Local Polarization, Charge Compensation, and Chemical Interactions on Ferroelectric Surfaces: a Route Toward New Nanostructures

Loading...
Thumbnail Image
Penn collection
Departmental Papers (MSE)
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Kalinin, Sergei V
Contributor
Abstract

The local potential at domains on ferroelectric surfaces results from the interplay between atomic polarization and screening charge. The presence of mobile charge affects surface domain configuration, switching behavior, and surface chemical reactions. By measuring the temperature and time dependence of surface potential and piezo response with scanning probe microscopies, thermodynamic parameters associated with charge screening are determined. This is illustrated for the case of BaTiO3 (100) in air, for which the charge compensation mechanism is surface adsorption and enthalpy and entropy of adsorption are determined. The local electrostatic fields in the vicinity of the domains have a dominant effect on chemical reactivity. Photoreduction of a large variety of metals can be localized to domains with the appropriate surface charge. It has been demonstrated that proximal probe tips can be used to switch polarization direction locally. Combining the ability to 'write' domains of local polarization with domain specific reactivity of metals, vapors of small molecules, and organic compounds leads to a new approach to fabricating complex nanostructures.

Advisor
Date of presentation
2001-11-26
Conference name
Departmental Papers (MSE)
Conference dates
2023-05-16T21:39:55.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Copyright Materials Research Society. Reprinted from MRS Proceedings Volume 688. 2001 Fall Meeting Symposium C Ferroelectric Thin Films X Publisher URL: http://www.mrs.org/members/proceedings/fall2001/c/C9_5.pdf
Recommended citation
Collection