Electrospun Hybrid Organic/Inorganic Semiconductor Schottky Nanodiode

Loading...
Thumbnail Image
Penn collection
Department of Physics Papers
Degree type
Discipline
Subject
Physical Sciences and Mathematics
Physics
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Pinto, Nicholas J.
González, Rosana
Johnson, Alan T.
MacDiarmid, Alan G.
Contributor
Abstract

We report on a simple method to fabricate, under ambient conditions and within seconds, Schottky nanodiodes using electrospun polyaniline nanofibers and an inorganic n-doped semiconductor. In addition to being a rectifier, the advantage of our design is the complete exposure of the rectifying nanojunction to the surrounding environment, making them attractive candidates in the potential fabrication of low power, supersensitive, and rapid response sensors as well. The diode parameters were calculated assuming the standard thermionic emission model of a Schottky junction, and the use of this junction as a gas sensor was examined.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2006-07-20
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Suggested Citation: Pinto, N.J., González, R., Johnson, A.T. and MacDiarmid, A.G. (2006). Electrospun hybrid organic/inorganic semiconductor Schottky nanodiode. Applied Physics Letters 89, 033505. © 2006 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters and may be found at http://dx.doi.org/10.1063/1.2227758
Recommended citation
Collection