Date of Award

2013

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Graduate Group

Cell & Molecular Biology

First Advisor

Beatrice H. Hahn

Abstract

Mucosal transmission accounts for the majority of new human immunodeficiency virus type 1 (HIV-1) infections and results in a genetically and phenotypically homogenous founder virus population in 60-80 percent of cases. Biological properties common to these transmitted and founder (T/F) viruses but not chronic control (CC) viruses would define key targets for microbicides and vaccines. To identify such properties, we tested 45 T/F and 52 CC envelope glycoproteins (Envs) from the best studied and most prevalent HIV-1 subtypes (B and C, respectively) in various pseudotype assays to determine their receptor and coreceptor interaction, tropism for primary CD4+ T cell subsets, and sensitivity to neutralizing antibodies. T/F Envs were unable to mediate entry into cells expressing low amounts of CD4, thus macrophages and other CD4low cells likely do not support their replication during mucosal transmission. In contrast, T/F Env pseudoviruses efficiently infected primary memory CD4+ T cells with a preference for the effector rather than central memory subset, as did CC pseudoviruses. There was a trend towards increased sensitivity of T/F viruses to neutralization by antibodies targeting the CD4 binding site. All T/F Envs were able to use the coreceptor CCR5 for cell entry, whereas some CC Envs used CXCR4 alone. However, one bona fide T/F virus entered and replicated very poorly in CCR5+ cells in vitro, so efficient use of CCR5 as tested is not absolutely required for transmission. To extend these studies beyond intrinsic Env functions, we characterized the Env content, infectivity, dendritic cell interaction, and interferon alpha (IFN-α) sensitivity of 27 T/F and 14 CC infectious molecular clones from subtypes B and C. T/F viruses contained more Env and were more infectious than CC viruses. T/F viruses also readily attached to DCs and were effectively transferred to CD4+ T cells. T/F viruses were more resistant to the inhibitory effect of IFN-α on virus spread than CC viruses, suggesting that selective pressure imposed by the innate immune response may in part mediate the bottleneck associated with mucosal transmission. Future work is needed to define the mechanistic basis of these phenomena in order to target them to prevent HIV-1 transmission.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS