Part I: Asymmetric Synthesis of α-Allyl-α-Aryl α-Amino Acids Part II: Asymmetric Spirocyclization of Allenyl Ketones Part III: Chemoselective Activation of C(sp3)−h Bond Over C(sp2)−h Bond With Pd(II)

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Chemistry
Discipline
Subject
Amino Acids
Asymmetric Catalysis
C-H Activation
High-throughput Experimentation
Methodology and Reactions
Reaction Mechanisms
Organic Chemistry
Funder
Grant number
License
Copyright date
2015-11-16T00:00:00-08:00
Distributor
Related resources
Contributor
Abstract

Part I. The first asymmetric synthesis of a-allyl-a-aryl a-amino acids by means of a three component coupling of a-iminoesters, Grignard reagents, and cinnamyl acetate is reported. Notably, the enolate from the tandem process provides a much higher level of reactivity and selectivity than the same enolate generated via direct deprotonation, presumably due to differences in the solvation/aggregation state. A novel method for removal of a homoallylic amine protecting group delivers the free amine congeners. The a-allyl moiety offers a means to generate further valuable a-amino acid structures. Cross-metathesis of the tandem product provided allylic diversity not afforded in the parent reaction. Cyclic a-amino acid derivatives could be accessed by ring closing metathesis presenting a viable strategy to higher ring homologues of enantioenriched a-substituted proline. The 8-member proline analog was successfully converted to the pyrrolizidine natural product backbone. Part II. The asymmetric spirocyclization of allenyl ketones is reported. High-throughput experimentation by means of a chiral Lewis acid library enabled the determination of a suitable catalyst system. Protecting group manipulation provides an orthogonal route to enantioenriched para-quinone and ortho-quinone spirocycles. This novel technology provides access to the spirocyclic core that is prevalent in many natural products. Part III. Palladium has been identified as a suitable catalyst for the chemoselective activation of C(sp3)-H bond over C(sp2)-H bond of toluene and tolyl analogs. This technology has been combined with the C(sp3)-H activation of acidic C-H bonds to form new C-C bonds. High-throughput experimentation was used for identifying conditions that reduced toluene loading and engendered catalyst turnover via a suitable oxidant. The parent reaction has been extended to include the Pd catalyzed alkylation of phenylglycine azlactones with ethylbenzene, 2-ethylnaphthalene, propylbenzene and butylbenzene. Mechanistic studies were initiated to determine whether the process occurs via free radicals or via Pd mediated C(sp3)-H activation. Our studies support a Pd mediated process in which the C(sp3)-H activation of the tolyl analog is the rate determining step. This finding represents a paradigm shift in our understanding of Pd and its selectivity for arene activation vs benzylic activation.

Advisor
Marisa C. Kozlowski
Date of degree
2014-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation