Departmental Papers (CIS)

Document Type

Conference Paper

Date of this Version

6-2010

Comments

Karvounarakis, G., Ives, Z., & Tannen, V., Querying Data Provenance, ACM SIGMOD International Conference on Management of Data, June 2010, doi: 10.1145/1807167.1807269

ACM COPYRIGHT NOTICE. Copyright © 2010 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Abstract

Many advanced data management operations (e.g., incremental maintenance, trust assessment, debugging schema mappings, keyword search over databases, or query answering in probabilistic databases), involve computations that look at how a tuple was produced, e.g., to determine its score or existence. This requires answers to queries such as, “Is this data derivable from trusted tuples?”; “What tuples are derived from this relation?”; or “What score should this answer receive, given initial scores of the base tuples?”. Such questions can be answered by consulting the provenance of query results. In recent years there has been significant progress on formal models for provenance. However, the issues of provenance storage, maintenance, and querying have not yet been addressed in an application-independent way. In this paper, we adopt the most general formalism for tuple-based provenance, semiring provenance. We develop a query language for provenance, which can express all of the aforementioned types of queries, as well as many more; we propose storage, processing and indexing schemes for data provenance in support of these queries; and we experimentally validate the feasibility of provenance querying and the benefits of our indexing techniques across a variety of application classes and queries.

Share

COinS
 

Date Posted: 20 July 2012