Approximate Bisimulation Relations for Constrained Linear Systems

Loading...
Thumbnail Image
Penn collection
Technical Reports (CIS)
General Robotics, Automation, Sensing and Perception Laboratory
Degree type
Discipline
Subject
GRASP
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Girard, Antoine
Contributor
Abstract

In this paper, we define the notion of approximate bisimulation relation between two systems, extending the well established exact bisimulation relations for discrete and continuous systems. Exact bisimulation requires that the observations of two systems are and remain identical, approximate bisimulation allows the observation to be different provided they are and remain arbitrarily close. Approximate bisimulation relations are conveniently defined as level sets of a function called bisimulation function. For the class of linear systems with constrained initial states and constrained inputs, we develop effective characterizations for bisimulation functions that can be interpreted in terms of linear matrix inequalities, set inclusion and games. We derive a computationally effective algorithm to evaluate the precision of the approximate bisimulation between a constrained linear system and its projection. This algorithm has been implemented in a MATLAB toolbox: MATISSE. Two examples of use of the toolbox in the context of safety verification are shown.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2005-01-01
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-05-19.
Recommended citation
Collection