Cardiac Effects Of Huntington’s Disease In Murine Models

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Cell & Molecular Biology
Discipline
Subject
Heart
Huntington's Disease
Mice
mTORC1
Rheb
Stress
Cell Biology
Genetics
Medicine and Health Sciences
Funder
Grant number
License
Copyright date
2019-08-27T20:19:00-07:00
Distributor
Related resources
Contributor
Abstract

Huntington’s disease (HD) is an autosomal dominant disease known for its severe neurologic phenotype. However, the causative protein in HD, mutant huntingtin (mHTT), is widely expressed across tissue types and may have profound consequences for peripheral organs. Notably, heart disease is the second leading cause of death in HD patients, but if or how cardiac mHTT expression causes pathology is still unknown. Here, I characterize the cardiac phenotype in two HD mouse models and show that dysregulated mTORC1 activity is a key underlying mechanism. I show that normal heart growth is limited in HD mouse models, with mass regulated independent of systemic changes. Additionally, cardiac mTORC1 activity is decreased in HD mice starting at a presymptomatic time point in a manner that requires cardiac mHTT expression. The impaired activity results from decreased PI3K/Akt/mTOR signaling at early time points and Rheb mislocalization at later disease stages. As a result of mTORC1 dysregulation, HD mice have increased mortality, inability to hypertrophy, and increased pathologic changes in response to stress. Notably, this phenotype is reversed in HD mice with exogenously activated mTORC1. Thus, I propose that mHTT expression in HD hearts dysregulates mTORC1 and leads to increased mortality with heart disease.

Advisor
Beverly L. Davidson
Date of degree
2019-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation