Chemokine Production by G Protein-Coupled Receptor Activation in a Human Mast Cell Line: Roles of Extracellular Signal-Regulated Kinase and NFAT

Loading...
Thumbnail Image
Penn collection
Departmental Papers (Dental)
Degree type
Discipline
Subject
Dentistry
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Ali, H.
Ahamed, J.
Hernandez-Munain, C.
Baron, J. L.
Krangel, M. S.
Patel, D. D.
Contributor
Abstract

Chemoattractants are thought to be the first mediators generated at sites of bacterial infection. We hypothesized that signaling through G protein-coupled chemoattractant receptors may stimulate cytokine production. To test this hypothesis, a human mast cell line (HMC-1) that normally expresses receptors for complement components C3a and C5a at low levels was stably transfected to express physiologic levels of fMLP receptors. We found that fMLP, but not C3a or C5a, induced macrophage inflammatory protein (MIP)-1β (CCL4) and monocyte chemoattractant protein-1 (CCL2) mRNA and protein. Although fMLP stimulated both sustained Ca2+ mobilization and phosphorylation of extracellular signal-regulated kinase (ERK), these responses to C3a or C5a were transient. However, transient expression of C3a receptors in HMC-1 cells rendered the cells responsive to C3a for sustained Ca2+ mobilization and MIP-1β production. The fMLP-induced chemokine production was blocked by pertussis toxin, PD98059, and cyclosporin A, which respectively inhibit G(iα) activation, mitgen-activated protein kinase kinase-mediated ERK phosphorylation, and calcineurin-mediated activation of NFAT. Furthermore, fMLP, but not C5a, stimulated NFAT activation in HMC-1 cells. These data indicate that chemoattractant receptors induce chemokine production in HMC-1 cells with a selectivity that depends on the level of receptor expression, the length of their signaling time, and the synergistic interaction of multiple signaling pathways, including extracellular signal-regulated kinase phosphorylation, sustained Ca2+ mobilization and NFAT activation.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2000-12-15
Journal title
Journal of Immunology
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection