Departmental Papers (BE)

Document Type

Journal Article

Date of this Version


Publication Source

Journal of Clinical Investigation





Start Page


Last Page





We studied dogs with unilateral papain-induced emphysema to answer two questions: (1) Do emphysema lung-apposed hemidiaphragm (DiE) and normal lung-apposed hemidiaphragm (DiN) have equal capacities for lowering lung surface pressure? and (2) Are side-to-side differences in intrathoracic pressure the result of unequal force outputs by DiE and DiN or are they caused by differences in their mechanical efficiency as pressure generators? After the airways of the emphysematous and normal lungs were intubated with a dual lumen endotracheal tube, both phrenic nerves were maximally stimulated at rates between 1 and 50 Hz and the changes in airway occlusion pressure (delta PaoE,N) and diaphragm length (sonomicrometry) were recorded. In all animals, delta PaoN exceeded delta PaoE. Differences in pressure ranged from 1.2 +/- 0.6 cm H2O during a twitch to 6.0 +/- 2.9 cm H2O during a 50-Hz tetanus. Midcostal bundles of DiE shortened less than corresponding bundles of DiN, but both reached the same active length relative to their optimal lengths, which were measured in vitro. There was no significant difference in fiber type distribution, fiber cross-sectional area, or maximal isometric tetanic tensions among midcostal regions of DiE and DiN. We conclude that unilateral hyperinflation impairs the mechanical efficiency of the apposing hemidiaphragm as a pressure generator.

Copyright/Permission Statement

Copyright © 1993, The American Society for Clinical Investigation.



Date Posted: 25 May 2016

This document has been peer reviewed.