Characterization Of Human T-Bet-Expressing B Lymphocytes And Their Role In The Hiv Immune Response

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Cell & Molecular Biology
Discipline
Subject
B cell
HIV
Viral immunology
Allergy and Immunology
Cell Biology
Immunology and Infectious Disease
Medical Immunology
Microbiology
Funder
Grant number
License
Copyright date
2018-09-27T20:17:00-07:00
Distributor
Related resources
Contributor
Abstract

Humoral immunity is critical for the prevention and control of viral infections, yet the specific B cells and mechanisms regulating antiviral responses in humans remain poorly defined. The Th1-associated transcription factor T-bet coordinates intracellular pathogen immune responses, and recent murine studies identified a T-bet-expressing B cell subset that mediates humoral antiviral immunity, but an analogous cell population has not been identified in humans. In this study, we sought to investigate the role of T-bet-expressing B cells during human viral infections. We identified T-bet expression within the memory B cell compartment of healthy individuals and described a relationship between the transcription factor and IgG1 and IgG3, two antiviral antibody isotypes. The T-bet+ B cell population was comprised of two discrete subsets: T-bet low resting memory cells and a highly activated, transcriptionally distinct T-bet high subset displaying an atypical memory phenotype. The T-bet high cell population transiently expanded in blood following vaccination with yellow fever or vaccinia virus; however, these cells were induced and maintained at an elevated frequency by chronic HIV viremia and were associated with increased expression and secretion of IgG1 and IgG3. The HIV gp140-specific response was maintained almost entirely by T-bet+ memory B cells in both viremic and aviremic donors. Together, our findings identify T-bet is a critical regulator of humoral antiviral immunity in humans and suggest T-bet+ B cells specifically mediate the humoral immune responses to live viral vaccines and HIV.

Advisor
Michael R. Betts
Date of degree
2017-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation