Date of Award


Degree Type


Degree Name

Doctor of Philosophy (PhD)

Graduate Group

Chemical and Biomolecular Engineering

First Advisor

Talid Sinno


Semiconductor alloys such as silicon-germanium (SiGe) offer attractive environments for engineering quantum-confined structures that are the basis for a host of current and future optoelectronic devices. Although vertical stacking of such structures is routinely achieved via heteroepitaxy, lateral manipulation has proven much more challenging. I describe a new approach that suggests that a patterned elastic stress field generated with an array of nanoscale indenters in an initially compositionally uniform SiGe substrate will drive atomic interdiffusion, leading to compositional patterns in the near-surface region of the substrate. While this approach may offer a potentially efficient and robust pathway to producing laterally ordered arrays of quantum-confined structures, there is a large set of parameters important to the process. Thus, it is difficult to consider this approach using only costly experiments, which necessitates detailed computational analysis.

First, I review computational approaches to simulating the long length and time scales required for this process, and I develop and present a mesoscopic model based on coarse-grained lattice kinetic Monte Carlo that quantitatively describes the atomic interdiffusion processes in SiGe alloy film subjected to applied stress. I show that the model provides predictions that are quantitatively consistent with experimental measurements, and I examine the impact of basic indenter geometries on the patterning process. Second, I extend the model to investigate the impact of several process parameters, such as more complicated indenter shapes and pitches. I find that certain indenter configurations produce compositional patterns that are favorable for use as lateral arrays of quantum-confined structures. Finally, I measure a set of important physical parameters, the so-called “activation volumes” that describes the impact of stress on diffusion. The values of these parameters are not well established in the literature. I make quantitative connections to the range of values found in the literature and characterize the effects of different stress states on the overall patterning process. Finally, I conclude with ideas about alternative pathways to quantum confined structure generation and possible extensions of the framework developed.

Available for download on Thursday, July 18, 2019

Files over 3MB may be slow to open. For best results, right-click and select "save as..."