Date of Award

8-4-2017

Degree Type

Dissertation

Degree Name

DScD (Doctor of Science in Dentistry)

Primary Advisor

Dr. Claire Mitchell

Abstract

Inflammatory responses play a key role in many neural pathologies, with localized signaling from non-immune cells making critical contributions. The NLRP3 inflammasome is an important component of innate immune signaling and can link neural insult to chronic inflammation. Stimulation of the NLRP3 inflammasome is a two-stage process. The priming stage involves upregulation of the biosynthesis of the structural components while activation results in their assembly into the actual inflammasome complex and subsequent activation. The priming step can be rate limiting and can connect insult to chronic inflammation but our knowledge of the signals that regulate NLRP3 inflammasome priming in sterile inflammatory conditions is limited. This study examined the link between mechanical strain and inflammasome priming in neural systems. Transient non-ischemic elevation of intraocular pressure (IOP) increased mRNA for inflammasome components IL-1β, NLRP3, ASC, CASP1 and IL-6 in rat and mouse retinas. The P2X7 receptor was implicated in the in vivo mechanosensitive priming of IL-1β and IL-6 transcription and translation. In vitro experiments with optic nerve head astrocytes demonstrated enhanced expression of the IL-1β and IL-6 genes following stretching or swelling. The increase in IL-1β expression was inhibited by degradation of extracellular ATP with apyrase, blocking pannexin hemichannels with carbenoxolone, probenecid or 10Panx1 peptide, P2X7 receptor antagonists (BBG, A839977 or A740003) as well inhibition of the NFκB transcription factor with Bay 11-7082. The swelling-dependent fall in expression of the NFκB inhibitor IκB-α was reduced by treatment of cells with A839977 and in P2X7 knockout mice. In summary, our data suggest that mechanical trauma to the retina results in priming of the NLRP3 inflammasome components and upregulated IL-6 expression and release. This was dependent upon ATP release through pannexin hemichannels and autostimulation of the P2X7 receptor. Since the P2X7 receptor can also trigger inflammasome activation it appears to have a central role in linking mechanical strain to neuroinflammation.

Included in

Dentistry Commons

Share

COinS