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ABSTRACT 
 

LITTLE ELONGATION COMPLEX (LEC) AND SUPER ELONGATION COMPLEX 

(SEC) AS REGULATORS OF TDP-43-ASSOCIATED NEURODEGENERATION 

Chia-Yu Chung 

Nancy M. Bonini 

 

TDP-43 aggregation is the pathological hallmark of amyotrophic lateral sclerosis (ALS) 

and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-TDP). To 

define pathways important in TDP-43 proteinopathy, a genetic screen for modifiers of 

TDP-43-mediated eye degeneration was conducted in the fruit fly (Drosophila 

melanogaster). This approach and the following studies in the fly identified 

transcriptional elongation factor Ell as a potent dose-dependent modifier. Ell is a shared 

component of little elongation complex (LEC) and super elongation complex (SEC). Our 

studies show that downregulation of additional components in LEC or SEC partially but 

consistently ameliorates TDP-43-associated eye degeneration, implicating both Ell-

associated complexes in TDP-43 toxicity. LEC regulates transcription of RNA 

Polymerase II (Pol II)-transcribed small nuclear RNAs (snRNAs), while SEC mainly 

regulates transcription of select inducible genes harboring paused Pol II including stress-

induced loci. We hypothesized that, in the disease state, TDP-43 increases the activity 

of LEC and SEC, leading to enhanced expression of select target genes that contribute 

to neurodegeneration. Our results support this hypothesis by showing that select targets 

of LEC and SEC become upregulated in fly heads expressing TDP-43 compared to 

controls. Among upregulated targets, U12 snRNA and a stress-induced long non-coding 

RNA (lncRNA) Hsrw were shown to functionally contribute to TDP-43-induced 
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degeneration in Drosophila. The increase in U12 snRNA leads to elevated activity of the 

U12-dependent spliceosome, assessed by examining U12-dependent splicing events. 

Among the known U12 targets, the splicing of genes CG15735, CG16941 and CG11839 

were shown to be upregulated selectively by TDP-43. In addition, the novel target of 

TDP-43 Hsrw was identified by polytene chromosome association of TDP-43 and SEC 

components Lilli and Ell in the fly. We extended the findings of Hsrw to show that the 

human orthologue Satellite III repeat (Sat III) is elevated in both a human cellular 

disease model of TDP-43 toxicity, and FTLD-TDP patient tissue. Furthermore, TDP-43 

was shown to interact with human ELL2 by co-immunoprecipitation from human HEK293 

cells. These findings support a model whereby TDP-43 promotes the LEC and SEC 

activities through an interaction with ELL2, leading to abnormal activation of LEC and 

SEC target genes that contribute to degeneration. These studies reveal the critical roles 

of Ell and Ell-associated complexes in TDP-43 toxicity, identify important downstream 

targets, and provide potential therapeutic strategies to combat TDP-43-associated 

neurodegeneration. 
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CHAPTER 1 : INTRODUCTION 

THE ROLES OF ELL-CONTAINING TRANSCRIPTIONAL ELONGATION COMPLEXES 

IN TDP-43-ASSOCIATED NEURODEGENERATION 
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	ALS/FTD and TDP-43	

Amyotrophic lateral sclerosis (ALS; OMIM no. 105400) and frontotemporal dementia 

(FTD; OMIM no. 600274) are two neurological disorders with distinct clinical features yet 

share common pathogenic mechanisms 1-4. ALS is the most common motor neuron 

disease, resulting from loss of upper and lower motor neurons in the motor cortex, the 

brainstem and spinal cord, which leads to fatal paralysis.  FTD is the second most 

common cause of early onset dementia, caused by progressive neuron death in the 

frontal and temporal lobes. This results in changes in behavior, personality and/or 

language. Increasingly, evidence indicates that ALS and FTD may be within the same 

disease spectrum. First, about 15% of ALS patients develop the symptoms of FTD and 

vice versa 5-7. Second, genetic mutations in shared genes link these two diseases 1,2,8. 

Among the genes bearing causal mutations for both diseases, TAR DNA-binding protein 

43 (TDP-43) further connects these two diseases. In 97% of ALS and 45% of FTD 

(FTLD-TDP/FTLD-U) patients, TDP-43 was identified to be the major component of 

aggregates in the central nervous system 9,10. In the neurons and glia containing TDP-43 

inclusions, physiological diffused nuclear TDP-43 is cleared and cytoplasmic aggregates 

of full length and truncated TDP-43 are observed with abnormal hyperphosphorylation 

and ubiquitination 9,10.  

 

TDP-43 is a DNA and RNA binding protein with the molecular weight of 43 kDa, which 

was discovered and named for its ability to bind transactive response (TAR) element of 

human immunodeficiency virus type 1 (HIV-1) 11. The total length of TDP-43 is 414 

amino acids. It contains a N-terminal domain (NTD) including a nuclear localization 

signal, two RNA recognition motifs (RRMs) with a nuclear export signal within the 

second RRM domain and a C-terminal domain (CTD). The CTD containing QN-rich 
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residues is implicated in the aggregation propensity of TDP-43 and is where most of 

ALS/FTD-associated mutations are located 12-14. TDP-43 is involved in various cellular 

processes, including splicing regulation, microRNA processing, RNA stability, gene 

expression, RNA translocation between nucleus and cytoplasm, stress granule 

regulation, cell proliferation and apoptosis 13,15. Research in different disease models 

shows that both upregulation and depletion of TDP-43 leads to neuron loss, indicating 

that a balanced level of TDP-43 is critical in the nervous system 13,16,17.   

 

Drosophila as a powerful genetic model system 

To understand the mechanisms of TDP-43 protein pathology, animal models have been 

established. Each disease model has its strength, revealing disease mechanisms from 

different angles. Drosophila melanogaster has a short lifespan, conserved genes and 

pathways with humans as well as powerful genetics, providing an extraordinary system 

for unbiased genetic screens to identify novel pathways. The life cycle of each 

generation of the fruit fly is about 10 days; therefore, large numbers of progeny for 

research can be obtained in a short period of time. Moreover, although the genome size 

of Drosophila (1.2 x 108 base pairs) is much smaller than the human genome size (3.3 x 

109 base pairs), around 70% of known human disease genes have fly orthologs in the fly 

based on sequence analysis 18,19. This homology provides an opportunity for elucidation 

of mechanisms that may be involved in human disease. In fact, the smaller genome size 

of the fly reduces the complexity of gene redundancy of mammalian systems, and allows 

quicker and easier interpretation for loss of function studies.  
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The advantages of using Drosophila as a model organism also include a comprehensive 

and versatile toolbox for genetic manipulation. The fruit fly has been used as a model 

organism for more than 100 years, and tools have been developed to manipulate the 

expression of fly genes 20,21. For example, the GAL4-UAS bipartite system is widely used 

for gene manipulation, allowing spatial and temporal expression of exogenous genetic 

constructs 22,23. The system is composed of two parts. In one construct, a tissue specific 

promoter drives the expression of the yeast transcription factor GAL4; in the second 

construct, a desired transgene is combined with an upstream activation sequence 

(UAS), which can be activated by the GAL4. Therefore, the transgene will be selectively 

expressed in the tissue of interest. Additional regulation and modification of GAL4 can 

be used to control the temporal expression. For instance, Gal80ts, a temperature 

sensitive inhibitor of the GAL4 protein, is used to turn on the expression system at higher 

temperature (>30°C), at which the inhibition by Gal80ts is repressed 24. Another method 

is by using a ligand-inducible GAL4 chimera, GAL4-progesterone receptor fusion 

(GeneSwitch), which is activated in the presence of the drug mifepristone (RU486) 25. 

 

Over time, the fly community has generated comprehensive collections of mutants and 

transgenic fly lines. The Bloomington Drosophila Stock center at Indiana University 

(BDSC) held 67,634 stocks at the end of 2017, including a genome-wide RNAi 

collection. There are also other Drosophila stock centers, such as the Vienna Drosophila 

Research Center (VDRC), Kyoto Stock Center (DGRC), Fly Stocks of National Institute 

of Genetics (NIG-FLY) and Zurich ORFome Project (FlyORF). Together, these stock 

centers provide an accessible resource allowing manipulation of almost every gene. The 

extensive resources and toolbox make Drosophila an excellent model organism for 
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genetic screen. Such screens have highlighted various factors in fly disease models of 

neurodegenerative disorders 26,27.  

 

Fly models for TDP-43 toxicity  

The TDP-43 pathologies, which includes nuclear clearance and cytoplasmic 

accumulation of TDP-43, suggests the possibility that degeneration may be caused by 

loss-of-function in the nucleus and/or gain-of-function in the cytoplasm 9,10. Different fly 

diseases models have been used to elucidate mechanisms in TDP-43-associated 

neurodegeneration, including depletion and overexpression of Drosophila TDP-43 

(TBPH) 28-31, and expression of different forms of human TDP-43 32-38. Downregulation of 

TBPH in the fly leads to neuronal defect and shortened lifespan 28-31, indicating that 

normal function of TBPH is important for neuronal function and supporting the loss-of-

function model. Fly TBPH and human TDP-43 share conserved domains, and sequence 

analysis shows 59% amino acid identity between them 39. Both proteins bind to UG 

repeat sequences 39. Furthermore, the phenotype caused by TBPH depletion can be 

rescued by human TDP-43 28, indicating functional conservation between fly and human 

TDP-43. Ectopic expression of TBPH or human TDP-43 also recapitulates features of 

human patients, such as neuron loss, motor disability and decreased lifespan 30-35,37,38. 

Furthermore, at the molecular level, expression of fly and human TDP-43 can lead to 

cytoplasmic TDP-43 aggregation, and ubiquitinated and phosphorylated forms of TDP-

43 aggregates, mimicking human molecular pathologies and potentially modeling the 

gain-of-function toxicity 31,33,36-38. Therefore, dissecting the pathways involved in 

neurodegeneration in these different disease models may reveal mechanistic insights of 

TDP-43 proteinopathy in human disease. 
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In order to elucidate novel and important factors involved in TDP-43-associated 

neurodegeneration, studies in our lab using the Drosophila eye as a platform for genetic 

screening. We identified Drosophila eleven-nineteen lysine-rich leukemia (Ell; also 

known as Su(Tpl)) as a potential modifier of TDP-43-mediated degeneration. The 

Drosophila eye provides a platform for high throughput genetic screening since it is a 

nonessential organ for survival. The fly compound eye is a simple and delicate nervous 

system composed of thousands of neuronal and nonneuronal cells 40. The basic unit is 

ommatidium, which contains 8 photoreceptor neurons and surrounded by 4 lens-

secreting cone cells and 2 primary pigment cells. In between each ommatidium, there 

are 12 accessory cells.  Because the structure of the eye is highly ordered, degeneration 

and cell death can be easily observed as morphological phenotypes, such as rough eye, 

small eye or change of pigmentation. Expression of the human TDP-43 in fly eye leads 

to disruption of eye integrity 37,38, and studies in our lab found that downregulation of Ell 

strongly suppresses the degeneration caused by TDP-43 toxicity. 

 

Transcription elongation factor: Ell 

RNA Polymerase II (Pol II) is a 12-subunit enzyme that synthesizes protein-coding 

mRNAs and non-coding RNAs (ncRNAs). The process is tightly regulated at different 

stages of transcription, including initiation, pausing, elongation and termination. More 

and more attention has been brought toward the understanding of pausing regulation. 

After forming the preinitiation complex, Pol II can pause and accumulate in the proximal 

region (30-60 nucleotides downstream of the transcription start site) 41-43. The release of 

paused Pol II into productive elongation requires the kinase, positive transcription 

elongation factor b (P-TEFb). P-TEFb is composed of the cyclin-dependent kinase 9 
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(CDK9) and cyclin T1 (CYCT1) or CYCT2. It can phosphorylate negative elongation 

factor (NELF), 5, 6-dichloro-1-b-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing 

factor (DSIF) and Pol II on the carboxy-terminal domain (CTD). NELF and DSIF are 

factors working together to set up paused Pol II at the promoter-proximal region. 

Phosphorylation of these 3 factors leads to dissociation of NELF from Pol II and 

productive transcription elongation.  

 

Indicated by large scale genomic studies, the release of paused Pol II into elongation is 

an important rate-limiting step of gene expression, potentially for all active genes 44. 

Depending on the methods and cell type, 40%-70% of active genes show accumulation 

of Pol II at the promoter proximal region. However, studies using drug treatments 

inhibiting P-TEFb and genome-wide sequencing methods show that prevention of Pol II 

from releasing halts almost all transcription. These data suggest that P-TEFb dependent 

pausing regulation may be a highly variable rate-limiting regulatory step for all active 

genes. The importance of pausing regulation has been highlighted by research 

investigating its role on transcription subjected to regulatory control and stimuli, such as 

differentiation signals and heat stress 41-43. Transcriptional pausing regulation allows 

rapid induction of transcription as well as enabling fine-tuning of gene activation. The 

paused Pol II is transcriptionally-engaged and awaiting signaling events, such as 

developmental cues, physiological signals and stress response. Upon stimulation, 

poised Pol II can activate gene expression rapidly and serve as a transcription 

checkpoint for precise and synchronized gene activation upon stimulation. 
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Several factors regulating transcriptional elongation have been identified by in vitro 

biochemical assays; these factors include ELL 45. ELL was isolated from rat liver nuclei 

extract as a factor that promotes the catalytic rate of transcription elongation by 

repressing transient pausing of Pol II 46. Human ELL is a protein containing 621 amino 

acids, which is also capable of simulating transcription elongation like the rat ELL protein 

46. Following the purification and investigation of ELL, two additional ELL-related 

proteins, ELL2 and ELL3, were also characterized in mammalian cells 47,48. Through 

sequence comparison, ELL2 and ELL3 were identified and cloned for in vitro 

characterization. The ELL2 open reading frame (ORF) encodes a 640-amino acid 

protein 48, while ELL3 ORF encodes a protein containing 397-amino acids, which is 

testis specific based on Northern blot analysis in different tissues 47. The alignment of all 

three proteins by CLUSTAL O (1.2.4) multiple sequence comparison is shown in Figure 

1-1. Analysis by Clustal 12.1 shows that ELL and ELL2 share 49.43% identity; ELL and 

ELL3 share 32.9% identity; ELL2 and ELL3 share 31.97% identity (Table 1-1). 

Biochemically, all three ELL family proteins can increase the catalytical rate of Pol II 

transcription elongation 46-48. In vivo studies indicate that the function of ELL3 is distinct 

from the other two. By using mouse embryonic stem cells, ELL3 was shown to occupy 

enhancer regions for priming of gene activation for proper differentiation 49.  
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Figure 1-1. Alignment of human ELL, ELL2, ELL3 and Drosophila Ell 
Comparison of protein sequences of ELL, ELL2, ELL3 and fly Ell by CLUSTAL O 
(1.2.4) multiple sequence comparison. 
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Table 1-1. Percentage identity matrix created by Clustal 12.1 
 Human ELL Human ELL2 Human ELL3 Fly Ell 

Human ELL 100.00 49.43 32.90 30.38 
Human ELL2 49.43 100.00 31.97 28.73 
Human ELL3 32.90 31.97 100.00 20.73 
Fly Ell 30.38 28.73 20.73 100.00 

 

The ELL family proteins are highly conserved in mammal and nonmammal species 50. In 

Drosophila, Ell is the orthologue with a conserved function in promoting Pol II elongation. 

Ell was cloned and shown to increase catalytic rate of Pol II elongation in vitro 51. 

Although the neighbor-joining phylogenic tree indicates that fly Ell is equally divergent 

from human ELL family proteins (Figure 1-2), according to sequence alignment, fly Ell is 

more similar to human ELL (30.38% identity) and ELL2 (28.73% identity) than ELL3 

(20.73% identity) (Figure 1-1 and Table. 1-1). Ell was also shown to regulate heat shock 

gene induction upon heat stress in vivo. By chromosome 

immunostaining in the fly salivary gland, Ell was found to 

co-localize with active elongating Pol II under heat 

stress treatment at heat shock loci, which have been 

used as an established model for investigating the 

regulation of paused Pol II in Drosophila 51,52.  

 

The heat shock response is highly conserved for the protection of cells from a heat 

stress-induced proteotoxic environment 53,54. Upon heat shock and other stresses, heat 

shock genes are rapidly and strongly induced. Heat shock proteins encoded by these 

genes are molecular chaperones that maintain proteostasis and promote cell survival. 

Research on heat shock genes in Drosophila is one of the early studies that indicates 

the existence of a transcriptional elongation control mechanism. In Drosophila cells, Pol 

Figure 1-2. A phylogenic 
tree for human ELL family 
proteins and fly Ell 
A neighbor-joining phylogenic 
tree shows that human ELL 
and ELL2 are less divergent. 
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II was found to be transcriptionally engaged and form a nascent RNA chain of about 25 

nucleotides at one of the major heat shock genes, HSP70, prior to heat shock treatment 

55. The paused Pol II can be released to synthesize the full-length HSP70 transcription 

unit upon heat stress treatment 56. In the fly, staining of the salivary gland polytene 

chromosomes is often used for study of heat shock response. In the salivary gland of the 

3rd instar larvae, the chromosomes go through multiple rounds of replication without cell 

division, resulting in giant polytene chromosomes. This provides a unique opportunity to 

study the relationship between chromatin structure and transcription. Upon heat shock, 

stress genes are actively expressed and causes heat shock “puffs” on the polytene 

chromosomes, such that the major heat shock loci and encoded genes have been well 

characterized and identified 57-63. Regulations of the transcription elongation of heat 

shock genes is conserved in mammals 64,65. 

 

Ell is involved in SEC and LEC 

Ell has been reported to be part of two elongation complexes: super elongation complex 

(SEC) and little elongation complex (LEC) 66, and these complexes are highly conserved 

from Drosophila to human (Table 1-2 and Figure 1-2). ELL was first identified and 

named as a gene that fuses to mixed-lineage leukemia (MLL) in acute myeloid leukemia 

50. MLL is located at chromosome 11 band q23, where aberrant translocation occurs 

frequently in hematologic malignancies. In these cases, the abnormal chromosome 

translocation leads to an in-frame fusion of the N terminus of MLL to the C-terminal part 

of various proteins with very little sequence similarity. Frequent fusion partners of MLL 

include ELL, AFF1, AF9, ENL and AF10 50,67. To better understand the relationship 

among these factors, the Shilatifard group generated cell lines expressing major MLL-
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chimera complexes and purified them for mass spectrometry analysis. This approach led 

to the isolation of the SEC 68. The composition of SEC was also investigated and 

reported using tagged normal proteins 69. The isolation of SEC was also reported by the 

Zhou and the Kiernan groups through purification of transcription factors associated with 

Tat protein of human immunodeficiency virus type 1 (HIV-1) virus, which hijacks host 

transcription machinery for promoting transcription elongation for viral gene expression 

70,71.  

 

Table 1-2. Conserved genes involved in SEC and LEC from Drosophila to human 
Super Elongation Complex (SEC) 

Drosophila melanogaster Homo sapiens 
Gene   CG# Gene NCBI Gene ID 

Su(Tpl)/Ell CG32217 
ELL/ELL1  8178 

ELL2 22936 
ELL3 80237 

Eaf CG11166 
EAF1 85403 
EAF2 55840 

lilli CG8817 

AFF1 4299 
AFF2 2334 
AFF3 3899 
AFF4 27125 

ear CG4913 
MLLT1/ENL 4298 
MLLT3/AF9 4300 

Cdk9 CG5179 CDK9 1025 
CycT CG6292 CCNT1 904 

Little Elongation Complex (LEC) 
Drosophila melanogaster Homo sapiens 
Gene   CG# Gene NCBI Gene ID 

Su(Tpl)/Ell CG32217 ELL/ELL1 8178 

Eaf CG11166 
EAF1 85403 
EAF2 55840 

Ice1 CG13550 KIAA0947/ICE1 23379 
Ice2 CG10825 NARG2/ICE2 79664 
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The components of SEC include ELL family proteins ELL, ELL2 and ELL3, AF4/FMR2 

family member 1 (AFF1; also known as AF4), AFF4, eleven-nineteen leukemia (ENL) 

and ALL1-fused gene from chromosome 9 (AF9), and P-TEFb 66. AFF4 is the scaffold 

protein that directly interacts with P-TEFb, ENL/AF9 and ELL family proteins and is 

essential for SEC assembly 68. The conservation of SEC in Drosophila was reported by a 

study that used a flag-tagged C terminus of Ell in fly S2 cells. Isolation by flag-affinity 

chromatography and analysis by mass spectrometry identified the fly SEC, which 

contains Ell (human ELL, ELL2 and ELL3-related), Lilli (human AFF1/4-related), Ear 

(human ENL/AF9-related) and P-TEFb 69,72 (Figure 1-3). P-TEFb is the kinase 

responsible for releasing paused Pol II. Containing P-TEFb, SEC has been shown to 

activate transcription through pausing regulation for genes involved in immediate 

responses, including developmental genes and stress-induced genes 68,73 (Figure 1-4). 

 

 

Figure 1-3. Schematics of SEC and LEC in fly and mammals 
SEC and LEC are highly conserved from Drosophila to mammals. 
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Identified targets of SEC include developmental genes. One study that identified the 

SEC complex through MLL-chimera also showed that in leukemia cell lines, SEC 

component AFF4 is responsible for the expression of developmental genes HOXA9 and 

HOXA10; these genes are often upregulated in cells bearing an MLL translocation 68. 

This study suggests that in leukemia, the fusion of MLL and SEC components leads to 

premature release of paused Pol II and increased levels of developmental genes. The 

role of SEC in regulating transcription elongation on developmental genes was also 

demonstrated in mouse embryonic cells in response to retinoic acid (RA) and human 

HCT-116 cells in response to serum 73. These results show that SEC is responsible for 

the rapid induction of a small subset of genes upon exposure to developmental signals. 

These genes have paused Pol II prior to stimulation, except one gene, Cyp26a1, whose 

induction requires SEC in the absence of paused Pol II, indicating there might be other 

mechanisms for rapid induction of transcription that involves SEC. 

 

Another group of identified SEC targets are heat shock genes. Given that heat shock 

gene regulation is a well-established model for pausing regulation and that SEC is 

involved in the regulation of transcriptional pausing, the regulation of heat shock genes 

by SEC was tested. Chromosome immunostaining in Drosophila salivary gland showed 

Figure 1-4. The function of SEC 
SEC activates transcription,  
mostly through pausing regulation,  
for genes involved in immediate 
responses 
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that the major component of SEC, Lilli, colocalizes with Ell and elongating Pol II on the 

chromosomes 68. After heat shock treatment, Lilli co-localizes with Ell on the heat shock 

loci together with elongating Pol II, suggesting that SEC releases paused Pol II on heat 

shock genes 68. Studies using chromatin immunoprecipitation and quantitative PCR 

(ChIP-qPCR) and qPCR confirmed that the scaffold protein of SEC, AFF4, is also bound 

to HSP70 and is required for its induction upon heat stress 68.  

 

In mammals, besides the SEC complex, there are 2 related complexes: SEC-like 2 

(SEC-L2) and SEC-like 3 (SEC-L3) (66,72 and Figure 1-3). In mammals, except AFF1 and 

AFF4 which are involved in SEC, the AFF family also includes AFF2 (also known as 

FMR2) and AFF3 (also known as LAF4). These proteins share conserved N-terminal 

and C-terminal regions. SEC-L2 and SEC-L3, containing AFF2 and AFF3 respectively, 

were biochemically purified from human cells. Similar to SEC, SEC-like complexes also 

contain the kinase P-TEFb and ENL or AF9, but ELL family proteins were not identified 

as components involved. Genome wide studies showed that SEC, SEC-L2 and SEC-L3 

regulate different sets of genes 72. In addition, although all 3 complexes can 

phosphorylate Pol II CTD in vitro, only SEC is responsible for the induction of Hsp70 

under heat shock in vivo 72. These different complexes in mammals are predicted to 

expand the regulatory ability of cells in response to different cellular signals. 

 

Ell is also identified to be involved in LEC (Figure 1-5). In the study identifying 

components that interact with Drosophila Ell, two proteins Ice1 and Ice2 were isolated as 

well as the components of SEC (Ice stands for “interacts with the C terminus of Ell”) 69. 

Ice1 and Ice2 interact with Ell and Eaf, but not other components of SEC. This led to the 

identification of LEC, which is composed of Ell, Eaf, Ice1 and Ice2. Ell is implicated in 
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enhancing transcription elongation of target genes of LEC 74. The major transcriptional 

targets of LEC are Pol II-transcribed small nuclear RNAs (snRNAs) (Figure 1-5). ChIP-

seq studies using Ell and Ice antibodies identified snRNA genes as sites of LEC and Pol 

II enrichment 69. RNA sequencing (RNA-seq) with Ell and Ice1 depletion also show that 

Pol II-transcribed snRNA genes are the most altered class of genes in LEC 

downregulated cells 69.  

 

 

 

snRNAs are short non-coding RNAs that form small nuclear ribonucleoprotein particles 

(snRNPs). snRNPs further assemble with numerous proteins into the spliceosomes, 

functioning in pre-mRNA splicing 75. Splicing is an essential step of gene expression, 

which can also increase the number of unique proteins from a single pre-mRNA species. 

Splicing is catalyzed by the spliceosomes of which there are two types: the U2-

dependent spliceosome (also known as the major spliceosome), which is responsible for 

more than 99% of the splicing events, and the U12-dependent spliceosome (also known 

as the minor spliceosome), which is less abundant. The U2 spliceosome includes 

snRNPs: U1, U2, U4, U5 and U6. The U12 spliceosome is composed of U11, U12, 

U4atac, U5 and U6atac snRNPs 76,77 (Table 1-3). In addition to the snRNAs involved in 

the minor or major spliceosomes, there is another snRNA U7, which is involved in the 

maturation of replication-dependent histone mRNA 78. U1, U2, U4, U4atac, U5, U7, U11 

Figure 1-5. The function of LEC 
LEC is responsible for the 
transcription of snRNAs. 
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and U12 are transcribed by Pol II, whereas U6 and U6atac are generated by RNA 

polymerase I (Pol I). 

 
Table 1-3. Major vs Minor spliceosome snRNAs 
Spliceosome U2-dependent/major U12-dependent/minor 

snRNAs 

U1 U11 
U2 U12 
U5 U5 
U4 U4atac 
U6 U6atac 

 

The composition and function of LEC is highly conserved from Drosophila to mammals. 

The orthologues of Ice1 and Ice2 in human are ICE1 and ICE2, respectively 69. Based 

on biochemical purification, human LEC is composed of ELL family proteins, 

EAF1/EAF2, ICE1 and ICE2 69. In human HCT-116 cells, a protein ZC3H8 was also co-

purified with LEC 74. ICE1 is the scaffold protein which is critical for LEC assembly, 

proper localization of LEC in subnuclear bodies as well as downstream target expression 

74. ChIP-seq using HCT-116 cells shows that LEC subunits occupy Pol II-transcribed 

snRNA genes, and consistently RNA-seq study found that downregulation of ICE1 leads 

to a global reduction of snRNA expression 74. Pol II ChIP-seq analysis, comparing cells 

with ICE1 depletion to control cells, further shows that depletion of ICE1 decreases Pol II 

occupancy on LEC-bound snRNA genes 74.  

 

Implications of the roles of LEC and SEC in diseases	

The disrupted function of SEC has been directly associated with human disorders 

including immunodeficiency, cancer and developmental syndromes 79-82. SEC is also 

critical for HIV-1 replication 70,71. In HIV-1 gene expression, elongation of paused Pol II 

near the transcription start site is a major rate-limiting step. The Tat protein encoded by 

HIV-1 is an RNA binding protein, which binds to Tat response element (TAR). Together, 
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they recruit SEC to the 5’ end of all viral transcripts to produce full length products. 

Another disease associated with disrupted SEC activity is leukemia 68. As discussed 

previously, many components of SEC have been found as translocation partners with 

MLL in disease. In leukemia cells carrying an MLL translocation, depletion of the 

essential component of SEC AFF4 results in loss of HOXA9 expression, which is a key 

target of MLL fusion proteins. The involvement of SEC in MLL fusion proteins suggests 

that the regulation of transcription elongation may be disrupted and contribute to MLL-

rearranged leukemias. Germline gain-of -function mutations in AFF4 were identified to 

be the cause of the developmental disorder CHOPS syndrome 83. The name CHOPS is 

an abbreviation for features of the disease, including cognitive impairment, coarse 

facies, heart defects, obesity, pulmonary involvement, short stature and skeletal 

dysplasia. ChIP-seq analysis suggests that in the disease, transcriptional elongation is 

disturbed by altered binding of AFF4 and cohesin on chromosomes 83. 

 

Although neither LEC or SEC has been implicated in neurodegenerative disorders, 

misregulations of targets of LEC and SEC have been reported in neurodegeneration. As 

introduced and discussed before, the targets of LEC are Pol II-transcribed snRNAs, 

which are involved in splicing. Global splicing alterations have been observed by 

genome-wide analysis in both FTD and ALS patients 84,85. Furthermore, in ALS patient 

brain tissue and human cell disease models, the levels of several snRNAs are reported 

to be altered, with both higher and lower levels 86,87. Onodera’s group showed that the 

levels of U1, U2, U4atac and U6atac were significantly decreased in SH-SY5Y 

neuroblastoma cells treated with TDP-43 siRNA compared to control cells 86. They also 

showed that U12 levels are decreased in ALS affected tissues, including spinal cord, 

motor cortex and thalamus, but not in unaffected tissues, including cerebellum, kidney 
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and muscle. However, Yamanaka’s group reported that U4, U5 and U6 are upregulated 

in SH-SY5Y cells with TDP-43 downregulation compared to control cells, and that 

several snRNAs including U1, U2, U4, U5 U11 and U12 are upregulated in spinal cord 

tissue of ALS patients 87. These studies indicate that in TDP-43-associated diseases 

snRNA levels and the spliceosome functions are disrupted, although there are 

discrepancies on the changes observed. 

 

The minor spliceosome was discovered about a decade later than the discovery of the 

major spliceosome and has been studied less; however, more attention has been 

brought to it because of its involvement in diseases including neurodevelopmental and 

neurodegeneration disorders 88,89. A point mutation in RNU12 encoding the U12 snRNA 

has recently been reported to be associated with early onset cerebellar ataxia (EOCA). 

EOCA is characterized by progressive cerebellar ataxia, brisk tendon reflexes and 

sensory loss. The mutation (84C>T) is located on one of the stem loop structures and is 

predicted to weaken the stem-closing base pairing and potentially affect protein 

interactions and spliceosome assembly 90. Other known diseases associated with 

defects in minor spliceosome components include Microcephalic Osteodysplastic 

Primordial Dwarfism type I/Taybi-Linder Syndrome (MOPD1/TALS), Myelodysplastic 

Syndrome (MDS), Roifman syndrome (RFMN), Lowry Wood Syndrome (LWS) and 

Isolated Growth Hormone Deficiency (IGHD) 89,91-95. Three of these diseases 

(MOPD1/TALS, RFMN and LWS), share clinical features of abnormal brain development 

related to cephalon-skeletal dysplasia, intrauterine and postnatal growth retardation and 

microcephaly.  
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The minor spliceosome is also associated with neurodegeneration. In addition to ALS, 

another neurodegenerative disease caused by death of motor neurons spinal muscular 

atrophy (SMA), has also been linked to dysfunction of the minor spliceosome. SMA 

results from mutations in the SMN gene, which leads to decreased levels of the SMN 

protein. SMN is essential for assembly of Sm-class snRNPs, including U1, U2, U4, 

U4atac, U5, U7, U11 and U12 snRNPs 96. Studies using different SMA models have 

shown preferential decrease of minor snRNP levels 97-100, implying that the alteration of 

splicing regulated by the minor spliceosome may contribute to the SMA phenotype.  

 

Heat shock genes are one group of identified and characterized targets of SEC. As 

neurodegenerative diseases are associated with the accumulation of misfolded proteins, 

the important role of protein folding machinery maintaining proteostasis has been 

indicated in neurodegeneration through different studies 101,102. Among these, 

misregulation of the heat shock response has been reported to be associated with TDP-

43 proteinopathy 103-105. By using a human cell disease model of TDP-43 toxicity, 

Hsiang-Yu el al. show that Hsp90 inhibitor 17-AAG, which inhibits Hsp90 activity but 

activates HSF-1, Hsp27 and Hsp70, prevent TDP-43 aggregation caused by reactive 

oxygen species (ROS) 104. In another study, Han-Jou el al. demonstrated in a TDP-43 

cellular model that promoting the heat shock response by expression of the master 

regulator HSF1 leads to a decrease of insoluble TDP-43 aggregates and improves cell 

survival 105. In recent work by Berson et al. using fruit fly and human cell models, the 

induction of several heat shock genes was found to be reduced in these disease models, 

and upregulation of Hsc4 and Hsp68 suppressed eye degeneration caused by TDP-43 

toxicity 103. These studies implicate a potential therapeutic role of the heat shock 

response in TDP-43-mediated neurodegeneration. 
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In Drosophila, among the heat shock genes, which typically encode proteins, one gene 

encodes a long non-coding RNA (lncRNA): heat shock response RNA omega (Hsrw) 106. 

The Hsrw locus is composed of 2 exons, which are separated by an intron and followed 

by tandem repeats of 280 bp units. Nuclear and cytoplasmic lncRNAs named Hsrw-n 

and Hsrw-c are produced from this locus. Hsrw is induced dramatically by heat shock 

and is required for normal development and for survival after heat stress 106,107. Hsrw-n 

together with various proteins forms specific nuclear structures named omega speckles 

106, which are thought to serve as dynamic storage sites for RNA-processing and 

associated proteins. Hsrw is also involved in other pathways potentially functioning in 

maintenance of cellular homeostasis 106. In human cells, the functional orthologue of 

Hsrw is the Satellite III repeat RNA (Sat III) 108. Sat III is encoded by the Sat III repeat 

sequences mainly located in the pericentrimeric region of human Chromosome 9 109. 

The size of Sat III repeat RNA has been reported to be 2-5 kb, with the basic repeat unit 

of Sat III being a pentamer sequence GGAAT, which can be interrupted by the 

terminator sequence CAAC(C/A)CGAGT 110. Like Hsrw, Sat III is induced by heat stress 

and forms a comparable nuclear structure called the nuclear stress body (nSB) at the 

site of synthesis 109. The roles of these heat stress-induced non-coding RNAs in 

neurodegenerative diseases remain to be explored. 

 

The new findings of the thesis adding to the field 

The main findings of my thesis work include: 1) the identification of Ell and Ell-containing 

transcription elongation complexes LEC and SEC as modifiers of TDP-43 toxicity in the 

fly. 2) demonstration that the levels of several LEC target snRNAs are upregulated upon 
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TDP-43 expression including U12, which is functionally involved in TDP-43 toxicity. 3) 

that splicing of select U12-dependent spliceosome targets are elevated in TDP-43 fly 

disease model. 4) that TDP-43 co-localizes with SEC specific component Lilli on a 

chromosome locus encoding a stress-induced lncRNA Hsrw. 5) that Hsrw is identified as 

abnormally elevated and functionally important to TDP-43-mediated degeneration. 6) 

that the human orthologue of Hsrw ,Sat III, is increased in human cells with TDP-43 

expression and in FTLD-TDP-43 patient tissue. 7)  that TDP-43 physically interacts with 

one of the human orthologues of Ell, ELL2.  

 

These findings suggest a model in which TDP-43 promotes the activities of LEC and 

SEC through interaction with ELL2, leading to the upregulation of specific targets of LEC 

and SEC. This upregulation results in misregulation of splicing and cell homeostasis and 

contributes to TDP-43-associated neurodegeneration (Figure 1-6). These findings reveal 

important roles of LEC and SEC in TDP-43 toxicity and link transcription elongation 

complexes to neurodegeneration for the first time, identify important downstream targets 

and provide potential therapeutic insights for TDP-43-mediated neurodegenerative 

diseases. 
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Figure 1-6. The model for the roles of LEC and SEC in TDP-43-mediated 
neurodegeneration 
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CHAPTER 2: MANUSCRIPT 

ABERRANT ACTIVATION OF NON-CODING RNA TARGETS OF TRANSCRIPTIONAL 

ELONGATION COMPLEXES CONTRIBUTES TO TDP-43 TOXICITY 

Chia-Yu Chung, Amit Berson, Jason R. Kennerdell, Ashley Sartoris, Travis Unger, Sílvia 

Porta, Hyung-Jun Kim, Edwin R. Smith, Ali Shilatifard, Vivianna Van Deerlin, Virginia M-

Y Lee, Alice Chen-Plotkin, and Nancy M. Bonini 

 

 

This chapter is a manuscript in press at Nature Communications. 

The contributions of CYC are: 1) verification of the suppression effects of SEC components by 

detailed characterizations of the suppression effect and by various control experiments in the fly. 

2) raising and testing the hypothesis that both SEC and LEC are involved in TDP-43 toxicity. 3) 

demonstration of the involvement of LEC in TDP-43-mediated eye degeneration 4) demonstration 

of Ell as a dose-dependent modifier by showing that upregulation of Ell enhances TDP-43-caused 

eye degeneration. 5) characterization of Ell as a modifier in the fly nervous system. 6) 

identification of important downstream targets of LEC and SEC, and demonstration of the 

functional involvement of these targets in fly disease models. 6) extension of the findings from fly 

disease models to a human cell disease model and FTLD-TDP patient tissues by developing 

qPCR primers and assessing the human repetitive RNA Sat III in RNA samples collected by 

collaborators. 7) determination of the RNA and protein levels of human ELL and ELL2 using 

samples from a human cell disease model and/or human patient tissues (RNA samples were 

collected by collaborators) 8) demonstration of the interaction of TDP-43 and human ELL2 using 

human HEK293 cells. 9) all figure panels except Fig 3c,d and Supplementary Data 1. 10) 

preparation of the manuscript under the supervision of Dr. Bonini. 
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Abstract 

TDP-43 is the major disease protein associated with amyotrophic lateral sclerosis (ALS) 

and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-TDP). Here 

we identify the transcriptional elongation factor Ell—a shared component of little 

elongation complex (LEC) and super elongation complex (SEC)—as a strong modifier of 

TDP-43-mediated neurodegeneration. Our data indicate select targets of LEC and SEC 

become up-regulated in the fly ALS/FTLD-TDP model. Among them, U12 snRNA and a 

stress-induced long non-coding RNA Hsrω, functionally contribute to TDP-43-mediated 

degeneration. We extend the findings of Hsrω, which we identify as a chromosomal 

target of TDP-43, to show that the human orthologue Sat III is elevated in a human 

cellular disease model and FTLD-TDP patient tissue. We further demonstrate an 

interaction between TDP-43 and human ELL2 by co-immunoprecipitation from human 

cells. These findings reveal important roles of Ell-complexes LEC and SEC in TDP-43-

associated toxicity, providing potential therapeutic insight for TDP-43-associated 

neurodegeneration.  
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Introduction 

Amyotrophic lateral sclerosis (ALS; OMIM no. 105400) is the most common motor 

neuron disease, resulting from loss of motor neurons in the motor cortex, brainstem and 

spinal cord, whereas frontotemporal dementia (FTD; OMIM no. 600274) is characterized 

by progressive changes in behavior, personality, and/or language due to gradual 

deterioration of the frontal and temporal lobes. Despite differences in primary sites of 

neurodegeneration, these two diseases share neuropathological and genetic 

commonalities as well as clinical overlap 5,6. TAR DNA binding protein 43 (TDP-43) is 

the major component of inclusion bodies in most ALS and in half of FTD known as 

FTLD-TDP 9,10. Both depletion and upregulation of TDP-43 cause neuronal loss, 

indicating that TDP-43 levels are critical in the brain 13,16. TDP-43 is an RNA-binding 

protein with many functions in RNA regulation and metabolism and is one of a number of 

RNA binding proteins associated with ALS and FTD 13,111,112. This leads to an RNA 

dysregulation-centered view of TDP-43 disease mechanisms. TDP-43 however also 

binds DNA and has been shown to regulate transcription11,113,114. The role of 

transcriptional dysfunction in TDP-43 proteinopathies remains largely unexplored. 

 

Drosophila melanogaster has played an important role in elucidating roles of many 

genes in human neurological disease 27,115,116. In Drosophila, expression of human TDP-

43 leads to neuronal degeneration, shorten lifespan and climbing defects, recapitulating 

fundamental disease features and serving as a platform to provide insight into underlying 

pathways and therapeutic targets 37,38. To define novel disease mechanisms associated 

with TDP-43, we used Drosophila to screen for modifiers of toxicity. Our unbiased 

genetic screen uncovered the transcription elongation factor Ell (also known as Su(Tpl)) 

as a novel and robust modulator. Ell is present in two complexes: little elongation 
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complex (LEC) and super elongation complex (SEC) 68,69,72. In Drosophila, LEC, 

containing Ell, Eaf, Ice1 and Ice2, regulates the initiation and elongation of Pol II-

transcribed small nuclear RNA (snRNA) genes 69,74. SEC is composed of Ell, Eaf, Ear, 

Lilli and P-TEFb 66,69. The kinase P-TEFb phosphorylates Pol II, leading to the release of 

paused Pol II into productive elongation. The composition and functions of both 

complexes are highly conserved in mammals 68,72,74. Neither complex has been 

implicated in neurodegenerative disorders. 

 

snRNAs together with a range of proteins form small nuclear ribonucleoproteins 

(snRNPs), which are essential components of the splicing machinery of the 

spliceosome. In both ALS and FTD patients, splicing changes have been observed by 

transcriptome and microarray analyses, implicating aberrant splicing as an important 

disease mechanism 84,117. In ALS and human cell disease models with TDP-43 

depletion, disruption of several snRNA levels has been reported, both higher 87 and 

lower levels 86, but the detailed mechanism and whether these alterations are 

functionally important in disease is unclear. In normal physiology, SEC activity has been 

shown to be specific to select conditions and genes: developmental genes under 

differentiation signals 73, and heat shock genes upon stress 68,72. The critical role of heat 

shock genes in neurodegenerative diseases has been revealed by studies on molecular 

chaperone and other proteins, which maintain proteostasis 101,102. Among the heat shock 

genes, one distinct from others encodes no protein product but rather a long non-coding 

RNA (lncRNA), named Heat shock RNA omega (Hsrω). Hsrω is functionally required for 

normal development and the heat shock response in Drosophila, and is also involved in 

multiple other pathways potentially contributing to cellular homeostasis 106,107. In humans, 
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Satellite III repeat RNA (Sat III) is the functional orthologue of Hsrω 108 and its role in 

neurodegenerative disease is unknown. 

 

Here, we implicate Ell-associated transcriptional elongation complexes LEC and SEC as 

misregulated upon TDP-43 toxicity. We identify key non-coding RNA targets, U12 and 

Hsrω, as abnormally activated and functionally contributing to TDP-43-induced 

degeneration. Extension of these data to disease tissue and demonstration of the 

interaction between TDP-43 and one of the human orthologue of Ell, ELL2, implicates 

misregulation of human Ell orthologues as a contributor to TDP-43-associated 

pathologies.  

 

Results 

TDP-43 toxicity is mitigated by modulation of Ell  

Flies expressing human TDP-43 in the eye show retinal degeneration 37,38. We employed 

these animals to screen for genes that enhanced or suppressed the degeneration of 

TDP-43. In the screen, 2933 fly lines with different genetic modifications were tested. 

Among them, 12 fly lines enhanced TDP-43 toxicity and 23 fly lines showed 

suppression, indicating a limited number of genes can modify TDP-43 toxicity. From this 

screen, we found that knockdown of the gene Ell strongly mitigated TDP-43-induced 

deterioration of the external eye and internal retina (Fig. 1a, b and Supplementary Fig. 

1a). Furthermore, up-regulation of Ell enhanced TDP-43 toxicity with more severe 

external eye and internal retinal degeneration (Fig. 1a, b and Supplementary Fig. 1a). 

These data indicated that Ell is a potent dose-dependent modifier of TDP-43, with Ell 

knockdown or up-regulation on its own having no effect on eye morphology 
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(Supplementary Fig. 1b). A RNAi control line against Luciferase did not mitigate TDP-43-

mediated eye degeneration (Fig. 1a, b). 

 

Ell protein is a shared component of two transcriptional elongation complexes: LEC and 

SEC (Fig. 1c). In order to investigate whether the suppression due to Ell knockdown was 

through one or the other of these complexes, we downregulated additional components 

of LEC and SEC in the presence of TDP-43. Reduction of SEC components ear and lilli 

partially suppressed the external and internal retinal deterioration conferred by TDP-43, 

as did reduction of LEC component Ice1 (Fig. 1d, e and Supplementary Fig. 1a). The 

rescue effect of any of these components was not as strong upon depletion of the 

shared component Ell, suggesting that both LEC and SEC contribute to TDP-43 toxicity. 

Depletion of any of the components on their own had no effect on eye integrity 

(Supplementary Fig. 1b).  

 

The levels of the TDP-43 protein were assessed by western immunoblot. These data 

indicated that enhancement by Ell up-regulation or suppression by lowered levels of Ell 

or other components of LEC or SEC was not through modulating the levels of TDP-43 

protein (Supplementary Fig. 1c). We further confirmed that the GAL4-UAS expression 

system was not impacted by any of these components by examining the levels of a 

control protein β-galactosidase (β-gal) (Supplementary Fig. 1d). Additional fly lines, 

including a genetic mutation of Ell, and two RNAi lines of Ice1 with proper controls were 

tested and showed consistent suppression effect on TDP-43-caused eye degeneration 

(Supplementary Fig. 1e). 
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To extend these studies to the nervous system generally, we expressed TDP-43 in all 

neurons in the adult animal using a conditional drug-inducible driver line. With 

expression in the adult fly brain induced by RU486, TDP-43 animals consistently show 

an age-associated decline in climbing ability, indicative of neural dysfunction (Fig. 1f, 

Supplementary Fig. 1f and 38). Knockdown of Ell, although showing no effect on its own, 

restored climbing ability to normal without affecting TDP-43 protein levels (Fig. 1f, g and 

Supplementary Fig. 1g). We also assessed the suppression effect of Ell on TDP-43 

toxicity in the nervous system by lifespan assays using the drug-inducible neuronal 

driver. Knockdown of Ell on its own caused mild but statistically significant extension of 

lifespan, and downregulation of Ell caused a mild suppression of TDP-43-shorten 

lifespan and a shift of the early stage of the lifespan curve (Supplementary Fig. 1h). 

Lifespan assays assessing Ell knockdown effect on TDP-43 toxicity were also tested by 

using a ubiquitous drug-inducible driver, showing consistent results that Ell 

downregulation has some effect to mitigate TDP-43 toxicity (Supplementary Fig. 1I). 

These data indicate that increased activity of both Ell-complexes LEC and SEC may 

contribute to TDP-43-mediated degeneration in the nervous system.  

 

LEC snRNA target U12 contributes to TDP-43 toxicity  

To determine whether the activity and function of LEC and SEC are promoted by TDP-

43, we assessed the downstream targets in the fly disease model. Targets of LEC are 

Pol II-transcribed snRNAs 69,74. We therefore used Northern blot analysis to assess the 

levels of snRNAs U1, U2, U4, U4atac, U5, U7, U11 and U12 in fly heads, with or without 

added TDP-43 driven by a ubiquitous drug-inducible driver. TDP-43 expression 

significantly increased levels of U1, U4, U7 and U12 (Fig. 2a and Supplementary Fig. 

2b). Importantly, knockdown of Ell restored the levels of the elevated snRNAs back to 
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normal without affecting TDP-43 expression (Fig. 2a and Supplementary Fig. 2a, b). 

These data suggest that misregulation of snRNA components may be a consequence of 

disrupted Ell function in the animals and contribute to TDP-43 toxicity.  

 

To test the functional role of the snRNAs in TDP-43-induced degeneration, we 

determined whether downregulation of the elevated snRNAs could mitigate toxicity. We 

examined fly lines predicted to downregulate various snRNAs (U1, U4, U7, U12). There 

was little effect of fly lines directed to U1 and U4 (there are multiple copies of these 

snRNAs in the genome making interference challenging), and U7 depletion suppressed 

the external eye but did not suppress the internal deterioration. Although we cannot 

exclude the potential importance of U1, U4 and U7, we focused on U12. U12 knockdown 

partially, but consistently mitigated TDP-43-associated retinal disruption (Fig. 2b, c and 

Supplementary Fig. 2c), indicating that misregulation of U12 levels is functionally 

important to TDP-43 toxicity. We confirmed that U12 downregulation had no effect on 

TDP-43 protein, and that reduction of U12 on its own did not affect the eye 

(Supplementary Fig. 2d, e). U12 is a component of the minor spliceosome (U12-type 

spliceosome), indicating that targets of the minor spliceosome may be misregulated by 

TDP-43.  

 

There are 18 genes containing a U12-type intron in Drosophila 100. Total RNA from fly 

heads was prepared for reverse transcription quantitative PCR (RT-qPCR) with qPCR 

primer sets spanning the U12-regulated introns to assess the levels of spliced gene 

products (Fig. 2d). Among the 18 genes, six (CG16941, CG11839, CG33108, CG11328, 

CG15735 and CG3294) were up-regulated with expression of TDP-43, with the other 12 

genes not affected (Fig. 2e; Supplementary Fig. 2f, g), indicating increased U12 levels 
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leads to elevation of specific minor spliceosome targets. Knockdown of Ell corrected the 

levels back to normal (Fig. 2e; Supplementary Fig. 2g), consistent with the ability of Ell 

downregulation to normalize the levels of U12 and protect from TDP-43 toxicity. To 

further determine whether the elevation resulted from transcription or splicing, we 

assessed the levels of the unspliced transcripts. The unspliced products of 3 genes, 

CG33108, CG11328 and CG3294 were also increased upon TDP-43 expression, 

indicating a change in total transcript levels (Supplementary Fig. 2g). The unspliced RNA 

levels of the 3 genes CG15735, CG16941 and CG11839 were not altered significantly 

by the presence of TDP-43, indicating that the splicing of these U12-regulated introns 

was increased (Fig. 2e). These data indicate that the U12-type spliceosome is 

abnormally activated in the fly disease model to cause disrupted regulation of selected 

downstream targets. 

 

TDP-43 and Lilli co-localize at the Hsrω lncRNA locus 

Ell is also a component of SEC and SEC activates transcriptional elongation, which is 

critical for genes involved in developmental signaling pathways and the stress response 

68,72,73. The SEC scaffold protein Lilli binds to and regulates specific targets on the 

chromosomes in Drosophila and human cells 68,72,73. Recently, genome-wide chromatin 

immunoprecipitation (ChIP-seq) shows that Drosophila TDP-43, TBPH, associates with 

chromatin 114. We therefore considered that TDP-43 may co-localize to the same genes 

as Lilli. To explore this, we expressed TDP-43 tagged with YFP in Drosophila salivary 

gland and assessed Lilli and TDP-43 localization on the polytene chromosomes by 

immunostaining. Under ambient temperature, we observed that TDP-43 binds to 

polytene chromosomes with specificity (Fig. 3a). TDP-43 and Lilli each localized to ~115 

sites (Fig. 3a). Most of these were euchromatin regions where active transcription 
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usually occurs. Detailed analysis of the co-localization pattern indicated that TDP-43 and 

Lilli consistently overlapped at 16 sites across chromosomes X, 2R, 3R and 3L (Fig. 3a 

and Supplementary Table 1). Although it is difficult to precisely identify the genes with 

co-localization of TDP-43 and Lilli due to the resolution of polytene bands, these data 

indicate partial overlap of TDP-43 and SEC targets in normal conditions; these genes 

may be important in toxicity. 

 

Upon heat stress, SEC is recruited to major heat shock loci on the polytene 

chromosomes and, further, has been shown to regulate the expression of a major heat 

shock protein Hsp70 68. Dysfunction of the heat shock response, which functions to 

maintain proteostasis, is associated with TDP-43 toxicity 103-105. We therefore probed 

whether TDP-43 co-localized to these targets of SEC. As noted 68, with heat shock Lilli 

localizes to the major molecular chaperones at polytene chromosome sites 63B, 67B, 

95D, 87A and 87C and a unique heat shock locus, 93D that encodes the lncRNA Hsrω 

(Fig. 3b). When we examined co-localization with TDP-43, we noted some co-

localization at 63B (encoding Hsp83) and 67B (encoding small heat shock genes) 

(Supplementary Table 2). Moreover, we observed robust and consistent co-localization 

at 93D in all polytene chromosome spreads examined (Fig. 3b and Supplementary Table 

2); this was a site at which TDP-43 and Lilli also co-localized without added stress 

(Supplementary Table 1), suggesting that this stress-induced lncRNA may be a common 

target of TDP-43 and Lilli. We also assessed the co-localization of TDP-43 and Ell. 

Consistent with the results of immunostaining with Lilli, Ell also co-localized with TDP-43 

at the 93D locus encoding Hsrω (Supplementary Fig. 3a). Precision nuclear run-on 

sequencing (PRO-seq) has shown that pol II is paused on Hsrω 118, and chromatin 
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staining shows that SEC components, Ell and Lilli, co-localize with elongating Pol II at 

the 93D locus after heat stress 68, both indicating that Hsrω is a target of SEC.  

 

Given the limited resolution of polytene chromosome staining, we analyzed the 

published ChIP-seq data for TBPH 114 and Lilli 69 to better define genes  bound by both 

factors. This analysis showed that TBPH binds to 383 genes and Lilli binds to 4162 

genes (Fig. 3c and Supplementary Data 1). Among them, 328 genes were bound by 

both factors, which comprises ~86% of the genes bound by TBPH and ~8% of the genes 

bound by Lilli (Fig. 3c). Consistent with the polytene data, Hsrω is a target of both TBPH 

and Lilli (Fig. 3d). We therefore considered that Hsrω might be a target of SEC that 

becomes misregulated by TDP-43. 

 

Hsrω functionally modulates TDP-43 toxicity  

The 93D locus encodes nuclear and cytoplasmic lncRNAs referred to as Hsrω-n and 

Hsrω-c, respectively, both of which are induced by stress. Upon heat stress, Hsrω-n 

transcripts are up-regulated at the 93D site 106, with a balanced level of Hsrω being 

critical for the survival and recovery of flies following heat stress 107. Given the striking 

co-localization of TDP-43 and Lilli at the Hsrω locus, we considered that dysregulation of 

Hsrω may occur with TDP-43. RNA from fly heads in the presence or absence of added 

TDP-43 expression was extracted for RT-qPCR and the levels of total Hsrω (Hsrω-c and 

Hsrω-n), and Hsrω-n were determined. Total Hsrω and Hsrω-n were increased ~2-fold 

upon TDP-43 expression (Fig. 4a). Importantly, this misregulation was reduced toward 

normal levels by Ell knockdown (Fig. 4a). These data indicate that Hsrω may be a 

functional target of SEC activity that contributes to TDP-43-associated degeneration. 
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To assess whether misregulation of Hsrω is functionally important to TDP-43 toxicity, we 

reduced the levels of Hsrω in animals expressing TDP-43. Reduction of Hsrω by placing 

animals expressing TDP-43 in trans to an Hsrω null mutation partially mitigated TDP-43-

associated external and internal retinal deterioration (Fig. 4b, c). This was not associated 

with changed levels of TDP-43 protein, and loss of one copy of Hsrω on its own had no 

effect (Supplementary Fig. 4a, b). We also confirm the suppression effect of Hsrω 

downregulation on TDP-43-mediated eye degeneration by a RNAi line with proper 

controls (Supplementary Fig. 4c). The effect of lacking one copy of Hsr⍵ on climbing 

defect caused by TDP-43 was unable to be determined because reduction of Hsr⍵ on its 

own caused a decrease in climbing ability (data not shown). Taken together, these 

findings on the co-localization of TDP-43 and Lilli at the Hsrω gene locus, on elevated 

levels of Hsrω RNAs in TDP-43-expressing animals, and on functional mitigation of 

TDP-43-induced degeneration by modulation of Hsrω levels suggest that the stress-

induced lncRNA Hsrω is a functional target of TDP-43 that contributes to TDP-43-

mediated degeneration. 

 

Sat III is upregulated in a cellular model and in patient tissue 

These data on Hsrω raised the possibility that the functional orthologue of Hsrω in 

humans, the stress-induced Satellite III repeat RNA (Sat III) 108, may become 

misregulated in disease and contribute to toxicity. Although not sharing precise 

sequence similarity, Hsrω and Sat III transcripts share functional features and regulatory 

mechanisms: they are repeats and non-coding in nature; they are induced and 

accumulate at the site of synthesis upon stress, and associate with heterogeneous 

nuclear ribonucleoproteins (hnRNPs) and other RNA-processing factors; they are both 

Pol II-dependent transcripts 106,108,109. Moreover, although Sat III is essential for cell 
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survival after heat shock, upregulation of Sat III promotes cell death and acute 

senescence in various cell models 119,120. We therefore investigated whether Sat III 

transcripts became misregulated by TDP-43.  

 

To assess Sat III levels in mammalian cells, we used human embryonic kidney 293 

(HEK293) cells expressing doxycycline-induced GFP-tagged TDP-43 (GFP-TDP-43) or 

GFP alone. RNA was prepared following 6d of induction, and the levels of Sat III 

transcripts were examined by RT-qPCR. We compared Sat III levels in cells expressing 

GFP-TDP-43 to control cells expressing GFP. TDP-43 expression led to a ~4-fold 

increase in the steady state level of Sat III (Fig. 5a). The Sat III primers were validated 

by heat shock induction of Sat III followed by RT-qPCR analysis (Supplementary Fig. 

5a). Thus, the human counterpart of Hsrω became misregulated upon aberrant TDP-43 

expression in cells.  

 

These findings raised the possibility that Sat III may become dysregulated in human 

disease. To address this, we used RNA prepared from frontal cortex of 13 FTD patients 

(six sporadic or with unknown family history and seven patients with a family history of 

FTD and/or a disease-associated mutation) and six clinically normal controls (Fig. 5b). 

All of the FTD patients had TDP-43 pathology (FTLD-TDP) 121,122. In accordance with our 

studies in the fly and human cells, the results showed that the levels of Sat III transcripts 

were significantly higher in the frontal cortex of FTD patients compared to controls (Fig. 

5b). Case numbers and details are indicated in Table 1. Taken together with the 

functional data from the fly, misregulation of the stress-induced lncRNA Sat III may be a 

contributor to TDP-43-associated disease.   
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TDP-43 and ELL2 proteins interact 

To further dissect the relationship between Ell and TDP-43 and define additional 

mechanisms by which Ell may contribute to TDP-43-mediated neurodegeneration, we 

assessed whether Ell levels were upregulated in disease models; upregulation of Ell 

could lead to increase levels of downstream targets and in this manner contribute to 

TDP-43-mediated neurodegeneration. RNA levels of fly Ell were examined by RT-qPCR 

using RNA extracted from fly heads in the presence or absence of added TDP-43. 

These data showed that Ell is elevated ~50% upon TDP-43 expression (Fig. 6a). We 

next examined human ELL proteins in the HEK293 cell model. In mammals, there are 

three proteins in the ELL family: ELL, ELL2 and ELL3 66, with ELL3 being the most 

distinct based on sequence (~50% identity) and enriched in testis 47. All three ELL 

proteins can be pulled down with factors in LEC and SEC 68,69. We examined the RNA 

levels of ELL and ELL2 in cells expressing GFP-TDP-43 or GFP control by RT-qPCR. 

The results are consistent with the fly data, showing that TDP-43 expression led to a 

50% increase of ELL and ELL2 levels (Fig. 6b). However, when we assessed protein 

levels by western immunoblot, the results indicate that the levels of ELL and ELL2 were 

not changed (Supplementary Fig. 6a). We also examined ELL and ELL2 by RT-qPCR 

using RNA prepared from frontal cortex of the 13 FTD patients with TDP-43 pathology; 

expression levels of ELL and ELL2 were not changed significantly compared to controls 

(Supplementary Fig. 6a). These results, together with the data showing that upregulation 

of Ell on its own does not cause eye degeneration (Fig. 1a and Supplementary Fig. 1b), 

indicate that mechanisms beyond simply a global increase in levels of Ell may be 

involved in TDP-43-associated toxicity.   
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The polytene chromosome immunostaining showed that TDP-43 co-localized with Ell 

and Lilli at the 93D locus (Fig. 3a and Supplementary Fig. 3a), indicating that 

interactions between the proteins might occur. We thus assessed whether endogenous 

TDP-43 interacts with ELL or ELL2 in nuclear extracts of HEK293 cells using co-

immunoprecipitation (co-IP). TDP-43 was immunoprecipitated by an anti-TDP-43 

antibody (Fig. 6c), and western blots then probed for presence of co-

immunoprecipitating ELL or ELL2.  ELL was not detected; however, ELL2 was co-

immunoprecipitated together with TDP-43 (Fig. 6c). This was specific because ELL2 was 

not co-immunoprecipitated with IgG control. These data indicate that TDP-43 interacts 

with ELL2, suggesting that this interaction may contribute to dysfunction of ELL-

associated complexes upon aberrant TDP-43 function.  

 

Discussion 

Misregulation of several transcriptional elongation factors has been reported in diseases, 

including viral pathogenesis and cancer 79,123, yet these factors have not been implicated 

in neurodegenerative disorders. Here we report that Ell and Ell-containing transcriptional 

elongation complexes LEC and SEC are novel modifiers of TDP-43 toxicity. The levels 

of several LEC target snRNAs including U12 are upregulated by TDP-43 proteinopathy. 

Our data suggest that the U12-type spliceosome is abnormally activated and contributes 

to toxicity. Through chromatin immunostaining, we identify a key target of SEC, a stress-

induced lncRNA Hsrω, as aberrantly elevated and functionally important to TDP-43-

mediated degeneration. In addition, we show that the levels of the human orthologue of 

Hsrω, Sat III, is increased in a human cell model and in FTLD-TDP frontal cortex tissue, 

indicating that Sat III dysfunction may contribute to TDP-43-associated disease. Finally, 
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we demonstrate TDP-43 interacts with the one of the human orthologues of Ell, ELL2, 

indicating that the aberrant elevation of LEC and SEC activity in disease may be 

promoted through the interactions between TDP-43 and ELL2 (Fig. 7). These findings 

highlight the critical roles of LEC and SEC in TDP-43-mediated pathologies, and 

highlight that approaches to normalize the activity of human orthologues of the shared 

component Ell may be of therapeutic benefit. 

 

Our data suggest a model whereby SEC and LEC contribute to TDP-43-mediated 

degeneration in parallel (Fig. 7).  We find that that depletion of the shared component Ell 

led to nearly full suppression of TDP-43-mediated eye degeneration, whereas, by 

contrast, downregulation of LEC- and SEC-specific components or downstream targets 

U12 and Hsrω showed only partial suppression, despite the downregulation effect for the 

genes being robust. In our study, we identified important targets that are functionally 

involved in TDP-43-mediated degeneration, but we do not exclude the possibility that 

there may be other targets regulated by LEC and SEC that are important in the disease. 

Furthermore, we show that up-regulation of the shared component Ell enhances TDP-43 

degeneration, and the abnormally elevated levels of LEC and SEC targets caused by 

TDP-43 toxicity can be rescued by Ell depletion. Our study demonstrates that TDP-43-

mediated degeneration can be alleviated by decreasing the activities of LEC and SEC, 

which is predicted to lead to reduction of elongating Pol II on downstream key targets 

and thus lower their levels.  

 

As an RNA binding protein, TDP-43 has been demonstrated to regulate targets through 

direct binding 13,111,124. Our studies propose another layer of regulation: we hypothesize 

that TDP-43 affects transcription through misregulation of LEC and SEC activities, 
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contributing to degeneration. Furthermore, the data showing that TDP-43 interacts with 

ELL2 (Fig. 6c) suggests a mechanism which TDP-43 may promote the activities of LEC 

and SEC at target genes, through interactions of the TDP-43 with ELL2 (Fig. 7).  

 

Our data highlight elements of specificity in TDP-43-associated toxicity. First, we show 

that only selected targets of LEC and SEC are elevated in expression in the fly upon 

TDP-43 expression. The selectivity of targets can be defined by accessory factors 

associated with the LEC and SEC: in human cells, a mediator subunit MED26 has been 

shown to interact through EAF1 and EAF2 and promote the expression of select target 

genes, including a subset of snRNAs and Hsp70 125,126. Other factors like PAF1 and 

integrator, interacting with SEC 127,128, might also contribute to target specificity.  

 

Our data showing that TDP-43 binds to Drosophila polytene chromosomes with 

selectivity (Fig. 3a, b), and that TDP-43 interacts with ELL2 (Fig. 6c), suggest specificity 

could also be defined by TDP-43. In HIV infection and leukemia, the sequence specific 

DNA binding activators, HIV-1 Tat protein and MLL respectively, direct SEC to specific 

target genes for their abnormal expression 68,70,71. Thus, it is possible that TDP-43 serves 

as a sequence specific DNA or RNA binding factor and therefore defines target 

specificity in associated diseases. A second layer of specificity is that, upon increased 

U12 snRNA levels, among 18 target genes with a U12-type intron, only 6 become 

misregulated with TDP-43. The detailed mechanisms by which specificity is established 

is an intriguing question that remains to be addressed.  

 

In models of the motor neuron disease spinal muscular atrophy (SMA), expression levels 

and splicing of several genes containing a U12-type intron are decreased 100. Our data 
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show that the activity of the minor spliceosome is affected in an opposite direction in 

TDP-43 expressing animals, highlighting the importance of a balanced level of the minor 

spliceosome in maintaining normal motor neuron function. Products of 6 minor 

spliceosome-regulated genes were increased with TDP-43, with 3 genes potentially 

regulated through transcription and 3 genes likely through misregulation of splicing (see 

Fig. 2e and Supplementary Fig. 2f, g); among these, expression of 3 genes (CG33108, 

CG16941 and CG11839) are decreased in a fly model of SMA 100. This finding indicates 

misregulation of common target genes in different motor neuron disease models. 

Misregulation of orthologues of some of these genes have been reported in mammalian 

models of ALS and FTD or in human patients: the splicing of a U12-type intron in 

C19orf54, the human orthologue of CG33108, is affected in an ALS transgenic mouse 

model expressing human FUS, which is encoded by a gene that, when mutated, can 

cause ALS and rare cases of FTD 129. Another gene, SF3A1, the human orthologue of 

CG16941, shows altered poly-A usage in ALS patients bearing the C9orf72 GGGGCC 

hexanucleotide repeat expansion 84, the most common known genetic cause of ALS and 

FTD 84,130,131. SF3A1 is also implicated as a novel risk factor in FTD by gene co-

expression network analysis 132. Our findings, together with others, indicate that these 

genes may be critical in TDP-43-associated disorders.  

 

We report that the stress-induced repetitive RNA Sat III is increased in TDP-43-

associated disease, which suggest that the elevation may contribute to neuronal loss 

and degeneration. We used both HEK293 cell disease model and human patient 

samples to verify findings in different systems. Stress genes maintain proteostasis and 

promote cell survival. However, the stress response can be diverse depending on the 

circumstances 133,134. The induction of Sat III by TDP-43 is significant although mild (~4-
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fold; see Fig.5), leading us to consider that expression of TDP-43 may be akin to a 

chronic stress that triggers distinct pathways from those induced by an acute heat shock 

response (whereby Sat III is induced many thousand-fold (see Supplementary Fig. 4)). 

In support of this idea, although Sat III is required for cell survival after heat shock, 

forced expression of Sat III triggers cell death and rapid cellular senescence 119,120. 

Elevated Sat III transcripts have been noted in senescent cells and fibroblasts from 

patients with the premature aging disease Hutchinson-Gilford progeria syndrome 

(HPGS) 135,136. Furthermore, normalization of elevated Sat III largely rescues the mitotic 

dysregulation and senescence phenotype of SIRT6-depleted cells 120, indicating that 

elevated Sat III contributes to age-related cellular abnormalities. These studies support 

our findings and model that elevated Sat III is detrimental and may contribute to TDP-43-

associated neuronal dysfunction. The influence of ELL proteins on the induced Sat III 

levels by TDP-43 is an interesting question that remains to be further investigated. 

 

Given our data in Drosophila, the shared component Ell, whose depletion rescued the 

elevated levels of LEC and SEC targets, may be an effective therapeutic target. 

Importantly, our data also showed that knockdown of Ell on its own did not cause 

deleterious effects like degeneration or compromised mobility, further supporting that Ell 

may be a promising therapeutic candidate (see Supplementary Fig. 1b, f). Domain 

analysis of human orthologues of Ell, ELL and ELL2, identified the N-terminal 150 amino 

acids as critical for elongation function 48,137. Given that the ELL family is also reported to 

display additional activities, such as serving as an E3 ubiquitin ligase for c-Myc 

degradation 138 and inhibiting P53 function 138, a strategy to apply molecules targeting 

domains specific for elongation activity, or even targeting the interaction between ELL 

proteins and the assembly components of LEC and SEC, ICE1 and AFF4 (human 
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orthologue of Lilli), respectively, may be promising. Recent research resolving the 

structure of AFF4 and ELL2 binding interface reveal a cavity that is a potential binding 

site for small molecules to interrupt SEC activity 139. 

 

The therapeutic potential of ELL family proteins may not be limited to TDP-43-associated 

toxicity. Our findings indicate that knockdown of Ell protects against not only TDP-43 but 

also GGGGCC hexanucleotide repeat toxicity (Supplementary Fig. 9), which is also a 

major disease locus for ALS and FTD. These data suggest that shared targets of these 

two toxic insults and of ELL family proteins might be central to degeneration associated 

with these mechanisms.   

 

Methods 

Drosophila melanogaster 

Flies were raised at 25°C. Transgenic flies with TDP-43-YFP and recombinant fly lines 

gmr>TDP-43 and elavGS>TDP-43 are described 37,38. The recombinant fly line 

daGS>TDP-43 was generated with the fly line daughterless-GeneSwitch (dsGS), a 

generous gift from Dr. Veronique Monnier 140. Ice1 RNAi fly line was generated with two 

constructs (SH09112.N and SH09113.N) provided by DRSC/TRiP center. Fly lines used 

are listed in Supplementary Table 3. 

 

Drosophila external eye and internal eye imaging  

Adult female flies (1-2d) were used. For external eyes, flies were anesthetized with ether 

and imaged. For retinal tissue imaging, fly heads were embedded in paraffin blocks and 

sectioned for images of endogenous autofluorescence. Images of retina sections were 
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analyzed by ImageJ to measure the thickness of retina tissue in the middle for 

quantification.   

 

RU486 induction in adult fly 

Adult male flies (0-1d) were collected and aged in vials containing fly media added with 

or without RU486 as indicated (4 mg/ml or 8 mg/ml, 100 μl) to induce gene and RNAi 

expression at 25°C for indicated days. 100% ethanol (EtOH) was used as vehicle. 

 

Adult fly climbing assay  

Adult male flies were collected for RU486 induction. Assays were conducted between 

10-11 am. Plastic vials (height=9.5 cm) were used for the assay. Flies were transferred 

into plastic vials at the density of 25 flies per vial 20 min before the assay. For the assay, 

flies were tapped to the bottom of the vial, and the number of flies climbing above 5.5 cm 

was counted after 15 sec (3 repeats). For each trial, a cohort of 100 flies was assessed 

for each genotype over 21 days.  

 

Fly lifespan assay 

Male flies were collected 0-1 days after eclosion and transferred into vials containing fly 

media with or without RU486 at a density of 20 flies per vial. Flies were transferred to 

fresh media every other day and the numbers of dead flies were scored. For each group, 

200 flies were used in each experiment.  

 

Western blotting 

Adult male fly heads (1-2d unless otherwise noted) were homogenized in Laemmli 

sample buffer (Biorad) with βME, boiled and centrifuged to remove debris. NuPAGE 4-
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12% Bis-Tris gel (Thermo Fisher) was used to run the samples. Proteins were 

transferred to nitrocellulose membrane by the iBlot blotting system (ThermoFisher). For 

human cell samples, cells (~9.6*105) were lysed in RIPA buffer (Cell signaling; #9806) 

supplemented with PMSF and proteinase inhibitor protease inhibitor cocktail (Roche; 

#1183670001). Extracts were sonicated for total 6 min using using QSonica (Newtown, 

CT) water bath sonicator (amplitude = 100, 30 s on, 30 s off). After centrifugation the 

concentrations of the protein samples were measured by Pierce BCA kit (Thermo; 

#23225). Same amount of proteins was prepared for each sample with NuPAGE LDS 

sample buffer (Invitrogen; #NP0007), boiled at 95°C, 5min and run on NuPAGE 4-12% 

Bis-Tris gel (Thermo Fisher). Proteins were transferred to PVDF membrane by the XCell 

SureLock system (Invitrogen). Primary antibodies used were anti-TDP-43 rabbit 

polyclonal antibody (1:5000; Proteintech; #10782-2-AP), anti-β-gal mouse monoclonal 

antibody (1:2000; Promega; #Z378A), anti-α-tubulin rabbit polyclonal antibody 

conjugated with HRP (1:1000; Cell signaling; #9099), anti-ELL rabbit polyclonal antibody 

(1:1000; Proteintech; #51044-1-AP), anti-ELL2 rabbit polyclonal antibody (1:1000; 

Bethyl; #A302-505A), anti-ELL2 mouse monoclonal for co-IP immunoblots (1:1000; 

Santa Cruz; #sc-515276) and anti-GAPDH mouse monoclonal (1: 10,000; AbD Seotec; 

#4699-9555). The secondary antibodies used were goat anti-rabbit IgG-HRP (1:5000; 

Milipore, #AP307P) and goat anti-mouse (1:5000; Jackson ImmunoResearch; #115-035-

146). All blocking and antibody incubations were done in 5% milk in PBS overnight (O/N) 

at 4°C for primary and 1 hr at room temperature (RT) for secondary. Signals were 

developed by ECL plus (ThermoFisher) or ECL prime (GE healthcare) western blotting 

reagents. The images were scanned by Fujifilm LAS-3000 imager (Fujifilm) or 

Amersham Imager 600 (GE healthcare), and quantification was performed using 

ImageJ. The uncropped blots in the main figures are provided in Supplementary Fig. 7. 
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Small RNA Northern blotting   

Total RNAs were extracted from fly heads using Trizol reagent (ThermoFisher; 

#15596026), following the manufacturer’s protocol. RNA quality was checked by gel, and 

0.6-3 μg of total RNA was loaded in 15% TBE-urea gel (ThermoFisher; #EC68852BOX). 

RNAs were then transferred onto nylon membrane (GE HealthCare; #RPN303B) and 

cross-linked by UV. The membrane was then prehybridized by UltraHyb Oligo 

Hybridization Buffer (ThermoFisher; #AM8663) and then hybridized with P32-labeled 

probes overnight at 50°C. To make the probes, DNA oligos were annealed to obtain the 

template for RNA probes, which were synthesized by in vitro transcription using 

MAXIscript T7 kit (ThermoFisher; #AM1312), supplemented with P32-a-UTP. Signals 

were detected by GE Amersham Typhoon 9410 Imager and analyzed by ImageJ for 

quantification. Probes used are listed in Supplementary Table 4. The same blots were 

used to probe 2 different snRNAs: either U1 and U11; U2 and U5; U4 and U7 or U4atac 

and U12. The uncropped scans of the blots are shown in Supplementary Fig. 8. 

 

Drosophila polytene immunohistochemistry 

To obtain larvae in the approximately same developmental stage, fly food was mixed 

with 0.05% bromophenol blue, and light blue wandering larvae were selected for 

experiments. Salivary glands were dissected in PBST (0.05% Tween20) and fixed with 

45% acetic acid and 2% paraformaldehyde for 1 min and transferred into a drop of 45% 

acetic acid on a sigma-coated coverslip. The salivary glands were then squashed onto 

Fisherbrand Superfrost Plus Microscope slides (Fisher Scientific), and liquid nitrogen 

was used to freeze the slides. Slides were blocked at RT for 1 hr, and incubated with 
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anti-GFP mouse monoclonal antibody (1:500; Takara; #632380), anti-Lilli rabbit 

polyclonal antibody (1:500; a generous gift from Dr. Ali Shilatifard) and anti-Ell rabbit 

polyclonal antibody (1:500; a generous gift from Dr. Ali Shilatifard) overnight at 4°C. The 

secondary antibodies were goat anti-mouse IgG Alexa Fluor488 (1:500; ThermoFisher; 

#A-11001) and goat anti-rabbit IgG Alexa Fluor488 (1:500; ThermoFisher; #A-11037). All 

blocking and antibody incubations were done in 3% BSA in TBST (0.05% Tween20). 

DAPI (ThermoFisher; #D3571) was used for nucleic acid staining. The spreads were 

mounted using Dako fluorescence mounting medium (Dako; #S3023) and imaged on a 

Leica DM6000 CS confocal microscope. For heat shock treatment, larvae were 

incubated for 5 min at 37°C.  

 

Reverse transcription quantitative PCR 

Total RNA from larvae, whole fly, fly heads, human cultured cells or human tissue was 

extracted using Trizol reagent (ThermoFisher; #15596026), following the manufacturer’s 

protocol. DNA was removed by Turbo DNA-free kit (ThermoFisher; #AM1907) for fly 

samples, RNeasy micro kit (QIAGEN; #74004) for human cultured cells or DNase I 

(ThermoFisher; #18068015) for human tissue samples. RNA quality was checked by gel 

or Agilent 2100 Bioanalyzer system (Agilent). Reverse transcription was performed with 

random hexamers using High-Capacity cDNA Reverse Transcription kit (ThermoFisher; 

#4368814) for samples from fly tissues and human cultured cells or SuperScript III 

Reverse Transcriptase (ThermoFisher; #18080093) for human tissue samples. Fast 

SYBR green master mix (ThermoFisher; #4385614) was used for qPCR performed by 

ViiA 7 Real-Time PCR system (ThermoFisher). Primers used for qPCR are listed in 

Supplementary Table 5, 6. Sequences of primers for CG6323, CG8408, CG16941, 
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CG11839, CG7892, CG13431, CG33108, CG16941 U12int and CG11839 U12int are as 

previously described 100.  

 

ChIP-Seq data analysis 

Raw fastq data from GSM345570 and GSM345568 (input control and Lilli ChIP-seq, 

respectively, were used to call Lilli peaks 69. Raw fastq data from GSM2224492 and 

GSM2224493 (input control replicates), GSM2224501 GSM2224502, GSM2224503, and 

GSM2224504 (TBPH ChIP-seq) were used to call narrow TBPH peaks 114.  Narrow 

peaks were called using the mosaics R package 141. Read trimming, alignment and peak 

calling steps were performed in R using a published pipeline 142. Software packages 

used were mosaics v2.12.0, Rbowtie v1.14.0, dada2 v1.2.2, quasR v 1.14.0, 

TxDb.Dmelanogaster.UCSC.dm6.ensGene v3.3.0, GenomicRanges v1.26.4, 

GenomicFeatures v1.26.4, BSgenome v1.42.0, biomaRt v2.30.0, AnnotationDbi v1.36.2, 

deeptools v3.1.0, python v2.7.10, Integrative Genomics Viewer v2.3.93, and R v3.3.2. 

Mosaics peaks were called using the default parameters, with the exceptions of analysis 

type IO, false discovery rate (FDR)=0.05. Only regions with a called mosaics narrow 

peak in all biological replicates, when compared to both controls, were counted as a 

peak. If these peaks lay within 250 bp of a transcription start site, the corresponding 

gene was considered to have a peak. 

 

Human cell culture 

The doxycycline-inducible (TetON) HEK293 cell lines, TetOn-GFP (clone#9.3) and 

TetOn-GFP-TDP-43 (clone#12.5) generated using a subclone of HEK293 cells (QBI-

293) are generous gifts from Dr. Virginia Lee’s laboratory. Cells were grown in 
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Dulbecco’s modified Eagle’s medium (DMEM) with L-glutamine, glucose and sodium 

pyruvate (Corning; #MT10013CV), supplemented with 10% Tet system approved FBS, 

1% penicillin/streptomycin. Media was further added 400 μg/ml G418 and 1 μg/ml 

puromycin. Cells were cultured at 37°C and 5% CO2 and routinely sub-cultured at 1:10 

ratio every 7 days. To induce expression, 1000 ng/ml doxycycline was added for 6 d. For 

heat shock treatment, cells were subjected to heat stress at 46°C followed by 6 hr 

recovery. Cells were checked for appropriate GFP-tagged protein expression.  

 

Human frontal cortical tissue 

Human postmortem brain samples were obtained from the University of Pennsylvania 

Center for Neurodegenerative Disease Brain Bank. All relevant ethical regulations were 

compiled, and informed consent from next of kin was obtained for all cases. These 

comprised samples from clinically normal individuals (n = 6), as well as individuals with 

FTLD-TDP (n = 13). The region sampled was midfrontal cortex (BA9), and all disease 

cases were previously reported and confirmed to have TDP-43 pathology 121,122. DNA 

was extracted from all cases and screened for mutations in the two most common genes 

associated with FTLD-TDP, GRN and C9orf72.  Briefly, the coding regions of GRN were 

bi-directionally sequenced by Sanger sequencing using flanking primers to each exon as 

previously described 143. Sequence analysis was done with Mutation Surveyor 

(SoftGenetics, State College, PA). Analysis for hexanucleotide repeat expansions in 

C9orf72 was performed using a modified repeat-primed PCR method 144. Analysis of the 

valosin containing protein gene (VCP) analysis was performed by targeted Sanger 

sequencing of the relevant exon in a case with known family history of a VCP mutation 

145. 
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Co-IP 

Endogenous Co-IP was performed by using the nuclear extract of HEK293 TetOn-GFP 

(clone#9.3) cells without doxycycline induction. Cells (~2.6*107) were resuspended in 

hypotonic solution (20 mM Tris-HCl (pH 7.5), 20 mM NaCl, 5 mM MgCl2) supplemented 

with protease inhibitor cocktail (Roche; #1183670001) and homogenized by Dounce 

homogenizer.  After centrifugation (3,000 g, 4°C, 15 min), the pellet containing nucleus 

was resuspended in Pierce IP lysis buffer (Thermo; #87787) supplemented with 

protease inhibitor cocktail (Roche; #1183670001). After centrifugation (15,000 g, 4°C, 

10 min), input sample was saved, and the rest of the lysate were divided to incubate 

at 4°C, overnight with Dynabeads Protein G (Invitrogen; #1004D) prepared with 5 µg 

of anti-TDP-43 mouse monoclonal antibody- mAb 5028146 (a generous gift from Dr. 

Virginia Lee’s lab) or same amount of mouse IgG control (Santa Cruz; #sc-2025). The 

next day, the beads were washed with lysis buffer 3 times, with the 3rd time rotating 

the tubes for 5 min in 4°C. Elute the proteins by NuPAGE LDS sample buffer 

(Invitrogen; #NP0007) by boiling at 95°C, 5min. The following western blotting were 

performed as described above. Experiments were repeated to confirm the results. 

 

Statistical analysis 

Graphs are represented as mean±standard deviation (SD). The statistics used are 

indicated in each figure legend. Comparison between two groups were calculated using 

the two-tailed unpaired Student’s t test. If data sets show significant variance according 

to variance F-test analysis, two-tailed unpaired Student’s t test with Welch’s correction 

was used as indicated in the figure legend. Shapiro-Wilk normality test was used for 
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testing normal distribution for all data sets except data sets normalized to 1. If the data 

are not normally distributed, two-tailed unpaired Mann-Whitney Test (nonparametric test) 

was used as indicated in the figure legend. The differences among three groups were 

calculated using ANOVA followed by Tukey’s multiple comparison test. Brown-Forsythe 

test and Shapiro-Wilk normality test were used to test variance differences and normality 

respectively for data analyzed by One-way ANOVA. Differences with P-values <0.05 

were considered statistically significant. The number of sample size and biological 

replicates is indicated in the methods section or figure legend. No statistical method was 

used to predetermine sample sizes. No sample was excluded from the analysis. No 

method of randomization was used. The investigators were not blinded to allocation 

during experiments.  

 

Data availability 

The data that support the findings of this study are available from the corresponding 

author upon reasonable request.  

 

Code availability 

The code used for analysis is available upon request. 
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Figures 

 
 

Figure 1. Components of LEC and SEC modulate TDP-43 toxicity 
(a) TDP-43 expression causes eye degeneration that is suppressed by Ell RNAi and 
enhanced by Ell upregulation. Scale bars: external eye images (top), 100 μm; internal 
retinal section (bottom), 5 μm. Genotypes: Control is gmr-GAL4(YH3)/+. gmr>TDP-43 is 
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UAS-TDP-43/+; gmr-GAL4(YH3)/+. gmr>TDP-43+Control RNAi is UAS-TDP-43/+; gmr-
GAL4(YH3)/UAS-Control.RNAiJF01355. gmr>TDP-43+Ell RNAi is UAS-TDP-43/+; gmr-
GAL4(YH3)/UAS-Ell.RNAiHMS00277. gmr>TDP-43+Ell is UAS-TDP-43/+; gmr-
GAL4(YH3)/UAS-EllP{EP}G4098.  
(b) Quantification of retina thickness related to Fig. 1a. Three flies of each genotypes 
were measured (n=3). Bars represent mean (SD). (**) P <0.01, (****) P<0.0001(Two-
tailed unpaired Student’s t test). Genotypes are the same as indicated in Fig. 1a. (A.U.) 
arbitrary units. 
(c) Schematic of LEC and SEC. 
(d) Downregulation of SEC components (ear and lilli), or LEC component (Ice1) 
suppresses TDP-43 toxicity. Scale bars: external eye (top), 100 μm; internal retina 
section (bottom), 5 μm. Genotypes: gmr>TDP-43 is UAS-TDP-43/+; gmr-GAL4(YH3)/+. 
gmr>TDP-43+ear RNAi is UAS-TDP-43/+; gmr-GAL4(YH3)/UAS-ear.RNAiHMS00107.  
gmr>TDP-43+lilli+/- is UAS-TDP-43/lilli17-2; gmr-GAL4(YH3)/+.  gmr>TDP-43+Ice1 RNAi 
is UAS-TDP-43/UAS-Ice1.RNAi (SH09112.N from DRSC/TRiP); gmr-GAL4(YH3)/+. 
(e) Quantification of retina thickness related to Fig 1d. Three flies of each genotypes 
were measured (n=3). Bars represent mean (SD). (**) P <0.01 (Two-tailed unpaired 
Student’s t test). Genotypes are the same as indicated in Fig. 1d. (A.U.) arbitrary units. 
(f) TDP-43 expression in the adult neurons by elavGS causes climbing defects. 
Knockdown of Ell restores climbing ability. RU486 (8 mg/ml) was used to induce the 
expression of TDP-43 and Ell RNAi. EtOH was used as vehicle. Total of 100 flies were 
measured 3 times for each genotype at different time points. Bars represent mean (SD). 
(***) P <0.001, (****) P<0.0001 (Two-way ANOVA followed by Tukey’s multiple 
comparison test). Significant differences are only indicated within the same time point. 
Genotypes: elavGS>TDP-43 is elavGS-GAL4, UAS-TDP-43/+. elavGS>TDP-43+Ell 
RNAi is elavGS-GAL4, UAS-TDP-43/UAS-Ell.RNAi HMS00277.  
(g) TDP-43 protein levels in heads from 7, 14 and 21d flies are not altered by Ell RNAi. 
n=3 biological replicates. Tubulin was used as internal control. Bars represent mean 
(SD). (NS) not significant (Two-tailed unpaired Student t test with Welch’s correction). 
Genotypes and RU486 treatment are as in Fig. 1f.   
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Figure 2. U12 snRNA is upregulated and a functional target of TDP-43  
(a) Northern blot analysis shows that the level of snRNAs U1, U4, U7 and U12 are 
upregulated by TDP-43 expression driven by a ubiquitous drug-inducible promoter, 
daGS, in heads. Ell RNAi corrects the increased levels of snRNAs. RU486 (4 mg/ml) 
was used to induce the expression of TDP-43 and Ell RNAi for 8d. 2S rRNA was the 
loading control. n=3 biological replicates. Bars represent mean (SD). (*) P <0.05, (**) P 
<0.01, (***) P <0.001, (****) P<0.0001 (One-way ANOVA followed by Tukey’s multiple 
comparison test). Genotypes: daGS>TDP-43 is daGS-GAL4/+; UAS-TDP-43/+. 
daGS>TDP-43+Ell RNAi is daGS-GAL4/+; UAS-TDP-43/UAS-Ell.RNAiHMS00277. 
(b) Knockdown of U12 suppresses eye degeneration caused by TDP-43 toxicity. Scale 
bars: external eye (top), 100 μm; internal retina (bottom), 5 μm. Genotypes: gmr>TDP-
43 is UAS-TDP-43/+; gmr-GAL4(YH3)/+.  gmr>TDP-43+U12 RNAi is UAS-TDP-43/ 
UAS-snRNA:U12:73B.RNAiHMC03841; gmr-GAL4(YH3)/+.  
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(c) Quantification of retina thickness related to Fig 2b. Three flies of each genotypes 
were measured (n=3). Bars represent mean (SD). (*) P <0.05 (Two-tailed unpaired 
Student’s t test). Genotypes are the same as indicated in Fig. 2b. (A.U.) arbitrary units. 
(d) Schematic illustrates detection of spliced or unspliced products by RT-qPCR for a 
U12-type intron. 
(e) RT-qPCR analysis shows that spliced products of CG15735, CG16941, CG11839 
are up-regulated by TDP-43 expression driven by daGS in fly heads, and 
downregulation of Ell rescues the increased levels, while the unspliced products are not 
changed significantly upon TDP-43 expression. RU486 (4 mg/ml) was used to induce 
expression for 8d. mRNA levels were normalized to RpL32 mRNA. n=6 biological 
replicates. Bars represent mean (SD). (*) P <0.05, (****) P<0.0001 (One-way ANOVA 
followed by Tukey’s multiple comparison test). Genotypes are as indicated in Fig. 2a. 
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Figure 3. TDP-43 and Lilli co-localize at the 93D locus on polytene chromosomes  
(a) Immunostainings of DAPI (white), TDP-43-YFP (green) and Lilli (magenta) show 
partial overlap of TDP-43-YFP and Lilli on chromosomes from salivary glands 
expressing TDP-43-YFP. Sixteen sites of consistent co-localization are indicated 
(bottom, see also Supplementary Table 1).  
(b) Upon heat shock, Lilli localizes to major heat shock loci and co-localizes with TDP-
43-YFP at the 93D locus (enlarged at the upper right corner). See also Supplementary 
Table 2. 



 
 

59 

For (a) and (b), scale bars: 10 μm. Genotype: sgs3-GAL4/UAS-TDP-43-YFP. 
(c) Venn diagram illustrates the numbers of genes bound by TBPH and Lilli. 
(d) A ChIP-seq profile of TBPH (top, blue) and Lilli (bottom, orange) shows overlap at 
the Hsrω transcription start site. Bar intervals indicate called peaks in TBPH (light blue, 
top) and Lilli (light orange, bottom). The TBPH profile is one of four biological replicates 
that show called peaks at Hsrω transcription start site. 
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Figure 4. Hsrω is elevated and contributes to TDP-43 toxicity 
(a) RT-qPCR analysis of fly heads shows that expression of TDP-43 driven by a drug-
inducible promoter daGS leads to an increase of total Hsrω and Hsrω-n. Knockdown of 
Ell reduces the elevated levels of total Hsrω and Hsrω-n. RU486 (4 mg/ml) was used to 
induce expression for 4d. Relative RNA levels were normalized to Pgk, RpL32 and 
RpS20 mRNAs (geometric mean). n=3 biological replicates. Bars represent mean (SD). 
(*) P <0.05, (**) P <0.01, (***) P <0.001 (One-way ANOVA followed by Tukey’s multiple 
comparison test). Genotype: daGS>TDP-43 is daGS-GAL4/+; UAS-TDP-43/+. 
daGS>TDP-43+Ell RNAi is daGS-GAL4/+; UAS-TDP-43/UAS-Ell.RNAiHMS00277. 
(b) Images of external eyes (top) and internal retina (bottom) show that loss of one copy 
of Hsrω ameliorates TDP-43-caused eye degeneration. Scale bars: external eye, 100 
μm; internal retina section, 5 μm. Genotypes: gmr>TDP-43 is UAS-TDP-43/+; gmr-
GAL4(YH3)/+. gmr>TDP-43+Hsrω+/- is UAS-TDP-43/+; gmr-GAL4(YH3)/Hsrω66. 
(c) Quantification of retina thickness related to Fig 4b. Three flies of each genotypes 
were measured (n=3). Bars represent mean (SD). (**) P <0.01 (Two-tailed unpaired 
Student’s t test). Genotypes are the same as indicated in Fig. 4b. (A.U.) arbitrary units. 
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Figure 5. Sat III is upregulated in a human cell model and FTD patient samples 
(a) RT-qPCR analysis shows that the levels of Sat III are increased in HEK293 cells 
expressing GFP-TDP-43 after 6d induction. Relative RNA levels were normalized to 
GAPDH and ACTB mRNAs (geometric mean). n=6 biological replicates. Bars represent 
mean (SD). (****) P<0.0001 (Two-tailed unpaired Student’s t test with Welch’s 
correction).  
(b) RT-qPCR analysis shows that the levels of Sat III are increased significantly in frontal 
cortex of FTD patients compared to normal frontal cortex controls. Relative RNA levels 
were normalized to GAPDH and ACTB mRNAs (geometric mean). All FTD patients had 
TDP-43 pathology (FTLD-TDP). Case numbers and details are as indicated in Table 1. 
Bars represent mean (SD). (**) P<0.01 (Two-tailed unpaired Student’s t test with Welch’s 
correction). 
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Figure 6. TDP-43 interacts with ELL2 in human cells 
(a) RT-qPCR analysis of fly heads shows that expression of TDP-43 driven by daGS 
leads to an increase of Ell. RU486 (4 mg/ml) was used to induce expression for 4d. 
Relative RNA levels were normalized to Pgk, RpL32 and RpS20 mRNAs (geometric 
mean). n=3 biological replicates. Bars represent mean (SD). (**) P <0.01 (Two-tailed 
unpaired Student’s t test). Genotypes are the same as indicated in Fig. 4a.  
(b) RT-qPCR analysis shows that the levels of ELL and ELL2 are increased in HEK293 
cells expressing GFP-TDP-43 compared to cells expressing GFP after 6d induction. 
Relative RNA levels were normalized to GAPDH and ACTB mRNAs (geometric mean). 
n=6 biological replicates. Bars represent mean (SD). (****) P<0.0001 (Two-tailed 
unpaired Student’s t test). 
(c) IP with anti-TDP-43 antibody or mouse IgG as negative control followed by 
immunoblotting studies with anti-ELL, ELL2 or TDP-43 antibody show that TDP-43 
interacts with ELL2. The co-IP assays were repeated independently four times and show 
consistent results (a different ELL2 antibody was used for detection for two repeats of 
the experiments).  
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Figure 7. TDP-43 promotes the levels of the targets of LEC and SEC contributing 
to neurodegeneration 
A model for TDP-43 toxicity associated with LEC and SEC.  LEC regulates the 
transcription of snRNAs, forming spliceosomes, and SEC regulates stress response 
genes, maintaining cell homeostasis. In the disease state, TDP-43 promotes the levels 
of LEC and SEC targets through interactions with Ell in fly/ELL2 in human cells, 
including U12 and Hsrω/Sat III, leading to misregulation of splicing, cell loss and 
disruption of cell homeostasis and contributes to neurodegeneration. 
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Tables 

Table 1. Human brain samples 
  Number 

Normal controls No mutation identified 6 

FTD 
(FTLD-TDP) 

No mutation identified 6 

GRN mutation 5 

C9Orf72 mutation 1 

VCP mutation 1 
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Supplementary Information  

Supplementary Table 1. Quantification of co-localization of TDP-43-YFP and Lilli 
on 16 sites in 4 polytenes, related to Figure 3.  
 

Chromosome ~Cytological 
bands Polytene 1 Polytene 2 Polytene 3 Polytene 4 

X 

2E + + + + 
3F + ? + + 
15C + + + + 
17C + + + + 
18B + + + + 

2L      

2R 
43E + + + + 
48A + + + + 
60A/B + + + + 

3L 

61C + + + + 
62A + + ? + 
74 EF + (weak) + + + 
75CD + (weak) + + (weak) + 

3R 

82D + + + + 
93D + + + + 
95F + + + + 
100C + + + + 

 
(+) co-localization, (?) unable to define due to pattern of chromosome spreading.  
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Supplementary Table 2. Quantification of co-localization of TDP-43-YFP and Lilli 
on 6 major heat shock loci in 15 polytenes, related to Figure 3.  
 

Major heat shock loci 63B 67B 93D 95D 87A 87C 
Polytene 1 + (weak) + (weak) + - - - 
Polytene 2 - + + - - - 
Polytene 3 + (weak) - + - - - 
Polytene 4 + (very week) + (weak) + - - - 
Polytene 5 + (weak) - + - - - 
Polytene 6 + (weak) - + - - - 
Polytene 7 + (weak) - + - - - 
Polytene 8 - - + (weak) - - - 
Polytene 9 - - + - - - 
Polytene 10 + - + - - - 
Polytene 11 + (very weak) - + - - - 
Polytene 12 + (very weak) - + - - - 
Polytene 13 - - + - - - 
Polytene 14 - - + - - - 
Polytene 15 - - + - - - 

 
(+) co-localization, (-) no co-localization.  
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Supplementary Table 3. Fly lines.  
 

 
Bloomington is to the Bloomington Drosophila Stock Center, https://bdsc.indiana.edu/ 

  

Fly lines Insertion 
chromosome(s) Reference/Source 

w1118  1 Bloomington 
UAS-TDP-43-YFP 3 37 
UAS-TDP-43 2 37 
UAS-TDP-43 3 37 
elavGS-GAL4 3 Bloomington 
daGS-GAL4 2 140 
da-GAL4 3 Bloomington 
gmr-GAL4(YH3) 3 37 
sgs3-GAL4 3 Bloomington 
UAS-LacZ 2 Bloomington 
lilli17-2 2 Bloomington 
Hsrω66 3 Bloomington 
UAS-EllP{EP}G4098 3 Bloomington 
UAS-Ell.RNAiHMS00277 3 Bloomington 
Ell[S-192] 3 Bloomington 
UAS-ear.RNAiHMS00107 3 Bloomington 
UAS-Ice1.RNAi (SH09112.N from DRSC/TRiP) 2 This paper 
UAS-Ice1.RNAi (SH09113.N from DRSC/TRiP) 3 This paper 
UAS-Ice1.RNAi (13550R-2 from NIG) 2 NIG 
UAS-snRNA:U12:73B.RNAiHMC03841 2 Bloomington 
UAS- Hsrω.RNAiHMC05093 2 Bloomington 
UAS-Control.RNAiJF01355 3 Bloomington 
UAS-(G4C2)48 2 147 
UAS-mCherry RNAi 2 Bloomington 
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Supplementary Table 4. Probes for small RNA Northern blot.  
 

Name Sequence 

U1 5′-GATAATACGACTCACTATAGGGAGA-3′ 
5’-AAAAAACTGAGTTGACCTCTGCGATTATTCCTCTCCCTATAGTGAGTCGTATTATC-3′ 

U2 5′-GATAATACGACTCACTATAGGGAGA-3′ 
5’-AAAAAATCGGCCTTATGGCTAAGATCAAATCTCCCTATAGTGAGTCGTATTATC-3′ 

U4 5′-GATAATACGACTCACTATAGGGAGA-3′ 
AAAAAAGAAAACTTTAACCAATACCCCGCCTCTCCCTATAGTGAGTCGTATTATC-3′ 

U4atac 5′-GATAATACGACTCACTATAGGGAGA-3′ 
5’-AAAAAATCAATGAACGTCTAGTGAGGACATTTCTCCCTATAGTGAGTCGTATTATC-3′ 

U5 5′-GATAATACGACTCACTATAGGGAGA-3′ 
5’-AAAAAATCTGGTTTCTCTTCAATTGTCGAATTCTCCCTATAGTGAGTCGTATTATC-3′ 

U7 5′-GATAATACGACTCACTATAGGGAGA-3′ 
5’-AAAAAACTCTTTGAAATTTGTCTTGGTGGGATCTCCCTATAGTGAGTCGTATTATC-3′ 

U11 5′-GATAATACGACTCACTATAGGGAGA-3′ 
5’-AAAAAAGTTTCCGATCACGAAACTCAAGTGTCTCCCTATAGTGAGTCGTATTATC-3′ 

U12 5′-GATAATACGACTCACTATAGGGAGA-3′ 
5’-AAAAAAAATGAGTAAGGAAAACCAATCAGCCTCTCCCTATAGTGAGTCGTATTATC-3′ 

2S 5′-GATAATACGACTCACTATAGGGAGA-3′ 
5’-TGCTTGACTACATATGGTTGAGGGTTGTATCTCCCTATAGTGAGTCGTATTATC-3′ 

 
Two DNA oligonucleotides were annealed to obtain the template for each RNA probe.   
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Supplementary Table 5. qPCR primers for Drosophila genes.  
 

Name Forward Sequences (5’-3’) Reverse Sequences (5’-3’) 
Ell AAAACAAACTCACATACAACCAAAAA GCACTCGTTGTGGAAGTAGACA 
Ear TTCCGAAACCCAAACGAGT CGTCTCGGTTGCGAAAGTA 
Ice1 ACCACTTCCAGCCCTATGAG GCTTCCCCACCAGGTTCT 
U12 TTTGCAAGGGCACAGGTC GCTAGCCGGACGCAAAGTAG 
CG6323 TGCTCTTCTTCTACATGATCATTCTGTT GCACTTGTTTGCGCAAATCC 
CG8408 GTCGCCTACGTATTCCTGCAAACA CCAGCGCCGAACAGAAACATATGA 
CG16941 GCCGGAAGTTAGAAATATCGTTGAC ACTTTGGATTGCCCAGCTCA 
CG11839 CACCATTGGCAAAGTATGACTCCTCG CCACCTTATTCTGCTTAGCCTGATCG 
CG7892 CTTTCAAGAAATCTATGTGATAACGGAG GGATCTGGTACAGGAACACCTT 
CG13431 ATGGCCCAAATCCTTCTGGGATGA CCAAACGTGCGAGTGCGTGATATT 
CG33108 GCCTACTAGTGCCCTACGATG TGCGTGTCCACCAGATAACCTA 
CG7736 CCTCGAGGACACTATCAGCA CCTTCATCTGCTTGACCTCATC 
CG17912 CCTCCAAACCCTGGTGCT GGGTCCGGTGTACAACTTCTT 
CG32705 CGCCCATCGTAGCCATTATC CATGTGGAAGCCGGTCAGT 
CG11328 CGTTGAGCGATTTCTTCTCC TCGAACCCGAGTAAATTTGG 
CG17228 TGACGGCATGGCTCCTAC GGGATAGCGCACCCAGAA 
CG15081 AGAAGCCGAGGCTGCTAA TGCGTGCAATGCTTTGAG 
CG11984 GCGAGCCGAATCTAGTCACA GATGCGACGCACTCCAC 
CG4894 ATTCGCATTGTGGAGTGG GTAAACAGCCAAGGCAATACAG 
CG18177 GGCAAGGACGGATTCACCT CATCGACGCGTAGTGCTTG 
CG15735 GGCCTTCGATCACAACACA GTTGCCGTTGCACTCCTT 
CG3294 GAACTGCATGCCAAGAGG GGTGTACTCCAGTTCCGTGT 
CG16941 U12int ATGGCAACTTTAGACGCGGAA TTGTTTTCTTTTTGGCAAAGGATGC 
CG11839 U12int GTTGTTTACACTTTCTAGCCGGTGT GCCCGAGGAGTCATACGTATAGTTA 
CG33108 U12int GCATGTAGGTCCTTTGGACTG CAGTGTGCTGTTCACCGTTTAC 
CG11328 U12int TAACTCCCACCGCACATGA GGCCACCACACCAGTAAGTT 
CG15735 U12int GGCCTTCGATCACAACACA AGAAAGTGCTCGCTTTCACC 
CG3294 U12int GCGGTACGTGAACTGCAT CAGTCGTTACCTTTGGGACA 
Hsrω-all TATCTAATGTCCGGGGTCGT CACAATCCGCACAATCAATC 
Hsrω-n ATAGTCCCTCGGAGGAAAGG GCGCTCACAGGAGATCAA 
βTub56D CATCCAAGCTGGTCAGTG  GCCA TGCTCATCGGAGAT  
Pgk ATCACCAGCAACCAGAGAATTG TGCCAGGGTGTACTTGATGTT 
RpS20 CCGCATCACCCTGACATCC TGGTGATGCGAAGGGTCTTG 
RpL32 CATCCGCCCAGCATACAG CCATTTGTGCGACAGCTTAG 

  



 
 

70 

Supplementary Table 6. qPCR primers for human genes.  
 

Name Forward Sequences (5’-3’) Reverse Sequences (5’-3’) 
Sat III GTGCAATCGAATGGAATCG CCATTCCTGTACTCGGGTTG 
GAPDH CGAGATCCCTCCAAAATCAA TTCACACCCATGACGAACAT 
ACTB TTCCTGGGCATGGAGTC CAGGTCTTTGCGGATGTC 
ELL GTCGGAGACGCCTGACTACT TACTCGGCATTGAAGTCGTTC 
ELL2 TGGGAGCAATTCTGCAAC ATCCAGGCCAGTCTCTTTGA 
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Supplementary Figure 1. Downregulation of components in SEC and LEC 
suppresses TDP-43-caused degeneration  
 
(a) RT-qPCR analysis verifies that Ell, ear and Ice1 are knocked down by RNAi and Ell 
is elevated by the upregulation fly line. RU486 (4 mg/ml) was used to induce the 
expression of RNAi driven by daGS promoter. Whole flies were used for accessing 
knockdown effects of Ell RNAi and Ice1 RNAi (8d RU486 induction), and upregulation 
effect of Ell (1d). Larvae were collect for evaluate ear RNAi effect. Relative mRNA levels 
were normalized to βTub56D mRNA. n=3 biological replicates. Bars represent mean 
(SD). (**) P <0.01, (***) P <0.001 (Two-tailed unpaired Student’s t test with Welch’s 
correction for RNAi effect; Two-tailed unpaired Student’s t test for upregulation effect of 
Ell). Genotype: daGS>Ell RNAi is daGS-GAL4/+; UAS-Ell.RNAiHMS00277/+, Control for Ell 
is da-GAL4/+, da>Ell is da-GAL4/UAS- EllP{EP}G4098, Control for ear is da-GAL4/mCherry 
RNAi, da>ear RNAi is da-GAL4/UAS-ear.RNAiHMS00107, daGS>Ice1 RNAi is daGS-
GAL4/UAS-Ice1.RNAi (SH09112.N from DRSC/TRiP).  
(b) Reduction of components involved in SEC and/or LEC on their own does not affect 
eye integrity. Scale bars: 100 μm. Genotype: Control is gmr-GAL4(YH3)/+, gmr>Ell RNAi 
is gmr-GAL4(YH3)/UAS-Ell.RNAiHMS00277, gmr>Ell is gmr-GAL4(YH3)/UAS-EllEPG4098, 
gmr>ear RNAi is gmr-GAL4(YH3)/UAS-ear.RNAiHMS00107, lilli+/- is lilli17-2/+; gmr-
GAL4(YH3)/+ and gmr>Ice1 RNAi is UAS-Ice1.RNAi (SH09112.N from DRSC/TRiP)/+; 
gmr-GAL4(YH3)/+. 
(c) The levels of TDP-43 are unaltered by Ell RNAi, ear RNAi, loss a genomic copy of lilli 
or upregulation of Ell. The levels of TDP-43 are elevated by Ice1 RNAi. n=3 biological 
replicates. Bars represent mean (SD). (NS) not significant, (**) P <0.01 (Two-tailed 
unpaired Student’s t test). Genotypes of the flies are the same as indicated in Fig. 1a, d. 
(d) Western blot analysis of β-gal shows that the GAL4/UAS system is not altered by 
downregulation of components in SEC and/or LEC. n=3 biological replicates. Bars 
represent mean (SD). (NS) not significant (Two-tailed unpaired Student’s t test). 
Genotypes: gmr>β-gal; Control is gmr-GAL4, UAS-β-gal/+, gmr>β-gal+Ell RNAi is gmr-
GAL4, UAS-β-gal/+; UAS-Ell.RNAiHMS00277/+, gmr> β-gal+ear RNAi is gmr-GAL4, UAS-β-
gal/+; UAS-ear.RNAiHMS00107/+, gmr> β-gal+lilli+/- is gmr-GAL4, UAS-β-gal/lilli17-2, gmr> 
β-gal+Ice1 RNAi is gmr-GAL4, UAS-β-gal/UAS-Ice1.RNAi (SH09112.N from 
DRSC/TRiP). 
(e) Depletion of Ell and Ice1 by additional fly lines show the suppression effect on TDP-
43-mediated eye degeneration. The levels of TDP-43 and RNAi effect were confirmed by 
western blotting and RT-qPCR. For RNAi effect confirmation, RU486 (4 mg/ml) was 
used to induce the expression of RNAi driven by daGS promoter for 8 days. Genotypes: 
gmr>TDP-43 is UAS-TDP-43/+; gmr-GAL4(YH3)/+. gmr>TDP-43+Ell+/- is UAS-TDP-
43/+; gmr-GAL4(YH3)/Ell[S-192].  gmr>TDP-43+Ice1 RNAi(NIG) is UAS-TDP-43/UAS-
Ice1.RNAi (13550R-2 from NIG); gmr-GAL4(YH3)/+.  gmr>TDP-43+Ice1 RNAi(TRiP) is 
UAS-TDP-43/+; gmr-GAL4(YH3)/UAS-Ice1.RNAi (SH09113.N from DRSC/TRiP). 
daGS>Ice1 RNAi(NIG) is daGS-GAL4/UAS-Ice1.RNAi (13550R-2 from NIG) and 
daGS>Ice1 RNAi(TRiP) is daGS-GAL4/+; UAS-Ice1.RNAi (SH09113.N from 
DRSC/TRiP)/+. 
 (f) TDP-43 expression in the adult neurons by elavGS causes climbing defects, which 
can be rescued by knockdown of Ell. Genotypes are as indicated in Fig. 1f.  
(g) Knockdown of Ell on its own in neurons causes no climbing defects. Genotypes: 
elavGS>Ell RNAi is elavGS-GAL4, UAS-Ell.RNAi HMS00277/+.  
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For (f) and (g), RU486 (4 mg/ml) was used to induce the expression of TDP-43 and Ell 
RNAi. EtOH was used as vehicle. 100 flies were measured 3 times for each genotype at 
different time points. Bars represent mean (SD). (*) P <0.05, (**) P <0.01, (***) P <0.001, 
(****) P<0.0001, (NS) not significant (Two-way ANOVA followed by Tukey’s multiple 
comparison test). Significant differences are only indicated within the same time point. 
(h) (I) Lifespan analysis of flies expressing TDP-43 and/or Ell RNAi by neuronal driver 
elavGS (h) or ubiquitous driver daGS (I) show that Ell depletion mildly prolongs the 
lifespan on its own and mildly extends the shortened lifespan mediated by TDP-43 
expression. Genotypes are as indicated in Fig. 1f and Fig. 2a. n=200 flies per group. P 
values are indicated in the figure (Log-rank test and Gehan-Breslow-Wilcoxon test). 
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Supplementary Figure 2. Expression of TDP-43 affects the levels of selected 
snRNAs and U12 intron-containing genes in fly heads  
 
(a) Western blot analysis shows that downregulation of Ell does not alter TDP-43 protein 
levels driven by ubiquitous drug-inducible diver daGS in fly heads. Genotypes of the flies 
and RU486 treatment are the same as indicated in Fig. 2a, e. 
(b) Northern blot analysis of Pol II-transcribed snRNAs shows that U2, U4atac, U5 and 
U11 are not significantly affected by TDP-43 expression in fly heads. 2S rRNA was the 
internal control. Genotypes of the flies and RU486 treatment are the same as indicated 
in Fig. 2a, e. 
(c) RT-qPCR analysis verifies that U12 is knocked down by RNAi. RU486 (4 mg/ml) was 
used to induce the expression of RNAi for 8d, and whole flies were used. Relative 
mRNA levels were normalized to RpL32 mRNA. Genotype: daGS>U12 RNAi is daGS-
GAL4/UAS-snRNA:U12:73B.RNAiHMC03841. 
(d) Western blot analysis confirms that the levels of TDP-43 protein are not altered by 
U12 RNAi. Genotypes of the flies are the same as indicated in Fig. 2b. 
(e) Knockdown of U12 on its own does not affect eye integrity. Scale bars: 100 μm. 
Genotype: Control is gmr-GAL4(YH3)/+ and gmr>U12 RNAi is UAS- 
snRNA:U12:73B.RNAiHMC03841/+; gmr-GAL4(YH3)/+.  
(f) RT-qPCR analysis of U12 intron-containing genes shows that 12 out of 18 genes are 
not altered by TDP-43 expression in fly heads. Relative mRNA levels were normalized to 
RpL32 mRNA. Genotypes of the flies and RU486 treatment are the same as indicated in 
Fig. 2a, e. 
For (a-d) and (f), n=3 biological replicates. Bars represent mean (SD). (*) P <0.05, (**) P 
<0.01, (***) P <0.001, (NS) not significant (Two-tailed unpaired Student t test for 
comparisons between 2 groups; One-way ANOVA followed by Tukey’s multiple 
comparison test for comparisons among 3 groups).  
(g) RT-qPCR analysis of 18 genes regulated by U12-dependent spliceosome shows that 
both the spliced and unspliced products of CG33108, CG11328, CG3294 are up-
regulated by TDP-43 expression driven by daGS in fly heads, and downregulation of Ell 
rescues the increased levels. RU486 (4 mg/ml) was used to induce expression for 8d. 
mRNA levels were normalized to RpL32 mRNA. Statistical analysis and genotypes are 
as indicated in Fig. 2a,e.   
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Supplementary Figure 3. TDP-43 and Ell co-localize at the 93D locus on polytene 
chromosomes 
 
Immunostainings of DAPI (white), TDP-43-YFP (green) and Ell (magenta) show partial 
overlap and co-localization of TDP-43-YFP and Ell on Hsrω locus in salivary glands 
expressing TDP-43-YFP. Scale bars: 10 μm. Genotype is as indicated in Fig. 3a, b.  
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Supplementary Figure 4. Controls for the specificity of Hsrω on TDP-43 toxicity 
 
(a) Western blot analysis confirms that the levels of TDP-43 are not altered by 
downregulation of Hsrω. n=3 biological replicates. Bars represent mean (SD). (NS) not 
significant (Two-tailed unpaired Student t test). Genotypes are as indicated in Fig. 4b. 
(b) Loss of one copy of Hsrω does not disrupt eye integrity. Scale bars: 100 μm. 
Genotype: Control is gmr-GAL4(YH3)/+ and Hsrω+/- is gmr-GAL4(YH3)/Hsrω66. 
(c) Depletion of Hsrω by an RNAi fly line suppresses the eye degeneration caused by 
TDP-43 expression. The levels of TDP-43 and RNAi effect were confirmed by western 
blotting and RT-qPCR. For RNAi effect confirmation, RU486 (4 mg/ml) was used to 
induce the expression of RNAi driven by daGS promoter for 8 days, and whole flies were 
used. Genotypes: gmr>TDP-43 is UAS-TDP-43/+; gmr-GAL4(YH3)/+. gmr>TDP-
43+Hsrω RNAi is UAS-TDP-43/UAS-Hsrω.RNAiHMC05093; gmr-GAL4(YH3)/+. daGS>Hsrω 
RNAi is daGS-GAL4/UAS-Hsrω.RNAiHMC05093.  
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Supplementary Figure 5. Sat III qPCR primers detect a large-fold induction by heat 
stress 
 
RT-qPCR analysis shows that the levels of Sat III are dramatically induced by heat 
stress in HEK293 cells expressing GFP after 6d induction. Relative RNA levels were 
normalized to GAPDH and ACTB mRNAs (geometric mean). n=6 replicates. Bars 
represent mean (SD). (**) P<0.01 (Two-tailed unpaired Student’s t test with Welch’s 
correction).  
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Supplementary Figure 6. RNA levels and protein levels of ELL and ELL2 are not 
altered in patient samples and a HEK293 cell disease model respectively 
 
(a) RT-qPCR analysis shows that the levels of ELL and ELL2 are increased significantly 
in frontal cortex of FTLD-TDP compared to normal frontal cortex controls. Bars represent 
mean (SD). (NS) not significant (Two-tailed unpaired Student’s t test and Two-tailed 
unpaired Mann-Whitney test for ELL; Two-tailed unpaired Student’s t test for ELL2). 
Sample details are as indicated in Fig. 6b. 
(b) Western blot analysis of ELL and ELL2 show that protein levels of ELL and ELL2 are 
not altered in HEK293 cells expressing GFP-TDP-43 compared to cells expressing GFP 
after 6d induction. GAPDH was used as internal control. n=4 biological replicates. Bars 
represent mean (SD). (NS) not significant (Two-tailed unpaired Student t test). 
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Supplementary Figure 7. The uncropped scans of western blots in Fig. 1g and Fig. 
6c 
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Supplementary Figure 8. The uncropped scans of small RNA Northern blots 
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Supplementary Figure 9. Depletion of Ell suppresses the eye degeneration caused 
by G4C2 expansion 
 
Expression of GGGGCC expansion causes eye degeneration, which is suppressed by 
Ell RNAi. Scale bars: 100 μm. Genotypes: Control is gmr-GAL4(YH3)/+. gmr>(G4C2)48 is 
UAS-(G4C2)48/+; gmr-GAL4(YH3)/+. gmr>(G4C2)48+Control RNAi is UAS-(G4C2)48/+; gmr-
GAL4(YH3)/UAS-Control.RNAiJF01355. gmr>(G4C2)48+Ell RNAi is UAS-(G4C2)48/+; gmr-
GAL4(YH3)/UAS-Ell.RNAiHMS00277. 
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Supplementary Data  

File Name: Supplementary Data 1  

Description: The lists of genes bound by TBPH, Lilli or both, derived from 69,114 

(The file will be able to be downloaded from https://www.nature.com/ncomms/) 
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CHAPTER 3: CONCLUSION AND FUTURE DIRECTIONS 

CONCLUSION OF THE FINDINGS AND OPEN QUESTIONS  
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Conclusions  

Our work defined Ell, the shared subunit of LEC and SEC, as a strong dose-dependent 

modifier of TDP-43-mediated degeneration by using a powerful Drosophila disease 

model expressing human TDP-43 in the fly eye system (Figure 1a-c). The identification 

of Ell was through a fly genetic screen for modifiers of TDP-43-mediated eye 

degeneration. Other potential modifiers of TDP-43 toxicity indicated by the screen are 

listed in Table 3.1 (derived from Ross Weber’s data). Depletion of the components 

specific for LEC or SEC partially suppressed the eye degeneration, although the 

suppression is not as strong as downregulation of the shared component Ell (Figure 

1d,e). The ability to suppress TDP-43-mediated neurodegeneration was further 

demonstrated in the fly nervous system (Figure 1f). These findings reveal the important 

roles of Ell and Ell-containing complexes in TDP-43-mediated neurodegeneration, and 

implicate misregulation of LEC and SEC in mechanisms of disease.  

 

We sought evidence indicating that the activities of LEC and SEC were upregulated. By 

Northern blot analysis, several LEC target snRNAs, including U1, U4, U7 and U12 

snRNAs, were upregulated in fly heads with TDP-43 expression compared to controls 

(Figure 2-2a). Among these, depletion of U12 snRNA functionally ameliorated eye 

degeneration caused by TDP-43, indicating that the elevation of U12 contributes to TDP-

43-mediated degeneration (Figure 2b,c). Further examination of the levels of 18 genes 

containing an intron regulated by the U12-dependent spliceosome showed that the 

spliced products of 3 genes, CG15735, CG16941 and CG11839, are upregulated in fly 

heads with expression of TDP-43, with the levels of the unspliced products unchanged 

(Figure 2e). These results suggest that the activity of LEC might be upregulated, leading  
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Table 3-1. Additional potential modifiers of TDP-43 toxicity 
Gene Symbol Gene (CG #) Bloomington Stock # Effect 
E(bx) CG32346 27471 Enhancer 
pcm CG3291 33263 Enhancer 
SREBP CG8522 27232 Suppressor 
CG3542 CG3542 17291 Suppressor 
CG7220 CG7220 29681 Suppressor 
CG44837  CG44837  17283 Suppressor 
CG16711 CG16711 27182 Suppressor 
CG17187 CG17187 30066 Suppressor 
Mnt; Parg CG13316; CG2864 10086 Suppressor 
CG5009 CG5009 

148 (P{EP}CG5009B227.2) Suppressor 
Smyd5  CG3353 30047 Suppressor 
bin3 CG8276 22584 Suppressor 
RpS15 CG8332 27125 Suppressor 
Ac76E CG7978 17485 Suppressor 
Top3α CG10123 17238 Suppressor 
Vha68-2 CG3762 17243 Suppressor 
Vamp7 CG1599 28488 Suppressor 
ppk5; Rpn10 CG33289; CG7619 27212 Suppressor 
CG14182 CG14182 27134 Suppressor 
CG6923 CG6923 30077 Suppressor 
Hph CG44015 20142 Lethal 
fus CG8205 27457 Lethal 
CG11110 CG11110 27466 Lethal 
CG7530 CG7530 15762 Lethal 
CG5789 CG5789 17083 Lethal 
CG15771; lin-52 CG15771; CG15929 17004 Lethal 
S6KL; CG6961 CG7001; CG6961 10144 Lethal 
CG6294; CG6299 CG6294; CG6299 33456 Lethal 
RpI12; tsl CG13418; CG6705 32613 Lethal 

 
(The table is derived from Ross Weber’s data) 
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to downstream abnormally elevated activity of the U12-dependent spliceosome, 

contributing to TDP-43 toxicity. 

 

A different approach was undertaken to define important targets of SEC. By Drosophila 

polytene chromosome immunostaining under ambient and heat shock treatment, TDP-

43 and Lilli (the essential component of SEC) were discovered to colocalize on the 

chromosomal locus of a stress-induced lncRNA Hsr⍵, suggesting that Hsr⍵ is a shared 

target of TDP-43 and SEC (Figure 3a,b). Analyses of published ChIP-seq databases of 

fly TBPH and Lilli 69,114 also showed that Hsr⍵ is a gene bound by both factors (Figure 

3c,d). The levels of Hsr⍵ are increased in the fly disease model and Hsr⍵ was shown to 

functionally contribute to TDP-43-mediated degeneration (Figure 4a-c). These data show 

that TDP-43 co-localizes with central SEC components on the chromosomes, identifying 

a novel non-coding lncRNA target of TDP-43 with functional importance to degeneration.  

 

Our results suggest a model in which SEC and LEC contribute to TDP-43-meidated 

degeneration in parallel. By comparing the retinal thickness in the fly disease model, 

downregulation of the shared component Ell restored eye degeneration caused by TDP-

43 and caused a 4-fold increase in retinal thickness that was comparable to normal 

retinal thickness. By contrast, depletion of LEC- and SEC-specific components led to 

only a ~2-fold increase in retinal thickness, and depletion of downstream targets U12 

and Hsr⍵ led to only ~1.5-fold increase in retinal thickness. Comparison of the retinal 

thickness is shown in Figure. 3.1. 



 
 

89 

 

 

The relevance of this stress-induced lncRNA in human disease was further assessed 

using a human cell disease model and patient tissue. The levels of the human 

counterpart of Hsr⍵, Sat III, in HEK cells expressing GFP-tagged TDP-43 was 

upregulated ~4-fold compared to control (Figure 5a). Furthermore, the levels of Sat III 

were increased significantly in frontal cortical tissues from FTD patients with TDP-43 

pathology (FTLD-TDP) compared to tissue from normal individuals (Figure 5b).  Since 

upregulation of Sat III has been shown to promote cell death and acute senescence in 

different cell models 119,120, these results suggest that stress-induced non-coding RNA 

Sat III may be a contributor to TDP-43-mediated degeneration. 

 

Given that ELL is the shared element of LEC and SEC, we sought to define how 

disruption of ELL function may be induced by TDP-43.  We found that TDP-43 physically 

interacts one of the ELL orthologues in HEK293 cells by co-immunoprecipitation. We 

were able to test ELL and ELL2, and found evidence that TDP-43 interacts in lysates 

with human ELL2 (Figure 6c). Together with the immunostaining data showing that TDP-

43 co-localizes with SEC on polytene chromosomes, these results indicate that a 

Figure 3-1. Comparison of suppression 
effects of downregulation of different factors 
Analysis of retinal thickness shows that depletion 
of the shared component Ell suppresses TDP-43-
mediated eye degeneration more strongly than 
downregulation of LEC- or SEC-specific 
components, or downstream targets.  
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mechanism contributing to the promotion of LEC and SEC activity may include 

interaction between TDP-43 and the proteins of the complexes. 

 

These findings reveal novel roles of the transcription elongation factor Ell-containing 

complexes, highlight the importance of non-coding RNAs in disease, elucidate new 

mechanistic insight into neurodegenerative disorders and provide therapeutic targets for 

TDP-43-associated neurodegeneration. 

 

Future directions 

Targets of LEC and SEC 

In the investigation of the targets of LEC and SEC, we used information from the 

literature to define potential important targets and used different assays to examine the 

role of these potential targets. Through these approaches, we identified important 

targets, including U12 snRNA and Hsrw, that we showed are functionally involved in 

TDP-43-mediated degeneration (Figure 2, 3 and 4). The relationship and interaction 

between U12 and Hsrw in suppressing TDP-43 toxicity can be further dissected. One 

interesting question is whether downregulation of one of these targets can affect the 

levels of the other. This can be addressed by assessing the levels of U12 and Hsrw in fly 

head tissue upon downregulation of U12 or Hsrw.  

 

In addition to the identified targets U12 and Hsrw , there may be other targets regulated 

by LEC and SEC that are critical in disease. In addition, in previous studies, targets of 

LEC and SEC were identified and investigated in non-neuronal cells, including 

Drosophila S2 cells 69, mouse embryonic cells73, human HCT-116 cells 72 and human 
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HEK cells 74. It is therefore unknown the extent to which the targets of LEC and SEC are 

the same in the nervous system. Given the suppression effect of LEC and SEC 

downregulation on TDP-43-mediated neurodegeneration (Figure 1), identifying the 

protein-coding and non-coding RNA targets of LEC and SEC in neurons, as well as 

revealing the targets important in neurodegenerative situations may help us understand 

the roles of LEC and SEC in the nervous system and in TDP-43 toxicity more 

thoroughly.  

 

To define the global targets of LEC and SEC in the nervous system and identify 

important genes in TDP-43 toxicity, I propose to use ChIP-seq complemented with RNA-

seq to identify genes bound by different factors and detect the transcriptomic changes 

under different conditions. ChIP-seq can be conducted using antibodies against Ell (the 

shared component), Ice1 (specific to LEC) and Lilli (specific to SEC) and TDP-43, in fly 

brains/heads with or without TDP-43 expression. Targets of LEC are predicted to be 

those bound by Ell and Ice1, while targets of SEC are predicted to be those bound by Ell 

and Lilli. Comparisons of LEC or SEC targets in TDP-43 expressing animals to controls 

are predicted to elucidate whether LEC or SEC bind to different sets of genes in the fly 

disease model compared to the normal condition. 

 

RNA-seq can be used to analyze and compare the transcriptome in fly heads or brains 

with the combination of TDP-43 expression, depletion of Ell (the shared component), 

Ice1 (specific to LEC) and Lilli (specific to SEC) (Table 3-2). By comparing Group 1 and 

2, gene alterations caused by TDP-43 expression can be identified. This analysis would 

also improve our understanding of this fly disease model. The LEC-regulated genes in 

fly brain are predicted to be downregulated in both Group 3 and 5, compared to Group 1. 
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The SEC-regulated genes will be those downregulated in Group 3 and 7 compared to 

Group 1. Important targets of LEC in disease are predicted to be those upregulated in 

Group 2 and rescued in Group 4 and 6. Likewise, potential important targets of SEC are 

those upregulated in Group 2 and decreased back toward normal in Group 4 and 8. 

Defined target genes then can be further analyzed for confirmation and functional 

importance using fly and human cell disease models. Alternatively, to reduce the 

complexity and numbers of samples, RNA-seq could be done focusing only the 

combinations of TDP-43 expression and Ell downregulation. The involvement of Ice1 

and Lilli could be assessed by ChIP-qPCR later once specific genes are identified. The 

best time point and conditions for sample collection would require determination by pilot 

studies using target genes identified in this thesis work, such as U12 and Hsrw. 

 
Table 3-2. Experimental design for identification of global LEC and SEC targets 
Group 1 2 3 4 5 6 7 8 
TDP-43  - + - + - + -  
Ell RNAi - - + + - - - - 
Ice1 RNAi - - - - + + - - 
Lilli RNAi - - - - - - + + 

 

 

Does Ell, U12 or Hsrw affect stress sensitivity? 

TDP-43 expressing flies show hypersensitivity to heat stress, paraquat-induced oxidative 

stress and starvation 103. In my thesis, we show that the heat shock-induced lncRNA 

Hsrw is aberrantly upregulated in fly heads with TDP-43 expression. These data suggest 

that the stress response may be misregulated in these animals. Environmental stress 

can be broadly defined as environmental changes that threaten or disrupt physiological 

homeostasis and reduce the performance or fitness of the organism 149,150. The effect of 

stress on an organism depends on the type of stressor, the stress intensity and duration, 
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and different situations may trigger different stress responses 151. Therefore, it is likely 

that TDP-43 expressing animals may react differently according to the specific stress 

situation 151,152. 

 

A question we have is whether the suppression effect of depletion of Ell, U12 or Hsrw on 

TDP-43-mediated degeneration is through modulating the stress response. To test this 

hypothesis, one can start from assessing sensitivity of flies to a variety of stress 

situations with TDP-43 expression combined with downregulation of Ell, U12 and Hsrw. 

The prediction is that expression of TDP-43 may lead to altered sensitivity to different 

stressors and stress situations, and depletion of Ell, U12 and may rescue the affected 

stress sensitivity.  

 

Is transcriptional pausing regulation affected? 

Misregulation of transcriptional elongation has been associated with different diseases, 

including cancer, virus infection and developmental diseases 79,82,123. Yet very little was 

known about its involvement in neurodegenerative diseases prior to this work. Our study 

suggests a model of abnormal activation of LEC and SEC in TDP-43-mediated 

neurodegeneration (Figure 2-7). This predicts that transcription pausing regulated by 

LEC and SEC is misregulated. This idea is supported by our data showing targets of 

LEC and SEC are upregulated in the disease models (Figure 2-2 and 2-4). However, to 

further strengthen and prove this hypothesis, direct evidence of dysfunction of 

transcriptional pausing regulation is required.  
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The regulation of transcription elongation in TDP-43-mediated degeneration can be 

assessed for specific targets or investigated globally by different assays in the disease 

models used in this study. The stress-induced lncRNA Hsrw regulated by SEC is defined 

as a novel target of TDP-43 (Figure 2-3 and 2-4), and this specific gene can be an 

interesting target for accessing pausing regulation. I propose to use ChIP-qPCR with 

antibody against total Pol II and qPCR primers to detect Pol II occupancy on Hsrw gene 

at either the transcriptional start site (~0), pausing region (~+30) or intergenic regions as 

a control. A second method, permanganate (KMnO4) footprinting, can also be used to 

assess pausing regulation on Hsrw. Paused and transcriptionally engaged Pol II leads to 

single-stranded DNA regions, where potassium permanganate can oxidize thymines. 

The oxidized thymines can then be cleaved, and the positions of DNA breaks can be 

determined by ligation-mediated PCR (LM-PCR) using primers specific to Hsrw.  

 

The genome-wide identification of pausing regulation in TDP-43 disease models can be 

assessed by precision nuclear run-on sequencing (PRO-seq) 153 by using 1) nuclei 

isolated from fly heads with or without TDP-43 expression 2) nuclei isolated from HEK 

cells with GFP-TDP-43 expression or GFP expression. In PRO-seq, isolated nuclei are 

treated with Sarkosyl, which prevents new incorporation of Pol II into the chromosomes, 

and used for identification of sites with transcriptional-engaged Pol II by extending 

nascent RNAs with biotin-labeled ribonucleotide triphosphate analogs (biotin-NTP). By 

comparing the Pol II active sites in the fly and human cells with TDP-43 expression to 

controls, any alterations to transcriptional pausing regulation on coding and non-coding 

genes can be revealed. 
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Ell as a universal therapeutic target 

in neurodegenerative diseases? 

In ALS and FTD, another important 

disease factor is the GGGGCC (G4C2) 

hexanucleotide repeat expansion. 

Over the last 7 years, a G4C2 

hexanucleotide repeat expansion in 

the 5’ region of C9ORF72 has been 

identified as the most common 

genetic mutation in ALS and FTD 130,131. Expression of transgenes bearing a G4C2 

hexanucleotide repeat expansion in the fly causes neurodegeneration 147,154-156. In our 

study, Ell was identified as a strong dose-dependent modifier of TDP-43 toxicity (Figure 

2-1). Given that ALS and FTD are within the same disease spectrum and share 

molecular features, we tested the effect of Ell downregulation on fly eye degeneration 

caused by expression of G4C2 hexanucleotide repeat expansion. The results show that 

Ell depletion also markedly ameliorates toxicity of G4C2 hexanucleotide repeat expansion 

(Figure 2-S9). In additional preliminary results, the suppression effect of Ell 

downregulation on G4C2 hexanucleotide repeat expansion toxicity in a lifespan assay 

was also observed, by using the drug-inducible ubiquitous daGS promoter (Figure 3-2). 

Although a modest effect, the impact on lifespan is rigorous when compared with 

controls (Figure 3-2). These data suggest that shared targets of Ell might be critical to 

degeneration associated with these two disease factors. 

 

Moreover, my data indicate that different neurodegenerative diseases beyond ALS and 

FTD might share similar pathways. Neurodegenerative diseases accord common 

Figure 3-2. Ell depletion suppresses the 
toxicity of G4C2 expansion 
Lifespan assay show that Ell depletion extends 
the lifespan of flies with G4C2 repeat expression. 
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pathogenetic mechanisms involving aggregation of misfolded proteins, as with Tau and 

Amyloid-beta (Aβ) in Alzheimer’s disease, α-Synuclein in Parkinson’s disease, 

Huntingtin in Huntington and TAR DNA binding protein 43 (TDP-43) in ALS and FTLD-

TDP 157,158. Although the type of disease proteins and the cellular and regional 

distribution of aggregates are varied among the diseases, similar biological and genetic 

pathways may link these disorders. To assess the involvement of Ell in other 

neurodegenerative diseases associated with additional toxic proteins, the effect of Ell 

downregulation was examined in fly disease models expressing Tau and Aβ in the fly 

eye. Expression of Tau and Aβ driven by the eye specific driver gmr led to eye 

degeneration that was be suppressed by Ell depletion (Figure 3-3).  

 

 

 

These preliminary data suggest that Ell might be a central factor among a range of 

different toxicities associated with different neurodegenerative proteins. To identify the 

common and distinct coding and noncoding targets of Ell in different disease models 

may provide effective therapeutic insight. Before further addressing the potential central 

Figure 3-3. Depletion of Ell suppressed the toxicity of Tau and Aβ 
External eye images show that expression of Tau and Aβ cause eye 
degeneration, which are ameliorated by Ell downregulation. 
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role of Ell in neurodegeneration, one should clarify whether the suppression effects of Ell 

are through decreasing the levels of the disease factors. The reason for this is that Ell 

might play different roles in mechanisms associated with different disease factors. For 

example, depletion of a transcriptional elongation factor Spt4 has been shown to 

decrease the transcripts of expanded G4C2 repeats 159. Potentially, downregulation of Ell, 

which is also involved in the regulation of elongation, could also affect the production of 

G4C2 repeat transcripts and therefore suppress the toxicity associated with the repeat 

expansion. 

 

Next, to identify the important targets of Ell in different disease models, I propose to test 

the toxicity of disease factors and the suppression effect of Ell carefully by the drug-

inducible ubiquitous driver daGS using lifespan and other assays. RNA-seq can then be 

used to compare the transcriptomes in fly heads/brains with the combination of 

expression of different disease factors and Ell RNAi (Table 3-3). Transcriptome changes 

in different disease models can be identified by comparing Group 2, 5 or 7 to Group 1. 

Important Ell targets that are common in all disease models are predicted to be 

upregulated in Group 2, 5, and 7 and downregulated in Group 4, 6 and 8. Furthermore, 

critical Ell targets that are specific for each disease factor can also be identified by 

comparing changes among the different groups. To reduce complexity, it may be 

impactful to start from TDP-43 and G4C2 hexanucleotide repeat expansion, which are 

two distinct factors but important for the same disease spectrum of ALS/FTD. 
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Table 3-3. Experimental design for identification of common and distinct Ell 
targets 
Group 1 2 3 4 5 6 7 8 
TDP-43  - + - + - - - - 
G4C2  - - - - + + - - 
Tau or Aβ - - - - - - + + 
Ell RNAi - - + + - + - + 

 

Can Sat III affect TDP-43 LLPS or aggregation? 

Our work identified the Drosophila stress-induced lncRNA Hsrw, which is upregulated in 

a fly disease model, as a novel modifier of TDP-43-mediated degeneration (Figure 2-3, 

2-4). Furthermore, human orthologue Sat III repeats are abnormally elevated in a human 

cellular model and frontal cortical tissue from FTD patients with TDP-43 pathology 

(Figure 2-5). One question is how elevated Sat III may contribute to TDP-43-mediated 

toxicity. TDP-43, containing a low complexity domain, forms aggregates in neurons and 

glia of ALS and FTLD-TDP patients 9,10, and purified TDP-43 can undergo liquid liquid 

phase separation (LLPS) and form aggregates in vitro 160,161. Many of the disease-

associated TDP-43 mutations promote TDP-43 aggregation in disease models, 

suggesting formation of inclusions may be causal to the TDP-43-associated 

dysfunction162,163.  

  

Distinct from other stress genes, the Sat III RNAs form a transient subnuclear organelle, 

the nuclear stress body (nSB), which is associated with the site of Sat III DNA; the 

comparable structure in Drosophila is the omega speckle 106,108,109. Our data show that 

TDP-43 localizes to the Hsrw locus (Figure 2-3), suggesting that TDP-43 may also bind 

the w speckle. In fact, TDP-43 has been reported to localize to nSB under heat shock in 

HeLa cells 164, suggesting that Sat III may interact with TDP-43. Thus, it may be that 

highly repetitive Sat III RNAs increase the local concentration of various RNA-binding 
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proteins, including TDP-43, and promote LLPS to form nSB. These data lead us to 

hypothesize that there might exist a feedback loop between TDP-43 and Sat III: in 

disease, TDP-43 expression leads to the elevation of Sat III levels, which in turn 

contributes to TDP-43-mediated toxicity by promoting TDP-43 LLPS and/or aggregation, 

potentially in the nSB. 

 

LLPS has been proposed to be a dynamic process that gives rise to membrane-less 

organelles 165,166, and RNAs have been shown to regulate LLPS 167-169. As one test of this 

hypothesis, Sat III generated by in vitro transcription can be added to TDP-43, and LLPS 

and aggregation can be measured using different concentrations of RNA and protein to 

assess whether Sat III can alter TDP-43 droplet formation or aggregation. Sat III by itself 

can also be tested for LLPS. These in vitro assays can test the hypothesis and might 

provide more mechanistic insights for the findings from the in vivo studies. 

 

Conclusion 

Our studies have defined a critical role for ELL in toxicity of TDP-43.  Importantly, the 

ELL regulated pathway may be broad, and the future directions proposed seek to define 

those pathways in greater detail, as well as define the specific mechanisms of the 

pathways revealed in this thesis with greater clarity.  
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