Departmental Papers (CIS)

Document Type

Conference Paper

Date of this Version

2010

Comments

Ganchev, K., Kearns, M., Nevmyvaka, Y., & Wortman, J., Censored Exploration and the Dark Pool Problem, CACM, May 2010, doi: 10.1145/1735223.1735247

ACM COPYRIGHT NOTICE. Copyright © 2010 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Abstract

We introduce and analyze a natural algorithm for multi-venue exploration from censored data, which is motivated by the Dark Pool Problem of modern quantitative finance. We prove that our algorithm converges in polynomial time to a near-optimal allocation policy; prior results for similar problems in stochastic inventory control guaranteed only asymptotic convergence and examined variants in which each venue could be treated independently. Our analysis bears a strong resemblance to that of efficient exploration/ exploitation schemes in the reinforcement learning literature. We describe an extensive experimental evaluation of our algorithm on the Dark Pool Problem using real trading data.

Share

COinS
 

Date Posted: 24 July 2012