Document Type

Conference Paper

Subject Area

CPS Medical

Date of this Version

3-1-2011

Publication Title

2nd International Conference on Cyber-Physical Systems, (IEEE ICCPS'11)

First Page

131

Last Page

140

DOI

10.1109/ICCPS.2011.28

Abstract

The increasing complexity of software in implantable medical devices such as cardiac pacemakers and defibrillators accounts for over 40% of device recalls. Testing remains the principal means of verification in the medical device certification regime. Traditional software test generation techniques, where the tests are generated independently of the operational environment, are not effective as the device must be tested within the context of the patient's condition and the current state of the heart. It is necessary for the testing system to observe the system state and conditionally generate the next input to advance the purpose of the test. To this effect, a set of general and patient condition-specific temporal requirements is specified for the closed-loop heart and pacemaker system. Based on these requirements, we describe a closed-loop testing environment between a timed automata-based heart model and a pacemaker. This allows for interactive and physiologically relevant model-based test generation for basic pacemaker device operations such as maintaining the heart rate and atrial-ventricle synchrony. We also demonstrate the flexibility and efficacy of the testing environment for more complex common timing anomalies such as reentry circuits, pacemaker mode switch operation and pacemaker-mediated tachycardia. This system is a step toward a testing approach for medical cyber-physical systems with the patient-in-the-loop.

Permission Statement

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

 

Date Posted: 30 June 2011