits DNA binding at the consensus sequence(Gormally 

et al., 2014). We find that cells treated with Siomycin (for more than 2 hr) and FOXM1-i (at ~6 hr) 

show less GFP expression, consistent with reduced LMNB1 promotor binding (Fig.3.4d,e). FOXM1 

inhibition decreases mitotic cell  numbers (by ~6 hr) as expected(Laoukili et al., 2005). FOXM1 

inhibition suppresses Lamin-B1 protein and TOP2A (Fig. 3.4f,g), whereas mitotic cell accumulation 

induced with Nocodazole (18 hr) increases Lamin-B1 (Fig. 3.4f), as also occurs with 

FOXM1(Laoukili et al., 2005). The results are consistent with simple cell cycle trends (Fig. 3.1c).  
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Anti-FOXM1 immunofluorescence and LMNB1 gene-edited with red fluorescent protein 

(RFP) both show nuclear localization in interphase and chromatin association in mitotsis (Fig. 

3.4h), and FOXM1 inhibition decreases anti-FOXM1 intensity as expected. Intensity analyses 

further show FOXM1 increases through cell cycle (Fig. 3.4j), with many G0/G1 cells showing no 

FOXM1, consistent with its degradation at mitotic exit(Laoukili et al., 2008; Park et al., 2008). 

Importantly, Lamin-B1 increasing linearly with FOXM1 (Fig. 3.4k) is in excellent quantitative 

agreement with the scaling analyses of 17 regulated cancers in TCGA (Fig. 3.3g).  

Lamin-B1 dynamics differ from FOXM1 in that it disassembles and is inherited by daughter 

cells(Gerace and Blobel, 1980), remaining non-degraded and non-zero throughout cell cycle as is 

confirmed by imaging live cells and fixed cells (Fig. 3.4k,5a,b). Note that the gene-edited RFP-

LMNB1 and likewise GFP-histone-H2B use the endogenous promoters to drive expression in the 

lung cancer cell line A549(Pfeifer et al., 2018), which avoids potential artifacts of overexpression. 

Power law increases in RFP-LMNB1 and GFP-histone-H2B intensities per nucleus up to mitosis, 

allow one to to eliminate the time dependence in gene-gene scaling with cell cycle at the single cell 

level (per Fig. 3.1c; and see Theory Supplement). This is important given tumors have differences 

in mean doubling time and is consistent with scaling between cancer patients (Fig. 3.3a-d). 

RFP-LMNB1 and anti-LMNB1 intensities not only scale with total DNA-staining intensity 

per nucleus, including high ploidy cells relevant to cancer (Fig. 3.5c,d), but LMNA knockdown has 

no effect. This is consistent with the absence of LMNA from the LMNB1-scaling set with (Fig. 3.3d), 

and with distinct roles for lamin genes in mechanosensing (LMNA) (Fig. 3.2f) versus proliferation 

(LMNB’s). To assess effects of LMNB1 on cancer cell proliferation, we transfected GFP-LMNB1 

plasmid or shLMNB1 plasmid into U2OS cells, and pulsed incorporation of the nucleotide analog 

EdU (for 1hr) together with DNA staining to quantify cell cycle stage(Pfeifer et al., 2018). High EdU 

signal indicates ongoing DNA synthesis (S-phase), and low EdU signal indicates G1 or G2 phases, 

depending respectively on low or high DNA intensity, i.e. ‘2N’ or ‘4N’ (Fig. 3.5e). Knockdown cells 

show more cells in G1 compared to wildtype or overexpressing cells (identified by GFP signal at 

the single-cell level), whereas the latter were more in S-phase and G2 phase (Fig. 3.5f), implying 
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low LMNB1 suppresses cancer cell cycle (Fig. 3.5g). These cancer cell line results agree with 

fibroblast results(Shimi et al., 2011), and imply LMNB1 is a novel knockdown target to suppress 

cancer growth.  
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Figure 3-4 FOXM1 transcription factor regulates Lamin-B1 expression  

a) Chip-Seq analyses show FOXM1 binds to the promotor regions of cell cycle regulated genes 
including TOP2A, KIF11, KIF20A, and two sites in LMNB1. No binding is evident in LMNA and 
HSP90AA. b-e) GFP promoter-reporter for assessing regulation of LMNB1, and its transfection into 
A549 and U2OS cancer cell lines shows decreased GFP in immunoblots of cells treated with 
FOXM1 inhibitors Siomycin for 18 hr and FOXM1-i for 5-7 hr (representative of n=3). Additional 
analysis of GFP in images of U2OS cells normalized to DNA, and again shows reduced GFP 
expression after 7 hr of Siomycin, which also reduces mitotic cell counts as expected (Avg. +/- SEM 
for >50 cells measured). f,g) Lamin-B1 protein is also decreased by FOXM1 inhibition (Siomycin, 
18 hrs) as is TOP2A (5hrs), but enriching for mitotic cells with Nocodazole increases Lamin-B1. h-
k) Mitotic and G2-phase A549 cells show high intensities of stained DNA, anti-FOXM1, and gene-
edited Lamin-B1, in contrast to G1-phase cells with low to negligible anti-FOXM1 intensity. FOXM1 
inhibition (6 hr) reduces anti-FOXM1 intensity as expected, but FOXM1 increases in cell cycle as 
DNA intensity doubles. FOXM1 and LMNB1 scale linearly at protein levels through the cell cycle. 

Figure 3-5 LMNB1 scales with DNA in vitro and LMNB1 levels modulate cell cycle as a proto-
oncogene  

a,b) Live cell imaging of gene-edited lung cancer line expressing GFP-H2B and RFP-LMNB1 
shows parallel increases in intensities normalized to telophase in mitosis, with a mean cell cycle of 
21±0.35 hrs. c) Intensity of RFP-LMNB1 is linear versus Hoechst-stained DNA in fixed A549s, even 
with lamin-A knockdown. Intensities are normalized to cells in the non-replicated state, ‘2N’. d) anti-
LMNB also shows LMNB increases linearly with DNA in osteosarcoma-derived U2OS cells. e-g) 
EdU incorporation (1 hr) in replicating cells in combination with Hoechst-stained DNA identifies cell 
cycle stage (G1/S/G2). Knock down with shLMNB1 in U2Os cells reveals a smaller percentage of 
cells proceeding to S and G2 compared to overexpressing GFP-LMNB1 cells. Error bars indicate 
SEM values across image fields 
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3.3.6 Pan-cancer exponents for genes scaling with LMNB1, ACTA2, COL4A1, COL1A1 

The ‘universality’ of power law scaling exponents across cancers is illustrated by results for distinct 

sets of 17 cancers (from the 32) for LMNB1 (Fig. 3.3e, Table 3.1) and a few other genes, noting 

also that 17 is a slight majority of the 32 total tumor types in TCGA. LMNB1 scaling genes yielded 

25 genes, that are all cell cycle related including FOXM1, with exponents across tumors that range 

from 0.83-1.23 (Fig. 3.6a). Higher values (>1) are consistent with a lamina (~Area) that surounds 

replicating DNA (~Volume) (Fig. 3.1a) or perhaps a bias from early or late cell cycle genes (Fig. 

3.1c). In comparison, all four genes that scale with the cytoskeleton gene ACTA2 across 17 cancers 
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have super-stoichiometric exponents (>1), and three are also cytoskeleton while one is a 

membrane calcium regulator (Fig. 3.6b).  

Four genes also scale with COL4A1 for a different set of 17 cancers, and again show a 

range of power laws for these basement membrane ECM genes (Fig. 3.6c), including a pan-cancer 

exponent for COL4A2 of 0.92 ± 0.02 within 10% of expected results for a shared promoter (Fig. 

3.1b). Ten fibrillar ECM or membrane genes scale with COL1A1 (Fig. 3.6d), including COL1A2 as 

noted previously (Fig. 3.2b). Membrane factors include one integrin and also FAP (fibroblast 

activating protein) which is a membrane-bound gelatinase targeted in the clinic(Hofheinz et al., 

2003). As with COL4A1, all COL1A1 exponents are sub-stoichiometric (i.e. <1), consistent with 

these major ECM components serving as scaffolds for the other factors to decorate like leaves on 

a tree (Fig. 3.1a). Equally important, scaling of COL5A1 ~ COL1A10.84-0.92 from TCGA for 17 

cancers (and across all 32 cancers in TCGA a = 0.84 ± 0.02, SEM) agrees with mass spectrometry-

derived scaling proteomic results(Swift et al., 2013) based on COL1A1 ~ E1.5 and COL5A1 ~ E1.3 

giving COL5A1 ~ COL1A10.87.  Exponents for other genes agree on average within 20%, and 

agreement of tumor and normal transcript and protein is evidence of ‘universality’ in scaling.  

3.3.7 Single-cell RNA-seq with Scaling-Informed Machine Learning (SIML)  

Bulk sequencing of tumors mashes together a diversity of cell types at different stages of cell cycle, 

and thus motivates a scaling analyses of single-cell RNA-seq data (scRNA-seq). Liver cancer 

biopsies from chemotherapy-treated patients have only recently been characterized by scRNA-seq 

and show some malignant hepatocellular carcinoma cells (HCC) among many types of stromal and 

immune cells (Ma et al., 2019). UMAP clusters of the specific cell types show cancer associated 

fibroblasts (CAFs) have high reads of COL1A1, COL1A2, FAP, ACTA2, CNN1 (Fig.3.6e,S3.5). 

However, COL1A1 and all of its pan-cancer scaling genes (Fig. 3.6d,S3.5) are high in a sub-

population of CAFs distinct from those expressing ACTA2 and its bulk-scaling genes (Fig. 3.6b, 

S3.5). Fibroblasts with high expression of FAP have been reported to be distinct from those with 

high expression of ACTA2 (smooth muscle actin protein, aSMA) in cancer associated stroma from 

cancer patients (Tchou et al., 2013; Kilvaer et al., 2015; Öhlund et al., 2017), tumor xenografts 
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(Özdemir et al., 2014) and in vitro experiments (Avery et al., 2018), but across cancers what genes 

best distinguish the two CAF phenotypes has been uncertain. Power law scaling thus discriminates 

synthetic CAFs (COL1A1, COL1A2, FAP...) from contractile CAFs (ACTA2, CNN1...), even though 

all are fibroblast-clustered ‘fibrotic’ genes. SIML provides a new and general method to better define 

and resolve closely related lineages. 

LMNB1 scRNA-seq reads are dominated by the easily extracted (non-adherent) Tcells 

(Fig. 3.6f-i; Fig.S3.6a,b) even though cancer cells such as A549s clearly express LMNB1 (Fig. 

3.6f-ii; Fig.S3.6c). In diverse tissue cell populations as well as in a related population of cells, high 

reads of LMNB1 are coincident in cell populations with high reads of FOXM1 (Fig.S3.6b,c) 

indicative of LMNB1 expression regulation (Fig. 3.4). Scaling exponents for LMNB1-scaling genes 

that were averaged for liver cancer and A549 scRNA-seq nonetheless correspond well to those 

from TCGA’s pan-cancer exponents (Fig. 3.6d). Deviations likely result from low reads from 

LMNB1 and other mitotic genes. Collagens are ~10-fold more abundant, and CAFs and endothelial 

cells express COL4A1, A2 isoforms that scale with exponent = 0.83 versus 0.86 for A549s (Fig. 

3.6f-iii,iv) and 0.92 for bulk from TCGA (Fig. 3.6c). ACTA2 scaling gene CNN1 shows weaker 

scaling in scRNA-seq (Fig. 3.6f-iv) by ~20% than the pan-cancer exponents in bulk TCGA, which 

is about typical for deviations.  Nonetheless, the raw reads based scRNA-seq scaling analyses 

seem reasonably consistent with ‘universality’ in scaling. 
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Figure 3-6 Pan-cancer power law exponents  

a-d) (circle) Exponents for genes in TCGA that show indicated scaling with slope > 0.5 and R2 > 
0.5 across 17 primary tumor cancer types (See Gene Overlap Supplement). (blue square) 
Exponents obtained from proteomics across normal tissues and model tumors (blue square). 
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Exponents from single-cell RNA-seq: (red square) hepatocellular carcinoma, HCC; (green square) 
lung cancer derived A549 line; (pink square) average exponent of HCC and A549. For LMNB1, 25 
genes show maximum overlap in only 1 grouping of 17 tumors. For ACTA2, 2 combinations of 6 
genes show maximum overlap in groups of 17 tumors; and 4 genes that appear in both 
combinations. For COL4A1, 21 combinations of 7 genes show maximum overlap in groups of 17 
tumors; 4 genes that appear in >18 combinations. For COL1A1, 11 combinations of 9 genes show 
maximum overlap in groups of 17 tumors; 9 genes that appear in >6 combinations.e) Machine-
learned, dimensionally reduced projection (UMAP) of single-cell mRNA sequencing of liver cancer 
(HCC) labeled with standard marker identified lineage. Each point is a cell, with purple indicating 
detected expression levels of COL1A1, COL1A2, ACTA2, FAP, CNN1 f) Power law fits of raw reads 
from single-cell mRNA sequencing: i-ii) LMNB1 vs MKI67 for HCC or A549’s. For HCC, ~45% of 
cells with non-zero reads of LMNB1 or MKI67 are Tcells, and <5% are malignant cells. iii-iv) 
COL4A1 vs COL4A2 from HCC patients or A549 cells.  Pie charts for HCC: <5% of malignant cells 
have non-zero reads for COL4A1 or COL4A2, versus ~60% of Endothelial Cells, ~35% are 
Fibroblasts. iii) ACTA2 vs CNN1 from HCC scale together as myofibroblastic genes and show 
similar cell-type specific expression profiles. 

3.3.8 ECM fibrosis genes scale with COL1A1 across cancers and predict liver cancer survival 

Lastly, because fibrotic collagen-1 and cell cycle lamin-B1 are both high in all 16 cancers for which 

tumor and adjacent TCGA data is available (Fig. 3.2d), scaling with COL1A1 was scrutinized, 

starting with primary liver cancer (n=371). COL1A1 expression varies ~16,000-fold (versus ~32-

fold for LMNB1 in Fig. 3.7a), and does not relate to genome copy number changes in COL1A1 

(Fig.S3.7a), consistent with expression by non-malignant stromal cells (found also in adjacent and 

normal tissue). First, even though fibrous COL1A1 and most associated ECM are abnormally high 

within a given patient across all cancers (Fig. 3.2d), between patient tumors these genes do not 

correlate with LMNB1 (Fig. 3.7a: aLMNB1 ~0 and R2 < 0.1). Once again, COL1A2 scales almost 

linearly with COL1A1:  aCOL1A2 = 0.86 (Fig. 3.7b), and an ECM protease gives aMMP2 = 0.79 (Fig. 

3.7c). COL1A2 scaling also has the highest R2 among all ~20k genes. Among 162 genes that scale 

with COL1A1 (agene > 0.5, R2 > 0.5), the majority are ECM genes (Fig. 3.7d). COL4A1 and COL4A2 

fit well but with weak scaling (agene < 0.5, R2 > 0.5) suggestive of a (COL1 / COL4) ~ (bulk/surface) 

scaling (Fig. 3.1a). The only other transcripts with R2 > 0.9 are COL5A1 and COL3A1 (Fig. 3.7d), 

and these associate with collagen-1 fibers(Gelse, Pöschl and Aigner, 2003), scale with COL1A1 in 

proteomics(Swift et al., 2013), and scale ‘universally’ across all 32 cancers (Fig. 3.7d; Gene 

Overlap).  

To assess survival of cancer patients in relation to ‘fibrotic’ genes, we focused first on the 

16 (tumor/adjacent) cancers. This is because, unlike LMNB1 which is expressed by malignant cells 
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(and predicted poor survival in 7 cancers including liver cancer, Fig. 3.3g,i), COL1A1 and COL1A2 

are expressed primarily by fibroblasts found in both tumor (i.e. CAFs) and adjacent tissues (Fig. 

3.6e). Most scaling genes associated with CAFs (i.e. ACTA2 and COL1A1 gene sets per Fig. 

3.6b,d) predict prolonged survival in liver cancer (~2 yrs versus ~4yrs in Fig. 3.7e,f). Equally 

surprising is that no other tumor types show significance with these genes. Alternatively, survival 

can be assessed by comparing expression in liver tumors from many different patients (with no 

comparison to adjacent tissue), and this analysis shows prolonged survival for high levels of most 

(80%) of the contractile gene set including ACTA2, whereas no significance was found for survival 

with high levels of most (89%) of the synthetic gene set including COL1A1 (Fig.S3.7b,c,d). The 

results at least underscore the contractile vs synthetic phenotypes made clear by SIML (Fig. 3.6e).  
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Figure 3-7LMNB1 does not scale with COL1A1 (fibrous ECM) and COL1A1 and myofibroblastic 
ACTA2 are pro-survival in primary Liver tumors (n=371 patients)  

a-c) Plots versus COL1A1 RNA for LMNB1 (not correlated) and correlated ECM genes COL1A2 
and MMP2.  The R2 and scaling exponent (𝑎#$%$) are indicated. d) Genes that correlate with 
COL1A1 RNA. For all 17,958 genes, 𝑎#$%$ versus R2 gives a sideways-volcano plot;162 genes 
scale strongly 𝑎#$%$ > 0.5 and well R2 > 0.5, and more than half relate to ECM. e) For COL1A1 
(light green), COL1A2 (dark green) RNA levels (tumor/adjacent) that exceed the median levels for 
all patients (n=50 patients), the median time for survival is significantly longer by 2-3 yrs. f) For all 
17,958 genes, KM analyses are summarized by the fold-change in median survival plotted against 
the p-value, showing that many of the genes which scale with COL1A1 or with ACTA2 predict 
prolonged survival when the expression ratio (tumor/adjacent) exceeds the median. Inset: Liver 
cancer is the only one of the 16 cancers with matched adjacent tissue data that predicts survival in 
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patients. g) Liver tumor stiffness measured before therapy and 6 wks later(Qayyum et al., 2019) 
was converted to calculated changes in collagen-1 (Col1 ~ E1.5) and plotted versus patient survival 
(n=7 patients), revealing strong power laws. 

3.4 Discussion  

Specific values of power law exponents are informative. For example, TOP2A shows a larger power 

law in LMNB1 scaling than FOXM1 (1.2 vs 1.0 per Fig.3g inset), and inhibition of the mutual 

regulator FOXM1 seems to decrease TOP2A moreso than LMNB1 (Fig.4f,g). As a second 

example, high levels of the ACTA2 contractile gene set is pro-survival in liver cancer based on 

(Tumor/Adjacent) data and also for the larger patient sets of tumor-only data except for one 

contractile gene with the lowest power: TAGLN shows no significance in the tumor-only data 

(Fig.S7d). All of the contractile genes scale (strongly) with ACTA2 exponents >1. In comparison, 

the COL1A1 synthetic gene set is pro-survival only in the (Tumor/Adjacent) data and is not 

significant in nearly all of the larger patient sets of tumor-only data (Fig.7e,f,S7d); and unlike the 

ACTA2 exponents, all(except POSTN) of the synthetic genes scale (weakly) with COL1A1 

exponents <1 (Fig.6d), which means COL1A1 scales super-stoichiometrically with respect to the 

other genes. A reasonable analogy is that collagen-1 forms the woody bulk of a tree that the other 

factors assemble onto like bark or leaves on the tree. Regardless of the utility of this analogy, the 

contractile gene set is overall more sensitive to any changes in ACTA2.  

In our recent experiments(Dingal et al., 2015), ACTA2 protein increases dramatically with 

a strong, switch-like cooperativity exponent of ~3 as a mechano-repressive transcription factor exits 

the nucleus in mesenchymal cells that spread on stiff collagenous substrates but not on soft 

substrates. Importantly, COL1A1 shows no change when we overexpressed the same transcription 

factor in cells on rigid plastic, which drives its nuclear accumulation and represses ACTA2 as 

expected. Thus specific power law exponents help to indicate strong (ACTA2) or weak (COL1A1) 

regulation, extending it seems to data for patient survival. It should also be noted that treatment by 

radiation or pharmaceutical for each patient in TCGA with liver, lung, or breast cancer shows no 

impact on some these key scaling results (Fig.S3.8). 
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Pro-survival results for high expression of fibrotic genes in liver cancer patients is surprising 

but is consistent with a recent study of patients having liver stiffness measured by magnetic 

resonance elastography (MRE) before immunotherapy and 6 wks afterwards.(Qayyum et al., 2019)  

Remarkably, patient survival associated with increased local liver stiffness (rather than initial or 

final stiffness). Such results for stiffness (E) are readily converted to collagen-I changes through 

the relation COL1A1 ~ E1.5 from mass spectrometry of tumors and diverse normal tissues(Swift et 

al., 2013).  Power law fits for Time-to-Progression and Overall Survival (in weeks) both reveal 

strong scaling over a ~22 fold calculated range of collagen-I that increases or decreases after 

treatment (Fig.7g).  

Compared to the fibrosis scaling genes, the more numerous genes in the LMNB1 scaling 

gene set are cell cycle related, exhibit a broader range of scaling exponents (>1 and <1), and 

include exactly one transcription factor FOXM1. We show FOXM1 regulates LMNB1, and that 

FOXM1 and LMNB1 predict survival in 7-9 cancer types. Liver cancer was again appropriate to 

illustrate survival because Lamin-B1 is not only high in malignant hepatocytes but is even a 

circulating biomarker(Sun et al., 2010),(Abdelghany et al., 2018). Cell culture studies show LMNB1 

depletion inhibits DNA replication(Moir, Spann, et al., 2000)-(Moir, Montag-Lowy and Goldman, 

1994), and LMNB1 knockout undermines development earlier than LMNA knockout (Harborth et 

al., 2001b) – all of which is consistent with cell cycle scaling with LMNB1 but not LMNA (Fig. 3.3d,g, 

S3.3f-h). Such a difference is also evident in UMAP plots of scRNA-seq data (Fig.S3.6), which 

confirm actively proliferating cells colocalize high LMNB1 with MKI67, FOXM1 and TOP2A, 

whereas LMNA is more broadly expressed across cell types and more similar to COL4’s 

(Fig.S3.6b,c). Thus, even though all solid tumors show upregulation of fibrous ECM genes, 

especially COL1A1 (Fig. 3.2a,d, Table 3.1), such changes and their impact are essentially 

independent of lamin-B1.  
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3.4.1 Scaling is interchangable, but weak scaling is lost in noisy data 

Lastly, conventional heatmap presentations can suggest associations such as between COL1A1 

and LMNB1 (Fig. 3.2c-f) where none exist. However, a key strength of quantitative power law 

relationships is the ease of predicting new power law relations:  

If A ~ Ba and if C ~ Bc, then A ~ Ca/c. 

For example, defining genes A = COL5A1, B = COL1A1, and C = COL1A2 with measured power 

laws of a = 0.86, c = 0.93 (Fig. 3.6a), gives a/c = 1.08. Measurements agree: COL5A1 ~ COL1A21.06 

(R2 = 0.96).  Poorer fits yield poorer predictions of course, but weak scaling genes are also generally 

problematic.  

Genes scale weakly or strongly with LMNB1 and COL1A1 across the three cancers in sideways-

volcano plots (i.e. R2 > 0.5) are rare or non-existent. This is surprising given evidence of genes that 

scale weakly (a < 0.5) with COL1A1 in small datasets(Cho, Irianto and Discher, 2017), but a likely 

reason is illustrated by the noise in COL1A2 scaling (Fig. 3.7b, inset: RMSE = 0.44) – which we 

apply to generic power law functions f that are weaker (or stronger) power laws versus COL1A1 

than the actual data. Power law fits of these equally noisy f yield R2 values that decrease strongly 

from high R2 with the best-fit exponents, with the same trends in LMNB1 analyses (Fig.S3.9). Noisy 

data thus explains the lack of weak scaling genes in TCGA data, and noise in the liver cancer data 

likely reflects batch effects (i.e. 19 batches of patient samples analyzed over ~3 yrs in several 

sequencing centers). Nonetheless, the strong scaling genes and especially the ‘universal’ power 

laws supported by proteomics-rheology and initial scRNA-seq (Fig. 3.6) should motivate new 

physicochemical theories for the interacting pathways that underlie proliferation and ECM 

production as well as patient survival. 

3.5 Methods & Materials  

TCGA Analysis  Gene expression (mRNA-seq), copy number variation (Gistic 2 thresholded) and 
phenotype data was downloaded from UCSC Xena website 
(https://xenabrowser.net/datapages/). Primary tumor sample can be identified by the code 01, for 
example, TCGA-69-7978-01 is and TCGA-69-7978-11 is solid tissue normal or “uninvolved” 
adjacent tissue from the same patient. In the Liver Cancer data set, the histological type includes 
6 patients with Hepatocholangiocarcinoma (one set of normal and tumor tissue both), 3 patients 
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with Fibrolamellar Carcinoma and 362 Hepatocellular Carcinoma patients. 32.4% of the patients in 
the primary tumor Liver Cancer dataset are female. If >75% of the patients showed 0 reads for a 
gene, i.e. out of 371 primary tumor samples in Liver Cancer, if >278 patients showed 0 reads, that 
gene was removed from analysis. This reduced the Illumina HiSeq gene expression dataset from 
20,530 genes to 17,958 genes. For cancer staging, TCGA annotated TNM classification system  
was used, which pathologically stratifies the primary tumors (T) from T1-4 indicating increasing 
tumor size. Amount of spread into nearby structures was chosen to characterize the primary tumor 
size phenotype T1 (Solitary tumor without vascular invasion), T2 (Solitary tumor with vascular 
invasion or multiple tumors, none > 5 cm), T3 (Multiple tumors > 5 cm; or Macrovascular invasion), 
T4 (Tumor(s) with direct invasion of adjacent organs or with visceral peritoneum). In phenotypic 
treatment information, each patient has 2 rows and 2 columns -Treatment type 
(Radiation/Pharmaceutical) and Treatment/Therapy (Yes/No). The Liver Cancer dataset has five 
kinds of entries-  

1. not reported 
2. both Radiation and Pharmaceutical are no (untreated) 
3. Only radiation is yes,  
4. only pharmaceutical is yes, and  
5. both radiation and pharmaceutical are yes.  

 
Statistical Analysis Kaplan Meier plots were created using the libraries survminer and survival 
in R version 3.3.3. Survival fits using survfit function were made using survival object(surv), which 
contained time and event (death or left the study) data. The Kaplan Meier plot and p-value were 
obtained using the ggsurvplot function. Box-plots were made using the function boxplot in R. One-
way ANOVA test (which tests significant differences in the averages of multiple data groups) was 
conducted using aov function in R. Linear fit models for log values of gene expression were made 
using the fitlm function in MATLAB 2019b using the robust regression model that iteratively 
reweights least squares to reduce the effect of outliers, making it less sensitive than ordinary least 
squares to large changes in small parts of the data. For example, sideways-volcano plots made 
with robust regression model for LMNB1 in primary Liver tumors give 168 genes with high bgene and 
R2, but with ordinary linear regression, there are 159 genes.  

R2 measures the improvement in prediction of the variable ‘y’ (eg, log2(mRNA expression 
of TOP2A)) using the regression model f, based on predictor x (eg, log2(mRNA expressionof 
LMNB1)), compared to the ‘mean model’ (Eq 3) (i.e. does the variation in ‘x’ predict variation in ‘y’ 
better than just using the mean value of ‘y’ as the predictor).   

𝑅& = 1 − '()	+,	'-(./$0	$//+/'	+,	/$#/$''1+%	)+0$2
'()	+,	'-(./$0	$//+/'	+,	3.'$21%$	)+0$2(565$%&')

= 	1 − ∑ (5(9,())(
∑ (5(95$%&'))(

  Eq.3 

Human liver collection   

Human liver samples were collected in strict accordance with the protocols approved by the 
Institutional Review Board of the University of Pennsylvania and the Philadelphia Veterans 
Administration Medical Center (protocol number 820896). De-identified samples for this research 
study were obtained from male and female patients aged 32 to 68 years old who underwent liver 
resection or transplantation. Liver tissue was initially stored in cold Hank’s Balanced Salt Solution 
(HBSS, Gibco), then flash frozen until analysis by mass spectrometry. 

Mass spectrometry (LC-MS/MS) of Liver tumors and adjacent uninvolved tissues   Tissues 
were lysed using NUPAGE LDS buffer. The lysates were loaded onto SDS-PAGE gels (4-12%, 
Bis-Tris, Invitogen) and gel electrophoresis was run for 20 min at 160 V. ~1 mm3 gel sections were 
carefully excised from SDS–PAGE gels and were washed in 50% 0.2 M ammonium bicarbonate 
(AB), 50% acetonitrile (ACN) solution for 30 min at 37°C. The washed slices were lyophilized for 
>15 min, incubated with a reducing agent (20 mM TCEP in 25 mM AB solution), and alkylated (40 
mM iodoacetamide (IAM) in 25 mM AB solution). The gel sections were lyophilized again before 
in-gel trypsinization (20 mg/mL sequencing grade modified trypsin, Promega) overnight at 37°C 
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with gentle shaking. The resulting tryptic peptides were extracted by adding 50% digest dilution 
buffer (60 mM AB solution with 3% formic acid) and injected into a high-pressure liquid 
chromatography (HPLC) system coupled to a hybrid LTQ-Orbitrap XL mass spectrometer (Thermo 
Fisher Scientific) via a nano-electrospray ion source. 

Raw data from each MS sample was processed using MaxQuant (version 1.5.3.8, Max 
Planck Institute of Biochemistry). MaxQuant’s built-in Label-Free Quantification (LFQ) algorithm 
was employed with full tryptic digestion and up to 2 missed cleavage sites. The software’s decoy 
search mode was set as ‘revert’ and a MS/MS tolerance limit of 20 ppm was used, along with a 
false discovery rate (FDR) of 1%. The minimum number of amino acid residues per tryptic peptide 
was set to 7, and MaxQuant’s ‘match between runs’ feature was used for transfer of peak 
identifications across samples. All other parameters were run under default settings. The output 
tables from MaxQuant were fed into its bioinformatics suite, Perseus (version 1.5.2.4), for protein 
annotation and sorting. 

Cell lines  A549 (human lung adenocarcinoma) cell lines were obtained from ATCC 
(American Type Culture Collection, Manassas, VA, USA) and U2OS cell lines were obtained from 
the laboratory of Roger Greenberg, University of Pennsylvania. ATCC provides cell line 
authentication test recommendations per Tech Bulletin number 8 (TB-0111-00-02; 2010). These 
include: microscopy-based cell morphology check, growth curve analysis, and mycoplasma 
detection (by DNA staining) which were conducted on all cell lines used in these studies. All cell 
lines maintained the expected morphology and standard growth rates with no mycoplasma 
detected. U2OS and A549 cell lines were cultured in DMEM high-glucose media and Ham’s F12 
nutrient mixture (Gibco, Life Technologies), respectively, supplemented with 10% fetal bovine 
serum (FBS) and 1% penicillin and streptomycin (Sigma-Aldrich). shLMNB1 retrovirus construct 
was obtained from the laboratory of Prof. Robert Goldman (Northwestern University, Chicago), 
prepared as previous described(Shimi et al., 2011). GFP-LMNB1 plasmid was obtained from the 
laboratory of Profs. Harald Herrmann-Lerdon and Tatjana Wedig. Cells were transfected using 
Lipofectamine 2000 (1:1000, Thermo fisher scientific) and incubated for 3 days. 

Gene editing and live cell imaging analysis  CRISPR/Cas9 and homology directed repair 
were used to incorporate a full length GFP tag sequence in the genomic loci for H2B at the C-
terminus, using mEGFP (K206A). We used the ribonucleic protein (RNP) method with recombinant 
wild type S. pyogenes Cas9 protein pre-complexed with a synthetic CRISPR RNA (crRNA) and a 
trans-activating crRNA (tracrRNA) duplex. Both the crRNA and the tracrRNA were purchased from 
Dharmacon, while the Cas9 protein was purchased from UC Berkeley QB3 Macrolab. The 
sequence for the crRNA is 5’ ACTCACTGTTTACTTAGCGC 3', and for the tracrRNA is 5’ 
GTCGCAGTCGCCATGGCGGG 3’.  

The crRNA:tracrRNA duplex was prepared my adding crRNA (20 uM) and tracrRNA (20 
uM) at a 1:1 ratio for a final concentration of 10 uM. The mixture was heated at 95°C for 5 min and 
then allowed to cool at room temperature for 2 hrs. After 2 hrs elapsed, 700,000 A549 RFP-LMNB1 
cells were prepared and suspended in 200 uL of Ham’s F12 media supplemented only with 10% 
FBS. Cells were placed in a 0.4 cm Gene Pulser electroporation cuvette (Bio-Rad). 10 uL of 10 uM 
crRNA:tracrRNA duplex, 10 uL of 10 uM Cas9 protein, and to the cell suspension was also added 
8 ug of donor plasmid (AICSDP-52: HIST1H2BJ-mEGFP is Addgene plasmid # 109121). Cells 
were then electroporated using a Gene Pulser Xcell electroporation system at 160 V for 30 ms. 
The RFP-LMNB1 expressing A549 cells were as described elsewhere, with RFP tag insertion done 
using zinc finger nuclease at the C-terminus. The RFP tag is a monomeric TagRFP from Evrogen.  

Successfully edited cells were enriched using fluorescence-activated cell sorting (FACS) 
with a BD FACSJazz (BD Biosciences). Cells were enriched three times using FACS. Single-cell 
clones were then prepared by plating 100 cells into a 15-cm plate (Corning) and isolated using 
cloning rings (Corning). To confirm GFP tagging of H2B by PCR, the forward primer sequence is 
5’ ATGCCAGAGCCAGCGAA 3’, and the reverse primer sequence is 5’ 
GAGAGTTTGCAACCAACTCACT 3’. Successful H2B integration, then a PCR product equivalent 
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to the sum of the GFP and H2B molecular weights is detected in addition to endogenous H2B. To 
confirm RFP insertion, PCR analysis was performed. RFP integration was confirmed using the RFP 
forward primer (sequence 5’ AAGAGACCTACGTCGAGCAGC 3’) and a LMNB1 reverse primer 
(sequence 5’ AAAGCGGGAGCTCCTTCTCGGCAGT 3’). A PCR product was only detected for 
RFP-tagged cells with this primer set. 

For imaging, A549 RFP-LMNB1 GFP-H2B were freshly sorted for double positive cells and 
seeded in a 24 well plate. Fresh media was replaced the next day, and cells were imaged at 20X 
magnification for 36 hrs with 20 image fields taken per well using the EVOS FL Auto imaging system 
(Thermo Fischer Scientific) at the CDB Microscopy Core at the Perelman School of Medicine. 

FOXM1 Chip-Seq Analyses Based on (Davis et al., 2018), FOXM1 contains a highly 
conserved DNA binding domain (DBD)(Weigel and Jäckle, 1990), which binds to DNA sequences 
containing the consensus sequence RAAAYA(Gormally et al., 2014) or a canonical forkhead motif 
(RYAAAYA)(Major, Lepe and Costa, 2004; Sanders et al., 2015) 

LMNB1_1 299 h HEK293T 

LMNB1_1 216 K K562 

>hg38_encRegTfbsClustered_FOXM1 range=chr5:126775785-126776184 5’pad=0 3’pad=0 
strand=+ repeatMasking=none 

TTCCCCTTTCCGGGTTCAAGGGATTCTCCCACCTCAGCCTTCCAAGTAGCTGAGATTACAGGCACCCGCCATCATGC
CCGGCTAATTTTTGTATTTTTGTAGAGACGGGGTTTCACCATGTTGGTCAGGCTGGTCTTGAACTCCTGAGCTCAGGT
GATCCTCCCCCACTCGGCCTCCCAAAGTGTTGGGATTATAGGCGTGAGCCACCGCGCCCGCCCGGATGAATTTTCA
AATAGAAACAATCCAGTTTCCCACATCACACGGAGATTGTGTGGATGGGTAATCCATGAAAAGCCTGGTGCTGGCAC
TCAGTCCCAATAAATGTTAGCTAAAAATTAGGAACTTTTCAAAGGGATGAATGTGCTTTCTAATAGAAGTAGCTGCCAG
TGACATCTTGGGA 

LMNB1_2 698 h HEK293T 

LMNB1_2 1000 K K562 

>hg38_encRegTfbsClustered_FOXM1 range=chr5:126776393-126777089 5'pad=0 3'pad=0 
strand=+ repeatMasking=none 

CGCGGGGGGCGGAGGTGGCGCGGGCCGCGGCGCCGCACTCCCCAACATGGCCGGCACGCCCCGGCGCCTCCAC
GTGACTACCATGGGCCAATGGGGAGCAGGCAGCGCGCTTCGGCGGTTCGGGGGCCGGGCCTGTAAATTTAAAATCT
GGCCCTTGGGCAACCGTCAGCTCGGCCCTCCCGGCTGGGCGGTTCCCGGACCAGGCTCAGGGCTGTAAGGAAGGA
CGCCTGGGACTGCCCACCCGCGCGGCTCTGGGCCCAGGGCCCTCCCGCCGCCCCGCGGGGACCCCTTGGAGGGG
CCGGGCCTGAGAAAGGCGGGAAGGAGCCCGGAGGTTTCCGGGACGGATCTGCGCCACCGCCCACACTCGGCGGT
TCAGGGAAATTCAAATATAAACGTCCCTAAAAGCCACACGCGAAACTCAGAGTGTCCCCGGCCACCGCGGGCGTGG
TAACCTTATCCCCCGCTCCGCTGGAGGGCTCGGGAAACGGCCTGGAGGCCGGGACGCTGTGGAATTACGTAATAGG
CACTTGAGTCCGAGGTTCCAAATGCACGGCTTGCAGGTTCCAAGTACCAGCCTTTATTTTTCTCTCCGGTGGAAAACT
GTATCAGGCAACTTCTTTCCATGAAAGTGAGATCTGTGCGTCTTGAAGCCGATAGATTATCACAGAAAAACCAGCAAC
CCTGATTTTAAATCATTAAAGCCCATCTCTTCCAAGCTTTCCGCACGAGAAAACAAGTGAGCCCTTCTCATTGGCCAG
ATTCCCTGTCAATCTCTCCGCTATGACGCCGAGTGGTGCCTTTTGAAGCCTCTCTAGTCCCGCCTCCCTAACCTGATT
GGTTTATTCAAACAAACCCCGGCCAACTCAGCCGTTCATAGGTGGATATAAAAGGCAAGCTACGATTGGTTCTTCTGG
ACGGAGACGGTGAGAGCGAGTCAGGGATTGGCTGGTCTGCTTCGGGCGGGCTAAAGGAAGGTTCAAGTGGAGCTC
TCCTAACCGACGCGCGTCTGTGGAGAAGCGGCTTGGTCGGGGGTGGTCTCGTGGGGTCCTGCCTGTTTAGTCGCTT
TCAGGGTTCTTGAGCCCCTTCACGACCGTCACCATGGAAGTGTCACCATTGCAGGTACGGCTCGCGGGGGGGACTG
GCGGTGGAGCCTCCGCGCGGCCCGGGCATCTCTCTGGCCGCCCGTGACGGGTGAAGCTCTGGGGCTGCGGTCAG
GCCGGCGACCGGCTTGGGAGCCCATATTCTCCATTCCCGGTTCCGGGGTGATCGTGGAGAGGCGGAAGCCCCTTCT
GGTGCT 

ACTB 349 h HEK293T 

hg38_encRegTfbsClustered_FOXM1 range=chr7:5530068-5530347 5'pad=0 3'pad=0 strand=+ 
repeatMasking=none 

CCAGAACGCACGCGCAGTTAGCGCCTTGAGTCCCAGCGCGCACGCGCAATTAGCGCCAATTCCCAGCGCGCACGC
AGTTAGCGCCCAAAGGACCAGCGCGCACGCGCAATGGCGCCCCAGCCCCCACCGGGCCTGGCGGGGGCTCCGCC
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GCGCCCACCCTGCGATCCCCATTGGCAAGAGCCCGGCTCAGACAAAGACCCCGCCGGTTGCCCCCGCCCCGAGAG
CGGCACCCCCGGAGCGCGCCTCCCGAGCGCGGCCTCGCGCCTCCGAACTGGCGTGG 

TOP2A_1 1000 h HEK293T 

TOP2A_1 1000 K K562 

>hg38_encRegTfbsClustered_FOXM1 range=chr17:40417593-40418395 5'pad=0 3'pad=0 
strand=+ repeatMasking=none 

GCCAGGCTGCCTGTCCAGAAAGCCGGCACTCAGTTTCCTCAGGAAAACGAAGCTAAGGCTCCCATTCCCCTCGCTAA
CAACGTCAGAACAGAGGACAGTTTTTAGATTTCAGGGATCTTAAATAGATTGGCAGTTCCTGGAGAATAAACATCCTT
TGCTTTTCTCCTGCACACTTTTGCCTCAGGCCACCCCTTCCCGCTTCCAAAGCCCATCTCTTCCAAGCTTTCCGCACG
AGAAAACAAGTGAGCCCTTCTCATTGGCCAGATTCCCTGTCAATCTCTCCGCTATGACGCCGAGTGGTGCCTTTTGA
AGCCTCTCTAGTCCCGCCTCCCTAACCTGATTGGTTTATTCAAACAAACCCCGGCCAACTCAGCCGTTCATAGGTGG
ATATAAAAGGCAAGCTACGATTGGTTCTTCTGGACGGAGACGGTGAGAGCGAGTCAGGGATTGGCTGGTCTGCTTC
GGGCGGGCTAAAGGAAGGTTCAAGTGGAGCTCTCCTAACCGACGCGCGTCTGTGGAGAAGCGGCTTGGTCGGGGG
TGGTCTCGTGGGGTCCTGCCTGTTTAGTCGCTTTCAGGGTTCTTGAGCCCCTTCACGACCGTCACCATGGAAGTGTC
ACCATTGCAGGTACGGCTCGCGGGGGGGACTGGCGGTGGAGCCTCCGCGCGGCCCGGGCATCTCTCTGGCCGCC
CGTGACGGGTGAAGCTCTGGGGCTGCGGTCAGGCCGGCGACCGGCTTGGGAGCCCATATTCTCCATTCCCGGTTC
CGGGGTGATCGTGGAGAGGCGGAAGCCCCTTCTGGTGCT 

KIF18B 1000 h HEK293T 

KIF18B 1000 K K562 

>hg38_encRegTfbsClustered_FOXM1 range=chr17:44947512-44948112 5'pad=0 3'pad=0 
strand=+ repeatMasking=none 

TTGACAATCCCCTCTTGACAAACGGATGTGAATTTAGCCTACAGAAAAAACAGGTTTAAACACCTGTTGGATGTCTGG
TTGCTGTAACTGGTGCTAAGCCTAGACCCGGGGACCACAGAGACTGGCTGTGGCCCCACGTATCCCAACCCTGCGT
TGGCTTCTGCCCGCTACTCTCGTGTGCCCAACCCCGGAGACACCGCCTGGGAAACTGCAGCCGACAGGAAGAGGAA
GTGAGCAAGCCCACTGTGAACGGCTCTCGCAACACTTTGTTACTTAGGAAACAGCCAATCAGCGATACGGACGCTG
ACCAATAGGAAGCACGGTCCGGCCCGCCCGGCTAATTTGAACGCAAGGCGCCGGGTGGAGGTTGGCGCGGGTAGG
GGAGGGTGTGGGGCGCTCTCTCCCGGTGTGGGTACTGCTGTCTGTGGTGTGGCTGTGGGACCCGTGAGCAAGCAG
CGACGCCAGCGGCGGAGAACCGACGAAAGGTAAGTCCTGGCCCACGGCGGAACCGACCGCGCGAACGCCTGCTCT
CAGGTCTCGGACGCGCAGACCCAGCTGCTCCGGGCGGGAGGCCTGTGCCAGGCCTCTTTTGTGCTGGACG 

KIF20A 1000 h HEK293T 

KIF20A 1000 K K562 

>hg38_encRegTfbsClustered_FOXM1 range=chr5:138178620-138179373 5'pad=0 3'pad=0 
strand=+ repeatMasking=none 

CCCCGAAGTCTCCAACCCTGAGGAGAGACGGTCTGGAAGGGCCGAAACCCTGGAATTCTGGGAAATAGTGTACCG
GCGTTGGTTCGCGGTGCCTCCTGGGAAATGTCGTTTTTCCCCTTAAGACAAAGCAAGCACCCTAAACCAGTTACCCT
GTGCACTCCTGTTAAGATTGTTGCTAAGGAAGGACAGGAGTTGGCTGCTGAAGCCTCAAGATTTCCTTTAGGCTCTTA
GGTAAGAAATGTCTAAGGTTCAAGGAAAAAGGTTAAGTTGGAAGAATCCCAGGCAAAATAAGTGCGAATCCACGACA
GTTGGTAACCCGGACCCACATTAGAACTCAGAGGTCAAGCAGAAGCGAACGACTGGAATTCCAGTCAGGCCCGCCC
CCTTTCCTTACGCGGATTGGTAGCTGCAGGCTTCCCTATCTGATTGGCCGAACGAACGCAGCGCGTAATTTAAAATA
TTGTATCTGTAACAAAGCTGCACCTCGTGGGCGGAGTTGTGCTCTGCGGCTGCGAAAGTCCAGCTTCGGCGACTAG
GTGTGAGTAAGCCAGTATCCCAGGAGGAGCAAGTGGCACGTCTTCGGGTGAGTGTGCGGCTGTGCTGGAGCCCGG
GTTACCAGCTCTTGCCCGCGCGGAATAGGCTTTAAGAAATCGGAGCTGCAGCCATCTGTTTTTCTCTTAATGCTGCAT
CTCTGTTCTCACGGTGGTCCTTGGGGTGAGGTTAGAGAAGGAGCCGAGGGATCCTGACACCACCT 

Lamin B1 promoter GFP reporter transfection Reporter construct was purchased from 
Genecopoeia (Rockwell) -LaminB1-reporter  -GFP-HPRM15679-PF02 

>HPRM15679 NM_005573; name=LMNB1;Entrez_ID=4001;Genome=hg18;chr5+:126139681-
126140973;TSS=126140732;Upstream=1051,Downstream=241;Length=1293; 

CACTCAGTCCCAATAAATGTTAGCTAAAAATTAGGAACTTTTCAAAGGGATGAATGTGCTTTCTAATAGAAGTAGCTGC
CAGTGACATCTTGGGAGCCTCTTTTTAAAAGCAAAAAATTATTTCATCTTAAATTTTCACAAGTTCAGATTTTTATGTAC
CTGATTTTAACGGAGTATGAAACAGCTTGCTCTCGTAGTTACTCACCGTCATATGTTAATCGTATCATTTCTGAGCTGT
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TTTTTGATTTTACAAACCCTTAAATTAAGAAACGGATTAGGAACCGCCCATTAACACTGTTGGCAAATGATTTAAAATCA
GGGTTGCTGGTTTTTCTGTGATAATCTATCGGCTTCAAGACGCACAGATCTCACTTTCATGGAAAGAAGTTGCCTGAT
ACAGTTTTCCACCGGAGAGAAAAATAAAGGCTGGTACTTGGAACCTGCAAGCCGTGCATTTGGAACCTCGGACTCAA
GTGCCTATTACGTAATTCCACAGCGTCCCGGCCTCCAGGCCGTTTCCCGAGCCCTCCAGCGGAGCGGGGGATAAGG
TTACCACGCCCGCGGTGGCCGGGGACACTCTGAGTTTCGCGTGTGGCTTTTAGGGACGTTTATATTTGAATTTCCCT
GAACCGCCGAGTGTGGGCGGTGGCGCAGATCCGTCCCGGAAACCTCCGGGCTCCTTCCCGCCTTTCTCAGGCCCG
GCCCCTCCAAGGGGTCCCCGCGGGGCGGCGGGAGGGCCCTGGGCCCAGAGCCGCGCGGGTGGGCAGTCCCAGG
CGTCCTTCCTTACAGCCCTGAGCCTGGTCCGGGAACCGCCCAGCCGGGAGGGCCGAGCTGACGGTTGCCCAAGGG
CCAGATTTTAAATTTACAGGCCCGGCCCCCGAACCGCCGAAGCGCGCTGCCTGCTCCCCATTGGCCCATGGTAGTC
ACGTGGAGGCGCCGGGGCGTGCCGGCCATGTTGGGGAGTGCGGCGCCGCGGCCCGCGCCACCTCCGCCCCCCG
CGGCTTGCCTCCAGCCCGCCCCTCCCGGCCCTCCTCCCCCCGCCCGCCGCTCCGTGCAGCCTGAGAGGAAACAAA
GTGCTGCGAGCAGGAGACGGCGGCGGCGCGAACCCTGCTGGGCCTCCAGTCACCCTCGTCTTGCATTTTCCCGCG
TGCGTGTGTGAGTGGGTGTGTGTGTTTTCTTACAAAGGGTATTTCGCGATCGATCGATTGATTCGTAGTTCCCCCCCG
CGCGCCTTTGCCCTTTGTGCTGTAATCGAGCTCCCGCCATCCCAGGTGCTTCTCCGTTCCTCTAAAC 

Cells were plated for 24 hours before transfection. Lipofectamine 2000 (Invitrogen #11668019) and 
the reporter construct were diluted in serum reduced Opti-MEM (Invitrogen #31985062), which was 
further diluted in cell media without penicillin, according to manufacturer’s instructions. The cells 
were incubated in this solution for 24 hours before re-plating.  

Immunofluorescence imaging  Cells were rinsed with pre-warmed PBS on a shaker at low speed for 
3 min, fixed with 4% paraformaldehyde (PFA, Fisher) for 15 min, washed 3 times with PBS and 
permeabilized with 0.5% Triton-X (Fisher) in PBS for 30 min. Permeabilized cells were then blocked 
with 5% BSA in PBS for ≥1.5 hrs. Samples were incubated overnight with primary antibodies in 
0.5% BSA solution, with gentle agitation at 4 °C. Hoechst 33342 (1:1000, Thermo Fisher, #3570) 
was used to stain the DNA. The primary antibodies used were: LMNA (1:500, Cell Signaling 
Technology (CST), #4777), LMNB1 (Sigma-Aldrich ZRB1143-4X25UL), FOXM1 (1:1000, Abcam, 
# ab207298). Samples were washed three times in 0.1% BSA in PBS and incubated with the 
corresponding secondary antibodies at 1:500 dilution for 1.5 hrs at RT (Alexa Fluor 488 and 647 
nm; Invitrogen). Cells on glass coverslips were mounted with mounting media (Invitrogen ProLong 
Gold Antifade Reagent). Images of adherent cells were taken with an Olympus IX81. All images in 
a given experiment were taken under the same imaging conditions and analyzed using ImageJ 
(NIH). 

Western Blot Adherent cells were trypsinized, trypsin was neutralized with FBS followed by 
centrifugation to obtain a pellet of cells. This pellet was washed with PBS followed by centrifugation 
and then the cells were lysed with 1x NuPage LDS buffer ((Invitrogen; diluted 1:4 in 1x RIPA 
buffer,plus 1% protease inhibitor cocktail), and lysed by probe-sonication on ice (10 times with  3s 
pulses, intermediate power setting). 1% b-mercaptoethanol was added to the samples were then 
heated to 80 °C for 10 min and centrifuged for 10 min. Invitrogen Bolt 4%-12% Bis-Tris  gels were 
loaded with 10 - 15 uL of lysate per lane. Gel electrophoresis was run for 10 min at 100 V and 
30min at 160 V. Separated samples were then transferred to a nitrocellulose  membrane using an 
iBlot Gel Transfer Device (Invitrogen). The membrane was blocked with 5% nonfat dry milk in TTBS 
buffer (Tris-buffered saline, BioRad; with 0.1% Tween-20), and incubated with primary antibodies 
against: LMNB1 (Sigma-Aldrich ZRB1143-4X25UL), GFP (Abcam ab290), HSP90AA1 (LifeSpan 
Biosciences LS-C352335), b-actin (Santa Cruz, #sc-47778) diluted at 1:500 at 4 °C overnight. After 
washing 3 times with TTBS, the membrane was incubated with 1:1000 diluted secondary Ab: anti-
mouse or anti-rabbit (depending on primary antibody) HRP-conjugated IgG (GE Healthcare, Little 
Chalfont, UK), at room temperature for 1.5 hrs. The membrane was washed 3 times again with 
TTBS and developed with ChromoSensor (GenScript) for 3-10 min at RT. Immunoblot images were 
obtained using a HP Scanjet 4850. Densitometry was performed using ImageJ (NIH). 

EdU labeling and staining  EdU (10 µM, Abcam) was added to 24 well plates 1 hr before 
fixation. Cells were fixed and permeabilized as described above. After permeabilization, samples 
were stained with 100 mM Tris (pH 8.5) (MilliporeSigma), 1 mM CuSO4 (MilliporeSigma), 100 µM 
Cy5 azide dye (Cyandye), and 100 mM ascorbic acid (Millipore Sigma) for 30 min at room 
temperature. Samples were washed three times with 15-min washes on the shaker and then 
underwent immunostaining as described above. 
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Single cell RNA-seq and data analysis A549 cells were seeded in a 96 well-plate at a density of 
150,000 cells/well and cultured for 2 days. Cells were then trypsinized and submitted to the Center 
for Applied Genomics (1014, Abramson Research Center, University of Pennsylvania) for single-
cell RNA sequencing (with the 10X Genomics single-cell gene expression kit, a 400M read flow cell 
& single-end read using HiSeq from Illumina). 2,453 cells were sequenced with an average of 
64,404 reads (and 3,457 genes) per cell. Sequencing saturation is only 49.4% and 97.5% of reads 
can be mapped to genome. Data were extracted from R using Cell Ranger R kit and aligned to 
genes via BioMart. Normalization to transcript length is not required because 10X Genomics only 
sequences the 3’ end. 

For all cells that express a particular integer value, for example 4 reads of COL4A1, we 
determine for COL4A2 (gene y) the average number of non-integer reads = <y>. Plotting these in 
a log-log plot (excluding x = 0 and <y> = 0 reads), we determined the best-fit scaling exponent, and 
then repeated for COL4A2 (gene x) and COL4A1 (gene y) to obtain the inverse exponent. Error in 
y indicates S.E.M. COL4A1 and COL4A2 log-log slope fits have an inverse correlation and their 
averages converge to values close to 1.  

Public GEO database code: GSE125449 was used in the Single cell sequencing analysis 
from hepatocellular carcinoma patients. The following patient codes were used in the analysis: 

S02_P01_LCP21 (704 cells), S07_P02_LCP28 (124 cells), S10_P05_LCP23 (151 cells), 
S12_P07_LCP30 (805 cells), S15_P09_LCP38 (1046 cells), S16_P10_LCP18 (124 cells), 
S21_P13_LCP32 (132 cells) 

For average single-cell exponents with respect to LMNB1, only genes showing R2 > 0.7 
were included. Identification of cell type based on sequencing data was performed as previously 
described(Ma et al., 2019). Ma et al annotate clusters revealed by t-SNE using lineage specific 
marker genes for CAFs (COL1A2, FAP, PDPN, DCN, COL3A1, COL6A1), T-cells (CD2, CD3E, 
CD3D, CD3G), B cells (CD79A, SLAMF7, BLNK, FCRL5), TECs (PECAM1, VWF, ENG, CDH5), 
TAMs (CD14, CD163, CD68, CSF1R) and HPCs (EPCAM, KRT19, PROM1, ALDH1A1, CD24) 

Visualization of Dimensionally reduced Single cell mRNA-seq Seurat(Butler et al., 2018) was 
used to analyze Single cell sequencing data of A549 cells and HCC tumor cells which are 
mentioned above. For HCC tumor dataset, cells with >50% mitochondrial genes were removed 
since they were probably dead cells. Cell >6000 unique gene reads were removed as those are the 
droplets with doublets/multiplets of cells in each droplet. Cells are then normalized by total 
expression in each cell and then multiplied by 10000 and log transformed. Reads were then scaled, 
followed by principal component analysis of the variable features. This was followed by clustering 
analysis with resolution 0.1. Elbow Plot was used to determine that the first 10 principle components 
capture 90% of the variation. Uniform Manifold Approximation and Projection (UMAP) analysis was 
done to dimensionally reduce the first 10 principle components, followed by visualization. Similar 
analysis was done for the A549 cells. 

3.6 Supplementary Information 

Table 3. 1 

 

Tumor types: 
32 cancers  
(alphabetical) 

Numbe
r of 
Primary 
Tumor 
sample
s: 

Regulated 
or 
Dysregulate
d, 
Fig.1d: 

Number 
of 
Tumor 
& 
Adjacen

Fig.3g: 
17 + 2 
cancer
s 
LMNB
1 

Fig.6a: 
17 
cancer
s 
LMNB
1  

Fig.6b: 
17 
cancer
s 
ACTA2 

Fig.6c: 
17 
cancer
s 
COL4A
1 

Fig.6d: 
17 
cancer
s 
COL1A
1 
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32 
cancers 

17 + 2 
cancers 

t pairs 
(>4), 
Figs.2,7
d-f: 
16 
cancers 

Adrenocortical 79 Regulated 0 x x 
   

Bile Duct 36 Regulated 9 x x 
 

x x 

 Bladder 407 Regulated 19 x x x x x 

 Breast 1097 Regulated 114 x x 
  

x 

 Cervical 303 Dysregulate
d 

3 
 

 x x x 

 Colon 286 Dysregulate
d 

26 
 

 x x x 

 Endometrioid 176 Regulated 7 x x x 
  

 Esophageal 184 Dysregulate
d 

11 
 

 x x x 

 Glioblastoma 154 Regulated 0 x x 
   

 Head and Neck 520 Dysregulate
d 

43 
   

x x 

 Kidney 
Chromophobe 

66 Regulated 25 x x x 
 

x 

 Kidney Clear Cell 533 Regulated 72 x x x x 
 

 Kidney Papillary 
Cell 

290 Regulated 32 x x 
   

 Large B-cell 
Lymphoma 

48 Regulated 0 o 
  

x x 

 Liver 371 Regulated 50 x x x x x 

 Lower Grade 
Glioma 

516 Regulated 0 x x 
 

x 
 

 Lung 
Adenocarcinoma 

515 Regulated 58 x x x x x 

 Lung Squamous 
Cell 

502 Dysregulate
d 

51 
 

 x 
 

x 

 Melanoma 104 Dysregulate
d 

0 
 

 
   

Mesothelioma 87 Dysregulate
d 

0 
     

 Ocular 
Melanomas 

80 Dysregulate
d 

0 
     

Ovarian 304 Dysregulate
d 

0 
   

x x 

Pancreatic 178 Regulated 4 x x x x x 

Pheochromocyto
ma & 
Paraganglioma 

179 Dysregulate
d 

0 
  

x x 
 

Prostate 497 Regulated 0 x x x x 
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Rectal 94 Dysregulate
d 

6 
  

x 
 

x 

Sarcoma 259 Regulated 0 x x x 
  

Stomach 415 Dysregulate
d 

32 
  

x x x 

Testicular 150 Regulated 0 o 
 

x 
  

Thymoma 120 Regulated 0 x x 
 

x 
 

Thyroid 505 Regulated 59 x x 
  

x 

Uterine 57 Dysregulate
d 

0 
     

 

Table 3. 2 

24 genes that have the most increase and most decrease in expression in tumor tissue compared 

to normal from a subset of 50 patients from the TCGA Liver Cancer dataset. Genes in bold scale 

strongly with LMNB1 mRNA expression. 

GENE NAME 𝑙𝑜𝑔&
𝑅𝑆𝐸𝑀	𝑖𝑛	𝑡𝑢𝑚𝑜𝑟

𝑅𝑆𝐸𝑀	𝑖𝑛	𝑠𝑜𝑙𝑖𝑑	𝑛𝑜𝑟𝑚𝑎𝑙	𝑡𝑖𝑠𝑠𝑢𝑒 GENE 
NAME 𝑙𝑜𝑔&

𝑅𝑆𝐸𝑀	𝑖𝑛	𝑡𝑢𝑚𝑜𝑟
𝑅𝑆𝐸𝑀	𝑖𝑛	𝑠𝑜𝑙𝑖𝑑	𝑛𝑜𝑟𝑚𝑎𝑙	𝑡𝑖𝑠𝑠𝑢𝑒 

UBE2C           3.870304 CLEC4M          -8.376186 

BUB1            3.881966 INS-IGF2        -8.058758 

SKA1            3.887232 CLEC4G          -8.043624 

MAGEA1          3.89387 CLEC1B          -7.997756 

HOXD9           3.902498 MT1H            -7.985588 

CDC45           3.903606 MARCO           -7.80735 

KIF2C           3.911922 HAMP            -7.699088 

NCAPG           3.916724 GDF2            -7.637296 

NEK2            3.929756 CYP1A2          -7.382774 

TGM3            3.943794 STAB2           -7.273084 

TOP2A           3.953428 FCN2            -7.172842 

KIF20A          3.970512 MT1G            -7.143532 

CDKN3           3.970604 PZP             -6.97113 

GPC3            3.9977 CXCL14          -6.950726 

MUC13           4.019738 CRHBP           -6.726032 
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NUF2            4.061704 CNDP1           -6.46678 

IQGAP3          4.064878 SFRP5           -6.449706 

BIRC5           4.078538 SLCO1B3         -6.420686 

IGF2BP1         4.08192 MT1M            -6.239148 

CDC20           4.098348 MT1F            -6.162274 

MELK            4.112032 CYP3A4          -6.057148 

HOXA13          4.16928 C9              -6.037976 

CDC25C          4.227812 COLEC10         -5.874192 

COL15A1         4.245218 CLEC4M          -8.376186 

 

3.6.1 Gene overlap 

Maximum k-Subset Intersection (MSI): Given a collection C={S1,...,Sm} of m subsets over a finite 

set of elements E={e1,...,en},and a positive integer k, the objective is to select exactly k subsets 

Sj1,...,Sjk whose intersection size |Sj1∩ ··· ∩Sjk| is maximum. 

where C={S1,...,S32} are the 32 subsets of strong scaling genes for each tumor 

E={e1,...,e867} is the set of 866 unique genes that scale with LMNB1 across 32 tumors 

k is the number of tumors out 32 being considered (17 in the example above) 

In order to reduce the compute time, collection C was converted into a matrix where the rows are 

each of the elements in E and the columns are m subsets, the matrix is populated with 1 if the 

element ei is present in jth subset, else is 0. 

For example, for LMNB1, there are 27 tumors that have 1 or more genes that scale strongly with 

LMNB1. There are 243 unique genes that are present >1 of the 27 tumor subsets. Hence there are 

242 rows and 27 columns in the matrix m. If gene in row i is present in the strongly scaling gene 

subset of tumor j, mij=1 else it is 0. 
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To find which 17 tumors out of the 27 tumors to select such that there is intersection gene set is 

maximum, we do the following: 

 

 Tumor 1 Tumor 2 Tumor 3 …… …… …… …… Tumor 27 

Gene 1 1 0 1     0 

Gene 2 0 0 1     1 

…..         

…..         

Gene 
242 

0 1 1     0 

 

For each of the 27C17=8436285 combinations to choose 17 tumors from 27 tumors, we add the rows 

for which the sum=17 i.e the genes which are present in all those 17 tumors. The combination that 

shows the maximum sum of rows is the combination that shows the maximum overlap. 

For LMNB1, the 17 tumors out 27 that show the maximum overlap of genes(25) are Thymoma, 

Liver, Breast, Lung Adenocarcinoma, Lower Grade Glioma, Sarcoma, Pancreatic, Prostate, Kidney 

Chromophobe, Adrenocortical, Kidney Clear Cell, Kidney Papillary Cell, Bile Duct, Glioblastoma, 

Thyroid, Endometroid and Bladder. 

Below we list the number of tumors being chosen from 32 and the maximum number of genes that 

overlap in that group of tumors. It so happens that most times, tumors that show maximum overlap 

of genes for a particular number of tumors (n) being considered, are also present in the tumor group 

that shows maximum gene overlap in n+1 tumors with the addition of another tumor. Column 2 

shows the tumor being added to the group. Different combinations can give the tie for the maximum 

overlap genes for that group number. For example, tumor groups of 3 – {Thymoma, Liver, Breast} 

and {Thymoma, Liver, Lower Grade Glioma} tie for the maximum overlap genes – 119. Similarly, 

for tumor groups of 8 – {Thymoma, Liver, Breast, Lung Adenocarcinoma, Lower Grade Glioma, 

Sarcoma, Pancreatic, Prostate} and {Thymoma, Liver, Breast, Lung Adenocarcinoma, Lower 
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Grade Glioma, Sarcoma, Pancreatic, Kidney Chromophobe} tie for the maximum overlap of genes 

– 72. For tumor groups of 13 – {Thymoma, Liver, Breast, Lung Adenocarcinoma, Lower Grade 

Glioma, Sarcoma, Pancreatic, Prostate, Kidney Chromophobe, Adrenocortical, Kindey Clear Cell, 

Kidney Papillary Cell, Bile Duct} and {Thymoma, Liver, Breast, Lung Adenocarcinoma, Lower 

Grade Glioma, Sarcoma, Pancreatic, Prostate, Kidney Chromophobe, Adrenocortical, Kindey Clear 

Cell, Kidney Papillary Cell, Glioblastoma} tie for the maximum overlap of genes – 50. As the number 

of tumor groups increases and the gene overlap number decreases, the number of combinations 

that can tie increases, for example, for tumor groups of 22 have 2302 combinations that tie at the 

maximum gene overlap number – 2. KIF20A scales with LMNB1 in 25 tumors showing overlap 

across the maximum number of tumors. 

Number of 
tumors being 
considered 

Tumor being added to the group to get maximum 
overlap 

Maximum number of 
genes that overlap for 
the group of tumors 

1 Thymoma 662 

2 Liver 150 

3 Breast/Lower Grade Glioma 118 

4 Lung Adenocarcinoma 105 

5 Lower Grade Glioma/Sarcoma 94 

6 Sarcoma 88 

7 Pancreatic 78 

8 Prostate/Kidney Chromophobe 71 

9 Kidney Chromophobe 66 

10 Adrenocortical 63 

11 Kidney Clear Cell/Bile Duct 57 

12 Kidney Papillary Cell 53 

13 Bile Duct/Glioblastoma 49 

14 Glioblastoma 45 

15 Thyroid 39 
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16 Endometroid 32 

17 Bladder 25 

18 Ocular Melanoma 18 

19 Large B cell Lymphoma 8 

20 46 possibilities (including testicular) 2 

21 2 possibilities 2 

22 2302 possibilities 1 

23 300 possibilities 1 

24 25 possibilities 1 

25 1 possibility 1 

26 1 possibility 0 

27 1 possibility 0 

 

 

Fig 3.6a plots the exponents of the 25 genes that show maximum overlap for tumor group of 17 -

{Thymoma, Liver, Breast, Lung Adenocarcinoma, Lower Grade Glioma, Sarcoma, Pancreatic, 

Prostate, Kidney Chromophobe, Adrenocortical, Kindey Clear Cell, Kidney Papillary Cell, Bile Duct, 

Glioblastoma, Thyroid, Endometroid, Bladder}. 

ACTA2  : 

There are 1424 unique genes that scale strongly with ACTA2 across 32 tumors, out of which 837 

are are present in more than 1 tumor. Given the results in Fig.3g for LMNB1 and because 17 is a 

slight majority of the 32 total tumor types, we again sought 17 of 32 that show the maximum overlap 

of genes. To do this we apply the algorithm above for the 32C17=565722720 combinations, we find 

2 combinations which show the maximum overlap of 5 genes – {TAGLN, CNN1, LMOD1, PLN, 

MRVI1, ACTG2} and { TAGLN, CNN1, LMOD1, PLN, MYL9, KCNMB1}. 

Fig 3.6b plots the exponents of the 4 common genes- TAGLN, CNN1, LMOD1, PLN 
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The 2 combinationsc(in no particular order) of 17 cancers out of 32 that give equal maximum 

overlap of 6 genes: 

 

Combination 1 Combination 2 

Bile Duct Bladder 

Bladder Cervical 

Cervical Colon 

Colon Endometrioid 

Endometrioid Esophageal 

Esophageal Kidney Chromophobe 

Kidney Clear Cell Kidney Clear Cell 

Kidney Papillary Cell Liver 

Lung Adenocarcinoma Lung Adenocarcinoma 

Lung Squamous Cell Lung Squamous Cell 

Ovarian Pancreatic 

Pancreatic Pheochromocytoma & Paraganglioma 

Pheochromocytoma & Paraganglioma Prostate 

Prostate Rectal 

Rectal Sarcoma 

Sarcoma Stomach 

Stomach Testicular 

 

COL4A1 : 

COL4A2 scales strongly with COL4A1 across all 32 tumors. There are 994 unique genes that scale 

strongly with COL4A1 across 32 tumors, out of which 460 are are present in more than 1 tumor. 

To find the 17 tumors out of 32 that show the maximum overlap of genes, we apply the algorithm 

above for the 32C17=565722720 combinations, we find 21 combinations which show the maximum 



68 

 

overlap of 7 genes. We compiled a list of the genes and the number of combinations each of the 

genes appears in: 

 

Gene Name Number of 17 
cancer 
combinations 
that gene 
appears in 

COL4A2 21 

COL15A1 21 

NID2 21 

LAMA4 18 

GPR116 1 

NID1 1 

PDGFRB 1 

 

Fig 3.6c plots the exponents of the 4 genes that appear in >18 combinations 

COL1A1 : 

There are 2 genes that scale strongly with COL1A1 across all 32 tumors are COL3A1 and COL5A1. 

There are 1090 unique genes that scale strongly with COL1A1 across 32 tumors, out of which 558 

are are present in more than 1 tumor. To find the 17 tumors out of 32 that show the maximum 

overlap of genes, we apply the algorithm above for the 32C17=565722720 combinations, we find 11 

combinations which show the maximum overlap of 10 genes. We compiled a list of the genes and 

the number of combinations each of the genes appears in: 

 

Number of 
17 cancer 
combinations 

Gene Name 
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that gene 
appears in 

11 COL1A2 

11 COL3A1 

11 COL5A1 

11 FAP 

11 POSTN 

10 COL6A3 

9 ITGA11 

7 VCAN 

6 THBS2 

3 CTHRC1 

2 ADAM12 

2 COL11A1 

2 ADAMTS2 

1 COL12A1 

  

Fig 3.6d plots exponents of genes that appear in >6 combinations. 

The 11 combinations of 17 cancers out of 32 that give equal maximum overlap of 10 genes: 

1 2 3 4 5 6 7 8 9 10 11 

Bile 
Duct 

Bile 
Duct 

Bile 
Duct 

Bile 
Duct 

Bile 
Duct 

Bile 
Duct 

Bile 
Duct 

Bile 
Duct 

Bladd
er 

Bladd
er 

Bladder 

Bladd
er 

Bladd
er 

Bladd
er 

Bladd
er 

Bladd
er 

Bladd
er 

Bladder Bladd
er 

Breast Breast Breast 

Breast Breast Breast Breast Breast Breast Breast Breast Cervic
al 

Cervic
al 

Cervical 

Cervic
al 

Cervic
al 

Cervic
al 

Cervic
al 

Cervic
al 

Colon Colon Colon Colon Colon Colon 
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Colon Colon Colon Colon Colon Esoph
ageal 

Esopha
geal 

Esoph
ageal 

Esoph
ageal 

Esoph
ageal 

Esopha
geal 

Esoph
ageal 

Esoph
ageal 

Esoph
ageal 

Esoph
ageal 

Esoph
ageal 

Head 
and 
Neck 

Head 
and 
Neck 

Head 
and 
Neck 

Head 
and 
Neck 

Head 
and 
Neck 

Head 
and 
Neck 

Head 
and 
Neck 

Head 
and 
Neck 

Head 
and 
Neck 

Head 
and 
Neck 

Head 
and 
Neck 

Kidne
y 
Chrom
ophob
e 

Kidney 
Chromo
phobe 

Kidne
y 
Chrom
ophob
e 

Kidne
y 
Chrom
ophob
e 

Kidne
y 
Chrom
ophob
e 

Kidney 
Chromo
phobe 

Kidney 
Chrom
ophob
e 

Kidne
y 
Chrom
ophob
e 

Kidne
y 
Chrom
ophob
e 

Kidne
y Clear 
Cell 

Large 
B-cell 
Lymph
oma 

Large 
B-cell 
Lymph
oma 

Large B-
cell 
Lympho
ma 

Large 
B-cell 
Lymph
oma 

Kidne
y Clear 
Cell 

Large 
B-cell 
Lymph
oma 

Large B-
cell 
Lympho
ma 

Kidney 
Clear 
Cell 

Large 
B-cell 
Lymph
oma 

Liver Large 
B-cell 
Lymph
oma 

Liver Liver Liver Liver Large 
B-cell 
Lymph
oma 

Liver Lung 
Adenoc
arcino
ma 

Liver Liver Lung 
Adeno
carcin
oma 

Liver Lung 
Adeno
carcin
oma 

Lung 
Adeno
carcin
oma 

Lung 
Adenoc
arcino
ma 

Lung 
Adeno
carcin
oma 

Liver Lung 
Adeno
carcin
oma 

Lung 
Squam
ous Cell 

Lung 
Adeno
carcin
oma 

Lung 
Adeno
carcin
oma 

Lung 
Squa
mous 
Cell 

Lung 
Adeno
carcin
oma 

Lung 
Squa
mous 
Cell 

Lung 
Squa
mous 
Cell 

Lung 
Squam
ous Cell 

Lung 
Squa
mous 
Cell 

Lung 
Adeno
carcin
oma 

Lung 
Squa
mous 
Cell 

Mesoth
elioma 

Lung 
Squa
mous 
Cell 

Lung 
Squa
mous 
Cell 

Ovaria
n 

Lung 
Squa
mous 
Cell 

Mesot
helio
ma 

Mesot
helio
ma 

Ovarian Mesot
helio
ma 

Lung 
Squa
mous 
Cell 

Mesot
helio
ma 

Ovarian 

Ovaria
n 

Ovaria
n 

Pancr
eatic 

Ovaria
n 

Ovaria
n 

Ovaria
n 

Pancrea
tic 

Ovaria
n 

Ovaria
n 

Ovaria
n 

Pancrea
tic 

Pancr
eatic 

Pancr
eatic 

Prosta
te 

Pancr
eatic 

Pancr
eatic 

Pancr
eatic 

Pheoch
romocy
toma & 
Paraga
nglioma 

Pancr
eatic 

Pancr
eatic 

Pancr
eatic 

Pheoch
romocy
toma & 
Paraga
nglioma 

Rectal Rectal Rectal Rectal Rectal Rectal Rectal Rectal Rectal Rectal Rectal 

Stoma
ch 

Stoma
ch 

Stoma
ch 

Stoma
ch 

Stoma
ch 

Stoma
ch 

Stomac
h 

Stoma
ch 

Stoma
ch 

Stoma
ch 

Stomac
h 
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Thyroi
d 

Thyroi
d 

Thyroi
d 

Thyroi
d 

Thyroi
d 

Thyroi
d 

Thyroid Thyroi
d 

Thyroi
d 

Thyroi
d 

Testicul
ar 
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3.6.2 Population Scaling from Single Cell Scaling 

Consider quantities A and B that scale with the age (time since last division) a of cells. Then the 

population values of A and B are given by the averages A(a) and B(a) over the distribution 𝜌(𝑎)	of 

ages 𝑎 in the population. In a growing population with the doubling time 𝜏, the age distribution is 

approximately given by (see derivation below)  

𝜌(𝑎) = R
2	𝑙𝑛(2)
𝜏 29. :⁄ 		𝑎 < 𝜏

		0																				𝑎 > 𝜏
 

For 𝐴(𝑎) ∝ 𝑎<	and 𝐵(𝑎) ∝ 𝑎=	, we have 

𝐴 = Z 𝜌(𝑎)𝐴(𝑎) 𝑑𝑎
>

?

 

												∝ Z
2𝑙𝑛(2)
𝜏 29. :⁄@

*

𝑎<𝑑𝑎
:

?

 

																													= [2𝑙𝑛(2)	Z29A𝑥<𝑑𝑥
B

?

]𝜏< 	∝ 	 𝜏< 

and similarly, 𝐵 ∝ 𝜏=. If A and B are sampled across cancer patients with some variability in the 

doubling time 𝜏 across the patients, B would scale with A as 𝐵 ∝ 𝐴
=
<C . While this argument only 

includes the variability in population doubling time 𝜏 across population samples, the resulting 

scaling is robust with respect to small heterogeneities in cell cycle times within each populations 

(see below for derivation). 

Age Distribution derivation 

In a growing population with the doubling time 𝜏 (approximately equal to the cell cycle time), the 

number of cells are given approximately given by 

𝑁(𝑡) ∝ 2D :C  
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The number of cells of age a at time t is given by the number of cells of age 0 at time 𝑡 − 𝑎. 

Therefore, the distribution of ages 𝜌(𝑎)	defined by the number of cells of age a divided by total 

number of cells is given by 

 

𝜌(𝑎) ∝
2
(D9.)

:C

2D :C
= 29. :⁄  

 

This argument holds for 𝑎 < 𝜏 but at age 𝜏, cells divide and therefore 𝜌(𝑎) = 0 for 𝑎 > 𝜏. The 

proportionality constant can be determined from the normalization 

Z29. :⁄ 𝑑𝑎 =
𝜏

2𝑙𝑛(2)

:

?

 

The age distribution is therefore given by 
 

𝜌(𝑎) = R
2	𝑙𝑛(2)
𝜏 29. :⁄ 		𝑎 < 𝜏

		0																				𝑎 > 𝜏
 

3.6.2.1 Averaging over Populations with Heterogeneous Cell-Cycle Times 

We can extend these results by considering a population of cells with cell-cycle times 𝜏E drawn 

from a distribution 𝑃(𝜏E). In this case the population doubling time 𝜏F would satisfy the following 

integral equation 

Z 2
9:+:,𝑃(𝜏E)𝑑𝜏E =

1
2

>

?

 

and the age distribution is given by 

𝜌(𝑎) =
2	ln	(2)
𝜏F

29./:, [1 −Z𝑃(𝜏E)𝑑𝜏E

.

?

]. 
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The derivations of these relationships are cited here(POWELL, 1956; Jafarpour et al., 2018). The 

logic behind the derivation of the age distribution is very similar to the previous case, except now, 

instead of cutting the distributions abruptly at some cell-cycle time, it is multiplied by the probability 

that a cell is not divided until age 𝑎, which reflects the fact that different cells can divide at different 

ages.  

Now following the previous section, we can find the population average value of 𝐴 as following 

𝐴 = Z 𝜌(𝑎)𝐴(𝑎) 𝑑𝑎
>

?

																						 

∝ Z
2𝑙𝑛(2)
𝜏F

29
. :,CHIJ
*

[1 −Z𝑃(𝜏E)𝑑𝜏E

.

?

]𝑎<𝑑𝑎
>

?

 

																																					= [2𝑙𝑛(2)	Z 29A𝑥< [1 −Z𝑝(𝑢)𝑑𝑢
A

?

]𝑑𝑥
>

?

]𝜏F< 

Where 𝑝(𝑢) = 𝜏F	𝑃(𝜏E) is the distribution of cell cycle times rescaled by the population doubling 

time. If this distribution is similar across different samples (i.e. the relative variability in doubling 

times are the same across samples), we are essentially done: we have shown that 𝐴 ∝ 𝜏F< and 

similarly, 𝐵 ∝ 𝜏F=, and therefore, 𝐵 would scale with 𝐴 as 𝐵 ∝ 𝐴
=
<C . 

What if 𝑝(𝑢) is different across samples? Let us approximate the cell cycle time distribution by a 

gamma distribution of mean 𝜇 and standard deviation 𝜎. Note that narrow gamma distributions are 

approximately Gaussian by central limit theorem, but they have the advantage of having their 

support on positive reals. For gamma distributed 𝑝(𝑢), one can show that 𝐴 is approximately 

proportional to 

𝐴 ∝ e1 + 𝐶< h
𝜎
𝜇i

&
j 𝜏F<	, 
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where 𝐶< is an 𝛼-dependent constant of order 1 (𝐶B ≈ 0.7 and 𝐶& ≈ 1). As long as the variance of 

(𝜎/𝜇)& across the samples is significantly smaller than the relative variability in population doubling 

times, the derived scaling of 𝐵 ∝ 𝐴
=
<C  holds. Note that this analysis is done for narrow distributions 

of cell-cycle times, which already implies (𝜎/𝜇)& ≪ 1	which in turn implies that Var[(𝜎/𝜇)&] ≪ 1. 

3.6.3 Supplementary figures 

Figure S3. 1 

a) Dimensionally reducing primary tumor (32) and adjacent (16) bulk mRNA sequencing data using 
UMAP clusters adjacent uninvolved tissue with the corresponding tumor tissue but does not cluster 
based on adjacent/tumor identity(inset) 
b) Informing UMAP with scaling information of LMNB1 clusters the adjacent tissues away from the 
primary tumor tissues 
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Figure S3. 2 

a) Plots of log2(COL4A1) vs log2(COL4A2) should show an excellent correlation as subunits of the 
type IV collagen, which are also present very close to each other on the same chromosome and 
have a shared promotor. Tumor (open circle) and normal (closed circle) tissue data points are 
plotted individually for Liver (blue), Lung Adenocarcinoma (green) and Breast (red) Cancer. All 
three cancer datasets show excellent R2 (0.84 to 0.95). Tumor data points for only Liver cancer 
show higher COL4A1 and COL4A2 values. (Note that for better visibility, all Lung Adenocarcinoma 
data points were moved up by 3 units and Breast Cancer by 6 units on the y-axis.) 
b) Plots of log2(COL1A1) vs log2(COL4A1) show poor R2 (0.14 to 0.62) for most tissue types 
implying that the basement membrane ECM is regulated differently than fibrous ECM. (Note that 
for better visibility, all Lung Adenocarcinoma data points were moved up by 5 units and Breast 
Cancer by 10 units on the y-axis.) 
c) Plotting the fold change in mRNA for Lung vs Breast Cancer shows that genes show similar 
trends of up/downregulation (R2 = 0.73). However, plotting the avg(Lung, Breast) vs Liver Cancer 
shows a weak correlation (R2 = 0.4)  
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Figure S3. 3 

a) Plot of log2(LMNB1) vs log2(MKI67) in primary Liver Cancer tumor (n=371 patients).  
b) Scatterplot of the only gene that shows a negative power law relation versus LMNB1 with a good 
R2 = 0.77 in primary Lung Adenocacinoma (n=515 patients), GSTT1. 
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c) 153 genes are parsed out with slope > 0.5 and R2 > 0.5 in the sideways-volcano plot for MKI67, 
146 of which are identical to genes that scale with LMNB1. 
d) Plotting the distribution of primary risk factors including alcohol consumption, hepatitis B and 
hepatitis C shows no difference between high and low LMNB1 mRNA expressing patients.  
e) Box and whisker plot of LMNB1 mRNA stratified on the basis of stage of cancer progression (T1-
T4). Increase in median LMNB1 expression occurs with progression of tumors, with a significant p-
value (one-way ANOVA). 
f) Sideways-volcano plot for LMNA in primary tumors of Liver Cancer (n=371) shows only one gene 
with high scaling coefficient (>0.5) and R2 > 0.5, which supports the notion that the two lamin 
isoforms serve distinct functions and reveals LMNA does not directly scale with cell proliferation 
genes. 
g) Maximum overlap of genes drops down to 1 gene for groups of 4 tumors for LMNA strong scaling 
genes 
h) Of the 32 tumors, the 3 tumors that show maximum overlap of 5 genes are Large B-cell 
lymphoma, Testicular and Thyroid 
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Figure S3. 4 

a) Average exponents of the 25 genes that show maximum overlap in groups of 17 out of 32 tumors 
for LMNB1 annotated with number of tumors where higher expression of the gene predicts survival 
in patients as (poor, longer or no significant trend). The 17 cancers are listed as well, indicating the 
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number of genes among the 25+1(LMNB1), higher expression for which significantly predicts (poor 
survival, longer survival) 
b) Similarly, for LMNB2, average exponents of the 14 genes that show maximum overlap in groups 
of 5 out of 32 tumors  
 
Figure S3. 5 

a) Cancer associated fibroblasts(CAFs) diverge as two sub-populations as synthetic (high reads of 
COL1A1 scaling genes) and contractile (high reads of ACTA2 scaling genes) 

Figure S3. 6 

a) Dimensionally reduced projection (UMAP) of single-cell mRNA sequencing of HCC tumors 
depicting clusters based on sequencing profiles labeled with the corresponding cell-type phenotype  
b) UMAP from (a) labeled with expression levels of FOXM1, TOP2A, LMNB1, LMNA, COL4A1, 
COL4A2, ACT2A2, COL1A1, COL1A2, MYL9, MKI67, CDK1 in each cell of the clusters  
c) Dimensionally reduced projection (UMAP) of single-cell mRNA sequencing of 4 genetically 
diverged clones of A549 cells (P1, P2, P3, P4) labeled with expression levels of LMNB1, FOXM1, 
TOP2A, COL4A1, COL4A2, LMNA 
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Figure S3. 7 

a) COL1A1 mRNA for primary Liver Cancer tumor (n=371) vs the corresponding threshold Gistic 2 
copy number variation data for the same patient. The Gistic2 values have a thresholding of -2, -
1,0,1,2, representing homozygous deletion, single copy deletion, diploid normal copy, low-level 
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copy number amplification, or high-level copy number amplification respectively. The red points 
indicate the mean mRNA expression values. 
b) COL1A1 mRNA levels alone are not a good indicator of survival probability. 
c) Dividing the range of marker for activated fibroblasts- ACTA2 mRNA levels (in primary tumor of 
371 patients) into two groups, one transcribing higher ACTA2 mRNA(greater than the median) and 
the other lower, and plotting a Kaplan Meier(KM) using the phenotype data available for time of 
death, we find that patients translating higher ACTA2 mRNA in the tumor tissue possess a 
significantly lower risk of death than ones with lower ACTA2 (median survival (number of years 
after which survival probability = 0.5) reduced by ~2 years). 
d) For all 17,958 genes, Kaplan Meier analyses are summarized by the fold-change in median 
survival plotted against the p-value, yielding 3,464 genes that show significant differences, with 
80% of pan cancer ACTA2 scaling genes predicting prolonged survival 
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Figure S3. 8 

a)i) ~75% of the primary tumor data patient in Liver cancer were not treated. Average ii) LMNB1 
and iii) COL1A1 reads are not affected by treatment  
b)i) ~48% of Breast cancer primary tumor data patients were treated with both pharmaceutical and 
radiation therapy. Scaling of LMNB1 with mitotic genes ii) FOXM1 & iii) MKI67 and iv)collagen is 
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unaffected in patients that are treated with both radiation and pharmaceutical therapy or patient 
which are not treated at all. v) There is no correlation between COL1A1 and LMNB1 irrespective 
of treatment in Breast Cancer  
c)i) Lung adenocarcinoma shows 47% of the patients are not treated, however we compare the 71 
patients that are treated with both radiation and pharmaceutical therapy with them to find that 
scaling exponents are robust to therapy given to patients  

 

Figure S3. 9 Weak scaling can be lost in noisy data. 
a) Multiplying the fit of 	𝑙𝑜𝑔&([𝑚𝑅𝑁𝐴	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑜𝑓	𝐶𝑂𝐿1𝐴1])	 vs  
𝑙𝑜𝑔&([𝑚𝑅𝑁𝐴	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑜𝑓	𝐶𝑂𝐿1𝐴2]) (orange) by 2 (red), 0.5 (cyan) and 0.25 (blue) and adding 
back the residuals of the fit with a RMSE of 0.44, gives lower R2 for lower slope. Right plot: Fitting 
the different slopes vs R2 for the same RMSE.  
b) Similarly for model fit obtained from 	𝑙𝑜𝑔&([𝑚𝑅𝑁𝐴	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑜𝑓	𝐿𝑀𝑁𝐵1])	 vs  
𝑙𝑜𝑔&([𝑚𝑅𝑁𝐴	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑜𝑓	𝑇𝑂𝑃2𝐴]) with a higher RMSE of 0.82. 
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Chapter	4 A	study	in	DNA	damage	repair	

4.1 Introduction 

Single stranded DNA breaks are quite common and quickly repaired by using the other strand as 

a template through various repair mechanisms like Base excision repair (BER), Nucleotide excision 

repair (NER) and mismatch repair. However, double strand DNA breaks (DSBs) are particularly 

hazardous and can lead to major genomic rearrangements. ATM serine/threonine kinase is 

activated and recruited to DSB sites and phosphorylates histone H2AX at serine 139. This gH2AX 

acts as a marker for DNA damage(Huang, Halicka and Darzynkiewicz, 2004). DSBs are tricky 

because both strands of DNA are broken, except for the existence of the sister chromosome, the 

information at the break is potentially lost. Reinstatement of the information depends on the 

accuracy of the DSB repair pathway. There are 3 major pathways to repair DSBs: 

1. Homologous Recombination HR (key proteins- BRCA1, BRCA2): It is the most accurate 

form of DSB repair since it uses the sister chromatid as the template for repair. If there is 

a 3’ overhang at the site of DNA break and the cell is in S or G2 phase of the cell cycle, 

the break is repaired by HR. S/G2 phase has 2-3 other sister chromatids to be used as 

template for HR and hence it is preferred. In G1 phase of the cell cycle, HR is inhibited by 

53BP1(S and SJ, 2014). 

2. Non homologous end joining c-NHEJ (key proteins- Ku80, Ku70, 53BP1): It simply detects 

and joins the ends of the broken DNA without any template and can sometimes lead to 

insertions. Hence telomere which are ends of chromosomes, if not protected by the 

shelterin complex (mainly TRF2), results in telomere end joining due to NHEJ (B, A and T, 

1998). 

3. Microhomology mediated end joining MMEJ or alt-NHEJ (key proteins Lig3, PolQ): It is 

highly error prone and initiates several genomic rearrangements promoted by polymerase 

theta (PolQ) which inhibits HR (PA et al., 2015) 
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Nuclear membrane plays the important role of separating the nucleoplasm from the cytoplasm and 

maintaining the concentration of nuclear proteins like DNA repair factors. Nuclear membrane 

rupture is observed in cells migrating through narrow transwells or cells with low LMNA cultured on 

2D glass slides (Irianto et al., 2017; Xia, Ivanovska, et al., 2018).This leads to sustained mis-

localization of DNA repair factors including Ku80 from the nucleus to the cytoplasm. Culturing cells 

on stiff matrix or knocking down LMNA leads to an increase in the percentage of nuclei that are 

ruptured(Xia, Ivanovska, et al., 2018), as well as passage through narrow pores(3um) vs larger 

pores (8um) leads to increase in rupture. These cells also show increase in DDR (DNA Damage 

Response) measured by increase in gH2AX foci as well as cell cycle arrest(Irianto et al., 2017). 

This phenotype is also seen in cells with knockdown of repair factors (siKu80, siBRCA1), which is 

then rescued by simultaneous transfection of exogenous repair factors (GFP Ku80, GFP Ku70 and 

GFP BRCA1). On the other hand, knockdown of Ku80 in mice leads to a progeroid 

phenotype(Reiling et al., 2014). Their data confirms that inactivation of Ku80 and DNA-PKCS 

causes reduced lifespan and bodyweights, which is most severe in ku80-/- mice. All mutant mice 

exhibited a strong increase in lymphoma incidence as well as other aging-related pathology (skin 

epidermal and adnexal atrophy, trabacular bone reduction, kidney tubular anisokaryosis, and 

cortical and medullar atrophy) and severe lymphoid depletion. Similarly, progeroid phenotype is 

observed with LMNA mutations. Numerous mutations in the human A-type lamin gene (LMNA) 

cause the premature aging disease, progeria (Taimen et al., 2009). The Ku and TRF1 complex are 

a specific high-affinity interaction, as demonstrated by several in vitro methods, and exists in human 

cells as determined by coimmunoprecipitation experiments (Hsu et al., 2000). Following targeted 

Ku80 knockdown, telomere defects are observed and the steady state levels of the TRF2 protein 

are reduced. Inhibitor studies indicate that this loss of TRF2 is mediated by the proteasome and 

degradation of TRF2 following Ku depletion appears to involve a decrease in chromatin binding of 

TRF2, suggesting that the Ku heterodimer enhances TRF2 chromatin association and that non-

chromatin bound TRF2 is targeted to the proteasome. Also, chromosome end-to-end fusions are 

inhibited by shelterin; a multisubunit complex anchored to telomeric DNA by two Myb-containing 

proteins—TRF1 and TRF2 (A, 2012). Telomere fusions are executed by two independent end-
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joining pathways. Classical non-homologous end joining (C-NHEJ), mediated by LIG4 and the 

Ku70/80 heterodimer, is primarily blocked by TRF2 (B, A and T, 1998) . Conversely, alternative 

NHEJ (alt-NHEJ), which is dependent on LIG3 (H et al., 2005)  and PARP1 (M et al., 2006), is 

repressed in a redundant manner (R et al., 2010; A and T, 2012) . Alt-NHEJ is fully unleashed after 

the simultaneous deletion of TRF1 andTRF2, and the creation of shelterin free telomeres in cells 

deficient for Ku70 and Ku80 (also known as Xrcc6 and Xrcc5, respectively)(A and T, 2012). This 

error-prone end-joining pathway mediates fusion of naturally eroded telomeres1, joining of switch 

regions during class-switch recombination, and formation of chromosomal translocations in mouse 

cells (Simsek and Jasin, 2010; Simsek et al., 2011). Despite its central role in NHEJ, reducing the 

levels of Ku80 in human tumor cell lines leads to telomere shortening, telomere fusion and 

apoptosis as the primary phenotype (I, P and MA, 2004; K et al., 2004; G et al., 2007). It has been 

reported that telomere dysfunction in immortal human cells resulting from complete Ku depletion is 

accompanied by telomere uncapping and the appearance of telomeric circles (Wang, Ghosh and 

Hendrickson, 2009). Thinking about the overarching concepts of an aging phenotype displayed by 

both knockdown of Ku80 as well as LMNA mutations, also NHEJ and MMEJ DNA repair pathways 

being implicated in telomere fusions, in this chapter we study the relationship between rupture of 

nuclear membrane and subsequent mis-localization of repair factors with attrition of telomeres, cell 

cycle arrest and aging. 

Oxidative stress induced DNA damage is a major concern in heart because it is a very energy 

intensive organ(Lin et al., 2006; Mondal et al., 2013). Mitochondria produce harmful reactive 

oxidative species (ROS) as a byproduct of their metabolic process and hence play a regulatory role 

in the cell apoptotic process as well.  Previous studies in cancer cells show partial rescue of DNA 

damage though antioxidants(Xia et al., 2019). Chapter 2 shows inhibtion of acto-myosin stress can 

rescue DNA damage in embryonic hearts. We now want to study if DNA damage rescue through 

acto-myosin stress inhibition acts independently from rescue through antioxidants. This is to parse 

out if reduction in DNA damage due to blebbistatin treatment can happen due to reduced 

mitochondrial stress as well as reduced mis localization of DNA repair factors studied in chapter 2. 
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4.2 Results 

4.2.1 Oxidative stress as a source of DNA Damage in hearts and interplay with acto-myosin 

stress 

Reactive oxidative species (ROS) cause oxidative DNA damage by oxidizing DNA base pair 

guanine (G) to 8-oxo-G. It is repaired by the Base excision repair (BER) pathway. Histone H2AX 

has also been shown to by phosphorylated through the BER pathway and hence can be used as 

marker for oxidative DNA damage (Marti et al., 2006). FITC-avidin binds to 8-oxo-G which 

resembles the structure of biotin and can be used to measure DNA damage specific to ROS. 

However in chicken embryonic hearts, FITC has a diffuse cytoplasmic signal showing high intensity 

around small nuclei that might be undergoing apoptosis (Fig 4.1a). Ratio of reduced glutathione 

(GSH) and oxidized glutathione disulphide (GSSG) is an important indicator of the oxidative state 

of a cell (Puente et al., 2014). We find that gH2AX shows a significant increase when the hearts 

are treated with hydrogen peroxide (H2O2) confirming that gH2AX is good marker for oxidative DNA 

damage (Fig 4.1b). We use GSH as an anti-oxidant to study rescue of oxidative damage in 

embryonic hearts. Glutathione reduced ethyl ester (GSH-MEE) is not able to rescue basal oxidative 

DNA Damage after 4 hours, but we find significant decrease DNA damage in hearts treated with 

GSH for 18 hours compared to control hearts kept in the same incubator after extraction from 

chicken egg (Fig 4.1c).  

We also study the use of physiologically relevant N-acetyl cysteine (NAC) in rescue for oxidative 

stress. First we study a dose dependent response to DNA damage with hearts treated with NAC at 

different concentrations for 3 hrs. We find that 2mg/ml is the optimum concentration (Fig 4.1d) and 

at higher concentration of 5mg/ml there is instead an increase in DNA damage. Using 1 hr H2O2 

treatment an external source of oxidative stress, followed by 3 hrs of treatment by blebbistatin or 

anti-oxidant or both, we find that acto-myosin stress inhibition and reducing oxidative stress acts in 

a co-operative manner to significantly reduce DNA damage. Acto-myosin stress inhibition reduces 

DNA damage to a greater extent than anti-oxidant rescue. This indicates that acto-myosin stress 

inhibition and anti-oxidants rescue DNA damage independently. 



92 

 

Figure 4-1 Acto-myosin stress inhibition and anti-oxidants reduce stress in a co-operative manner 
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4.2.2 Mis-localization of DNA repair factors during constricted migration leads to telomere 

attrition 

We use ER inducible D450FOK1TRF1 U2OS cells where florescent TRF1 binds to the sheterin 

complex and indicated telomere ends as foci. We developed our own code to analyze the number 

and intensity if the TRF1 foci. U2OS cells has a nucleus ~20um which undergoes constricted 

migration through pores of 3um diameter resulting in some fragmented nuclei, nuclear membrane 

rupture and blebb formation (Fig 4.2a). Nonetheless, some cells continue to undergo mitosis after 

experiencing acute acto-myosin stress (Fig 4.2b). As studied in Chapter 2, Lamin A play a 

protective role against nuclear membrane rupture. U2OS cells with knockdown of Lamin A 

(siLMNA) (Fig 4.2c) show significantly greater gH2AX foci after undergoing constricted migration 

(Fig 4.2d). DNA damage is related to cell cycle state and increases during S phase of the cell cycle 

due to replication stress. To normalize for such effects, gH2AX is normalized to the total intensity 

of DNA of the cell, this shows significantly higher DNA damage in siLMNA U2OS as well (Fig 4.2e). 

The number of foci in siLMNA U2OS cells is lower (Fig 4.2f). Moreover, cells which are ruptured at 

the time of fixing, indicated by mis-localization of Ku80, show significantly lower number of TRF1 

foci (Fig 4.2g) compared to other cells that do not currently have mis localized Ku80. Decrease in 

number of TRF1 foci also depends on the pore size of transwell used for constricted migration (Fig 

4.2h), indicating TRF1 count is related probability of nuclear membrane rupture and curvature 

stress on the nucleus during constricted migration. 

Figure 4-2 Lamin A protects against telomere attrition in cells undergoing constricted migration 
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Chapter	5 Big	data	analysis	reveals	single	cell	

heterogeneity	in	cancer	and	embryonic	tissue	

SNPa, scRNA seq experiments and phenotype experiments in Fig 5.2f for A549 cells were done 
by Jerome Irianto and Yuntao Xia. scRNA seq and library prep for E5 embryonic chicken hearts 
was done by Mai Wang. Embryonic heart isolation was done by Manu Tewari. 

 
 

5.1 Introduction 

Aneuploidy/copy number variation (CNV) is a hallmark of cancer. Tumors can be thought of as 

ecosystems where each lineage of mutated malignant cell is ‘selected’ for in a Darwinian 

evolutionary process where one of the factors for ‘natural’ selection can also be therapy given to 

the patient. Mutations that provide therapy resistance to a particular set of malignant cells can lead 

to recurrence of cancer. Hence, it is important to track single cell variations in malignant cells. 

DNA/mRNA Sequencing technologies have rapidly evolved since the Human Genome Project was 

completed in 2003, state of the art single cell sequencing technology allows us to study 

heterogeneity in malignant cells. Gene dosage effects leading to phenotypic changes have been 

previously reported in yeast and mammalian cells(Kahlem et al., 2004; Torres et al., 2007; Williams 

et al., 2008). Hence identifying underlying gene dosage effects can be vital to the study of 

emergence of malignancy as well as therapy resistance. There results show that besides epigenetic 

factors like transcription factors, histone modifications etc., aneuploidy can also play a major role 

in determining the phenotype of a cell. In this chapter we use constitutively expressed Lamin B1 to 

track spontaneously emerging CNV in live cancer cells and hypothesize that machine-learning 

dimensional reduction methods can aid discovering links between gene dosage and phenotype. 

Tumor microenvironment can be heterogeneous among patients with the same type of cancer and 

can cause changes in tumor progression(Özdemir et al., 2014; Patel et al., 2014; Tirosh et al., 

2016). As illustrated in Chapter 3, single-cell sequencing allows us to not only parse out variation 

in malignant cells, but also identify other cells in the tumor microenvironment like cancer associated 
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fibroblasts (CAFs), tumor endothelial cells (TECs), tumor associated macrophages (TAMs) etc. In 

this chapter, we apply dimensional reduction techniques to identify constituent cell types in 

embryonic hearts and study the effect of drug perturbations in Chapter 2 at the single cell level. 

Big data with dimensions of ~20000 genes and ~1000s cells is hard to visualize. Moreover, genes 

can show false 0 reads because of lack of sequencing depth due to prohibitive costs(Zhang, 

Ntranos and Tse, 2020). On average, only 30% of the genes in a single cell are sequenced. In this 

scenario, dimensional reduction techniques are important to identify data redundancy, clustering, 

and data visualization. Moreover, these methods prove useful in being able to identify unlabeled 

data, this is called unsupervised machine learning. Traditional linear methods of matrix factorization 

like principal component analysis (PCA), single value decomposition (SVD) etc allow as to 

significantly reduce the dimensions of the data matrix while capturing most of the variability in the 

data. However, state-of-the-art involves non-linear methods using neighbor graphs to recover the 

topology of the manifold and project it into lower dimensions, for example t-distributed Stochastic 

Neighbor Embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP). UMAP has 

advantages over t-SNE in being able to have ‘meaningful’ inter-cluster distance and reduced 

computational time(McInnes, Healy and Melville, 2018). In this chapter we focus on how these 

methods can be used to discover spontaneously arising heterogeneity within malignant cells, as 

well as diverse cell types in embryonic heart tissue. 

5.2 Results 

5.2.1 Machine Learning methods linking genotype to phenotype — using Constitutive protein 

Lamin B1 as a live cell marker to track Copy Number Variation 

Previous chapters show that Lamin B1 is an ‘essential’ protein that is constitutively expressed in 

cells. We use aneuploid A549 cells in which 1 out of the 3 copies LMNB1 is tagged with florescent 

RFP to track loss of chromosome 5 in live cells (Fig 5.1a). Rare clonal colonies of cells in culture 

spontaneously lose florescence indicating loss of the copy of chromosome 5 that has RFP tagged 

Lamin B1 (Fig 5.1b). We select 4 representative RFP+ colonies and 3 RFP- colonies and expand 

the colonies to conduct single cell DNA sequencing. Single nucleotide polymorphism (SNP) array 



97 

 

reveals that besides RFP- cells having only 2 copies of chromosome 5, they also have other CNV, 

for example N1 shows gain of chromosome 7 (Fig 5.1c).  

5.2.1.1 InferCNV is used to identify CNV using scRNAseq 

We now want to study if these CNV can cause gene dosage effects i.e can gain or loss of a 

chromosome on average affect the overall mRNA reads of the chromosome. We use 10x genomics 

single cell mRNA sequencing to get mRNA reads from all 4 RFP+ clones and all 3 RFP- clones. 

We find that dividing the average normalized reads of RFP+ cells from the RFP- shows reduced 

expression of chromosome 5 genes including LMNB1 in RFP- cells (Fig 5.1d). Moreover, median 

factor change in expression of chromosome 5 genes in RFP- compared to RFP+ cells is 2/3 (Fig 

S5-1a), indicating gene dosage effect of losing 1 out of 3 copies of chromosome 5. Using SNPa 

data we can trace the lineage of the clones to find that P3 is the ‘bulk’ clone from which all the other 

cells have diverged by either gaining or losing an entire chromosome or p/q arm of a chromosome 

(Fig 5.1e). To study if each individual clone reveals gene dosage effects, we use inferCNV on 

unlabelled mRNA sequencing data of the clones. InferCNV(Patel et al., 2014; Tirosh et al., 2016) 

is an algorithm developed to parse out variability in mRNA reads coming from epigenetic factors, 

to those coming from gene dosage effects. To identify the unlabeled cells as (P1, P2, P3, P4 or 

N1, N2, N3) each dendrogram branch obtained from hierarchical clustering of InferCNV predicted 

chromosome gains/losses was matched to that from the SNPa data. Heatmap of InferCNV for 

RFP+ cells reveals the expected CNV from SNPa (Fig 5.1f, Fig S5-1b). Moreover, using RFP+ 

cells as reference cells, InferCNV predicts loss of Chromsome 5 across all 3 RFP- cells as well as 

predicting the CNV in each clonal population (Fig 5.1g).  

Figure 5-1 Gene dosage effects linked to spontaneously arising CNV 

a) Constitutive LMNB1 is fluorescently tagged to detect CNV in live cells b) Spontaneously arising 
RFP- and representative RFP+ cells are DNA sequenced c) SNPa confirms loss of chromosome 5 
in RFP- cells and reveals other CNV d) Single cell mRNA sequencing reveals reduced reads from 
genes in chromosome 5 in RFP- cells e) Clone Lineage tracing derived through SNPa data f) 
Hierarchical clustering of InferCNV predicted CNV labels cells to the clones identified in SNPa. g) 
RFP- cells referenced to RFP+ cells reveal loss of chromosome 5 is predicted by mRNA reads as 
well. 
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5.2.1.2 UMAP differentiates clones identified by InferCNV and segregates based on gene 

dosage 

Seurat(Butler et al., 2018) was used to analyze 10x single-cell mRNA sequencing data performed 

on unlabeled RFP+ and RFP- cells. Quality control steps were performed to remove dead cells 



99 

 

(>12 % of reads are mitochondrial genes or number of unique genes mapped <500) and 

doublets/multiples of cells encompassed in the same droplet for 10x genomics (total reads > 

6000/cell) (Fig S5.1c,d). scRNA data matrix is sparse as typically only 30% of the genes in a cell 

are sequenced. Hence it is important to reduce the dimensions of the matrix using PCA before 

conducting UMAP analysis on reduced matrix. Elbow plots are used to determine the number of 

PCs to consider for the UMAP analysis (Fig S5.1e). UMAP on dimensionally reduced matrix for 

single cell data is important. UMAP on the sparse data matrix with PCA dimensional reduction does 

not provide clusters that are as informative and resembles plots of PC1 vs other PCs (Fig S5.1c,f). 

UMAP representation of RFP+ cells clusters all the cells of a particular clone together, confirming 

the clone labels obtained from hierarchical clustering using InferCNV (Fig 5-2a). Similarly for the 

RFP- clones (Fig 5.2b). Identifying differentially expressed genes that show >1.28 times the 

expression in RFP+ cells compared to RFP- cells, most of those genes belong to chromosome 5 

(Fig 5.2c). Chromosome 5 has >7 times the average number of RFP+ upregulated 

genes/chromosome (average=3). This shows a gene dosage effect in the RFP+ cells. 

Interestingly, UMAP of RFP+ cells shows that P1 which has gain of chromosome 7, clusters away 

from the other 3 lineages. This is also reflected a gene dosage response where a disproportionate 

number of differentially upregulated genes in P1 compared to (P2, P3, P4) are from chromosome 

7 (Fig 5.2d). Gene Ontology (GO) Annotation of the 196 genes that are differentially downregulated 

in P1 enrich for the GO terms cytoskeleton and focal adhesion, including genes like ACTB, ACTG1, 

PFN1, RDX, TPM1, TUBB, VIM (Fig 5.2e). 

Phenotypic changes are observed in P1 lineage compared to (P2, P3, P4). P1 cells show decrease 

cell migration persistence, decreased cell speed and increased cell circularity (Fig 5.2f). These 

phenotypic changes can be attributed to differential mRNA expression given that cytoskeleton plays 

a key role in cell motility and focal adhesions play a key role in cell spreading (Fig 5.2g). 

Figure 5-2 UMAP differentiates clones identified by InferCNV and segregates based on gene 
dosage 

UMAP clusters together clones identified by InferCNV in a) RFP+ and b) RFP- cells. c) Differential 
expression of genes in RFP+ compared to RFP- cells reveals 7 times the average number of RFP+ 
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upregulated genes are in chromosome 5. d) Similar analysis comparing P1 to (P2, P3, P4) reveals 
most P1 upregulated genes are in chromosome 7. e) GO term enrichment reveals most 
downregulated genes annotate for cytoskeleton and focal adhesions. f) Phenotypic differences 
observed in P1 cells include reduced i) cell persistence, ii) cell speed and iii) cell spreading. g) 
Phenotypic differences can arise from spontaneous CNV in genetically unstable cancer cells 
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5.2.1.3 Unsupervised machine learning techniques capture and predict the differential 

phenotype observed  

Gene Avg logFC pct.1 pct.2 

VIM -1.34 0.982 0.999 

TGFBI -1.24 0.926 0.987 

LINC00152 -1.23 0.6 0.966 

IGFBP7 -1.11 0.638 0.953 

ACTG1 -1.11 0.998 1 

TPM1 -1.08 0.971 0.993 

EIF1 -1.02 1 0.999 

PMEPA1 -0.96 0.843 0.933 

NPC2 -0.88 0.984 0.997 

KRT7 -0.85 0.964 0.974 

RSPO3 -0.85 0.345 0.899 

MIR4435-2HG -0.80 0.403 0.866 

NPM1 -0.79 0.998 0.998 

IGFBP4 -0.78 0.991 0.997 

RPS7 -0.75 1 1 
 
Table 5-1 15 genes that show the most downregulation in P1 cells compared to other lineages (pct.1=% cells 
in P1 expressing the gene; pct.2=% cells in P2, P3, P4 expressing the gene) 

Top 15 downregulated genes in P1 compared to (P2, P3, P4) include vimentin and long non-coding 

RNA LINC00152 and MIR4435-2HG (Fig 5.3a). Vimentin is involved in cell migration, motility, 

adhesion and is a widely used marker for epithelial to mesenchymal transition (EMT)(Mendez, 

Kojima and Goldman, 2010). EMT is an important process for cancer metastasis in which adhesive 

epithelial cells become migratory. Downregulation of Vimentin by P1 cells might indicate 

mesenchymal to epithelial transition (MET). Moreover, this is also reflected in the phenotypic 

changes observed in Fig 5.2f). P1 upregulated genes annotate for Type 1 interferon response (Fig 

5.3b). Principal Component Analysis (PCA) is a matrix factorization technique that helps reduce 
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the dimensions of data by considering only eigenvectors of the covariance matrix that have 

eigenvalues are above a set threshold. Fig S5-1e shows the first principal component (PC) 

captures most of the variance in the data matrix of genes vs RFP+ cells. Plotting the PC1 vs PC2 

shows that P1 cells separate from the other cells based on PC1 (Fig 5.3c). Hence PCA predicts 

difference in gene expression of P1 cells compared to others. This is also observed in UMAP 

representation of RFP+ cells showing P1 cells clustering away from the rest and showing low reads 

of cell motility genes (Fig 5.3d,e). Downregulation of VIM, LINC00152 and MIR4435-2HG also 

define PC1 which is rationalized by the downregulation analysis above (Fig 5.3f).  

Long non-coding RNA are a sequence of >200 bp that do not map to any protein sequence. 

However, they can have many functions. Sequence specific structure of LINC00152 has been 

shown to promote invasive migratory phenotype in glioblastoma(Reon et al., 2018). LINC00152 

has been shown to promote EMT in glioblastoma through enhanced expression of HMGA2 (X et 

al., 2018), which is also found to be downregulated in P1 (Fig 5.4g). MIR4435-2HG has been 

shown to maintain EMT in lung cancer cell lines through preventing proteosomal degradation of 𝛽-

catenin(Qian et al., 2018).  

Hence unsupervised machine learning techniques capture and predict the differential phenotype 

observed in P1 cells.  

Figure 5-3 P1 downregulates EMT and loses cell motility 

Gene markers a) upregulated and b) downregulated in P1 cells. c) PC1 separates P1 genetic profile 
from the rest. d) Differential gene expression of the P1 gene markers is also observed in the spatial 
representation of the UMAP f) Top 500 cells and 15 genes that define PC1 are represented as a 
heatmap where yellow represents high reads of the gene in that cell g) HMGA1 and HMGA2 are 
downregulated in P1 cells  
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UMAP analysis on merged data matrix of RFP+ and RFP- cells shows UMAP 1 captures 

differences in mRNA expression due to gain in chromosome 7, whereas UMAP 2 captures 

differences in mRNA expression due to loss of chromosome 5 (Fig 5.4a). Moreover, in the center 
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is a small cluster of actively proliferating cells indicated by their high reads of MKI67, TOP2A, 

LMNB1, FOXM1 (Fig 5.4b). This might indicate that actively proliferating cancer cells are ‘de-

differentiated’ and cluster together irrespective of their lineage.  

Figure 5-4 UMAP captures and predicts differential phenotype observed 

a) Gain of chromosome 7 and loss of chromosome 5 is represented in the UMAP axes b) Heatmap 
representation of cells in UMAP show ‘de-differentiated’ cluster of actively proliferating cells based 
on high reads of MKI67, TOP2A, LMNB1, FOXM1 
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5.2.2 Machine Learning methods identify constitutive cell types in embryonic heart tissue 

Chapter 2 studies the role of Lamin-A as a mechanosensitive protector against DNA damage and 

cell cycle arrest in embryonic hearts. However, the embryonic heart tissue is a conglomeration of 
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different cell types, and we would like to further study if the acto-myosin stress inhibition and DNA 

damage can have cell type dependent effects. To do that, we must first identify the cell types. Here 

we aim to use dimensional reduction methods developed in the previous section to identify 

constitutive cell types in embryonic heart tissue. 

We performed 10x single cell mRNA sequencing on 4 types of samples from Chapter 2- DMSO 

(Ctrl), Blebb (2 hrs of blebbistatin treatment), BlebbWO (2 hrs of blebb treatment followed by 1 hr 

of washout), H2O2 (3 hrs of oxidative DNA damage). We first do quality control checks on the 

sample and remove any cells that have >12% mitochondrial genes and <200 total reads (indicating 

that they might be dead/empty droplets). We also remove cells with higher that >3000 reads which 

might be doublets/multiplets of cells (Fig S5.2a). Principal components analysis (PCA) enables us 

to reduce the dimensions of the sparse matrix of genes vs cells. PCs identify the orthogonal vectors 

along which the cells show the most variation, Fig S5.2b lists the genes that define the PCs. We 

use the Elbow plot to determine that reducing the dimensions of the matrix to 15 PCs captures 

most of the variation in the matrix (Fig S5.2c).  

UMAP of the reduced matrix shows that samples do not cluster together, instead cell types common 

across the samples cluster together (Fig 5.5a). The only exception to this is the DMSO sample has 

cells that exclusively dominate cluster number 5. We use differential expression analysis to define 

cluster markers that show >1.28 times the expression in that cluster compared to others. Three 

clusters show high reads for fibrous ECM genes - COL1A1, COL1A2, COL3A1 indicating epithelial 

or epicardium phenotype (Fig S5.3a). Development of heart valve cells involves mesenchymal cells 

that express SOX9 which further upregulates chondrogenesis(Garside et al., 2015). Hence, we 

label this cluster as valve cells (Fig S5.3b). The cluster that contains only DMSO cells shows high 

reads of ECM genes as well as CRABP1 which is downstream of retinoic acid signaling that 

regulates LMNA expression (Swift et al., 2013). We label this cluster as DMSO epicardial cells, 

which perhaps are only present in hearts that have not undergone acto-myosin inhibition or 

extensive DNA damage (Fig S5.3c). Cardiomyocytes were identified by high reads of troponin and 

actinin reads (Fig S5.4a). Endothelial cells were identified by high reads of PECAM1, cadherin and 
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angiogenesis genes (Fig S5.4b). Erythrocytes were identified by high reads of heme-globin and 

heme biosynthesis genes (Fig S5.4c). Lastly macrophages were identified by markers like CD74, 

CSF1R (Fig S5.4d).  

UMAP successfully segregates cell types into distinct clusters (Fig 5.5b), which can be identified 

by high reads of specific cell-type markers (Fig 5.5c). 

Each drug perturbation has roughly same proportion of cell types, except for the control (DMSO) 

sample also having specific epicardial cell population with distinct markers (Fig 5.6a).  Among the 

cells sequenced, cells clustered as epicardial cells show the highest number (Fig 5.6b). In contrast 

to other cell types, erythrocytes show a higher number of reads for the number of unique genes 

that the reads are mapped to, perhaps indicating advanced state of differentiation - high reads of a 

limited number of genes (Fig 5.6c). This has also been observed in published scRNA data from 

chicken embryonic hearts(M et al., 2021). The alternative hypothesis is that they are droplets that 

also had lysed erythrocytes or floating mRNA along with the cell being sequenced, resulting in high 

reads of heme biogenesis genes.  

Figure 5-5 UMAP clusters cell type across hearts with different drug perturbations 

a) UMAP does not segregate cells based on drug perturbation b) but by constituent cell types c) 
which can be identified by gene expression profile specific to the differentiated cells  
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Figure 5-6 Distribution of cell types in hearts treated with different drug perturbations 

a) Cell type count normalized to total number of cells in the sample b) Distribution of cell type across 
samples c) Total count of mRNA reads compared to total number of unique genes mapped in a 
cell shows erythrocytes have a disproportionately high total count of mRNA 
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5.3 Discussion 

LMNA shows high reads across cell types (Fig 5.7i). Genes coding for heterodimers of collagen-1, 

COL1A1 and COL1A2 show high reads in concurrent cells, as does another fibrous ECM gene -

COL3A1 (Fig 5.7ii-iv). Two major double strand break DNA repair pathways are Homologous 

Recombination (HR) and Non-homologous end joining (NHEJ). HR genes (BRCA1, BRCA2) and 

NHEJ genes (XRCC5, XRCC4) show very few high reads that equitably distributed across cell 

types (Fig 5.7vii-ix). LMNB1 shows high reads in cells that are actively proliferating as indicated 

by the concurrent high reads of FOXM1, CENPF, SMC2. In contrast, LMNA shows high reads 

uniformly across diverse cells. It is also interesting to note that unlike cancer cells in culture, actively 

proliferating cells in embryonic heart tissue are distributed throughout cell types and do not ‘de-

differentiate’ to form one cluster (Fig 5.7xii-xv). Very few high reads of p21 (CDKN1A) are 

observed, which is downstream of p53 cell cycle arrest pathway. Interestingly epicardial cells 

specific to the DMSO (Ctrl) sample do not show any high reads of CDKN1A (Fig 5.7xvi).  

Figure 5-7 Heatmap based on the reads of genes in individual cells spatially organized in UMAP 
clusters 
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3.4 Supplementary Figures 

Fig S5.1 a) 0.67 is the most common fold change in chromosome 5 gene expression of RFP-/RFP+ 
A549 cells b) SNPa of 4 divergent clones of RFP+ A549 cells. Cells with high % of mitochondrial 
genes or low total mRNA reads were removed for c) RFP+ and d) RFP- cells. e) Elbow plots were 
used to determine the number of PCs to include for further analysis. f) UMAP on data matrix without 
dimensional reduction resembles PC1 vs PC2 plots 

Fig S5.2 a) Cells with high % of mitochondrial genes or low total mRNA reads were removed as 
they are probably dead cells/empty droplets b) Top 15 upregulated and downregulated genes that 
define principal component vectors and heatmap of the top 100 cells that show high reads (in 
yellow) of upregulated genes and low reads (pink) of downregulated genes (pink) c) Elbow plots 
were used to determine the number of PCs to include for further analysis 
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Fig S5.3 Cell type specific expression of a) fibrous ECM genes b) Chondrogenesis genes and 
SOX9 c) Genes upregulated in DMSO (Ctrl) sample specific cells 
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Fig S5.4 Cell type specific expression of genes annotated for a) troponin and actinin b) basement 
membrane and angiogenesis c) heme biogenesis d) macrophage 
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Chapter	6 Conclusions	and	Future	directions	

Lamins are intermediate filament proteins that form a meshwork under the nuclear membrane. In 

this thesis, we study two major types of Lamins i.e. A-type Lamins and B-type Lamins. Lamin A is 

coded in the LMNA gene present on chromosome 1. Lamin B1 is coded by LMNB1 gene in 

chromosome 5 and Lamin B2 is coded in by LMNB2 in chromosome 19. The two lamins have a 

largely similar structure except that B-type lamins are farnesylated to the nuclear membrane. There 

are however reported differences in the phenotype dictated by different lamins, for example, 

diseases like dilated cardiomyopathy, progeria etc are caused due to Lamin-A mutations but Lamin 

B1 mutation associated diseases are not widely observed in the human population.  Moreover, in 

contrast to A-type lamins, silencing of B-type lamins leads to apoptotic phenotype in cell culture 

indicating they are essential after birth (Harborth et al., 2001b). The idea of Lamin B1 being 

essential is reinforced by studies showing Lamin B1 null mice die soon after birth (Vergnes et al., 

2004). Lamin B1 downregulation is also widely accepted as a marker for senescent cells (cells 

which have exited cell cycle) (Freund, R. M. Laberge, et al., 2012). Lamin A scales with collagen 

and increasing stiffness of tissue, in contrast to Lamin B1. In developing embryos, Lamin B1 is 

expressed from an early stage, in contrast Lamin A is almost undetectable and increases as the 

embryo develops ( Cho, Vashisth, et al., 2019). This indicates differences in the roles of the two 

lamins where Lamin B1 is essential for proliferation, but Lamin A is mechanosensitive. This thesis 

studies the divergent roles of these two lamins in proliferating tissues of cancer and developing 

embryos.  

6.1 Mechanosensitive Lamin-A protects against DNA damage, telomere attrition 

and cell cycle arrest 

Lamin A is regulated in an acto-myosin stress dependent fashion through phosphorylation during 

interphase. This perhaps rationalizes many Lamin A mutation diseases being associated with 

cardiac/skeletal tissues which are stiff and have high acto-myosin stress like dilated 

cardiomyopathy, muscular dystrophy, progeria. The mechanism through which Lamin A mutation 

might cause progeria (accelerated aging) is unclear. Interestingly, mice deficient in Ku80 also show 
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progeroid symptoms and Ku80 plays an important role in telomere maintenance. Progeroid Lamin 

A is not mechanosensitive and shows decreased interphase phosphorylation (Cho et al., 2018). 

Chapter 2 shows Ku80 preferentially binds to non-phosphorylated form of Lamin A. Further studies 

might indicate the role of progeroid Lamin A in sequestration of Ku80 which leads to telomere 

specific DNA damage.  

Chapter 2 shows mis regulation of Lamin A increases probability of nuclear membrane rupture in 

embryonic heart tissue as well as cancer cells in culture. This results in knockdown of Lamin-A 

mimicking the phenotype of knockdown of DNA repair factors, leading to accumulation of DNA 

damage and p53 signaling dependent cell cycle arrest. This also results in DNA damage specific 

to telomeres. Telomere dysfunction has been associated with cardiomyocyte cell cycle arrest (Aix 

et al., 2016) and heart failure (M et al., 2017). Perhaps one of the factors instigating the sharp 

decline in proliferation observed in post-natal hearts is p-53 dependent cell cycle arrest due to 

accumulated DNA damage in embryonic hearts. 

Chapter 5 studies methods to link phenotype to spontaneously arising CNV in lung 

adenocarcinoma epithelial cells. Interestingly, copy number variation has also been reported in 

‘normal’ cells like liver, brain, donor derived fibroblasts, neurons differentiated from human induced 

pluripotent stem cells (hiPSC) and post-mortem brains (McConnell et al., 2013; Knouse et al., 

2014). There have also been reports of early stage embryonic cells exhibiting aneuploidy which 

decrease at later stages of embryonic development (MC et al., 2000; C et al., 2007). Heart is the 

first functional organ to develop in a vertebrate. Embryonic heart nuclei experience acute acto-

myosin stress. Chapter 2 shows mis-regulation of mechanosensitive LMNA in embryonic heart cells 

leads to accumulation of DNA damage and they undergo cell cycle arrest. Future work studying 

scDNA seq in embryonic hearts with mis regulated LMNA or externally induced DNA damage can 

depict CNV. InferCNV and UMAP pipeline developed in Chapter 5 can be used to study cell type 

specific CNV and cell cycle arrest phenotype. DMSO Control hearts in chapter 2 also show basal 

level of mis localization of DNA repair factors, DNA damage and p21 expression. Perhaps, cells 

that show cell cycle arrest are also the ones that have CNV. Moreover, DNA damage due to 
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replication errors (replication stress) play a major role in tumorigenesis (Tomasetti and Vogelstein, 

2015; C, L and B, 2017). Chapter 3 shows DNA repair factors are upregulated in proliferating 

primary tumors compared to adjacent uninvolved. Permanent exit from cell cycle in post-natal 

hearts may be a mechanism to prevent tumorigenesis given that heart tumors are extremely rare. 

Hence, even though lack of regenerative capacity in hearts underlies the pathophysiology of 

myocardial infarction, perhaps it has evolved to prevent tumorigenesis in this tissue that 

experiences high mechanical stress. This might be something to keep in mind when developing 

regenerative therapies for the heart. 

6.2 Lamin B1 is a marker for proliferation  

Activated oncogene Ras induced senescence is achieved by autophagy mediated degradation of 

Lamin B1(Dou et al., 2015). Perhaps this indicates that Lamin B1 plays an important role in onset 

of cancer, and autophagy mediated degradation of Lamin B1 has evolved as a mechanism to 

prevent tumorigenesis through activation of oncogene Ras. Moreover, Lamin B1 is essential for 

embryonic development(Harborth et al., 2001a), is constitutively expressed early in development 

(Sangkyun Cho, Vashisth, et al., 2019) and closely associates with chromatin in late mitosis 

(Gerace and Blobel, 1980). Chapter 3 shows that LMNB1 is upregulated in 15 cancer and predicts 

significantly poor survival in 8 cancers. Lamin B1 differs from Lamin A besides structural differences 

in terms of farnesylation, chapter 3 shows that Lamin B1 is regulated by oncogene FOXM1 and 

acts as a functional marker for cancer. Blood circulating LMNB1 is used as a prognostic marker in 

Liver Cancer (Sadek Rezk et al., 2015; Abdelghany et al., 2018), given that it also predicts poor 

survival in 7 other cancer, more expansive studies in other cancers can be conducted. Blood 

circulating markers are important for early detection and early detection can make a big difference 

in survival of patient. LMNB1 scales with mitosis associated genes like KIF18B, TOP2A, KIF20A, 

CENPF in >17 cancers. Moreover, the other farnesylated lamin- Lamin B2 has been shown to play 

a vital role in karyokinesis (Han et al., 2020). Future work would perhaps study the role of Lamin 

B1 in mitosis and karyokinesis which involves kinesins, like that of Lamin B2. 
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6.3 ‘Universal’ scaling laws and dimensional reduction techniques help visualize 

meta-patterns 

Each cancer can have a very specific pathophysiology, indeed it is hard to find a ‘cure-all’ panacea 

for cancer, given each type of cancer is a very different disease altogether. As personalized 

medicine emerges and more and more patients get their genome sequenced, we find that within a 

cancer type also patients can have a multitude of different malignancies which evolve with time. 

However, scaling laws in biology like Klieber’s power law (KLEIBER, 1947) (Thommen et al., 2019) 

metabolic rate ~ (body mass)0.75 hold true for seemingly disparate entities ranging from the 

mitochondria to the elephant. Universal scaling laws can also enable prediction of mechanism, for 

example Hemoglobin binding of oxygen fits a characteristic power law of ~3 at half-saturation (the 

“Hill coefficient”), prompting Pauling to propose a now well-known molecular mechanism (Pauling, 

1935). In chapter 3 we find similar ‘universal’ scaling laws hold for gene expression in cancer and 

can help discover novel ‘pan-cancer’ transcriptional regulators, for example FOXM1 regulates 

transcription of LMNB1 (Fig 3.4). Specific values of power law exponents are informative. For 

example, high levels of the ACTA2 contractile gene set is pro-survival in liver cancer based on 

(Tumor/Adjacent) data and also for the larger patient sets of tumor-only data except for the one 

contractile gene with the lowest power: TAGLN shows no significance in survival in the tumor-only 

data (Fig.S3.7d). All of the contractile genes scale (strongly) with ACTA2 exponents >1. In 

comparison, the COL1A1 synthetic gene set is pro-survival only in the (Tumor/Adjacent) data and 

is not significant in nearly all of the larger patient sets of tumor-only data (Fig.3.7e,f,S3.7d); and 

unlike the ACTA2 exponents, all(except POSTN) of the synthetic genes scale (weakly) with 

COL1A1 exponents <1 (Fig.3.6d), which means COL1A1 scales super-stoichiometrically with 

respect to the other genes. A reasonable analogy is that collagen-1 forms the woody bulk of a tree 

that the other factors assemble onto like bark or leaves on the tree. Regardless of the utility of this 

analogy, the contractile gene set is overall more sensitive to any changes in ACTA2.  

In recent experiments(Dingal and Discher, 2015), ACTA2 protein increases dramatically with a 

strong, switch-like cooperativity exponent of ~3 as a mechano-repressive transcription factor exits 

the nucleus in mesenchymal cells that spread on stiff collagenous substrates but not on soft 
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substrates. Importantly, COL1A1 shows no change when we overexpressed the same transcription 

factor in cells on rigid plastic, which drives its nuclear accumulation and represses ACTA2 as 

expected. Thus specific power law exponents help to indicate strong (ACTA2) or weak (COL1A1) 

regulation, extending it seems to data for patient survival. 

Machine learning methods for dimensional reduction are important to process big data, especially 

if the data is sparse. Chapter 5 elaborates methods that can be used to link CNV to phenotype and 

identify constituent cell type in tissues. 

Applications of Scaling-informed Machine Learning (SIML) 

In chapter 3 we discover that ‘universal’ scaling laws and proliferation markers can inform machine 

learning dimensional reduction methods to form clusters predictive of patient survival. 

Scaling laws can also identify genes sets that are useful for cell-type identification in scRNA 

sequencing, for example, identifying genes that differentiate ‘synthetic’ CAFs from ‘contractile’ 

CAFs. 

This thesis combines wet lab experiments and machine learning computational methods to study 

the role of Lamins in proliferating cells. 
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