Evaluation of Some Thermal Power Cycles for Use in Space

Loading...
Thumbnail Image
Penn collection
Departmental Papers (MEAM)
Degree type
Discipline
Subject
Power cycles
Space power
Space
Brayton cycle
Ericsson cycle
Rankine cycle
Engineering
Mechanical Engineering
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Tarlecki, Jason
Zhang, Na
Contributor
Abstract

Production of power in space for terrestrial use is of great interest in view of the rapidly rising power demand and its environmental impacts. Space also offers a very low temperature, making it a perfect heat sink for power plants, thus offering much higher efficiencies. This paper focuses on the evaluation and analysis of thermal Brayton, Ericsson and Rankine power cycles operating at space conditions on several appropriate working fluids. 1. Under the examined conditions, the thermal efficiency of Brayton cycles reaches 63%, Ericsson 74%, and Rankine 85%. These efficiencies are significantly higher than those for the computed or real terrestrial cycles: by up to 45% for the Brayton, and 17% for the Ericsson; remarkably 44% for the Rankine cycle even when compared with the best terrestrial combined cycles. From the considered working fluids, the diatomic gases (N2 and H2) produce somewhat better efficiencies than the monatomic ones in the Brayton and Rankine cycles, and somewhat lower efficiencies in the Ericsson cycle. The Rankine cycles require radiator areas that are larger by up to two orders of magnitude than those required for the Brayton and Ericsson cycles. The results of the analysis of the sensitivity of the cycle performance parameters to major parameters such as turbine inlet temperature and pressure ratio are presented, and the effects of the working fluid properties on cycle efficiency and on the power production per unit radiator area were explored to allow decisions on the optimal choice of working fluids.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2006-01-01
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Suggested Citation: Tarlecki, J., Lior, N. and Zhang, N. (2006). "Evaluation of Some Thermal Power Cycles for Use in Space." Proc. ECOS 2006. Crete, Greece. 12-14 July 2006.
Recommended citation
Collection