The Performance of Helmet-Based Kinematic Measurement Systems: Importance for Mild Traumatic Brain Injury Prevention

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Bioengineering
Discipline
Subject
concussion
head acceleration
head impact biomechanics
helmet sensors
impact monitoring
mTBI
Biomedical
Funder
Grant number
License
Copyright date
2015-07-20T20:15:00-07:00
Distributor
Related resources
Contributor
Abstract

It is estimated that millions of mild traumatic brain injuries (mTBIs) occur each year, and studies show that these injuries can have more long-term neurological consequences than previously thought. High impact sports provide a unique real-world opportunity to study the biomechanical inputs that lead to mTBI and helmet-based instrumentation can be used to estimate the kinematics of head impacts in sports. In Chapter 1, we evaluate two helmet-based measurement systems that use different approaches to estimate kinematics by impacting a helmeted anthropometric test device (ATD) in a laboratory setting. The relationships between the helmet sensor system and reference ATD measures are evaluated. In Chapter 3, we explore the effect of real-world impact and usage variations on the relationships between helmet system and ATD-measured head impact kinematics. The factors varied include the interface between the head and the helmet, repeatability of sensor/helmet systems, helmet geometry/construction, effective mass of the torso, and impacting surface. In Chapter 4 we assess the effect of helmet-based sensor performance on brain injury metrics calculated using finite element analysis. This is done by using helmet system and ATD data from the laboratory impacts as inputs into a finite element head model and comparing outcomes. Chapter 5 discusses the implications of the findings on the implementation of helmet-based systems in real-world scenarios.

Advisor
Kristy B. Arbogast
Date of degree
2015-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation